1
|
Li F, Marwitz F, Rudolph D, Gauda W, Cohrs M, Neumann PR, Lucas H, Kollan J, Tahir A, Schwudke D, Feldmann C, Hädrich G, Dailey LA. A Comparative Pharmacokinetics Study of Orally and Intranasally Administered 8-Nitro-1,3-benzothiazin-4-one (BTZ043) Amorphous Drug Nanoparticles. ACS Pharmacol Transl Sci 2024; 7:4123-4134. [PMID: 39698258 PMCID: PMC11651166 DOI: 10.1021/acsptsci.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
BTZ043 is an 8-nitro-1,3-benzothiazin-4-one with potency against multidrug-resistant Mycobacterium tuberculosis. Low solubility and hepatic metabolism are linked to poor oral bioavailability. Amorphous drug nanoparticles (ADN) were formulated to improve the bioavailability. Comparative pharmacokinetics of BTZ043 ADN following intranasal (2.5 mg kg-1) and oral administration (25 mg kg-1) in Balb/c mice was investigated using oral BTZ043 drug suspensions (neat; 25 mg kg-1) as a standard-of-care reference. Plasma exposure following oral ADN administration was 8-fold higher than for oral neat BTZ043. Intranasal ADN increased plasma exposure 18-fold compared to oral neat BTZ043 after dose normalization. BTZ043 was detectable in lung lining fluid following ADN administration, but not after oral neat BTZ043 dosing. BTZ043 was cleared faster from the lung and plasma following intranasal administration with a shorter time above the minimum inhibitory concentration (MIC) compared to oral ADN. Since time > MIC is reported to drive activity, oral ADN may represent a promising delivery strategy for BTZ043.
Collapse
Affiliation(s)
- Feng Li
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Technology
and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Department
of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Franziska Marwitz
- Division
of Bioanalytical Chemistry, Research Center
Borstel, Leibniz Lung Center, Borstel 23845, Germany
- Thematic
Translational Unit Tuberculosis, German
Center for Infection Research (DZIF), Borstel 23845, Germany
| | - David Rudolph
- Institute
of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, Karlsruhe 76131, Germany
| | - Wiebke Gauda
- Division
of Bioanalytical Chemistry, Research Center
Borstel, Leibniz Lung Center, Borstel 23845, Germany
| | - Michaela Cohrs
- Laboratory
for General Biochemistry and Physical Pharmacy, Ghent University, 9000 Gent, Belgium
| | - Paul Robert Neumann
- Department
of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Henrike Lucas
- Department
of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Julia Kollan
- Department
of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Ammar Tahir
- Department
of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Dominik Schwudke
- Division
of Bioanalytical Chemistry, Research Center
Borstel, Leibniz Lung Center, Borstel 23845, Germany
- Thematic
Translational Unit Tuberculosis, German
Center for Infection Research (DZIF), Borstel 23845, Germany
- German
Center for Lung Research (DZL), Airway Research
Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel 23845, Germany
- Kiel
Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel 24118, Germany
| | - Claus Feldmann
- Institute
of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, Karlsruhe 76131, Germany
| | - Gabriela Hädrich
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Technology
and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Department
of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Lea Ann Dailey
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Technology
and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Department
of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| |
Collapse
|
2
|
He L, Mao M, Ge H, Zhang J, Zhang J, Yan Q. lafK contributes the regulation of swarming motility of Pseudomonas plecoglossicida and bacterial-host interaction. FISH & SHELLFISH IMMUNOLOGY 2024; 157:110071. [PMID: 39637951 DOI: 10.1016/j.fsi.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Flagella-mediated swarming motility plays a crucial role in facilitating the rapid colonization and dissemination of bacterial within the host. The swarming motility of Pseudomonas plecoglossicida is intricately associated with its lateral flagella, and notably, the lateral flagella system of P. plecoglossicida encompasses a transcriptional regulator known as LafK. However, the regulatory role of LafK and its impact on bacteria-host interactions remain to be elucidated. In this study, we systematically investigated the regulatory role of LafK by constructing lafK deletion strain on the biological characteristics, virulence, and pathogenic process of P. plecoglossicida, as well as its impact on the host immune response. Our findings demonstrated that the deletion of lafK led to a significant down-regulation in the expression of type III secretion system-associated genes within the lateral flagella of P. plecoglossicida, consequently impairing bacterial swarming motility, biofilm formation, adhesion, and chemotaxis ability. Furthermore, in vitro infection experiments demonstrated that the deletion of lafK resulted in a diminished pathogenicity of P. plecoglossicida through down-regulation of flagella-related genes, thereby triggering an expedited immune response for bacterial clearance, and subsequently leading to reduced bacterial load within the host and attenuated tissue damage during infection. In summary, this study presents a novel theoretical framework for elucidating the regulatory mechanism of virulence in P. plecoglossicida.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Meiqin Mao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Hui Ge
- Fisheries Research Institute of Fujian, Xiamen, Fujian, 361000, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
3
|
Kim CG, Jose J, Hay MP, Choi PJ. Novel Prodrug Strategies for the Treatment of Tuberculosis. Chem Asian J 2024; 19:e202400944. [PMID: 39179514 PMCID: PMC11613820 DOI: 10.1002/asia.202400944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is on the rise and increasing antimicrobial resistance is a global threat. This phenomenon necessitates new drug design methods such as a prodrug strategy to develop novel antitubercular agents. The prodrug strategy is a viable and useful means to improve the absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles of pharmacologically active agents. Granulomas are a pathological hallmark of M.tb infection and bear a remarkable resemblance to the tumour microenvironment, including regions of hypoxia. The hypoxic environment observed in the two structures offer an exceptional opportunity to deliver antitubercular agents selectively in a similar manner to hypoxia activated prodrugs in cancer therapy. Nitroimidazoles have been studied extensively as bioactivated prodrugs of cancer, and their suitability as substrates for mammalian reductases highlight their huge potential. This review will discuss the mechanism of action and resistance mechanisms of the current prodrugs used for the treatment of tuberculosis. It will also highlight the potential advantages and challenges of using hypoxia activated prodrugs as a viable strategy to target latent M.tb in hypoxic regions of granulomas.
