1
|
Li W, Hu W, Yuan S, Chen J, Wang Q, Ding J, Chen Z, Qi Z, Han J. Enhancing Blood-Brain Barrier Integrity in Patients With Acute Ischemic Stroke Via Normobaric Hyperoxia. J Am Heart Assoc 2024; 13:e036474. [PMID: 39424403 DOI: 10.1161/jaha.124.036474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Recent advancements in animal studies have demonstrated the potential of normobaric hyperoxia (NBO) as a promising intervention for preserving the integrity of the blood-brain barrier (BBB). However, there is still limited understanding of the effects of NBO on BBB function in patients with clinical stroke. Therefore, the objective of this study was to investigate the efficacy of NBO therapy in attenuating BBB damage and reducing brain injury in individuals undergoing endovascular treatment (EVT) for acute stroke. METHODS AND RESULTS This study enrolled patients from the OPENS-1 (Normobaric Hyperoxia Combined With Reperfusion for Acute Ischemic Stroke) study, with 43 patients receiving NBO combined with EVT and 43 patients receiving EVT alone. The main outcome measures included serum levels of occludin, MMP-9 (matrix metalloproteinase-9), NSE (neuron-specific enolase), and S100b at 24 hours and 7 days, as well as the intracranial extravasation rate at 24 hours. Serum markers were assessed using ELISA, and intracranial contrast extravasation was visualized using dual-energy computed tomography scan. We analyzed a total of 86 patients and found that the 24-hour serum markers levels of BBB damage and brain injury were significantly lower in the group receiving NBO therapy combined with EVT compared with the group receiving EVT alone. Similarly, at 7 days, the levels of occludin, MMP-9, and NSE were lower in the NBO+EVT group. We also found that the 24-hour serum levels of occludin and MMP-9 were correlated with intracranial contrast extravasation. Additionally, the incidence of intracranial contrast extravasation was lower in the NBO+EVT group compared with the EVT group (35.9% versus 60.5%, P=0.031). CONCLUSIONS This study offers valuable insights into the positive impact of NBO on maintaining BBB integrity and reducing brain injury in patients with acute stroke undergoing EVT.
Collapse
Affiliation(s)
- Weili Li
- Department of Neurology The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Jinan China
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University Beijing China
| | - Wenbo Hu
- Department of Neurology, Xuanwu Hospital Capital Medical University Beijing China
| | - Shuhua Yuan
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University Beijing China
| | - Jiahao Chen
- Department of Neurobiology Capital Medical University Beijing China
| | - Qi Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University Beijing China
| | - Jiayue Ding
- Department of Neurology Tianjin Medical University General Hospital Tianjin China
| | - Zhiying Chen
- Department of Neurology Jiujiang University Affiliated Hospital Jiujiang China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University Beijing China
| | - Ju Han
- Department of Neurology The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Jinan China
| |
Collapse
|
2
|
Huang X, Lan Z, Hu Z. Role and mechanisms of mast cells in brain disorders. Front Immunol 2024; 15:1445867. [PMID: 39253085 PMCID: PMC11381262 DOI: 10.3389/fimmu.2024.1445867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Mast cells serve as crucial effector cells within the innate immune system and are predominantly localized in the skin, airways, gastrointestinal tract, urinary and reproductive tracts, as well as in the brain. Under physiological conditions, brain-resident mast cells secrete a diverse array of neuro-regulatory mediators to actively participate in neuroprotection. Meanwhile, as the primary source of molecules causing brain inflammation, mast cells also function as the "first responders" in brain injury. They interact with neuroglial cells and neurons to facilitate the release of numerous inflammatory mediators, proteases, and reactive oxygen species. This process initiates and amplifies immune-inflammatory responses in the brain, thereby contributing to the regulation of neuroinflammation and blood-brain barrier permeability. This article provides a comprehensive overview of the potential mechanisms through which mast cells in the brain may modulate neuroprotection and their pathological implications in various neurological disorders. It is our contention that the inhibition of mast cell activation in brain disorders could represent a novel avenue for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Xuanyu Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Herting MM, Bottenhorn KL, Cotter DL. Outdoor air pollution and brain development in childhood and adolescence. Trends Neurosci 2024; 47:593-607. [PMID: 39054161 PMCID: PMC11324378 DOI: 10.1016/j.tins.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Exposure to outdoor air pollution has been linked to adverse health effects, including potential widespread impacts on the CNS. Ongoing brain development may render children and adolescents especially vulnerable to neurotoxic effects of air pollution. While mechanisms remain unclear, promising advances in human neuroimaging can help elucidate both sensitive periods and neurobiological consequences of exposure to air pollution. Herein we review the potential influences of air pollution exposure on neurodevelopment, drawing from animal toxicology and human neuroimaging studies. Due to ongoing cellular and system-level changes during childhood and adolescence, the developing brain may be more sensitive to pollutants' neurotoxic effects, as a function of both timing and duration, with relevance to cognition and mental health. Building on these foundations, the emerging field of environmental neuroscience is poised to further decipher which air toxicants are most harmful and to whom.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Katherine L Bottenhorn
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Devyn L Cotter
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Alshammari MA, Alshehri AO, Alqahtani F, Khan MR, Bakhrebah MA, Alasmari F, Alshammari TK, Alsharari SD. Increased Permeability of the Blood-Brain Barrier in a Diabetic Mouse Model ( Leprdb/db Mice). Int J Mol Sci 2024; 25:7768. [PMID: 39063010 PMCID: PMC11276738 DOI: 10.3390/ijms25147768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is linked to multiple complications, including cognitive impairment, and the prevalence of memory-related neurodegenerative diseases is higher in T2DM patients. One possible theory is the alteration of the microvascular and macrovascular environment of the blood-brain barrier (BBB). In this study, we employed different approaches, including RT-PCR, functional pharmacokinetic studies using sodium fluorescein (NaFL), and confocal microscopy, to characterize the functional and molecular integrity of the BBB in a T2DM animal model, leptin receptor-deficient mutant mice (Leprdb/db mice). As a result, VCAM-1, ICAM-1, MMP-9, and S100b (BBB-related markers) dysregulation was observed in the Leprdb/db animal model compared to littermate wild-type mice. The brain concentration of sodium fluorescein (NaFL) increased significantly in Leprdb/db untreated mice compared to insulin-treated mice. Therefore, the permeability of NaFL was higher in Leprdb/db control mice than in all remaining groups. Identifying the factors that increase the BBB in Leprdb/db mice will provide a better understanding of the BBB microvasculature and present previously undescribed findings of T2DM-related brain illnesses, filling knowledge gaps in this emerging field of research.
Collapse
Affiliation(s)
- Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Abdulaziz O. Alshehri
- Department of Pharmacology and Toxicology (Graduate Student), Pharmacy College, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Mohammad R. Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Tahani K. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (F.A.); (M.R.K.); (F.A.); (T.K.A.); (S.D.A.)
| |
Collapse
|
5
|
Vaes JEG, Onstwedder SM, Trayford C, Gubbins E, Maas M, van Rijt SH, Nijboer CH. Modifying the Secretome of Mesenchymal Stem Cells Prolongs the Regenerative Treatment Window for Encephalopathy of Prematurity. Int J Mol Sci 2024; 25:6494. [PMID: 38928201 PMCID: PMC11203777 DOI: 10.3390/ijms25126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Clinical treatment options to combat Encephalopathy of Prematurity (EoP) are still lacking. We, and others, have proposed (intranasal) mesenchymal stem cells (MSCs) as a potent therapeutic strategy to boost white matter repair in the injured preterm brain. Using a double-hit mouse model of diffuse white matter injury, we previously showed that the efficacy of MSC treatment was time dependent, with a significant decrease in functional and histological improvements after the postponement of cell administration. In this follow-up study, we aimed to investigate the mechanisms underlying this loss of therapeutic efficacy. Additionally, we optimized the regenerative potential of MSCs by means of genetic engineering with the transient hypersecretion of beneficial factors, in order to prolong the treatment window. Though the cerebral expression of known chemoattractants was stable over time, the migration of MSCs to the injured brain was partially impaired. Moreover, using a primary oligodendrocyte (OL) culture, we showed that the rescue of injured OLs was reduced after delayed MSC coculture. Cocultures of modified MSCs, hypersecreting IGF1, LIF, IL11, or IL10, with primary microglia and OLs, revealed a superior treatment efficacy over naïve MSCs. Additionally, we showed that the delayed intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, improved myelination and the functional outcome in EoP mice. In conclusion, the impaired migration and regenerative capacity of intranasally applied MSCs likely underlie the observed loss of efficacy after delayed treatment. The intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, is a promising optimization strategy to prolong the window for effective MSC treatment in preterm infants with EoP.
Collapse
Affiliation(s)
- Josine E. G. Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Suzanne M. Onstwedder
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Eva Gubbins
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Mirjam Maas
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Sabine H. van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Cora H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
6
|
Yang R, Yan F, Shen J, Wang T, Li M, Ni H. Geraniol attenuates oxygen-glucose deprivation/reoxygenation-induced ROS-dependent apoptosis and permeability of human brain microvascular endothelial cells by activating the Nrf-2/HO-1 pathway. J Bioenerg Biomembr 2024; 56:193-204. [PMID: 38446318 DOI: 10.1007/s10863-024-10011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Blood-brain barrier breakdown and ROS overproduction are important events during the progression of ischemic stroke aggravating brain damage. Geraniol, a natural monoterpenoid, possesses anti-apoptotic, cytoprotective, anti-oxidant, and anti-inflammatory activities. Our study aimed to investigate the effect and underlying mechanisms of geraniol in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human brain microvascular endothelial cells (HBMECs). Apoptosis, caspase-3 activity, and cytotoxicity of HBMECs were evaluated using TUNEL, caspase-3 activity, and CCK-8 assays, respectively. The permeability of HBMECs was examined using FITC-dextran assay. Reactive oxygen species (ROS) production was measured using the fluorescent probe DCFH-DA. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, β-catenin, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were determined by western blotting. Geraniol showed no cytotoxicity in HBMECs. Geraniol and ROS scavenger N-acetylcysteine (NAC) both attenuated OGD/R-induced apoptosis and increase of caspase-3 activity and the permeability to FITC-dextran in HBMECs. Geraniol relieved OGD/R-induced ROS accumulation and decrease of expression of ZO-1, occludin, claudin-5, and β-catenin in HBMECs. Furthermore, we found that geraniol activated Nrf2/HO-1 pathway to inhibit ROS in HBMECs. In conclusion, geraniol attenuated OGD/R-induced ROS-dependent apoptosis and permeability in HBMECs through activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Ronggang Yang
- Department of Neurological Intensive Resuscitation, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Feng Yan
- Department of Neurological Intensive Resuscitation, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Jiangyi Shen
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Tiancai Wang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Menglong Li
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Hongzao Ni
- Department of Neurosurgery, Huai'an Second People's Hospital, the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223300, China.
