1
|
Cho Y, Jeong I, Kim KE, Rhee HW. Painting Cell-Cell Interactions by Horseradish Peroxidase and Endogenously Generated Hydrogen Peroxide. ACS Chem Biol 2024. [PMID: 39692451 DOI: 10.1021/acschembio.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cell-cell interactions are fundamental in biology for maintaining physiological conditions with direct contact being the most straightforward mode of interaction. Recent advancements have led to the development of various chemical tools for detecting or identifying these interactions. However, the use of exogenous cues, such as toxic reagents, bulky probes, and light irradiation, can disrupt normal cell physiology. For example, the toxicity of hydrogen peroxide (H2O2) limits the applications of peroxidases in the proximity labeling field. In this study, we aimed to address this limitation by demonstrating that membrane-localized horseradish peroxidase (HRP-TM) efficiently utilizes endogenously generated extracellular H2O2. By harnessing endogenous H2O2, we observed that HRP-TM-expressing cells can effectively label contacting cells without the need for exogenous H2O2 treatment. Furthermore, we confirmed that HRP-TM labels proximal cells in an interaction-dependent manner. These findings offer a novel approach for studying cell-cell interactions under more physiological conditions without the confounding effects of exogenous stimuli. Our study contributes to elucidating cell-cell interaction networks in various model organisms, providing valuable insights into the dynamic interplay between cells in their native network.
Collapse
Affiliation(s)
- Youngjoon Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Inyoung Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kwang-Eun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
3
|
Song M, Qiang Y, Zhao X, Song F. Cyclin-dependent Kinase 5 and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:7287-7302. [PMID: 38378992 DOI: 10.1007/s12035-024-04047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Neurodegenerative diseases are a group of diseases characterized by the progressive loss of neurons, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. These diseases have a high incidence and mortality rate globally, placing a heavy burden on patients and their families. The pathogenesis of neurodegenerative diseases is complex, and there are no effective treatments at present. Cyclin-dependent kinase 5 is a proline-directed serine/threonine protein kinase that is closely related to the development and function of the nervous system. Under physiological conditions, it is involved in regulating the process of neuronal proliferation, differentiation, migration, and synaptic plasticity. Moreover, there is increasing evidence that cyclin-dependent kinase 5 also plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we address the biological characteristics of cyclin-dependent kinase 5 and its role in neurodegenerative diseases. In particular, this review highlights the underlying mechanistic linkages between cyclin-dependent kinase 5 and mitochondrial dysfunction, oxidative stress and neuroinflammation in the context of neurodegeneration. Finally, we also summarize the currently available cyclin-dependent kinase 5 inhibitors and their prospects for the treatment of neurodegenerative diseases. Taken together, a better understanding of the molecular mechanisms of cyclin-dependent kinase 5 involved in neurodegenerative diseases can lead to the development of new strategies for the prevention and treatment of these devastating diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
4
|
Song Y, Song Q, Tan F, Wang Y, Li C, Liao S, Yu K, Mei Z, Lv L. Seliciclib alleviates ulcerative colitis by inhibiting ferroptosis and improving intestinal inflammation. Life Sci 2024; 351:122794. [PMID: 38866218 DOI: 10.1016/j.lfs.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, recurrent, non-specific inflammatory disease, and the pathogenesis of the disease remains unclear. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which are simultaneously closely related to reactive oxygen species (ROS). Although seliciclib is highly effective against immune inflammation, its mechanism on colitis is unclear. This study demonstrated that seliciclib administration partially inhibited ferroptosis, alleviating symptoms and inflammation in experimental colitis. METHODS The mouse UC model was induced by 3.0 % dextran sodium sulfate (DSS) for 7 days and treated with seliciclib (10 mg/kg) for 5 days. In the in vitro model, LPS (100 μg/mL) was used for induction and seliciclib (10 μM) was applied for 2 h. Meanwhile, appropriate histopathology, inflammatory response, oxidative stress, and ferroptosis regulators were measured. RESULTS This study primarily investigated the role of seliciclib in regulating ferroptosis in UC. Bioinformatics analysis indicated that Dual oxidase 2 (DUOX2) may serve a role involved in the ferroptosis of UC. The experimental findings demonstrated that seliciclib alleviates symptoms and inflammation in DSS-induced UC mice and partially mitigates the occurrence of ferroptosis both in vivo and in vitro, possibly through the modulation of DUOX2. CONCLUSIONS Ferroptosis is strongly associated with the development of colitis, and seliciclib plays an essential role in ferroptosis and inflammation in UC. The suppression of ferroptosis in the intestinal epithelium could be a therapeutic approach for UC.
Collapse
Affiliation(s)
- Ya Song
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Qian Song
- The Second College of Clinical Medicine, Chongqing Medical University, 1 Yixue Road, Yuzhong, 400016 Chongqing, China.
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Yanhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Keqi Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| |
Collapse
|
5
|
Radford-Smith D, Ng TT, Yates AG, Dunstan I, Claridge TDW, Anthony DC, Probert F. Ex-Vivo 13C NMR Spectroscopy of Rodent Brain: TNF Restricts Neuronal Utilization of Astrocyte-Derived Metabolites. J Proteome Res 2024; 23:3383-3392. [PMID: 38943617 PMCID: PMC11301676 DOI: 10.1021/acs.jproteome.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Tumor necrosis factor (TNF) has well-established roles in neuroinflammatory disorders, but the effect of TNF on the biochemistry of brain cells remains poorly understood. Here, we microinjected TNF into the brain to study its impact on glial and neuronal metabolism (glycolysis, pentose phosphate pathway, citric acid cycle, pyruvate dehydrogenase, and pyruvate carboxylase pathways) using 13C NMR spectroscopy on brain extracts following intravenous [1,2-13C]-glucose (to probe glia and neuron metabolism), [2-13C]-acetate (probing astrocyte-specific metabolites), or [3-13C]-lactate. An increase in [4,5-13C]-glutamine and [2,3-13C]-lactate coupled with a decrease in [4,5-13C]-glutamate was observed in the [1,2-13C]-glucose-infused animals treated with TNF. As glutamine is produced from glutamate by astrocyte-specific glutamine synthetase the increase in [4,5-13C]-glutamine reflects increased production of glutamine by astrocytes. This was confirmed by infusion with astrocyte substrate [2-13C]-acetate. As lactate is metabolized in the brain to produce glutamate, the simultaneous increase in [2,3-13C]-lactate and decrease in [4,5-13C]-glutamate suggests decreased lactate utilization, which was confirmed using [3-13C]-lactate as a metabolic precursor. These results suggest that TNF rearranges the metabolic network, disrupting the energy supply chain perturbing the glutamine-glutamate shuttle between astrocytes and the neurons. These insights pave the way for developing astrocyte-targeted therapeutic strategies aimed at modulating effects of TNF to restore metabolic homeostasis in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Daniel Radford-Smith
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
- Pharmacology
Department, University of Oxford, Oxford OX1 3QT, U.K.
| | - Tang T. Ng
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Abi G. Yates
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
- Pharmacology
Department, University of Oxford, Oxford OX1 3QT, U.K.
| | - Isobel Dunstan
- Pharmacology
Department, University of Oxford, Oxford OX1 3QT, U.K.