Collapse
Affiliation(s)
- Christine G. Kim
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
4
|
Rahman F. Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Front Immunol 2024; 15:1437901. [PMID: 39650648 PMCID: PMC11620876 DOI: 10.3389/fimmu.2024.1437901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Tuberculosis remains the leading cause of death from infectious diseases among adults worldwide. To date, an overarching review of the immune response to Mtb in humans has not been fully elucidated, with innate immunity remaining poorly understood due to historic focus on adaptive immunity. Specifically, there is a major gap concerning the contribution of the immune system to overall bacterial clearance, particularly residual bacteria. This review aims to describe the time course of interactions between the host immune system and Mtb, from the start of the infection to the development of the adaptive response. Concordantly, we aim to crystallize the pathogenic effects and immunoevasive mechanisms of Mtb. The translational value of animal data is also discussed. Methods The literature search was conducted in the PubMed, ScienceDirect, and Google Scholar databases, which included reported research from 1990 until 2024. A total of 190 publications were selected and screened, of which 108 were used for abstraction and 86 were used for data extraction. Graphical summaries were created using the narrative information (i.e., recruitment, recognition, and response) to generate clear visual representations of the immune response at the cellular and molecular levels. Results The key cellular players included airway epithelial cells, alveolar epithelial cells, neutrophils, natural killer cells, macrophages, dendritic cells, T cells, and granulomatous lesions; the prominent molecular players included IFN-γ, TNF-α, and IL-10. The paper also sheds light on the immune response to residual bacteria and applications of the data. Discussion We provide a comprehensive characterization of the key immune players that are implicated in pulmonary tuberculosis, in line with the organs or compartments in which mycobacteria reside, offering a broad vignette of the immune response to Mtb and how it responds to residual bacteria. Ultimately, the data presented could provide immunological insights to help establish optimized criteria for identifying efficacious treatment regimens and durations for relapse prevention in the modeling and simulation space and wider fields.
Collapse
Affiliation(s)
- Fatima Rahman
- Department of Pharmacology, University College London, London, United Kingdom
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
5
|
Yamamoto K, Torigoe S, Tsujimura Y, Asaka MN, Okumura K, Ato M. In vivo imaging identified efficient antimicrobial treatment against Mycobacterium marinum infection in mouse footpads. Sci Rep 2024; 14:24343. [PMID: 39420066 PMCID: PMC11487254 DOI: 10.1038/s41598-024-75207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Mycobacterium marinum (M. marinum) is the most common causative bacteria of cutaneous non-tuberculous mycobacterial (NTM) infections, including fish tank granuloma. Treating M. marinum-caused infection takes longer than other NTM diseases because M. marinum is less susceptible to antimicrobial agents. A standard treatment regimen for M. marinum infection has not been established yet, and few in vivo experiments have been performed in mammals to evaluate the bactericidal effects of antimicrobials. In this study, we developed a noninvasive in vivo imaging method to assess the therapeutic efficacy of antimicrobials against M. marinum infection. The data obtained using fluorescent protein or bioluminescence from luciferase will offer valuable insights into bacteria visualization across various bacterial infections. Furthermore, through this imaging technique, we demonstrated that combining clarithromycin, rifampicin, ethambutol, and minocycline effectively cleared M. marinum from the footpad. Granulomas with necrotic abscesses formed on the footpad of M. marinum-infected mice, primarily due to neutrophils involved in the host's cell-mediated immune response. Inflammatory cytokine and chemokine levels significantly increased 7 days post-infection, aligning with the footpad swelling and granuloma formation observed in the untreated group. Interestingly, immune mediators and cells induced by M. marinum footpad infection were crucial factors associated with hypersensitivity and granuloma formation, as seen in pulmonary tuberculosis. This novel imaging analysis using a cutaneous NTM mouse model might be a powerful tool for the comprehensive analysis of mycobacterial infections.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Shota Torigoe
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Masamitsu N Asaka
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Kayo Okumura
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
6
|
van Stigt AC, von der Thüsen JH, Mustafa DAM, van den Bosch TPP, Lila KA, Vadgama D, van Hagen M, Dalm VASH, Dik WA, IJspeert H. Granulomas in Common Variable Immunodeficiency Display Different Histopathological Features Compared to Other Granulomatous Diseases. J Clin Immunol 2024; 45:22. [PMID: 39373788 PMCID: PMC11458708 DOI: 10.1007/s10875-024-01817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Granulomatous disease affects up to 20% of patients with Common Variable Immunodeficiency (CVID). Granulomas are comprised of highly activated immune cells, and emerge in response to antigenic triggers. In CVID granulomas however, the underlying pathophysiology is unclear and the specific trigger remains unknown. Granuloma formation in CVID is often compared to sarcoidosis, although clinical context and prognosis differ, suggesting a different pathogenesis. The aim of this study was to investigate if the cellular organization and proteomics of granulomas in CVID is different from other granulomatous diseases. Therefore, tissue slides from formaldehyde fixed paraffin embedded biopsies obtained from patients with CVID, sarcoidosis, tuberculosis and foreign-material induced pseudo-sarcoidosis were stained with hematoxylin and eosin and assessed for histopathological characteristics. Targeted spatial protein analysis was performed, and immune fluorescent multiplex assays were used to analyze the cellular organization. Histological analysis revealed that CVID granulomas were smaller, less circumscribed, with fewer multinucleated giant cells and minimal fibrosis compared to the other granulomatous diseases. Spatial protein analysis showed that granulomas in all diseases expressed CD68, CD11c, CD44, CD127, and PD-L1. However in CVID, reduced expression of the fibrosis-related protein fibronectin, but enrichment of CD163, CD3 and FAPα inside CVID granulomas was observed. Immunofluorescence analysis conformed a different cellular organization in CVID granulomas with increased influx of neutrophils, macrophages, T and B lymphocytes. In conclusion, granulomas in CVID display a different histological and cellular organization with increased influx of myeloid and lymphoid cells, compared to sarcoidosis, tuberculosis and pseudo-sarcoidosis, indicating a distinct pathogenesis underlying granuloma formation.
Collapse
Affiliation(s)
- Astrid C van Stigt
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
- The Tumor Immuno-Pathology Laboratory, Department of pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Karishma A Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
- The Tumor Immuno-Pathology Laboratory, Department of pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin van Hagen
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Hanna IJspeert
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
7
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
8
|
Janitri V, ArulJothi KN, Ravi Mythili VM, Singh SK, Prasher P, Gupta G, Dua K, Hanumanthappa R, Karthikeyan K, Anand K. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine. MedComm (Beijing) 2024; 5:e745. [PMID: 39329017 PMCID: PMC11424683 DOI: 10.1002/mco2.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Patient-derived xenografts (PDX) involve transplanting patient cells or tissues into immunodeficient mice, offering superior disease models compared with cell line xenografts and genetically engineered mice. In contrast to traditional cell-line xenografts and genetically engineered mice, PDX models harbor the molecular and biologic features from the original patient tumor and are generationally stable. This high fidelity makes PDX models particularly suitable for preclinical and coclinical drug testing, therefore better predicting therapeutic efficacy. Although PDX models are becoming more useful, the several factors influencing their reliability and predictive power are not well understood. Several existing studies have looked into the possibility that PDX models could be important in enhancing our knowledge with regard to tumor genetics, biomarker discovery, and personalized medicine; however, a number of problems still need to be addressed, such as the high cost and time-consuming processes involved, together with the variability in tumor take rates. This review addresses these gaps by detailing the methodologies to generate PDX models, their application in cancer research, and their advantages over other models. Further, it elaborates on how artificial intelligence and machine learning were incorporated into PDX studies to fast-track therapeutic evaluation. This review is an overview of the progress that has been done so far in using PDX models for cancer research and shows their potential to be further improved in improving our understanding of oncogenesis.