| |
Collapse
|
7
|
Tran NT, Hale N, Maung AAW, Wiersma M, Walker DW, Polglase G, Castillo-Melendez M, Wong FY. Intrauterine inflammation and postnatal intravenous dopamine alter the neurovascular unit in preterm newborn lambs. J Neuroinflammation 2024; 21:142. [PMID: 38807204 PMCID: PMC11134744 DOI: 10.1186/s12974-024-03137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Intrauterine inflammation is considered a major cause of brain injury in preterm infants, leading to long-term neurodevelopmental deficits. A potential contributor to this brain injury is dysregulation of neurovascular coupling. We have shown that intrauterine inflammation induced by intra-amniotic lipopolysaccharide (LPS) in preterm lambs, and postnatal dopamine administration, disrupts neurovascular coupling and the functional cerebral haemodynamic responses, potentially leading to impaired brain development. In this study, we aimed to characterise the structural changes of the neurovascular unit following intrauterine LPS exposure and postnatal dopamine administration in the brain of preterm lambs using cellular and molecular analyses. METHODS At 119-120 days of gestation (term = 147 days), LPS was administered into the amniotic sac in pregnant ewes. At 126-7 days of gestation, the LPS-exposed lambs were delivered, ventilated and given either a continuous intravenous infusion of dopamine at 10 µg/kg/min or isovolumetric vehicle solution for 90 min (LPS, n = 6; LPSDA, n = 6). Control preterm lambs not exposed to LPS were also administered vehicle or dopamine (CTL, n = 9; CTLDA, n = 7). Post-mortem brain tissue was collected 3-4 h after birth for immunohistochemistry and RT-qPCR analysis of components of the neurovascular unit. RESULTS LPS exposure increased vascular leakage in the presence of increased vascular density and remodelling with increased astrocyte "end feet" vessel coverage, together with downregulated mRNA levels of the tight junction proteins Claudin-1 and Occludin. Dopamine administration decreased vessel density and size, decreased endothelial glucose transporter, reduced neuronal dendritic coverage, increased cell proliferation within vessel walls, and increased pericyte vascular coverage particularly within the cortical and deep grey matter. Dopamine also downregulated VEGFA and Occludin tight junction mRNA, and upregulated dopamine receptor DRD1 and oxidative protein (NOX1, SOD3) mRNA levels. Dopamine administration following LPS exposure did not exacerbate any effects induced by LPS. CONCLUSION LPS exposure and dopamine administration independently alters the neurovascular unit in the preterm brain. Alterations to the neurovascular unit may predispose the developing brain to further injury.
Collapse
Affiliation(s)
- Nhi T Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Nadia Hale
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Manon Wiersma
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
- Monash Newborn, Monash Medical Centre, Melbourne, Australia
| | - Graeme Polglase
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Flora Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.
- Department of Paediatrics, Monash University, Melbourne, Australia.
- Monash Newborn, Monash Medical Centre, Melbourne, Australia.
- Monash Children's Hospital, Level 5, 246 Clayton Rd, Clayton, VIC, 3168, Australia.
| |
Collapse
|
8
|
Maïza A, Hamoudi R, Mabondzo A. Targeting the Multiple Complex Processes of Hypoxia-Ischemia to Achieve Neuroprotection. Int J Mol Sci 2024; 25:5449. [PMID: 38791487 PMCID: PMC11121719 DOI: 10.3390/ijms25105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of newborn brain damage stemming from a lack of oxygenated blood flow in the neonatal period. Twenty-five to fifty percent of asphyxiated infants who develop HIE die in the neonatal period, and about sixty percent of survivors develop long-term neurological disabilities. From the first minutes to months after the injury, a cascade of events occurs, leading to blood-brain barrier (BBB) opening, neuronal death and inflammation. To date, the only approach proposed in some cases is therapeutic hypothermia (TH). Unfortunately, TH is only partially protective and is not applicable to all neonates. This review synthesizes current knowledge on the basic molecular mechanisms of brain damage in hypoxia-ischemia (HI) and on the different therapeutic strategies in HI that have been used and explores a major limitation of unsuccessful therapeutic approaches.
Collapse
Affiliation(s)
- Auriane Maïza
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| | - Rifat Hamoudi
- Center of Excellence of Precision Medicine, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
| | - Aloïse Mabondzo
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| |
Collapse
|
9
|
Wei X, Wen Y, Hu Y, Guo X. Total Saponins of Panax Notoginseng Modulate the Astrocyte Inflammatory Signaling Pathway and Attenuate Inflammatory Injury Induced by Oxygen- Glucose Deprivation/Reperfusion Injury in Rat Brain Microvascular Endothelial Cells. Curr Stem Cell Res Ther 2024; 19:267-276. [PMID: 37218204 DOI: 10.2174/1574888x18666230509113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Reperfusion after cerebral ischemia causes brain injury. Total saponins of Panax notoginseng (PNS) have potential roles in protecting against cerebral ischemia-reperfusion injury. However, whether PNS regulates astrocytes on oxygen-glucose deprivation/reperfusion (OGD/R) injury in rat brain microvascular endothelial cells (BMECs) and its mechanism still need further clarification. METHODS Rat C6 glial cells were treated with PNS at different doses. Cell models were established by exposing C6 glial cells and BMECs to OGD/R. Cell viability was assessed, and levels of nitrite concentration, inflammatory factors (iNOS, IL-1β, IL-6, IL-8, TNF-α), and oxidative stress-related factors (MDA, SOD, GSH-Px, T-AOC) were subsequently measured through CCK8, Grice analysis, Western blot, and ELISA, respectively. The co-cultured C6 and endothelial cells were treated with PNS for 24 hours before model establishment. Then transendothelial electrical resistance (TEER), lactate dehydrogenase (LDH) activity, brain-derived neurotrophic factor (BDNF) content, and mRNA and protein levels and positive rates of tight junction proteins [Claudin-5, Occludin, ZO-1] were measured by a cell resistance meter, corresponding kits, ELISA, RT-qPCR, Western blot, and immunohistochemistry, respectively. RESULTS PNS had no cytotoxicity. PNS reduced iNOS, IL-1β, IL-6, IL-8, and TNF-α levels in astrocytes, promoted T-AOC level and SOD and GSH-Px activities, and inhibited MDA levels, thus inhibiting oxidative stress in astrocytes. In addition, PNS alleviated OGD/R injury, reduced Na-Flu permeability, and enhanced TEER, LDH activity, BDNF content, and levels of tight junction proteins Claudin-5, Occludin, ZO-1 in the culture system of astrocytes and rat BMECs after OGD/R. CONCLUSION PNS repressed astrocyte inflammation and attenuated OGD/R injury in rat BMECs.
Collapse
Affiliation(s)
- Xiaobing Wei
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Yiqi Wen
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Yongzhen Hu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Xuli Guo
- Department of Internal Medicine-Oncology, Huizhou Municipal Central Hospital, No. 41 Eleng North Road, Huicheng District, Huizhou, Guangdong, China
| |
Collapse
|
10
|
Martínez de Lagrán M, Bascón-Cardozo K, Dierssen M. Neurodevelopmental disorders: 2024 update. FREE NEUROPATHOLOGY 2024; 5:5-20. [PMID: 39252863 PMCID: PMC11382549 DOI: 10.17879/freeneuropathology-2024-5734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Neurodevelopmental disorders encompass a range of conditions such as intellectual disability, autism spectrum disorder, rare genetic disorders and developmental and epileptic encephalopathies, all manifesting during childhood. Over 1,500 genes involved in various signaling pathways, including numerous transcriptional regulators, spliceosome elements, chromatin-modifying complexes and de novo variants have been recognized for their substantial role in these disorders. Along with new machine learning tools applied to neuroimaging, these discoveries facilitate genetic diagnoses, providing critical insights into neuropathological mechanisms and aiding in prognosis, and precision medicine. Also, new findings underscore the importance of understanding genetic contributions beyond protein-coding genes and emphasize the role of RNA and non-coding DNA molecules but also new players, such as transposable elements, whose dysregulation generates gene function disruption, epigenetic alteration, and genomic instability. Finally, recent developments in analyzing neuroimaging now offer the possibility of characterizing neuronal cytoarchitecture in vivo, presenting a viable alternative to traditional post-mortem studies. With a recently launched digital atlas of human fetal brain development, these new approaches will allow answering complex biological questions about fetal origins of cognitive function in childhood. In this review, we present ten fascinating topics where major progress has been made in the last year.
Collapse
Affiliation(s)
- María Martínez de Lagrán
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Karen Bascón-Cardozo
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona 08003, Spain
- Hospital del Mar Research Institute, Barcelona 08003, Spain
| |
Collapse
|
11
|
Chalak LF, Kang S, Kota S, Liu H, Liu Y, Juul SE, Wu YW. Evaluation of neurovascular coupling during neuroprotective therapies: A single site HEAL ancillary study. Early Hum Dev 2023; 183:105815. [PMID: 37419079 PMCID: PMC10824020 DOI: 10.1016/j.earlhumdev.2023.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND There is a critical need for development of physiological biomarkers in infants with birth asphyxia to identify the physiologic response to therapies in real time. This is an ancillary single site study of the High-Dose Erythropoietin for Asphyxia and Encephalopathy (Wu et al., 2022 [1]) to measure neurovascular coupling (NVC) non-invasively during an ongoing blinded randomized trial. METHODS Neonates who randomized in the HEAL enrolled at a single-center Level III Neonatal Intensive Care Unit were recruited between 2017 and 2019. Neurodevelopmental impairment was blinded and defined as any of the following: cognitive score <90 on Bayley Scales of Infant Toddler Development, third edition (BSID-III), Gross Motor Function Classification Score (GMFCS) ≥1. RESULTS All twenty-seven neonates enrolled in HEAL were recruited and 3 died before complete recording. The rank-based analysis of covariance models demonstrated lack of difference in NVC between the two groups (Epo versus Placebo) that was consistent with the observed lack of effect on neurodevelopmental outcomes. CONCLUSION We demonstrate no difference in neurovascular coupling after Epo administration. These findings are consistent with overall negative trial results. Physiological biomarkers can help elucidate mechanisms of neuroprotective therapies in real time in future trials.
Collapse
Affiliation(s)
- Lina F Chalak
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| | - Shu Kang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Srinivas Kota
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Yulun Liu
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
12
|
Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. MASS SPECTROMETRY REVIEWS 2023; 42:1221-1243. [PMID: 34854486 DOI: 10.1002/mas.21755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/07/2023]
Abstract
Infection metallomics is a mass spectrometry (MS) platform we established based on the central concept that microbial metallophores are specific, sensitive, noninvasive, and promising biomarkers of invasive infectious diseases. Here we review the in vitro, in vivo, and clinical applications of metallophores from historical and functional perspectives, and identify under-studied and emerging application areas with high diagnostic potential for the post-COVID era. MS with isotope data filtering is fundamental to infection metallomics; it has been used to study the interplay between "frenemies" in hosts and to monitor the dynamic response of the microbiome to antibiotic and antimycotic therapies. During infection in critically ill patients, the hostile environment of the host's body activates secondary bacterial, mycobacterial, and fungal metabolism, leading to the production of metallophores that increase the pathogen's chance of survival in the host. MS can reveal the structures, stability, and threshold concentrations of these metal-containing microbial biomarkers of infection in humans and model organisms, and can discriminate invasive disease from benign colonization based on well-defined thresholds distinguishing proliferation from the colonization steady state.
Collapse
Affiliation(s)
- Rutuja H Patil
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
13
|
Christiansen LI, Ventura GC, Holmqvist B, Aasmul-Olsen K, Lindholm SEH, Lycas MD, Mori Y, Secher JBM, Burrin DG, Thymann T, Sangild PT, Pankratova S. Insulin-like growth factor 1 supplementation supports motor coordination and affects myelination in preterm pigs. Front Neurosci 2023; 17:1205819. [PMID: 37404461 PMCID: PMC10315495 DOI: 10.3389/fnins.2023.1205819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants. Methods Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements. Results The IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus. Conclusion Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.
