1
|
Doidy J, Wang Y, Gouaille L, Goma-Louamba I, Jiang Z, Pourtau N, Le Gourrierec J, Sakr S. Sugar Transport and Signaling in Shoot Branching. Int J Mol Sci 2024; 25:13214. [PMID: 39684924 DOI: 10.3390/ijms252313214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates. Plants have so far developed two main mechanisms for unloading sugars (sucrose) towards sink organs, a symplasmic pathway and an apoplasmic pathway, but so far limited investigations have been reported about the modes of sugar uptake during the transition from the dormant to the active outgrowth state of the bud. The available data indicate that the switch from dormant bud to active outgrowing state, requires sugar and is shortly preceded by an increase in bud metabolic activity and a remobilization of the stem starch reserves in favor of growing buds. This activation of the bud sink strength is accompanied by an up-regulation of the main markers of apoplasmic unloading, such as sugar transporters (sucrose transporters-SUTs; sugar will eventually be exported transporters-SWEETs), sucrose hydrolyzing enzymes (cell wall invertase-CWINV) and sugar metabolic pathways (glycolysis/tricarboxylic cycle-TCA; oxidative pentose phosphate pathway-OPPP). As these results are limited to a few species, they are not sufficient to provide a complete and accurate picture of the mode(s) of sugar unloading toward axillary buds and deserve to be complemented by additional studies in a wide variety of plants using systems integration, combining genetic, molecular and immunolocalization approaches. Altogether, we discuss here how sugar is a systemic regulator of shoot branching, acting both as an energy-rich molecule and a signaling entity in the establishment of the bud sink strength.
Collapse
Affiliation(s)
- Joan Doidy
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France
| | - Yuhui Wang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Léo Gouaille
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | - Ingrid Goma-Louamba
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France
| | - Zhengrong Jiang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Nathalie Pourtau
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France
| | - José Le Gourrierec
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| |
Collapse
|
2
|
Mo T, Wang T, Sun Y, Kumar A, Mkumbwa H, Fang J, Zhao J, Yuan S, Li Z, Li X. The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module. PLANT COMMUNICATIONS 2024; 5:101073. [PMID: 39205390 PMCID: PMC11671761 DOI: 10.1016/j.xplc.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As an important yield component, rice tiller number controls panicle number and determines grain yield. Regulation of rice tiller number by chloroplast pentatricopeptide repeat (PPR) proteins has not been reported previously. Here, we report the rice reduced culm number22 (rcn22) mutant, which produces few tillers owing to suppressed tiller bud elongation. Map-based cloning revealed that RCN22 encodes a chloroplast-localized P-type PPR protein. We found that RCN22 specifically binds to the 5' UTR of RbcL mRNA (encoding the large subunit of Rubisco) and enhances its stability. The reduced abundance of RbcL mRNA in rcn22 leads to a lower photosynthetic rate and decreased sugar levels. Consequently, transcript levels of DWARF3 (D3) and TEOSINTE BRANCHED1 (TB1) (which encode negative regulators of tiller bud elongation) are increased, whereas protein levels of the positive regulator DWARF53 (D53) are decreased. Furthermore, high concentrations of sucrose can rescue the tiller bud growth defect of the rcn22 mutant. On the other hand, TB1 directly binds to the RCN22 promoter and downregulates its expression. The tb1/rcn22 double mutant shows a tillering phenotype similar to that of rcn22. Our results suggest that the TB1-RCN22-RbcL module plays a vital role in rice tiller bud elongation by affecting sugar levels.