Collapse
Affiliation(s)
| | - Kandasamy Nagarajan ArulJothi
- Department of Genetic Engineering, College of Engineering and TechnologySRM Institute of Science and TechnologyChengalpattuTamil NaduIndia
| | - Vijay Murali Ravi Mythili
- Department of Genetic Engineering, College of Engineering and TechnologySRM Institute of Science and TechnologyChengalpattuTamil NaduIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Parteek Prasher
- Department of ChemistryUniversity of Petroleum & Energy Studies, Energy AcresDehradunIndia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative, MedicineUniversity of Technology SydneyUltimoNSWAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNSWAustralia
| | - Rakshith Hanumanthappa
- JSS Banashankari Arts, Commerce, and SK Gubbi Science CollegeKarnatak UniversityDharwadKarnatakaIndia
| | - Karthikeyan Karthikeyan
- Centre of Excellence in PCB Design and Analysis, Department of Electronics and Communication EngineeringM. Kumarasamy College of EngineeringKarurTamil NaduIndia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health SciencesUniversity of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
9
|
Bartolomeu-Gonçalves G, Souza JMD, Fernandes BT, Spoladori LFA, Correia GF, Castro IMD, Borges PHG, Silva-Rodrigues G, Tavares ER, Yamauchi LM, Pelisson M, Perugini MRE, Yamada-Ogatta SF. Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases 2024; 12:202. [PMID: 39329871 PMCID: PMC11430992 DOI: 10.3390/diseases12090202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) remains an impactful infectious disease, leading to millions of deaths every year. Mycobacterium tuberculosis causes the formation of granulomas, which will determine, through the host-pathogen relationship, if the infection will remain latent or evolve into active disease. Early TB diagnosis is life-saving, especially among immunocompromised individuals, and leads to proper treatment, preventing transmission. This review addresses different approaches to diagnosing TB, from traditional methods such as sputum smear microscopy to more advanced molecular techniques. Integrating these techniques, such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP), has significantly improved the sensitivity and specificity of M. tuberculosis identification. Additionally, exploring novel biomarkers and applying artificial intelligence in radiological imaging contribute to more accurate and rapid diagnosis. Furthermore, we discuss the challenges of existing diagnostic methods, including limitations in resource-limited settings and the emergence of drug-resistant strains. While the primary focus of this review is on TB diagnosis, we also briefly explore the challenges and strategies for diagnosing non-tuberculous mycobacteria (NTM). In conclusion, this review provides an overview of the current landscape of TB diagnostics, emphasizing the need for ongoing research and innovation. As the field evolves, it is crucial to ensure that these advancements are accessible and applicable in diverse healthcare settings to effectively combat tuberculosis worldwide.
Collapse
Affiliation(s)
- Guilherme Bartolomeu-Gonçalves
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Joyce Marinho de Souza
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Faculdade de Ciências da Saúde, Biomedicina, Universidade do Oeste Paulista, Presidente Prudente CEP 19050-920, São Paulo, Brazil
| | - Bruna Terci Fernandes
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Curso de Farmácia, Faculdade Dom Bosco, Cornélio Procópio CEP 86300-000, Paraná, Brazil
| | | | - Guilherme Ferreira Correia
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Isabela Madeira de Castro
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | | | - Gislaine Silva-Rodrigues
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Eliandro Reis Tavares
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Campus Londrina CEP 86067-000, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Marsileni Pelisson
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Marcia Regina Eches Perugini
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| |
Collapse
|
10
|
Parida KK, Lahiri M, Ghosh M, Dalal A, Kalia NP. P-glycoprotein inhibitors as an adjunct therapy for TB. Drug Discov Today 2024; 29:104108. [PMID: 39032811 DOI: 10.1016/j.drudis.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The primary challenge in TB treatment is the emergence of multidrug-resistant TB (MDR-TB). One of the major factors responsible for MDR is the upregulation of efflux pumps. Permeation-glycoprotein (P-gp), an efflux pump, hinders the bioavailability of the administered drugs inside the infected cells. Simultaneously, angiogenesis, the formation of new blood vessels, contributes to drug delivery complexities. TB infection triggers a cascade of events that upregulates the expression of angiogenic factors and P-gp. The combined action of P-gp and angiogenesis foster the emergence of MDR-TB. Understanding these mechanisms is pivotal for developing targeted interventions to overcome MDR in TB. P-gp inhibitors, such as verapamil, and anti-angiogenic drugs, including bevacizumab, have shown improvement in TB drug delivery to granuloma. In this review, we discuss the potential of P-gp inhibitors as an adjunct therapy to shorten TB treatment.
Collapse
Affiliation(s)
- Kishan Kumar Parida
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Monali Lahiri
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Mainak Ghosh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aman Dalal
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Danso EK, Asare P, Osei-Wusu S, Tetteh P, Tetteh AY, Boadu AA, Lamptey INK, Sylverken AA, Obiri-Danso K, Afriyie Mensah J, Adjei A, Yeboah-Manu D. Tuberculosis patients with diabetes co-morbidity experience reduced Mycobacterium tuberculosis complex clearance. Heliyon 2024; 10:e35670. [PMID: 39170565 PMCID: PMC11336890 DOI: 10.1016/j.heliyon.2024.e35670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study aimed to investigate the impact of diabetes mellitus (DM) on tuberculosis (TB) treatment response using bacterial clearance as a surrogate marker. Method We compared smear microscopy, culture, and tuberculosis molecular bacterial load assay (TB-MBLA) for treatment monitoring. Following that, bacterial clearance was longitudinally monitored among TB-only (TB without DM) and TB-diabetes (TBDM) patients using TB-MBLA. Results Ninety-three participants, including 59 TB-only and 34 TBDM patients, were enrolled. TB-only patients exhibited higher upper zone infiltrations (32/35 vs 16/22, p = 0.059) suggesting a trend towards significance, and significantly more cavitation in the same zone (16/18 vs 7/13, p = 0.028). There was a high proportion of Mycobacterium africanum (Maf) among the TBDM cohort (p = 0.0044).At baseline, TB-only patients exhibited a higher average bacterial burden (4.49 logeCFU/mL) compared to the TBDM group (3.91 logeCFU/mL) (p = 0.042). The bacterial load in the TB-only group decreased significantly during treatment but the TBDM group experienced delayed clearance throughout the intensive phase of anti-TB treatment even at day 56 (p = 0.028). The TB-only group demonstrated a shorter median time to TB-MBLA conversion to negative (57 days) compared to the TBDM group (62 days) (p = 0.022). Conclusion These findings underscore the urgent call for understanding the interplay between diabetes and TB, emphasizing the need for tailored interventions in optimizing TB care for individuals comorbid with diabetes.