Collapse
Affiliation(s)
- Line I. Christiansen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gemma C. Ventura
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Karoline Aasmul-Olsen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sandy E. H. Lindholm
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Matthew D. Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Bojsen-Møller Secher
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Douglas G. Burrin
- United States Department of Agriculture, Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per T. Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
- Faculty of Theology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Gao L, Pan X, Zhang JH, Xia Y. Glial cells: an important switch for the vascular function of the central nervous system. Front Cell Neurosci 2023; 17:1166770. [PMID: 37206667 PMCID: PMC10188976 DOI: 10.3389/fncel.2023.1166770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
In this review, we first describe the current understanding of glial-mediated vascular function affecting the role of the blood-brain barrier (BBB) in central nervous system (CNS) disorders. BBB, mainly composed of glial and endothelial cells (ECs), is the protective structure that orchestrates the transport of substances, including ions, molecules, and cells from brain vessels into or out of the CNS. Then, we display the multiple communication between glial and vascular function based on angiogenesis, vascular wrapping, and blood perfusion in the brain. Glial can support microvascular ECs to form a blood network connecting to neurons. Astrocytes, microglia, and oligodendrocytes are the common types of glial surrounding the brain vessel. Glial-vessel interaction is required for the permeability and integrity of BBB. Glial cells surrounding the cerebral blood vessels can transmit communication signals to ECs and regulate the activity of vascular endothelial growth factor (VEGF) or Wnt-dependent endothelial angiogenesis mechanism. In addition, these glial cells monitor the blood flow in the brain via Ca2+/K+-dependent pathways. Finally, we provide a potential research direction for the glial-vessel axis in CNS disorders. Microglial activation can trigger astrocyte activation, which suggests that microglia-astrocyte interaction may play a key role in monitoring cerebral blood flow. Thus, microglia-astrocyte interaction can be the key point of follow-up studies focusing on the microglia-blood mechanism. More investigations focus on the mechanism of how oligodendrocyte progenitor cells communicate and interact with ECs. The direct role of oligodendrocytes in modulating vascular function needs to be explored in the future.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Xuezhen Pan
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| |
Collapse
|
15
|
Lecca M, Pehlivan D, Suñer DH, Weiss K, Coste T, Zweier M, Oktay Y, Danial-Farran N, Rosti V, Bonasoni MP, Malara A, Contrò G, Zuntini R, Pollazzon M, Pascarella R, Neri A, Fusco C, Marafi D, Mitani T, Posey JE, Bayramoglu SE, Gezdirici A, Hernandez-Rodriguez J, Cladera EA, Miravet E, Roldan-Busto J, Ruiz MA, Bauzá CV, Ben-Sira L, Sigaudy S, Begemann A, Unger S, Güngör S, Hiz S, Sonmezler E, Zehavi Y, Jerdev M, Balduini A, Zuffardi O, Horvath R, Lochmüller H, Rauch A, Garavelli L, Tournier-Lasserve E, Spiegel R, Lupski JR, Errichiello E. Bi-allelic variants in the ESAM tight-junction gene cause a neurodevelopmental disorder associated with fetal intracranial hemorrhage. Am J Hum Genet 2023; 110:681-690. [PMID: 36996813 PMCID: PMC10119151 DOI: 10.1016/j.ajhg.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."
Collapse
Affiliation(s)
- Mauro Lecca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Damià Heine Suñer
- Molecular Diagnostics and Clinical Genetics Unit, Hospital Universitari Son Espases, Palma, Illes Balears, Spain; Genomics of Health, Institute of Health Research of the Balearic Islands, Palma, Illes Balears, Spain
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Thibault Coste
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France; Université de Paris, INSERM UMR-1141 Neurodiderot, Paris, France
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey; Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | | | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Laboratory of Biochemistry-Biotechnology and Advanced Diagnostics, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Gianluca Contrò
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Neri
- Ophthalmology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Ellen Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sadik Etka Bayramoglu
- Tertiary ROP Center, Health Science University Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | | | - Emilia Amengual Cladera
- Genomics of Health, Institute of Health Research of the Balearic Islands, Palma, Illes Balears, Spain
| | - Elena Miravet
- Metabolic Pathologies and Pediatric Neurology Unit, Pediatric Service, Hospital Universitari Son Espases, Palma, Illes Balears, Spain
| | - Jorge Roldan-Busto
- Pediatric Radiology Unit, Radiology Service, Hospital Universitari Son Espases, Palma, Illes Balears, Spain
| | - María Angeles Ruiz
- Metabolic Pathologies and Pediatric Neurology Unit, Pediatric Service, Hospital Universitari Son Espases, Palma, Illes Balears, Spain
| | - Cristofol Vives Bauzá
- Neurobiology, Institute of Health Research of the Balearic Islands, Palma, Illes Balears, Spain
| | - Liat Ben-Sira
- Department of Radiology, Division of Pediatric Radiology, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Sabine Sigaudy
- AP-HM, Service de Génétique, Hôpital de la Timone, Marseille, France
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Sheila Unger
- Medical Genetics Service, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Serdal Güngör
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Pediatric Neurology, Malatya, Turkey
| | - Semra Hiz
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey; Department of Pediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Ece Sonmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Yoav Zehavi
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Pediatrics B, Emek Medical Center, Afula, Israel
| | - Michael Jerdev
- Poriya Medical Center and the Azrieli Faculty of Medicine, Bar-Ilan University, Ramat-Gan, Israel
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK; Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0PY, UK
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa ON K1H 8L1, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L1, Canada
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabeth Tournier-Lasserve
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France; Université de Paris, INSERM UMR-1141 Neurodiderot, Paris, France
| | - Ronen Spiegel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Pediatrics B, Emek Medical Center, Afula, Israel
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
16
|
Lu J, Fan X, Lu L, Yu Y, Markiewicz E, Little JC, Sidebottom AM, Claud EC. Limosilactobacillus reuteri normalizes blood-brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide. Gut Microbes 2023; 15:2178800. [PMID: 36799469 PMCID: PMC9980478 DOI: 10.1080/19490976.2023.2178800] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Maternal immune activation (MIA) derived from late gestational infection such as seen in chorioamnionitis poses a significantly increased risk for neurodevelopmental deficits in the offspring. Manipulating early microbiota through maternal probiotic supplementation has been shown to be an effective means to improve outcomes; however, the mechanisms remain unclear. In this study, we demonstrated that MIA modeled by exposing pregnant dams to lipopolysaccharide (LPS) induced an underdevelopment of the blood vessels, an increase in permeability and astrogliosis of the blood-brain barrier (BBB) at prewean age. The BBB developmental and functional deficits early in life impaired spatial learning later in life. Maternal Limosilactobacillus reuteri (L. reuteri) supplementation starting at birth rescued the BBB underdevelopment and dysfunction-associated cognitive function. Maternal L. reuteri-mediated alterations in β-diversity of the microbial community and metabolic responses in the offspring provide mechanisms and potential targets for promoting BBB integrity and long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Xiaobing Fan
- Magnetic Resonance Imaging and Spectroscopy Laboratory, The University of Chicago, Department of Radiology, Chicago, IL, USA
| | - Lei Lu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Yueyue Yu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Erica Markiewicz
- Magnetic Resonance Imaging and Spectroscopy Laboratory, The University of Chicago, Department of Radiology, Chicago, IL, USA
| | - Jessica C. Little
- Duchossois Family Institute, The University of Chicago, Host-Microbe Metabolomics Facility, Chicago, IL, USA
| | - Ashley M. Sidebottom
- Duchossois Family Institute, The University of Chicago, Host-Microbe Metabolomics Facility, Chicago, IL, USA
| | - Erika C. Claud
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Delavogia E, Ntentakis DP, Cortinas JA, Fernandez-Gonzalez A, Alex Mitsialis S, Kourembanas S. Mesenchymal Stromal/Stem Cell Extracellular Vesicles and Perinatal Injury: One Formula for Many Diseases. Stem Cells 2022; 40:991-1007. [PMID: 36044737 PMCID: PMC9707037 DOI: 10.1093/stmcls/sxac062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Over the past decades, substantial advances in neonatal medical care have increased the survival of extremely premature infants. However, there continues to be significant morbidity associated with preterm birth with common complications including bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), neuronal injury such as intraventricular hemorrhage (IVH) or hypoxic ischemic encephalopathy (HIE), as well as retinopathy of prematurity (ROP). Common developmental immune and inflammatory pathways underlie the pathophysiology of such complications providing the opportunity for multisystem therapeutic approaches. To date, no single therapy has proven to be effective enough to prevent or treat the sequelae of prematurity. In the past decade mesenchymal stem/stromal cell (MSC)-based therapeutic approaches have shown promising results in numerous experimental models of neonatal diseases. It is now accepted that the therapeutic potential of MSCs is comprised of their secretome, and several studies have recognized the small extracellular vesicles (sEVs) as the paracrine vector. Herein, we review the current literature on the MSC-EVs as potential therapeutic agents in neonatal diseases and comment on the progress and challenges of their translation to the clinical setting.
