1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 PMCID: PMC11624874 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Diaz MR, Barney TM, Marsland P, Deak T. Age- and cytokine-dependent modulation of GABAergic transmission within the basolateral amygdala of male Sprague Dawley rats. Neuropharmacology 2025; 267:110304. [PMID: 39827996 DOI: 10.1016/j.neuropharm.2025.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Alcohol binge drinking has a multitude of effects on CNS function, including changes in inflammatory cytokines such as IL-6 and IL-1β that may contribute to mood fluctuations associated with the intoxication-withdrawal cycle. Widely throughout the brain, including the amygdala, IL-6 mRNA is enhanced during intoxication, whereas IL-1β is initially suppressed during alcohol intoxication, with increased expression seen shortly after ethanol clearance, during acute hangover. Furthermore, induction of neuroimmune genes appears to be muted during adolescence in the amygdala, suggesting a broader functional immaturity of the adolescent neuroimmune system in structures involved in negative affect associated with ethanol exposure. However, neither the effect of IL-6 or IL-1β on synaptic function within the amygdala nor the impact of acute intoxication and withdrawal on these cytokines' function are known. To test this, we used whole-cell patch-clamp electrophysiology to assess the effects of IL-6 and IL-1β on GABA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in BLA pyramidal neurons from male rats in early adolescence (P28-40) or adulthood (P70+). These experiments were done in naïve, intoxicated (3-4 h following an intraperitoneal injection of 3.5 g/kg ethanol), and during acute hangover (11-18 h post ethanol injection). In naïve males, we found that IL-6 (10 ng/ml) significantly enhanced sIPSC amplitude only in adults, with no apparent effect in adolescents; this effect of IL-6 in adults was not different during intoxication. Conversely, IL-1β (10 ng/ml) did not alter sIPSC frequency in any group (naïve or hangover adolescents or adults). Unlike our previous work in adult rats, here we found that contextual fear conditioning was not altered in adolescents when conditioned during acute hangover. Together, these observations suggest that IL-6, but not IL-1β, regulation of BLA GABA transmission emerges as a function of age, but is not affected by acute ethanol exposure or hangover for adolescents or adults. Importantly, these findings provide additional evidence to support functional immaturity of the neuroimmune system in adolescence.
Collapse
Affiliation(s)
- Marvin R Diaz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Thaddeus M Barney
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
3
|
Kok LML, Helwegen K, Coveña NF, Heine VM. Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro. J Neurosci Methods 2025; 415:110354. [PMID: 39724963 DOI: 10.1016/j.jneumeth.2024.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused in vitro models. NEW METHOD In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function. RESULTS hPSC-derived microglia significantly reduced cellular debris and altered neuronal morphology by decreasing axonal and dendritic segments and reducing synapse density. Interestingly, despite the decrease in synapse density, neuronal network activity increased. CONCLUSION Our findings underscore the importance of including hPSC-derived microglia in in vitro models to better simulate in vivo neuroglial interactions and provide a platform for investigating neuron-glia dynamics in health and disease.
Collapse
Affiliation(s)
- L M L Kok
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - K Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - N F Coveña
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam 1081 HV, The Netherlands; Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - V M Heine
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam 1081 HV, The Netherlands; Department of Child and Adolescent Psychiatry, Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam UMC location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
4
|
Kumaraguru S, Morgan J, Wong FK. Activity-dependent regulation of microglia numbers by pyramidal cells during development shape cortical functions. SCIENCE ADVANCES 2025; 11:eadq5842. [PMID: 39970202 PMCID: PMC11838000 DOI: 10.1126/sciadv.adq5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Beyond their role as immune sentinels, microglia are actively involved in establishing and maintaining cortical circuits. Alteration in microglial numbers has been associated with abnormal behaviors akin to those observed in neurodevelopmental disorders. Consequently, establishing the appropriate microglial numbers during development is crucial for ensuring normal cortical function. Here, we uncovered a dynamic relationship between pyramidal cells and microglia that tunes microglial numbers and development through distinct phases of mouse postnatal development. Changes in pyramidal cell activity during development induce differential release of activity-dependent proteins such as Activin A, which, in turn, adjusts microglial numbers accordingly. Decoupling of this relationship not only changes microglial numbers but has a long-term consequence on their role as synaptic organizers, which ultimately affects cortical function. Our findings reveal that microglia adapt their numbers to changes in pyramidal cell activity during a critical time window in development, consequently adjusting their numbers and function to the demands of the developing local circuits.
Collapse
Affiliation(s)
- Sanjana Kumaraguru
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - James Morgan
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Fong Kuan Wong
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
5
|
Duffy AS, Eyo UB. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Glia 2025; 73:232-250. [PMID: 39568399 DOI: 10.1002/glia.24650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Over the past two decades, microglia and astrocytes have emerged as critical mediators of neural circuit formation. Particularly during the postnatal period, both glial subtypes play essential roles in orchestrating nervous system development through communication with neurons. These functions include regulating synapse elimination, modulating neuronal density and activity, mediating synaptogenesis, facilitating axon guidance and organization, and actively promoting neuronal survival. Despite the vital roles of both microglia and astrocytes in ensuring homeostatic brain development, the extent to which the postnatal functions of these cells are regulated by sex and the manner in which these glial cells communicate with one another to coordinate nervous system development remain less well understood. Here, we review the critical functions of both microglia and astrocytes independently and synergistically in mediating neural circuit formation, focusing our exploration on the postnatal period from birth to early adulthood.
Collapse
Affiliation(s)
- Abigayle S Duffy
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Gironda SC, Centanni SW, Weiner JL. Early life psychosocial stress increases binge-like ethanol consumption and CSF1R inhibition prevents stress-induced alterations in microglia and brain macrophage population density. Brain Behav Immun Health 2025; 43:100933. [PMID: 39896839 PMCID: PMC11787031 DOI: 10.1016/j.bbih.2024.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025] Open
Abstract
Early life stress (ELS) has lasting consequences on microglia and brain macrophage function. During ELS, microglia and brain macrophages alter their engagement with synapses leading to changes in neuronal excitability. Further, ELS can induce innate immune memory formation in microglia and brain macrophages resulting in altered responsivity to future environmental stimuli. These alterations can result in lasting adaptations in circuit function and may mediate the relationship between ELS and the risk to develop alcohol use disorder (AUD). Whether microglia and brain macrophages truly mediate this relationship remains elusive. Here, we report: 1) an ELS model, psychosocial stress (PSS), increases binge-like ethanol consumption in early adulthood. 2) Repeated binge-like ethanol consumption increases microglia and brain macrophage population densities across the brain. 3) PSS may elicit innate immune memory formation in microglia and brain macrophages leading to altered population densities following repeated binge-like ethanol consumption. 4) Microglia and brain macrophage inhibition trended towards preventing PSS-evoked changes in binge-like ethanol consumption and normalized microglia and brain macrophage population densities. Therefore, our study suggests that acutely inhibiting microglia and brain macrophage function during periods of early life PSS may prevent innate immune memory formation and assist in reducing the risk to develop AUD.