Collapse
Affiliation(s)
- Emelia Konadu Danso
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Asare
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Phillip Tetteh
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Amanda Yaa Tetteh
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Augustine Asare Boadu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ivy Naa Koshie Lamptey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Augustina Angelina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Abraham Adjei
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
12
|
Datta M, Via LE, Dartois V, Xu L, Barry CE, Jain RK. Leveraging insights from cancer to improve tuberculosis therapy. Trends Mol Med 2024:S1471-4914(24)00205-3. [PMID: 39142973 DOI: 10.1016/j.molmed.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Lei Xu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
14
|
Reid VA, Ramos EI, Veerapandian R, Carmona A, Gadad SS, Dhandayuthapani S. Differential Expression of lncRNAs in HIV Patients with TB and HIV-TB with Anti-Retroviral Treatment. Noncoding RNA 2024; 10:40. [PMID: 39051374 PMCID: PMC11270221 DOI: 10.3390/ncrna10040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Tuberculosis (TB) is the leading cause of death among people with HIV-1 infection. To improve the diagnosis and treatment of HIV-TB patients, it is important to understand the mechanisms underlying these conditions. Here, we used an integrated genomics approach to analyze and determine the lncRNAs that are dysregulated in HIV-TB patients and HIV-TB patients undergoing anti-retroviral therapy (ART) using a dataset available in the public domain. The analyses focused on the portion of the genome transcribed into non-coding transcripts, which historically have been poorly studied and received less focus. This revealed that Mtb infection in HIV prominently up-regulates the expression of long non-coding RNA (lncRNA) genes DAAM2-AS1, COL4A2-AS1, LINC00599, AC008592.1, and CLRN1-AS1 and down-regulates the expression of lncRNAs AC111000.4, AC100803.3, AC016168.2, AC245100.7, and LINC02073. It also revealed that ART down-regulates the expression of some lncRNA genes (COL4A2-AS1, AC079210.1, MFA-AS1, and LINC01993) that are highly up-regulated in HIV-TB patients. Furthermore, the interrogation of the genomic regions that are associated with regulated lncRNAs showed enrichment for biological processes linked to immune pathways in TB-infected conditions. However, intriguingly, TB patients treated with ART showed completely opposite and non-overlapping pathways. Our findings suggest that lncRNAs could be used to identify critical diagnostic, prognostic, and treatment targets for HIV-TB patients.
Collapse
Affiliation(s)
- Victoria A. Reid
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
| | - Areanna Carmona
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
| | - Shrikanth S. Gadad
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (V.A.R.); (R.V.); (A.C.)
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
15
|
Dhanyalayam D, Thangavel H, Sidrat T, Oswal N, Lizardo K, Mauro M, Zhao X, Xue HH, Desai JV, Nagajyothi JF. The Influence of Body Fat Dynamics on Pulmonary Immune Responses in Murine Tuberculosis: Unraveling Sex-Specific Insights. Int J Mol Sci 2024; 25:6823. [PMID: 38999932 PMCID: PMC11241512 DOI: 10.3390/ijms25136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.
Collapse
Affiliation(s)
- Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Neelam Oswal
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michael Mauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
16
|
Chauhan S, Nusbaum RJ, Huante MB, Holloway AJ, Endsley MA, Gelman BB, Lisinicchia JG, Endsley JJ. Therapeutic Modulation of Arginase with nor-NOHA Alters Immune Responses in Experimental Mouse Models of Pulmonary Tuberculosis including in the Setting of Human Immunodeficiency Virus (HIV) Co-Infection. Trop Med Infect Dis 2024; 9:129. [PMID: 38922041 PMCID: PMC11209148 DOI: 10.3390/tropicalmed9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
L-arginine metabolism is strongly linked with immunity to mycobacteria, primarily through the antimicrobial activity of nitric oxide (NO). The potential to modulate tuberculosis (TB) outcomes through interventions that target L-arginine pathways are limited by an incomplete understanding of mechanisms and inadequate in vivo modeling. These gaps in knowledge are compounded for HIV and Mtb co-infections, where activation of arginase-1 due to HIV infection may promote survival and replication of both Mtb and HIV. We utilized in vitro and in vivo systems to determine how arginase inhibition using Nω-hydroxy-nor-L-arginine (nor-NOHA) alters L-arginine pathway metabolism relative to immune responses and disease outcomes following Mtb infection. Treatment with nor-NOHA polarized murine macrophages (RAW 264.7) towards M1 phenotype, increased NO, and reduced Mtb in RAW macrophages. In Balb/c mice, nor-NOHA reduced pulmonary arginase and increased the antimicrobial metabolite spermine in association with a trend towards reduced Mtb CFU in lung. In humanized immune system (HIS) mice, HIV infection increased plasma arginase and heightened the pulmonary arginase response to Mtb. Treatment with nor-NOHA increased cytokine responses to Mtb and Mtb/HIV in lung tissue but did not significantly alter bacterial burden or viral load. Our results suggest that L-arginine pathway modulators may have potential as host-directed therapies to augment antibiotics in TB chemotherapy.
Collapse
Affiliation(s)
- Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Rebecca J. Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Matthew B. Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Alex J. Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Mark A. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Joshua G. Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| |
Collapse
|
17
|
Cohen SB, Urdahl KB. Weaponizing the bystander T cell army to fight tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2407559121. [PMID: 38814874 PMCID: PMC11161741 DOI: 10.1073/pnas.2407559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Sara B. Cohen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
- Department of Pediatrics, University of Washington, Seattle, WA98195
| |
Collapse
|
18
|
Lyu L, Jia H, Liu Q, Ma W, Li Z, Pan L, Zhang X. Individualized lipid profile in urine-derived extracellular vesicles from clinical patients with Mycobacterium tuberculosis infections. Front Microbiol 2024; 15:1409552. [PMID: 38873163 PMCID: PMC11169924 DOI: 10.3389/fmicb.2024.1409552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Background Lipids are a key nutrient source for the growth and reproduction of Mycobacterium tuberculosis (Mtb). Urine-derived extracellular vesicles (EVs), because of its non-invasive sampling, lipid enrichment, and specific sorting character, have been recognized as a promising research target for biomarker discovery and pathogenesis elucidation in tuberculosis (TB). We aim to profile lipidome of Mtb-infected individuals, offer novel lipid signatures for the development of urine-based TB testing, and provide new insights into the lipid metabolism after Mtb infection. Methods Urine-derived extracellular vesicles from 41 participants (including healthy, pulmonary tuberculosis, latent tuberculosis patients, and other lung disease groups) were isolated and individually detected using targeted lipidomics and proteomics technology platforms. Biomarkers were screened by multivariate and univariate statistical analysis and evaluated by SPSS software. Correlation analyses were performed on lipids and proteins using the R Hmisc package. Results Overall, we identified 226 lipids belonging to 14 classes. Of these, 7 potential lipid biomarkers for TB and 6 for latent TB infection (LTBI) were identified, all of which were classified into diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acid (FFA), and cholesteryl ester (CE). Among them, FFA (20:1) was the most promising biomarker target in diagnosing TB/LTBI from other compared groups and also have great diagnostic performance in distinguishing TB from LTBI with AUC of 0.952. In addition, enhanced lipolysis happened as early as individuals got latent Mtb infection, and ratio of raft lipids was gradually elevated along TB progression. Conclusion This study demonstrated individualized lipid profile of urinary EVs in patients with Mtb infection, revealed novel potential lipid biomarkers for TB/LTBI diagnosis, and explored mechanisms by which EV lipid raft-dependent bio-processes might affect pathogenesis. It lays a solid foundation for the subsequent diagnosis and therapeutic intervention of TB.