Collapse
Affiliation(s)
- Eleni Delavogia
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dimitrios P Ntentakis
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - John A Cortinas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int J Mol Sci 2022; 23:13491. [PMID: 36362277 PMCID: PMC9659299 DOI: 10.3390/ijms232113491] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative stress, DNA damage, ER stress, and autophagy, which are thought to be adaptive stress responses that allow cells exposed to cadmium to survive in an adverse environment. However, excessive stress will cause tissue damage by inducing apoptosis, pyroptosis, and ferroptosis. Evidently, oxidative stress-induced autophagy plays different roles in low- or high-dose cadmium exposure-induced cell damage, either causing apoptosis, pyroptosis, and ferroptosis or inducing cell survival. Meanwhile, different cell types have different sensitivities to cadmium, which ultimately determines the fate of the cell. In this review, we provided a detailed survey of the current literature on autophagy in cadmium-induced tissue damage. A better understanding of the complex regulation of cell death by autophagy might contribute to the development of novel preventive and therapeutic strategies to treat acute and chronic cadmium toxicity.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qunchao Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengguang Yue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Rasile M, Lauranzano E, Faggiani E, Ravanelli MM, Colombo FS, Mirabella F, Corradini I, Malosio ML, Borreca A, Focchi E, Pozzi D, Giorgino T, Barajon I, Matteoli M. Maternal immune activation leads to defective brain-blood vessels and intracerebral hemorrhages in male offspring. EMBO J 2022; 41:e111192. [PMID: 36314682 PMCID: PMC9713716 DOI: 10.15252/embj.2022111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Intracerebral hemorrhages are recognized risk factors for neurodevelopmental disorders and represent early biomarkers for cognitive dysfunction and mental disability, but the pathways leading to their occurrence are not well defined. We report that a single intrauterine exposure of the immunostimulant Poly I:C to pregnant mice at gestational day 9, which models a prenatal viral infection and the consequent maternal immune activation, induces the defective formation of brain vessels and causes intracerebral hemorrhagic events, specifically in male offspring. We demonstrate that maternal immune activation promotes the production of the TGF-β1 active form and the consequent enhancement of pSMAD1-5 in males' brain endothelial cells. TGF-β1, in combination with IL-1β, reduces the endothelial expression of CD146 and claudin-5, alters the endothelium-pericyte interplay resulting in low pericyte coverage, and increases hemorrhagic events in the adult offspring. By showing that exposure to Poly I:C at the beginning of fetal cerebral angiogenesis results in sex-specific alterations of brain vessels, we provide a mechanistic framework for the association between intragravidic infections and anomalies of the neural vasculature, which may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | | | - Elisa Faggiani
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Margherita M Ravanelli
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | | | - Filippo Mirabella
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Irene Corradini
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Maria L Malosio
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Antonella Borreca
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Elisa Focchi
- Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Davide Pozzi
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Toni Giorgino
- Institute of Biophysics (IBF‐CNR)National Research Council of ItalyMilanItaly
| | - Isabella Barajon
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Michela Matteoli
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| |
Collapse
|
20
|
Levison SW, Rocha-Ferreira E, Kim BH, Hagberg H, Fleiss B, Gressens P, Dobrowolski R. Mechanisms of Tertiary Neurodegeneration after Neonatal Hypoxic-Ischemic Brain Damage. PEDIATRIC MEDICINE (HONG KONG, CHINA) 2022; 5:28. [PMID: 37601279 PMCID: PMC10438849 DOI: 10.21037/pm-20-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Neonatal encephalopathy linked to hypoxia-ischemia (H-I) which is regarded as the most important neurological problem of the newborn, can lead to a spectrum of adverse neurodevelopmental outcomes such as cerebral palsy, epilepsy, hyperactivity, cognitive impairment and learning difficulties. There have been numerous reviews that have focused on the epidemiology, diagnosis and treatment of neonatal H-I; however, a topic that is less often considered is the extent to which the injury might worsen over time, which is the focus of this review. Similarly, there have been numerous reviews that have focused on mechanisms that contribute to the acute or subacute injury; however, there is a tertiary phase of recovery that can be defined by cellular and molecular changes that occur many weeks and months after brain injury and this topic has not been the focus of any review for over a decade. Therefore, in this article we review both the clinical and pre-clinical data that show that tertiary neurodegeneration is a significant contributor to the final outcome, especially after mild to moderate injuries. We discuss the contributing roles of apoptosis, necroptosis, autophagy, protein homeostasis, inflammation, microgliosis and astrogliosis. We also review the limited number of studies that have shown that significant neuroprotection and preservation of neurological function can be achieved administering drugs during the period of tertiary neurodegeneration. As the tertiary phase of neurodegeneration is a stage when interventions are eminently feasible, it is our hope that this review will stimulate a new focus on this stage of recovery towards the goal of producing new treatment options for neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Steven W. Levison
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Eridan Rocha-Ferreira
- Centre of Perinatal Medicine & Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian H. Kim
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
21
|
Klein L, Ophelders DR, van den Hove D, Damoiseaux M, Rutten BP, Reutelingsperger CP, Schurgers LJ, Wolfs TG. Prenatal administration of multipotent adult progenitor cells modulates the systemic and cerebral immune response in an ovine model of chorioamnionitis. Brain Behav Immun Health 2022; 23:100458. [PMID: 35647567 PMCID: PMC9136278 DOI: 10.1016/j.bbih.2022.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Systemic and cerebral inflammation following antenatal infection (e.g. chorioamnionitis) and dysregulation of the blood brain barrier (BBB) are major risk factors for abnormal neonatal brain development. Administration of multipotent adult progenitor cells (MAPCs) represents an interesting pharmacological strategy as modulator of the peripheral and cerebral immune response and protector of BBB integrity. We studied the immunomodulatory and protective cerebrovascular potential of prenatally administered MAPCs in a preclinical ovine model for antenatal inflammation. Ovine fetuses were intra-amniotically (i.a.) exposed to lipopolysaccharide (LPS) or saline at gestational day 125, followed by the intravenous administration of 1*107 MAPCs or saline at gestational day 127. Circulating inflammation markers were measured. Fetal brains were examined immuno-histochemically post-mortem at gestational day 132. Fetal plasma IL-6 levels were elevated significantly 24 h after LPS administration. In utero systemic MAPC treatment after LPS exposure increased Annexin A1 (ANXA1) expression in the cerebrovascular endothelium, indicating enforcement of BBB integrity, and increased the number of leukocytes at brain barriers throughout the brain. Further characterisation of brain barrier-associated leukocytes showed that monocyte/choroid plexus macrophage (IBA-1+/CD206+) and neutrophil (MPO+) populations predominantly contributed to the LPS-MAPC-induced increase of CD45+cells. In the choroid plexus, the percentage of leukocytes expressing the proresolving mediator ANXA1 tended to be decreased after LPS-induced antenatal inflammation, an effect reversed by systemic MAPC treatment. Accordingly, expression levels of ANXA1 per leukocyte were decreased after LPS and restored after subsequent MAPC treatment. Increased expression of ANXA1 by the cerebrovasculature and immune cells at brain barriers following MAPC treatment in an infectious setting indicate a MAPC driven early defence mechanism to protect the neonatal brain against infection-driven inflammation and potential additional pro-inflammatory insults in the neonatal period. MAPCs administered systemically enhance the brain directed immune response in an inflammation dependent manner in preterm fetuses. Annexin A1 expression is increased in cerebrovasculature and immune cells at brain barriers when MAPCs were i.v. administered in the infectious setting. MAPCs potentially protect the neonatal brain by enforcing the blood brain barrier and modulating inflammation.
Collapse
Affiliation(s)
- Luise Klein
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Daan R.M.G. Ophelders
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Maurits Damoiseaux
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
| | - Bart P.F. Rutten
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Chris P.M. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Tim G.A.M. Wolfs
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
- Corresponding author. School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
22
|
Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, Swagemakers S, van der Spek PJ. Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep 2022; 12:11106. [PMID: 35773312 PMCID: PMC9246359 DOI: 10.1038/s41598-022-15279-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.
Collapse
Affiliation(s)
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Olivia Manusama
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto Spalice
- Department of Pediatrics, Pediatric Neurology, Sapienza University of Rome, Rome, Italy
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, UOC Genetica Medica, Rome, Italy
| | - Allan Schornagel
- GGZ-Delfland, Kinderpraktijk Zoetermeer, Zoetermeer, The Netherlands
| | - Andreea M Serban
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Rogier van Wijck
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
23
|
McDouall A, Zhou KQ, Bennet L, Green CR, Gunn AJ, Davidson JO. Connexins, Pannexins and Gap Junctions in Perinatal Brain Injury. Biomedicines 2022; 10:1445. [PMID: 35740466 PMCID: PMC9220888 DOI: 10.3390/biomedicines10061445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal brain injury secondary to hypoxia-ischemia and/or infection/inflammation remains a major cause of disability. Therapeutic hypothermia significantly improves outcomes, but in randomized controlled trials nearly half of infants still died or survived with disability, showing that additional interventions are needed. There is growing evidence that brain injury spreads over time from injured to previously uninjured regions of the brain. At least in part, this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in many brain cells. Opening of these membrane channels releases adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important role in normal signaling, but pathologically can trigger the assembly of the multi-protein inflammasome complex. The inflammasome complex promotes activation of inflammatory caspases, and release of inflammatory cytokines. Overall, the connexin hemichannel appears to play a primary role in propagation of injury and chronic disease, and connexin hemichannel blockade has been shown to be neuroprotective in multiple animal models. Thus, there is potential for some blockers of connexin or pannexin channels to be developed into targeted interventions that could be used in conjunction with or separate to therapeutic hypothermia.
Collapse
Affiliation(s)
- Alice McDouall
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Kelly Q. Zhou
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Laura Bennet
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Colin R. Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
| | - Alistair J. Gunn
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| |
Collapse
|
24
|
Wang S, van de Pavert SA. Innate Lymphoid Cells in the Central Nervous System. Front Immunol 2022; 13:837250. [PMID: 35185929 PMCID: PMC8852840 DOI: 10.3389/fimmu.2022.837250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Immune cells are present within the central nervous system and play important roles in neurological inflammation and disease. As relatively new described immune cell population, Innate Lymphoid Cells are now increasingly recognized within the central nervous system and associated diseases. Innate Lymphoid Cells are generally regarded as tissue resident and early responders, while conversely within the central nervous system at steady-state their presence is limited. This review describes the current understandings on Innate Lymphoid Cells in the central nervous system at steady-state and its borders plus their involvement in major neurological diseases like ischemic stroke, Alzheimer's disease and Multiple Sclerosis.
Collapse
Affiliation(s)
| | - Serge A. van de Pavert
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
25
|
Jung YJ. Short information: Bacterial meningitis in very low birthweight infants in Korea from 2013-2016. Pediatr Int 2022; 64:e15057. [PMID: 34779089 DOI: 10.1111/ped.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Neonatal bacterial meningitis (BM) has an incidence of 0.2-0.4 per 1,000 births and a mortality rate of 20-25%. Data from the Korean Neonatal Network (KNN) were evaluated to study the incidence, mortality, and risk factors associated with BM in very-low-birthweight (VLBW; <1,500 g) infants. METHODS We analyzed KNN data from 2013-2016 collected from 70 neonatal units. RESULTS The incidence of BM in VLBW infants was 40 out of 8,263 (0.5%). The 40 infants with BM had a mean gestational age of 27.1 ± 2.0 weeks and a mean birthweight of 1,036.8 ± 220.0 g. Mean age at diagnosis was 51.5 ± 38.3 days (range, 1-171). Infants with BM were divided into two groups: Group 1 (onset age ≤ 28 days) and Group 2 (onset age > 28 days). Coagulase-negative Staphylococcus (CONS) was the most common pathogen underlying meningitis in 11 of 40 cases (28%). BM co-occurred with bacteremia in 14 of 40) of cases (35%); bacteremia was significantly more common in Group 1 than Group 2 (P < 0.05). Seizure and intraventricular hemorrhage (≥grade 3) were significantly more prevalent in Group 2 than Group 1 (P < 0.05). The mortality rate of infants with BM was 4 out of 40 (10%), which was significantly lower than that of VLBW infants without BM (1,152/8,223, [14%]; P < 0.05). CONCLUSIONS The incidence of BM in VLBW infants was high, but the mortality rate was low. CONS was the most common pathogen of BM in VLBW infants.
Collapse
Affiliation(s)
- Yu Jin Jung
- Department of Pediatrics, Kosin University Gospel Hospital, Busan, Korea
| |
Collapse
|
26
|
Vedrenne-Cloquet M, Chareyre J, Léger PL, Genuini M, Renolleau S, Oualha M. Low Dosing Norepinephrine Effects on Cerebral Oxygenation and Perfusion During Pediatric Shock. Front Pediatr 2022; 10:898444. [PMID: 35874564 PMCID: PMC9298794 DOI: 10.3389/fped.2022.898444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cerebral hypoperfusion and impaired oxygen delivery during pediatric critical illness may result in acute neurologic injury with subsequent long-term effects on neurodevelopmental outcome. Yet, the impact of norepinephrine on cerebral hemodynamics is unknown in children with shock. We aimed to describe the norepinephrine effects on cerebral perfusion and oxygenation during pediatric shock. PATIENTS AND METHODS We conducted an observational multicentre prospective study in 3 French pediatric intensive care units. Children <18 years of age excluding traumatic brain injury were included in the study if they need norepinephrine for shock. Systemic and cerebral hemodynamics were compared between the time of initiation of norepinephrine (T0), and the steady-state (Tss). Cardiac output (CO) was measured using ultrasound. Cerebral perfusion was assessed on middle cerebral arteries (MCA) using transcranial doppler ultrasound. Cerebral tissue oxygen saturation (rScO2) was recorded using near infrared spectroscopy, and we calculated cerebral fractional tissue oxygen extraction (cFTOE = SpO2-rScO2/SpO2). MAIN RESULTS Fourteen children (median [IQR] age of 3.5[1; 13.5] years) were included. Norepinephrine at 0.2[0.1; 0.32] μg/kg/min significantly increased mean arterial blood pressure (61[56; 73] mmHg at Tss vs. 49[42;54] mmHg at T0, p=10-3) without change of CO. MCA velocities, pulsatility index, rScO2, and cFTOE did not significantly change between T0 and Tss. Some individuals observed variations in estimated CBF, which slightly improved in 7 patients, remained unchanged in 5, and was impaired in 2. No patient experienced significant variations of rScO2. CONCLUSIONS Low-dosing norepinephrine, despite a homogeneous and significant increase in arterial blood pressure, had little effects on cerebral perfusion and oxygenation during pediatric shock. This reinforces the need for personalized tailored therapies in this population. TRIAL REGISTRATION Clinicaltrials.gov, NCT03731104. Registered 6 November, 2018. https://clinicaltrials.gov/ct2/show/NCT03731104.
