1
|
Liu Y, Li Q, Tian G, Zhou X, Chen P, Chen B, Shan Z, Qi B. Neuronal PRDX-2-Mediated ROS Signaling Regulates Food Digestion via peripheral UPR mt Activation. Nat Commun 2024; 15:10582. [PMID: 39632952 PMCID: PMC11618335 DOI: 10.1038/s41467-024-55013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
All organisms depend on food digestion for survival, yet the brain-gut signaling mechanisms that regulate this process are not fully understood. Here, using an established C. elegans digestion model, we uncover a pathway in which neuronal ROS (free radicals) signal the intestine to suppress digestion. Genetic screening reveals that reducing genes responsible for maintaining ROS balance increases free radicals and decreases digestion. PRDX-2 knockout in olfactory neurons (AWC) elevates ROS and reduces digestive capacity, mediated by the neuropeptide NLP-1 and activation of the mitochondrial unfolded protein response (UPRmt) in the intestine. Additionally, over-expressing nlp-1 or ablating AWC neurons both trigger UPRmt and inhibit digestion. These findings reveal a brain-gut connection in which neuronal PRDX-2-mediated ROS signaling modulates food digestion, highlighting a critical role of free radicals in shutting down digestion to alleviate stress and reduce food consumption.
Collapse
Affiliation(s)
- Yating Liu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qian Li
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guojing Tian
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xinyi Zhou
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Panpan Chen
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bo Chen
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhao Shan
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
2
|
Valladolid-Acebes I. Hippocampal Leptin Resistance and Cognitive Decline: Mechanisms, Therapeutic Strategies and Clinical Implications. Biomedicines 2024; 12:2422. [PMID: 39594988 PMCID: PMC11591892 DOI: 10.3390/biomedicines12112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Leptin, an adipokine essential for regulating energy balance, exerts important effects on brain function, notably within the hippocampus, a region integral to learning and memory. Leptin resistance, characterized by diminished responsiveness to elevated leptin levels, disrupts hippocampal function and exacerbates both obesity and cognitive impairments. Scope: This review critically examines how leptin resistance impairs hippocampal synaptic plasticity processes, specifically affecting long-term potentiation (LTP) and long-term depression (LTD), which are crucial for cognitive performance. Findings: Recent research highlights that leptin resistance disrupts N-methyl-D-aspartate (NMDA) receptor dynamics and hippocampal structure, leading to deficits in spatial learning and memory. Additionally, high-fat diets (HFDs), which contribute to leptin resistance, further deteriorate hippocampal function. Potential therapeutic strategies, including leptin sensitizers, show promise in mitigating brain disorders associated with leptin resistance. Complementary interventions such as caloric restriction and physical exercise also enhance leptin sensitivity and offer potential benefits to alleviating cognitive impairments. Aims of the review: This review synthesizes recent findings on the molecular pathways underlying leptin resistance and its impact on synaptic transmission and plasticity in the hippocampus. By identifying potential therapeutic targets, this work aims to provide an integrated approach for addressing cognitive deficits in obesity, ultimately improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| |
Collapse
|
3
|
O'Hearn LA. Signals of energy availability in sleep: consequences of a fat-based metabolism. Front Nutr 2024; 11:1397185. [PMID: 39267859 PMCID: PMC11390529 DOI: 10.3389/fnut.2024.1397185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Humans can flexibly switch between two primary metabolic modes, usually distinguished by whether substrate supply from glucose can meet energy demands or not. However, it is often overlooked that when glucose use is limited, the remainder of energy needs may still be met more or less effectively with fat and ketone bodies. Hence a fat-based metabolism marked by ketosis is often conflated with starvation and contexts of inadequate energy (including at the cellular level), even when energy itself is in ample supply. Sleep and satiation are regulated by common pathways reflecting energy metabolism. A conceptual analysis that distinguishes signals of inadequate energy in a glucose-dominant metabolism from signals of a fat-based metabolism that may well be energy sufficient allows a reexamination of experimental results in the study of sleep that may shed light on species differences and explain why ketogenic diets have beneficial effects simultaneously in the brain and the periphery. It may also help to distinguish clinically when a failure of a ketogenic diet to resolve symptoms is due to inadequate energy rather than the metabolic state itself.
Collapse
|
4
|
Alymbaeva D, Szabo C, Jocsak G, Bartha T, Zsarnovszky A, Kovago C, Ondrasovicova S, Kiss DS. Analysis of arsenic-modulated expression of hypothalamic estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptor gamma mRNA and simultaneous mitochondrial morphology and respiration rates in the mouse. PLoS One 2024; 19:e0303528. [PMID: 38753618 PMCID: PMC11098319 DOI: 10.1371/journal.pone.0303528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,β; TRα,β) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,β, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRβ and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Collapse
Affiliation(s)
- Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Csaba Szabo
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Physiology and Health, Institute of Physiology and Nutrition, Hungarian University of Agricultural and Life Sciences, Kaposvar, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Carneiro L, Fenech C, Liénard F, Grall S, Abed B, Haydar J, Allard C, Desmoulins L, Paccoud R, Brindisi MC, Mouillot T, Brondel L, Fioramonti X, Pénicaud L, Jacquin-Piques A, Leloup C. Hypothalamic Glucose Hypersensitivity-Induced Insulin Secretion in the Obese Zücker Rat Is Reversed by Central Ghrelin Treatment. Antioxid Redox Signal 2024; 40:837-849. [PMID: 36656675 DOI: 10.1089/ars.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aims: Part of hypothalamic (mediobasal hypothalamus [MBH]) neurons detect changes in blood glucose levels that in turn coordinate the vagal control of insulin secretion. This control cascade requires the production of mitochondrial reactive oxygen species (mROS), which is altered in models of obesity and insulin resistance. Obese, insulin-resistant Zücker rats are characterized by hypothalamic hypersensitivity to glucose. This initiates an abnormal vagus-induced insulin secretion, associated with an overproduction of mROS in response to a low glucose dose. Here, we hypothesized that ghrelin, known to buffer reactive oxygen species (ROS) via mitochondrial function, may be a major component of the hypothalamic glucose hypersensitivity in the hypoghrelinemic obese Zücker rat. Results: Hypothalamic glucose hypersensitivity-induced insulin secretion of Zücker obese rats was reversed by ghrelin pretreatment. The overproduction of MBH mROS in response to a low glucose load no longer occurred in obese rats that had previously received the cerebral ghrelin infusion. This decrease in mROS production was accompanied by a normalization of oxidative phosphorylation (OXPHOS). Conversely, blocking the action of ghrelin with a growth hormone secretagogue receptor antagonist in a model of hyperghrelinemia (fasted rats) completely restored hypothalamic glucose sensing-induced insulin secretion that was almost absent in this physiological situation. Accordingly, ROS signaling and mitochondrial activity were increased by the ghrelin receptor antagonist. Innovation: These results demonstrate for the first time that ghrelin addressed only to the brain could have a protective effect on the defective control of insulin secretion in the insulin-resistant, hypoghrelinemic obese subject. Conclusions: Ghrelin, through its action on OXPHOS, modulates mROS signaling in response to cerebral hyperglycemia and the consequent vagal control of insulin secretion. In insulin-resistant obese states, brain hypoghrelinemia could be responsible for the nervous defect in insulin secretion.
Collapse
Affiliation(s)
- Lionel Carneiro
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Besma Abed
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Joulia Haydar
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Camille Allard
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | - Lucie Desmoulins
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Romain Paccoud
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claude Brindisi
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Mouillot
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Laurent Brondel
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- NutriNeuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, Neurocampus, Bordeaux, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
- STROMALab, CNRS ERL 5311, Toulouse, France
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, UMR Université de Bourgogne, CNRS 6265, INRAE 1324, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
6
|
Patil R, Aswar U, Vyas N. Pterostilbene alleviates cafeteria diet-induced obesity and underlying depression in adolescent male Swiss albino mice and affects insulin resistance, inflammation, HPA axis dysfunction and SIRT1 mediated leptin-ghrelin signaling. Horm Behav 2024; 161:105504. [PMID: 38354494 DOI: 10.1016/j.yhbeh.2024.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Cafeteria diet (CD) model for in-vivo studies mimics the western diet having imbalanced nutritional value, high caloric-density and palatability. Uncontrolled eating leads to the development of childhood obesity, poor self-esteem and depression due to its effects on brain development. Herbal supplements are novel inclusion in the management of obesity and mental well-being. Pterostilbene (PTE) found in blueberries and Pterocarpus marsupium heartwood, is known to prevent obesity in invivo models. Adolescent Swiss albino male mice were fed on CD for 70 days and the development of obesity was assessed by gain in body weight, abdominal circumference. Forced swim and tail suspension test confirmed depression in CD fed mice. Obesity induced depressed (OID) mice were treated with PTE (10, 20, 40 mg/kg), standard antiobesity drug cetilistat (10 mg/kg), antidepressant fluoxetine (10 mg/kg) for 28 days. Post treatment, PTE-treated mice showed reduction in BW and depression-like behavior analysed using paradigms such as sucrose preference, open field, marble burying, and resident intruder test in comparison to the CD group. Insulin resistance, lipid profile, antioxidant enzyme, inflammatory cytokines (NF-κB, IL-6, TNF α) and cortisol levels were mitigated by PTE. It also restored normal cellular architecture of the brain and adipose tissue and increased the Silent mating type information regulation 2 homolog1 (SIRT1), leptin and ghrelin receptors gene expression in the brain. Thus, it can be concluded that PTE might have inhibited OID like behavior in mice via inhibition of IR, modulating neuroinflammation and hypothalamic-pituitary-adrenal axis dysfunction and upregulating SIRT1 mediated leptin-ghrelin signaling.