Collapse
Affiliation(s)
- Tianyu Mo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tianhao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinglu Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ashmit Kumar
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Humphrey Mkumbwa
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xueyong Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
An ZS, Zuo CW, Mao J, Ma ZH, Li WF, Chen BH. Integration of mRNA-miRNA Reveals the Possible Role of PyCYCD3 in Increasing Branches Through Bud-Notching in Pear ( Pyrus bretschneideri Rehd.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2928. [PMID: 39458875 PMCID: PMC11511176 DOI: 10.3390/plants13202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Bud-notching in pear varieties with weak-branches enhances branch development, hormone distribution, and germination, promoting healthier growth and improving early yield. To examine the regulatory mechanisms of endogenous hormones on lateral bud germination in Pyrus spp. (cv. 'Huangguan') (Pyrus bretschneideri Rehd.), juvenile buds were collected from 2-year-old pear trees. Then, a comprehensive study, including assessments of endogenous hormones, germination and branching rates, RNA-seq analysis, and gene function analysis in these lateral buds was conducted. The results showed that there was no significant difference in germination rate between the control and bud-notching pear trees, but the long branch rate was significantly increased in bud-notching pear trees compared to the control (p < 0.05). After bud-notching, there was a remarkable increase in IAA and BR levels in the pruned section of shoots, specifically by 141% and 93%, respectively. However, the content of ABA in the lateral buds after bud-notching was not significantly different from the control. Based on RNA-seq analysis, a notable proportion of the differentially expressed genes (DEGs) were linked to the plant hormone signal transduction pathway. Notably, the brassinosteroid signaling pathway seemed to have the closest connection with the branching ability of pear with the related genes encoding BRI1 and CYCD3, which showed significant differences between lateral buds. Finally, the heterologous expression of PyCYCD3 has a positive regulatory effect on the increased Arabidopsis growth and branching numbers. Therefore, the PyCYCD3 was identified as an up-regulated gene that is induced via brassinosteroid (BR) and could act as a conduit, transforming bud-notching cues into proliferative signals, thereby governing lateral branching mechanisms in pear trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China (Z.-H.M.)
| |
Collapse
|
4
|
Sato H, Yamane H. Histone modifications affecting plant dormancy and dormancy release: common regulatory effects on hormone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6142-6158. [PMID: 38721634 DOI: 10.1093/jxb/erae205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
As sessile organisms, plants enter periods of dormancy in response to environmental stresses to ensure continued growth and reproduction in the future. During dormancy, plant growth is suppressed, adaptive/survival mechanisms are exerted, and stress tolerance increases over a prolonged period until the plants resume their development or reproduction under favorable conditions. In this review, we focus on seed dormancy and bud dormancy, which are critical for adaptation to fluctuating environmental conditions. We provide an overview of the physiological characteristics of both types of dormancy as well as the importance of the phytohormones abscisic acid and gibberellin for establishing and releasing dormancy, respectively. Additionally, recent epigenetic analyses have revealed that dormancy establishment and release are associated with the removal and deposition of histone modifications at the loci of key regulatory genes influencing phytohormone metabolism and signaling, including DELAY OF GERMINATION 1 and DORMANCY-ASSOCIATED MADS-box genes. We discuss our current understanding of the physiological and molecular mechanisms required to establish and release seed dormancy and bud dormancy, while also describing how environmental conditions control dormancy depth, with a focus on the effects of histone modifications.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Bilotta S, Éthier G, Laliberté AC, Goulet MC, Martel M, Michaud D, Pepin S. Synergetic light and cytokinin treatments mitigate the recombinant protein yield depression induced by high-density cultivation of hydroponically-grown Nicotiana benthamiana. Biotechnol Bioeng 2024; 121:3319-3328. [PMID: 39382055 DOI: 10.1002/bit.28781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 10/10/2024]
Abstract
Plant molecular farming is currently operating a transition from soil-based cultures toward hydroponic systems. In this study, we designed a whole-plant NFT (nutrient film technique) platform for the transient expression of influenza virus-like particles harboring hemagglutinin H1 proteins in Nicotiana benthamiana. In particular, we examined the effects of plant density during the post-infiltration expression phase on plant growth and H1 yield in relation to the daily light integral (DLI) received by the crop and the exogenous application of 6-BAP cytokinin (CK). We expected from previous work that high DLI and CK treatments would stimulate the development of highly productive leaves on axillary (secondary) stems and thereby improve the H1 yield at the whole-plant scale. Increasing plant density from 35.7 to 61 plants m-2 during the post-infiltration phase significantly decreased the proportion of axillary leaf biomass by 30% and H1 yield per plant by 39%, resulting in no additional yield gain on a whole-crop area basis. Adding CK to the recirculated nutrient solution decreased the harvested leaf biomass by 31% and did not enhance the relative proportion of S leaves of the plants as previously reported with foliar CK application. There was a 36% increase in H1 yield when doubling the DLI from 14 to 28 mol m-2 s-1, and up to 71% yield gain when combining such an increase in DLI with the hydroponic CK treatment. Contrary to our expectations, leaves located on the main stem, particularly those from the upper half of the plant (i.e., eighth leaf and above), contributed about 80% of total H1 yield. Our study highlights the significantly different phenotype (~30% less secondary leaf biomass) and divergent responses to light and CK treatments of NFT-grown N. benthamiana plants compared to previous studies conducted on potted plants.