| | | | | | - Fay Probert
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
6
|
Wilcox CS, Herbert C, Wang C, Ma Y, Sun P, Li T, Verbesey J, Kumar P, Kassaye S, Welch WJ, Choi MJ, Pourafshar N, Wang D. Signals From Inflamed Perivascular Adipose Tissue Contribute to Small-Vessel Dysfunction in Women With Human Immunodeficiency Virus. J Infect Dis 2024; 230:67-77. [PMID: 39052698 PMCID: PMC11272057 DOI: 10.1093/infdis/jiae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND People with the human immunodeficiency virus (PWH) have microvascular disease. Because perivascular adipose tissue (PVAT) regulates microvascular function and adipose tissue is inflamed in PWH, we tested the hypothesis that PWH have inflamed PVAT that impairs the function of their small vessels. METHODS Subcutaneous small arteries were dissected with or without PVAT from a gluteal skin biopsy from 11 women with treated HIV (WWH) aged < 50 years and 10 matched women without HIV, and studied on isometric myographs. Nitric oxide (NO) and reactive oxygen species (ROS) were measured by fluorescence microscopy. Adipokines and markers of inflammation and ROS were assayed in PVAT. RESULTS PVAT surrounding the small arteries in control women significantly (P < .05) enhanced acetylcholine-induced endothelium-dependent relaxation and NO, and reduced contractions to thromboxane and endothelin-1. However, these effects of PVAT were reduced significantly (P < .05) in WWH whose PVAT released less adiponectin but more markers of ROS and inflammation. Moderation of contractions by PVAT were correlated positively with adipose adiponectin. CONCLUSIONS PVAT from WWH has oxidative stress, inflammation, and reduced release of adiponectin, which may contribute to enhanced contractions and therefore could promote small-artery dysfunction.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| | - Carly Herbert
- Multicenter Aids Cohort Study and the Women's Interagency HIV Study Combined Cohort Study, Georgetown University, Washington, District of Columbia, USA
| | - Cheng Wang
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
- Division of Nephrology, The Fifth Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuchi Ma
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| | - Philena Sun
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| | - Tian Li
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| | - Jennifer Verbesey
- MedStar Georgetown Transplant Institute, Washington, District of Columbia, USA
| | - Princy Kumar
- Division of Infection Disease, Georgetown University, Washington, District of Columbia, USA
- Multicenter Aids Cohort Study and the Women's Interagency HIV Study, Georgetown University, Washington, District of Columbia, USA
| | - Seble Kassaye
- Division of Infection Disease, Georgetown University, Washington, District of Columbia, USA
- Multicenter Aids Cohort Study and the Women's Interagency HIV Study, Georgetown University, Washington, District of Columbia, USA
| | - William J Welch
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| | - Michael J Choi
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
- Medstar Georgetown University Hospital, Department of Nephrology and Hypertension, Washington, District of Columbia, USA
| | - Negiin Pourafshar
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
- Medstar Georgetown University Hospital, Department of Nephrology and Hypertension, Washington, District of Columbia, USA
| | - Dan Wang
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Ziaei S, Hasani M, Malekahmadi M, Daneshzad E, Kadkhodazadeh K, Heshmati J. Effect of melatonin supplementation on cardiometabolic risk factors, oxidative stress and hormonal profile in PCOS patients: a systematic review and meta-analysis of randomized clinical trials. J Ovarian Res 2024; 17:138. [PMID: 38965577 PMCID: PMC11225253 DOI: 10.1186/s13048-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND To investigate whether melatonin supplementation can enhance cardiometabolic risk factors, reduce oxidative stress, and improve hormonal and pregnancy-related factors in patients with PCOS. METHODS We conducted a systematic search of PubMed/Medline, Scopus, and the Cochrane Library for articles published in English from inception to March 2023. We included randomized controlled trials (RCTs) on the use of melatonin for patients with polycystic ovary syndrome (PCOS). We performed a meta-analysis using a random-effects model and calculated the standardized mean differences (SMDs) and 95% confidence intervals (CIs). RESULTS Six studies met the inclusion criteria. The result of meta-analysis indicated that melatonin intake significantly increase TAC levels (SMD: 0.87, 95% CI: 0.46, 1.28, I2 = 00.00%) and has no effect on FBS, insulin, HOMA-IR, TC, TG, HDL, LDL, MDA, hs-CRP, mFG, SHBG, total testosterone, and pregnancy rate in patients with PCOS compare to controls. The included trials did not report any adverse events. CONCLUSION Melatonin is a potential antioxidant that may prevent damage from oxidative stress in patients with PCOS. However, the clear effect of melatonin supplementation on cardiometabolic risk factors, hormonal outcomes, and pregnancy-related outcomes needs to be evaluated further in large populations and long-term RCTs.
Collapse
Affiliation(s)
- Somayeh Ziaei
- ICU Department, Emam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Motahareh Hasani
- Department of Nutritional Sciences, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medicinal Sciences, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Katayoun Kadkhodazadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
8
|
Lin K, Zhang Y, Shen Y, Xu Y, Huang M, Liu X. Hydrogen Sulfide can Scavenge Free Radicals to Improve Spinal Cord Injury by Inhibiting the p38MAPK/mTOR/NF-κB Signaling Pathway. Neuromolecular Med 2024; 26:26. [PMID: 38907170 DOI: 10.1007/s12017-024-08794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) causes irreversible cell loss and neurological dysfunctions. Presently, there is no an effective clinical treatment for SCI. It can be the only intervention measure by relieving the symptoms of patients such as pain and fever. Free radical-induced damage is one of the validated mechanisms in the complex secondary injury following primary SCI. Hydrogen sulfide (H2S) as an antioxidant can effectively scavenge free radicals, protect neurons, and improve SCI by inhibiting the p38MAPK/mTOR/NF-κB signaling pathway. In this report, we analyze the pathological mechanism of SCI, the role of free radical-mediated the p38MAPK/mTOR/NF-κB signaling pathway in SCI, and the role of H2S in scavenging free radicals and improving SCI.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yanyang Shen
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiqin Xu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
9
|
Cheng PF, Yuan-He, Ge MM, Ye DW, Chen JP, Wang JX. Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain. Curr Neuropharmacol 2024; 22:1960-1985. [PMID: 37921169 PMCID: PMC11333790 DOI: 10.2174/1570159x22999231024140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023] Open
Abstract
Humans have long been combating chronic pain. In clinical practice, opioids are firstchoice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments do not achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.
Collapse
Affiliation(s)
- Peng-Fei Cheng
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuan-He
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Ping Chen
- Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jin-Xi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
10
|
Scavo MP, Negro R, Arrè V, Depalo N, Carrieri L, Rizzi F, Mastrogiacomo R, Serino G, Notarnicola M, De Nunzio V, Lippolis T, Pesole PL, Coletta S, Armentano R, Curri ML, Giannelli G. The oleic/palmitic acid imbalance in exosomes isolated from NAFLD patients induces necroptosis of liver cells via the elongase-6/RIP-1 pathway. Cell Death Dis 2023; 14:635. [PMID: 37752143 PMCID: PMC10522611 DOI: 10.1038/s41419-023-06161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Excessive toxic lipid accumulation in hepatocytes underlies the development of non-alcoholic fatty liver disease (NAFLD), phenotypically characterized by necrosis and steato-fibrosis, whose molecular mechanism is not yet fully understood. Patients with NAFLD display an imbalanced palmitic (PA) to oleic acid (OA) ratio. Moreover, increasing experimental evidence points out a relevant involvement of the exosomal content in disease progression. Aim of the study was to highlight the PA/OA imbalance within circulating exosomes, the subsequent intracellular alterations, and the impact on NALFD. Liver cells were challenged with exosomes isolated from both healthy subjects and NAFLD patients. The exosomal PA/OA ratio was artificially modified, and biological effects were evaluated. A NAFLD-derived exosomal PA/OA imbalance impacts liver cell cycle and cell viability. OA-modified NAFLD-derived exosomes restored cellular viability and proliferation, whereas the inclusion of PA into healthy subjects-derived exosomes negatively affected cell viability. Moreover, while OA reduced the phosphorylation and activation of the necroptosis marker, Receptor-interacting protein 1 (phospho-RIP-1), PA induced the opposite outcome, alongside increased levels of stress fibers, such as vimentin and fibronectin. Administration of NAFLD-derived exosomes led to increased expression of Elongase 6 (ELOVL6), Stearoyl-CoA desaturase 1 (SCD1), Tumor necrosis factor α (TNF-α), Mixed-lineage-kinase-domain-like-protein (MLKL) and RIP-1 in the hepatocytes, comparable to mRNA levels in the hepatocytes of NAFLD patients reported in the Gene Expression Omnibus (GEO) database. Genetic and pharmacological abrogation of ELOVL6 elicited a reduced expression of downstream molecules TNF-α, phospho-RIP-1, and phospho-MLKL upon administration of NAFLD-derived exosomes. Lastly, mice fed with high-fat diet exhibited higher phospho-RIP-1 than mice fed with control diet. Targeting the Elongase 6-RIP-1 signaling pathway offers a novel therapeutic approach for the treatment of the NALFD-induced exosomal PA/OA imbalance.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy.
| | - Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125, Bari, Italy
| | - Livianna Carrieri
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125, Bari, Italy
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Grazia Serino
- Experimental Immunopathology Laboratory, National Institute of Gastroenterology "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Tamara Lippolis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Pasqua Letizia Pesole
- Department of Pathology, "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Sergio Coletta
- Department of Pathology, "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Raffaele Armentano
- Department of Pathology, "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Maria Lucia Curri
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis" IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| |
Collapse
|
11
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
12
|
Deng Z, Zhang Y, Zhu Y, Zhu J, Li S, Huang Z, Qin T, Wu J, Zhang C, Chen W, Huang D, Ye W. BRD9 Inhibition Attenuates Matrix Degradation and Pyroptosis in Nucleus Pulposus by Modulating the NOX1/ROS/NF-κB axis. Inflammation 2023; 46:1002-1021. [PMID: 36801999 DOI: 10.1007/s10753-023-01786-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Intervertebral disc degeneration (IDD) is considered to be the leading cause of low back pain (LBP). The progression of IDD is closely related to the inflammatory microenvironment, which results in extracellular matrix degradation and cell death. One of the proteins, which have been shown to participate in the inflammatory response, is the bromodomain-containing protein 9 (BRD9). This study aimed to investigate the role and mechanism of BRD9 in regulating IDD. The tumor necrosis factor-α (TNF-α) was used to mimic the inflammatory microenvironment in vitro. Western blot, RT-PCR, immunohistochemistry, immunofluorescence, and flow cytometry were used to demonstrate the effect of BRD9 inhibition or knockdown on matrix metabolism and pyroptosis. We found that the expression of BRD9 was upregulated as IDD progressed. BRD9 inhibition or knockdown alleviated TNF-α-induced matrix degradation, reactive oxygen species (ROS) production, and pyroptosis in rat nucleus pulposus cells. Mechanistically, RNA-seq was used to investigate the mechanism of BRD9 in promoting IDD. Further investigation revealed that BRD9 regulated NOX1 expression. Inhibition of NOX1 could abrogate matrix degradation, ROS production, and pyroptosis caused by BRD9 overexpression. In vivo, the radiological and histological evaluation showed that the pharmacological inhibition of BRD9 alleviated IDD development in rat IDD model. Our results indicated that BRD9 could promote IDD via the NOX1/ROS/ NF-κB axis by inducing matrix degradation and pyroptosis. Targeting BRD9 may be a potential therapeutic strategy in treating IDD.