Collapse
Affiliation(s)
| | - Judith Chareyre
- Pediatric Intensive Care Unit, AP-HP CHU Necker-Enfants Malades, Paris, France
| | - Pierre-Louis Léger
- Pediatric Intensive Care Unit, AP-HP CHU Trousseau-La Roche Guyon, Paris, France
| | - Mathieu Genuini
- Pediatric Intensive Care Unit, AP-HP CHU Robert Debré, Paris, France.,Pediatric Intensive Care Transport Unit, AP-HP CHU Robert Debré, Paris, France
| | - Sylvain Renolleau
- Pediatric Intensive Care Unit, AP-HP CHU Necker-Enfants Malades, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, AP-HP CHU Necker-Enfants Malades, Paris, France
| |
Collapse
|
27
|
Bazi Alahri M, Arshadizadeh R, Raeisi M, Khatami M, Sadat Sajadi M, Kamal Abdelbasset W, Akhmadeev R, Iravani S. Theranostic applications of metal–organic frameworks (MOFs)-based materials in brain disorders: Recent advances and challenges. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Vore AS, Deak T. Alcohol, inflammation, and blood-brain barrier function in health and disease across development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:209-249. [PMID: 34801170 DOI: 10.1016/bs.irn.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alcohol is the most commonly used drug of abuse in the world and binge drinking is especially harmful to the brain, though the mechanisms by which alcohol compromises overall brain health remain somewhat elusive. A number of brain diseases and pathological states are accompanied by perturbations in Blood-Brain Barrier (BBB) function, ultimately exacerbating disease progression. The BBB is critical for coordinating activity between the peripheral immune system and the brain. Importantly, BBB integrity is responsive to circulating cytokines and other immune-related signaling molecules, which are powerfully modulated by alcohol exposure. This review will highlight key cellular components of the BBB; discuss mechanisms by which permeability is achieved; offer insight into methodological approaches for assessing BBB integrity; and forecast how alcohol-induced changes in the peripheral and central immune systems might influence BBB function in individuals with a history of binge drinking and ultimately Alcohol Use Disorders (AUD).
Collapse
Affiliation(s)
- A S Vore
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States
| | - T Deak
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States.
| |
Collapse
|
29
|
Sharova O, Smiyan O, Borén T. Immunological effects of cerebral palsy and rehabilitation exercises in children. Brain Behav Immun Health 2021; 18:100365. [PMID: 34704080 PMCID: PMC8522480 DOI: 10.1016/j.bbih.2021.100365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022] Open
Abstract
Cerebral palsy (CP) is a group of motor disorders caused by non-progressive lesions of the premature brain with lifelong pathophysiological consequences that include dysregulation of innate immunity. Persistent inflammation with increased levels of circulating pro-inflammatory tumor necrosis factor alpha (TNF-a) is negatively associated with rehabilitation outcome in children with CP. Because of the crosstalk between innate and adaptive immunity, we investigated the effect of CP and rehabilitation exercises on the adaptive immune system in children with CP by measuring the levels of CD3+, CD4+, CD8+ Т-cells, and CD22+ B-cells and the levels of immunoglobulins. Children with CP had higher levels of CD3+, CD4+, CD8+ Т-cells, and CD22+ B-cells compared to healthy children, and the rehabilitation exercise programs produced better outcomes in terms of increased gains in motor function at an earlier age. Rehabilitation exercises performed over a month resulted in significantly decreased levels of IgA in serum and reduced numbers of B-lymphocytes and reduced IgM levels. Our study suggests that rehabilitation programs with a focus on neuroplasticity and physical exercises in children with CP can reduce both cellular and humoral immune responses. Children with CP demonstrate increased levels of T and B cells. Rehabilitation exercises helped balance immune responses.
Collapse
Affiliation(s)
- Oleksandra Sharova
- Department of Pediatrics, Sumy State University, 40031, Sumy, Ukraine
- Corresponding author.
| | - Oleksandr Smiyan
- Department of Pediatrics, Sumy State University, 40031, Sumy, Ukraine
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
30
|
Zhao YT, Fallas JA, Saini S, Ueda G, Somasundaram L, Zhou Z, Xavier Raj I, Xu C, Carter L, Wrenn S, Mathieu J, Sellers DL, Baker D, Ruohola-Baker H. F-domain valency determines outcome of signaling through the angiopoietin pathway. EMBO Rep 2021; 22:e53471. [PMID: 34698433 DOI: 10.15252/embr.202153471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Angiopoietins 1 and 2 (Ang1 and Ang2) regulate angiogenesis through their similar F-domains by activating Tie2 receptors on endothelial cells. Despite the similarity in the underlying receptor-binding interaction, the two angiopoietins have opposite effects: Ang1 induces phosphorylation of AKT, strengthens cell-cell junctions, and enhances endothelial cell survival while Ang2 can antagonize these effects, depending on cellular context. To investigate the molecular basis for the opposing effects, we examined the phenotypes of a series of computationally designed protein scaffolds presenting the Ang1 F-domain in a wide range of valencies and geometries. We find two broad phenotypic classes distinguished by the number of presented F-domains: Scaffolds presenting 3 or 4 F-domains have Ang2-like activity, upregulating pFAK and pERK but not pAKT, while scaffolds presenting 6, 8, 12, 30, or 60 F-domains have Ang1-like activity, upregulating pAKT and inducing migration and vascular stability. The scaffolds with 6 or more F-domains display super-agonist activity, producing stronger phenotypes at lower concentrations than Ang1. Tie2 super-agonist nanoparticles reduced blood extravasation and improved blood-brain barrier integrity four days after a controlled cortical impact injury.
Collapse
Affiliation(s)
- Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
| | - Jorge A Fallas
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shally Saini
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Logeshwaran Somasundaram
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ziben Zhou
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Infencia Xavier Raj
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Chunfu Xu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Drew L Sellers
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Zhu J, Li L, Ding J, Huang J, Shao A, Tang B. The Role of Formyl Peptide Receptors in Neurological Diseases via Regulating Inflammation. Front Cell Neurosci 2021; 15:753832. [PMID: 34650406 PMCID: PMC8510628 DOI: 10.3389/fncel.2021.753832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023] Open
Abstract
Formyl peptide receptors (FPRs) are a group of G protein-coupled cell surface receptors that play important roles in host defense and inflammation. Owing to the ubiquitous expression of FPRs throughout different cell types and since they interact with structurally diverse chemotactic agonists, they have a dual function in inflammatory processes, depending on binding with different ligands so that accelerate or inhibit key intracellular kinase-based regulatory pathways. Neuroinflammation is closely associated with the pathogenesis of neurodegenerative diseases, neurogenic tumors and cerebrovascular diseases. From recent studies, it is clear that FPRs are important biomarkers for neurological diseases as they regulate inflammatory responses by monitoring glial activation, accelerating neural differentiation, regulating angiogenesis, and controlling blood brain barrier (BBB) permeability, thereby affecting neurological disease progression. Given the complex mechanisms of neurological diseases and the difficulty of healing, we are eager to find new and effective therapeutic targets. Here, we review recent research about various mechanisms of the effects generated after FPR binding to different ligands, role of FPRs in neuroinflammation as well as the development and prognosis of neurological diseases. We summarize that the FPR family has dual inflammatory functional properties in central nervous system. Emphasizing that FPR2 acts as a key molecule that mediates the active resolution of inflammation, which binds with corresponding receptors to reduce the expression and activation of pro-inflammatory composition, govern the transport of immune cells to inflammatory tissues, and restore the integrity of the BBB. Concurrently, FPR1 is essentially related to angiogenesis, cell proliferation and neurogenesis. Thus, treatment with FPRs-modulation may be effective for neurological diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfei Li
- Department of Neurology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Ding
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Tang
- Department of Neurology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Metallinou D, Karampas G, Lazarou E, Iacovidou N, Pervanidou P, Lykeridou K, Mastorakos G, Rizos D. Serum Activin A as Brain Injury Biomarker in the First Three Days of Life. A Prospective Case-Control Longitudinal Study in Human Premature Neonates. Brain Sci 2021; 11:brainsci11091243. [PMID: 34573263 PMCID: PMC8468004 DOI: 10.3390/brainsci11091243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Disruption of normal intrauterine brain development is a significant consequence of premature birth and may lead to serious complications, such as neonatal brain injury (NBI). This prospective case-control longitudinal study aimed at determining the levels and prognostic value of serum activin A during the first three days of life in human premature neonates which later developed NBI. It was conducted in a single tertiary hospital and eligible participants were live-born premature (<34 weeks) neonates. Each case (n = 29) developed NBI in the form of an intraventricular haemorrhage, or periventricular leukomalacia, and was matched according to birth weight and gestational age to one neonate with normal head ultrasound scans. Serum activin A levels in both groups showed a stable concentration during the first three days of life as no difference was observed within the two groups from the first to the third day. Neonates diagnosed with NBI had significantly higher activin A levels during the first two days of life compared to control neonates and its levels correlated to the severity of NBI during the second and third day of life. Although serum activin A on the second day was the best predictor for neonates at risk to develop NBI, the overall predictive value was marginally fair (area under the ROC-curve 69.2%). Activin A, in combination with other biomarkers, may provide the first clinically useful panel for the early detection of premature neonates at high risk of NBI.