Collapse
Affiliation(s)
- Stefano Bilotta
- Department of Plant Sciences, Laval University, Québec, Canada
| | - Gilbert Éthier
- Department of Plant Sciences, Laval University, Québec, Canada
| | | | | | | | | | - Steeve Pepin
- Department of Soils and Agri-Food Engineering, Laval University, Québec, Canada
| |
Collapse
|
6
|
Kebrom TH. Shade signals activate distinct molecular mechanisms that induce dormancy and inhibit flowering in vegetative axillary buds of sorghum. PLANT DIRECT 2024; 8:e626. [PMID: 39166257 PMCID: PMC11333302 DOI: 10.1002/pld3.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/22/2024]
Abstract
Shoot branches grow from axillary buds and play a crucial role in shaping shoot architecture and determining crop yield. Shade signals inactivate phytochrome B (phyB) and induce bud dormancy, thereby inhibiting shoot branching. Prior transcriptome profiling of axillary bud dormancy in a phyB-deficient mutant (58M, phyB-1) and bud outgrowth in wild-type (100M, PHYB) sorghum genotypes identified differential expression of genes associated with flowering, plant hormones, and sugars, including SbCN2, SbNCED3, SbCKX1, SbACO1, SbGA2ox1, and SbCwINVs. This study examined the expression of these genes during bud dormancy induced by shade and defoliation in 100M sorghum. The aim was to elucidate the molecular mechanisms activated by shade in axillary buds by comparing them with those activated by defoliation. The expression of marker genes for sugar levels suggests shade and defoliation reduce the sugar supply to the buds and induce bud dormancy. Intriguingly, both shade signals and defoliation downregulated SbNCED3, suggesting that ABA might not play a role in promoting axillary bud dormancy in sorghum. Whereas the cytokinin (CK) degrading gene SbCKX1 was upregulated solely by shade signals in the buds, the CK inducible genes SbCGA1 and SbCwINVs were downregulated during both shade- and defoliation-induced bud dormancy. This indicates a decrease in CK levels in the dormant buds. Shade signals dramatically upregulated SbCN2, an ortholog of the Arabidopsis TFL1 known for inhibiting flowering, whereas defoliation did not increase SbCN2 expression in the buds. Removing shade temporarily downregulated SbCN2 in dormant buds, further indicating its expression is not always correlated with bud dormancy. Because shade signals also trigger a systemic early flowering signal, SbCN2 might be activated to protect the buds from transitioning to flowering before growing into branches. In conclusion, this study demonstrates that shade signals activate two distinct molecular mechanisms in sorghum buds: one induces dormancy by reducing CK and sugars, whereas the other inhibits flowering by activating SbCN2. Given the agricultural significance of TFL1-like genes, the rapid regulation of SbCN2 by light signals in axillary buds revealed in this study warrants further investigation to explore its potential in crop improvement strategies.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Cooperative Agricultural Research Center, College of Agriculture, Food, and Natural ResourcesPrairie View A&M UniversityPrairie ViewTexasUSA
- Center for Computational Systems Biology, College of EngineeringPrairie View A&M UniversityPrairie ViewTexasUSA
| |
Collapse
|
7
|
Chen J, Liu L, Wang G, Chen G, Liu X, Li M, Han L, Song W, Wang S, Li C, Wang Z, Huang Y, Gu C, Yang Z, Zhou Z, Zhao J, Zhang X. The AGAMOUS-LIKE 16-GENERAL REGULATORY FACTOR 1 module regulates axillary bud outgrowth via catabolism of abscisic acid in cucumber. THE PLANT CELL 2024; 36:2689-2708. [PMID: 38581430 PMCID: PMC11218829 DOI: 10.1093/plcell/koae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16-CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.