Collapse
Affiliation(s)
- Zhihuai Deng
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yangyang Zhang
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuanxin Zhu
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianxiong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Orthopedics, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuangxing Li
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhengqi Huang
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tianyu Qin
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jiajun Wu
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Zhang
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weijian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Orthopedics, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Ye
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
13
|
Ryan AK, Rich W, Reilly MA. Oxidative stress in the brain and retina after traumatic injury. Front Neurosci 2023; 17:1021152. [PMID: 36816125 PMCID: PMC9935939 DOI: 10.3389/fnins.2023.1021152] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
The brain and the retina share many physiological similarities, which allows the retina to serve as a model of CNS disease and disorder. In instances of trauma, the eye can even indicate damage to the brain via abnormalities observed such as irregularities in pupillary reflexes in suspected traumatic brain injury (TBI) patients. Elevation of reactive oxygen species (ROS) has been observed in neurodegenerative disorders and in both traumatic optic neuropathy (TON) and in TBI. In a healthy system, ROS play a pivotal role in cellular communication, but in neurodegenerative diseases and post-trauma instances, ROS elevation can exacerbate neurodegeneration in both the brain and the retina. Increased ROS can overwhelm the inherent antioxidant systems which are regulated via mitochondrial processes. The overabundance of ROS can lead to protein, DNA, and other forms of cellular damage which ultimately result in apoptosis. Even though elevated ROS have been observed to be a major cause in the neurodegeneration observed after TON and TBI, many antioxidants therapeutic strategies fail. In order to understand why these therapeutic approaches fail further research into the direct injury cascades must be conducted. Additional therapeutic approaches such as therapeutics capable of anti-inflammatory properties and suppression of other neurodegenerative processes may be needed for the treatment of TON, TBI, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Annie K. Ryan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Wade Rich
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Matthew A. Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States,Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States,*Correspondence: Matthew A. Reilly,
| |
Collapse
|
14
|
Tian Z, Feng B, Wang XQ, Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front Mol Neurosci 2022; 15:1030639. [PMID: 36438186 PMCID: PMC9687395 DOI: 10.3389/fnmol.2022.1030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/20/2023] Open
Abstract
Cyclin-dependent kinases 5 (Cdk5) is a special member of proline-directed serine threonine kinase family. Unlike other Cdks, Cdk5 is not directly involved in cell cycle regulation but plays important roles in nervous system functions. Under physiological conditions, the activity of Cdk5 is tightly controlled by p35 or p39, which are specific activators of Cdk5 and highly expressed in post-mitotic neurons. However, they will be cleaved into the corresponding truncated forms namely p25 and p29 under pathological conditions, such as neurodegenerative diseases and neurotoxic insults. The binding to truncated co-activators results in aberrant Cdk5 activity and contributes to the initiation and progression of multiple neurological disorders through affecting the down-stream targets. Although Cdk5 kinase activity is mainly regulated through combining with co-activators, it is not the only way. Post-translational modifications of Cdk5 including phosphorylation, S-nitrosylation, sumoylation, and acetylation can also affect its kinase activity and then participate in physiological and pathological processes of nervous system. In this review, we focus on the regulatory mechanisms of Cdk5 and its roles in a series of common neurological disorders such as neurodegenerative diseases, stroke, anxiety/depression, pathological pain and epilepsy.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Xing-Qin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines On Public Health in Chongqing, Chongqing, China
| |
Collapse
|
15
|
Puppala ER, Aochenlar SL, Shantanu PA, Ahmed S, Jannu AK, Jala A, Yalamarthi SS, Borkar RM, Tripathi DM, Naidu VGM. Perillyl alcohol attenuates chronic restraint stress aggravated dextran sulfate sodium-induced ulcerative colitis by modulating TLR4/NF-κB and JAK2/STAT3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154415. [PMID: 36070663 DOI: 10.1016/j.phymed.2022.154415] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is the most prevalent chronic inflammatory immune bowel disease. The modernization of lifestyle accompanied by the stress to cope with the competition has resulted in a new range of complications where stress became a critical contributing factor for many diseases, including UC. Hence there is an urgent need to develop a dual role in curtailing both systemic and neuroinflammation. Perillyl alcohol (POH) is a natural essential oil found in lavender, peppermint, cherries etc and has been widely studied for its strong anti-inflammatory, antioxidant and anti-stress properties. HYPOTHESIS/PURPOSE POH regulates the various inflammatory signaling cascades involved in chronic inflammation by inhibiting farnesyltransferase enzyme. Several studies reported that POH could inhibit the phosphorylation of NF-κB, STAT3 and promote the endogenous antioxidant enzymes like Nrf2 via farnesyltransferase enzyme inhibition. Also, the effects of POH against UC is not known yet. Thus, this study aims to explore the anti-ulcerative properties of POH on stress aggravated ulcerative colitis in C57BL/6 mice. METHODS Ulcerative colitis was induced by duel exposure of chronic restraint stress (day 1 to day 28) and 2.5% dextran sulphate sodium (day8 to day14) in mice. POH treatment 100 and 200 mg/kg was administred from day14 ti day28 following oral route of administration. Disease activity index, colonoscopy, western blot analysis and histological analysis, neurotransmitter analysis and Gene expression studies were perofomerd to asses the anti-colitis effects of POH. RESULTS The treatment reversed the oxidative stress and inflammatory response by inhibiting TLR4/NF-kB pathway, and IL-6/JAK2/STAT3 pathway in both isolated mice colons and brains. The inhibition of these pathways resulted in a decrease in pro-inflammatory cytokines like IL-6, IL-1β and TNF-α. The treatment improved the physiological and histological changes with decreased ulcerations as examined by colonic endoscopy and Haematoxylin and Eosin staining. The treatment also improved the behavior response as it increased mobility time which was reduced by chronic restrained stress. This was due to increased satiety neurotransmitters like dopamine and serotonin and decreased cortisol in mice brains. CONCLUSION These results infer that POH has significant anti-colitis activity on chronic restraint stress aggravated DSS-induced UC in mice.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sunepjungla L Aochenlar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - P A Shantanu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Arun Kumar Jannu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sai Sudha Yalamarthi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary sciences (ILBS), New Delhi, Delhi 110070
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101.
| |
Collapse
|
16
|
Jayaraman A, Reynolds R. Diverse pathways to neuronal necroptosis in Alzheimer's disease. Eur J Neurosci 2022; 56:5428-5441. [PMID: 35377966 DOI: 10.1111/ejn.15662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Necroptosis, or programmed necrosis, involves the kinase activity of receptor interacting kinases 1 and 3, the activation of the pseudokinase mixed lineage kinase domain-like and formation of a complex called the necrosome. It is one of the non-apoptotic cell death pathways that has gained interest in the recent years, especially as a neuronal cell death pathway occurring in Alzheimer's disease. In this review, we focus our discussion on the various molecular mechanisms that could trigger neuronal death through necroptosis and have been shown to play a role in Alzheimer's disease pathogenesis and neuroinflammation. We describe how each of these pathways, such as tumour necrosis factor signalling, reactive oxygen species, endosomal sorting complex, post-translational modifications and certain individual molecules, is dysregulated or activated in Alzheimer's disease, and how this dysregulation/activation could trigger necroptosis. At the cellular level, many of these molecular mechanisms and pathways may act in parallel to synergize with each other or inhibit one another, and changes in the balance between them may determine different cellular vulnerabilities at different disease stages. However, from a therapeutic standpoint, it remains unclear how best to target one or more of these pathways, given that such diverse pathways could all contribute to necroptotic cell death in Alzheimer's disease.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard Reynolds
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
17
|
Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y. Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules 2022; 27:6934. [PMID: 36296527 PMCID: PMC9609612 DOI: 10.3390/molecules27206934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA 15231, USA
| | - Tanzima Tarannum Lucy
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Md. Kamruzzaman Pramanik
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar 1349, Bangladesh
| | - Bijon Kumar Sil
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney 37729, Australia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, India
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
18
|
Aghelan Z, Karima S, Khazaie H, Abtahi SH, Farokhi AR, Rostampour M, Bahrehmand F, Khodarahmi R. IL-1α and TNF-α as an inducer for ROS-mediated NLRP1/NLRP3 inflammasomes activation in mononuclear blood cells from individuals with chronic insomnia disorder. Eur J Neurol 2022; 29:3647-3657. [PMID: 36048129 DOI: 10.1111/ene.15540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND There are some evidence that cytokines may play an important role in sleep deprivation; however, the underlying mechanisms are still unknown. So, the present study aim to evaluate the relationship between NLRP1 and NLRP3 inflammasomes activation of blood cells and serum levels of cytokines in individuals with chronic insomnia disorder (CID). METHODS Blood samples were collected from 24 individuals with CID and 24 healthy volunteers. The inflammasomes activation was evaluated using real time PCR of NLRP1, NLRP3, ASC, and Caspase-1; western blot of NLRP1 and NLRP3; caspase-1 activity assay; and serum levels of IL-1β, IL-18 and other cytokines using enzyme-linked immunosorbent assay (ELISA). ROS generation in blood cells were detected by flow cytometry assay. As well, MRI scans were obtained on a Siemens Magnetom Avanto 1.5 T MRI whole body scanner using an 8-channel head coil. RESULTS We found the increased activity of NLRP1 and NLRP3 inflammasomes in blood cells; the increased serum levels of pro-inflammatory cytokines; and the decreased serum levels of IL-10 and TGF-β in individuals with CID. We observed significant correlation between increased serum concentration of IL-1β and the severity of insomnia in individuals with CID. The levels of ROS in blood cells was found to be correlated with IL-1α and TNF-α concentrations in serums from individuals with CID. Moreover, the included individuals with CID demonstrated the increased right-cerebellum-cortex and lateral ventricle MD bilaterally compared to controls. CONCLUSIONS This study provided new insights on the pathogenesis of CID and the effects of cytokines on inflammasome activation.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hosein Abtahi
- Department of Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Ali Reza Farokhi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahrehmand
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
NADPH Oxidases in Pain Processing. Antioxidants (Basel) 2022; 11:antiox11061162. [PMID: 35740059 PMCID: PMC9219759 DOI: 10.3390/antiox11061162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.
