1
|
Cifuentes M, Verdejo HE, Castro PF, Corvalan AH, Ferreccio C, Quest AFG, Kogan MJ, Lavandero S. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda) 2025; 40:0. [PMID: 39078396 DOI: 10.1152/physiol.00021.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, the persistence of the harmful trigger or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated with the development of several increasingly prevalent and serious chronic conditions, such as obesity, cancer, and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms, and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases, and cancer. We examine the state of the art in selected aspects of the topic and propose future directions and approaches for the field.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- OMEGA Laboratory, Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Hematology and Oncology, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Public Health, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Department of Pharmacological & Toxicological Chemistry, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
- Department of Biochemistry & Molecular Biology, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
2
|
Jiang H, Ye Y, Wang M, Sun X, Sun T, Chen Y, Li P, Zhang M, Wang T. The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors. Biotechnol Genet Eng Rev 2024; 40:4446-4465. [PMID: 37191003 DOI: 10.1080/02648725.2023.2212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising immunotherapeutic approach for the treatment of various tumors. However, the efficacy of this therapy is limited in a subset of patients, and it is important to develop strategies to enhance immune responses. Studies have demonstrated a critical role of gut microbiota in regulating the therapeutic response to ICB. Gut microbiota composition, diversity, and function are mediated by metabolites, such as short-chain fatty acids and secondary bile acids, that interact with host immune cells through specific receptors. In addition, gut bacteria may translocate to the tumor site and stimulate antitumor immune responses. Therefore, maintaining a healthy gut microbiota composition, for instance through avoiding the use of antibiotics or probiotic interventions, can be an effective approach to optimize ICB therapy. This review summarizes the current understanding of the microbiota-immunity interactions in the context of ICB therapy, and discusses potential clinical implications of these findings.
Collapse
Affiliation(s)
- Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingqi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Li Y, Luo Y, Wang C, Xu L, Dai X, An Y, He L, Zeng D, Bai Y, Zhang H. VSV infection and LPS treatment alter serum bile acid profiles, bile acid biosynthesis, and bile acid receptors in mice. Microbiol Spectr 2024; 12:e0083624. [PMID: 39287458 PMCID: PMC11537081 DOI: 10.1128/spectrum.00836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Pathogen infections remain a significant public health problem worldwide. Accumulating evidence regarding the crosstalk between bile acid (BA) metabolism and immune response reveals that BA metabolism regulates host immunity and microbial pathogenesis, making it an attractive target for disease prevention and infection control. However, the effect of infection on circulating BA profiles, the biosynthesis-related enzymes, and their receptors remains to be depicted. Here, we investigated the effect of viral (vesicular stomatitis virus, VSV) and bacterial (lipopolysaccharide, LPS) infections on BA metabolism and signaling. Infection models were successfully established by intraperitoneally injecting VSV and LPS, respectively. VSV and LPS injection significantly changed the circulating BA profiles, with highly increased levels of taurine-conjugated BAs and significant decreases in unconjugated BAs. Consistent with the decreased levels of circulating cholic acid (CA) and chenodeoxycholic acid (CDCA), the expression of BA biosynthesis-related rate-limiting enzymes (Cyp7a1, Cyp27a1, Cyp8b1, and Hsd3b7) were significantly reduced. Furthermore, hepatic and pulmonary BA receptors (BARs) expression varied in different infection models. LPS treatment had an extensive impact on tested hepatic and pulmonary BARs, resulting in the upregulation of TGR5, S1PR2, and VDR, while VSV infection only promoted VDR expression. Our study provides insights into the involvement of BA metabolism in the pathophysiology of infection, which may provide potential clues for targeting BA metabolism and BAR signaling to boost innate immunity and control infection. IMPORTANCE This study focuses on the crosstalk between bile acid (BA) metabolism and immune response in VSV infection and LPS treatment models and depicts the effect of infection on circulating BA profiles, the biosynthesis-related enzymes, and their receptors. These findings provide insights into the effect of infection on BA metabolism and signaling, adding a more comprehensive understanding to the relationship between infection, BA metabolism and immune responses.
Collapse
Affiliation(s)
- Yamei Li
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, China
| | - Yan Luo
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Chao Wang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Lei Xu
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xinhua Dai
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, China
| | - Yunfei An
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, China
| | - Lin He
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Dongmei Zeng
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yangjuan Bai
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, China
| | - Hua Zhang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Willemsen S, Yengej FAY, Puschhof J, Rookmaaker MB, Verhaar MC, van Es J, Beumer J, Clevers H. A comprehensive transcriptome characterization of individual nuclear receptor pathways in the human small intestine. Proc Natl Acad Sci U S A 2024; 121:e2411189121. [PMID: 39475639 PMCID: PMC11551338 DOI: 10.1073/pnas.2411189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 11/13/2024] Open
Abstract
Nuclear receptors (NRs) are widely expressed transcription factors that bind small, lipophilic compounds and regulate diverse biological processes. In the small intestine, NRs are known to act as sensors that control transcriptional responses to endogenous and exogenous signals, yet their downstream effects have not been characterized extensively. Here, we investigate the activation of six different NRs individually in human intestinal organoids using small molecules agonists. We observe changes in key enterocyte functions such as lipid, glucose, and amino acid absorption, the regulation of electrolyte balance, and drug metabolism. Our findings reinforce PXR, LXR, FXR, and PPARα as regulators of lipid absorption. Furthermore, known hepatic effects of AHR and VDR activation were recapitulated in the human small intestine. Finally, we identify unique target genes for intestinal PXR activation (ERG28, TMEM97, and TM7SF2), LXR activation (RAB6B), and VDR activation (CA12). This study provides an unbiased and comprehensive transcriptomic description of individual NR pathways in the human small intestine. By gaining a deeper understanding of the effects of individual NRs, we might better harness their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Sam Willemsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Junior Research Group Epithelium Microbiome Interactions, German Cancer Research Center, Heidelberg69120, Germany
| | | | | | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Institute of Human Biology, Roche Innovation Center Basel, Basel4058, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht3584 CS, The Netherlands
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, BaselCH-4070, Switzerland
| |
Collapse
|
5
|
Lee SH, Kim S, Lee J, Kim Y, Joo Y, Heo JY, Lee H, Lee C, Hwang GS, Park H. Comprehensive metabolomic analysis identifies key biomarkers and modulators of immunotherapy response in NSCLC patients. Drug Resist Updat 2024; 77:101159. [PMID: 39405736 DOI: 10.1016/j.drup.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 11/12/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized immuno-oncology with effective clinical responses, only 30 to 40 % of patients respond to ICIs, highlighting the need for reliable biomarkers to predict and enhance therapeutic outcomes. This study investigated how amino acid, glycolysis, and bile acid metabolism affect ICI efficacy in non-small cell lung cancer (NSCLC) patients. Through targeted metabolomic profiling and machine learning analysis, we identified amino acid metabolism as a key factor, with histidine (His) linked to favorable outcomes and homocysteine (HCys), phenylalanine (Phe), and sarcosine (Sar) linked to poor outcomes. Importantly, the His/HCys+Phe+Sar ratio emerges as a robust biomarker. Furthermore, we emphasize the role of glycolysis-related metabolites, particularly lactate. Elevated lactate levels post-immunotherapy treatment correlate with poorer outcomes, underscoring lactate as a potential indicator of treatment efficacy. Moreover, specific bile acids, glycochenodeoxycholic acid (GCDCA) and taurolithocholic acid (TLCA), are associated with better survival and therapeutic response. Particularly, TLCA enhances T cell activation and anti-tumor immunity, suggesting its utility as a predictive biomarker and therapeutic agent. We also suggest a connection between gut microbiota and TLCA levels, with the Eubacterium genus modulating this relationship. Therefore, modulating specific metabolic pathways-particularly amino acid, glycolysis, and bile acid metabolism-could predict and enhance the efficacy of ICI therapy in NSCLC patients, with potential implications for personalized treatment strategies in immuno-oncology. ONE SENTENCE SUMMARY: Our study identifies metabolic biomarkers and pathways that could predict and enhance the outcomes of immune checkpoint inhibitor therapy in NSCLC patients.