Collapse
Affiliation(s)
| | - Samuel W. Centanni
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC, 27101, USA
| | | |
Collapse
|
7
|
Cainelli E, Vedovelli L, Bisiacchi P. The mother-child interface: A neurobiological metamorphosis. Neuroscience 2024; 561:92-106. [PMID: 39427701 DOI: 10.1016/j.neuroscience.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
From the start of pregnancy, mother and child induce reciprocal neurobiological changes in the brain that will prove critical for neurodevelopment and survival of both. Molecular communication between mother and fetus is constantly active and persists even after the fetus starts to synthesize its hormones in late gestation. Intriguingly, some mother and fetus exchange cells remain in the other's brain and body with long-lasting effects and memories that do not follow the laws of classical genetics but involve complex epigenetic mechanisms. After childbirth, mother and child go through a transitional phase, a sort of limbo in which both will have a peculiar functioning profile, which is adaptive for contingencies but also renders them vulnerable. The interplay between these two "limbo" states allows for an easier transition to the subsequent phases of development. In this review, we will trace mother's and child's path from pregnancy to the months following birth and, in particular, unravel i) the key features of pregnancy and brain development and the reciprocal influences; ii) how a transitory pattern of functioning characterize mother and child, moving them toward more flexible and evolved forms; and iii) how mother and fetus act during childbirth to promote neuroprotection, pain reduction, and neurophysiological changes. Therefore, this review covers a wide range of topics, integrating neuroanatomical, neurological, biochemical, neurophysiological, and psychological studies in a meaningful way, trying to integrate them in a holistic view of the mother-child interface that is usually neglected.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
8
|
Soleimanpour S, Abavisani M, Khoshrou A, Sahebkar A. Probiotics for autism spectrum disorder: An updated systematic review and meta-analysis of effects on symptoms. J Psychiatr Res 2024; 179:92-104. [PMID: 39265200 DOI: 10.1016/j.jpsychires.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Recent researches highlighted the significant role of the gut-brain axis and gut microbiota in autism spectrum disorder (ASD), a neurobehavioral developmental disorder characterized by a variety of neuropsychiatric and gastrointestinal symptoms, suggesting that alterations in the gut microbiota may correlate with the severity of ASD symptoms. Therefore, this study was designed to conduct a comprehensive systematic review and meta-analysis of the effectiveness of probiotic interventions in ameliorating behavioral symptoms in individuals with ASD. METHODS This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. A comprehensive literature search was performed across multiple databases including the Cochrane Library, PubMed, Web of Science, and Google Scholar up until June 2024. Inclusion criteria encompassed published randomized clinical trials (RCTs), focusing on probiotic interventions and evaluating outcomes related to ASD behavior symptoms. The study utilized Cochrane's Risk of Bias 2 for bias assessment and applied random effect models with inverse variance method for statistical analysis, also addressing publication bias and conducting subgroup analyses through Begg's and Egger's tests to explore the effects of various factors on the outcomes. RESULTS Our meta-analysis, which looked at eight studies with a total of 318 samples from ASD patients aged 1.5-20 years, showed that the probiotic intervention group had significantly better behavioral symptoms compared to the control group. This was shown by a pooled standardized mean difference (SMD) of -0.38 (95% CI: 0.58 to -0.18, p < 0.01). Subgroup analyses revealed significant findings across a variety of factors: studies conducted in the European region showed a notable improvement with an SMD of -0.44 (95%CI: 0.72 to -0.15); interventions lasting longer than three months exhibited a significant improvement with an SMD of -0.43 (95%CI: 0.65 to -0.21); and studies focusing on both participants under and greater than 10 years found significant benefits with an SMDs of -0.37 and -0.40, respectively (95%CI: 0.65 to -0.09, and 95%CI: 0.69 to -0.11, respectively). Moreover, both multi-strain probiotics and single-strain interventions showed an overall significant improvement with a SMD of -0.53 (95%CI: 0.85 to -0.22) and -0.28 (95%CI: 0.54 to -0.02), respectively. Also, the analysis confirmed the low likelihood of publication bias and the robustness of these findings. CONCLUSION Our study highlighted the significant improvement in ASD behavioral symptoms through probiotic supplementation. The need for personalized treatment approaches and further research to confirm efficacy and safety of probiotics in ASD management is emphasized.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abavisani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Liu D, Zhu C, Wei H, Xu Q. A mouse model of schizophrenia induced by autoantibodies against SFT2D2. Neuroscience 2024; 558:30-36. [PMID: 39067681 DOI: 10.1016/j.neuroscience.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Schizophrenia (SCZ) is a highly heterogeneous, severe neuropsychiatric disorder of unknown etiopathology. Increasing data indicate an overlap between schizophrenia and pathological processes related to immunological dysregulation as well as inflammation, such as high levels of pro-inflammatory substances in patients' blood and cerebrospinal fluid and autoantibodies against synaptic and nerve cell membrane proteins. Autoantibodies against SFT2D2 have been reported in patients with SCZ. However, their roles in inflammation have not yet been established. We performed a continuous intracerebroventricular infusion of polyclonal rabbit anti-SFT2D2-IgG in male C57BL/6 mice. Behavioral tests were conducted after 2 weeks of treatment. Our results showed an increased density of microglia and activated astrocytes in the primary somatosensory cortex of the anti-SFT2D2-IgG-infused mice. Quantitative reverse transcription-polymerase chain reactions showed that the expression of pro-inflammatory genes was upregulated in the primary somatosensory cortex and hippocampus of the anti-SFT2D2-IgG-infused mice. Additionally, the mice exhibited defective sensorimotor gating, memory deficits, motor impairment, and anxiety-related behaviors without signs of depression. These findings indicate that anti-SFT2D2 autoantibodies can induce encephalitis, cause a series of behavioral changes associated with schizophrenia, and offer a model for testing novel therapies to improve treatment strategies for a subgroup of patients with SCZ.
Collapse
Affiliation(s)
- Duilin Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Vecchiarelli HA, Bisht K, Sharma K, Weiser Novak S, Traetta ME, Garcia-Segura ME, St-Pierre MK, Savage JC, Willis C, Picard K, Bordeleau M, Vernoux N, Khakpour M, Garg R, Loewen SM, Murray CJ, Grinberg YY, Faustino J, Halvorson T, Lau V, Pluchino S, Vexler ZS, Carson MJ, Manor U, Peruzzotti-Jametti L, Tremblay MÈ. Dark Microglia Are Abundant in Normal Postnatal Development, where they Remodel Synapses via Phagocytosis and Trogocytosis, and Are Dependent on TREM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618087. [PMID: 39463930 PMCID: PMC11507757 DOI: 10.1101/2024.10.15.618087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study examined dark microglia-a state linked to central nervous system pathology and neurodegeneration-during postnatal development in the mouse ventral hippocampus, finding that dark microglia interact with blood vessels and synapses and perform trogocytosis of pre-synaptic axon terminals. Furthermore, we found that dark microglia in development notably expressed C-type lectin domain family 7 member A (CLEC7a), lipoprotein lipase (LPL) and triggering receptor expressed on myeloid cells 2 (TREM2) and required TREM2, differently from other microglia, suggesting a link between their role in remodeling during development and central nervous system pathology. Together, these results point towards a previously under-appreciated role for dark microglia in synaptic pruning and plasticity during normal postnatal development.
Collapse
|
11
|
Christensen GM, Marcus M, Vanker A, Eick SM, Malcolm-Smith S, Suglia SF, Chang HH, Zar HJ, Stein DJ, Hüls A. Joint effects of indoor air pollution and maternal psychosocial factors during pregnancy on trajectories of early childhood psychopathology. Am J Epidemiol 2024; 193:1352-1361. [PMID: 38634620 PMCID: PMC11458196 DOI: 10.1093/aje/kwae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Prenatal indoor air pollution and maternal psychosocial factors have been associated with adverse psychopathology. We used environmental-exposure mixture methodology to investigate joint effects of both exposure classes on child behavior trajectories. For 360 children from the South African Drakenstein Child Health Study, we created trajectories of Child Behavior Checklist scores (at 24, 42, and 60 months) using latent-class linear mixed effects models. Indoor air pollutants and psychosocial factors were measured during pregnancy (second trimester). After adjusting for confounding, single-exposure effects (per natural log-1 unit increase) were assessed using polytomous logistic regression models, joint effects using self-organizing maps, and principal component analysis. Three trajectories were chosen for both internalizing and externalizing problems, with "high" (externalizing) or "increasing" (internalizing) being the most adverse trajectories. High externalizing trajectory was associated with increased exposure to particulate matter of ≤ 10 microns in diameter (PM10) (odds ratio [OR] = 1.25; 95% CI, 1.01-1.55) and self-organizing maps exposure profile most associated with smoking (OR = 2.67; 95% CI, 1.14-6.27). Medium internalizing trajectory was associated with increased emotional intimate partner violence (OR = 2.66; 95% CI, 1.17-5.57), increasing trajectory with increased benzene (OR = 1.24; 95% CI, 1.02-1.51) and toluene (1.21; 95% CI, 1.02-1.44) and the principal component most correlated with benzene and toluene (OR = 1.25; 95% CI, 1.02-1.54). Prenatal exposure to environmental pollutants and psychosocial factors was associated with internalizing and externalizing child behavior trajectories. Understanding joint effects of adverse exposure mixtures will facilitate targeted interventions to prevent childhood psychopathology. This article is part of a Special Collection on Mental Health.
Collapse
Affiliation(s)
- Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town 7700, South Africa
| | - Stephanie M Eick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Susan Malcolm-Smith
- Neuroscience Institute, University of Cape Town, Cape Town 7700, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town 7925, South Africa
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Howard H Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town 7700, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town 7700, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town 7700, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town 7925, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town 7700, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
12
|
Benatti BM, Adiletta A, Sgadò P, Malgaroli A, Ferro M, Lamanna J. Epigenetic Modifications and Neuroplasticity in the Pathogenesis of Depression: A Focus on Early Life Stress. Behav Sci (Basel) 2024; 14:882. [PMID: 39457754 PMCID: PMC11504006 DOI: 10.3390/bs14100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental illness, and it is considered to be one of the leading causes of disability globally. The etiology of MDD is multifactorial, involving an interplay between biological, psychological, and social factors. Early life represents a critical period for development. Exposure to adverse childhood experiences is a major contributor to the global burden of disease and disability, doubling the risk of developing MDD later in life. Evidence suggests that stressful events experienced during that timeframe play a major role in the emergence of MDD, leading to epigenetic modifications, which might, in turn, influence brain structure, function, and behavior. Neuroplasticity seems to be a primary pathogenetic mechanism of MDD, and, similarly to epigenetic mechanisms, it is particularly sensitive to stress in the early postnatal period. In this review, we will collect and discuss recent studies supporting the role of epigenetics and neuroplasticity in the pathogenesis of MDD, with a focus on early life stress (ELS). We believe that understanding the epigenetic mechanisms by which ELS affects neuroplasticity offers potential pathways for identifying novel therapeutic targets for MDD, ultimately aiming to improve treatment outcomes for this debilitating disorder.
Collapse
Affiliation(s)
- Bianca Maria Benatti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
| | - Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (A.A.); (P.S.)
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (A.A.); (P.S.)
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Clinical Center Tourette Syndrome, IRCCS Ospedale San Raffaele, 20127 Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Department of Psychology, Sigmund Freud Private University, 20143 Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy; (B.M.B.); (M.F.)