Collapse
|
20
|
Apoptosis and (in) Pain—Potential Clinical Implications. Biomedicines 2022; 10:biomedicines10061255. [PMID: 35740277 PMCID: PMC9219669 DOI: 10.3390/biomedicines10061255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
The deregulation of apoptosis is involved in the development of several pathologies, and recent evidence suggests that apoptosis may be involved in chronic pain, namely in neuropathic pain. Neuropathic pain is a chronic pain state caused by primary damage or dysfunction of the nervous system; however, the details of the molecular mechanisms have not yet been fully elucidated. Recently, it was found that nerve endings contain transient receptor potential (TRP) channels that sense and detect signals released by injured tissues and respond to these damage signals. TRP channels are similar to the voltage-gated potassium channels or nucleotide-gated channels that participate in calcium and magnesium homeostasis. TRP channels allowing calcium to penetrate into nerve terminals can activate apoptosis, leading to nerve terminal destruction. Further, some TRPs are activated by acid and reactive oxygen species (ROS). ROS are mainly produced in the mitochondrial respiratory chain, and an increase in ROS production and/or a decrease in the antioxidant network may induce oxidative stress (OS). Depending on the OS levels, they can promote cellular proliferation and/or cell degeneration or death. Previous studies have indicated that proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), play an important role in the peripheral mediation of neuropathic pain. This article aims to perform a review of the involvement of apoptosis in pain, particularly the role of OS and neuroinflammation, and the clinical relevance of this knowledge. The potential discovery of new biomarkers and therapeutic targets can result in the development of more effective and targeted drugs to treat chronic pain, namely neuropathic pain. Highlights: Oxidative stress and neuroinflammation can activate cell signaling pathways that can lead to nerve terminal destruction by apoptosis. These could constitute potential new pain biomarkers and targets for therapy in neuropathic pain.
Collapse
|
21
|
SOD3 Suppresses the Expression of MMP-1 and Increases the Integrity of Extracellular Matrix in Fibroblasts. Antioxidants (Basel) 2022; 11:antiox11050928. [PMID: 35624792 PMCID: PMC9138143 DOI: 10.3390/antiox11050928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/31/2023] Open
Abstract
The superoxide dismutase (SOD) family functions as a reactive oxygen species (ROS)-scavenging system by converting superoxide anions into hydrogen peroxide in the cytosol (SOD1), mitochondria (SOD2), and extracellular matrix (SOD3). In this study, we examined the potential roles of SOD family members in skin aging. We found that SOD3 expression levels were significantly more reduced in the skin tissues of old mice and humans than in young counterparts, but SOD1 and SOD2 expression levels remained unchanged with aging. Accordingly, we analyzed the effects of SOD3 on intracellular ROS levels and the integrity of the extracellular matrix in fibroblasts. The treatment of foreskin fibroblasts with recombinant SOD3 reduced the intracellular ROS levels and secretion of MMP-1 while increasing the secretion of type I collagen. The effects of SOD3 were greater in fibroblasts treated with the TNF-α. SOD3 treatment also decreased the mRNA levels and promoter activity of MMP-1 while increasing the mRNA levels and promoter activities of COL1A1 and COL1A2. SOD3 treatment reduced the phosphorylation of NF-κB, p38 MAPK, ERK, and JNK, which are essential for MMP-1 transactivation. In a three-dimensional culture of fibroblasts, SOD3 decreased the amount of type I collagen fragments produced by MMP-1 and increased the amount of nascent type I procollagen. These results demonstrate that SOD3 reduces intracellular ROS levels, suppresses MMP-1 expression, and induces type I collagen expression in fibroblasts. Therefore, SOD3 may play a role in delaying or preventing skin aging.
Collapse
|
22
|
Chronic Pain in Musculoskeletal Diseases: Do You Know Your Enemy? J Clin Med 2022; 11:jcm11092609. [PMID: 35566735 PMCID: PMC9101840 DOI: 10.3390/jcm11092609] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain is a condition that characterises several diseases and represents a constantly growing issue with enormous socio-economic burdens, highlighting the importance of developing treatment algorithms appropriate to the patient’s needs and effective management strategies. Indeed, the algic condition must be assessed and treated independently of the underlying pathological process since it has an extremely negative impact on the emotional and psychic aspects of the individual, leading to isolation and depression. A full understanding of the pathophysiological mechanisms involved in nociceptive stimulation and central sensitization is an important step in improving approaches to musculoskeletal pain. In this context, the bidirectional relationship between immune cells and neurons involved in nociception could represent a key point in the understanding of these mechanisms. Therefore, we provide an updated overview of the magnitude of the musculoskeletal pain problem, in terms of prevalence and costs, and summarise the role of the most important molecular players involved in the development and maintenance of pain. Finally, based on the pathophysiological mechanisms, we propose a model, called the “musculoskeletal pain cycle”, which could be a useful tool to counteract resignation to the algic condition and provide a starting point for developing a treatment algorithm for the patient with musculoskeletal pain.
Collapse
|
23
|
The impact of gamma-radiation on the cerebral- and cerebellar- cortex of male rats’ brain. Brain Res Bull 2022; 186:136-142. [DOI: 10.1016/j.brainresbull.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 01/22/2023]
|
24
|
Rahmani A, Niknafs B, Naseri M, Nouri M, Tarighat-Esfanjani A. Effect of Nigella Sativa Oil on Oxidative Stress, Inflammatory, and Glycemic Control Indices in Diabetic Hemodialysis Patients: A Randomized Double-Blind, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2753294. [PMID: 35463059 PMCID: PMC9033343 DOI: 10.1155/2022/2753294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Background and Aims Diabetes is a leading cause of renal failure. High levels of oxidative stress and inflammation in patients with renal diabetes lead to various disorders and mortality. This study was performed to determine the effect of Nigella sativa (NS) supplementation on superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (TAC), high-sensitivity C-reactive protein (hs-CRP), glycosylated hemoglobin (HbA1c), fasting blood sugar (FBS), and insulin (INS) in patients with diabetes mellitus undergoing hemodialysis (HD). Methods In this randomized, double-blind, placebo-controlled clinical trial, a total of 46 diabetic HD patients were randomly divided into NS (n = 23) and placebo (n = 23) groups. NS group received 2 g/day of NS oil, and the placebo group received paraffin oil for 12 weeks. Serum levels of SOD, MDA, TAC, hs-CRP, HbA1C, FBS, and INS were measured before and after the study. Results Compared to baseline values, SOD, TAC, and INS levels increased, whereas MDA, hs-CRP, HbA1c, and FBS significantly decreased. After adjusting for covariates using the ANCOVA test, changes in the concentrations of SOD (p = .040), MDA (p = .025), TAC (p=<.001), hs-CRP (p = .017), HbA1c (p = .014), and FBS (p = .027) were statistically significant compared to the placebo group. Intergroup changes in INS were not significant. Additionally, there were no notable side effects during the research. Conclusions This study found that NS supplementation significantly enhanced the levels of SOD, MDA, TAC, hs-CRP, HbA1c, and FBS in diabetic HD patients.