Collapse
Affiliation(s)
- Dimitra Metallinou
- Department of Midwifery, University of West Attica, Ag. Spyridonos Street, 12243 Egaleo, Greece;
- Correspondence:
| | - Grigorios Karampas
- 2nd Department of Obstetrics and Gynecology, Aretaieio University Hospital, 46 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| | - Eleftheria Lazarou
- Department of Obstetrics, Iasis Private Hospital Paphos, 8 Voriou Ipirou Street, 8036 Paphos, Cyprus;
| | - Nikoletta Iacovidou
- Neonatal Department, Aretaieio University Hospital, 46 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, 1st Department of Pediatrics, National and Kapodistrian University of Athens, 5 Mikras Asias Street, 11527 Athens, Greece;
| | - Katerina Lykeridou
- Department of Midwifery, University of West Attica, Ag. Spyridonos Street, 12243 Egaleo, Greece;
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio University Hospital, 46 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| | - Demetrios Rizos
- Hormone Laboratory, Aretaieio University Hospital, 46 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| |
Collapse
|
33
|
Lawal B, Wang YC, Wu ATH, Huang HS. Pro-Oncogenic c-Met/EGFR, Biomarker Signatures of the Tumor Microenvironment are Clinical and Therapy Response Prognosticators in Colorectal Cancer, and Therapeutic Targets of 3-Phenyl-2H-benzo[e][1,3]-Oxazine-2,4(3H)-Dione Derivatives. Front Pharmacol 2021; 12:691234. [PMID: 34512327 PMCID: PMC8429938 DOI: 10.3389/fphar.2021.691234] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic and environmental factors play important roles in cancer progression, metastasis, and drug resistance. Herein, we used a multiomics data analysis to evaluate the predictive and prognostic roles of genetic and epigenetic modulation of c-MET (hepatocyte growth factor receptor)/epidermal growth factor receptor (EGFR) in colorectal cancer (CRC). First, we found that overexpressions of c-MET/EGFR were associated with the infiltration of tumor immune cells and cancer-associated fibroblasts, and were of prognostic relevance in CRC cohorts. We also observed that genetic alterations of c-MET/EGFR in CRC co-occurred with other gene alterations and were associated with overexpression of messenger (m)RNA of some cancer hallmark proteins. More specifically, DNA-methylation and somatic copy number alterations of c-MET/EGFR were associated with immune infiltration, dysfunctional T-cell phenotypes, and poor prognoses of the cohorts. Moreover, we describe two novel gefitinib-inspired small molecules derivatives of 3-phenyl-2H-benzo[e] [1,3]-oxazine-2,4(3H)-dione, NSC777205 and NSC777207, which exhibited wide-spectrum antiproliferative activities and selective cytotoxic preference for drug-sensitive and multidrug-resistant melanoma, renal, central nervous system, colon, and non-small cell lung cancer cell lines. We further provided in silico mechanistic evidence implicating c-MET/EGFR/phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibition in anticancer activities of those compounds. Our overall structure-activity relationship study revealed that the addition of an –OCH3 group to salicylic core of NSC777207 was not favorable, as the added moiety led to overall less-favorable drug properties as well as weaker anticancer activities compared to the properties and activities demonstrated by NSC777205 that has no –OCH3 substituent group. Further in vitro and in vivo analyses in tumor-bearing mice are ongoing in our lab to support this claim and to unravel the full therapeutic efficacies of NSC777205 and NSC777207 in CRC.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
34
|
A Preclinical Investigation of GBM-N019 as a Potential Inhibitor of Glioblastoma via Exosomal mTOR/CDK6/STAT3 Signaling. Cells 2021; 10:cells10092391. [PMID: 34572040 PMCID: PMC8471927 DOI: 10.3390/cells10092391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive brain malignancies with high incidences of developing treatment resistance, resulting in poor prognoses. Glioma stem cell (GSC)-derived exosomes are important players that contribute to GBM tumorigenesis and aggressive properties. Herein, we investigated the inhibitory roles of GBM-N019, a novel small molecule on the transfer of aggressive and invasive properties through the delivery of oncogene-loaded exosomes from GSCs to naïve and non-GSCs. Our results indicated that GBM-N019 significantly downregulated the expressions of the mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 6 (CDK6) signaling networks with concomitant inhibitory activities against viability, clonogenicity, and migratory abilities of U251 and U87MG cells. Treatments with GBM-N019 halted the exosomal transfer of protein kinase B (Akt), mTOR, p-mTOR, and Ras-related protein RAB27A to the naïve U251 and U87MG cells, and rescued the cells from invasive and stemness properties that were associated with activation of these oncogenes. GBM-N019 also synergized with and enhanced the anti-GBM activities of palbociclib in vitro and in vivo. In conclusion, our results suggested that GBM-N019 possesses good translational relevance as a potential anti-glioblastoma drug candidate worthy of consideration for clinical trials against recurrent glioblastomas.
Collapse
|
35
|
Abstract
Graphical abstract [Formula: see text].
Collapse
|
36
|
Belpomme D, Carlo GL, Irigaray P, Carpenter DO, Hardell L, Kundi M, Belyaev I, Havas M, Adlkofer F, Heuser G, Miller AB, Caccamo D, De Luca C, von Klitzing L, Pall ML, Bandara P, Stein Y, Sage C, Soffritti M, Davis D, Moskowitz JM, Mortazavi SMJ, Herbert MR, Moshammer H, Ledoigt G, Turner R, Tweedale A, Muñoz-Calero P, Udasin I, Koppel T, Burgio E, Vorst AV. The Critical Importance of Molecular Biomarkers and Imaging in the Study of Electrohypersensitivity. A Scientific Consensus International Report. Int J Mol Sci 2021; 22:7321. [PMID: 34298941 PMCID: PMC8304862 DOI: 10.3390/ijms22147321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Clinical research aiming at objectively identifying and characterizing diseases via clinical observations and biological and radiological findings is a critical initial research step when establishing objective diagnostic criteria and treatments. Failure to first define such diagnostic criteria may lead research on pathogenesis and etiology to serious confounding biases and erroneous medical interpretations. This is particularly the case for electrohypersensitivity (EHS) and more particularly for the so-called "provocation tests", which do not investigate the causal origin of EHS but rather the EHS-associated particular environmental intolerance state with hypersensitivity to man-made electromagnetic fields (EMF). However, because those tests depend on multiple EMF-associated physical and biological parameters and have been conducted in patients without having first defined EHS objectively and/or endpoints adequately, they cannot presently be considered to be valid pathogenesis research methodologies. Consequently, the negative results obtained by these tests do not preclude a role of EMF exposure as a symptomatic trigger in EHS patients. Moreover, there is no proof that EHS symptoms or EHS itself are caused by psychosomatic or nocebo effects. This international consensus report pleads for the acknowledgement of EHS as a distinct neuropathological disorder and for its inclusion in the WHO International Classification of Diseases.
Collapse
Affiliation(s)
- Dominique Belpomme
- Association for Research Against Cancer (ARTAC), 57/59 rue de la Convention, 75015 Paris, France;
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
| | - George L. Carlo
- The Science and Public Policy Institute, Washington, DC 20006, USA;
| | - Philippe Irigaray
- Association for Research Against Cancer (ARTAC), 57/59 rue de la Convention, 75015 Paris, France;
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
| | - David O. Carpenter
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- Institute for Health and the Environment, University at Albany, Albany, NY 12222, USA
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Lennart Hardell
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- The Environment and Cancer Research Foundation, SE-702 17 Örebro, Sweden
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (H.M.)
| | - Igor Belyaev
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- Biomedical Research Center, Slovak Academy of Science, 845 05 Bratislava, Slovakia
| | - Magda Havas
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- Trent School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 0G2, Canada
| | - Franz Adlkofer
- Verum-Foundation for Behaviour and Environment c/o Regus Center Josephspitalstrasse 15/IV, 80331 München, Germany;
| | - Gunnar Heuser
- Formerly UCLA Medical Center, Department of Medicine, P.O. Box 5066, El Dorado Hills, Los Angeles, CA 95762, USA;
| | - Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S, Canada;
| | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho Functional Imaging, Polyclinic Hospital University, 98122 Messina, Italy;
| | - Chiara De Luca
- Department of Registration & Quality Management, Medical & Regulatory Affairs Manager, MEDENA AG, 8910 Affoltern am Albis, Switzerland;
| | - Lebrecht von Klitzing
- Medical Physicist, Institute of Environmental and Medical Physic, D-36466 Wiesenthal, Germany;
| | - Martin L. Pall
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
| | - Priyanka Bandara
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), P.O. Box 152, Scarborough, QLD 4020, Australia;
| | - Yael Stein
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91905, Israel;
- Hadassah Medical Center, Department of Anesthesiology, Critical Care and Pain Medicine, Jerusalem 91905, Israel
| | - Cindy Sage
- Sage Associates, Montecito, Santa Barbara, CA 93108, USA;
| | - Morando Soffritti
- Istituto Ramazzini, via Libia 13/A, 40138 Bologna, Italy;
- Collegium Ramazzini, Castello di Bentivoglio, via Saliceto, 3, 40010 Bentivoglio, Italy
| | - Devra Davis
- Environmental Health Trust, P.O. Box 58, Teton Village, WY 83025, USA;
| | - Joel M. Moskowitz
- School of Public Health, University of California, Berkeley, CA 94720, USA;
| | - S. M. J. Mortazavi
- Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran;
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Martha R. Herbert
- A.A. Martinos Centre for Biomedical Imaging, Department of Neurology, MGH, Harvard Medical School, MGH/MIT/Harvard 149 Thirteenth Street, Charlestown, MA 02129, USA;
| | - Hanns Moshammer
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (H.M.)
- Department of Hygiene, Karakalpak Medical University, Nukus 230100, Uzbekistan
| | - Gerard Ledoigt
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
| | - Robert Turner
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA;
- Clinical Pediatrics and Neurology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Anthony Tweedale
- Rebutting Industry Science with Knowledge (R.I.S.K.) Consultancy, Blv. Edmond Machtens 101/34, B-1080 Brussels, Belgium;
| | - Pilar Muñoz-Calero
- Foundation Alborada, Finca el Olivar, Carretera M-600, Km. 32,400, 28690 Brunete, Spain;
| | - Iris Udasin
- EOHSI Clinical Center, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA;
| | - Tarmo Koppel
- AI Institute, University of South Carolina, Columbia, SC 29208, USA;
| | - Ernesto Burgio
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
| | - André Vander Vorst
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- European Microwave Association, Rue Louis de Geer 6, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
37
|
Endothelial-specific insulin receptor substrate-1 overexpression worsens neonatal hypoxic-ischemic brain injury via mTOR-mediated tight junction disassembly. Cell Death Discov 2021; 7:150. [PMID: 34226528 PMCID: PMC8257791 DOI: 10.1038/s41420-021-00548-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic (HI) encephalopathy is the major cause of mortality and disability in newborns. The neurovascular unit is a major target of acute and chronic brain injury, and therapies that protect simultaneously both neurons and vascular endothelial cells from neonatal HI injury are in demand. Insulin receptors and its key downstream molecule-insulin receptor substrate −1 (IRS-1) are potential neuroprotective targets and expressed both in neuron and endothelial cells. To investigate whether IRS-1 can act similarly in neurons and vascular endothelial cells in protecting neurovascular units and brain form HI injury, we found that neuron-specific IRS-1 transgenic rats showed reduced neurovascular injury and infarct volumes, whereas endothelial-specific IRS-1 transgenic rats showed increased blood-brain barrier (BBB) disruption and exaggerated neurovascular injury after neonatal HI brain injury. Endothelial-specific IRS-1 overexpression increased vascular permeability and disassembled the tight junction protein (zonula occludens-1) complex. Inhibition of mammalian target of rapamycin (mTOR) by rapamycin preserved tight junction proteins and attenuated BBB leakage and neuronal apoptosis after HI in the endothelial-specific IRS-1 transgenic pups. Together, our findings suggested that neuronal and endothelial IRS-1 had opposite effects on the neurovascular integrity and damage after neonatal HI brain injury and that endothelial IRS-1 worsens neurovascular integrity after HI via mTOR-mediated tight junction protein disassembly.