Collapse
Affiliation(s)
- Lingna Lyu
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qiuyue Liu
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wenxia Ma
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zihui Li
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiuli Zhang
- The Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| |
Collapse
|
19
|
Bohórquez JA, Adduri S, Ansari D, John S, Florence J, Adejare O, Singh G, Konduru NV, Jagannath C, Yi G. A novel humanized mouse model for HIV and tuberculosis co-infection studies. Front Immunol 2024; 15:1395018. [PMID: 38799434 PMCID: PMC11116656 DOI: 10.3389/fimmu.2024.1395018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Danish Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Sahana John
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Jon Florence
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Gaurav Singh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Nagarjun V. Konduru
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| |
Collapse
|
20
|
Datta M, Via LE, Dartois V, Weiner DM, Zimmerman M, Kaya F, Walker AM, Fleegle JD, Raplee ID, McNinch C, Zarodniuk M, Kamoun WS, Yue C, Kumar AS, Subudhi S, Xu L, Barry CE, Jain RK. Normalizing granuloma vasculature and matrix improves drug delivery and reduces bacterial burden in tuberculosis-infected rabbits. Proc Natl Acad Sci U S A 2024; 121:e2321336121. [PMID: 38530888 PMCID: PMC10998582 DOI: 10.1073/pnas.2321336121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Host-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas. Granulomas feature an overabundance of ECM and compressed blood vessels, both of which are effectively reduced by losartan treatment in the rabbit model of TB. Combining both HDTs promotes secretion of proinflammatory cytokines and improves anti-TB drug delivery. Finally, alone and in combination with second-line antitubercular agents (moxifloxacin or bedaquiline), these HDTs significantly reduce bacterial burden. RNA sequencing analysis of HDT-treated lung and granuloma tissues implicates up-regulated antimicrobial peptide and proinflammatory gene expression by ciliated epithelial airway cells as a putative mechanism of the observed antitubercular benefits in the absence of chemotherapy. These findings demonstrate that bevacizumab and losartan are well-tolerated stroma-targeting HDTs, normalize the granuloma microenvironment, and improve TB outcomes, providing the rationale to clinically test this combination in TB patients.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD20892
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ07110
| | - Danielle M. Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD20892
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - April M. Walker
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD20892
| | - Joel D. Fleegle
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD20892
| | - Isaac D. Raplee
- Bioinformatics and Computational Bioscience Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Maksym Zarodniuk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Walid S. Kamoun
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Changli Yue
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Ashwin S. Kumar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Sonu Subudhi
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Lei Xu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD20892
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| |
Collapse
|
21
|
Bohórquez JA, Adduri S, Ansari D, John S, Florence J, Adejare O, Singh G, Konduru N, Jagannath C, Yi G. A Novel Humanized Mouse Model for HIV and Tuberculosis Co-infection Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583545. [PMID: 38496484 PMCID: PMC10942347 DOI: 10.1101/2024.03.05.583545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. Further, co-infections with HIV and Mtb have severe effects in the host, with people infected with HIV being fifteen to twenty-one times more likely to develop active TB. The use of an appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans would be a useful tool for conducting basic and translational research in HIV/Mtb infections. The present study was focused on developing a humanized mouse model for investigations on HIV-Mtb co-infection. Using NSG-SGM3 mice that can engraft human stem cells, our studies showed that they were able to engraft human CD34+ stem cells which then differentiate into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced the development of granulomatous lesions in the lungs, detected by CT scan and histopathology. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Our results suggest that the humanized NSG-SGM3 mice are able to recapitulate the effects of HIV and Mtb infections and co-infection in the human host at pathological, immunological and metabolism levels, providing a dependable small animal model for studying HIV/Mtb co-infection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Danish Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Sahana John
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Jon Florence
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Gaurav Singh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Nagarjun Konduru
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
22
|
Navasardyan I, Miwalian R, Petrosyan A, Yeganyan S, Venketaraman V. HIV-TB Coinfection: Current Therapeutic Approaches and Drug Interactions. Viruses 2024; 16:321. [PMID: 38543687 PMCID: PMC10974211 DOI: 10.3390/v16030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 05/23/2024] Open
Abstract
The co-occurrence of human immunodeficiency virus (HIV) and tuberculosis (TB) infection poses a significant global health challenge. Treatment of HIV and TB co-infection often necessitates combination therapy involving antiretroviral therapy (ART) for HIV and anti-TB medications, which introduces the potential for drug-drug interactions (DDIs). These interactions can significantly impact treatment outcomes, the efficacy of treatment, safety, and overall patient well-being. This review aims to provide a comprehensive analysis of the DDIs between anti-HIV and anti-TB drugs as well as potential adverse effects resulting from the concomitant use of these medications. Furthermore, such findings may be used to develop personalized therapeutic strategies, dose adjustments, or alternative drug choices to minimize the risk of adverse outcomes and ensure the effective management of HIV and TB co-infection.
Collapse
Affiliation(s)
| | | | | | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (I.N.); (R.M.); (A.P.); (S.Y.)
| |
Collapse
|
23
|
Song L, Zhang D, Wang H, Xia X, Huang W, Gonzales J, Via LE, Wang D. Automated quantitative assay of fibrosis characteristics in tuberculosis granulomas. Front Microbiol 2024; 14:1301141. [PMID: 38235425 PMCID: PMC10792068 DOI: 10.3389/fmicb.2023.1301141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Granulomas, the pathological hallmark of Mycobacterium tuberculosis (Mtb) infection, are formed by different cell populations. Across various stages of tuberculosis conditions, most granulomas are classical caseous granulomas. They are composed of a necrotic center surrounded by multilayers of histocytes, with the outermost layer encircled by fibrosis. Although fibrosis characterizes the architecture of granulomas, little is known about the detailed parameters of fibrosis during this process. Methods In this study, samples were collected from patients with tuberculosis (spanning 16 organ types), and Mtb-infected marmosets and fibrotic collagen were characterized by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy using a stain-free, fully automated analysis program. Results Histopathological examination revealed that most granulomas share common features, including necrosis, solitary and compact structure, and especially the presence of multinuclear giant cells. Masson's trichrome staining showed that different granuloma types have varying degrees of fibrosis. SHG imaging uncovered a higher proportion (4%~13%) of aggregated collagens than of disseminated type collagens (2%~5%) in granulomas from matched tissues. Furthermore, most of the aggregated collagen presented as short and thick clusters (200~620 µm), unlike the long and thick (200~300 µm) disseminated collagens within the matched tissues. Matrix metalloproteinase-9, which is involved in fibrosis and granuloma formation, was strongly expressed in the granulomas in different tissues. Discussion Our data illustrated that different tuberculosis granulomas have some degree of fibrosis in which collagen strings are short and thick. Moreover, this study revealed that the SHG imaging program could contribute to uncovering the fibrosis characteristics of tuberculosis granulomas.