Collapse
Affiliation(s)
- Rashmi Patil
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be) University, Pune, Maharashtra 411038, India
| | - Urmila Aswar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be) University, Pune, Maharashtra 411038, India.
| | - Nishant Vyas
- Logical Life Sciences Private Limited, Pune, India
| |
Collapse
|
7
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
8
|
Minakhina S, Kim SY, Wondisford FE. Regulation of hypothalamic reactive oxygen species and feeding behavior by phosphorylation of the beta 2 thyroid hormone receptor isoform. Sci Rep 2024; 14:7200. [PMID: 38531895 PMCID: PMC10965981 DOI: 10.1038/s41598-024-57364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Unlike other thyroid hormone receptors (THRs), the beta 2 isoform (THRB2) has a restricted expression pattern and is uniquely and abundantly phosphorylated at a conserved serine residue S101 (S102 in humans). Using tagged and or phosphorylation-defective (S101A) THRB2 mutant mice, we show that THRB2 is present in a large subset of POMC neurons and mitigates ROS accumulation during ROS-triggering events, such as fasting/refeeding or high fat diet (HFD). Excessive ROS accumulation in mutant POMC neurons was accompanied by a skewed production of orexigenic/anorexigenic hormones, resulting in elevated food intake. The prolonged exposure to pathogenic hypothalamic ROS levels during HFD feeding lead to a significant loss of POMC neurons in mutant versus wild-type (WT) mice. In cultured cells, the presence of WT THRB2 isoform, but not other THRs, or THRB2S101A, reduced ROS accumulation upon exogenous induction of oxidative stress by tert-butyl hydroperoxide. The protective function of phospho-THRB2 (pTHRB2) did not require thyroid hormone (TH), suggesting a TH-independent role of the THRB2 isoform, and phospho-S101 in particular, in regulating oxidative stress. We propose that pTHRB2 has a fundamental role in neuronal protection against ROS cellular damage, and mitigates hypothalamic pathological changes found in diet-induced obesity.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Mount Sinai School of Medicine, New York, NY, USA.
| | - Sun Young Kim
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
9
|
Shi S, Wang J, Gong H, Huang X, Mu B, Cheng X, Feng B, Jia L, Luo Q, Liu W, Chen Z, Huang C. PGC-1α-Coordinated Hypothalamic Antioxidant Defense Is Linked to SP1-LanCL1 Axis during High-Fat-Diet-Induced Obesity in Male Mice. Antioxidants (Basel) 2024; 13:252. [PMID: 38397850 PMCID: PMC10885970 DOI: 10.3390/antiox13020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
High-fat-diet (HFD)-induced obesity parallels hypothalamic inflammation and oxidative stress, but the correlations between them are not well-defined. Here, with mouse models targeting the antioxidant gene LanCL1 in the hypothalamus, we demonstrate that impaired hypothalamic antioxidant defense aggravates HFD-induced hypothalamic inflammation and obesity progress, and these could be improved in mice with elevated hypothalamic antioxidant defense. We also show that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator, is implicated in regulating hypothalamic LanCL1 transcription, in collaboration with SP1 through a direct interaction, in response to HFD-induced palmitic acid (PA) accumulation. According to our results, when exposed to HFD, mice undergo a process of overwhelming hypothalamic antioxidant defense; short-time HFD exposure induces ROS production to activate PGC-1α and elevate LanCL1-mediated antioxidant defense, while long-time exposure promotes ubiquitin-mediated PGC-1α degradation and suppresses LanCL1 expression. Our findings show the critical importance of the hypothalamic PGC-1α-SP1-LanCL1 axis in regulating HFD-induced obesity, and provide new insights describing the correlations of hypothalamic inflammation and oxidative stress during this process.
Collapse
Affiliation(s)
- Shuai Shi
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jichen Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohua Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.F.)
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangyu Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.F.)
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
11
|
Corkey BE. Reactive oxygen species: role in obesity and mitochondrial energy efficiency. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220210. [PMID: 37482778 PMCID: PMC10363708 DOI: 10.1098/rstb.2022.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
Changes correlating with increasing obesity include insulin resistance, hyperlipidaemia, hyperinsulinaemia, highly processed food and environmental toxins including plastics and air pollution. The relationship between the appearance of each of these potential causes and the onset of obesity is unknown. The cause(s) must precede obesity, the consequence, and temporally relate to its rising incidence. Macronutrients such as carbohydrates or fats are unlikely to cause obesity since these have long been constituents of human diets. Furthermore, food consumption and body weight have been well-regulated in most humans and other species until recent times. Thus, attention must focus on changes that have occurred in the last half-century and the relationship between such changes and specific populations that are impacted. The hypothesis presented here is that substances that have entered our bodies recently cause obesity by generating false and misleading information about energy status. We propose that this misinformation is caused by changes in the oxidation-reduction (redox) potential of metabolites that circulate and communicate to organs throughout the body. Examples are provided of food additives that generate reactive oxygen species and impact redox state, thereby, eliciting inappropriate tissue-specific functional changes, including insulin secretion. Reversal requires identification, neutralization, or removal of these compounds. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Arestakesyan H, Blackmore K, Smith HC, Popratiloff A, Young CN. Large-field-of-view scanning electron microscopy of the paraventricular nucleus of the hypothalamus during diet-induced obesity. J Neurophysiol 2023; 130:345-352. [PMID: 37435651 PMCID: PMC10396219 DOI: 10.1152/jn.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
Dysregulation in the paraventricular nucleus of the hypothalamus (PVN) is associated with a variety of diseases including those related to obesity. Although most investigations have focused on molecular changes, structural alterations in PVN neurons can reveal underlying functional disruptions. Although electron microscopy (EM) can provide nanometer resolution of brain structures, an inherent limitation of traditional transmission EM is the single field of view nature of data collection. To overcome this, we used large-field-of-view high-resolution backscatter scanning electron microscopy (bSEM) of the PVN. By stitching high-resolution bSEM images, taken from normal chow and high-fat diet mice, we achieved interactive, zoomable maps that allow for low-magnification screening of the entire PVN and high-resolution analyses of ultrastructure at the level of the smallest cellular organelle. Using this approach, quantitative analysis across the PVN revealed marked electron-dense regions within neuronal nucleoplasm following high-fat diet feeding, with an increase in kurtosis, indicative of a shift away from a normal distribution. Furthermore, measures of skewness indicated a shift toward darker clustered electron-dense regions, potentially indicative of heterochromatin clusters. We further demonstrate the utility to map out healthy and altered neurons throughout the PVN and the ability to remotely perform bSEM imaging in situations that require social distancing, such as the COVID-19 pandemic. Collectively, these findings present an approach that allows for the precise placement of PVN cells within an overall structural and functional map of the PVN. Moreover, they suggest that obesity may disrupt PVN neuronal chromatin structure.NEW & NOTEWORTHY Paraventricular nucleus of the hypothalamus (PVN) alterations are linked to obesity-related conditions, but limited knowledge exists about neuroanatomical changes in this region. A large-field-of-view backscatter scanning electron microscopy (bSEM) method was used, which allowed the identification of up to 40 PVN neurons in individual samples. During obesity in mice, bSEM revealed changes in PVN neuronal nucleoplasm, possibly indicating chromatin clustering. This microscopy advancement offers valuable insights into neuroanatomy in both healthy and disease conditions.
Collapse
Affiliation(s)
- Hovhannes Arestakesyan
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Katherine Blackmore
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Hannah C Smith
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Anastas Popratiloff
- Nanofabrication and Imaging Center, George Washington University, Washington, District of Columbia, United States
| | - Colin N Young
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
13
|
Owumi SE, Umez AO, Arunsi U, Irozuru CE. Dietary aflatoxin B1 and antimalarial-a lumefantrine/artesunate-therapy perturbs male rat reproductive function via pro-inflammatory and oxidative mechanisms. Sci Rep 2023; 13:12172. [PMID: 37500724 PMCID: PMC10374580 DOI: 10.1038/s41598-023-39455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
We investigated the impact of Coartem™ (COA) and aflatoxin B1 (AFB1) on rats' hypothalamus, epididymis, and testis. Male rats were randomly grouped (n = 5 rats) and treated: control group (corn oil), AFB1 (70 µg/kg), COA (5 mg/kg), COA + AFB1 (5 + 0.035 mg/kg) and COA + AFB1 (5 + 0.07 mg/kg) for 28 days. Blood samples were collected for serum prolactin, testosterone, follicle-stimulating and luteinising hormones (FSH and LH) assay upon sacrifice. The semen, hypothalamus, epididymis, and testes were harvested for morphological, biochemical, and histopathology determination of oxidative, inflammation stress, genomic integrity, and pathological alterations. Exposure to the COA and AFB1 caused the cauda epididymal spermatozoa to display low motility, viability, and volume, with increased abnormalities. Hormonal disruption ensued in animals exposed to COA and AFB1 alone or together, exemplified by increased prolactin, and decreased testosterone, FSH and LH levels. Treatment-related reduction in biomarkers of testicular metabolism-acid and alkaline phosphatases, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase-were observed. Also, COA and AFB1 treatment caused reductions in antioxidant (Glutathione and total thiols) levels and antioxidant enzyme (Catalase, superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase) activities in the examined organs. At the same time, treatment-related increases in DNA damage (p53), oxidative stress (xanthine oxidase, reactive oxygen and nitrogen species and lipid peroxidation), inflammation (nitric oxide and tumour necrosis factor-alpha), and apoptosis (caspase-9, and -3) were observed. Chronic exposure to COA and AFB1 led to oxidative stress, inflammation, and DNA damage in male rats' hypothalamic-reproductive axis, which might potentiate infertility if not contained.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria.