Collapse
Affiliation(s)
- Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Yanghyun Joo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jun-Yeong Heo
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Heeyeon Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea; Genome&Company, GWANGGYO FLAX DESIAN 7F, Changnyong-daero 256beon-gil 50, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, South Korea.
| |
Collapse
|
6
|
Lee MH, Nuccio SP, Mohanty I, Hagey LR, Dorrestein PC, Chu H, Raffatellu M. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 2024; 24:798-809. [PMID: 39009868 DOI: 10.1038/s41577-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA.
| |
Collapse
|
7
|
Roux S, Cherradi S, Duong HT. Uncovering the mechanism of troglitazone-mediated idiosyncratic drug-induced liver injury with individual-centric models. Arch Toxicol 2024; 98:3875-3884. [PMID: 39105737 PMCID: PMC11489277 DOI: 10.1007/s00204-024-03833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Idiosyncratic drug-induced liver injury is a rare and unpredictable event. Deciphering its initiating-mechanism is a hard task as its occurrence is individual dependent. Thus, studies that utilize models that are not individual-centric might drive to a general mechanistic conclusion that is not necessarily true. Here, we use the individual-centric spheroid model to analyze the initiating-mechanism of troglitazone-mediated iDILI risk. Individual-centric spheroid models were generated using a proprietary cell educating technology. These educated spheroids contain hepatocytes, hepatic stellate cells, activated monocyte-derived macrophages, and dendritic cells under physiological conditions. We show that phases 1 and 2 drug-metabolizing enzymes were induced in an individual-dependent manner. However, we did not observe any association of DEMs induction and troglitazone (TGZ)-mediated iDILI risk. We analyzed TGZ-mediated iDILI and found that a 44-year-old male showed iDILI risk that is associated with TGZ-mediated suppression of IL-12 expression by autologous macrophages and dendritic cells. We performed a rescue experiment and showed that treatment of spheroids from this 44-year-old male with TGZ and recombinant IL-12 suppressed iDILI risk. We confirmed the mechanism in another 31-year-old female with iDILI risk. We demonstrate here that individual-centric spheroid are versatile models that allow to predict iDILI risk and to analyze a direct effect of the drug on activated macrophages and dendritic cells to uncover the initiating-mechanism of iDILI occurrence. This model opens perspectives for a personalized strategy to mitigate iDILI risk.
Collapse
Affiliation(s)
- Salomé Roux
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, 1682 Rue de La Valsière, 34790, Grabels, France
| | - Sara Cherradi
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, 1682 Rue de La Valsière, 34790, Grabels, France
| | - Hong Tuan Duong
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, 1682 Rue de La Valsière, 34790, Grabels, France.
| |
Collapse
|
8
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
9
|
Wang B, Han D, Hu X, Chen J, Liu Y, Wu J. Exploring the role of a novel postbiotic bile acid: Interplay with gut microbiota, modulation of the farnesoid X receptor, and prospects for clinical translation. Microbiol Res 2024; 287:127865. [PMID: 39121702 DOI: 10.1016/j.micres.2024.127865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The gut microbiota, mainly resides in the colon, possesses a remarkable ability to metabolize different substrates to create bioactive substances, including short-chain fatty acids, indole-3-propionic acid, and secondary bile acids. In the liver, bile acids are synthesized from cholesterol and then undergo modification by the gut microbiota. Beyond those reclaimed by the enterohepatic circulation, small percentage of bile acids escaped reabsorption, entering the systemic circulation to bind to several receptors, such as farnesoid X receptor (FXR), thereby exert their biological effects. Gut microbiota interplays with bile acids by affecting their synthesis and determining the production of secondary bile acids. Reciprocally, bile acids shape out the structure of gut microbiota. The interplay of bile acids and FXR is involved in the development of multisystemic conditions, encompassing metabolic diseases, hepatobiliary diseases, immune associated disorders. In the review, we aim to provide a thorough review of the intricate crosstalk between the gut microbiota and bile acids, the physiological roles of bile acids and FXR in mammals' health and disease, and the clinical translational considerations of gut microbiota-bile acids-FXR in the treatment of the diseases.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Xinyue Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jing Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yuwei Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
10
|
Lu K, Li C, Men J, Xu B, Chen Y, Yan P, Gai Z, Zhang Q, Zhang L. Traditional Chinese medicine to improve immune imbalance of asthma: focus on the adjustment of gut microbiota. Front Microbiol 2024; 15:1409128. [PMID: 39411430 PMCID: PMC11473343 DOI: 10.3389/fmicb.2024.1409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Asthma, being the prevailing respiratory ailment globally, remains enigmatic in terms of its pathogenesis. In recent times, the advancement of traditional Chinese medicine pertaining to the intestinal microbiota has yielded a plethora of investigations, which have substantiated the potential of traditional Chinese medicine in disease prevention and treatment through modulation of the intestinal microbiota. Both animal models and clinical trials have unequivocally demonstrated the indispensable role of the intestinal microbiota in the pathogenesis of asthma. This article presents a summary of the therapeutic effects of traditional Chinese medicine in the context of regulating gut microbiota and its metabolites, thereby achieving immune regulation and inhibiting airway inflammation associated with asthma. It elucidates the mechanism by which traditional Chinese medicine modulates the gut microbiota to enhance asthma management, offering a scientific foundation for the utilization of traditional Chinese medicine in the treatment of asthma.
Collapse
Affiliation(s)
- Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwen Men
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingxiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Fuchs CD, Simbrunner B, Baumgartner M, Campell C, Reiberger T, Trauner M. Bile acid metabolism and signaling in liver disease. J Hepatol 2024:S0168-8278(24)02572-8. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) have signaling functions efficiently regulating their own metabolism and transport as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolized by microbiota. Disruption of BA transport, metabolism and physiological signaling function contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and metabolic dysfunction-associated steatotic liver disease (MASLD) as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signaling may also affect the intestine and kidney, thereby contributing to failure of gut integrity driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. This review will summarize recent advances in the understanding of BA signaling, metabolism and transport focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Grant ET, Parrish A, Boudaud M, Hunewald O, Hirayama A, Ollert M, Fukuda S, Desai MS. Dietary fibers boost gut microbiota-produced B vitamin pool and alter host immune landscape. MICROBIOME 2024; 12:179. [PMID: 39307855 PMCID: PMC11418204 DOI: 10.1186/s40168-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Dietary fibers can alter microbial metabolic output in support of healthy immune function; however, the impact of distinct fiber sources and immunomodulatory effects beyond short-chain fatty acid production are underexplored. In an effort to discern the effects of diverse fibers on host immunity, we employed five distinct rodent diets with varying fiber content and source in specific-pathogen-free, gnotobiotic (containing a 14-member synthetic human gut microbiota), and germ-free mice. RESULTS Broad-scale metabolomics analysis of cecal contents revealed that fiber deprivation consistently reduced the concentrations of microbiota-produced B vitamins. This phenomenon was not always explained by reduced biosynthesis, rather, metatranscriptomic analyses pointed toward increased microbial usage of certain B vitamins under fiber-free conditions, ultimately resulting in a net reduction of host-available B vitamins. Broad immunophenotyping indicated that the local gut effector immune populations and activated T cells accumulate in a microbiota-dependent manner. Supplementation with the prebiotic inulin recovered the availability of microbially produced B vitamins and restored immune homeostasis. CONCLUSIONS Our findings highlight the potential to use defined fiber polysaccharides to boost microbiota-derived B vitamin availability in an animal model and to regulate local innate and adaptive immune populations of the host. Video abstract.