- Clinical Center Tourette Syndrome, IRCCS Ospedale San Raffaele, 20127 Milan, Italy
| |
Collapse
|
13
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
14
|
Naughton SX, Yang EJ, Iqbal U, Trageser K, Charytonowicz D, Masieri S, Estill M, Wu H, Raval U, Lyu W, Wu QL, Shen L, Simon J, Sebra R, Pasinetti GM. Permethrin exposure primes neuroinflammatory stress response to drive depression-like behavior through microglial activation in a mouse model of Gulf War Illness. J Neuroinflammation 2024; 21:222. [PMID: 39272155 PMCID: PMC11396632 DOI: 10.1186/s12974-024-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom disorder that affects approximately 25-32% of Gulf War veterans and is characterized by a number of symptoms such as cognitive impairment, psychiatric disturbances, chronic fatigue and gastrointestinal distress, among others. While the exact etiology of GWI is unknown, it is believed to have been caused by toxic exposures encountered during deployment in combination with other factors such as stress. In the present study we sought to evaluate the hypothesis that exposure to the toxin permethrin could prime neuroinflammatory stress response and elicit psychiatric symptoms associated with GWI. Specifically, we developed a mouse model of GWI, to evaluate the effects of chronic permethrin exposure followed by unpredictable stress. We found that subjecting mice to 14 days of chronic permethrin exposure followed by 7 days of unpredictable stress resulted in the development of depression-like behavior. This behavioral change coincided with distinct alterations in the microglia phenotype, indicating microglial activation in the hippocampus. We revealed that blocking microglial activation through Gi inhibitory DREADD receptors in microglia effectively prevented the behavioral change associated with permethrin and stress exposure. To elucidate the transcriptional networks impacted within distinct microglia populations linked to depression-like behavior in mice exposed to both permethrin and stress, we conducted a single-cell RNA sequencing analysis using 21,566 single nuclei collected from the hippocampus of mice. For bioinformatics, UniCell Deconvolve was a pre-trained, interpretable, deep learning model used to deconvolve cell type fractions and predict cell identity across spatial datasets. Our bioinformatics analysis identified significant alterations in permethrin exposure followed by stress-associated microglia population, notably pathways related to neuronal development, neuronal communication, and neuronal morphogenesis, all of which are associated with neural synaptic plasticity. Additionally, we observed permethrin exposure followed by stress-mediated changes in signal transduction, including modulation of chemical synaptic transmission, regulation of neurotransmitter receptors, and regulation of postsynaptic neurotransmitter receptor activity, a known contributor to the pathophysiology of depression in a subset of the hippocampal pyramidal neurons in CA3 subregions. Our findings tentatively suggest that permethrin may prime microglia towards a state of inflammatory activation that can be triggered by psychological stressors, resulting in depression-like behavior and alterations of neural plasticity. These findings underscore the significance of synergistic interactions between multi-causal factors associated with GWI.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Umar Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sibilla Masieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiting Lyu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-Li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
15
|
Demirci SC, Barun S, Özaslan A, Gülbahar Ö, Bulut TSD, Çamurdan AD, İşeri E. Investigating the Relationship of Serum CD163, YKL40 and VILIP-1 Levels with Autism Severity and Language-cognitive Development in Preschool Children with Autism. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:473-483. [PMID: 39069687 PMCID: PMC11289611 DOI: 10.9758/cpn.23.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 07/30/2024]
Abstract
Objective This study aimed to compare serum levels of CD163, YKL-40, and VILIP-1 between children with autism spectrum disorder (ASD) and healthy controls, while also investigating their association with the severity of ASD and language development. Methods The study included 40 ASD-diagnosed patients (aged 18-72 months) and 40 age-matched healthy controls. Childhood Autism Rating Scale, Preschool Language Scale-4, and Ankara Development Screening Inventory were administered to children in the ASD group. Serum CD163, YKL-40 and VILIP-1 levels were measured with an enzyme- linked immunosorbent assay kit. Results In the ASD group compared to the control group, serum VILIP-1 levels were significantly higher (p = 0.046). No significant differences were observed in mean serum CD163 and YKL-40 levels between patients and controls (p = 0.613, p = 0.769). Interestingly, a positive correlation was observed between CD163 and YKL-40 levels and ASD severity (p < 0.001 for both). Additionally, CD163 and YKL-40 levels showed significant predictive value for ASD severity. While no significant associations were found between CD163 and YKL-40 levels and language development, a negative correlation was observed between VILIP-1 levels and language development (p < 0.001). Conclusion Our findings highlight that the levels of CD163 and YKL-40 significantly predicted ASD severity, indicating a potential role of neuroinflammation in the development of ASD.
Collapse
Affiliation(s)
- Samet Can Demirci
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
- Department of Child and Adolescent Psychiatry, Ardahan State Hospital, Ardahan, Turkey
| | - Süreyya Barun
- Department of Medical Pharmacology, Gazi University Medical Faculty, Ankara, Turkey
| | - Ahmet Özaslan
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
- Autism and Developmental Disorders Application and Research Center, Gazi University, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University Medical Faculty, Ankara, Turkey
| | | | - Aysu Duyan Çamurdan
- Department of Child Health and Diseases, Gazi University Medical Faculty, Ankara, Turkey
| | - Elvan İşeri
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
16
|
Gironda SC, Centanni SW, Weiner JL. Early life psychosocial stress increases binge-like ethanol consumption and CSF1R inhibition prevents stress-induced alterations in microglia and brain macrophage population density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605403. [PMID: 39211115 PMCID: PMC11361020 DOI: 10.1101/2024.07.27.605403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Early life stress (ELS) has lasting consequences on microglia and brain macrophage function. During ELS, microglia and brain macrophages alter their engagement with synapses leading to changes in neuronal excitability. Further, ELS can induce innate immune memory formation in microglia and brain macrophages resulting in altered responsivity to future environmental stimuli. These alterations can result in lasting adaptations in circuit function and may mediate the relationship between ELS and the risk to develop alcohol use disorder (AUD). Whether microglia and brain macrophages truly mediate this relationship remains elusive. Here, we report: 1) an ELS model, psychosocial stress (PSS), increases binge-like ethanol consumption in early adulthood. 2) Repeated binge-like ethanol consumption increases microglia and brain macrophage population densities across the brain. 3) PSS may elicit innate immune memory formation in microglia and brain macrophages leading to altered population densities following repeated binge-like ethanol consumption. 4) Microglia and brain macrophage inhibition trended towards preventing PSS-evoked changes in binge-like ethanol consumption and normalized microglia and brain macrophage population densities. Therefore, our study suggests that acutely inhibiting microglia and brain macrophage function during periods of early life PSS may prevent innate immune memory formation and assist in reducing the risk to develop AUD. Highlights An early life psychosocial stress (PSS) exposure increases ethanol consumptionMicroglial inhibition during PSS trends towards reducing ethanol consumptionBinge ethanol consumption increases microglial count and alters cell proximityEarly life PSS alters microglial responsivity to binge ethanol consumptionMicroglial inhibition may prevent microglial innate immune memory formation.
Collapse
|
17
|
Brockie S, Zhou C, Fehlings MG. Resident immune responses to spinal cord injury: role of astrocytes and microglia. Neural Regen Res 2024; 19:1678-1685. [PMID: 38103231 PMCID: PMC10960308 DOI: 10.4103/1673-5374.389630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury can be traumatic or non-traumatic in origin, with the latter rising in incidence and prevalence with the aging demographics of our society. Moreover, as the global population ages, individuals with co-existent degenerative spinal pathology comprise a growing number of traumatic spinal cord injury cases, especially involving the cervical spinal cord. This makes recovery and treatment approaches particularly challenging as age and comorbidities may limit regenerative capacity. For these reasons, it is critical to better understand the complex milieu of spinal cord injury lesion pathobiology and the ensuing inflammatory response. This review discusses microglia-specific purinergic and cytokine signaling pathways, as well as microglial modulation of synaptic stability and plasticity after injury. Further, we evaluate the role of astrocytes in neurotransmission and calcium signaling, as well as their border-forming response to neural lesions. Both the inflammatory and reparative roles of these cells have eluded our complete understanding and remain key therapeutic targets due to their extensive structural and functional roles in the nervous system. Recent advances have shed light on the roles of glia in neurotransmission and reparative injury responses that will change how interventions are directed. Understanding key processes and existing knowledge gaps will allow future research to effectively target these cells and harness their regenerative potential.