- ChangeLab-changing Lives, Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, University of Ibadan, Rm NB 302, Ibadan, 200005, Oyo State, Nigeria.
| | - Angel O Umez
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Uche Arunsi
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Chioma E Irozuru
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
14
|
Bhasin H, O'Brien SC, Cordner ZA, Aston SA, Tamashiro KLK, Moran TH. Activity-based anorexia in adolescent female rats causes changes in brain mitochondrial dynamics. Physiol Behav 2023; 261:114072. [PMID: 36599403 DOI: 10.1016/j.physbeh.2022.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Anorexia Nervosa (AN) is associated with a high rate of morbidity and mortality as well as a high rate of relapse. The molecular mechanisms underlying the progression of the disorder or the relapses are largely unknown. Patients with AN have been shown to have increased oxidative stress, but its involvement in the development in the disease is unknown. We have previously shown that adolescent female rats undergoing the activity-based anorexia (ABA) paradigm also show signs of oxidative stress. Due to their role in the release of reactive oxygen species (ROS), mitochondria are of high interest in diseases exhibiting oxidative stress. In this study, the impact of ABA on brain mitochondrial dynamics was examined. We found transient changes in the medial prefrontal cortex, hypothalamus, and hippocampus following 25% weight loss and changes in the amygdala at a 10-day weight recovery timepoint. These changes point towards damage in the mitochondria contributing to the oxidative stress.
Collapse
Affiliation(s)
- Harshit Bhasin
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Shannon C O'Brien
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - Zachary A Cordner
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - S Andrew Aston
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - Kellie L K Tamashiro
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - Timothy H Moran
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America.
| |
Collapse
|
15
|
Liao YC, Lim YS, Chu PW, Chen SK. Inflammatory Milieu Induces Mitochondrial Alterations and Neuronal Activations in Hypothalamic POMC Neurons in a Time-Dependent Manner. Mol Neurobiol 2023; 60:1164-1178. [PMID: 36417103 DOI: 10.1007/s12035-022-03128-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
Inflammation has been associated with numerous neurological disorders. Inflammatory environments trigger a series of cellular and physiological alterations in the brain. However, how inflammatory milieu affects neuronal physiology and how neuronal alterations progress in the inflammatory environments are not fully understood. In this study, we examined the effects of pro-inflammatory milieu on mitochondrial functions and neuronal activities in the hypothalamic POMC neurons. Treating mHypoA-POMC/GFP1 with the conditioned medium collected from LPS activated macrophage were employed to mimic the inflammatory milieu during hypothalamic inflammation. After a 24-h treatment, intracellular ROS/RNS levels were elevated, and the antioxidant enzymes were reduced. Mitochondrial respiration and mitochondrial functions, including basal respiratory rate, spared respiration capacity, and maximal respiration, were all significantly compromised by inflammatory milieu. Moreover, pro-inflammatory cytokines altered mitochondrial dynamics in a time-dependent manner, resulting in the elongation of mitochondria in POMC neurons after a 24-h treatment. Additionally, the increase of C-Fos and Pomc genes expression indicated that the neurons were activated upon the stimulation of inflammatory environment. This neuronal activation of were confirmed on the LPS-challenged mice. Collectively, a short-term to midterm exposure to inflammatory milieu stimulated metabolic switch and neuronal activation, whereas chronic exposure triggered the elevation of oxidative stress, the decrease of the mitochondrial respiration, and the alterations of mitochondrial dynamics.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Institute of Neuroscience, National ChengChi University, No. 64, Sec. 2, Zhinan Rd., Wenshan District, 11605, Taipei, Taiwan
| | - Yeou San Lim
- Institute of Neuroscience, National ChengChi University, No. 64, Sec. 2, Zhinan Rd., Wenshan District, 11605, Taipei, Taiwan
| | - Pei-Wen Chu
- Institute of Neuroscience, National ChengChi University, No. 64, Sec. 2, Zhinan Rd., Wenshan District, 11605, Taipei, Taiwan
| | - Shau-Kwaun Chen
- Institute of Neuroscience, National ChengChi University, No. 64, Sec. 2, Zhinan Rd., Wenshan District, 11605, Taipei, Taiwan.
| |
Collapse
|
16
|
The Bidirectional Relationship of NPY and Mitochondria in Energy Balance Regulation. Biomedicines 2023; 11:biomedicines11020446. [PMID: 36830982 PMCID: PMC9953676 DOI: 10.3390/biomedicines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Energy balance is regulated by several hormones and peptides, and neuropeptide Y is one of the most crucial in feeding and energy expenditure control. NPY is regulated by a series of peripheral nervous and humoral signals that are responsive to nutrient sensing, but its role in the energy balance is also intricately related to the energetic status, namely mitochondrial function. During fasting, mitochondrial dynamics and activity are activated in orexigenic neurons, increasing the levels of neuropeptide Y. By acting on the sympathetic nervous system, neuropeptide Y modulates thermogenesis and lipolysis, while in the peripheral sites, it triggers adipogenesis and lipogenesis instead. Moreover, both central and peripheral neuropeptide Y reduces mitochondrial activity by decreasing oxidative phosphorylation proteins and other mediators important to the uptake of fatty acids into the mitochondrial matrix, inhibiting lipid oxidation and energy expenditure. Dysregulation of the neuropeptide Y system, as occurs in metabolic diseases like obesity, may lead to mitochondrial dysfunction and, consequently, to oxidative stress and to the white adipose tissue inflammatory environment, contributing to the development of a metabolically unhealthy profile. This review focuses on the interconnection between mitochondrial function and dynamics with central and peripheral neuropeptide Y actions and discusses possible therapeutical modulations of the neuropeptide Y system as an anti-obesity tool.
Collapse
|
17
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|
18
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Hashimoto M, Fujimoto M, Konno K, Lee ML, Yamada Y, Yamashita K, Toda C, Tomura M, Watanabe M, Inanami O, Kitamura H. Ubiquitin-Specific Protease 2 in the Ventromedial Hypothalamus Modifies Blood Glucose Levels by Controlling Sympathetic Nervous Activation. J Neurosci 2022; 42:4607-4618. [PMID: 35504726 PMCID: PMC9186793 DOI: 10.1523/jneurosci.2504-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Ubiquitin-specific protease 2 (USP2) participates in glucose metabolism in peripheral tissues such as the liver and skeletal muscles. However, the glucoregulatory role of USP2 in the CNS is not well known. In this study, we focus on USP2 in the ventromedial hypothalamus (VMH), which has dominant control over systemic glucose homeostasis. ISH, using a Usp2-specific probe, showed that Usp2 mRNA is present in VMH neurons, as well as other glucoregulatory nuclei, in the hypothalamus of male mice. Administration of a USP2-selective inhibitor ML364 (20 ng/head), into the VMH elicited a rapid increase in the circulating glucose level in male mice, suggesting USP2 has a suppressive role on glucose mobilization. ML364 treatment also increased serum norepinephrine concentration, whereas it negligibly affected serum levels of insulin and corticosterone. ML364 perturbated mitochondrial oxidative phosphorylation in neural SH-SY5Y cells and subsequently promoted the phosphorylation of AMP-activated protein kinase (AMPK). Consistent with these findings, hypothalamic ML364 treatment stimulated AMPKα phosphorylation in the VMH. Inhibition of hypothalamic AMPK prevented ML364 from increasing serum norepinephrine and blood glucose. Removal of ROS restored the ML364-evoked mitochondrial dysfunction in SH-SY5Y cells and impeded the ML364-induced hypothalamic AMPKα phosphorylation as well as prevented the elevation of serum norepinephrine and blood glucose levels in male mice. These results indicate hypothalamic USP2 attenuates perturbations in blood glucose levels by modifying the ROS-AMPK-sympathetic nerve axis.SIGNIFICANCE STATEMENT Under normal conditions (excluding hyperglycemia or hypoglycemia), blood glucose levels are maintained at a constant level. In this study, we used a mouse model to identify a hypothalamic protease controlling blood glucose levels. Pharmacological inhibition of USP2 in the VMH caused a deviation in blood glucose levels under a nonstressed condition, indicating that USP2 determines the set point of the blood glucose level. Modification of sympathetic nervous activity accounts for the USP2-mediated glucoregulation. Mechanistically, USP2 mitigates the accumulation of ROS in the VMH, resulting in attenuation of the phosphorylation of AMPK. Based on these findings, we uncovered a novel glucoregulatory axis consisting of hypothalamic USP2, ROS, AMPK, and the sympathetic nervous system.
Collapse
Affiliation(s)
- Mayuko Hashimoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 0698501, Japan
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 5848450, Japan
| | | | - Kohtarou Konno
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo 0600808, Japan
| | - Ming-Liang Lee
- Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 0600808, Japan
| | - Yui Yamada
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 0698501, Japan
| | | | - Chitoku Toda
- Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 0600808, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 5848450, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo 0600808, Japan
| | | | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 0698501, Japan
| |
Collapse
|
20
|
Barrea L, Caprio M, Watanabe M, Cammarata G, Feraco A, Muscogiuri G, Verde L, Colao A, Savastano S. Could very low-calorie ketogenic diets turn off low grade inflammation in obesity? Emerging evidence. Crit Rev Food Sci Nutr 2022; 63:8320-8336. [PMID: 35373658 DOI: 10.1080/10408398.2022.2054935] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an emerging non-communicable disease associated with chronic low-grade inflammation and oxidative stress, compounded by the development of many obesity-related diseases, such as cardiovascular disease, type 2 diabetes mellitus, and a range of cancers. Originally developed for the treatment of epilepsy in drug non-responder children, the ketogenic diet (KD) is being increasingly used in the treatment of many diseases, including obesity and obesity-related conditions. The KD is a dietary pattern characterized by high fat intake, moderate to low protein consumption, and very low carbohydrate intake (<50 g) that has proved to be an effective and weight-loss tool. In addition, it also appears to be a dietary intervention capable of improving the inflammatory state and oxidative stress in individuals with obesity by means of several mechanisms. The main activity of the KD has been linked to improving mitochondrial function and decreasing oxidative stress. β-hydroxybutyrate, the most studied ketone body, has been shown to reduce the production of reactive oxygen species, improving mitochondrial respiration. In addition, KDs exert anti-inflammatory activity through several mechanisms, e.g., by inhibiting activation of the nuclear factor kappa-light-chain-enhancer of activated B cells, and the inflammatory nucleotide-binding, leucine-rich-containing family, pyrin domain-containing-3, and inhibiting histone deacetylases. Given the rising interest in the topic, this review looks at the underlying anti-inflammatory and antioxidant mechanisms of KDs and their possible recruitment in the treatment of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Cammarata
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI) and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| |
Collapse
|
21
|
Ojeda ML, Carreras O, Nogales F. The Role of Selenoprotein Tissue Homeostasis in MetS Programming: Energy Balance and Cardiometabolic Implications. Antioxidants (Basel) 2022; 11:antiox11020394. [PMID: 35204276 PMCID: PMC8869711 DOI: 10.3390/antiox11020394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins’ implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’ growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.