Collapse
Affiliation(s)
- Alireza Rahmani
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Bahram Niknafs
- Department of Internal Medicine, School of Medicine, Imam Reza Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Mohsen Naseri
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Maryam Nouri
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, IR, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Clinical Nutrition Department, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Le Moigne V, Rodriguez Rincon D, Glatigny S, Dupont CM, Langevin C, Ait Ali Said A, Renshaw SA, Floto RA, Herrmann JL, Bernut A. Roscovitine Worsens Mycobacterium abscessus Infection by Reducing DUOX2-mediated Neutrophil Response. Am J Respir Cell Mol Biol 2022; 66:439-451. [PMID: 35081328 PMCID: PMC8990120 DOI: 10.1165/rcmb.2021-0406oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Daniela Rodriguez Rincon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Glatigny
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Christian M. Dupont
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, UMR 9004, Montpellier, France
| | - Christelle Langevin
- Inrae, Infectiologie Expérimentale des Rongeurs et des Poissons, UE 0907, Jouy-en-Josas, France
| | - Amel Ait Ali Said
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield Medical School, and
- Firth Court, Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom; and
| | - Jean-Louis Herrmann
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
- Hôpital Raymond Poincaré, AP-HP, Groupe Hospitalo-universitaire Paris-Saclay, Garches, France
| | - Audrey Bernut
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield Medical School, and
- Firth Court, Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
Osuntokun OS, Olayiwola G, Adekomi DA, Oyeyipo IP, Ayoka AO. Proanthocyanidin from Vitis vinifera attenuates memory impairment due to convulsive status epilepticus. Epilepsy Behav 2021; 124:108333. [PMID: 34619539 DOI: 10.1016/j.yebeh.2021.108333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of proanthocyanidin-rich fraction (PRF) of Vitis vinifera seed extract on the markers of hippocampal-dependent memory in convulsive status epilepticus (CSE) rat model. One hundred juvenile Wistar rats were randomized into 6 groups. Group 1 (n = 10) received propylene glycol (PG 0.1 ml/100 g) intraperitoneally (i.p), while convulsion was induced in groups 2-6 (n = 18 each) using lithium (127 mg/kg i.p) and pilocarpine hydrochloride (40 mg/kg i.p). The established CSE rats in groups 2-6 received a daily treatment of PG (0.1 ml i.p), PRF (30 mg/kg i.p), PRF (20 mg/kg BW i.p), PRF (10 mg/kg BW i.p) or diazepam (5 mg/kg BW i.p) for seven days. Thereafter, they were kept untreated but with access to feed and water for 21 days. The control and CSE-treated rats were subjected to behavioral tests, while the biochemical and histomorphological evaluations of the hippocampus were done after the sacrifice. The results were presented as mean ± SEM in graphs or tables. The level of significance was considered when p < 0.05. There was significant decrease in the hippocampal-dependent memory, hippocampal weight and an increased malondialdehyde concentration following CSE. The activities of acetylcholinesterase decreased significantly in the PRF-treated CSE rats. The hippocampal glial cells and granule count increased significantly following CSE, with various neurodegenerative features in the CA1 of the hippocampus. These derangements were attenuated significantly following PRF treatment. Memory impairment following CSE may be attenuated with the administration of PRF from V. vinifera seed in rats.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria; Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | | - Ibukun Peter Oyeyipo
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Abiodun Oladele Ayoka
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
27
|
Terse A, Amin N, Hall B, Bhaskar M, Binukumar B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Protocols for Characterization of Cdk5 Kinase Activity. Curr Protoc 2021; 1:e276. [PMID: 34679246 PMCID: PMC8555461 DOI: 10.1002/cpz1.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.
Collapse
Affiliation(s)
- Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B.K Binukumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Elias Utreras
- Department of Biology, Universidad de Chile, Santiago, Chile
| | | | - Harish Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Jayaraman A, Htike TT, James R, Picon C, Reynolds R. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. Acta Neuropathol Commun 2021; 9:159. [PMID: 34625123 PMCID: PMC8501605 DOI: 10.1186/s40478-021-01264-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenetic mechanisms underlying neuronal death and dysfunction in Alzheimer’s disease (AD) remain unclear. However, chronic neuroinflammation has been implicated in stimulating or exacerbating neuronal damage. The tumor necrosis factor (TNF) superfamily of cytokines are involved in many systemic chronic inflammatory and degenerative conditions and are amongst the key mediators of neuroinflammation. TNF binds to the TNFR1 and TNFR2 receptors to activate diverse cellular responses that can be either neuroprotective or neurodegenerative. In particular, TNF can induce programmed necrosis or necroptosis in an inflammatory environment. Although activation of necroptosis has recently been demonstrated in the AD brain, its significance in AD neuron loss and the role of TNF signaling is unclear. We demonstrate an increase in expression of multiple proteins in the TNF/TNF receptor-1-mediated necroptosis pathway in the AD post-mortem brain, as indicated by the phosphorylation of RIPK3 and MLKL, predominantly observed in the CA1 pyramidal neurons. The density of phosphoRIPK3 + and phosphoMLKL + neurons correlated inversely with total neuron density and showed significant sexual dimorphism within the AD cohort. In addition, apoptotic signaling was not significantly activated in the AD brain compared to the control brain. Exposure of human iPSC-derived glutamatergic neurons to TNF increased necroptotic cell death when apoptosis was inhibited, which was significantly reversed by small molecule inhibitors of RIPK1, RIPK3, and MLKL. In the post-mortem AD brain and in human iPSC neurons, in response to TNF, we show evidence of altered expression of proteins of the ESCRT III complex, which has been recently suggested as an antagonist of necroptosis and a possible mechanism by which cells can survive after necroptosis has been triggered. Taken together, our results suggest that neuronal loss in AD is due to TNF-mediated necroptosis rather than apoptosis, which is amenable to therapeutic intervention at several points in the signaling pathway.
Collapse
|
29
|
The Protective Effect of Bergamot Polyphenolic Fraction (BPF) on Chemotherapy-Induced Neuropathic Pain. Pharmaceuticals (Basel) 2021; 14:ph14100975. [PMID: 34681199 PMCID: PMC8540578 DOI: 10.3390/ph14100975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Paclitaxel is a chemotherapeutic drug used for cancer treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a common major dose-limiting side effect of many chemotherapeutic agents, including paclitaxel. CIPN is accompanied by mechanical and thermal hypersensitivity that resolves within weeks, months, or years after drug termination. To date, there is no available preventive strategy or effective treatment for CIPN due to the fact that its etiology has not been fully explained. It is clear that free radicals are implicated in many neurodegenerative diseases and recent studies have shown the important role of oxidative stress in development of CIPN. Here, we observed how, in rats, the administration of a natural antioxidant such as the bergamot polyphenolic extract (BPF), can play a crucial role in reducing CIPN. Paclitaxel administration induced mechanical allodynia and thermal hyperalgesia, which began to manifest on day seven, and reached its lowest levels on day fifteen. Paclitaxel-induced neuropathic pain was associated with nitration of proteins in the spinal cord including MnSOD, glutamine synthetase, and glutamate transporter GLT-1. This study showed that the use of BPF, probably by inhibiting the nitration of crucial proteins involved in oxidative stress, improved paclitaxel-induced pain behaviors relieving mechanical allodynia, thermal hyperalgesia, thus preventing the development of chemotherapy-induced neuropathic pain.
Collapse
|
30
|
Cui SN, Tan HY, Fan GC. Immunopathological Roles of Neutrophils in Virus Infection and COVID-19. Shock 2021; 56:345-351. [PMID: 33534399 PMCID: PMC8354486 DOI: 10.1097/shk.0000000000001740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023]
Abstract
ABSTRACT Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spread around the world and is currently affecting global public health. Clinical evidence indicates that the elevated number of peripheral neutrophils and higher ratio of neutrophils-to-lymphocytes are correlated with severe outcomes in COVID-19 patients, suggesting the possible immunopathological role of neutrophils during SARS-CoV-2 infection. As an abundant innate immune cell type, neutrophils are well known for their contributions to antimicrobial defense. However, their dysfunction is also associated with different inflammatory signatures during the pathogenesis of infection. Herein, in this mini-review, we summarize the recent progress on the potential role of neutrophils during COVID-19-associated inflammatory responses. In particular, we highlight the interactions between neutrophils and viruses as well as the relationship of neutrophils with cytokine storm and thrombosis in COVID-19 patients. Lastly, we discuss the importance of neutrophils as potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Shu-Nan Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital and Institute, Beijing, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hong-Yu Tan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
31
|
Bussulo SKD, Ferraz CR, Carvalho TT, Verri WA, Borghi SM. Redox interactions of immune cells and muscle in the regulation of exercise-induced pain and analgesia: implications on the modulation of muscle nociceptor sensory neurons. Free Radic Res 2021; 55:757-775. [PMID: 34238089 DOI: 10.1080/10715762.2021.1953696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.