Collapse
Affiliation(s)
- Sydney Brockie
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Cindy Zhou
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Gevezova M, Ivanov Z, Pacheva I, Timova E, Kazakova M, Kovacheva E, Ivanov I, Sarafian V. Bioenergetic and Inflammatory Alterations in Regressed and Non-Regressed Patients with Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8211. [PMID: 39125780 PMCID: PMC11311370 DOI: 10.3390/ijms25158211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is associated with multiple physiological abnormalities. Current laboratory and clinical evidence most commonly report mitochondrial dysfunction, oxidative stress, and immunological imbalance in almost every cell type of the body. The present work aims to evaluate oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and inflammation-related molecules such as Cyclooxygenase-2 (COX-2), chitinase 3-like protein 1 (YKL-40), Interleukin-1 beta (IL-1β), Interleukin-9 (IL-9) in ASD children with and without regression compared to healthy controls. Children with ASD (n = 56) and typically developing children (TDC, n = 12) aged 1.11 to 11 years were studied. Mitochondrial activity was examined in peripheral blood mononuclear cells (PBMCs) isolated from children with ASD and from the control group, using a metabolic analyzer. Gene and protein levels of IL-1β, IL-9, COX-2, and YKL-40 were investigated in parallel. Our results showed that PBMCs of the ASD subgroup of regressed patients (ASD R(+), n = 21) had a specific pattern of mitochondrial activity with significantly increased maximal respiration, respiratory spare capacity, and proton leak compared to the non-regressed group (ASD R(-), n = 35) and TDC. Furthermore, we found an imbalance in the studied proinflammatory molecules and increased levels in ASD R(-) proving the involvement of inflammatory changes. The results of this study provide new evidence for specific bioenergetic profiles of immune cells and elevated inflammation-related molecules in ASD. For the first time, data on a unique metabolic profile in ASD R(+) and its comparison with a random group of children of similar age and sex are provided. Our data show that mitochondrial dysfunction is more significant in ASD R(+), while in ASD R(-) inflammation is more pronounced. Probably, in the group without regression, immune mechanisms (immune dysregulation, leading to inflammation) begin initially, and at a later stage mitochondrial activity is also affected under exogenous factors. On the other hand, in the regressed group, the initial damage is in the mitochondria, and perhaps at a later stage immune dysfunction is involved.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zdravko Ivanov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
| | - Iliana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Elena Timova
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Eleonora Kovacheva
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
19
|
Christensen GM, Marcus M, Naudé PJW, Vanker A, Eick SM, Caudle WM, Malcolm-Smith S, Suglia SF, Chang HH, Zar HJ, Stein DJ, Hüls A. Joint effects of prenatal exposure to indoor air pollution and psychosocial factors on early life inflammation. ENVIRONMENTAL RESEARCH 2024; 252:118822. [PMID: 38565416 PMCID: PMC11188991 DOI: 10.1016/j.envres.2024.118822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
It is hypothesized that air pollution and stress impact the central nervous system through neuroinflammatory pathways Despite this, the association between prenatal exposure to indoor air pollution and psychosocial factors on inflammatory markers in infancy has been underexplored in epidemiology studies. This study investigates the individual and joint effects of prenatal exposure to indoor air pollution and psychosocial factors on early life inflammation (interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)). We analyzed data from the South African Drakenstein Child Health Study (N = 225). Indoor air pollution and psychosocial factor measurements were taken in the 2nd trimester of pregnancy. Circulating inflammatory markers (IL-1β, Il-6, and TNF-α) were measured in serum in the infants at 6 weeks postnatal. Linear regression models were used to investigate associations between individual exposures and inflammatory markers. To investigate joint effects of environmental and psychosocial factors, Self-Organizing Maps (SOM) were used to create exposure profile clusters. These clusters were added to linear regression models to investigate the associations between exposure profiles and inflammatory markers. All models were adjusted for maternal age, maternal HIV status, and ancestry to control for confounding. Most indoor air pollutants were positively associated with inflammatory markers, particularly benzene and TNF-α in single pollutant models. No consistent patterns were found for psychosocial factors in single-exposure linear regression models. In joint effects analyses, the SOM profile with high indoor air pollution, low SES, and high maternal depressive symptoms were associated with higher inflammation. Indoor air pollutants were consistently associated with increased inflammation in both individual and joint effects models, particularly in combination with low SES and maternal depressive symptoms. The trend for individual psychosocial factors was not as clear, with mainly null associations. As we have observed pro- and anti-inflammatory effects, future research should investigate joint effects of these exposures on inflammation and their health effects.
Collapse
Affiliation(s)
- Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Stephanie M Eick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - W Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Susan Malcolm-Smith
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard H Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Strohm AO, Majewska AK. Physical exercise regulates microglia in health and disease. Front Neurosci 2024; 18:1420322. [PMID: 38911597 PMCID: PMC11192042 DOI: 10.3389/fnins.2024.1420322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
There is a well-established link between physical activity and brain health. As such, the effectiveness of physical exercise as a therapeutic strategy has been explored in a variety of neurological contexts. To determine the extent to which physical exercise could be most beneficial under different circumstances, studies are needed to uncover the underlying mechanisms behind the benefits of physical activity. Interest has grown in understanding how physical activity can regulate microglia, the resident immune cells of the central nervous system. Microglia are key mediators of neuroinflammatory processes and play a role in maintaining brain homeostasis in healthy and pathological settings. Here, we explore the evidence suggesting that physical activity has the potential to regulate microglia activity in various animal models. We emphasize key areas where future research could contribute to uncovering the therapeutic benefits of engaging in physical exercise.
Collapse
Affiliation(s)
- Alexandra O. Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
21
|
Lauzier DC, Athiraman U. Role of microglia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:841-856. [PMID: 38415607 PMCID: PMC11318405 DOI: 10.1177/0271678x241237070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Subarachnoid hemorrhage is a devastating sequela of aneurysm rupture. Because it disproportionately affects younger patients, the population impact of hemorrhagic stroke from subarachnoid hemorrhage is substantial. Secondary brain injury is a significant contributor to morbidity after subarachnoid hemorrhage. Initial hemorrhage causes intracranial pressure elevations, disrupted cerebral perfusion pressure, global ischemia, and systemic dysfunction. These initial events are followed by two characterized timespans of secondary brain injury: the early brain injury period and the delayed cerebral ischemia period. The identification of varying microglial phenotypes across phases of secondary brain injury paired with the functions of microglia during each phase provides a basis for microglia serving a critical role in both promoting and attenuating subarachnoid hemorrhage-induced morbidity. The duality of microglial effects on outcomes following SAH is highlighted by the pleiotropic features of these cells. Here, we provide an overview of the key role of microglia in subarachnoid hemorrhage-induced secondary brain injury as both cytotoxic and restorative effectors. We first describe the ontogeny of microglial populations that respond to subarachnoid hemorrhage. We then correlate the phenotypic development of secondary brain injury after subarachnoid hemorrhage to microglial functions, synthesizing experimental data in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Chagas LDS, Serfaty CA. The Influence of Microglia on Neuroplasticity and Long-Term Cognitive Sequelae in Long COVID: Impacts on Brain Development and Beyond. Int J Mol Sci 2024; 25:3819. [PMID: 38612629 PMCID: PMC11011312 DOI: 10.3390/ijms25073819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Microglial cells, the immune cells of the central nervous system, are key elements regulating brain development and brain health. These cells are fully responsive to stressors, microenvironmental alterations and are actively involved in the construction of neural circuits in children and the ability to undergo full experience-dependent plasticity in adults. Since neuroinflammation is a known key element in the pathogenesis of COVID-19, one might expect the dysregulation of microglial function to severely impact both functional and structural plasticity, leading to the cognitive sequelae that appear in the pathogenesis of Long COVID. Therefore, understanding this complex scenario is mandatory for establishing the possible molecular mechanisms related to these symptoms. In the present review, we will discuss Long COVID and its association with reduced levels of BDNF, altered crosstalk between circulating immune cells and microglia, increased levels of inflammasomes, cytokines and chemokines, as well as the alterations in signaling pathways that impact neural synaptic remodeling and plasticity, such as fractalkines, the complement system, the expression of SIRPα and CD47 molecules and altered matrix remodeling. Together, these complex mechanisms may help us understand consequences of Long COVID for brain development and its association with altered brain plasticity, impacting learning disabilities, neurodevelopmental disorders, as well as cognitive decline in adults.
Collapse
Affiliation(s)
- Luana da Silva Chagas
- Program of Neuroscience, Department of Neurobiology, Institute of Biology, Federal Fluminense University, Niterói 24210-201, Rio de Janeiro, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Program of Neuroscience, Department of Neurobiology, Institute of Biology, Federal Fluminense University, Niterói 24210-201, Rio de Janeiro, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Xu P, Yu Y, Wu P. Role of microglia in brain development after viral infection. Front Cell Dev Biol 2024; 12:1340308. [PMID: 38298216 PMCID: PMC10825034 DOI: 10.3389/fcell.2024.1340308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Microglia are immune cells in the brain that originate from the yolk sac and enter the developing brain before birth. They play critical roles in brain development by supporting neural precursor proliferation, synaptic pruning, and circuit formation. However, microglia are also vulnerable to environmental factors, such as infection and stress that may alter their phenotype and function. Viral infection activates microglia to produce inflammatory cytokines and anti-viral responses that protect the brain from damage. However, excessive or prolonged microglial activation impairs brain development and leads to long-term consequences such as autism spectrum disorder and schizophrenia spectrum disorder. Moreover, certain viruses may attack microglia and deploy them as "Trojan horses" to infiltrate the brain. In this brief review, we describe the function of microglia during brain development and examine their roles after infection through microglia-neural crosstalk. We also identify limitations for current studies and highlight future investigated questions.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Chen D, Lou Q, Song XJ, Kang F, Liu A, Zheng C, Li Y, Wang D, Qun S, Zhang Z, Cao P, Jin Y. Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice. Nat Commun 2024; 15:449. [PMID: 38200023 PMCID: PMC10781988 DOI: 10.1038/s41467-024-44704-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Anxiety-associated symptoms following acute stress usually become extinct gradually within a period of time. However, the mechanisms underlying how individuals cope with stress to achieve the extinction of anxiety are not clear. Here we show that acute restraint stress causes an increase in the activity of GABAergic neurons in the CeA (GABACeA) in male mice, resulting in anxiety-like behaviors within 12 hours; meanwhile, elevated GABACeA neuronal CX3CL1 secretion via MST4 (mammalian sterile-20-like kinase 4)-NF-κB-CX3CL1 signaling consequently activates microglia in the CeA. Activated microglia in turn inhibit GABACeA neuronal activity via the engulfment of their dendritic spines, ultimately leading to the extinction of anxiety-like behaviors induced by restraint stress. These findings reveal a dynamic molecular and cellular mechanism in which microglia drive a negative feedback to inhibit GABACeA neuronal activity, thus facilitating maintenance of brain homeostasis in response to acute stress.