Collapse
Affiliation(s)
- Li Song
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ding Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Hankun Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xuan Xia
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Weifeng Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Decheng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| |
Collapse
|
24
|
Riaz SM, Hanevik K, Helgeland L, Sviland L, Hunter RL, Mustafa T. Novel Insights into the Pathogenesis of Human Post-Primary Tuberculosis from Archival Material of the Pre-Antibiotic Era, 1931-1947. Pathogens 2023; 12:1426. [PMID: 38133309 PMCID: PMC10745901 DOI: 10.3390/pathogens12121426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES Primary and post-primary tuberculosis (TB) are distinct entities. The aim of this study was to study the histopathology of primary and post-primary TB by using the unique human autopsy material from the pre-antibiotic era, 1931-1947. MATERIAL AND METHODS Autopsy data were collected from the autopsy journals, and the human tissue was collected from the pathology archives at the Department of Pathology, the Gades Institute. RESULTS Histological presentations of TB lesions showed great diversity within a single lung. Post-primary TB starts as a pneumonia forming early lesions, characterized by the infiltration of foamy macrophages containing mycobacterial antigens within alveoli, and progressing to necrotic pneumonias with an increasing density of mycobacterial antigens in the lesions. These necrotic pneumonic lesions appeared to either resolve as fibrocaseous lesions or lead to cavitation. The typical granulomatous inflammation, the hallmark of TB lesions, appeared later in the post-primary TB and surrounded the pneumonic lesions. These post-primary granulomas contained lesser mycobacterial antigens as compared to necrotic pneumonia. CONCLUSIONS Immunopathogenesis of post-primary TB is different from primary TB and starts as pneumonia. The early lesions of post-primary TB may progress or regress, holding the key to understanding how a host can develop the disease despite an effective TB immunity.
Collapse
Affiliation(s)
- Syeda Mariam Riaz
- Centre for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine and Dentistry, University of Bergen, 5007 Bergen, Norway;
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, 5007 Bergen, Norway;
- National Centre for Tropical Infectious Diseases, Medical Department, Haukeland University Hospital, 5021 Bergen, Norway
| | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway; (L.H.); (L.S.)
- Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, 5007 Bergen, Norway
| | - Lisbet Sviland
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway; (L.H.); (L.S.)
- Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, 5007 Bergen, Norway
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Centre at Houston, Houston, TX 77030, USA;
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine and Dentistry, University of Bergen, 5007 Bergen, Norway;
- Department of Thoracic Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
25
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
26
|
Rojas-Espinosa O, Arce-Mendoza AY, Islas-Trujillo S, Muñiz-Buenrostro A, Arce-Paredes P, Popoca-Galván O, Moreno-Altamirano B, Rivero Silva M. Necrosis, netosis, and apoptosis in pulmonary tuberculosis and type-2 diabetes mellitus. Clues from the patient's serum. Tuberculosis (Edinb) 2023; 143:102426. [PMID: 38180029 DOI: 10.1016/j.tube.2023.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary tuberculosis (PTB) and type 2 diabetes mellitus (T2DM) are two inflammatory diseases whose pathology involves neutrophils (NEU) as key participants. Countless inflammatory elements produced at the lesion sites leak into the blood and are distributed systemically. The study aimed to investigate the effect of the serum of patients with PTB, T2DM, and PTB + T2DM on the cellular and nuclear morphology of healthy NEU. Monolayers of NEU were prepared and incubated with sera from PTB (n꓿ 10), T2DM (n꓿10), PTB + T2DM (n꓿ 10) patients, or sera from healthy people (n = 10). Monolayers were stained for histones, elastase, and myeloperoxidase for NETosis, annexin V for apoptosis, and Iris fuchsia for necrosis. Hoechst stain (DNA) was used to identify the nuclear alterations. Necrosis was the predominant alteration. Sera from PTB + T2DM were the most potent change inducers. Normal sera did not induce cell alterations. The blood of TBP and T2DM patients carries a myriad of abnormal elements that induce necrosis of NEU in normal people, thus reflecting what might occur in the neutrophils of the patients themselves. These findings reinforce the participation of NEU in the pathology of these diseases. Necrosis is expected to be the most frequent neutrophil-induced alteration in tuberculosis and diabetes mellitus.
Collapse
Affiliation(s)
- Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Alma Yolanda Arce-Mendoza
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Sergio Islas-Trujillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Antonio Muñiz-Buenrostro
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Patricia Arce-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Omar Popoca-Galván
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Bertha Moreno-Altamirano
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Miguel Rivero Silva
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| |
Collapse
|
27
|
Pellegrini JM, Morelli MP, Colombo MI, García VE. Editorial: Beneficial and detrimental host cellular responses against Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2023; 13:1332084. [PMID: 38089813 PMCID: PMC10711595 DOI: 10.3389/fcimb.2023.1332084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Joaquin Miguel Pellegrini
- Centre d’Immunologie de Marseille Luminy, INSERM, Centre national de la recherche scientifique (CNRS), Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, Case 906, Marseille, France
| | - María Paula Morelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Isabel Colombo
- Instituto de Histología y Embriología de Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
28
|
Cavalcante-Silva LHA, Leite EG, Almeida FS, de Andrade AG, Comberlang FC, Lucena CKR, Pachá ASC, Csordas BG, Keesen TSL. T Cell Response in Tuberculosis-Infected Patients Vaccinated against COVID-19. Microorganisms 2023; 11:2810. [PMID: 38004820 PMCID: PMC10673403 DOI: 10.3390/microorganisms11112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Many studies have focused on SARS-CoV-2 and Mycobacterium tuberculosis (Mtb) co-infection consequences. However, after a vaccination plan against COVID-19, the cases of severe disease and death are consistently controlled, although cases of asymptomatic and mild COVID-19 still happen together with tuberculosis (TB) cases. Thus, in this context, we sought to compare the T cell response of COVID-19-non-vaccinated and -vaccinated patients with active tuberculosis exposed to SARS-CoV-2 antigens. Flow cytometry was used to analyze activation markers (i.e., CD69 and CD137) and cytokines (IFN-γ, TNFα, IL-17, and IL-10) levels in CD4+ and CD8+ T cells upon exposure to SARS-CoV-2 peptides. The data obtained showed that CD8+ T cells from non-vaccinated TB patients present a high frequency of CD69 and TNF-α after viral challenge compared to vaccinated TB donors. Conversely, CD4+ T cells from vaccinated TB patients show a high frequency of IL-10 after spike peptide stimulus compared to non-vaccinated patients. No differences were observed in the other parameters analyzed. The results suggest that this reduced immune balance in coinfected individuals may have consequences for pathogen control, necessitating further research to understand its impact on clinical outcomes after COVID-19 vaccination in those with concurrent SARS-CoV-2 and Mtb infections.