Collapse
|
22
|
Beneficial effects of metformin supplementation in hypothalamic paraventricular nucleus and arcuate nucleus of type 2 diabetic rats. Toxicol Appl Pharmacol 2022; 437:115893. [PMID: 35085591 DOI: 10.1016/j.taap.2022.115893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
|
23
|
Gavini CK, White CR, Mansuy-Aubert V, Aubert G. Loss of C2 Domain Protein (C2CD5) Alters Hypothalamic Mitochondrial Trafficking, Structure, and Function. Neuroendocrinology 2022; 112:324-337. [PMID: 34034255 DOI: 10.1159/000517273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Mitochondria are essential organelles required for several cellular processes ranging from ATP production to cell maintenance. To provide energy, mitochondria are transported to specific cellular areas in need. Mitochondria also need to be recycled. These mechanisms rely heavily on trafficking events. While mechanisms are still unclear, hypothalamic mitochondria are linked to obesity. METHODS We used C2 domain protein 5 (C2CD5, also called C2 domain-containing phosphoprotein [CDP138]) whole-body KO mice primary neuronal cultures and cell lines to perform electron microscopy, live cellular imaging, and oxygen consumption assay to better characterize mitochondrial alteration linked to C2CD5. RESULTS This study identified that C2CD5 is necessary for proper mitochondrial trafficking, structure, and function in the hypothalamic neurons. We previously reported that mice lacking C2CD5 were obese and displayed reduced functional G-coupled receptor, melanocortin receptor 4 (MC4R) at the surface of hypothalamic neurons. Our data suggest that in neurons, normal MC4R endocytosis/trafficking necessities functional mitochondria. DISCUSSION Our data show that C2CD5 is a new protein necessary for normal mitochondrial function in the hypothalamus. Its loss alters mitochondrial ultrastructure, localization, and activity within the hypothalamic neurons. C2CD5 may represent a new protein linking hypothalamic dysfunction, mitochondria, and obesity.
Collapse
Affiliation(s)
- Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Chelsea R White
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Gregory Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
24
|
Rijal S, Jang SH, Cho DH, Han SK. Hydrogen peroxide suppresses excitability of gonadotropin-releasing hormone neurons in adult mouse. Front Endocrinol (Lausanne) 2022; 13:939699. [PMID: 36387844 PMCID: PMC9650413 DOI: 10.3389/fendo.2022.939699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
It has been reported that reactive oxygen species (ROS) derived from oxygen molecule reduction can interfere with the cross-talk between the hypothalamic-pituitary-gonadal (HPG) axis and other endocrine axes, thus affecting fertility. Furthermore, ROS have been linked to GnRH receptor signaling in gonadotropes involved in gonadotropin release. There has been evidence that ROS can interfere with the HPG axis and gonadotropin release at various levels. However, the direct effect of ROS on gonadotropin-releasing hormone (GnRH) neuron remains unclear. Thus, the objective of this study was to determine the effect of hydrogen peroxide (H2O2), an ROS source, on GnRH neuronal excitabilities in transgenic GnRH-green fluorescent protein-tagged mice using the whole-cell patch-clamp electrophysiology. In adults, H2O2 at high concentrations (mM level) hyperpolarized most GnRH neurons tested, whereas low concentrations (pM to μM) caused slight depolarization. In immature GnRH neurons, H2O2 exposure induced excitation. The sensitivity of GnRH neurons to H2O2 was increased with postnatal development. The effect of H2O2 on adult female GnRH neurons was found to be estrous cycle-dependent. Hyperpolarization mediated by H2O2 persisted in the presence of tetrodotoxin, a voltage-gated Na+ channel blocker, and amino-acids receptor blocking cocktail containing blockers for the ionotropic glutamate receptors, glycine receptors, and GABAA receptors, indicating that H2O2 could act on GnRH neurons directly. Furthermore, glibenclamide, an ATP-sensitive K+ (KATP) channel blocker, completely blocked H2O2-mediated hyperpolarization. Increasing endogenous H2O2 by inhibiting glutathione peroxidase decreased spontaneous activities of most GnRH neurons. We conclude that ROS can act as signaling molecules for regulating GnRH neuron's excitability and that adult GnRH neurons are sensitive to increased ROS concentration. Results of this study demonstrate that ROS have direct modulatory effects on the HPG axis at the hypothalamic level to regulate GnRH neuron's excitabilities.
Collapse
Affiliation(s)
- Santosh Rijal
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute for Medical Sciences, Jeonbuk National University Hospital, Jeonju, South Korea
- *Correspondence: Dong Hyu Cho, ; Seong Kyu Han,
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Dong Hyu Cho, ; Seong Kyu Han,
| |
Collapse
|
25
|
Cimicifuga racemosa Extract Ze 450 Re-Balances Energy Metabolism and Promotes Longevity. Antioxidants (Basel) 2021; 10:antiox10091432. [PMID: 34573064 PMCID: PMC8466145 DOI: 10.3390/antiox10091432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/31/2023] Open
Abstract
Recently, we reported that the Cimicifuga racemosa extract Ze 450 mediated protection from oxidative cell damage through a metabolic shift from oxidative phosphorylation to glycolysis. Here, we investigated the molecular mechanisms underlying the effects of Ze 450 against ferroptosis in neuronal cells, with a particular focus on mitochondria. The effects of Ze 450 on respiratory complex activity and hallmarks of ferroptosis were studied in isolated mitochondria and in cultured neuronal cells, respectively. In addition, Caenorhabditis elegans served as a model organism to study mitochondrial damage and longevity in vivo. We found that Ze 450 directly inhibited complex I activity in mitochondria and enhanced the metabolic shift towards glycolysis via cMyc and HIF1α regulation. The protective effects against ferroptosis were mediated independently of estrogen receptor activation and were distinct from effects exerted by metformin. In vivo, Ze 450 protected C. elegans from the mitochondrial toxin paraquat and promoted longevity in a dose-dependent manner. In conclusion, Ze 450 mediated a metabolic shift to glycolysis via direct effects on mitochondria and altered cell signaling, thereby promoting sustained cellular resilience to oxidative stress in vitro and in vivo.
Collapse
|
26
|
Aerobic training associated with an active lifestyle exerts a protective effect against oxidative damage in hypothalamus and liver: The involvement of energy metabolism. Brain Res Bull 2021; 175:116-129. [PMID: 34303768 DOI: 10.1016/j.brainresbull.2021.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oxidation resistance protein 1 (OXR1) is of scientific interest due its role in protecting tissues against oxidative stress, DNA mutations and tumorigenesis, but little is known regarding strategies to increase OXR1 in different tissues. As an improved antioxidant defense may result from a high total amount of physical activity, the present study was designed to determine whether an active lifestyle including aerobic training exercise and spontaneous physical activity (SPA) can increase OXR1. We have built a large cage (LC) that allows animals to move freely, promoting an increase in SPA in comparison to a small cage (SC). METHODS We examined the effects of aerobic training applied for 8 weeks on SPA and OXR1 of C57BL/6 J mice living in two types of housing (SC and LC). OXR1 protein was studied in hypothalamus, muscle and liver, which were chosen due to their important role in energy and metabolic homeostasis. RESULTS LC-mice were more active than SC-mice as determined by SPA values. Despite both trained groups exhibiting similar gains in aerobic capacity, only trained mice kept in a large cage (but not for trained mice housed in SC) exhibited high OXR1 in the hypothalamus and liver. Trained mice housed in LC that exhibited an up-regulation of OXR1 also were those who exhibited an energy-expensive metabolism (based on metabolic parameters). CONCLUSIONS These results suggest that aerobic training associated with a more active lifestyle exerts a protective effect against oxidative damage and may be induced by changes in energy metabolism.
Collapse
|
27
|
Brain Insulin Resistance: Focus on Insulin Receptor-Mitochondria Interactions. Life (Basel) 2021; 11:life11030262. [PMID: 33810179 PMCID: PMC8005009 DOI: 10.3390/life11030262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses implicate insulin resistance of the brain as a pathogenic factor in the development of Alzheimer’s disease and other dementias, Parkinson’s disease, type 2 diabetes, obesity, major depression, and traumatic brain injury. A variety of genetic, developmental, and metabolic abnormalities that lead to disturbances in the insulin receptor signal transduction may underlie insulin resistance. Insulin receptor substrate proteins are generally considered to be the node in the insulin signaling system that is critically involved in the development of insulin insensitivity during metabolic stress, hyperinsulinemia, and inflammation. Emerging evidence suggests that lower activation of the insulin receptor (IR) is another common, while less discussed, mechanism of insulin resistance in the brain. This review aims to discuss causes behind the diminished activation of IR in neurons, with a focus on the functional relationship between mitochondria and IR during early insulin signaling and the related roles of oxidative stress, mitochondrial hypometabolism, and glutamate excitotoxicity in the development of IR insensitivity to insulin.