Collapse
Affiliation(s)
- Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-Sur-Alzette, Luxembourg
| | - Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-Sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, 210-0821, Japan
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark.
| |
Collapse
|
13
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
14
|
Su Y, Zhou Q, Wu Q, Ding Y, Jiang M, Zhang X, Wang J, Wang X, Ge C. Infection‑associated bile acid disturbance contributes to macrophage activation in patients with cirrhosis. Mol Med Rep 2024; 30:150. [PMID: 38963032 PMCID: PMC11234163 DOI: 10.3892/mmr.2024.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Cirrhosis impairs macrophage function and disrupts bile acid homeostasis. Although bile acids affect macrophage function in patients with sepsis, whether and how the bile acid profile is changed by infection in patients with cirrhosis to modulate macrophage function remains unclear. The present study aimed to investigate the changes in the bile acid profile of patients with cirrhosis and infection and their effects on macrophage function. Serum was collected from 20 healthy subjects, 18 patients with cirrhosis and 39 patients with cirrhosis and infection. Bile acid profiles were detected using high‑performance liquid chromatography‑triple time‑of‑flight mass spectrometer. The association between bile acid changes and infection was analysed using receiver operating characteristic (ROC) curves. Infection‑altered bile acids were used in combination with lipopolysaccharides (LPS) to stimulate RAW264.7/THP‑1 cells in vitro. The migratory capacity was evaluated using wound healing and Transwell migration assays. The expression of Arg‑1, iNOS, IκBα, phosphorylated (p‑)IκBα and p65 was examined with western blotting and immunofluorescence, Tnfα, Il1b and Il6 mRNA was examined with RT‑qPCR, and CD86, CD163 and phagocytosis was measured with flow cytometry. The ROC curves showed that decreased hyodeoxycholic acid (HDCA) and deoxycholic acid (DCA) levels were associated with infection. HDCA or DCA combined with LPS enhanced the phagocytic and migratory ability of macrophages, accompanied by upregulation of iNOS and CD86 protein expression as well as Tnfα, Il1b, and Il6 mRNA expression. However, neither HDCA nor DCA alone showed an effect on these phenotypes. In addition, DCA and HDCA acted synergistically with LPS to increase the expression of p‑IκBα and the intranuclear migration of p65. Infection changed the bile acid profile in patients with cirrhosis, among which the reduction of DCA and HDCA associated most strongly with infection. HDCA and DCA enhanced the sensitivity of macrophage function loss to LPS stimulation. These findings suggested a potential role for monitoring the bile acid profile that could help manage patients with cirrhosis and infection.
Collapse
Affiliation(s)
- Yong Su
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiaoling Zhou
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiong Wu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yijie Ding
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Meijie Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Xiaoyu Zhang
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jia Wang
- Department of Pharmacy, Hefei First People's Hospital, Hefei, Anhui 230032, P.R. China
| | - Xinming Wang
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chaoliang Ge
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
15
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
16
|
Alrehaili BD. Unravelling the therapeutic landscape of bile acid-based therapies in gastrointestinal disorders. Saudi J Gastroenterol 2024; 30:283-293. [PMID: 38708898 PMCID: PMC11534188 DOI: 10.4103/sjg.sjg_53_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Bile acids serve as endogenous ligands for nuclear and cell membrane receptors and play a crucial role in bile acid and lipid metabolism. These detergent-like compounds promote bile flow and aid in the absorption of dietary fats and fat-soluble vitamins in the intestine. Synthesized in the liver as end products of cholesterol catabolism, bile acids exhibit a chemical structure comprising a nucleus and a side chain featuring a carboxyl group, with diverse steric arrangements and potential polar substituents. Critical interactions occur between bile acid species and various nuclear and cell membrane receptors, including the farnesoid X receptor and G-protein-coupled bile acid receptor 1. This research aimed to review the literature on bile acids and their roles in treating different diseases. Currently, numerous investigations are concentrating on specific bile acid species that target nuclear receptors in the gastrointestinal system, aiming to improve the treatment of conditions such as nonalcoholic fatty liver disease. Given the global attention this topic has garnered from research groups, it is considered relatively new, thus anticipating some gaps or incomplete data. Bile acid species have a significant therapeutic promise, especially in their ability to activate or inhibit nuclear receptors, such as farnesoid X receptor. This research provides to offer essential information for scientists and medical practitioners interested in discovering new studies that underscore the importance of bile acids in ameliorating and impeding the progression of disorders. Furthermore, it opens avenues for previously overlooked bile acid-based therapies.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Pharmacology and Toxicology Department, Pharmacy College, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
17
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Cheng W, Zhu N, Wang J, Yang R. A role of gut microbiota metabolites in HLA-E and NKG2 blockage immunotherapy against tumors: new insights for clinical application. Front Immunol 2024; 15:1331518. [PMID: 39229258 PMCID: PMC11368731 DOI: 10.3389/fimmu.2024.1331518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
One of major breakthroughs in immunotherapy against tumor is from blocking immune checkpoint molecules on tumor and reactive T cells. The development of CTLA-4 and PD-1 blockage antibodies has triggered to search for additional effective therapeutic strategies. This causes recent findings that blocking the interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in tumors is effective in defensing tumors. Interestingly, gut microbiota also affects this immune checkpoint immunotherapy against tumor. Gut microbiota such as bacteria can contribute to the regulation of host immune response and homeostasis. They not only promote the differentiation and function of immunosuppressive cells but also the inflammatory cells through the metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as short chain fatty acids (SCFAs). These gut microbiota metabolites (GMMs) educated immune cells can affect the differentiation and function of effective CD8 and NK cells. Notably, these metabolites also directly affect the activity of CD8 and NK cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated immune factors. These findings offer new insights for the clinical application of gut microbiota in precise and/or personalized treatments of tumors. In this review, we will discuss the impacts of GMMs and GMM educated immune cells on the activity of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells and/or their ligand HLA-E in tumor cells.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Zhang LN, Tan JT, Ng HY, Liao YS, Zhang RQ, Chan KH, Hung IFN, Lam TTY, Cheung KS. Baseline Gut Microbiota Was Associated with Long-Term Immune Response at One Year Following Three Doses of BNT162b2. Vaccines (Basel) 2024; 12:916. [PMID: 39204040 PMCID: PMC11359560 DOI: 10.3390/vaccines12080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND This study explored neutralizing IgG antibody levels against COVID-19 decline over time post-vaccination. We conducted this prospective cohort study to investigate the function of gut microbiota in the host immune response following three doses of BNT162b2. METHODS Subjects who received three doses of BNT162b2 were recruited from three centers in Hong Kong. Blood samples were obtained before the first dose and at the one-year timepoint for IgG ELISA to determine the level of neutralizing antibody (NAb). The primary outcome was a high immune response (NAb > 600 AU/mL). We performed shotgun DNA metagenomic sequencing on baseline fecal samples to identify bacterial species and metabolic pathways associated with high immune response using linear discriminant analysis effect size analysis. RESULTS A total of 125 subjects were recruited (median age: 52 years [IQR: 46.2-59.0]; male: 43 [34.4%]), and 20 were regarded as low responders at the one-year timepoint. Streptococcus parasanguinis (log10LDA score = 2.38, p = 0.003; relative abundance of 2.97 × 10-5 vs. 0.03%, p = 0.001), Bacteroides stercoris (log10LDA score = 4.29, p = 0.024; relative abundance of 0.14% vs. 2.40%, p = 0.014) and Haemophilus parainfluenzae (log10LDA score = 2.15, p = 0.022; relative abundance of 0.01% vs. 0, p = 0.010) were enriched in low responders. Bifidobacterium pseudocatenulatum (log10LDA score = 2.99, p = 0.048; relative abundance of 0.09% vs. 0.36%, p = 0.049) and Clostridium leptum (log10LDA score = 2.38, p = 0.014; relative abundance of 1.2 × 10-5% vs. 0, p = 0.044) were enriched in high responders. S. parasanguinis was negatively correlated with the superpathway of pyrimidine ribonucleotides de novo biosynthesis (log10LDA score = 2.63), which contributes to inflammation and antibody production. H. parainfluenzae was positively correlated with pathways related to anti-inflammatory processes, including the superpathway of histidine, purine, and pyrimidine biosynthesis (log10LDA score = 2.14). CONCLUSION Among three-dose BNT162b2 recipients, S. parasanguinis, B. stercoris and H. parainfluenzae were associated with poorer immunogenicity at one year, while B. pseudocatenulatum and C. leptum was associated with a better response.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
| | - Jing-Tong Tan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
| | - Ho-Yu Ng
- School of Clinical Medicine, The University of Hong Kong, Hong Kong, China;
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China; (Y.-S.L.); (T.T.-Y.L.)
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong, China
| | - Rui-Qi Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
| | - Kwok-Hung Chan
- Department of Microbiology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China;
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China; (Y.-S.L.); (T.T.-Y.L.)
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China (J.-T.T.); (R.-Q.Z.); (I.F.-N.H.)