Collapse
Affiliation(s)
- Jiacai Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guangxin Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chuang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoheng Gu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
9
|
Basso MF, Girardin G, Vergata C, Buti M, Martinelli F. Genome-wide transcript expression analysis reveals major chickpea and lentil genes associated with plant branching. FRONTIERS IN PLANT SCIENCE 2024; 15:1384237. [PMID: 38962245 PMCID: PMC11220206 DOI: 10.3389/fpls.2024.1384237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.
Collapse
Affiliation(s)
| | | | - Chiara Vergata
- Department of Biology, University of Florence, Florence, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
10
|
Wen S, Hu Q, Wang J, Li H. Transcriptome analysis and functional validation reveal the novel role of LhCYCL in axillary bud development in hybrid Liriodendron. PLANT MOLECULAR BIOLOGY 2024; 114:55. [PMID: 38727895 DOI: 10.1007/s11103-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Shoot branching significantly influences yield and timber quality in woody plants, with hybrid Liriodendron being particularly valuable due to its rapid growth. However, understanding of the mechanisms governing shoot branching in hybrid Liriodendron remains limited. In this study, we systematically examined axillary bud development using morphological and anatomical approaches and selected four distinct developmental stages for an extensive transcriptome analysis. A total of 9,449 differentially expressed genes have been identified, many of which are involved in plant hormone signal transduction pathways. Additionally, we identified several transcription factors downregulated during early axillary bud development, including a noteworthy gene annotated as CYC-like from the TCP TF family, which emerged as a strong candidate for modulating axillary bud development. Quantitative real-time polymerase chain reaction results confirmed the highest expression levels of LhCYCL in hybrid Liriodendron axillary buds, while histochemical β-glucuronidase staining suggested its potential role in Arabidopsis thaliana leaf axil development. Ectopic expression of LhCYCL in A. thaliana led to an increase of branches and a decrease of plant height, accompanied by altered expression of genes involved in the plant hormone signaling pathways. This indicates the involvement of LhCYCL in regulating shoot branching through plant hormone signaling pathways. In summary, our results emphasize the pivotal role played by LhCYCL in shoot branching, offering insights into the function of the CYC-like gene and establishing a robust foundation for further investigations into the molecular mechanisms governing axillary bud development in hybrid Liriodendron.
Collapse
Affiliation(s)
- Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
11
|
Nahas Z, Ticchiarelli F, van Rongen M, Dillon J, Leyser O. The activation of Arabidopsis axillary buds involves a switch from slow to rapid committed outgrowth regulated by auxin and strigolactone. THE NEW PHYTOLOGIST 2024; 242:1084-1097. [PMID: 38503686 DOI: 10.1111/nph.19664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Arabidopsis thaliana (Arabidopsis) shoot architecture is largely determined by the pattern of axillary buds that grow into lateral branches, the regulation of which requires integrating both local and systemic signals. Nodal explants - stem explants each bearing one leaf and its associated axillary bud - are a simplified system to understand the regulation of bud activation. To explore signal integration in bud activation, we characterised the growth dynamics of buds in nodal explants in key mutants and under different treatments. We observed that isolated axillary buds activate in two genetically and physiologically separable phases: a slow-growing lag phase, followed by a switch to rapid outgrowth. Modifying BRANCHED1 expression or the properties of the auxin transport network, including via strigolactone application, changed the length of the lag phase. While most interventions affected only the length of the lag phase, strigolactone treatment and a second bud also affected the rapid growth phase. Our results are consistent with the hypothesis that the slow-growing lag phase corresponds to the time during which buds establish canalised auxin transport out of the bud, after which they enter a rapid growth phase. Our work also hints at a role for auxin transport in influencing the maximum growth rate of branches.