Collapse
|
28
|
Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int J Mol Sci 2021; 22:ijms22041786. [PMID: 33670130 PMCID: PMC7916866 DOI: 10.3390/ijms22041786] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is important in the pathophysiology of obesity, altering regulatory factors of mitochondrial activity, modifying the concentration of inflammation mediators associated with a large number and size of adipocytes, promoting lipogenesis, stimulating differentiation of preadipocytes to mature adipocytes, and regulating the energy balance in hypothalamic neurons that control appetite. This review discusses the participation of oxidative stress in obesity and the important groups of compounds found in plants with antioxidant properties, which include (a) polyphenols such as phenolic acids, stilbenes, flavonoids (flavonols, flavanols, anthocyanins, flavanones, flavones, flavanonols, and isoflavones), and curcuminoids (b) carotenoids, (c) capsaicinoids and casinoids, (d) isothiocyanates, (e) catechins, and (f) vitamins. Examples are analyzed, such as resveratrol, quercetin, curcumin, ferulic acid, phloretin, green tea, Hibiscus Sabdariffa, and garlic. The antioxidant activities of these compounds depend on their activities as reactive oxygen species (ROS) scavengers and on their capacity to prevent the activation of NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells), and reduce the expression of target genes, including those participating in inflammation. We conclude that natural compounds have therapeutic potential for diseases mediated by oxidative stress, particularly obesity. Controlled and well-designed clinical trials are still necessary to better know the effects of these compounds.
Collapse
|
29
|
Wan GJ, Jiang SL, Zhang M, Zhao JY, Zhang YC, Pan WD, Sword GA, Chen FJ. Geomagnetic field absence reduces adult body weight of a migratory insect by disrupting feeding behavior and appetite regulation. INSECT SCIENCE 2021; 28:251-260. [PMID: 32065478 DOI: 10.1111/1744-7917.12765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The geomagnetic field (GMF) is well documented for its essential role as a cue used in animal orientation or navigation. Recent evidence indicates that the absence of GMF (mimicked by the near-zero magnetic field, NZMF) can trigger stress-like responses such as reduced body weight, as we have previously shown in the brown planthopper, Nilaparvata lugens. In this study, we found that consistent with the significantly decreased body weight of newly emerged female (-14.67%) and male (-13.17%) adult N. lugens, the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02% in 5th instar nymphs reared under the NZMF versus GMF. Interestingly, 5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels (+16.98% and +20.05%; 24 h and 48 h after molting), which are associated with food aversion, and expression patterns of their appetite-related neuropeptide genes (neuropeptide F, down-regulated overall; short neuropeptide F, down-regulated overall; adipokinetic hormone, up-regulated overall; and adipokinetic hormone receptor, down-regulated overall) were also altered under the absence of GMF in a manner consistent with diminishing appetite. Moreover, the expressions of the potential magnetosensor cryptochromes (Crys) were found significantly altered under the absence of GMF, indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms. These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation. Our results highlight that GMF could be necessary for the maintenance of energy homeostasis in insects.
Collapse
Affiliation(s)
- Gui-Jun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shou-Lin Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Yu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chao Zhang
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei-Dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, U.S.A
| | - Fa-Jun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Du D, Zhang Y, Zhu C, Chen H, Sun J. Metabolic Regulation of Hypoxia-Inducible Factors in Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:650284. [PMID: 33763034 PMCID: PMC7984363 DOI: 10.3389/fendo.2021.650284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022] Open
Abstract
The earliest hypoxia-inducible factor (HIF) function was to respond to hypoxia or hypoxic conditions as a transcription factor. Recent studies have expanded our understanding of HIF, and a large amount of evidence indicates that HIF has an essential effect on central regulation of metabolism. The central nervous system's response to glucose, inflammation, and hormones' main influence on systemic metabolism are all regulated by HIF to varying degrees. In the hypothalamus, HIF mostly plays a role in inhibiting energy uptake and promoting energy expenditure, which depends not only on the single effect of HIF or a single part of the hypothalamus. In this paper, we summarize the recent progress in the central regulation of metabolism, describe in detail the role of HIF in various functions of the hypothalamus and related molecular mechanisms, and reveal that HIF is deeply involved in hypothalamic-mediated metabolic regulation.
Collapse
Affiliation(s)
- Dan Du
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yugang Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Canjun Zhu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Jia Sun, ; Hong Chen, ; Canjun Zhu,
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jia Sun, ; Hong Chen, ; Canjun Zhu,
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jia Sun, ; Hong Chen, ; Canjun Zhu,
| |
Collapse
|
31
|
Boz Z, Hu M, Yu Y, Huang XF. N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep 2020; 10:19185. [PMID: 33154380 PMCID: PMC7644715 DOI: 10.1038/s41598-020-75356-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022] Open
Abstract
Olanzapine is a second-generation antipsychotic (AP) drug commonly prescribed for the treatment of schizophrenia. Recently, olanzapine has been found to cause brain tissue volume loss in rodent and primate studies; however, the underlying mechanism remains unknown. Abnormal autophagy and oxidative stress have been implicated to have a role in AP-induced neurodegeneration, while N-acetylcysteine (NAC) is a potent antioxidant, shown to be beneficial in the treatment of schizophrenia. Here, we investigate the role of olanzapine and NAC on cell viability, oxidative stress, mitochondrial mass and mitophagy in hypothalamic cells. Firstly, cell viability was assessed in mHypoA-59 and mHypoA NPY/GFP cells using an MTS assay and flow cytometric analyses. Olanzapine treated mHypoA-59 cells were then assessed for mitophagy markers and oxidative stress; including quantification of lysosomes, autophagosomes, LC3B-II, p62, superoxide anion (O2–) and mitochondrial mass. NAC (10 mM) was used to reverse the effects of olanzapine (100 µM) on O2−, mitochondrial mass and LC3B-II. We found that olanzapine significantly impacted cell viability in mHypoA-59 hypothalamic cells in a dose and time-dependent manner. Olanzapine inhibited mitophagy, instigated oxidative stress and prompted mitochondrial abnormalities. NAC was able to mitigate olanzapine-induced effects. These findings suggest that high doses of olanzapine may cause neurotoxicity of hypothalamic neurons via increased production of reactive oxygen species (ROS), mitochondrial damage and mitophagy inhibition. This could in part explain data suggesting that APs may reduce brain volume.
Collapse
Affiliation(s)
- Zehra Boz
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
32
|
Loganathan N, McIlwraith EK, Belsham DD. BPA Differentially Regulates NPY Expression in Hypothalamic Neurons Through a Mechanism Involving Oxidative Stress. Endocrinology 2020; 161:5910085. [PMID: 32960947 DOI: 10.1210/endocr/bqaa170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, interferes with reproduction and is also considered an obesogen. The neuropeptide Y (NPY) neurons of the hypothalamus control both food intake and reproduction and have emerged as potential targets of BPA. These functionally diverse subpopulations of NPY neurons are differentially regulated by peripheral signals, such as estrogen and leptin. Whether BPA also differentially alters Npy expression in subpopulations of NPY neurons, contributing to BPA-induced endocrine dysfunction is unclear. We investigated the response of 6 immortalized hypothalamic NPY-expressing cell lines to BPA treatment. BPA upregulated Npy mRNA expression in 4 cell lines (mHypoA-59, mHypoE-41, mHypoA-2/12, mHypoE-42), and downregulated Npy in 2 lines (mHypoE-46, mHypoE-44). This differential expression of Npy occurred concurrently with differential expression of estrogen receptor mRNA levels. Inhibition of G-protein coupled estrogen receptor GPR30 or estrogen receptor β prevented the BPA-mediated decrease in Npy, whereas inhibition of energy sensor 5' adenosine monophosphate-activated protein kinase (AMPK) with compound C prevented BPA-induced increase in Npy. BPA also altered neuroinflammatory and oxidative stress markers in both mHypoA-59 and mHypoE-46 cell lines despite the differential regulation of Npy. Remarkably, treatment with BPA in an antioxidant-rich media, Neurobasal A (NBA), or with reactive oxygen species scavenger tauroursodeoxycholic acid mitigated the BPA-induced increase and decrease in Npy. Furthermore, 2 antioxidant species from NBA-N-acetylcysteine and vitamin B6-diminished the induction of Npy in the mHypoA-59 cells, demonstrating these supplements can counteract BPA-induced dysregulation in certain subpopulations. Overall, these results illustrate the differential regulation of Npy by BPA in neuronal subpopulations, and point to oxidative stress as a pathway that can be targeted to block BPA-induced Npy dysregulation in hypothalamic neurons.
Collapse
Affiliation(s)
- Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics, University of Toronto, Toronto, Ontario, Canada
- Department of Gynaecology and Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Damiano S, Sozio C, La Rosa G, Guida B, Faraonio R, Santillo M, Mondola P. Metabolism Regulation and Redox State: Insight into the Role of Superoxide Dismutase 1. Int J Mol Sci 2020; 21:ijms21186606. [PMID: 32927603 PMCID: PMC7554782 DOI: 10.3390/ijms21186606] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism and redox state are strictly linked; energy metabolism is a source of reactive oxygen species (ROS) that, in turn, regulate the flux of metabolic pathways. Moreover, to assure redox homeostasis, metabolic pathways and antioxidant systems are often coordinately regulated. Several findings show that superoxide dismutase 1 (SOD1) enzyme has effects that go beyond its superoxide dismutase activity and that its functions are not limited to the intracellular compartment. Indeed, SOD1 is secreted through unconventional secretory pathways, carries out paracrine functions and circulates in the blood bound to lipoproteins. Striking experimental evidence links SOD1 to the redox regulation of metabolism. Important clues are provided by the systemic effects on energy metabolism observed in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). The purpose of this review is to analyze in detail the involvement of SOD1 in redox regulation of metabolism, nutrient sensing, cholesterol metabolism and regulation of mitochondrial respiration. The scientific literature on the relationship between ALS, mutated SOD1 and metabolism will also be explored, in order to highlight the metabolic functions of SOD1 whose biological role still presents numerous unexplored aspects that deserve further investigation.
Collapse
Affiliation(s)
- Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Concetta Sozio
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy;
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
- Correspondence: (M.S.); (P.M.); Tel.: +39-081-746-3233 (M.S.); +39-081-746-3225 (P.M.)