Collapse
Affiliation(s)
- Sylvia K D Bussulo
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Sergio M Borghi
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil.,Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| |
Collapse
|
32
|
Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021; 10:971. [PMID: 34204362 PMCID: PMC8235474 DOI: 10.3390/antiox10060971] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an emergent infectious disease that has caused millions of deaths throughout the world. COVID-19 infection's main symptoms are fever, cough, fatigue, and neurological manifestations such as headache, myalgias, anosmia, ageusia, impaired consciousness, seizures, and even neuromuscular junctions' disorders. In addition, it is known that this disease causes a series of systemic complications such as adverse respiratory distress syndrome, cardiac injury, acute kidney injury, and liver dysfunction. Due to the neurological symptoms associated with COVID-19, damage in the central nervous system has been suggested as well as the neuroinvasive potential of SARS-CoV-2. It is known that CoV infections are associated with an inflammation process related to the imbalance of the antioxidant system; cellular changes caused by oxidative stress contribute to brain tissue damage. Although anti-COVID-19 vaccines are under development, there is no specific treatment for COVID-19 and its clinical manifestations and complications; only supportive treatments with immunomodulators, anti-vascular endothelial growth factors, modulating drugs, statins, or nutritional supplements have been used. In the present work, we analyzed the potential of antioxidants as adjuvants for the treatment of COVID-19 and specifically their possible role in preventing or decreasing the neurological manifestations and neurological complications present in the disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - América Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, SEDENA, Ciudad de México 11200, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | | | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, UNAM, Ciudad de México 04150, Mexico; (E.Y.H.-C.); (J.P.-C.)
| | - Liliana Carmona-Aparicio
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| |
Collapse
|
33
|
DE FLORA SILVIO, BALANSKY ROUMEN, LA MAESTRA SEBASTIANO. Antioxidants and COVID-19. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E34-E45. [PMID: 34622082 PMCID: PMC8452284 DOI: 10.15167/2421-4248/jpmh2021.62.1s3.1895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022]
Abstract
Oxidative mechanisms are not only involved in chronic degenerative diseases but also in infectious diseases, among which viral respiratory diseases. Antioxidants have the capability to counteract the action of oxidants by scavenging reactive oxygen species (ROS) and by inhibiting oxidant generating enzymes. Overproduction of ROS and deprivation of antioxidant systems play a major role in COVID-19 occurrence, progression, and severity. Interconnected pathways account for the relationships between oxidative damage and inflammation resulting from an interplay between transcription factors having opposite effects. For instance, Nrf2 downregulates inflammation by inhibiting endogenous antioxidant enzymes such as NQO-1 and HO-1. On the other hand, NF-κB upregulates pro-inflammatory cytokines and chemokines, such as IL-1β, IL-6, IL-8, PGE-2, COX-2, TNF-α, MMP-3, and MMP-4. A central protective role against oxidants is played by reduced glutathione (GSH), which is depleted in SARS-CoV-2 infection. N-acetylcysteine (NAC), a precursor of GSH, is of particular interest as an anti-COVID-19 agent. GSH and NAC hamper binding of the S1 subunit of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor. In addition, NAC and its derivatives possess a broad array of antioxidant and antiinflammatory mechanisms that could be exploited for COVID-19 prevention and adjuvant therapy. In particular, as demonstrated in a previous clinical trial evaluating influenza and influenza-like illnesses, the oral administration of NAC may be expected to decrease the risk of developing COVID-19. Furthermore, at the very high doses used worldwide as an antidote against paracetamol intoxication, intravenous NAC is likely to attenuate the pulmonary and systemic symptoms of COVID-19.
Collapse
Affiliation(s)
| | | | - SEBASTIANO LA MAESTRA
- Department of Health Sciences, University of Genoa, Italy
- Correspondence: Sebastiano La Maestra, Department of Health Sciences, University of Genoa, via A. Pastore 1, 16132 Genoa, Italy – E-mail:
| |
Collapse
|
34
|
Kurach Ł, Kulczycka-Mamona S, Kowalczyk J, Skalicka-Woźniak K, Boguszewska-Czubara A, El Sayed N, Osmani M, Iwaniak K, Budzyńska B. Mechanisms of the Procognitive Effects of Xanthotoxin and Umbelliferone on LPS-Induced Amnesia in Mice. Int J Mol Sci 2021; 22:1779. [PMID: 33579030 PMCID: PMC7916770 DOI: 10.3390/ijms22041779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays an essential role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease. Although coumarins have been shown to improve cognitive function in animal models and exert anti-inflammatory effects in cell cultures, the exact mechanism of their neuroprotective effects has not yet been fully elucidated. The present study aimed to investigate the neuroprotective effects of xanthotoxin (furanocoumarin) and umbelliferone (simple coumarin) in lipopolysaccharide-induced cognitive dysfunction in mice. For evaluation memory and learning processes, a passive avoidance test was used. Furthermore, acetylcholinesterase level and impact on the tumor necrosis factor α, interleukin 10 levels in the whole brain, and cyclooxygenase-II in hippocampus was established. Subchronic administration of both coumarins (15 mg/kg) enhanced the learning and memory function, but only the xanthotoxin improved cognitive processes impaired by lipopolysaccharide (0.8 mg/kg) administration. Behavioral results stay in line with acetylcholinesterase level in the brain. A statistically significant decrease in the level of tumor necrosis factor α and cyclooxygenase-II in lipopolysaccharide-treated rodents after coumarins' administration was observed. Together, our findings demonstrate that both coumarins improved cognitive functions, but only xanthotoxin significantly enhanced the learning and memory function and reduced the level of acetylcholinesterase in lipopolysaccharide-treated mice. This effect may suggest that only furanocoumarin-xanthotoxin attenuates neuroinflammation and enhances cholinergic neurotransmission, thus it can be a potential remedy with procognitive potential effective in treatment of neuroinflammatory disease.
Collapse
Affiliation(s)
- Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland;
| | - Sylwia Kulczycka-Mamona
- Department of Applied Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (S.K.-M.); (J.K.); (K.I.)
| | - Joanna Kowalczyk
- Department of Applied Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (S.K.-M.); (J.K.); (K.I.)
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Anna Boguszewska-Czubara
- Department of Medicinal Chemistry, Medical University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland;
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Mitat Osmani
- Department of Pharmacy, University of Pristina, St. Bulevardi i Dëshmorëve, 10000 Pristina, Kosovo;
| | - Karol Iwaniak
- Department of Applied Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (S.K.-M.); (J.K.); (K.I.)
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland;
| |
Collapse
|
35
|
Bjørklund G, Doşa MD, Maes M, Dadar M, Frye RE, Peana M, Chirumbolo S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol Res 2021; 166:105437. [PMID: 33493659 DOI: 10.1016/j.phrs.2021.105437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
This paper reviews the potential role of glutathione (GSH) in autism spectrum disorder (ASD). GSH plays a key role in the detoxification of xenobiotics and maintenance of balance in intracellular redox pathways. Recent data showed that imbalances in the GSH redox system are an important factor in the pathophysiology of ASD. Furthermore, ASD is accompanied by decreased concentrations of reduced GSH in part caused by oxidation of GSH into glutathione disulfide (GSSG). GSSG can react with protein sulfhydryl (SH) groups, thereby causing proteotoxic stress and other abnormalities in SH-containing enzymes in the brain and blood. Moreover, alterations in the GSH metabolism via its effects on redox-independent mechanisms are other processes associated with the pathophysiology of ASD. GSH-related regulation of glutamate receptors such as the N-methyl-D-aspartate receptor can contribute to glutamate excitotoxicity. Synergistic and antagonistic interactions between glutamate and GSH can result in neuronal dysfunction. These interactions can involve transcription factors of the immune pathway, such as activator protein 1 and nuclear factor (NF)-κB, thereby interacting with neuroinflammatory mechanisms, ultimately leading to neuronal damage. Neuronal apoptosis and mitochondrial dysfunction are recently outlined as significant factors linking GSH impairments with the pathophysiology of ASD. Moreover, GSH regulates the methylation of DNA and modulates epigenetics. Existing data support a protective role of the GSH system in ASD development. Future research should focus on the effects of GSH redox signaling in ASD and should explore new therapeutic approaches by targeting the GSH system.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University of Constanta, Campus, 900470, Constanta, Romania.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Richard E Frye
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
36
|
Checa J, Aran JM. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J Inflamm Res 2020; 13:1057-1073. [PMID: 33293849 PMCID: PMC7719303 DOI: 10.2147/jir.s275595] [Citation(s) in RCA: 405] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis. Indeed, throughout an organism’s lifespan, ROS affect directly (as mutagens) or indirectly (as messengers and regulators) all structural and functional components of cells, and many aspects of cell biology. Whether left unchecked by protective antioxidant systems, excess ROS not only cause genomic mutations but also induce irreversible oxidative modification of proteins (protein oxidation and peroxidation), lipids and glycans (advanced lipoxidation and glycation end products), impairing their function and promoting disease or cell death. Conversely, low-level local ROS play an important role both as redox-signaling molecules in a wide spectrum of pathways involved in the maintenance of cellular homeostasis (MAPK/ERK, PTK/PTP, PI3K-AKT-mTOR), and regulating key transcription factors (NFκB/IκB, Nrf2/KEAP1, AP-1, p53, HIF-1). Consequently, ROS can shape a variety of cellular functions, including proliferation, differentiation, migration and apoptosis. In this review, we will give a brief overview of the relevance of ROS in both physiological and pathological processes, particularly inflammation and aging. In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions. This will mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.