Collapse
Affiliation(s)
- Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Ericka Garcia Leite
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | | | | | - Bárbara Guimarães Csordas
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Tatjana S. L. Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| |
Collapse
|
29
|
Hodzhev Y, Tsafarova B, Tolchkov V, Youroukova V, Ivanova S, Kostadinov D, Yanev N, Zhelyazkova M, Tsonev S, Kalfin R, Panaiotov S. Visualization of the individual blood microbiome to study the etiology of sarcoidosis. Comput Struct Biotechnol J 2023; 22:50-57. [PMID: 37928975 PMCID: PMC10624578 DOI: 10.1016/j.csbj.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Single microbial pathogens or host-microbiome dysbiosis are the causes of lung diseases with suspected infectious etiology. Metagenome sequencing provides an overview of the microbiome content. Due to the rarity of most granulomatous lung diseases collecting large systematic datasets is challenging. Thus, single-patient data often can only be summarized visually. Objective To increase the information gain from a single-case metagenome analysis we suggest a quantitative and qualitative approach. Results The 16S metagenomic results of 7 patients with pulmonary sarcoidosis were compared with those of 22 healthy individuals. From lysed blood, total microbial DNA was extracted and sequenced. Cleaned data reads were identified taxonomically using Kraken 2 software. Individual metagenomic data were visualized with a Sankey diagram, Krona chart, and a heat-map. We identified five genera that were exclusively present or significantly enhanced in patients with sarcoidosis - Veillonella, Prevotella, Cutibacterium, Corynebacterium, and Streptococcus. Conclusions Our approach can characterize the blood microbiome composition and diversity in rare diseases at an individual level. Investigation of the blood microbiome in patients with granulomatous lung diseases of unknown etiology, such as sarcoidosis could enhance our comprehension of their origin and pathogenesis and potentially uncover novel personalized therapeutics.
Collapse
Affiliation(s)
- Yordan Hodzhev
- Microbiology Department, National Center of Infectious and Parasitic Diseases, Yanko Sakazov 26 Blvd., Sofia 1504, Bulgaria
| | - Borislava Tsafarova
- Microbiology Department, National Center of Infectious and Parasitic Diseases, Yanko Sakazov 26 Blvd., Sofia 1504, Bulgaria
| | - Vladimir Tolchkov
- Microbiology Department, National Center of Infectious and Parasitic Diseases, Yanko Sakazov 26 Blvd., Sofia 1504, Bulgaria
| | - Vania Youroukova
- Department of Pulmonary Diseases, University Hospital for Pulmonary Diseases “St. Sofia”, Medical University of Sofia, Akad. Ivan Evstratiev Geshov 17 Blvd., Sofia 1431, Bulgaria
| | - Silvia Ivanova
- Department of Pulmonary Diseases, University Hospital for Pulmonary Diseases “St. Sofia”, Medical University of Sofia, Akad. Ivan Evstratiev Geshov 17 Blvd., Sofia 1431, Bulgaria
| | - Dimitar Kostadinov
- Department of Pulmonary Diseases, University Hospital for Pulmonary Diseases “St. Sofia”, Medical University of Sofia, Akad. Ivan Evstratiev Geshov 17 Blvd., Sofia 1431, Bulgaria
| | - Nikolay Yanev
- Department of Pulmonary Diseases, University Hospital for Pulmonary Diseases “St. Sofia”, Medical University of Sofia, Akad. Ivan Evstratiev Geshov 17 Blvd., Sofia 1431, Bulgaria
| | - Maya Zhelyazkova
- Faculti of Mathematics and Informatics, Sofia University St. Kliment Ohridski, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Stefan Tsonev
- Agrobioinstitute (ABI), 8 Dragan Tsankov, Blvd, Sofia 1164, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Blagoevgrad 2700, Bulgaria
| | - Stefan Panaiotov
- Microbiology Department, National Center of Infectious and Parasitic Diseases, Yanko Sakazov 26 Blvd., Sofia 1504, Bulgaria
| |
Collapse
|
30
|
Hunter L, Ruedas-Torres I, Agulló-Ros I, Rayner E, Salguero FJ. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci 2023; 10:1264833. [PMID: 37901102 PMCID: PMC10602689 DOI: 10.3389/fvets.2023.1264833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Research in human tuberculosis (TB) is limited by the availability of human tissues from patients, which is often altered by therapy and treatment. Thus, the use of animal models is a key tool in increasing our understanding of the pathogenesis, disease progression and preclinical evaluation of new therapies and vaccines. The granuloma is the hallmark lesion of pulmonary tuberculosis, regardless of the species or animal model used. Although animal models may not fully replicate all the histopathological characteristics observed in natural, human TB disease, each one brings its own attributes which enable researchers to answer specific questions regarding TB immunopathogenesis. This review delves into the pulmonary pathology induced by Mycobacterium tuberculosis complex (MTBC) bacteria in different animal models (non-human primates, rodents, guinea pigs, rabbits, cattle, goats, and others) and compares how they relate to the pulmonary disease described in humans. Although the described models have demonstrated some histopathological features in common with human pulmonary TB, these data should be considered carefully in the context of this disease. Further research is necessary to establish the most appropriate model for the study of TB, and to carry out a standard characterisation and score of pulmonary lesions.
Collapse
Affiliation(s)
- Laura Hunter
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Inés Ruedas-Torres
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Irene Agulló-Ros
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Emma Rayner
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Francisco J. Salguero
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
31
|
Yabaji SM, Rukhlenko OS, Chatterjee S, Bhattacharya B, Wood E, Kasaikina M, Kholodenko BN, Gimelbrant AA, Kramnik I. Cell state transition analysis identifies interventions that improve control of Mycobacterium tuberculosis infection by susceptible macrophages. SCIENCE ADVANCES 2023; 9:eadh4119. [PMID: 37756395 PMCID: PMC10530096 DOI: 10.1126/sciadv.adh4119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Understanding cell state transitions and purposefully controlling them to improve therapies is a longstanding challenge in biological research and medicine. Here, we identify a transcriptional signature that distinguishes activated macrophages from the tuberculosis (TB) susceptible and resistant mice. We then apply the cSTAR (cell state transition assessment and regulation) approach to data from screening-by-RNA sequencing to identify chemical perturbations that shift the transcriptional state of tumor necrosis factor (TNF)-activated TB-susceptible macrophages toward that of TB-resistant cells, i.e., prevents their aberrant activation without suppressing beneficial TNF responses. Last, we demonstrate that the compounds identified with this approach enhance the resistance of the TB-susceptible mouse macrophages to virulent Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Shivraj M. Yabaji
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Sujoy Chatterjee
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Bidisha Bhattacharya
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Emily Wood
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Marina Kasaikina
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
- Pulmonary Center, The Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
32
|
Putera I, Schrijver B, Ten Berge JCEM, Gupta V, La Distia Nora R, Agrawal R, van Hagen PM, Rombach SM, Dik WA. The immune response in tubercular uveitis and its implications for treatment: From anti-tubercular treatment to host-directed therapies. Prog Retin Eye Res 2023:101189. [PMID: 37236420 DOI: 10.1016/j.preteyeres.2023.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Tubercular uveitis (TB-uveitis) remains a conundrum in the uveitis field, which is mainly related to the diverse clinical phenotypes of TB-uveitis. Moreover, it remains difficult to differentiate whether Mycobacterium tuberculosis (Mtb) is present in the ocular tissues, elicits a heightened immune response without Mtb invasion in ocular tissues, or even induces an anti-retinal autoimmune response. Gaps in the immuno-pathological knowledge of TB-uveitis likely delay timely diagnosis and appropriate management. In the last decade, the immunopathophysiology of TB-uveitis and its clinical management, including experts' consensus to treat or not to treat certain conditions with anti-tubercular treatment (ATT), have been extensively investigated. In the meantime, research on TB treatment, in general, is shifting more toward host-directed therapies (HDT). Given the complexities of the host-Mtb interaction, enhancement of the host immune response is expected to boost the effectiveness of ATT and help overcome the rising burden of drug-resistant Mtb strains in the population. This review will summarize the current knowledge on the immunopathophysiology of TB-uveitis and recent advances in treatment modalities and outcomes of TB-uveitis, capturing results gathered from high- and low-burden TB countries with ATT as the mainstay of treatment. Moreover, we outline the recent progress of HDT development in the pulmonary TB field and discuss the possibility of its applicability to TB-uveitis. The concept of HDT might help direct future development of efficacious therapy for TB-uveitis, although more in-depth research on the immunoregulation of this disease is still necessary.