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
- Correspondence: (M.S.); (P.M.); Tel.: +39-081-746-3233 (M.S.); +39-081-746-3225 (P.M.)
| |
Collapse
|
34
|
Khaltourina D, Matveyev Y, Alekseev A, Cortese F, Ioviţă A. Aging Fits the Disease Criteria of the International Classification of Diseases. Mech Ageing Dev 2020; 189:111230. [PMID: 32251691 DOI: 10.1016/j.mad.2020.111230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
The disease criteria used by the World Health Organization (WHO) were applied to human biological aging in order to assess whether aging can be classified as a disease. These criteria were developed for the 11th revision of the International Classification of Diseases (ICD) and included disease diagnostics, mechanisms, course and outcomes, known interventions, and linkage to genetic and environmental factors. RESULTS: Biological aging can be diagnosed with frailty indices, functional, blood-based biomarkers. A number of major causal mechanisms of human aging involved in various organs have been described, such as inflammation, replicative cellular senescence, immune senescence, proteostasis failures, mitochondrial dysfunctions, fibrotic propensity, hormonal aging, body composition changes, etc. We identified a number of clinically proven interventions, as well as genetic and environmental factors of aging. Therefore, aging fits the ICD-11 criteria and can be considered a disease. Our proposal was submitted to the ICD-11 Joint Task force, and this led to the inclusion of the extension code for "Ageing-related" (XT9T) into the "Causality" section of the ICD-11. This might lead to greater focus on biological aging in global health policy and might provide for more opportunities for the new therapy developers.
Collapse
Affiliation(s)
- Daria Khaltourina
- Department of Risk Factor Prevention, Federal Research Institute for Health Organization and Informatics of Ministry of Health of the Russian Federation, Dobrolyubova St. 11, Moscow, 127254, Russia; International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France.
| | - Yuri Matveyev
- Research Lab, Moscow Regional Research and Clinical Institute, Schepkina St. 61/2 k.1, Moscow, 129110, Russia
| | - Aleksey Alekseev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991, Russia
| | - Franco Cortese
- Biogerontology Research Foundation, Apt 2354 Chynoweth House, Trevissome Park, Truro, London, TR4 8UN, UK
| | - Anca Ioviţă
- International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France
| |
Collapse
|
35
|
Tobore TO. Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in food addiction and obesity. Behav Brain Res 2020; 384:112560. [DOI: 10.1016/j.bbr.2020.112560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
36
|
Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, Buckley ST, Farkas E, Fekete C, Frederiksen KS, Helms HCC, Jeppesen JF, John LM, Pyke C, Nøhr J, Lu TT, Polex-Wolf J, Prevot V, Raun K, Simonsen L, Sun G, Szilvásy-Szabó A, Willenbrock H, Secher A, Knudsen LB, Hogendorf WFJ. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020; 5:133429. [PMID: 32213703 DOI: 10.1172/jci.insight.133429] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Semaglutide, a glucagon-like peptide 1 (GLP-1) analog, induces weight loss, lowers glucose levels, and reduces cardiovascular risk in patients with diabetes. Mechanistic preclinical studies suggest weight loss is mediated through GLP-1 receptors (GLP-1Rs) in the brain. The findings presented here show that semaglutide modulated food preference, reduced food intake, and caused weight loss without decreasing energy expenditure. Semaglutide directly accessed the brainstem, septal nucleus, and hypothalamus but did not cross the blood-brain barrier; it interacted with the brain through the circumventricular organs and several select sites adjacent to the ventricles. Semaglutide induced central c-Fos activation in 10 brain areas, including hindbrain areas directly targeted by semaglutide, and secondary areas without direct GLP-1R interaction, such as the lateral parabrachial nucleus. Automated analysis of semaglutide access, c-Fos activity, GLP-1R distribution, and brain connectivity revealed that activation may involve meal termination controlled by neurons in the lateral parabrachial nucleus. Transcriptomic analysis of microdissected brain areas from semaglutide-treated rats showed upregulation of prolactin-releasing hormone and tyrosine hydroxylase in the area postrema. We suggest semaglutide lowers body weight by direct interaction with diverse GLP-1R populations and by directly and indirectly affecting the activity of neural pathways involved in food intake, reward, and energy expenditure.
Collapse
Affiliation(s)
| | | | | | | | | | - Arian F Baquero
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | - Erzsébet Farkas
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Fekete
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Hans Christian C Helms
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | | | | | | | | | | | | | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | | | | | - Gao Sun
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | - Anett Szilvásy-Szabó
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Hanni Willenbrock
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | | | | | | |
Collapse
|
37
|
Panagopoulos D, Antoniades E, Karydakis P, Giakoumettis D, Themistocleous M. Postoperative Tetraplegia to a Child after Cerebellar Pilocytic Astrocytoma Excision at Prone Position: Case Report and Literature Review. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e920213. [PMID: 32161253 PMCID: PMC7081953 DOI: 10.12659/ajcr.920213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Various factors have been implicated in the pathogenesis of infarction after posterior fossa surgery such as venous air embolism, patient's position (seated or prone), hyperflexion of the neck, excessive spinal cord traction, cervical canal stenosis, and systemic arterial hypotension. The main aim of this case report was to elucidate a case in which hydrogen peroxide was implicated in a major and systemic complication after a neurosurgical procedure. CASE REPORT We describe the case of a 5-year-old female patient who was admitted to our hospital because of a cerebellar hemispheric astrocytoma associated with obstructive hydrocephalus and accompanied by 2 syringomyelic cavities in the cervicothoracic portion of the spinal cord. Immediately after gross total resection of the lesion, impaired mobility of the upper and lower extremities was observed, a finding that was not consistent with intraoperative neurophysiologic monitoring data. Hydrogen peroxide had been judiciously used to irrigate the resection tumor cavity. In the next few postoperative days, the patient suffered from transient diabetes insipidus and hyperpyrexia, indicative of hypothalamic injury. CONCLUSIONS Neurological evaluation of the patient, after stabilization of her medical condition, revealed residual spasticity of upper and lower extremities, rendering her able to mobilize via the aid of wheelchair only. The most possible pathophysiologic explanation of her neurological deterioration, including hypothalamic dysfunction, was analyzed. The role of hydrogen peroxide as a source of free radical formation, and its co-responsibility for vascular platelet aggregation and vasoconstriction was considered, upon case review, the main responsible etiologic factor.
Collapse
Affiliation(s)
| | - Elias Antoniades
- Department of Neurosurgery, Agia Sophia, Pediatric Hospital, Athens, Greece
| | | | - Dimitrios Giakoumettis
- Department of Neurosurgery, University of Athens, Medical School, Evangelismos Hospital, Athens, Greece
| | | |
Collapse
|
38
|
Okolo KO, Orisakwe OE, Siminialayi IM. Dietary supplementation of Pleurotus tuber regium in rat feed ameliorates metabolic and hematotoxicity induced by carbon tetrachloride. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0188/jbcpp-2019-0188.xml. [PMID: 31926083 DOI: 10.1515/jbcpp-2019-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/24/2019] [Indexed: 01/02/2023]
Abstract
Pleurotus tuber regium, a wild edible mushroom can reduce free radical-mediated injury and oxidative stress induced by carbon tetrachloride (CCl4) via improvement of antioxidant capacity. This work evaluates the protective effects of this mushroom against the metabolic and hematological toxicity induced by CCl4. Sixty male Sprague Dawley rats were divided into six groups (n = 10). Group I received olive oil (3 mL/kg) i.p. twice weekly for 13 weeks, while maintaining free access to food and water ad libitum (negative control). Group II received 3 mL/kg (30% CCl4 in olive oil) injected i.p. twice weekly, while Groups III, IV, and V received 100, 200, and 500 mg wild edible P. tuber regium (33.3% in feed) daily in addition to 3 mL/kg CCl4 in olive oil injected twice weekly i.p. Group VI received olive oil (3 mL/kg) i.p. twice weekly for 13 weeks in addition to 500 mg P. tuber regium (33.3% in feed) daily. The body weight (b.w.), feed intake (FI), and water intake (WI) were obtained weekly, while the hematological indices and oxidative stress parameters were carried out shortly after necropsy on days 30, 60, and 90. Treatment with CCl4 significantly (p < 0.05) decreased the b.w., FI and WI, feed efficiency, ascorbic acid, α-tocopherol, and antioxidant enzymes, superoxide dismutase, catalase, total glutathione, and peroxidase, while increasing the oxidative stress as measured by malondialdehyde in CCl4 only group when compared with control. Supplementation of feed with P. tuber regium reversed the effects of CCl4. Pleurotus tuber regium ameliorated the CCl4-induced metabolic and hematotoxicity by improving the antioxidant capacity.