Collapse
Affiliation(s)
- Zoe Nahas
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Martin van Rongen
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Jean Dillon
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
12
|
Xu R, Chong L, Zhu Y. Mediator kinase subunit CDK8 phosphorylates transcription factor TCP15 during tomato pollen development. PLANT PHYSIOLOGY 2024; 195:865-878. [PMID: 38365204 DOI: 10.1093/plphys/kiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/18/2024]
Abstract
Pollen development in flowering plants has strong implications for reproductive success. Pollen DNA can be targeted to improve plant traits for yield and stress tolerance. In this study, we demonstrated that the Mediator subunit CYCLIN-DEPENDENT KINASE 8 (CDK8) is a key modulator of pollen development in tomato (Solanum lycopersicum). SlCDK8 knockout led to significant decreases in pollen viability, fruit yield, and fruit seed number. We also found that SlCDK8 directly interacts with transcription factor TEOSINTE BRANCHED1-CYCLOIDEA-PCF15 (SlTCP15) using yeast two-hybrid screens. We subsequently showed that SlCDK8 phosphorylates Ser 187 of SlTCP15 to promote SlTCP15 stability. Phosphorylated TCP15 directly bound to the TGGGCY sequence in the promoters of DYSFUNCTIONAL TAPETUM 1 (SlDYT1) and MYB DOMAIN PROTEIN 103 (SlMYB103), which are responsible for pollen development. Consistently, disruption of SlTCP15 resembled slcdk8 tomato mutants. In sum, our work identified a new substrate of Mediator CDK8 and revealed an important regulatory role of SlCDK8 in pollen development via cooperation with SlTCP15.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Sanya Institute of Henan University, Sanya, Hainan 570203, China
| |
Collapse
|
13
|
Watson AE, Guitton B, Soriano A, Rivallan R, Vignes H, Farrera I, Huettel B, Arnaiz C, Falavigna VDS, Coupel-Ledru A, Segura V, Sarah G, Dufayard JF, Sidibe-Bocs S, Costes E, Andrés F. Target enrichment sequencing coupled with GWAS identifies MdPRX10 as a candidate gene in the control of budbreak in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1352757. [PMID: 38455730 PMCID: PMC10918860 DOI: 10.3389/fpls.2024.1352757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
The timing of floral budbreak in apple has a significant effect on fruit production and quality. Budbreak occurs as a result of a complex molecular mechanism that relies on accurate integration of external environmental cues, principally temperature. In the pursuit of understanding this mechanism, especially with respect to aiding adaptation to climate change, a QTL at the top of linkage group (LG) 9 has been identified by many studies on budbreak, but the genes underlying it remain elusive. Here, together with a dessert apple core collection of 239 cultivars, we used a targeted capture sequencing approach to increase SNP resolution in apple orthologues of known or suspected A. thaliana flowering time-related genes, as well as approximately 200 genes within the LG9 QTL interval. This increased the 275 223 SNP Axiom® Apple 480 K array dataset by an additional 40 857 markers. Robust GWAS analyses identified MdPRX10, a peroxidase superfamily gene, as a strong candidate that demonstrated a dormancy-related expression pattern and down-regulation in response to chilling. In-silico analyses also predicted the residue change resulting from the SNP allele associated with late budbreak could alter protein conformation and likely function. Late budbreak cultivars homozygous for this SNP allele also showed significantly up-regulated expression of C-REPEAT BINDING FACTOR (CBF) genes, which are involved in cold tolerance and perception, compared to reference cultivars, such as Gala. Taken together, these results indicate a role for MdPRX10 in budbreak, potentially via redox-mediated signaling and CBF gene regulation. Moving forward, this provides a focus for developing our understanding of the effects of temperature on flowering time and how redox processes may influence integration of external cues in dormancy pathways.
Collapse
Affiliation(s)
- Amy E. Watson
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Baptiste Guitton
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Alexandre Soriano
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Ronan Rivallan
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Hélène Vignes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Isabelle Farrera
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bruno Huettel
- Genome Centre, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Catalina Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Aude Coupel-Ledru
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gautier Sarah
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-François Dufayard
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Stéphanie Sidibe-Bocs
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Evelyne Costes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Fernando Andrés
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
14
|
Li M, Li H, Zhu Q, Liu D, Li Z, Chen H, Luo J, Gong P, Ismail AM, Zhang Z. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). THE NEW PHYTOLOGIST 2024; 241:1250-1265. [PMID: 38009305 DOI: 10.1111/nph.19411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 11/28/2023]
Abstract
Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.