Collapse
|
38
|
The Molecular Aspects of Disturbed Platelet Activation through ADP/P2Y 12 Pathway in Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms22126572. [PMID: 34207429 PMCID: PMC8234174 DOI: 10.3390/ijms22126572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies confirm a high risk of ischemic events in secondary-progressive multiple sclerosis (SP MS) patients, directly associated with an increased level of pro-thrombotic activity of platelets. Our work aimed to verify potential molecular abnormalities of the platelet P2Y12 receptor expression and functionality as a cause of an increased risk of thromboembolism observed in the course of MS. We have demonstrated an enhanced platelet reactivity in response to adenosine diphosphate (ADP) in SP MS relative to controls. We have also shown an increased mRNA expression for the P2RY12 gene in both platelets and megakaryocytes, as well as enhanced density of these receptors on the platelet surface. We postulate that one of the reasons for the elevated risk of ischemic events observed in MS may be a genetically or phenotypically reinforced expression of the platelet P2Y12 receptor. In order to analyze the effect of the PAR1 (protease activated receptor type 1) signaling pathway on the expression level of P2Y12, we also analyzed the correlation parameters between P2Y12 expression and the markers of platelet activation in MS induced by selective PAR1 agonist (thrombin receptor activating peptide-6, TRAP-6). Identifying the molecular base responsible for the enlarged pro-thrombotic activity of platelets in SP MS could contribute to the implementation of prevention and targeted treatment, reducing the development of cardiovascular disorders in the course of the disease.
Collapse
|
39
|
Rasile M, Lauranzano E, Mirabella F, Matteoli M. Neurological consequences of neurovascular unit and brain vasculature damages: potential risks for pregnancy infections and COVID-19-babies. FEBS J 2021; 289:3374-3392. [PMID: 33998773 PMCID: PMC8237015 DOI: 10.1111/febs.16020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
Intragravidic and perinatal infections, acting through either direct viral effect or immune-mediated responses, are recognized causes of liability for neurodevelopmental disorders in the progeny. The large amounts of epidemiological data and the wealth of information deriving from animal models of gestational infections have contributed to delineate, in the last years, possible underpinning mechanisms for this phenomenon, including defects in neuronal migration, impaired spine and synaptic development, and altered activation of microglia. Recently, dysfunctions of the neurovascular unit and anomalies of the brain vasculature have unexpectedly emerged as potential causes at the origin of behavioral abnormalities and psychiatric disorders consequent to prenatal and perinatal infections. This review aims to discuss the up-to-date literature evidence pointing to the neurovascular unit and brain vasculature damages as the etiological mechanisms in neurodevelopmental syndromes. We focus on the inflammatory events consequent to intragravidic viral infections as well as on the direct viral effects as the potential primary triggers. These authors hope that a timely review of the literature will help to envision promising research directions, also relevant for the present and future COVID-19 longitudinal studies.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michela Matteoli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy.,CNR Institute of Neuroscience, Milano, Italy
| |
Collapse
|
40
|
Cusick JA, Wellman CL, Demas GE. The call of the wild: using non-model systems to investigate microbiome-behaviour relationships. J Exp Biol 2021; 224:jeb224485. [PMID: 33988717 PMCID: PMC8180253 DOI: 10.1242/jeb.224485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On and within most sites across an animal's body live complex communities of microorganisms. These microorganisms perform a variety of important functions for their hosts, including communicating with the brain, immune system and endocrine axes to mediate physiological processes and affect individual behaviour. Microbiome research has primarily focused on the functions of the microbiome within the gastrointestinal tract (gut microbiome) using biomedically relevant laboratory species (i.e. model organisms). These studies have identified important connections between the gut microbiome and host immune, neuroendocrine and nervous systems, as well as how these connections, in turn, influence host behaviour and health. Recently, the field has expanded beyond traditional model systems as it has become apparent that the microbiome can drive differences in behaviour and diet, play a fundamental role in host fitness and influence community-scale dynamics in wild populations. In this Review, we highlight the value of conducting hypothesis-driven research in non-model organisms and the benefits of a comparative approach that assesses patterns across different species or taxa. Using social behaviour as an intellectual framework, we review the bidirectional relationship between the gut microbiome and host behaviour, and identify understudied mechanisms by which these effects may be mediated.
Collapse
Affiliation(s)
- Jessica A. Cusick
- Department of Biology, Indiana University, Biology Building 142, 1001 East Third Street, Bloomington, IN 47405, USA
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
| | - Cara L. Wellman
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA
- Program in Neuroscience, Indiana University, Psychology Building, 1101 E 10th Street Bloomington, IN 47405-2204, USA
| | - Gregory E. Demas
- Department of Biology, Indiana University, Biology Building 142, 1001 East Third Street, Bloomington, IN 47405, USA
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Psychology Building, 1101 E 10th Street Bloomington, IN 47405-2204, USA
| |
Collapse
|
41
|
Vahabi Z, Etesam F, Zandifar A, Badrfam R. Psychosocial stress, blood brain barrier and the development of anti N-methyl-D-aspartate receptor (NMDAR) encephalitis. Mult Scler Relat Disord 2021; 50:102876. [PMID: 33690087 DOI: 10.1016/j.msard.2021.102876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Throughout life, mechanisms such as damage and inflammation can alter the permeability of the blood-brain barrier(BBB). According to some studies, increasing the permeability of the blood-brain barrier can occur in a time-dependent manner following restraint stress. On the other hand, there have been reports of increased N-Methyl-D-Aspartate Receptor (NMDAR) -Ab seroprevalence in chronic stress conditions. The presence of antibody-secreting cells / memory B cells in the intrathecal area of the brain and their redistribution under various environmental stresses, which can be independent of the BBB status, are other points in this area that can emphasize the role of environmental stress in Anti NMDAR encephalitis.
Collapse
Affiliation(s)
- Zahra Vahabi
- Geriatric Department, Ziaeean Hospital, Tehran University of Medical Sciences, Tehran, Iran; Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Etesam
- Psychosomatic Medicine Research Center, Department of Psychiatry, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Zandifar
- Cardiovascular Research Center, Shahid Rajaei Educational & Medical Center, Alborz University of Medical Sciences, Karaj, Iran; Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rahim Badrfam
- Psychosomatic Medicine Research Center, Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran; Department of Psychiatry, Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Vedrenne-Cloquet M, Lévy R, Chareyre J, Kossorotoff M, Oualha M, Renolleau S, Grimaud M. Association of Cerebral Oxymetry with Short-Term Outcome in Critically ill Children Undergoing Extracorporeal Membrane Oxygenation. Neurocrit Care 2021; 35:409-417. [PMID: 33432528 DOI: 10.1007/s12028-020-01179-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Acute brain injury (ABI) is a frequent complication of pediatric extracorporeal membrane oxygenation (ECMO) that could be detected by continuous neuromonitoring. Cerebral near-infrared spectroscopy (NIRS) allows monitoring of cerebral oxygenation. OBJECTIVE To assess whether an impaired cerebral oxygenation was associated with short-term outcome during pediatric ECMO. METHODS We conducted a single-center retrospective study in a pediatric intensive care unit. Children under 18 years old were included if receiving veno-venous or veno-arterial ECMO with concurrent NIRS monitoring. Cerebral saturation impairment was defined as rScO2 under 50% or 20% from the baseline for desaturation, and above 80%. Cerebral imaging (magnetic resonance imaging or CT scan) was performed in case of neurological concern. A radiologist blinded for patient history identified ABI as any hemorragic or ischemic lesion, then classified as major or minor. Primary endpoint was the outcome at hospital discharge. Poor outcome was defined as death or survival with a pediatric cerebral performance category scale (PCPC) score ≥ 3 and/or a major ABI. Good outcome was defined as survival with a PCPC score ≤ 2 and/or a minor or no ABI. Secondary endpoint was mortality before PICU discharge. RESULTS Sixty-three patients met inclusion criteria; 48 (76%) had veno-arterial ECMO. Mortality rate was 51%. Forty-eight of sixty-three patients (76%) evolved with a poor outcome, including 20 major ABI. Mean rScO2 in the right/left hemisphere was 73 ± 9%/75 ± 9%. Cerebral desaturation and decline of rScO2 below 20% from the baseline, regardless of side, were each associated with poor outcome (multivariable-adjusted odds ratio (OR), 4 [95%CI 1.2; 15.1], p = 0.03, and 3.9 [95%CI 1.1; 14.9], p = 0.04, respectively), as well as a mean right rScO2 < 70% during the ECMO course (adjusted OR, 5.6 [95%CI 1.3; 34], p = 0.04). Left rSCO2 ≥ 80% was inversely correlated with hospital mortality (adjusted OR of 0.14 [95%CI 0.02; 0.8], p = 0.04). CONCLUSIONS Cerebral desaturation attested by NIRS was associated with a poor short-term outcome in children of all ages undergoing ECMO, and rScO2 > 80% seemed to be protective. NIRS monitoring might be included within multimodal neuromonitoring to assess the risk of the brain injury related to pediatric ECMO.
Collapse
Affiliation(s)
| | - Raphaël Lévy
- Department of Pediatric Radiology, AP-HP CHU Necker-Enfants Malades, Paris, France
| | - Judith Chareyre
- Pediatric Intensive Care Unit, AP-HP CHU Necker-Enfants Malades, Paris, France
| | - Manoëlle Kossorotoff
- Department of Pediatric Neurology, AP-HP CHU Necker-Enfants Malades, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, AP-HP CHU Necker-Enfants Malades, Paris, France
| | - Sylvain Renolleau
- Pediatric Intensive Care Unit, AP-HP CHU Necker-Enfants Malades, Paris, France
| | - Marion Grimaud
- Pediatric Intensive Care Unit, AP-HP CHU Necker-Enfants Malades, Paris, France
| |
Collapse
|
43
|
Liang Y, Song P, Chen W, Xie X, Luo R, Su J, Zhu Y, Xu J, Liu R, Zhu P, Zhang Y, Huang M. Inhibition of Caspase-1 Ameliorates Ischemia-Associated Blood-Brain Barrier Dysfunction and Integrity by Suppressing Pyroptosis Activation. Front Cell Neurosci 2021; 14:540669. [PMID: 33584203 PMCID: PMC7874210 DOI: 10.3389/fncel.2020.540669] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Ischemic cerebral infarction represents a significant cause of disability and death worldwide. Caspase-1 is activated by the NLRP3/ASC pathway and inflammasomes, thus triggering pyroptosis, a programmed cell death. In particular, this death is mediated by gasdermin D (GSDMD), which induces secretion of interleukin (IL)-1β and IL-18. Accordingly, inhibition of caspase-1 prevents the development and worsening of multiple neurodegenerative diseases. However, it is not clear whether inhibition of caspase-1 can preserve blood-brain barrier (BBB) integrity following cerebral infarction. This study therefore aimed at understanding the effect of caspase-1 on BBB dysfunction and its underlying mechanisms in permanent middle cerebral artery occlusion (MCAO). Our findings in rat models revealed that expression of caspase-1 was upregulated following MCAO-induced injury in rats. Consequently, pharmacologic inhibition of caspase-1 using vx-765 ameliorated ischemia-induced infarction, neurological deficits, and neuronal injury. Furthermore, inhibition of caspase-1 enhanced the encapsulation rate of pericytes at the ischemic edge, decreased leakage of both Evans Blue (EB) and matrix metalloproteinase (MMP) proteins, and upregulated the levels of tight junctions (TJs) and tissue inhibitors of metalloproteinases (TIMPs) in MCAO-injured rats. This in turn improved the permeability of the BBB. Meanwhile, vx-765 blocked the activation of ischemia-induced pyroptosis and reduced the expression level of inflammatory factors such as caspase-1, NLRP3, ASC, GSDMD, IL-1β, and IL-18. Similarly, vx-765 treatment significantly reduced the expression levels of inflammation-related receptor for advanced glycation end products (RAGE), high-mobility family box 1 (HMGB1), mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB). Evidently, inhibition of caspase-1 significantly improves ischemia-associated BBB permeability and integrity by suppressing pyroptosis activation and the RAGE/MAPK pathway.