Collapse
Grants
- 32025017 National Natural Science Foundation of China (National Science Foundation of China)
- 32121002 National Natural Science Foundation of China (National Science Foundation of China)
- 82101300 National Natural Science Foundation of China (National Science Foundation of China)
- U22A20305 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (STI2030-Major Projects 2021ZD0203100), Plans for Major Provincial Science & Technology Projects (202303a07020002), the CAS Project for Young Scientists in Basic Research (YSBR-013), the Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20211902), the Institute of Health and Medicine (OYZD20220007)
- the China National Postdoctoral Program for Innovative Talents (BX20220283), the China Postdoctoral Science Foundation (2023M733395)
- Youth Innovation Promotion Association CAS, CAS Collaborative Innovation Program of Hefei Science Center (2021HSC-CIP013), the Fundamental Research Funds for the Central Universities (WK9100000030), USTC Research Funds of the Double First-Class Initiative (YD9100002018), the Natural Science Foundation of Anhui Province (2208085J30), and USTC Tang Scholar.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qianqian Lou
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang-Jie Song
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Fang Kang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China
| | - Changjian Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, China
| | - Yanhua Li
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Di Wang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Sen Qun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Peng Cao
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
25
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
26
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
27
|
Wheeler S, Rai-Bhogal R, Crawford DA. Abnormal Microglial Density and Morphology in the Brain of Cyclooxygenase 2 Knockin Mice. Neuroscience 2023; 534:66-81. [PMID: 37863307 DOI: 10.1016/j.neuroscience.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Prostaglandin E2 (PGE2) is a signaling molecule produced by cyclooxygenase-2 (COX-2) that is important in healthy brain development. Anomalies in the COX-2/PGE2 pathway due to genetic or environmental factors have been linked to Autism Spectrum Disorders (ASD). Our previous studies showed that COX-2 deficient (COX-2-KI) mice exhibit sex-dependent molecular changes in the brain and associated autism-related behaviors. Here, we aim to determine the effect of COX-2-KI on microglial density and morphology in the developing brain. Microglia normally transition between an amoeboid or ramified morphology depending on their surroundings and are important for the development of the healthy brain, assisting with synaptogenesis, synaptic pruning, and phagocytosis. We use COX-2-KI male and female mice to evaluate microglia density, morphology, and branch length and number in five brain regions (cerebellum, hippocampus, olfactory bulb, prefrontal cortex, and thalamus) at the gestational day 19 (G19) and postnatal day 25 (PN25). We discovered that COX2-KI females were affected at G19 with increased microglial density, altered percentage of amoeboid and ramified microglia, affected branch length, and decreased branching networks in a region-specific manner; these effects persisted to PN25 in select regions. Interestingly, while limited changes were found in G19 COX-2-KI males, at PN25 we found increased microglial density, higher percentages of ramified microglia, and increased branch counts, and length observed in nearly all brain regions tested. Overall, we show for the first time that the COX-2 deficiency in our ASD mouse model influences microglia morphology in a sex- and region- and stage-dependent manner.
Collapse
Affiliation(s)
- Sarah Wheeler
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; Neuroscience Graduate Diploma Program, York University, Toronto, ON M3J 1P3, Canada
| | | | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; Neuroscience Graduate Diploma Program, York University, Toronto, ON M3J 1P3, Canada; Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
28
|
Liwang JK, Kronman FA, Minteer JA, Wu YT, Vanselow DJ, Ben-Simon Y, Taormina M, Parmaksiz D, Way SW, Zeng H, Tasic B, Ng L, Kim Y. epDevAtlas: Mapping GABAergic cells and microglia in postnatal mouse brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568585. [PMID: 38045330 PMCID: PMC10690281 DOI: 10.1101/2023.11.24.568585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
During development, brain regions follow encoded growth trajectories. Compared to classical brain growth charts, high-definition growth charts could quantify regional volumetric growth and constituent cell types, improving our understanding of typical and pathological brain development. Here, we create high-resolution 3D atlases of the early postnatal mouse brain, using Allen CCFv3 anatomical labels, at postnatal days (P) 4, 6, 8, 10, 12, and 14, and determine the volumetric growth of different brain regions. We utilize 11 different cell type-specific transgenic animals to validate and refine anatomical labels. Moreover, we reveal region-specific density changes in γ-aminobutyric acid-producing (GABAergic), cortical layer-specific cell types, and microglia as key players in shaping early postnatal brain development. We find contrasting changes in GABAergic neuronal densities between cortical and striatal areas, stabilizing at P12. Moreover, somatostatin-expressing cortical interneurons undergo regionally distinct density reductions, while vasoactive intestinal peptide-expressing interneurons show no significant changes. Remarkably, microglia transition from high density in white matter tracks to gray matter at P10, and show selective density increases in sensory processing areas that correlate with the emergence of individual sensory modalities. Lastly, we create an open-access web-visualization (https://kimlab.io/brain-map/epDevAtlas) for cell-type growth charts and developmental atlases for all postnatal time points.
Collapse
Affiliation(s)
- Josephine K. Liwang
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Fae A. Kronman
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jennifer A. Minteer
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Daniel J. Vanselow
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | | | | | - Deniz Parmaksiz
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
29
|
Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J. Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 2023; 14:1193053. [PMID: 37881439 PMCID: PMC10597707 DOI: 10.3389/fimmu.2023.1193053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.
Collapse
Affiliation(s)
- Shaoyi Fang
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhibin Wu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yali Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenjun Zhu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunmiao Wan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Shenzhen People’s Hospital, 2Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenzhi Hao
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaowei Mo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lili Fan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
31
|
Toh HSY, Choo XY, Sun AX. Midbrain organoids-development and applications in Parkinson's disease. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad009. [PMID: 38596240 PMCID: PMC10913847 DOI: 10.1093/oons/kvad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Indexed: 04/11/2024]
Abstract
Human brain development is spatially and temporally complex. Insufficient access to human brain tissue and inadequacy of animal models has limited the study of brain development and neurodegenerative diseases. Recent advancements of brain organoid technology have created novel opportunities to model human-specific neurodevelopment and brain diseases. In this review, we discuss the use of brain organoids to model the midbrain and Parkinson's disease. We critically evaluate the extent of recapitulation of PD pathology by organoids and discuss areas of future development that may lead to the model to become a next-generation, personalized therapeutic strategy for PD and beyond.
Collapse
Affiliation(s)
- Hilary S Y Toh
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Xin Yi Choo
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Alfred Xuyang Sun
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
- National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore
| |
Collapse
|
32
|
Christensen GM, Marcus M, Vanker A, Eick SM, Malcolm-Smith S, Smith ADAC, Dunn EC, Suglia SF, Chang HH, Zar HJ, Stein DJ, Hüls A. Sensitive periods for exposure to indoor air pollutants and psychosocial factors in association with symptoms of psychopathology at school-age in a South African birth cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.08.23293825. [PMID: 37609236 PMCID: PMC10441486 DOI: 10.1101/2023.08.08.23293825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Gestation and the first few months of life are important periods for brain development. During these periods, exposure to environmental toxicants and psychosocial stressors are particularly harmful and may impact brain development. Specifically, exposure to indoor air pollutants (IAP) and psychosocial factors (PF) during these sensitive periods has been shown to predict childhood psychopathology. Objectives This study aims to investigate sensitive periods for the individual and joint effects of IAP and PF on childhood psychopathology at 6.5 years. Methods We analyzed data from the Drakenstein Child Health Study (N=599), a South African birth cohort. Exposure to IAP and PF was measured during the second trimester of pregnancy and 4 months postpartum. The outcome of childhood psychopathology was assessed at 6.5 years old using the Childhood Behavior Checklist (CBCL). We investigated individual effects of either pre-or postnatal exposure to IAP and PF on CBCL scores using adjusted linear regression models, and joint effects of these exposures using quantile g-computation and self-organizing maps (SOM). To identify possible sensitive periods, we used a structured life course modeling approach (SLCMA) as well as exposure mixture methods (quantile g-computation and SOM). Results Prenatal exposure to IAP or PFs, as well as the total prenatal mixture assessed using quantile g-computation, were associated with increased psychopathology. SLCMA and SOM models also indicated that the prenatal period is a sensitive period for IAP exposure on childhood psychopathology. Depression and alcohol were associated in both the pre-and postnatal period, while CO was associated with the postnatal period. Discussion Pregnancy may be a sensitive period for the effect of indoor air pollution on childhood psychopathology. Exposure to maternal depression and alcohol in both periods was also associated with psychopathology. Determining sensitive periods of exposure is vital to ensure effective interventions to reduce childhood psychopathology.
Collapse
|
33
|
Mooney SM, Billings E, McNew M, Munson CA, Shaikh SR, Smith SM. Behavioral changes in FPR2/ALX and Chemr23 receptor knockout mice are exacerbated by prenatal alcohol exposure. Front Neurosci 2023; 17:1187220. [PMID: 37483341 PMCID: PMC10357512 DOI: 10.3389/fnins.2023.1187220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Prenatal alcohol exposure (PAE) causes neuroinflammation that may contribute to the pathophysiology underlying Fetal Alcohol Spectrum Disorder. Supplementation with omega-3 polyunsaturated fatty acids (PUFAs) has shown success in mitigating effects of PAE in animal models, however, the underlying mechanisms are unknown. Some PUFA metabolites, specialized pro-resolving mediators (SPMs), play a role in the resolution phase of inflammation, and receptors for these are in the brain. Methods To test the hypothesis that the SPM receptors FPR2 and ChemR23 play a role in PAE-induced behavioral deficits, we exposed pregnant wild-type (WT) and knockout (KO) mice to alcohol in late gestation and behaviorally tested male and female offspring as adolescents and young adults. Results Maternal and fetal outcomes were not different among genotypes, however, growth and behavioral phenotypes in the offspring did differ and the effects of PAE were unique to each line. In the absence of PAE, ChemR23 KO animals showed decreased anxiety-like behavior on the elevated plus maze and FPR2 KO had poor grip strength and low activity compared to age-matched WT mice. WT mice showed improved performance on fear conditioning between adolescence and young adulthood, this was not seen in either KO. Discussion This PAE model has subtle effects on WT behavior with lower activity levels in young adults, decreased grip strength in males between test ages, and decreased response to the fear cue indicating an effect of alcohol exposure on learning. The PAE-mediated decreased response to the fear cue was also seen in ChemR23 KO but not FPR2 KO mice, and PAE worsened performance of adolescent FPR2 KO mice on grip strength and activity. Collectively, these findings provide mechanistic insight into how PUFAs could act to attenuate cognitive impairments caused by PAE.