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| |
Collapse
|
20
|
Ali RO, Haddad JA, Quinn GM, Zhang GY, Townsend E, Scheuing L, Hill KL, Menkart M, Oringher JL, Umarova R, Rampertaap S, Rosenzweig SD, Koh C, Levy EB, Kleiner DE, Etzion O, Heller T. Taurine-conjugated bile acids and their link to hepatic S1PR2 play a significant role in hepatitis C-related liver disease. Hepatol Commun 2024; 8:e0478. [PMID: 38967598 PMCID: PMC11227361 DOI: 10.1097/hc9.0000000000000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Bile acids mediate gut-liver cross-talk through bile acid receptors. Serum, hepatic, and microbial bile acid metabolism was evaluated in HCV-compensated chronic liver disease. METHODS Patients underwent liver biopsy; portal and peripheral blood were obtained before (HCVi), and 6 months after sustained virologic response (SVR), splenic blood was obtained only after SVR. The fecal microbiome and liver transcriptome were evaluated using RNA-Seq. Twenty-four bile acids were measured in serum, summed as free, taurine-conjugated bile acids (Tau-BAs), and glycine-conjugated bile acids. RESULTS Compared to SVR, HCVi showed elevated conjugated bile acids, predominantly Tau-BA, compounded in HCVi cirrhosis. In the liver, transcription of bile acids uptake, synthesis, and conjugation was decreased with increased hepatic spillover into systemic circulation in HCVi. There was no difference in the transcription of microbial bile acid metabolizing genes in HCVi. Despite an overall decrease, Tau-BA remained elevated in SVR cirrhosis, mainly in splenic circulation. Only conjugated bile acids, predominantly Tau-BA, correlated with serum proinflammatory markers and hepatic proinflammatory pathways, including NLRP3 and NFKB. Among hepatic bile acid receptors, disease-associated conjugated bile acids showed the strongest association with hepatic spingosine-1-phosphate receptor 2 (S1PR2). CONCLUSIONS Enhanced expression of hepatic S1PR2 in HCVi and HCVi-cirrhosis and strong associations of S1PR2 with Tau-BAs suggest pathological relevance of Tau-BA-hepatic S1PR2 signaling in chronic liver disease. These findings have therapeutic implications in chronic liver diseases.
Collapse
Affiliation(s)
- Rabab O. Ali
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James A. Haddad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriella M. Quinn
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace Y. Zhang
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Townsend
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Scheuing
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kareen L. Hill
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew Menkart
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jenna L. Oringher
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliot B. Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ohad Etzion
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
23
|
Makioka-Itaya Y, Inoue R, Tsukahara T. Dysfunction of the Murine Liver with Aging and Its Improvement with the Continuous Consumption of Enterococcus faecalis EC-12. Nutrients 2024; 16:2031. [PMID: 38999780 PMCID: PMC11243158 DOI: 10.3390/nu16132031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Chronic inflammation is involved in the development of age-related diseases. Given its persistence, controlling chronic inflammation is essential for preventing age-related diseases. In this study, we investigated the effects of Enterococcus faecalis EC-12 (EC-12), which has immunomodulatory and antioxidant effects, on liver gene expression and aging phenomena in mice. Short-term EC-12 administration stimulated the expression of genes involved in lipid synthesis and metabolism in the liver. Furthermore, long-term EC-12 administration from 10 weeks to 1.5 years of age resulted in significant increases in blood interleukin (IL)-6 and IL-10 concentrations (both p < 0.05) and a significant decrease in the monocyte chemotactic protein-1 concentration (p < 0.05). These results indicated pathologic improvement, such as suppression of fat degeneration in the liver. These results suggest that continuous EC-12 intake from a young age can suppress liver function abnormalities, which is one of the aging phenomena in old age, and contribute to health in old age.
Collapse
Affiliation(s)
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Setsunan University, Hirakata 573-0101, Japan;
| | | |
Collapse
|
24
|
Nanaware PP, Khan ZN, Clement CC, Shetty M, Mota I, Seltzer ES, Dzieciatkowska M, Gamboni F, D'Alessandro A, Ng C, Nagayama M, Lichti CF, Soni RK, Jacob B Geri, Matei I, Lyden D, Longman R, Lu TT, Wan X, Unanue ER, Stern LJ, Santambrogio L. Role of the afferent lymph as an immunological conduit to analyze tissue antigenic and inflammatory load. Cell Rep 2024; 43:114311. [PMID: 38848214 PMCID: PMC11233987 DOI: 10.1016/j.celrep.2024.114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
The lymphatic fluid is the conduit by which part of the tissue "omics" is transported to the draining lymph node for immunosurveillance. Following cannulation of the pre-nodal cervical and mesenteric afferent lymphatics, herein we investigate the lymph proteomic composition, uncovering that its composition varies according to the tissue of origin. Tissue specificity is also reflected in the dendritic cell-major histocompatibility complex class II-eluted immunopeptidome harvested from the cervical and mesenteric nodes. Following inflammatory disruption of the gut barrier, the lymph antigenic and inflammatory loads are analyzed in both mice and subjects with inflammatory bowel diseases. Gastrointestinal tissue damage reflects the lymph inflammatory and damage-associated molecular pattern signatures, microbiome-derived by-products, and immunomodulatory molecules, including metabolites of the gut-brain axis, mapped in the afferent mesenteric lymph. Our data point to the relevance of the lymphatic fluid to probe the tissue-specific antigenic and inflammatory load transported to the draining lymph node for immunosurveillance.
Collapse
Affiliation(s)
- Padma P Nanaware
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zohaib N Khan
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cristina C Clement
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Madhur Shetty
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ines Mota
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ethan S Seltzer
- Pediatric Rheumatology and Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York NY 100021, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Charles Ng
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY 10065, USA
| | - Manabu Nagayama
- Division of Gastroenterology and Hepatology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY 10065, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York 10032, NY, USA
| | - Jacob B Geri
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| | - Randy Longman
- Division of Gastroenterology and Hepatology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY 10065, USA
| | - Theresa T Lu
- Pediatric Rheumatology and Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York NY 100021, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10065, USA.
| |
Collapse
|
25
|
Huang P, Dong Q, Wang Y, Tian Y, Wang S, Zhang C, Yu L, Tian F, Gao X, Guo H, Yi S, Li M, Liu Y, Zhang Q, Lu W, Wang G, Yang B, Cui S, Hua D, Wang X, Jiao Y, Liu L, Deng Q, Ma B, Wu T, Zou H, Shi J, Zhang H, Fan D, Sheng Y, Zhao J, Tang L, Zhang H, Sun W, Chen W, Kong X, Chen L, Zhai Q. Gut microbial genomes with paired isolates from China illustrate probiotic and cardiometabolic effects. CELL GENOMICS 2024; 4:100559. [PMID: 38740021 PMCID: PMC11228888 DOI: 10.1016/j.xgen.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
The gut microbiome displays genetic differences among populations, and characterization of the genomic landscape of the gut microbiome in China remains limited. Here, we present the Chinese Gut Microbial Reference (CGMR) set, comprising 101,060 high-quality metagenomic assembled genomes (MAGs) of 3,707 nonredundant species from 3,234 fecal samples across primarily rural Chinese locations, 1,376 live isolates mainly from lactic acid bacteria, and 987 novel species relative to worldwide databases. We observed region-specific coexisting MAGs and MAGs with probiotic and cardiometabolic functionalities. Preliminary mouse experiments suggest a probiotic effect of two Faecalibacillus intestinalis isolates in alleviating constipation, cardiometabolic influences of three Bacteroides fragilis_A isolates in obesity, and isolates from the genera Parabacteroides and Lactobacillus in host lipid metabolism. Our study expands the current microbial genomes with paired isolates and demonstrates potential host effects, contributing to the mechanistic understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Pan Huang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Quanbin Dong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Yifeng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yunfan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoxiang Gao
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Guo
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shanrong Yi
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingyang Li
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yang Liu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dongxu Hua
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiuchao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuwen Jiao
- Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Lu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiufeng Deng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Beining Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huayiyang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Haifeng Zhang
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanhui Sheng
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Tang
- Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources & School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
26
|
Zhang X, Gao X, Liu Z, Shao F, Yu D, Zhao M, Qin X, Wang S. Microbiota regulates the TET1-mediated DNA hydroxymethylation program in innate lymphoid cell differentiation. Nat Commun 2024; 15:4792. [PMID: 38839760 PMCID: PMC11153590 DOI: 10.1038/s41467-024-48794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Innate lymphoid cell precursors (ILCPs) develop into distinct subsets of innate lymphoid cells (ILCs) with specific functions. The epigenetic program underlying the differentiation of ILCPs into ILC subsets remains poorly understood. Here, we reveal the genome-wide distribution and dynamics of the DNA methylation and hydroxymethylation in ILC subsets and their respective precursors. Additionally, we find that the DNA hydroxymethyltransferase TET1 suppresses ILC1 but not ILC2 or ILC3 differentiation. TET1 deficiency promotes ILC1 differentiation by inhibiting TGF-β signaling. Throughout ILCP differentiation at postnatal stage, gut microbiota contributes to the downregulation of TET1 level. Microbiota decreases the level of cholic acid in the gut, impairs TET1 expression and suppresses DNA hydroxymethylation, ultimately resulting in an expansion of ILC1s. In adult mice, TET1 suppresses the hyperactivation of ILC1s to maintain intestinal homeostasis. Our findings provide insights into the microbiota-mediated epigenetic programming of ILCs, which links microbiota-DNA methylation crosstalk to ILC differentiation.