Collapse
Affiliation(s)
- Yubin Liang
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Pingping Song
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Wei Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Xuemin Xie
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Rixin Luo
- Department of Stroke Center, GuangZhou Panyu Central Hospital, Guangzhou, China
| | - Jiehua Su
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Yunhui Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Jiamin Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Rongrong Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Peizhi Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Yusheng Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
44
|
Zhao YT, Fallas JA, Saini S, Ueda G, Somasundaram L, Zhou Z, Xavier I, Ehnes D, Xu C, Carter L, Wrenn S, Mathieu J, Sellers DL, Baker D, Ruohola-Baker H. F-domain valency determines outcome of signaling through the angiopoietin pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33501432 PMCID: PMC7836102 DOI: 10.1101/2020.09.19.304188] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Angiopoietin 1 and 2 (Ang1 and Ang2) modulate angiogenesis and vascular homeostasis through engagement of their very similar F-domain modules with the Tie2 receptor tyrosine kinase on endothelial cells. Despite this similarity in the underlying receptor binding interaction, the two angiopoietins have opposite effects: Ang1 induces phosphorylation of protein kinase B (AKT), strengthens cell-cell junctions and enhances endothelial cell survival while Ang2 antagonizes these effects1–4. To investigate the molecular basis for the opposing effects, we examined the protein kinase activation and morphological phenotypes produced by a series of computationally designed protein scaffolds presenting the Ang1 F-domain in a wide range of valencies and geometries. We find two broad phenotypic classes distinguished by the number of presented F-domains: scaffolds presenting 4 F-domains have Ang2 like activity, upregulating pFAK and pERK but not pAKT, and failing to induce cell migration and tube formation, while scaffolds presenting 6 or more F-domains have Ang1 like activity, upregulating pAKT and inducing migration and tube formation. The scaffolds with 8 or more F-domains display superagonist activity, producing stronger phenotypes at lower concentrations than Ang1. When examined in vivo, superagonist icosahedral self-assembling nanoparticles caused significant revascularization in hemorrhagic brains after a controlled cortical impact injury.
Collapse
|
45
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
46
|
Arteaga Cabeza O, Zhang Z, Smith Khoury E, Sheldon RA, Sharma A, Zhang F, Slusher BS, Kannan RM, Kannan S, Ferriero DM. Neuroprotective effects of a dendrimer-based glutamate carboxypeptidase inhibitor on superoxide dismutase transgenic mice after neonatal hypoxic-ischemic brain injury. Neurobiol Dis 2020; 148:105201. [PMID: 33271328 PMCID: PMC8351403 DOI: 10.1016/j.nbd.2020.105201] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023] Open
Abstract
The result of a deprivation of oxygen and glucose to the brain, hypoxic-ischemic encephalopathy (HIE), remains the most common cause of death and disability in human neonates globally and is mediated by glutamate toxicity and inflammation. We have previously shown that the enzyme glutamate carboxypeptidase (GCPII) is overexpressed in activated microglia in the presence of inflammation in fetal/newborn rabbit brain. We assessed the therapeutic utility of a GCPII enzyme inhibitor called 2-(3-Mercaptopropyl) pentanedioic acid (2MPPA) attached to a dendrimer (D-2MPPA), in order to target activated microglia in an experimental neonatal hypoxia-ischemia (HI) model using superoxide dismutase transgenic (SOD) mice that are often more injured after hypoxia-ischemia than wildtype animals. SOD overexpressing and wild type (WT) mice underwent permanent ligation of the left common carotid artery followed by 50 min of asphyxiation (10% O2) to induce HI injury on postnatal day 9 (P9). Cy5-labeled dendrimers were administered to the mice at 6 h, 24 h or 72 h after HI and brains were evaluated by immunofluorescence analysis 24 h after the injection to visualize microglial localization and uptake over time. Expression of GCPII enzyme was analyzed in microglia 24 h after the HI injury. The expression of pro- and anti-inflammatory cytokines were analyzed 24 h and 72 h post-HI. Brain damage was analyzed histologically 7 days post-HI in the three randomly assigned groups: control (C); hypoxic-ischemic (HI); and HI mice who received a single dose of D-2MPPA 6 h post-HI (HI+D-2MPPA). First, we found that GCPII was overexpressed in activated microglia 24 h after HI in the SOD overexpressing mice. Also, there was an increase in microglial activation 24 h after HI in the ipsilateral hippocampus which was most visible in the SOD+HI group. Dendrimers were mostly taken up by microglia by 24 h post-HI; uptake was more prominent in the SOD+HI mice than in the WT+HI. The inflammatory profile showed significant increase in expression of KC/GRO following injury in SOD mice compared to WT at 24 and 72 h. A greater and significant decrease in KC/GRO was seen in the SOD mice following treatment with D-2MPPA. Seven days after HI, D-2MPPA treatment decreased brain injury in the SOD+HI group, but not in WT+HI. This reduced damage was mainly seen in hippocampus and cortex. Our data indicate that the best time point to administer D-2MPPA is 6 h post-HI in order to suppress the expression of GCPII by 24 h after the damage since dendrimer localization in microglia is seen as early as 6 h with the peak of GCPII upregulation in activated microglia seen at 24 h post-HI. Ultimately, treatment with D-2MPPA at 6 h post-HI leads to a decrease in inflammatory profiles by 24 h and reduction in brain injury in the SOD overexpressing mice.
Collapse
Affiliation(s)
- O Arteaga Cabeza
- Departments of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Z Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - E Smith Khoury
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - R A Sheldon
- Departments of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA; Departments of Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - A Sharma
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - F Zhang
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - B S Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - R M Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - S Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - D M Ferriero
- Departments of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA; Departments of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Departments of Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
47
|
Ball G, Seidlitz J, O’Muircheartaigh J, Dimitrova R, Fenchel D, Makropoulos A, Christiaens D, Schuh A, Passerat-Palmbach J, Hutter J, Cordero-Grande L, Hughes E, Price A, Hajnal JV, Rueckert D, Robinson EC, Edwards AD. Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biol 2020; 18:e3000976. [PMID: 33226978 PMCID: PMC7721147 DOI: 10.1371/journal.pbio.3000976] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder. Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. A large neuroimaging study of newborn infants reveals how their cortical structure at birth is associated with patterns of gene expression in the fetal cortex and how this relationship is affected by preterm birth.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, United States of America
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daphna Fenchel
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Antonios Makropoulos
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | | | - Jana Hutter
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Jo V. Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| |
Collapse
|
48
|
Antagonism of Macrophage Migration Inhibitory Factory (MIF) after Traumatic Brain Injury Ameliorates Astrocytosis and Peripheral Lymphocyte Activation and Expansion. Int J Mol Sci 2020; 21:ijms21207448. [PMID: 33050322 PMCID: PMC7589344 DOI: 10.3390/ijms21207448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) precedes the onset of epilepsy in up to 15–20% of symptomatic epilepsies and up to 5% of all epilepsy. Treatment of acquired epilepsies, including post-traumatic epilepsy (PTE), presents clinical challenges, including frequent resistance to anti-epileptic therapies. Considering that over 1.6 million Americans present with a TBI each year, PTE is an urgent clinical problem. Neuroinflammation is thought to play a major causative role in many of the post-traumatic syndromes, including PTE. Increasing evidence suggests that neuroinflammation facilitates and potentially contributes to seizure induction and propagation. The inflammatory cytokine, macrophage migration inhibitory factor (MIF), is elevated after TBI and higher levels of MIF correlate with worse post-traumatic outcomes. MIF was recently demonstrated to directly alter the firing dynamics of CA1 pyramidal neurons in the hippocampus, a structure critically involved in many types of seizures. We hypothesized that antagonizing MIF after TBI would be anti-inflammatory, anti-neuroinflammatory and neuroprotective. The results show that administering the MIF antagonist ISO1 at 30 min after TBI prevented astrocytosis but was not neuroprotective in the peri-lesion cortex. The results also show that ISO1 inhibited the TBI-induced increase in γδT cells in the gut, and the percent of B cells infiltrating into the brain. The ISO1 treatment also increased this population of B cells in the spleen. These findings are discussed with an eye towards their therapeutic potential for post-traumatic syndromes, including PTE.
Collapse
|
49
|
Csaba Z, Vitalis T, Charriaut-Marlangue C, Margaill I, Coqueran B, Leger PL, Parente I, Jacquens A, Titomanlio L, Constans C, Demene C, Santin MD, Lehericy S, Perrière N, Glacial F, Auvin S, Tanter M, Ghersi-Egea JF, Adle-Biassette H, Aubry JF, Gressens P, Dournaud P. A simple novel approach for detecting blood-brain barrier permeability using GPCR internalization. Neuropathol Appl Neurobiol 2020; 47:297-315. [PMID: 32898926 PMCID: PMC7891648 DOI: 10.1111/nan.12665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 01/01/2023]
Abstract
Aims Impairment of blood–brain barrier (BBB) is involved in numerous neurological diseases from developmental to aging stages. Reliable imaging of increased BBB permeability is therefore crucial for basic research and preclinical studies. Today, the analysis of extravasation of exogenous dyes is the principal method to study BBB leakage. However, these procedures are challenging to apply in pups and embryos and may appear difficult to interpret. Here we introduce a novel approach based on agonist‐induced internalization of a neuronal G protein‐coupled receptor widely distributed in the mammalian brain, the somatostatin receptor type 2 (SST2). Methods The clinically approved SST2 agonist octreotide (1 kDa), when injected intraperitoneally does not cross an intact BBB. At sites of BBB permeability, however, OCT extravasates and induces SST2 internalization from the neuronal membrane into perinuclear compartments. This allows an unambiguous localization of increased BBB permeability by classical immunohistochemical procedures using specific antibodies against the receptor. Results We first validated our approach in sensory circumventricular organs which display permissive vascular permeability. Through SST2 internalization, we next monitored BBB opening induced by magnetic resonance imaging‐guided focused ultrasound in murine cerebral cortex. Finally, we proved that after intraperitoneal agonist injection in pregnant mice, SST2 receptor internalization permits analysis of BBB integrity in embryos during brain development. Conclusions This approach provides an alternative and simple manner to assess BBB dysfunction and development in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Z Csaba
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - T Vitalis
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | | | - I Margaill
- Research Team "Pharmacology of Cerebral Circulation" EA4475, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - B Coqueran
- Research Team "Pharmacology of Cerebral Circulation" EA4475, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - P-L Leger
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - I Parente
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - A Jacquens
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - L Titomanlio
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - C Constans
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - C Demene
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - M D Santin
- Brain and Spine Institute-ICM, Center for NeuroImaging Research - CENIR, Sorbonne Paris Cité, UPMC Université Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - S Lehericy
- Brain and Spine Institute-ICM, Center for NeuroImaging Research - CENIR, Sorbonne Paris Cité, UPMC Université Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - N Perrière
- BrainPlotting, Brain and Spine Institute-ICM, Paris, France
| | - F Glacial
- BrainPlotting, Brain and Spine Institute-ICM, Paris, France
| | - S Auvin
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - M Tanter
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - J-F Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, Inserm U1028, CNRS, UMR5292, University Lyon-1, Villeurbanne, France
| | - H Adle-Biassette
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France.,Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisière, APHP, Paris, France
| | - J-F Aubry
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR7587, Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Université de Paris, Paris, France
| | - P Gressens
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| | - P Dournaud
- NeuroDiderot, Inserm U1141, Université de Paris, Paris, France
| |
Collapse
|
50
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|