Collapse
Affiliation(s)
- Mingjuan Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Hongye Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Qidong Zhu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Dong Liu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Haifei Chen
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Jinsong Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Pan Gong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Abdelbagi M Ismail
- Crop and Environmental Sciences Division, International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| |
Collapse
|
15
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
16
|
Cárdenas-Aquino MDR, Camas-Reyes A, Valencia-Lozano E, López-Sánchez L, Martínez-Antonio A, Cabrera-Ponce JL. The Cytokinins BAP and 2-iP Modulate Different Molecular Mechanisms on Shoot Proliferation and Root Development in Lemongrass ( Cymbopogon citratus). PLANTS (BASEL, SWITZERLAND) 2023; 12:3637. [PMID: 37896100 PMCID: PMC10610249 DOI: 10.3390/plants12203637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, BAP 10 µM induces high shoot proliferation, while the natural CK 6-(γ,γ-Dimethylallylamino)purine (2-iP) 10 µM shows less pronounced effects and developed rooting. To understand the molecular mechanisms involved, we perform a protein-protein interaction (PPI) network based on the genes of Brachypodium distachyon involved in shoot proliferation/repression, cell cycle, stem cell maintenance, auxin response factors, and CK signaling to analyze the molecular mechanisms in BAP versus 2-iP plants. A different pattern of gene expression was observed between BAP- versus 2-iP-treated plants. In shoots derived from BAP, we found upregulated genes that have already been demonstrated to be involved in de novo shoot proliferation development in several plant species; CK receptors (AHK3, ARR1), stem cell maintenance (STM, REV and CLV3), cell cycle regulation (CDKA-CYCD3 complex), as well as the auxin response factor (ARF5) and CK metabolism (CKX1). In contrast, in the 2-iP culture medium, there was an upregulation of genes involved in shoot repression (BRC1, MAX3), ARR4, a type A-response regulator (RR), and auxin metabolism (SHY2).
Collapse
Affiliation(s)
- María del Rosario Cárdenas-Aquino
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Alberto Camas-Reyes
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Lorena López-Sánchez
- Red de Estudios Moleculares Avanzados, Unidad de Microscopia Avanzada, Instituto de Ecología, A.C. INECOL 1975–2023, Carretera antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Mexico;
| | - Agustino Martínez-Antonio
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| |
Collapse
|
17
|
Yuan Y, Khourchi S, Li S, Du Y, Delaplace P. Unlocking the Multifaceted Mechanisms of Bud Outgrowth: Advances in Understanding Shoot Branching. PLANTS (BASEL, SWITZERLAND) 2023; 12:3628. [PMID: 37896091 PMCID: PMC10610460 DOI: 10.3390/plants12203628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Shoot branching is a complex and tightly regulated developmental process that is essential for determining plant architecture and crop yields. The outgrowth of tiller buds is a crucial step in shoot branching, and it is influenced by a variety of internal and external cues. This review provides an extensive overview of the genetic, plant hormonal, and environmental factors that regulate shoot branching in several plant species, including rice, Arabidopsis, tomato, and wheat. We especially highlight the central role of TEOSINTE BRANCHED 1 (TB1), a key gene in orchestrating bud outgrowth. In addition, we discuss how the phytohormones cytokinins, strigolactones, and auxin interact to regulate tillering/branching. We also shed light on the involvement of sugar, an integral component of plant development, which can impact bud outgrowth in both trophic and signaling ways. Finally, we emphasize the substantial influence of environmental factors, such as light, temperature, water availability, biotic stresses, and nutrients, on shoot branching. In summary, this review offers a comprehensive evaluation of the multifaced regulatory mechanisms that underpin shoot branching and highlights the adaptable nature of plants to survive and persist in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Yundong Yuan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Said Khourchi
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Du
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Pierre Delaplace
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
18
|
Guo WJ, Pommerrenig B, Neuhaus HE, Keller I. Interaction between sugar transport and plant development. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154073. [PMID: 37603910 DOI: 10.1016/j.jplph.2023.154073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Endogenous programs and constant interaction with the environment regulate the development of the plant organism and its individual organs. Sugars are necessary building blocks for plant and organ growth and at the same time act as critical integrators of the metabolic state into the developmental program. There is a growing recognition that the specific type of sugar and its subcellular or tissue distribution is sensed and translated to developmental responses. Therefore, the transport of sugars across membranes is a key process in adapting plant organ properties and overall development to the nutritional state of the plant. In this review, we discuss how plants exploit various sugar transporters to signal growth responses, for example, to control the development of sink organs such as roots or fruits. We highlight which sugar transporters are involved in root and shoot growth and branching, how intracellular sugar allocation can regulate senescence, and, for example, control fruit development. We link the important transport processes to downstream signaling cascades and elucidate the factors responsible for the integration of sugar signaling and plant hormone responses.