Collapse
Affiliation(s)
- Kenneth Obinna Okolo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Port Harcourt, Elele Rivers State, Nigeria
| | - Orish Ebere Orisakwe
- Toxicology Unit, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt Rivers State, Nigeria
| | - Iyeopu Minakiri Siminialayi
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
39
|
Mulcahy MJ, Huard SM, Paulo JA, Wang JH, McKinney S, Henderson BJ, Lester HA. Brain Region-Specific nAChR and Associated Protein Abundance Alterations Following Chronic Nicotine and/or Menthol Exposure. J Proteome Res 2019; 19:36-48. [PMID: 31657575 DOI: 10.1021/acs.jproteome.9b00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of biomarkers that are altered following nicotine/tobacco exposure can facilitate the investigation of tobacco-related diseases. Nicotinic acetylcholine receptors (nAChRs) are pentameric cation channels expressed in the mammalian central and peripheral nervous systems and the neuromuscular junction. Neuronal nAChR subunits (11) have been identified in mammals (α2-7, α9-10, β2-4). We examined changes in β2 nAChR subunit protein levels after chronic nicotine, (±)-menthol, or nicotine co-administered with (±)-menthol in nine murine brain regions. Our investigation of β2 nAChR subunit level changes identified the hypothalamus as a novel region of interest for menthol exposure that demonstrated increased β2 nAChR levels after (±)-menthol plus nicotine exposure compared to nicotine exposure alone. Using mass spectrometry, we further characterized changes in membrane protein abundance profiles in the hypothalamus to identify potential biomarkers of (±)-menthol plus nicotine exposure and proteins that may contribute to the elevated β2 nAChR subunit levels. In the hypothalamus, 272 membrane proteins were identified with altered abundances after chronic nicotine plus menthol exposure with respect to chronic nicotine exposure without menthol. A comprehensive investigation of changes in nAChR and non-nAChR protein expression resulting from (±)-menthol plus nicotine in the brain may establish biomarkers to better understand the effects of these drugs on addiction and addiction-related diseases.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Stephanie M Huard
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Jonathan H Wang
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Sheri McKinney
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Brandon J Henderson
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States.,Department of Biomedical Sciences , Joan C. Edwards School of Medicine, Marshall University , Huntington , West Virginia 25701 , United States
| | - Henry A Lester
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| |
Collapse
|
40
|
Geller S, Arribat Y, Netzahualcoyotzi C, Lagarrigue S, Carneiro L, Zhang L, Amati F, Lopez-Mejia IC, Pellerin L. Tanycytes Regulate Lipid Homeostasis by Sensing Free Fatty Acids and Signaling to Key Hypothalamic Neuronal Populations via FGF21 Secretion. Cell Metab 2019; 30:833-844.e7. [PMID: 31474567 DOI: 10.1016/j.cmet.2019.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/28/2018] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus plays a key role in the detection of energy substrates to regulate energy homeostasis. Tanycytes, the hypothalamic ependymo-glia, are located at a privileged position to integrate multiple peripheral inputs. We observed that tanycytes produce and secrete Fgf21 and are located close to Fgf21-sensitive neurons. Fasting, likely via the increase in circulating fatty acids, regulates this central Fgf21 production. Tanycytes store palmitate in lipid droplets and oxidize it, leading to the activation of a reactive oxygen species (ROS)/p38-MAPK signaling pathway, which is essential for tanycytic Fgf21 expression upon palmitate exposure. Tanycytic Fgf21 deletion triggers an increase in lipolysis, likely due to impaired inhibition of key neurons during fasting. Mice deleted for tanycytic Fgf21 exhibit increased energy expenditure and a reduction in fat mass gain, reminiscent of a browning phenotype. Our results suggest that tanycytes sense free fatty acids to maintain body lipid homeostasis through Fgf21 signaling within the hypothalamus.
Collapse
Affiliation(s)
- Sarah Geller
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Yoan Arribat
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Sylviane Lagarrigue
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Lianjun Zhang
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Francesca Amati
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; Institute of Sports Sciences, University of Lausanne, Lausanne 1005, Switzerland; Service of Endocrinology, Diabetology, and Metabolism, Department of Medicine, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Isabel C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France.
| |
Collapse
|
41
|
Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties. Int J Mol Sci 2019; 20:ijms20184556. [PMID: 31540021 PMCID: PMC6770307 DOI: 10.3390/ijms20184556] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.
Collapse
|
42
|
Molecular Mechanisms of Hypothalamic Insulin Resistance. Int J Mol Sci 2019; 20:ijms20061317. [PMID: 30875909 PMCID: PMC6471380 DOI: 10.3390/ijms20061317] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin exists in the central nervous system, where it executes two important functions in the hypothalamus: the suppression of food intake and the improvement of glucose metabolism. Recent studies have shown that both are exerted robustly in rodents and humans. If intact, these functions exert beneficial effects on obesity and diabetes, respectively. Disruption of both occurs due to a condition known as hypothalamic insulin resistance, which is caused by obesity and the overconsumption of saturated fat. An enormous volume of literature addresses the molecular mechanisms of hypothalamic insulin resistance. IKKβ and JNK are major players in the inflammation pathway, which is activated by saturated fatty acids that induce hypothalamic insulin resistance. Two major tyrosine phosphatases, PTP-1B and TCPTP, are upregulated in chronic overeating. They dephosphorylate the insulin receptor and insulin receptor substrate proteins, resulting in hypothalamic insulin resistance. Prolonged hyperinsulinemia with excessive nutrition activates the mTOR/S6 kinase pathway, thereby enhancing IRS-1 serine phosphorylation to induce hypothalamic insulin resistance. Other mechanisms associated with this condition include hypothalamic gliosis and disturbed insulin transport into the central nervous system. Unveiling the precise molecular mechanisms involved in hypothalamic insulin resistance is important for developing new ways of treating obesity and type 2 diabetes.
Collapse
|
43
|
Maciejczyk M, Żebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What's New? Int J Mol Sci 2019; 20:ijms20040874. [PMID: 30781611 PMCID: PMC6413037 DOI: 10.3390/ijms20040874] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
The latest studies have indicated a strong relationship between systemic insulin resistance (IR) and higher incidence of neurodegeneration, dementia, and mild cognitive impairment. Although some of these abnormalities could be explained by chronic hyperglycaemia, hyperinsulinemia, dyslipidaemia, and/or prolonged whole-body inflammation, the key role is attributed to the neuronal redox imbalance and oxidative damage. In this mini review, we provide a schematic overview of intracellular oxidative stress and mitochondrial abnormalities in the IR brain. We highlight important correlations found so far between brain oxidative stress, ceramide generation, β-amyloid accumulation, as well as neuronal apoptosis in the IR conditions.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| |
Collapse
|
44
|
Sex-dependent effect on mitochondrial and oxidative stress parameters in the hypothalamus induced by prepubertal stress and access to high fat diet. Neurochem Int 2019; 124:114-122. [PMID: 30639195 DOI: 10.1016/j.neuint.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Some factors related to lifestyle, including stress and high-fat diet (HFD) consumption, are associated with higher prevalence of obesity. These factors can lead to an imbalance between ROS production and antioxidant defenses and to mitochondrial dysfunctions, which, in turn, could cause metabolic impairments, favoring the development of obesity. However, little is known about the interplay between these factors, particularly at early ages, and whether long-term sex-specific changes may occur. Here, we evaluated whether social isolation during the prepubertal period only, associated or not with chronic HFD, can exert long-term effects on oxidative status parameters and on mitochondrial function in the whole hypothalamus, in a sex-specific manner. METHODS Wistar male and female rats were divided into two groups (receiving standard chow or standard chow + HFD), that were subdivided into exposed or not to social isolation during the prepubertal period. Oxidative status parameters, and mitochondrial function were evaluated in the hypothalamus in the adult age. RESULTS Regarding antioxidant enzymes activities, HFD decreased GPx activity in the hypothalamus, while increasing SOD activity in females. Females also presented increased total thiols; however, non-protein thiols were lower. Main effects of stress and HFD were observed in TBARS levels in males, with both factors decreasing this parameter. Additionally, HFD increased complex IV activity, and decreased mitochondrial mass in females. Complex I-III activity was higher in males compared to females. CONCLUSION Stress during the prepubertal period and chronic consumption of HFD had persistent sex-specific effects on oxidative status, as well as on its consequences for the cell and for mitochondrial function. HFD had more detrimental effects on females, inducing oxidative imbalance, which resulted in damage to the mitochondria. This HFD-induced imbalance may be related to the development of obesity.
Collapse
|
45
|
Rabenau M, Unger M, Drewe J, Culmsee C. Metabolic switch induced by Cimicifuga racemosa extract prevents mitochondrial damage and oxidative cell death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:107-116. [PMID: 30599889 DOI: 10.1016/j.phymed.2018.09.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cimicifuga racemosa extract is a well-established therapy for menopausal symptoms. The mechanisms underlying the multiple therapeutic effects of Cimicifuga extract, e.g. reducing hot flushes and profuse sweating are not well defined. Recent studies revealed pronounced effects of Ze 450, a Cimicifuga racemosa extract that was produced by a standardized procedure, on energy metabolism through activation of AMP-activated protein kinase in vitro and beneficial anti-diabetic effects in vivo. PURPOSE The aim of the study was to investigate the effects of Ze 450 on energy metabolism. Since mitochondria are the key regulators of cellular energy homeostasis, we wanted to elucidate whether Ze 450 affects mitochondrial resilience and can provide protection against oxidative damage in neuronal and liver cells. METHODS/STUDY DESIGN In this study, we investigated the effects of Ze 450 (1-200 µg/ml) on mitochondrial integrity and function, and cell viability in models of oxidative stress induced by erastin and RSL-3 in neuronal and liver cells. The effects of Ze 450 in control conditions and after induction of oxidative stress were analyzed using FACS for detecting lipid peroxidation (BODIPY), mitochondrial ROS formation (MitoSOX), mitochondrial membrane potential (TMRE) and cell death (AnnexinV/PI staining). Furthermore, we determined metabolic activity (MTT assay), ATP levels and mitochondrial respiration and glycolysis (oxygen consumption rates, extracellular acidification rates; Seahorse). RESULTS Ze 450 preserved mitochondrial integrity and ATP levels, and prevented mitochondrial ROS formation, loss of mitochondrial membrane potential and cell death. Notably, Cimicifuga racemosa extract alone did not alter mitochondrial ROS levels, and subtle inhibitory effects on cell proliferation were reversed after withdrawal of the extract. In addition, Ze 450 did not exert toxic effects to liver cells, but rather protected these from the oxidative challenge. Further analysis of the mitochondrial oxygen consumption rate and the extracellular acidification rate revealed that Ze 450 mediated a switch from mitochondrial respiration to glycolysis, and this metabolic shift was a prerequisite for the protective effects against oxidative damage. CONCLUSION In conclusion, the bioenergetic shift induced by Ze 450 exerted protective effects in different cell types, and offers promising therapeutic potential in age related diseases involving oxidative stress and mitochondrial damage.