Collapse
Affiliation(s)
- Xusheng Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xintong Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhen Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fei Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dou Yu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiwen Qin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
27
|
Tang X, Chen X, Ferrari M, Walvoort MTC, de Vos P. Gut Epithelial Barrier Function is Impacted by Hyperglycemia and Secondary Bile Acids in Vitro: Possible Rescuing Effects of Specific Pectins. Mol Nutr Food Res 2024; 68:e2300910. [PMID: 38794856 DOI: 10.1002/mnfr.202300910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Gut epithelial barrier disruption is commonly observed in Western diseases like diabetes and inflammatory bowel disease (IBD). Enhanced epithelial permeability triggers inflammatory responses and gut microbiota dysbiosis. Reduced bacterial diversity in IBD affects gut microbiota metabolism, altering microbial products such as secondary bile acids (BAs), which potentially play a role in gut barrier regulation and immunity. Dietary fibers such as pectin may substitute effects of these BAs. The study examines transepithelial electrical resistance of gut epithelial T84 cells and the gene expression of tight junctions after exposure to (un)sulfated secondary BAs. This is compared to the impact of the dietary fiber pectin with different degrees of methylation (DM) and blockiness (DB), with disruption induced by calcium ionophore A23187 under both normal and hyperglycemic conditions. Unsulfated lithocholic acid (LCA) and deoxycholic acid (DCA) show a stronger rescuing effect, particularly evident under 20 mM glucose levels. DM19 with high DB (HB) and DM43HB pectin exhibit rescuing effects under both glucose conditions. Notably, DM19HB and DM43HB display higher rescue effects under 20 mM glucose compared to 5 mM glucose. The study demonstrates that specific pectins such as DM19HB and DM43HB may serve as alternatives for preventing barrier disruption in the case of disturbed DCA metabolism.
Collapse
Affiliation(s)
- Xin Tang
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Xiaochen Chen
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Michela Ferrari
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
28
|
Zhang H, Zhang Y, Gong Y, Zhang J, Li D, Tian Y, Han R, Guo Y, Sun G, Li W, Zhang Y, Zhao X, Zhang X, Wang P, Kang X, Jiang R. Fasting-Induced Molting Impacts the Intestinal Health by Altering the Gut Microbiota. Animals (Basel) 2024; 14:1640. [PMID: 38891687 PMCID: PMC11171271 DOI: 10.3390/ani14111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Fasting-induced molting (FIM) is a common method used to improve the laying performance of aged laying hens. Nevertheless, this approach may impose various stresses on chickens, such as disruptions in intestinal flora and inflammation issues within the intestines. However, the impact of an imbalance in intestinal flora on intestinal health during the FIM process remains elusive. Therefore, intestinal injury, the microbiome, and the metabolome were analyzed individually and integrated to elucidate the impact of the intestinal flora on intestinal health during the FIM process. The findings indicated that fasting resulted in a notable reduction in villus height and villus/crypt ratio, coupled with elevated levels of intestinal inflammation and permeability. During the fasting period, microbiota compositions changed. The abundance of Escherichia_Shigella increased, while the abundance of Ruminococcaceae_UCG-013 and Lactobacillus decreased. Escherichia_Shigella was positively correlated with Citrinin and Sterobilin, which lead to intestinal inflammation. Ruminococcaceae_UCG-013 and Lactobacillus exhibited positive correlations with Lanthionine and reduced Glutathione, thereby reducing intestinal inflammation. This study screened the intestinal probiotics, Ruminococcaceae UCG-013 and Lactobacillus, that influence gut health during the fasting period, providing an experimental basis for improving gut microbiota and reducing intestinal inflammation during the FIM process.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yihui Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Jun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xinlong Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xiaoran Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Pengyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| |
Collapse
|
29
|
Xue C, Jia H, Cao R, Cai W, Hong W, Tu J, Wang S, Jiang Q, Bi C, Shan A, Dong N. Oleanolic acid improved intestinal immune function by activating and potentiating bile acids receptor signaling in E. coli-challenged piglets. J Anim Sci Biotechnol 2024; 15:79. [PMID: 38760843 PMCID: PMC11102245 DOI: 10.1186/s40104-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases. Oleanolic acid (OA) is a pentacyclic triterpene that is ubiquitous in plants. Our previous work demonstrated the protective effect of OA on intestinal health, but the underlying molecular mechanisms remain unclear. This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli (ETEC) in piglets. The key molecular role of bile acid receptor signaling in this process has also been explored. RESULTS Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets (P < 0.05). OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum (P < 0.05). This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets. In addition, as a natural ligand of bile acid receptors, OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR (P < 0.05). Specifically, OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream cAMP-PKA-CREB signaling pathway (P < 0.05). Furthermore, OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR (P < 0.05), thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells. CONCLUSIONS In conclusion, our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response, which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.
Collapse
Affiliation(s)
- Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Jianing Tu
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Songtao Wang
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Qianzhi Jiang
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Chongpeng Bi
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China.
| |
Collapse
|
30
|
Xu Z, Wang S, Liu C, Kang J, Pan Y, Zhang Z, Zhou H, Xu M, Li X, Wang H, Niu S, Liu L, Sun D, Liu X. The Role of Gut Microbiota in Male Erectile Dysfunction of Rats. World J Mens Health 2024; 42:42.e56. [PMID: 38772541 DOI: 10.5534/wjmh.230337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function. MATERIALS AND METHODS Male Sprague-Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection. RESULTS The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways. CONCLUSIONS Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
Collapse
Affiliation(s)
- Zhunan Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiang Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaqi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhexin Zhang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xia Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoyu Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Niu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
31
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
32
|
Lee SY, Park YM, Yoo HJ, Hong SJ. Metabolomic pathways in food allergy. Pediatr Allergy Immunol 2024; 35:e14133. [PMID: 38727629 DOI: 10.1111/pai.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Food allergy (FA) is a widespread issue, affecting as many as 10% of the population. Over the past two to three decades, the prevalence of FA has been on the rise, particularly in industrialized and westernized countries. FA is a complex, multifactorial disease mediated by type 2 immune responses and involving environmental and genetic factors. However, the precise mechanisms remain inadequately understood. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. A metabolome approach would facilitate the identification of surrogate metabolite markers reflecting the disease activity and prognosis. Here, we present a literature overview of recent metabolomic studies conducted on children with FA.
Collapse
Affiliation(s)
| | - Yoon Mee Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Hoang SH, Tveter KM, Mezhibovsky E, Roopchand DE. Proanthocyanidin B2 derived metabolites may be ligands for bile acid receptors S1PR2, PXR and CAR: an in silico approach. J Biomol Struct Dyn 2024; 42:4249-4262. [PMID: 37340688 PMCID: PMC10730774 DOI: 10.1080/07391102.2023.2224886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Bile acids (BAs) act as signaling molecules via their interactions with various nuclear (FXR, VDR, PXR and CAR) and G-protein coupled (TGR5, M3R, S1PR2) BA receptors. Stimulation of these BA receptors influences several processes, including inflammatory responses and glucose and xenobiotic metabolism. BA profiles and BA receptor activity are deregulated in cardiometabolic diseases; however, dietary polyphenols were shown to alter BA profile and signaling in association with improved metabolic phenotypes. We previously reported that supplementing mice with a proanthocyanidin (PAC)-rich grape polyphenol (GP) extract attenuated symptoms of glucose intolerance in association with changes to BA profiles, BA receptor gene expression, and/or downstream markers of BA receptor activity. Exact mechanisms by which polyphenols modulate BA signaling are not known, but some hypotheses include modulation of the BA profile via changes to gut bacteria, or alteration of ligand-availability via BA sequestration. Herein, we used an in silico approach to investigate putative binding affinities of proanthocyanidin B2 (PACB2) and PACB2 metabolites to nuclear and G-protein coupled BA receptors. Molecular docking and dynamics simulations revealed that certain PACB2 metabolites had stable binding affinities to S1PR2, PXR and CAR, comparable to that of known natural and synthetic BA ligands. These findings suggest PACB2 metabolites may be novel ligands of S1PR2, CAR, and PXR receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H. Hoang
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Kevin M. Tveter
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
| | - Esther Mezhibovsky
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Diana E. Roopchand
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
| |
Collapse
|
34
|
Jia W, Li Y, Cheung KCP, Zheng X. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:865-878. [PMID: 37515688 DOI: 10.1007/s11427-023-2353-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/23/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BAs) play a crucial role in nutrient absorption and act as key regulators of lipid and glucose metabolism and immune homeostasis. Through the enterohepatic circulation, BAs are synthesized, metabolized, and reabsorbed, with a portion entering the vascular circulation and distributing systemically. This allows BAs to interact with receptors in all major organs, leading to organ-organ interactions that regulate both local and global metabolic processes, as well as the immune system. This review focuses on the whole-body effects of BA-mediated metabolic and immunological regulation, including in the brain, heart, liver, intestine, eyes, skin, adipose tissue, and muscle. Targeting BA synthesis and receptor signaling is a promising strategy for the development of novel therapies for various diseases throughout the body.