Collapse
Affiliation(s)
- Javier Checa
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
37
|
Joo HJ, Ma DJ, Hwang JS, Shin YJ. SIRT1 Activation Using CRISPR/dCas9 Promotes Regeneration of Human Corneal Endothelial Cells through Inhibiting Senescence. Antioxidants (Basel) 2020; 9:antiox9111085. [PMID: 33158256 PMCID: PMC7694272 DOI: 10.3390/antiox9111085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Human corneal endothelial cells (hCECs) are restricted in proliferative capacity in vivo. Reduction in the number of hCEC leads to persistent corneal edema requiring corneal transplantation. This study demonstrates the functions of SIRT1 in hCECs and its potential for corneal endothelial regeneration. Cell morphology, cell growth rates and proliferation-associated proteins were compared in normal and senescent hCECs. SIRT1 was activated using the CRISPR/dCas9 activation system (SIRT1a). The plasmids were transfected into CECs of six-week-old Sprague–Dawley rats using electroporation and cryoinjury was performed. Senescent cells were larger, elongated and showed lower proliferation rates and lower SIRT1 levels. SIRT1 activation promoted the wound healing of CECs. In vivo transfection of SIRT1a promoted the regeneration of CECs. The proportion of the S-phase cells was lower in senescent cells and elevated upon SIRT1a activation. SIRT1 regulated cell proliferation, proliferation-associated proteins, mitochondrial membrane potential, and oxidative stress levels. In conclusion, corneal endothelial senescence is related with a decreased SIRT1 level. SIRT1a promotes the regeneration of CECs by inhibiting cytokine-induced cell death and senescence. Gene function activation therapy using SIRT1a may serve as a novel treatment strategy for hCEC diseases.
Collapse
|
38
|
Sun Y, Lu Y, Saredy J, Wang X, Drummer Iv C, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X, Wang H, Yang X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 2020; 37:101696. [PMID: 32950427 PMCID: PMC7767745 DOI: 10.1016/j.redox.2020.101696] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are critical for the progression of cardiovascular diseases, inflammations and tumors. However, the mechanisms of how ROS sense metabolic stress, regulate metabolic pathways and initiate proliferation, inflammation and cell death responses remain poorly characterized. In this analytic review, we concluded that: 1) Based on different features and functions, eleven types of ROS can be classified into seven functional groups: metabolic stress-sensing, chemical connecting, organelle communication, stress branch-out, inflammasome-activating, dual functions and triple functions ROS. 2) Among the ROS generation systems, mitochondria consume the most amount of oxygen; and nine types of ROS are generated; thus, mitochondrial ROS systems serve as the central hub for connecting ROS with inflammasome activation, trained immunity and immunometabolic pathways. 3) Increased nuclear ROS production significantly promotes cell death in comparison to that in other organelles. Nuclear ROS systems serve as a convergent hub and decision-makers to connect unbearable and alarming metabolic stresses to inflammation and cell death. 4) Balanced ROS levels indicate physiological homeostasis of various metabolic processes in subcellular organelles and cytosol, while imbalanced ROS levels present alarms for pathological organelle stresses in metabolic processes. Based on these analyses, we propose a working model that ROS systems are a new integrated network for sensing homeostasis and alarming stress in metabolic processes in various subcellular organelles. Our model provides novel insights on the roles of the ROS systems in bridging metabolic stress to inflammation, cell death and tumorigenesis; and provide novel therapeutic targets for treating those diseases. (Word count: 246).
Collapse
Affiliation(s)
- Yu Sun
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Yifan Lu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Jason Saredy
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xianwei Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer Iv
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Fatma Saaoud
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Keman Xu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - Ming Liu
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA
| | - William Y Yang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and Inflammation, Translational and Clinical Lung Research, USA; Metabolic Disease Research and Cardiovascular Research and Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
39
|
Ruan W, Engevik MA, Chang-Graham AL, Danhof HA, Goodwin A, Engevik KA, Shi Z, Hall A, Rienzi SCD, Venable S, Britton RA, Hyser J, Versalovic J. Enhancing responsiveness of human jejunal enteroids to host and microbial stimuli. J Physiol 2020; 598:3085-3105. [PMID: 32428244 PMCID: PMC7674265 DOI: 10.1113/jp279423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Enteroids are a physiologically relevant model to examine the human intestine and its functions. Previously, the measurable cytokine response of human intestinal enteroids has been limited following exposure to host or microbial pro-inflammatory stimuli. Modifications to enteroid culture conditions facilitated robust human cytokine responses to pro-inflammatory stimuli. This new human enteroid culture methodology refines the ability to study microbiome:human intestinal epithelium interactions in the laboratory. ABSTRACT The intestinal epithelium is the primary interface between the host, the gut microbiome and its external environment. Since the intestinal epithelium contributes to innate immunity as a first line of defence, understanding how the epithelium responds to microbial and host stimuli is an important consideration in promoting homeostasis. Human intestinal enteroids (HIEs) are primary epithelial cell cultures that can provide insights into the biology of the intestinal epithelium and innate immune responses. One potential limitation of using HIEs for innate immune studies is the relative lack of responsiveness to factors that stimulate epithelial cytokine production. We report technical refinements, including removal of extracellular antioxidants, to facilitate enhanced cytokine responses in HIEs. Using this new method, we demonstrate that HIEs have distinct cytokine profiles in response to pro-inflammatory stimuli derived from host and microbial sources. Overall, we found that host-derived cytokines tumour necrosis factor and interleukin-1α stimulated reactive oxygen species and a large repertoire of cytokines. In contrast, microbial lipopolysaccharide, lipoteichoic acid and flagellin stimulated a limited number of cytokines and histamine did not stimulate the release of any cytokines. Importantly, HIE-secreted cytokines were functionally active, as denoted by the ability of human blood-derived neutrophil to migrate towards HIE supernatant containing interleukin-8. These findings establish that the immune responsiveness of HIEs depends on medium composition and stimuli. By refining the experimental culture medium and creating an environment conducive to epithelial cytokine responses by human enteroids, HIEs can facilitate exploration of many experimental questions pertaining to the role of the intestinal epithelium in innate immunity.
Collapse
Affiliation(s)
- Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, Texas, USA
| | - Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | | | - Heather A Danhof
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Annie Goodwin
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, Texas, USA
| | - Kristen A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhongcheng Shi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Sara C Di Rienzi
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Susan Venable
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Robert A Britton
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Hyser
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
40
|
Sharma V, Sharma P. Phyto-therapeutic potential of stem bark of the wonder tree, Prosopis cineraria (L.) Druce in LPS-induced mouse model: An Anti-Inflammatory Study. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00168-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Therapeutic potential of Prosopis cineraria has been extensively explored by many eminent researchers against various serious diseases but its activity against Lipopolysaccharide (endotoxin) is obscure. Therefore, present experimental investigation was conducted to unravel and analyze the anti-inflammatory potential of hydro-ethanol extract of Prosopis cineraria against LPS-induced inflammation in Swiss albino male mice.
Methods
Swiss Albino male mice were intoxicated (intra-peritoneal) with LPS (2 mg/kg body weight) and further treated with low and high dose (i.e. 100 mg/kg body weight and 300 mg/kg body weight respectively) of hydro-ethanol extract of stem-bark of Prosopis cineraria. The levels of cytokines (TNF-α, Prostaglandins E2, IL-6, NF-κBp65, IFN-γ and IL-10) were determined in liver homogenate. Nitric oxide generated due to LPS-induced toxicity was estimated by using Griess reagent.
Results
The results demonstrated that the plant extract suppressed the over-expression and altered levels of cytokines due to LPS intoxication and restored the levels of TNF-α, NF-κB, NO, IL-6, IFN- γ, Prostaglandin E2 and IL-10.
Conclusion
The present research work unravelled the alleviating potential of Prosopis cineraria against LPS-induced inflammation by modulating the expression of cytokines.