Collapse
Affiliation(s)
- Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Benjamin Pommerrenig
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany
| | - Isabel Keller
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany.
| |
Collapse
|
19
|
Barbier F, Fichtner F, Beveridge C. The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants. NATURE PLANTS 2023; 9:1191-1200. [PMID: 37488268 DOI: 10.1038/s41477-023-01453-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 07/26/2023]
Abstract
Strigolactones are rhizosphere signals and phytohormones that play crucial roles in plant development. They are also well known for their role in integrating nitrate and phosphate signals to regulate shoot and root development. More recently, sugars and citrate (an intermediate of the tricarboxylic acid cycle) were reported to inhibit the strigolactone response, with dramatic effects on shoot architecture. This Review summarizes the discoveries recently made concerning the mechanisms through which the strigolactone pathway integrates sugar, metabolite and nutrient signals. We highlight here that strigolactones and MAX2-dependent signalling play crucial roles in mediating the impacts of nutritional and metabolic cues on plant development and metabolism. We also discuss and speculate concerning the role of these interactions in plant evolution and adaptation to their environment.
Collapse
Affiliation(s)
- Francois Barbier
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia.
| | - Franziska Fichtner
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine Beveridge
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
20
|
Li R, Ma R, Zheng Y, Zhao Q, Zong Y, Zhu Y, Chen W, Li Y, Guo W. A Study of the Molecular Regulatory Network of VcTCP18 during Blueberry Bud Dormancy. PLANTS (BASEL, SWITZERLAND) 2023; 12:2595. [PMID: 37514210 PMCID: PMC10385817 DOI: 10.3390/plants12142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
BRANCHED1 (BRC1) is a crucial member of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) gene family and is well known for playing a central role in shoot branching by controlling buds' paradormancy. However, the expression characteristics and molecular regulatory mechanism of BRC1 during blueberry bud dormancy are unclear. To shed light on these topics, shoots of three blueberry cultivars with different chilling requirements (CRs) were decapitated in summer to induce paradormancy release and subjected to different levels of chilling in winter to induce endodormancy release. The results showed that the high-CR cultivar 'Chandler' had the strongest apical dominance among the three cultivars; additionally, the expression of VcTCP18, which is homologous to BRC1, was the highest under both the decapitation treatment and low-temperature treatment. The 'Emerald' cultivar, with a low CR, demonstrated the opposite trend. These findings suggest that VcTCP18 plays a negative regulatory role in bud break and that there may be a correlation between the CR and tree shape. Through yeast 1-hybrid (Y1H) assays, we finally screened 21 upstream regulatory genes, including eight transcription factors: zinc-finger homeodomain protein 1/4/5/9, MYB4, AP2-like ethylene-responsive transcription factor AINTEGUMENTA (ANT), ASIL2-like, and bHLH035. It was found that these upstream regulatory genes positively or negatively regulated the expression of VcTCP18 based on the transcriptome expression profile. In summary, this study enriched our understanding of the regulatory network of BRCl during bud dormancy and provided new insights into the function of BRC1.