Collapse
Affiliation(s)
- Malena Rabenau
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany; Center for Mind Brain and Behavior, Marburg 35032, Germany
| | - Matthias Unger
- Preclinical Research, Max Zeller Soehne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Preclinical Research, Max Zeller Soehne AG, Romanshorn, Switzerland
| | - Carsten Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany; Center for Mind Brain and Behavior, Marburg 35032, Germany.
| |
Collapse
|
46
|
Bayliak MM, Abrat OB, Storey JM, Storey KB, Lushchak VI. Interplay between diet-induced obesity and oxidative stress: Comparison between Drosophila and mammals. Comp Biochem Physiol A Mol Integr Physiol 2018; 228:18-28. [PMID: 30385171 DOI: 10.1016/j.cbpa.2018.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
Abstract
Obesity caused by excessive fat accumulation in adipocytes is a growing global problem and is a major contributing risk factor for many chronic metabolic diseases. There is increasing evidence that oxidative stress plays a crucial role in both obesity progression and obesity-related complications. In recent years, Drosophila models of diet-induced obesity and associated pathologies have been successfully developed through manipulation of carbohydrate or fat concentrations in the food. Obese flies accumulate triacylglycerols in the fat body, an organ homologous to mammalian adipose tissue and exhibit metabolic and physiological complications including hyperglycemia, redox imbalance and shortened longevity; these are all similar to those observed in obese humans. In this review, we summarize current data on the mechanisms of oxidative stress induction in obesity, with emphasis on metabolic switches and the involvement of redox-responsive signaling pathways such as NF-κB and Nfr2. The recent achievements with D. melanogaster model suggest a complicated relationship between obesity, oxidative stress, and longevity but the Drosophila model offers probably the best opportunities to delve further into unraveling these interactions, particularly the roles of antioxidants and of Nrf2-regulated responses, in order to increase our understanding of the obese metabolic phenotype and test and develop anti-obesity pharmaceuticals.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk 76018, Ukraine.
| | - Olexandra B Abrat
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk 76018, Ukraine.
| | - Janet M Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
47
|
Rezg R, Abot A, Mornagui B, Aydi S, Knauf C. Effects of Bisphenol S on hypothalamic neuropeptides regulating feeding behavior and apelin/APJ system in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:459-466. [PMID: 29909315 DOI: 10.1016/j.ecoenv.2018.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Since 2010, Bisphenol A (BPA), an endocrine disruptor has been restricted and replaced by analogues like Bisphenol S (BPS). However, little is known about BPS effects and growing concern have suspected the "BPA-free" Label. Several recent studies suggest that BPS is associated with increased risk of diabetes and obesity. However, the underlying mechanisms remain unidentified. The current study investigates investigate BPS effects on hypothalamic neuropeptides regulating feeding behavior, either orexigenic or anorexigenic in Swiss Albino mice. We also studied the effect of BPS on the apelinergic system (apelin/apelin receptor (APJ)) as an original physiological system with pleiotropic actions. Bisphenol S at 25, 50, 100 µg/kg was administered to mice in water drink for 10 weeks started after weaning. Our results showed that BPS exposure alters orexigenic hypothalamic neuropeptide (AgRP) regulating feeding behavior but not anorexigenic neuropeptides (POMC, CART). Such orexigenic alterations may underlay appetite disorders leading to a concomitant food intake and body weight gain increase. In addition, data show that BPS affects the hypothalamic apelinergic system. We found a significant decrease in APJ mRNA but not in apelin expression. Based on hypothalamic APJ distribution, we suggested a potent specific physiological alteration of this receptor in mediating neuroendocrine responses in hypothalamus. Thus, our findings provide that BPS exposure could contribute to the development of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Raja Rezg
- University of Monastir, High Institute of Biotechnology of Monastir, Laboratory of Bioresources: Integrative Biology and Valorisation BIOLIVAL, Tunisia.
| | - Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3; NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, France
| | - Bessem Mornagui
- University of Gabes, Faculty of Sciences of Gabes, Laboratoire de Biodiversité et valorisation des bioressources des zones arides, UR 11ES86, Tunisia
| | - Samir Aydi
- University of Gabes, Faculty of Sciences of Gabes, Laboratoire de Biodiversité et valorisation des bioressources des zones arides, UR 11ES86, Tunisia
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3; NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, France
| |
Collapse
|
48
|
Zhang M, Chen Y, Xu H, Yang L, Yuan F, Li L, Xu Y, Chen Y, Zhang C, Lin G. Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration. Dev Cell 2018; 46:397-409.e5. [PMID: 30130530 PMCID: PMC6107305 DOI: 10.1016/j.devcel.2018.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/28/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
Melanocortin 4 receptor (Mc4r) plays a crucial role in the central control of energy homeostasis, but its role in peripheral organs has not been fully explored. We have investigated the roles of hypothalamus-mediated energy metabolism during Xenopus limb regeneration. We report that hypothalamus injury inhibits Xenopus tadpole limb regeneration. By loss-of-function and gain-of-function studies, we show that Mc4r signaling is required for limb regeneration in regeneration-competent tadpoles and stimulates limb regeneration in later-stage regeneration-defective tadpoles. It regulates limb regeneration through modulating energy homeostasis and ROS production. Even more interestingly, our results demonstrate that Mc4r signaling is regulated by innervation and α-MSH substitutes for the effect of nerves in limb regeneration. Mc4r signaling is also required for mouse digit regeneration. Thus, our findings link vertebrate limb regeneration with Mc4r-mediated energy homeostasis and provide a new avenue for understanding Mc4r signaling in the peripheral organs.
Collapse
Affiliation(s)
- Mengshi Zhang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Youwei Chen
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Hanqian Xu
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Li Yang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Feng Yuan
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Lei Li
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Ying Xu
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Ying Chen
- Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chao Zhang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Gufa Lin
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Ferrer B, Peres TV, dos Santos AA, Bornhorst J, Morcillo P, Gonçalves CL, Aschner M. Methylmercury Affects the Expression of Hypothalamic Neuropeptides That Control Body Weight in C57BL/6J Mice. Toxicol Sci 2018; 163:557-568. [PMID: 29850906 PMCID: PMC5974793 DOI: 10.1093/toxsci/kfy052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylmercury (MeHg) is an environmental pollutant that affects primarily the central nervous system (CNS), causing neurological alterations. An early symptom of MeHg poisoning is the loss of body weight and appetite. Moreover, the CNS has an important role in controlling energy homeostasis. It is known that in the hypothalamus nutrient and hormonal signals converge to orchestrate control of body weight and food intake. In this study, we investigated if MeHg is able to induce changes in the expression of key hypothalamic neuropeptides that regulate energy homeostasis. Thus, hypothalamic neuronal mouse cell line GT 1-7 was treated with MeHg at different concentrations (0, 0.5, 1, and 5 µM). MeHg induced the expression of the anorexigenic neuropeptide pro-omiomelanocortin (Pomc) and the orexigenic peptide Agouti-related peptide (Agrp) in a concentration-dependent manner, suggesting deregulation of mechanisms that control body weight. To confirm these in vitro observations, 8-week-old C57BL/6J mice (males and females) were exposed to MeHg in drinking water, modeling the most prevalent exposure route to this metal. After 30-day exposure, no changes in body weight were detected. However, MeHg treated males showed a significant decrease in fat depots. Moreover, MeHg affected the expression of hypothalamic neuropeptides that control food intake and body weight in a gender- and dose-dependent manner. Thus, MeHg increases Pomc mRNA only in males in a dose-dependent way, and it does not have effects on the expression of Agrp mRNA. The present study shows, for first time, that MeHg is able to induce changes in hypothalamic neuropeptides that regulate energy homeostasis, favoring an anorexigenic/catabolic profile.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Tanara Vieira Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Cinara Ludvig Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
50
|
Haissaguerre M, Ferrière A, Simon V, Saucisse N, Dupuy N, André C, Clark S, Guzman-Quevedo O, Tabarin A, Cota D. mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin. Mol Metab 2018; 12:98-106. [PMID: 29699927 PMCID: PMC6001919 DOI: 10.1016/j.molmet.2018.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Nutrient availability modulates reactive oxygen species (ROS) production in the hypothalamus. In turn, ROS regulate hypothalamic neuronal activity and feeding behavior. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is an important cellular integrator of the action of nutrients and hormones. Here we tested the hypothesis that modulation of mTORC1 activity, particularly in Proopiomelanocortin (POMC)-expressing neurons, mediates the cellular and behavioral effects of ROS. METHODS C57BL/6J mice or controls and their knockout (KO) littermates deficient either for the mTORC1 downstream target 70-kDa ribosomal protein S6 kinase 1 (S6K1) or for the mTORC1 component Rptor specifically in POMC neurons (POMC-rptor-KO) were treated with an intracerebroventricular (icv) injection of the ROS hydrogen peroxide (H2O2) or the ROS scavenger honokiol, alone or, respectively, in combination with the mTORC1 inhibitor rapamycin or the mTORC1 activator leptin. Oxidant-related signal in POMC neurons was assessed using dihydroethidium (DHE) fluorescence. RESULTS Icv administration of H2O2 decreased food intake, while co-administration of rapamycin, whole-body deletion of S6K1, or deletion of rptor in POMC neurons impeded the anorectic action of H2O2. H2O2 also increased oxidant levels in POMC neurons, an effect that hinged on functional mTORC1 in these neurons. Finally, scavenging ROS prevented the hypophagic action of leptin, which in turn required mTORC1 to increase oxidant levels in POMC neurons and to inhibit food intake. CONCLUSIONS Our results demonstrate that ROS and leptin require mTORC1 pathway activity in POMC neurons to increase oxidant levels in POMC neurons and consequently decrease food intake.
Collapse
Affiliation(s)
- Magalie Haissaguerre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Department of Endocrinology, Hôpital Haut Lévèque, CHU Bordeaux, F-33600 Pessac, France
| | - Amandine Ferrière
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Department of Endocrinology, Hôpital Haut Lévèque, CHU Bordeaux, F-33600 Pessac, France
| | - Vincent Simon
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Nicolas Saucisse
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Nathalie Dupuy
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Caroline André
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Samantha Clark
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Omar Guzman-Quevedo
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Antoine Tabarin
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Department of Endocrinology, Hôpital Haut Lévèque, CHU Bordeaux, F-33600 Pessac, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|