Collapse
Affiliation(s)
- Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kenneth C P Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
35
|
Griffiths JA, Yoo BB, Thuy-Boun P, Cantu VJ, Weldon KC, Challis C, Sweredoski MJ, Chan KY, Thron TM, Sharon G, Moradian A, Humphrey G, Zhu Q, Shaffer JP, Wolan DW, Dorrestein PC, Knight R, Gradinaru V, Mazmanian SK. Peripheral neuronal activation shapes the microbiome and alters gut physiology. Cell Rep 2024; 43:113953. [PMID: 38517896 PMCID: PMC11132177 DOI: 10.1016/j.celrep.2024.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic neurons of the enteric nervous system (ENS) and extrinsic neurons of the central nervous system and peripheral ganglia. The GI tract also harbors a diverse microbiome, but interactions between the ENS and the microbiome remain poorly understood. Here, we activate choline acetyltransferase (ChAT)-expressing or tyrosine hydroxylase (TH)-expressing gut-associated neurons in mice to determine effects on intestinal microbial communities and their metabolites as well as on host physiology. The resulting multi-omics datasets support broad roles for discrete peripheral neuronal subtypes in shaping microbiome structure, including modulating bile acid profiles and fungal colonization. Physiologically, activation of either ChAT+ or TH+ neurons increases fecal output, while only ChAT+ activation results in increased colonic contractility and diarrhea-like fluid secretion. These findings suggest that specific subsets of peripherally activated neurons differentially regulate the gut microbiome and GI physiology in mice without involvement of signals from the brain.
Collapse
Affiliation(s)
- Jessica A Griffiths
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter Thuy-Boun
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victor J Cantu
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Kelly C Weldon
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA
| | - Collin Challis
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael J Sweredoski
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ken Y Chan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Taren M Thron
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gil Sharon
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Justin P Shaffer
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Dennis W Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA; Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA; Shu Chien-Gene Lay Department of Engineering, University of California, San Diego, San Diego, CA, USA; Halıcıoğlu Data Science Institute, University of California, San Diego, San Diego, CA, USA
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
36
|
Guo Z, He K, Pang K, Yang D, Lyu C, Xu H, Wu D. Exploring Advanced Therapies for Primary Biliary Cholangitis: Insights from the Gut Microbiota-Bile Acid-Immunity Network. Int J Mol Sci 2024; 25:4321. [PMID: 38673905 PMCID: PMC11050225 DOI: 10.3390/ijms25084321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by immune-mediated injury to small bile ducts. Although PBC is an autoimmune disease, the effectiveness of conventional immunosuppressive therapy is disappointing. Nearly 40% of PBC patients do not respond to the first-line drug UDCA. Without appropriate intervention, PBC patients eventually progress to liver cirrhosis and even death. There is an urgent need to develop new therapies. The gut-liver axis emphasizes the interconnection between the gut and the liver, and evidence is increasing that gut microbiota and bile acids play an important role in the pathogenesis of cholestatic diseases. Dysbiosis of gut microbiota, imbalance of bile acids, and immune-mediated bile duct injury constitute the triad of pathophysiology in PBC. Autoimmune cholangitis has the potential to be improved through immune system modulation. Considering the failure of conventional immunotherapies and the involvement of gut microbiota and bile acids in the pathogenesis, targeting immune factors associated with them, such as bile acid receptors, microbial-derived molecules, and related specific immune cells, may offer breakthroughs. Understanding the gut microbiota-bile acid network and related immune dysfunctions in PBC provides a new perspective on therapeutic strategies. Therefore, we summarize the latest advances in research of gut microbiota and bile acids in PBC and, for the first time, explore the possibility of related immune factors as novel immunotherapy targets. This article discusses potential therapeutic approaches focusing on regulating gut microbiota, maintaining bile acid homeostasis, their interactions, and related immune factors.
Collapse
Affiliation(s)
- Ziqi Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Kun He
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| | - Ke Pang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Daiyu Yang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Z.G.); (K.P.); (D.Y.)
| | - Chengzhen Lyu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (K.H.); (C.L.)
| |
Collapse
|
37
|
Milivojac T, Grabež M, Krivokuća A, Maličević U, Gajić Bojić M, Đukanović Đ, Uletilović S, Mandić-Kovačević N, Cvjetković T, Barudžija M, Vojinović N, Šmitran A, Amidžić L, Stojiljković MP, Čolić M, Mikov M, Škrbić R. Ursodeoxycholic and chenodeoxycholic bile acids attenuate systemic and liver inflammation induced by lipopolysaccharide in rats. Mol Cell Biochem 2024:10.1007/s11010-024-04994-2. [PMID: 38578526 DOI: 10.1007/s11010-024-04994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
Bacterial lipopolysaccharide (LPS) induces general inflammation, by activating pathways involving cytokine production, blood coagulation, complement system activation, and acute phase protein release. The key cellular players are leukocytes and endothelial cells, that lead to tissue injury and organ failure. The aim of this study was to explore the anti-inflammatory, antioxidant, and cytoprotective properties of two bile acids, ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) in LPS-induced endotoxemia in rats. The experiment involved six distinct groups of Wistar rats, each subjected to different pretreatment conditions: control and LPS groups were pretreated with propylene glycol, as a bile acid solvent, while the other groups were pretreated with UDCA or CDCA for 10 days followed by an LPS injection on day 10. The results showed that both UDCA and CDCA reduced the production of pro-inflammatory cytokines: TNF-α, GM-CSF, IL-2, IFNγ, IL-6, and IL-1β and expression of nuclear factor-κB (NF-κB) induced by LPS. In addition, pretreatment with these bile acids showed a positive impact on lipid profiles, a decrease in ICAM levels, an increase in antioxidant activity (SOD, |CAT, GSH), and a decrease in prooxidant markers (H2O2 and O2-). Furthermore, both bile acids alleviated LPS-induced liver injury. While UDCA and CDCA pretreatment attenuated homocysteine levels in LPS-treated rats, only UDCA pretreatment showed reductions in other serum biochemical markers, including creatine kinase, lactate dehydrogenase, and high-sensitivity troponin I. It can be concluded that both, UDCA and CDCA, although exerted slightly different effects, can prevent the inflammatory responses induced by LPS, improve oxidative stress status, and attenuate LPS-induced liver injury.
Collapse
Affiliation(s)
- T Milivojac
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - M Grabež
- Department of Hygiene, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - A Krivokuća
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pathophysiology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - U Maličević
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pathophysiology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - M Gajić Bojić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Đ Đukanović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - S Uletilović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, The Republic of Srpska, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - N Mandić-Kovačević
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - T Cvjetković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, The Republic of Srpska, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - M Barudžija
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Histology and Embryology, Faculty of Medicine, The Republic of Srpska, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - N Vojinović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - A Šmitran
- Department of Microbiology and Immunology, Faculty of Medicine, The Republic of Srpska, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Lj Amidžić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - M P Stojiljković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - M Čolić
- Medical Faculty Foča, University of East Sarajevo, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - M Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - R Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina.