Collapse
Affiliation(s)
- Ikhwanuliman Putera
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Vishali Gupta
- Retina and Uvea Services, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rina La Distia Nora
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS University, Singapore; Singapore Eye Research Institute, Singapore; Moorfields Eye Hospital, London, United Kingdom
| | - P Martin van Hagen
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S M Rombach
- Department of Internal Medicine, Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
33
|
Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol 2023; 14:1194923. [PMID: 37266428 PMCID: PMC10230078 DOI: 10.3389/fimmu.2023.1194923] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most important infectious agents worldwide and causes more than 1.5 million deaths annually. To make matters worse, the drug resistance among Mtb strains has risen substantially in the last few decades. Nowadays, it is not uncommon to find patients infected with Mtb strains that are virtually resistant to all antibiotics, which has led to the urgent search for new molecules and therapies. Over previous decades, several studies have demonstrated the efficiency of antimicrobial peptides to eliminate even multidrug-resistant bacteria, making them outstanding candidates to counterattack this growing health problem. Nevertheless, the complexity of the Mtb cell wall makes us wonder whether antimicrobial peptides can effectively kill this persistent Mycobacterium. In the present review, we explore the complexity of the Mtb cell wall and analyze the effectiveness of antimicrobial peptides to eliminate the bacilli.
Collapse
|
34
|
Qi X, Shen N, Al Othman A, Mezentsev A, Permyakova A, Yu Z, Lepoitevin M, Serre C, Durymanov M. Metal-Organic Framework-Based Nanomedicines for the Treatment of Intracellular Bacterial Infections. Pharmaceutics 2023; 15:1521. [PMID: 37242762 PMCID: PMC10220673 DOI: 10.3390/pharmaceutics15051521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a highly versatile class of ordered porous materials, which hold great promise for different biomedical applications, including antibacterial therapy. In light of the antibacterial effects, these nanomaterials can be attractive for several reasons. First, MOFs exhibit a high loading capacity for numerous antibacterial drugs, including antibiotics, photosensitizers, and/or photothermal molecules. The inherent micro- or meso-porosity of MOF structures enables their use as nanocarriers for simultaneous encapsulation of multiple drugs resulting in a combined therapeutic effect. In addition to being encapsulated into an MOF's pores, antibacterial agents can sometimes be directly incorporated into an MOF skeleton as organic linkers. Next, MOFs contain coordinated metal ions in their structure. Incorporation of Fe2/3+, Cu2+, Zn2+, Co2+, and Ag+ can significantly increase the innate cytotoxicity of these materials for bacteria and cause a synergistic effect. Finally, abundance of functional groups enables modifying the external surface of MOF particles with stealth coating and ligand moieties for improved drug delivery. To date, there are a number of MOF-based nanomedicines available for the treatment of bacterial infections. This review is focused on biomedical consideration of MOF nano-formulations designed for the therapy of intracellular infections such as Staphylococcus aureus, Mycobacterium tuberculosis, and Chlamydia trachomatis. Increasing knowledge about the ability of MOF nanoparticles to accumulate in a pathogen intracellular niche in the host cells provides an excellent opportunity to use MOF-based nanomedicines for the eradication of persistent infections. Here, we discuss advantages and current limitations of MOFs, their clinical significance, and their prospects for the treatment of the mentioned infections.
Collapse
Affiliation(s)
- Xiaoli Qi
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ningfei Shen
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Aya Al Othman
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Zhihao Yu
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Mathilde Lepoitevin
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Christian Serre
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Mikhail Durymanov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
35
|
Zhu J, Liu YJ, Fortune SM. Spatiotemporal perspectives on tuberculosis chemotherapy. Curr Opin Microbiol 2023; 72:102266. [PMID: 36745965 PMCID: PMC10023397 DOI: 10.1016/j.mib.2023.102266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), accounts for over ten million infections and over 1.5 million deaths every year [1]. Upon infection, the seesaw between Mtb and our immune systems creates microenvironments that are compositionally distinctive and changing over time. While the field has begun to better understand the spatial complexity of TB disease, our understanding and experimental dissection of the temporal dynamics of TB and TB drug treatment is much more rudimentary. However, it is the combined spatiotemporal heterogeneity of TB disease that creates niches and time windows within which the pathogen can survive and thrive during treatment. Here, we review the emerging data on the interactions of spatial and temporal dynamics as they relate to TB disease and treatment. A better understanding of the interactions of Mtb, host, and antibiotics through space and time will elucidate treatment failure and potentially identify opportunities for new TB treatment regimens.
Collapse
Affiliation(s)
- Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA
| | - Yue J Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
36
|
Yabaji SM, Rukhlenko OS, Chatterjee S, Bhattacharya B, Wood E, Kasaikina M, Kholodenko B, Gimelbrant AA, Kramnik I. Cell state transition analysis identifies interventions that improve control of M. tuberculosis infection by susceptible macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527908. [PMID: 36798271 PMCID: PMC9934610 DOI: 10.1101/2023.02.09.527908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Understanding cell state transitions and purposefully controlling them to improve therapies is a longstanding challenge in biological research and medicine. Here, we identify a transcriptional signature that distinguishes activated macrophages from TB-susceptible and TB-resistant mice. We then apply the cSTAR (cell State Transition Assessment and Regulation) approach to data from screening-by-RNA sequencing to identify chemical perturbations that shift the. transcriptional state of the TB-susceptible macrophages towards that of TB-resistant cells. Finally, we demonstrate that the compounds identified with this approach enhance resistance of the TB-susceptible mouse macrophages to virulent M. tuberculosis .
Collapse
Affiliation(s)
- Shivraj M Yabaji
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sujoy Chatterjee
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Bidisha Bhattacharya
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Emily Wood
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marina Kasaikina
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Boris Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, USA
| | | | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
- Pulmonary Center, The Department of Medicine, Boston University School of Medicine
- Department of Microbiology, Boston University School of Medicine
| |
Collapse
|
37
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|