Collapse
Affiliation(s)
- Sandra M. Mooney
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Elanaria Billings
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Madison McNew
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Carolyn A. Munson
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Saame R. Shaikh
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Susan M. Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
34
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
35
|
Wang C, Li H, Chen C, Yao X, Yang C, Yu Z, Ren J, Ming Y, Huang Y, Rong Y, Ma Y, Liu L. High-Fat Diet Consumption Induces Neurobehavioral Abnormalities and Neuronal Morphological Alterations Accompanied by Excessive Microglial Activation in the Medial Prefrontal Cortex in Adolescent Mice. Int J Mol Sci 2023; 24:ijms24119394. [PMID: 37298345 DOI: 10.3390/ijms24119394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The association between a high-fat diet (HFD) consumption and emotional/cognitive disorders is widely documented. One distinctive feature of the prefrontal cortex (PFC), a kernel emotion- and cognition-related brain region, is its protracted adolescent maturation, which makes it highly vulnerable to the detrimental effects of environmental factors during adolescence. Disruption of the PFC structure and function is linked to emotional/cognitive disorders, especially those that emerge in late adolescence. A HFD consumption is common among adolescents, yet its potential effects on PFC-related neurobehavior in late adolescence and any related underlying mechanisms are yet to be established. In the present study, adolescent (postnatal days 28-56) male C57BL/6J mice were fed a control diet (CD) or a HFD and underwent behavioral tests in addition to Golgi staining and immunofluorescence targeting of the medial PFC (mPFC). The HFD-fed adolescent mice exhibited anxiety- and depression-like behavior and abnormal mPFC pyramidal neuronal morphology accompanied by alterations in microglial morphology indicative of a heightened state of activation and increased microglial PSD95+ inclusions signifying excessive phagocytosis of the synaptic material in the mPFC. These findings offer novel insights into the neurobehavioral effects due to adolescent HFD consumption and suggest a contributing role in microglial dysfunction and prefrontal neuroplasticity deficits for HFD-associated mood disorders in adolescents.
Collapse
Affiliation(s)
- Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Chen Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Jiayi Ren
- Medical College, Southeast University, Nanjing 210009, China
| | - Yue Ming
- Medical College, Southeast University, Nanjing 210009, China
| | - Yi Huang
- Medical College, Southeast University, Nanjing 210009, China
| | - Yi Rong
- Medical College, Southeast University, Nanjing 210009, China
| | - Yu Ma
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
36
|
Christensen GM, Marcus M, Vanker A, Eick SM, Malcolm-Smith S, Suglia SF, Chang HH, Zar HJ, Stein DJ, Hüls A. Joint Effects of Indoor Air Pollution and Maternal Psychosocial Factors During Pregnancy on Trajectories of Early Childhood Psychopathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288289. [PMID: 37066323 PMCID: PMC10104216 DOI: 10.1101/2023.04.07.23288289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Prenatal indoor air pollution and maternal psychosocial factors have been associated with adverse psychopathology. We used environmental exposure mixture methodology to investigate joint effects of both exposure classes on child behavior trajectories. Methods For 360 children from the South African Drakenstein Child Health Study, we created trajectories of Child Behavior Checklist scores (24, 42, 60 months) using latent class linear mixed effects models. Indoor air pollutants and psychosocial factors were measured during pregnancy (2 nd trimester). After adjusting for confounding, single-exposure effects (per natural log-1 unit increase) were assessed using polytomous logistic regression models; joint effects using self-organizing maps (SOM), and principal component (PC) analysis. Results High externalizing trajectory was associated with increased particulate matter (PM 10 ) exposure (OR [95%-CI]: 1.25 [1.01,1.55]) and SOM exposure profile most associated with smoking (2.67 [1.14,6.27]). Medium internalizing trajectory was associated with increased emotional intimate partner violence (2.66 [1.17,5.57]), increasing trajectory with increased benzene (1.24 [1.02,1.51]) and toluene (1.21 [1.02,1.44]) and the PC most correlated with benzene and toluene (1.25 [1.02, 1.54]). Conclusions Prenatal exposure to environmental pollutants and psychosocial factors was associated with internalizing and externalizing child behavior trajectories. Understanding joint effects of adverse exposure mixtures will facilitate targeted interventions to prevent childhood psychopathology.
Collapse
|
37
|
Antidepressants as a potential candidate to reduce microglia activation in neurodegenerative diseases. A systematic review and meta-analysis of preclinical studies. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
Maurya SK, Mishra R. Co-expression and Interaction of Pax6 with Genes and Proteins of Immunological Surveillance in the Brain of Mice. Neurotox Res 2022; 40:2238-2252. [PMID: 36069979 DOI: 10.1007/s12640-022-00562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022]
Abstract
The Pax6 binds to promoter sequence elements of genes involved in immunological surveillance and interacts with Iba1, p53, Ras-GAP, and Sparc in the brain of mice. The Pax6 also affects the expression pattern of genes involved in neurogenesis and neurodegeneration. However, the expression and association of Pax6 in the brain under immunologically challenged conditions are still elusive. Therefore, it has been intended to analyze the association of Pax6 in the immunity of the brain using the immune-challenged Dalton's lymphoma (DL) mice model. The expressions of Pax6, Iba1, and Tmem119 decreased, but expressions of Ifn-γ, Tnf-α, Bdnf, and Tgf-β increased in the brain of immune-challenged mice as compared to the control. The level of co-expression of Pax6 decreased in dual positive cells with Iba1, Tmem119, Sparc, p53, Bdnf, and Tgf-β in the brain of immune-challenged mice. Binding of Pax6 to multiple sites of the promoter sequences of Bdnf and Tgf-β indicates their Pax6-associated differential expression and association with immune responsive gene. The levels of binding of Pax6 to Tmem119, Iba1, Ifn-γ, and Tnf-α got altered during the immune-challenged state as compared to control. Results provide the first evidence of the association of Pax6 in brain-specific immunity.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
39
|
Rava A, La Rosa P, Palladino G, Dragotto J, Totaro A, Tiberi J, Canterini S, Oddi S, Fiorenza MT. The appearance of phagocytic microglia in the postnatal brain of Niemann Pick type C mice is developmentally regulated and underscores shortfalls in fine odor discrimination. J Cell Physiol 2022; 237:4563-4579. [PMID: 36322609 PMCID: PMC7613956 DOI: 10.1002/jcp.30909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
The loss of NPC1 or NPC2 function results in cholesterol and sphingolipid dyshomeostasis that impairs developmental trajectories, predisposing the postnatal brain to the appearance of pathological signs, including progressive and stereotyped Purkinje cell loss and microgliosis. Despite increasing evidence reporting the activation of pro-inflammatory microglia as a cardinal event of NPC1 disease progression at symptomatic stages both in patients and preclinical models, how microglia cells respond to altered neurodevelopmental dynamics remains not completely understood. To gain an insight on this issue, we have characterized patterns of microglia activation in the early postnatal cerebellum and young adult olfactory bulb of the hypomorphic Npc1nmf164 mouse model. Previous evidence has shown that both these areas display a number of anomalies affecting neuron and glial cell proliferation and differentiation, which largely anticipate cellular changes and clinical signs, raising our interest on how microglia interplay to these changes. Even so, to separate the contribution of cues provided by the dysfunctional microenvironment we have also studied microglia isolated from mice of increasing ages and cultured in vitro for 1 week. Our findings show that microglia of both cerebellum and olfactory bulb of Npc1nmf164 mice adopt an activated phenotype, characterized by increased cell proliferation, enlarged soma size and de-ramified processes, as well as a robust phagocytic activity, in a time- and space-specific manner. Enhanced phagocytosis associates with a profound remodeling of gene expression signatures towards gene products involved in chemotaxis, cell recognition and engulfment, including Cd68 and Trem2. These early changes in microglia morphology and activities are induced by region-specific developmental anomalies that likely anticipate alterations in neuronal connectivity. As a proof of concept, we show that microglia activation within the granule cell layer and glomerular layer of the olfactory bulb of Npc1nmf164 mice is associated with shortfalls in fine odor discrimination.
Collapse
Affiliation(s)
- Alessandro Rava
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Giampiero Palladino
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Jessica Dragotto
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Antonio Totaro
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Jessica Tiberi
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
| | - Sergio Oddi
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
- Faculty of Veterinary Medicine University of Teramo Teramo Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| |
Collapse
|
40
|
Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai LH, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu LJ, Wyss-Coray T. Microglia states and nomenclature: A field at its crossroads. Neuron 2022; 110:3458-3483. [PMID: 36327895 PMCID: PMC9999291 DOI: 10.1016/j.neuron.2022.10.020] [Citation(s) in RCA: 774] [Impact Index Per Article: 258.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain.