Collapse
|
41
|
Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul 2020; 77:100741. [PMID: 32773102 PMCID: PMC7334659 DOI: 10.1016/j.jbior.2020.100741] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses an unprecedented challenge to healthcare systems due to the lack of a vaccine and specific treatment options. Accordingly, there is an urgent need to understand precisely the pathogenic mechanisms underlying this multifaceted disease. There is increasing evidence that the immune system reacts insufficiently to SARS-CoV-2 and thus contributes to organ damage and to lethality. In this review, we suggest that the overwhelming production of reactive oxygen species (ROS) resulting in oxidative stress is a major cause of local or systemic tissue damage that leads to severe COVID-19. It increases the formation of neutrophil extracellular traps (NETs) and suppresses the adaptive arm of the immune system, i.e. T cells that are necessary to kill virus-infected cells. This creates a vicious cycle that prevents a specific immune response against SARS-CoV-2. The key role of oxidative stress in the pathogenesis of severe COVID-19 implies that therapeutic counterbalancing of ROS by antioxidants such as vitamin C or NAC and/or by antagonizing ROS production by cells of the mononuclear phagocyte system (MPS) and neutrophil granulocytes and/or by blocking of TNF-α can prevent COVID-19 from becoming severe. Controlled clinical trials and preclinical models of COVID-19 are needed to evaluate this hypothesis.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Martin J Raftery
- Institute of Virology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
42
|
Laddha AP, Kulkarni YA. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications. Eur J Pharmacol 2020; 881:173206. [PMID: 32442539 DOI: 10.1016/j.ejphar.2020.173206] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
The human body has a mechanism for balancing the generation and neutralization of reactive oxygen species. The body is exposed to many agents that are responsible for the generation of reactive oxygen/nitrogen species, which leads to disruption of the balance between generation of these species and oxidative stress defence mechanisms. Diabetes is a chronic pathological condition associated with prolonged hyperglycaemia. Prolonged elevation of level of glucose in the blood leads to the generation of reactive oxygen species. This generation of reactive oxygen species is responsible for the development of diabetic vasculopathy, which includes micro- and macrovascular diabetic complications. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a membrane-bound enzyme responsible for the development of reactive oxygen species in hyperglycaemia. Phosphorylation of the cytosolic components of NOX, such as p47phox, p67phox, and RAC-1, in hyperglycaemia is one of the important causes of conversion of oxygen to reactive oxygen. Overexpression of NOX in pathological conditions is associated with activation of aldose reductase, advanced glycation end products, protein kinase C and the hexosamine pathway. In addition, NOX also promotes the activation of inflammatory cytokines, such as TGF-β, TNF-α, NF-kβ, IL-6, and IL-18, the activation of endothelial growth factors, such as VEGF and FGF, hyperlipidaemia, and the deposition of collagen. Thus, overexpression of NOX is linked to the development of diabetic complications. The present review focuses on the role of NOX, its associated pathways, and various NOX inhibitors in the management and treatment of diabetic complications, such as diabetic nephropathy, retinopathy, neuropathy and cardiomyopathy.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
43
|
Involvement of Metabolic Lipid Mediators in the Regulation of Apoptosis. Biomolecules 2020; 10:biom10030402. [PMID: 32150849 PMCID: PMC7175142 DOI: 10.3390/biom10030402] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is the physiological mechanism of cell death and can be modulated by endogenous and exogenous factors, including stress and metabolic alterations. Reactive oxygen species (ROS), as well as ROS-dependent lipid peroxidation products (including isoprostanes and reactive aldehydes including 4-hydroxynonenal) are proapoptotic factors. These mediators can activate apoptosis via mitochondrial-, receptor-, or ER stress-dependent pathways. Phospholipid metabolism is also an essential regulator of apoptosis, producing the proapoptotic prostaglandins of the PGD and PGJ series, as well as the antiapoptotic prostaglandins of the PGE series, but also 12-HETE and 20-HETE. The effect of endocannabinoids and phytocannabinoids on apoptosis depends on cell type-specific differences. Cells where cannabinoid receptor type 1 (CB1) is the dominant cannabinoid receptor, as well as cells with high cyclooxygenase (COX) activity, undergo apoptosis after the administration of cannabinoids. In contrast, in cells where CB2 receptors dominate, and cells with low COX activity, cannabinoids act in a cytoprotective manner. Therefore, cell type-specific differences in the pro- and antiapoptotic effects of lipids and their (oxidative) products might reveal new options for differential bioanalysis between normal, functional, and degenerating or malignant cells, and better integrative biomedical treatments of major stress-associated diseases.
Collapse
|
44
|
VGLUT2/Cdk5/p25 Signaling Pathway Contributed to Inflammatory Pain by Complete Freund's Adjuvant. Pain Res Manag 2020; 2020:4807674. [PMID: 32190166 PMCID: PMC7066405 DOI: 10.1155/2020/4807674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023]
Abstract
Vesicular glutamate transporter type 2 (VGLUT2) is known to play an important role in mediating heat hyperalgesia induced by inflammation. However, the underlying mechanism for this activity is poorly understood. Cyclin-dependent kinase 5 (Cdk5), serving as a key regulator in modulating release of glutamate, acted a key player in the formation of heat hyperalgesia of inflammatory pain. However, it remains unknown whether there is a bridge between Cdk5 and VGLUT2 for mediating inflammatory pain. Therefore, we designed the experiment to determine whether VGLUT2 signaling pathway is involved in inflammatory pain mediated by Cdk5 in the inflammatory pain model induced by complete Freund's adjuvant (CFA). Our results showed that the coexpression of Cdk5/VGLUT2 in small- and medium-sized neuronal cells of the dorsal root ganglion (DRG) and spinal cord between days 1 and 3 following subcutaneous injection of CFA was significantly increased. Moreover, our study revealed that the expression of VGLUT2 protein in the DRG and spinal cord was remarkably increased between days 1 and 3 following CFA injection and was significantly reduced by roscovitine, a selective antagonist of Cdk5. Additionally, p25 but not p35, an activator of Cdk5, protein was significantly increased by CFA and reduced by roscovitine. Our findings suggested that VGLUT2/Cdk5 signaling pathway contributes to inflammatory pain mediated by Cdk5/p25.
Collapse
|
45
|
Zhong Y, Chen J, Chen J, Chen Y, Li L, Xie Y. Crosstalk between Cdk5/p35 and ERK1/2 signalling mediates spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury. J Neurochem 2019; 151:166-184. [PMID: 31314915 DOI: 10.1111/jnc.14827] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
The specific mechanisms underlying cyclin-dependent kinase 5 (Cdk5)-mediated neuropathic pain at the spinal cord level remain elusive. The aim of the present study was to explore the role of crosstalk between Cdk5/p35 and extracellular signal-regulated kinase 1/2 (ERK1/2) signalling in mediating spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury (CCI). Here, we quantified pain behaviour after CCI; detected the localization of p35, Cdk5, phosphorylated ERK1/2 (pERK1/2), phosphorylated peroxisome proliferator-activated receptor γ (pPPARγ), neuronal nuclei (a neuronal marker), glial fibrillary acidic protein (GFAP, an activated astrocyte marker) and ionized calcium binding adaptor molecule 1 (a microglial marker) in the dorsal horn using immunofluorescence; measured the protein levels of Cdk5, p35, pERK1/2, pPPARγ and GFAP using western blot analysis; and gauged the enzyme activity of Cdk5/p35 kinase using a Cdk5/p35 kinase activity assay kit. Tumour necrosis factor-α, interleukin (IL)-1β and IL-6 levels were measured using enzyme-linked immunosorbent assay (ELISA). Ligation of the right sciatic nerve induced mechanical allodynia; thermal hyperalgesia; and the time-dependent upregulation of p35, pERK1/2 and GFAP and downregulation of pPPARγ. p35 colocalized with Cdk5, pERK1/2, pPPARγ, neurons and astrocytes but not microglia. Meanwhile, intrathecal injection of the Cdk5 inhibitor roscovitine, the mitogen-activated ERK kinase (MEK) inhibitor U0126 and the PPARγ agonist pioglitazone prevented or reversed behavioural allodynia, increased pPPARγ expression, inhibited astrocyte activation and alleviated proinflammatory cytokine (tumour necrosis factor-α, IL-1β, and IL-6) release from activated astrocytes. Furthermore, crosstalk between the Cdk5/p35 and ERK1/2 pathways was observed with CCI. Blockade of either Cdk5/p35 or ERK1/2 inhibited Cdk5 activity. These findings indicate that spinal crosstalk between the Cdk5/p35 and ERK1/2 pathways mediates astrocyte activity via the PPARγ pathway in CCI rats and that targeting this crosstalk could be an effective strategy to attenuate CCI and astrocyte-derived neuroinflammation.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jialin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yanhua Chen
- Department of Anesthesiology, Cardiovascular Institute, Nanning, Guangxi, P. R. China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
46
|
Yang F, Li Y, Duan H, Wang H, Pei F, Chen Z, Zhang L. Activation of mitophagy in inflamed odontoblasts. Oral Dis 2019; 25:1581-1588. [PMID: 31009146 DOI: 10.1111/odi.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/16/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Fuhua Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Yuan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Huiling Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Haisheng Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Fei Pei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
- Department of Endodontics, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
- Department of Endodontics, School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
47
|
Cortés N, Guzmán-Martínez L, Andrade V, González A, Maccioni RB. CDK5: A Unique CDK and Its Multiple Roles in the Nervous System. J Alzheimers Dis 2019; 68:843-855. [DOI: 10.3233/jad-180792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nicole Cortés
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Guzmán-Martínez
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Andrea González
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, East Campus, University of Chile, Santiago, Chile
| |
Collapse
|