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina.
| |
Collapse
|
38
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Eberhardt N, Santamarina BG, Enghardt ML, Rohland O, Hussain I, Tannert A, Thieme L, Rubio I, Jürgen Rödel, Bettina Löffler, Arndt HD, Bauer M, Busch A. The effects of photoactivated ciprofloxacin and bile acids on biofilms on bile duct catheters. Int J Antimicrob Agents 2024; 63:107086. [PMID: 38218325 DOI: 10.1016/j.ijantimicag.2024.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
OBJECTIVES This study examined the potential of a novel photoactivatable ciprofloxacin to act against bacterial infections and microbiomes related to biliary diseases. It also evaluated treatment by combining the impact of bile acids and antibiotics on biofilms. Innovative strategies were evaluated to address the elusive bile duct microbiome resulting in biofilm-related infections linked to biliary catheters. The healthy biliary system is considered sterile, but bile microbiomes can occur in disease, and these correlate with hepatobiliary diseases. Causes include biofilms that form on internal-external biliary drainage catheters. These biliary catheters were used to noninvasively study the otherwise elusive bile microbiome for a pilot study. METHODS A new photoactivatable antibiotic was tested for efficacy against human-derived pathogenic bacterial isolates - Salmonella enterica and Escherichia coli - and catheter-derived bile duct microbiomes. In addition, the effect of bile acids on the antibiotic treatment of biofilms was quantified using crystal violet staining, confocal laser scanning microscopy, and biofilm image analysis. Two novel approaches for targeting biliary biofilms were tested. RESULTS A photoactivated antibiotic based on ciprofloxacin showed efficacy in preventing biofilm formation and reducing bacterial viability without harming eukaryotic cells. Furthermore, combination treatment of antibiotics with bile acids, such as ursodesoxycholic acid, mildly influenced biofilm biomass but reduced bacterial survival within biofilms. CONCLUSION Bile acids, in addition to their endocrine and paracrine functions, may enhance antibiotic killing of bacterial biofilms compared with antibiotics alone. These approaches hold promise for treating biliary infections such as cholangitis.
Collapse
Affiliation(s)
- Nino Eberhardt
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, Germany
| | - Belen Gonzalez Santamarina
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany; Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University, Jena, Germany
| | - Marie-Luise Enghardt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University, Jena, Germany
| | - Oliver Rohland
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Iqra Hussain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany
| | - Astrid Tannert
- Leibniz Institute of Photonic Technology, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Lara Thieme
- Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University, Jena, Germany; Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany; Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Jürgen Rödel
- Department of Medical Microbiology, Friedrich Schiller University, Jena, Germany
| | - Bettina Löffler
- Department of Medical Microbiology, Friedrich Schiller University, Jena, Germany
| | - Hans-Dieter Arndt
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, Germany
| | - Michael Bauer
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, Germany; Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.
| |
Collapse
|
40
|
Ye D, He J, He X. The role of bile acid receptor TGR5 in regulating inflammatory signalling. Scand J Immunol 2024; 99:e13361. [PMID: 38307496 DOI: 10.1111/sji.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a bile acid receptor, and its role in regulating metabolism after binding with bile acids has been established. Since the immune response depends on metabolism to provide biomolecules and energy to cope with challenging conditions, emerging evidence reveals the regulatory effects of TGR5 on the immune response. An in-depth understanding of the effect of TGR5 on immune regulation can help us disentangle the interaction of metabolism and immune response, accelerating the development of TGR5 as a therapeutic target. Herein, we reviewed more than 200 articles published in the last 20 years in PubMed, to discuss the roles of TGR5 in regulating inflammatory response, the molecular mechanism, as well as existing problems. Particularly, its anti-inflammation effect is emphasized.
Collapse
Affiliation(s)
- Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiayao He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Key Laboratory of Pediatric Hematology and Oncology Disease of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
41
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
42
|
Huang T, Liang X, Bao H, Ma G, Tang X, Luo H, Xiao X. Multi-omics analysis reveals the associations between altered gut microbiota, metabolites, and cytokines during pregnancy. mSystems 2024; 9:e0125223. [PMID: 38323818 PMCID: PMC10949498 DOI: 10.1128/msystems.01252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024] Open
Abstract
For embryo implantation and fetal development, the maternal immune system undergoes dramatic changes. The mechanisms involved in inducing alterations of maternal immunity have not been fully clarified. Gut microbiome and metabolites were thought to influence the host immune response. During normal pregnancy, notable changes occur in the gut microbiota and metabolites. However, the relationship of these alterations to immune function during pregnancy remains unclear. In this study, we examined gut microbiota, fecal metabolites, plasma metabolites, and cytokines in pregnant women and non-pregnant women. Our findings revealed that, in comparison to non-pregnant women, pregnant women exhibit a significant increase in the relative abundance of Actinobacteriota and notable differences in metabolic pathways related to bile acid secretion. Furthermore, there was a marked reduction in pro-inflammatory cytokines levels in pregnant women. Correlation analyses indicated that these alterations in cytokines may be linked to specific gut bacteria and metabolites. Bacteria within the same microbial modules exhibited consistent effects on cytokines, suggesting that gut bacteria may function as functional groups. Mediation analysis further identified that certain bacteria might influence cytokines through metabolites, such as bile acids and arachidonic acid. Our findings propose potential biological connections between bacteria, metabolites, and immunity, which require further validation in future studies.IMPORTANCEA great number of studies have focused on diseases induced by intestinal microecological disorders and immune imbalances. However, the understanding of how intestinal microbiota interacts with immunity during normal pregnancy, which is fundamental to studying pathological pregnancies related to intestinal microbiota disturbances, has not been well elucidated. Our study employed multi-omics analysis to discover that changes in gut microbiota and metabolites during pregnancy can impact immune function. In addition, we identified several metabolites that may mediate the effect of gut microbes on plasma cytokines. Our study offered new insights into our understanding of the connections between the gut microbiome, metabolome, and the immune system during pregnancy.
Collapse
Affiliation(s)
- Ting Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinyuan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Han Bao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Shvets Y, Khranovska N, Senchylo N, Ostapchenko D, Tymoshenko I, Onysenko S, Kobyliak N, Falalyeyeva T. Microbiota substances modulate dendritic cells activity: A critical view. Heliyon 2024; 10:e27125. [PMID: 38444507 PMCID: PMC10912702 DOI: 10.1016/j.heliyon.2024.e27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Contemporary research in the field of microbiota shows that commensal bacteria influence physiological activity of different organs and systems of a human organism, such as brain, lungs, immune and metabolic systems. This influence is realized by various processes. One of them is trough modulation of immune mechanisms. Interactions between microbiota and the human immune system are known to be complex and ambiguous. Dendritic cells (DCs) are unique cells, which initiate the development and polarization of adaptive immune response. These cells also interconnect native and specific immune reactivity. A large set of biochemical signals from microbiota in the form of different microbiota associated molecular patterns (MAMPs) and bacterial metabolites that act locally and distantly in the human organism. As a result, commensal bacteria influence the maturity and activity of dendritic cells and affect the overall immune reactivity of the human organism. It then determines the response to pathogenic microorganisms, inflammation, associated with different pathological conditions and even affects the effectiveness of vaccination.