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, (HHMI), MD, USA; Boston Children's Hospital, Boston, MA, USA.
| | - Marie-Eve Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Bahareh Ajami
- Department of Molecular Microbiology & Immunology, Department of Behavioral and Systems Neuroscience, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Mariko Bennett
- Children's Hospital of Philadelphia, Department of Psychiatry, Department of Pediatrics, Division of Child Neurology, Philadelphia, PA, USA
| | - Frederick Bennett
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain Bessis
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Knut Biber
- Neuroscience Discovery, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Staci Bilbo
- Departments of Psychology & Neuroscience, Neurobiology, and Cell Biology, Duke University, Durham, NC, USA
| | - Mathew Blurton-Jones
- Center for the Neurobiology of Learning and Memory, UCI MIND, University of California, Irvine, CA, USA
| | - Erik Boddeke
- Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Bert Brône
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica J Carson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Bernardo Castellano
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología, Barcelona, Spain; Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Republic of Ireland; Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Bart de Strooper
- UK Dementia Research Institute at University College London, London, UK; Vlaams Instituut voor Biotechnologie at Katholieke Universiteit Leuven, Leuven, Belgium
| | - Adam Denes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, Groningen, the Netherlands; University Medical Center Groningen, Groningen, the Netherlands
| | - Ukpong Eyo
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Sonia Garel
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Paris, France; College de France, Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | | | - Ozgun Gokce
- Institute for Stroke and Dementia Research, Ludwig Maximillian's University of Munich, Munich, Germany
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Berta González
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología and Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Siamon Gordon
- Chang Gung University, Taoyuan City, Taiwan (ROC); Sir William Dunn School of Pathology, Oxford, UK
| | - Manuel B Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Geoffrey Jefferson Brain Research Centre, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität Munchen, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy); Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Soyon Hong
- UK Dementia Research Institute at University College London, London, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Helmut Kettenmann
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Greg Lemke
- MNL-L, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marina Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ania Majewska
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tarja Malm
- University of Eastern Finland, Kuopio, Finland
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Michela Matteoli
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Michelle Monje
- Howard Hughes Medical Institute, (HHMI), MD, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Agnes Nadjar
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France; Institut Universitaire de France (IUF), Paris, France
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Urte Neniskyte
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Institute of Mitochondrial Biology and Medicine of Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Phillip G Popovich
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Clare Pridans
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, UK
| | - Josef Priller
- Department of Psychiatry & Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Michael W Salter
- Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Center for Glial Biology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Max Planck Institute for Biology of Ageing, Koeln, Germany
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cody J Smith
- Galvin Life Science Center, University of Notre Dame, Indianapolis, IN, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany; Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany; Department of Biology, Boston University, Boston, MA, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexei Verkhratsky
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Susanne A Wolf
- Charité Universitätsmedizin, Experimental Ophthalmology and Neuroimmunology, Berlin, Germany
| | - Long-Jun Wu
- Department of Neurology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Battis K, Florio JB, Mante M, Lana A, Naumann I, Gauer C, Lambrecht V, Müller SJ, Cobo I, Fixsen B, Kim HY, Masliah E, Glass CK, Schlachetzki JCM, Rissman RA, Winkler J, Hoffmann A. CSF1R-Mediated Myeloid Cell Depletion Prolongs Lifespan But Aggravates Distinct Motor Symptoms in a Model of Multiple System Atrophy. J Neurosci 2022; 42:7673-7688. [PMID: 36333098 PMCID: PMC9546481 DOI: 10.1523/jneurosci.0417-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023] Open
Abstract
As the CNS-resident macrophages and member of the myeloid lineage, microglia fulfill manifold functions important for brain development and homeostasis. In the context of neurodegenerative diseases, they have been implicated in degenerative and regenerative processes. The discovery of distinct activation patterns, including increased phagocytosis, indicated a damaging role of myeloid cells in multiple system atrophy (MSA), a devastating, rapidly progressing atypical parkinsonian disorder. Here, we analyzed the gene expression profile of microglia in a mouse model of MSA (MBP29-hα-syn) and identified a disease-associated expression profile and upregulation of the colony-stimulating factor 1 (Csf1). Thus, we hypothesized that CSF1 receptor-mediated depletion of myeloid cells using PLX5622 modifies the disease progression and neuropathological phenotype in this mouse model. Intriguingly, sex-balanced analysis of myeloid cell depletion in MBP29-hα-syn mice revealed a two-faced outcome comprising an improved survival rate accompanied by a delayed onset of neurological symptoms in contrast to severely impaired motor functions. Furthermore, PLX5622 reversed gene expression profiles related to myeloid cell activation but reduced gene expression associated with transsynaptic signaling and signal release. While transcriptional changes were accompanied by a reduction of dopaminergic neurons in the SNpc, striatal neuritic density was increased upon myeloid cell depletion in MBP29-hα-syn mice. Together, our findings provide insight into the complex, two-faced role of myeloid cells in the context of MSA emphasizing the importance to carefully balance the beneficial and adverse effects of CSF1R inhibition in different models of neurodegenerative disorders before its clinical translation.SIGNIFICANCE STATEMENT Myeloid cells have been implicated as detrimental in the disease pathogenesis of multiple system atrophy. However, long-term CSF1R-dependent depletion of these cells in a mouse model of multiple system atrophy demonstrates a two-faced effect involving an improved survival associated with a delayed onset of disease and reduced inflammation which was contrasted by severely impaired motor functions, synaptic signaling, and neuronal circuitries. Thus, this study unraveled a complex role of myeloid cells in multiple system atrophy, which indicates important functions beyond the previously described disease-associated, destructive phenotype and emphasized the need of further investigation to carefully and individually fine-tune immunologic processes in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Kristina Battis
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Jazmin B Florio
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093
| | - Michael Mante
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093
| | - Addison Lana
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Isabel Naumann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Carina Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Vera Lambrecht
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Simon Julian Müller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Bethany Fixsen
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Ha Yeon Kim
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093
| | - Eliezer Masliah
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| |
Collapse
|
42
|
Abstract
The mammalian gut contains a large, complex community of microorganisms collectively termed the microbiota. It is increasingly appreciated that gut microbes are closely integrated into mammalian physiology, participating in metabolic symbiosis, promoting immune function and signaling to a wide variety of distant cells, including the brain, via circulating metabolites. Recent advances indicate that microglia, the brain's resident immune cells, are influenced by microbial metabolites at all stages of life, under both physiological and pathological conditions. The pathways by which microbiota regulate microglial function are therefore of interest for investigating links between neurological disorders and gut microbiome changes. In this review, we discuss the effects and mechanisms of microbiota-microglia signaling in steady state, as well as evidence for the involvement of this signaling axis in CNS pathologies.
Collapse
Affiliation(s)
- James Cook
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany,CONTACT James Cook
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany,Centre for NeuroModulation (Neuromodbasics), University of Freiburg, Freiburg, Germany,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,Marco Prinz Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Cserép C, Schwarcz AD, Pósfai B, László ZI, Kellermayer A, Környei Z, Kisfali M, Nyerges M, Lele Z, Katona I, Ádám Dénes. Microglial control of neuronal development via somatic purinergic junctions. Cell Rep 2022; 40:111369. [PMID: 36130488 PMCID: PMC9513806 DOI: 10.1016/j.celrep.2022.111369] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia, the resident immune cells of the brain, play important roles during development. Although bi-directional communication between microglia and neuronal progenitors or immature neurons has been demonstrated, the main sites of interaction and the underlying mechanisms remain elusive. By using advanced methods, here we provide evidence that microglial processes form specialized contacts with the cell bodies of developing neurons throughout embryonic, early postnatal, and adult neurogenesis. These early developmental contacts are highly reminiscent of somatic purinergic junctions that are instrumental for microglia-neuron communication in the adult brain. The formation and maintenance of these junctions is regulated by functional microglial P2Y12 receptors, and deletion of P2Y12Rs disturbs proliferation of neuronal precursors and leads to aberrant cortical cytoarchitecture during development and in adulthood. We propose that early developmental formation of somatic purinergic junctions represents an important interface for microglia to monitor the status of immature neurons and control neurodevelopment.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary.
| | - Anett D Schwarcz
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary; Szentágothai János Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Zsófia I László
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; University of Dundee, School of Medicine, Dundee DD1 9SY, UK
| | - Anna Kellermayer
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Környei
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Máté Kisfali
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Miklós Nyerges
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsolt Lele
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - István Katona
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary.
| |
Collapse
|
44
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
45
|
Reduced and delayed myelination and volume of corpus callosum in an animal model of Fetal Alcohol Spectrum Disorders partially benefit from voluntary exercise. Sci Rep 2022; 12:10653. [PMID: 35739222 PMCID: PMC9226126 DOI: 10.1038/s41598-022-14752-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
1 in 20 live births in the United States is affected by prenatal alcohol exposure annually, creating a major public health crisis. The teratogenic impact of alcohol on physical growth, neurodevelopment, and behavior is extensive, together resulting in clinical disorders which fall under the umbrella term of Fetal Alcohol Spectrum Disorders (FASD). FASD-related impairments to executive function and perceptual learning are prevalent among affected youth and are linked to disruptions to corpus callosum growth and myelination in adolescence. Targeted interventions that support neurodevelopment in FASD-affected youth are nonexistent. We evaluated the capacity of an adolescent exercise intervention, a stimulator of myelinogenesis, to upregulate corpus callosum myelination in a rat model of FASD (third trimester-equivalent alcohol exposure). This study employs in vivo diffusion tensor imaging (DTI) scanning to investigate the effects of: (1) neonatal alcohol exposure and (2) an adolescent exercise intervention on corpus callosum myelination in a rodent model of FASD. DTI scans were acquired twice longitudinally (pre- and post-intervention) in male and female rats using a 9.4 Tesla Bruker Biospec scanner to assess alterations to corpus callosum myelination noninvasively. Fractional anisotropy values as well as radial/axial diffusivity values were compared within-animal in a longitudinal study design. Analyses using mixed repeated measures ANOVA’s confirm that neonatal alcohol exposure in a rodent model of FASD delays the trajectory of corpus callosum growth and myelination across adolescence, with a heightened vulnerability in the male brain. Alterations to corpus callosum volume are correlated with reductions to forebrain volume which mediates an indirect relationship between body weight gain and corpus callosum growth. While we did not observe any significant effects of voluntary aerobic exercise on corpus callosum myelination immediately after completion of the 12-day intervention, we did observe a beneficial effect of exercise intervention on corpus callosum volume growth in all rats. In line with clinical findings, we have shown that prenatal alcohol exposure leads to hypomyelination of the corpus callosum in adolescence and that the severity of damage is sexually dimorphic. Further, exercise intervention improves corpus callosum growth in alcohol-exposed and control rats in adolescence.