Collapse
Affiliation(s)
- Yuliia Shvets
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Natalia Khranovska
- National Cancer Institute of Ukraine, 33/43 Yuliia Zdanovska Str., Kyiv, Ukraine
| | - Natalia Senchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Danylo Ostapchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Iryna Tymoshenko
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
| | - Svitlana Onysenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Nazarii Kobyliak
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| |
Collapse
|
44
|
Jardou M, Brossier C, Marquet P, Picard N, Druilhe A, Lawson R. Solid organ transplantation and gut microbiota: a review of the potential immunomodulatory properties of short-chain fatty acids in graft maintenance. Front Cell Infect Microbiol 2024; 14:1342354. [PMID: 38476165 PMCID: PMC10927761 DOI: 10.3389/fcimb.2024.1342354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Transplantation is the treatment of choice for several end-stage organ defects: it considerably improves patient survival and quality of life. However, post-transplant recipients may experience episodes of rejection that can favor or ultimately lead to graft loss. Graft maintenance requires a complex and life-long immunosuppressive treatment. Different immunosuppressive drugs (i.e., calcineurin inhibitors, glucocorticoids, biological immunosuppressive agents, mammalian target of rapamycin inhibitors, and antiproliferative or antimetabolic agents) are used in combination to mitigate the immune response against the allograft. Unfortunately, the use of these antirejection agents may lead to opportunistic infections, metabolic (e.g., post-transplant diabetes mellitus) or cardiovascular (e.g., arterial hypertension) disorders, cancer (e.g., non-Hodgkin lymphoma) and other adverse effects. Lately, immunosuppressive drugs have also been associated with gut microbiome alterations, known as dysbiosis, and were shown to affect gut microbiota-derived short-chain fatty acids (SCFA) production. SCFA play a key immunomodulatory role in physiological conditions, and their impairment in transplant patients could partly counterbalance the effect of immunosuppressive drugs leading to the activation of deleterious pathways and graft rejection. In this review, we will first present an overview of the mechanisms of graft rejection that are prevented by the immunosuppressive protocol. Next, we will explain the dynamic changes of the gut microbiota during transplantation, focusing on SCFA. Finally, we will describe the known functions of SCFA in regulating immune-inflammatory reactions and discuss the impact of SCFA impairment in immunosuppressive drug treated patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Roland Lawson
- National Institute of Health and Medical Research (FRANCE) (INSERM), Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| |
Collapse
|
45
|
Floreani A, Gabbia D, De Martin S. Current Perspectives on the Molecular and Clinical Relationships between Primary Biliary Cholangitis and Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:2194. [PMID: 38396870 PMCID: PMC10888596 DOI: 10.3390/ijms25042194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterised by the immune-mediated destruction of small and medium intrahepatic bile ducts, with variable outcomes and progression. This review summarises the state of the art regarding the risk of neoplastic progression in PBC patients, with a particular focus on the molecular alterations present in PBC and in hepatocellular carcinoma (HCC), which is the most frequent liver cancer in these patients. Major risk factors are male gender, viral infections, e.g., HBV and HCV, non-response to UDCA, and high alcohol intake, as well as some metabolic-associated factors. Overall, HCC development is significantly more frequent in patients with advanced histological stages, being related to liver cirrhosis. It seems to be of fundamental importance to unravel eventual dysfunctional molecular pathways in PBC patients that may be used as biomarkers for HCC development. In the near future, this will possibly take advantage of artificial intelligence-designed algorithms.
Collapse
Affiliation(s)
- Annarosa Floreani
- University of Padova, 35122 Padova, Italy;
- Scientific Consultant IRCCS Negrar, 37024 Verona, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
46
|
Wang J, Zhu N, Su X, Yang R. Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett 2024; 582:216582. [PMID: 38065401 DOI: 10.1016/j.canlet.2023.216582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Tumor cells can evade immune surveillance by expressing immune checkpoint molecule ligands, resulting in effective immune cell inactivation. Immune checkpoint blockades (ICBs) have dramatically improved survival of patients with multiple types of cancers. However, responses to ICB immunotherapy are heterogeneous with lower patient response rates. The advances have established that the gut microbiota can be as a promising target to overcome resistance to ICB immunotherapy. Furthermore, some bacterial species have shown to promote improved responses to ICBs. However, gut microbiota is critical in maintaining gut and systemic immune homeostasis. It not only promotes differentiation and function of immunosuppressive immune cells but also inhibits inflammatory cells via gut microbiota derived products such as short chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, which play an important role in tumor immunity. Since the gut microbiota can either inhibit or enhance immune against tumor, it should be a double-edged sword in ICBs against tumor. In this review, we discuss the effects of gut microbiota on immune cells and also tumor cells, especially enhances of gut microbiota on ICB immunotherapy. These discussions can hopefully promote the development of ICB immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
47
|
Yue X, Zhou H, Wang S, Chen X, Xiao H. Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease. Cancer Med 2024; 13:e6799. [PMID: 38239049 PMCID: PMC10905340 DOI: 10.1002/cam4.6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is one of the most effective treatment strategies for leukemia, lymphoma, and other hematologic malignancies. However, graft-versus-host disease (GVHD) can significantly reduce the survival rate and quality of life of patients after transplantation, and is therefore the greatest obstacle to transplantation. The recent development of new technologies, including high-throughput sequencing, metabolomics, and others, has facilitated great progress in understanding the complex interactions between gut microbiota, microbiota-derived metabolites, and the host. Of these interactions, the relationship between gut microbiota, microbial-associated metabolites, and GVHD has been most intensively researched. Studies have shown that GVHD patients often suffer from gut microbiota dysbiosis, which mainly manifests as decreased microbial diversity and changes in microbial composition and microbiota-derived metabolites, both of which are significant predictors of poor prognosis in GVHD patients. Therefore, the purpose of this review is to summarize what is known regarding changes in gut microbiota and microbiota-derived metabolites in GVHD, their relationship to GVHD prognosis, and corresponding clinical strategies designed to prevent microbial dysregulation and facilitate treatment of GVHD.
Collapse
Affiliation(s)
- XiaoYan Yue
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongyu Zhou
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - ShuFen Wang
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xu Chen
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - HaoWen Xiao
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
48
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
49
|
Benjaskulluecha S, Boonmee A, Haque M, Wongprom B, Pattarakankul T, Pongma C, Sri-ngern-ngam K, Keawvilai P, Sukdee T, Saechue B, Kueanjinda P, Palaga T. O 6-methylguanine DNA methyltransferase regulates β-glucan-induced trained immunity of macrophages via farnesoid X receptor and AMPK. iScience 2024; 27:108733. [PMID: 38235325 PMCID: PMC10792243 DOI: 10.1016/j.isci.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Trained immunity is the heightened state of innate immune memory that enhances immune response resulting in nonspecific protection. Epigenetic changes and metabolic reprogramming are critical steps that regulate trained immunity. In this study, we reported the involvement of O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme of lesion induced by alkylating agents, in regulation the trained immunity induced by β-glucan (BG). Pharmacological inhibition or silencing of MGMT expression altered LPS stimulated pro-inflammatory cytokine productions in BG-trained bone marrow derived macrophages (BMMs). Targeted deletion of Mgmt in BMMs resulted in reduction of the trained responses both in vitro and in vivo models. The transcriptomic analysis revealed that the dampening trained immunity in MGMT KO BMMs is partially mediated by ATM/FXR/AMPK axis affecting the MAPK/mTOR/HIF1α pathways and the reduction in glycolysis function. Taken together, a failure to resolve a DNA damage may have consequences for innate immune memory.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - MdFazlul Haque
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chitsuda Pongma
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittitach Sri-ngern-ngam
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornlapat Keawvilai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thadaphong Sukdee
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Saechue
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Patipark Kueanjinda
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
50
|
Gao T, Hu S, Xu W, Wang Z, Guo T, Chen F, Ma Y, Zhu L, Chen F, Wang X, Zhou J, Lv Z, Lu L. Targeted LC-MS/MS profiling of bile acids reveals primary/secondary bile acid ratio as a novel biomarker for necrotizing enterocolitis. Anal Bioanal Chem 2024; 416:287-297. [PMID: 37938412 PMCID: PMC10758366 DOI: 10.1007/s00216-023-05017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Bile acids (BAs) are involved in the development of necrotizing enterocolitis (NEC), which mainly occurs in preterm infants. We aim to identify the change of BAs in preterm infants and validate its potential value in the detection of NEC. Targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to measure the plasma BAs in healthy preterm infants and patients with NEC. By analyzing the level of BAs in healthy preterm infants, we found that the plasma concentrations of BAs were related to sex, gestational/postnatal age, birth weight, mode of birth, and feeding type after birth. The plasma levels of TCA, GCA, TCDCA, GCDCA, primary BAs, and total BAs and the primary/secondary BA ratio were decreased, while DCA, UDCA, and secondary BAs were increased in NEC. The primary/secondary BA ratio (cutoff point 62.9) can effectively differentiate NEC from healthy preterm infants, with an AUC of 0.9, a sensitivity of 94.5%, and a specificity of 78.1%. Combining the ratio with high-risk factors of NEC can better distinguish between NEC and control, with an AUC of 0.95. Importantly, significantly lower levels of primary/secondary BA ratio were found in infants with surgical NEC than in nonsurgical NEC cases. The cutoff point of 28.7 identified surgical NEC from nonsurgical NEC with sensitivity and specificity of 76.9% and 100%. Thus, our study identified that the primary/secondary BA ratio in the plasma can differentiate NEC from healthy preterm infants and effectively differentiate the surgical NEC from nonsurgical NEC. Therefore, LC-MS/MS was expected to be a novel measurement platform used to distinguish infants who are most in need of close monitoring or early surgical intervention.
Collapse
Affiliation(s)
- Tingting Gao
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohua Hu
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijue Xu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiru Wang
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Guo
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Chen
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxuan Ma
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Zhu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Faling Chen
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomei Wang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhou
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|