Collapse
|
46
|
Hisaoka-Nakashima K, Ohata K, Yoshimoto N, Tokuda S, Yoshii N, Nakamura Y, Wang D, Liu K, Wake H, Yoshida T, Ago Y, Hashimoto K, Nishibori M, Morioka N. High-mobility group box 1-mediated hippocampal microglial activation induces cognitive impairment in mice with neuropathic pain. Exp Neurol 2022; 355:114146. [PMID: 35738416 DOI: 10.1016/j.expneurol.2022.114146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Clinical evidence indicates that cognitive impairment is a common comorbidity of chronic pain, including neuropathic pain, but the mechanism underlying cognitive impairment remains unclear. Neuroinflammation plays a critical role in the development of both neuropathic pain and cognitive impairment. High-mobility group box 1 (HMGB1) is a proinflammatory molecule and could be involved in neuroinflammation-mediated cognitive impairment in the neuropathic pain state. Hippocampal microglial activation in mice has been associated with cognitive impairment. Thus, the current study examined a potential role of HMGB1 and microglial activation in cognitive impairment in mice with neuropathic pain due to a partial sciatic nerve ligation (PSNL). Mice developed cognitive impairment over two weeks, but not one week, after nerve injury. Nerve-injured mice demonstrated decreased nuclear fraction HMGB1, suggesting increased extracellular release of HMGB1. Furthermore, two weeks after PSNL, significant microglia activation was observed in hippocampus. Inhibition of microglial activation with minocycline, local hippocampal microglia depletion with clodronate liposome, or blockade of HMGB1 with either glycyrrhizic acid (GZA) or anti-HMGB1 antibody in PSNL mice reduced hippocampal microglia activation and ameliorated cognitive impairment. Other changes in the hippocampus of PSNL mice potentially related to cognitive impairment, including decreased hippocampal neuron dendrite length and spine densities and decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor (AMPAR) subunits, were prevented with anti-HMGB1 antibody treatment. The current findings suggest that neuro-inflammation involves a number of cellular-level changes and microglial activation. Blocking neuro-inflammation, particularly through blocking HMGB1 could be a novel approach to reducing co-morbidities such as cognitive impairment associated with neuropathic pain.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazuto Ohata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Natsuki Yoshimoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Shintarou Tokuda
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanako Yoshii
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Takayuki Yoshida
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Masahiro Nishibori
- Department of Translational Research & Drug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
47
|
Komada M, Nishimura Y. Epigenetics and Neuroinflammation Associated With Neurodevelopmental Disorders: A Microglial Perspective. Front Cell Dev Biol 2022; 10:852752. [PMID: 35646933 PMCID: PMC9133693 DOI: 10.3389/fcell.2022.852752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a cause of neurodevelopmental disorders such as autism spectrum disorders, fetal alcohol syndrome, and cerebral palsy. Converging lines of evidence from basic and clinical sciences suggest that dysregulation of the epigenetic landscape, including DNA methylation and miRNA expression, is associated with neuroinflammation. Genetic and environmental factors can affect the interaction between epigenetics and neuroinflammation, which may cause neurodevelopmental disorders. In this minireview, we focus on neuroinflammation that might be mediated by epigenetic dysregulation in microglia, and compare studies using mammals and zebrafish.
Collapse
Affiliation(s)
- Munekazu Komada
- Mammalian Embryology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
- *Correspondence: Yuhei Nishimura,
| |
Collapse
|
48
|
The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. JOURNAL OF ONCOLOGY 2022; 2022:8903482. [PMID: 35419058 PMCID: PMC9001141 DOI: 10.1155/2022/8903482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Gliomas are mixed solid tumors composed of both neoplastic and nonneoplastic cells. In glioma microenvironment, the most common nonneoplastic and infiltrating cells are macrophages and microglia. Microglia are the exact phagocytes of the central nervous system, whereas macrophages are myeloid immune cells that are depicted with ardent phagocytosis. Microglia are heterogeneously located in almost all nonoverlapping sections of the brain as well as the spinal cord, while macrophages are derived from circulating monocytes. Microglia and macrophages utilize a variety of receptors for the detection of molecules, particles, and cells that they engulf. Both microglia and peripheral macrophages interact directly with vessels both in the periphery of and within the tumor. In glioma milieu, normal human astrocytes, glioma cells, and microglia all exhibited the ability of phagocytosing glioma cells and precisely apoptotic tumor cells. Also, microglia and macrophages are robustly triggered by the glioma via the expression of chemoattractants such as monocyte chemoattractant protein, stromal-derived factor-1, and macrophage-colony stimulating factor. Glioma-associated microglia and/or macrophages positively correlated with glioma invasiveness, immunosuppression, and patients' poor outcome, making these cells a suitable target for immunotherapeutic schemes.
Collapse
|
49
|
Shook LL, Sullivan EL, Lo JO, Perlis RH, Edlow AG. COVID-19 in pregnancy: implications for fetal brain development. Trends Mol Med 2022; 28:319-330. [PMID: 35277325 PMCID: PMC8841149 DOI: 10.1016/j.molmed.2022.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
Abstract
The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy on the developing fetal brain is poorly understood. Other antenatal infections such as influenza have been associated with adverse neurodevelopmental outcomes in offspring. Although vertical transmission has been rarely observed in SARS-CoV-2 to date, given the potential for profound maternal immune activation (MIA), impact on the developing fetal brain is likely. Here we review evidence that SARS-CoV-2 and other viral infections during pregnancy can result in maternal, placental, and fetal immune activation, and ultimately in offspring neurodevelopmental morbidity. Finally, we highlight the need for cellular models of fetal brain development to better understand potential short- and long-term impacts of maternal SARS-CoV-2 infection on the next generation.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elinor L Sullivan
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Division of Neuroscience, Oregon National Primate Center, Beaverton, OR, USA
| | - Jamie O Lo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA; Department of Urology, Oregon Health & Science University, Portland, OR, USA; Division of Reproductive and Developmental Sciences, Oregon National Primate Center, Beaverton, OR, USA
| | - Roy H Perlis
- Center for Quantitative Health, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
50
|
Min L, Wang H, Qi H. Astragaloside IV inhibits the progression of liver cancer by modulating macrophage polarization through the TLR4/NF-κB/STAT3 signaling pathway. Am J Transl Res 2022; 14:1551-1566. [PMID: 35422920 PMCID: PMC8991133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
AIM The purpose of the present research was to investigate the effect and mechanism of Astragaloside IV (AS-IV) on liver cancer progression in vivo and in vitro. Since M1 macrophages play an essential role in suppressing tumors, while M2 macrophages can accelerate the incidence and progression of tumors by promoting angiogenesis, increasing tumor cell invasion and inhibiting tumor immune response, the effect and mechanism of AS-IV on macrophage polarization and their role in the development of HCC was explored. METHODS The effects of different concentrations of AS-IV (0, 50, 80, 100, 120, and 150 μM) on the capacity of hepatocellular carcinoma (HCC) cells to proliferate, migrate, and invade were detected. THP-1 cells were subjected to incubation in PMA for the purpose of stimulating differentiation into M0 macrophages. These macrophages were treated using LPS, IFN-γ, and PMA to produce M1 macrophages or treated using PMA, IL-13, and IL-4 to produce M2 macrophages. HCC cells and M1 or M2 macrophages were co-cultured for 48 hours, then the cell proliferation and migration were measured. The MTT assay was employed to determine cell viability. The capability of the cells to migrate and invade was investigated utilizing the Transwell assay and the wound healing assay. The expression of the M2 macrophage CD206 in macrophages treated with AS-IV was evaluated by flow cytometry. The expression of p-signal transducer and activator of transcription 3 (STAT3), phosphorylated (p)-NF-κB, and toll-like receptor 4 (TLR4) in macrophages was measured after treatment with AS-IV and M2 induction. To verify the function of the TLR4/NF-κB/STAT3 signaling pathway, TLR4 expression was knocked down in M2 macrophages, then the proliferation and migration and the M2 macrophage markers of HCC cells were measured. The effect of AS-IV on HCC in vivo was confirmed by a subcutaneous tumor mouse model. AS-IV was 2 was administered by gavage (0, 40, 80, and 100 mg/kg) for every 3 days. The tumor volume and weight were recorded. RESULTS AS-IV suppressed the capacities of HCC cells to proliferate, migrate, and invade in a dose-dependent way. M2 macrophages could promote the proliferative, migratory, and invasive ability of Huh-7 cells, which were suppressed by AS-IV. AS-IV directly attenuated the expression of M2 macrophage markers, indicating that AS-IV can inhibit macrophage M2 polarization. M2 macrophages stimulated the expression of p-STAT3, p-NF-κB, and TLR4, while AS-IV decreased the expression compared to the M2 group, indicating that AS-IV can regulate the TLR4/NF-κB/STAT3 signaling pathway. TLR4 small interfering RNA (siRNA/si) inhibited the proliferation of Huh-7 cells. The tumor volume, as well as weight of mice, was significantly reduced by AS-IV, indicating the antitumor impact of AS-IV in vivo. CONCLUSION AS-IV can inhibit the proliferative, invasive, and migratory ability of liver cancer through the suppression of the M2 polarization of macrophages, and the mechanism may involve the TLR4/NF-κB/STAT3 signaling pathway. The present study indicates that AS-IV could be an alternative drug to treat liver cancer, and the polarization of macrophages may be a novel treatment target for HCC.
Collapse
Affiliation(s)
- Liang Min
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| | - Haiqiao Wang
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| | - Hong Qi
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| |
Collapse
|