Collapse
Affiliation(s)
- Ruixue Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
| | - Rui Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
| | - Yuling Zheng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
| | - Qi Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
| | - Yu Zong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Youyin Zhu
- School of Agricultural, Jinhua Polytechinc, Jinhua 321007, China;
| | - Wenrong Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Yongqiang Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
21
|
Clark CB, Ma J. The genetic basis of shoot architecture in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:55. [PMID: 37351274 PMCID: PMC10281916 DOI: 10.1007/s11032-023-01391-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023]
Abstract
Shoot architecture refers to the three-dimensional body plan of the above ground organs of the plant. The patterning of this body plan results from the tight genetic control of the size and maintenance of meristems, the initiation of axillary growth, and the timing of developmental phase transition. Variation in shoot architecture can result in dramatic differences in plant productivity and/or grain yield due to their effects on light interception, photosynthetic efficiency, response to agronomic inputs, and environmental adaptation. The fine-tuning of shoot architecture has consequently been of great interest to plant breeders, driving the need for deeper understanding of the genes and molecular mechanisms governing these traits. In soybean, the world's most important oil and protein crop, major components of shoot architecture include stem growth habit, plant height, branch angle, branch number, leaf petiole angle, and the size and shape of leaves. Key genes underlying some of these traits have been identified to integrate hormonal, developmental, and environmental signals modulating the growth and orientation of shoot organs. Here we summarize the current knowledge and recent advances in the understanding of the genetic control of these important architectural traits in soybean.
Collapse
Affiliation(s)
- Chancelor B. Clark
- Department of Agronomy, Purdue University, 915 W Mitch Daniels Blvd, West Lafayette, 47907 IN USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, 915 W Mitch Daniels Blvd, West Lafayette, 47907 IN USA
- Center for Plant Biology, Purdue University, West Lafayette, IN USA
| |
Collapse
|
22
|
Li J, Zhao Y, Zhang Y, Ye F, Hou Z, Zhang Y, Hao L, Li G, Shao J, Tan M. Genome-wide analysis of MdPLATZ genes and their expression during axillary bud outgrowth in apple (Malus domestica Borkh.). BMC Genomics 2023; 24:329. [PMID: 37322464 DOI: 10.1186/s12864-023-09399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Branching is a plastic character that affects plant architecture and spatial structure. The trait is controlled by a variety of plant hormones through coordination with environmental signals. Plant AT-rich sequence and zinc-binding protein (PLATZ) is a transcription factor that plays an important role in plant growth and development. However, systematic research on the role of the PLATZ family in apple branching has not been conducted previously. RESULTS In this study, a total of 17 PLATZ genes were identified and characterized from the apple genome. The 83 PLATZ proteins from apple, tomato, Arabidopsis, rice, and maize were classified into three groups based on the topological structure of the phylogenetic tree. The phylogenetic relationships, conserved motifs, gene structure, regulatory cis-acting elements, and microRNAs of the MdPLATZ family members were predicted. Expression analysis revealed that MdPLATZ genes exhibited distinct expression patterns in different tissues. The expression patterns of the MdPLATZ genes were systematically investigated in response to treatments that impact apple branching [thidazuron (TDZ) and decapitation]. The expression of MdPLATZ1, 6, 7, 8, 9, 15, and 16 was regulated during axillary bud outgrowth based on RNA-sequencing data obtained from apple axillary buds treated by decapitation or exogenous TDZ application. Quantitative real-time PCR analysis showed that MdPLATZ6 was strongly downregulated in response to the TDZ and decapitation treatments, however, MdPLATZ15 was significantly upregulated in response to TDZ, but exhibited little response to decapitation. Furthermore, the co-expression network showed that PLATZ might be involved in shoot branching by regulating branching-related genes or mediating cytokinin or auxin pathway. CONCLUSION The results provide valuable information for further functional investigation of MdPLATZ genes in the control of axillary bud outgrowth in apple.
Collapse
Affiliation(s)
- Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yongliang Zhao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yaohui Zhang
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Feng Ye
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Zhengcun Hou
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yuhang Zhang
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Longjie Hao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Guofang Li
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Jianzhu Shao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China.
| | - Ming Tan
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China.
| |
Collapse
|
23
|
Cao D, Chabikwa T, Barbier F, Dun EA, Fichtner F, Dong L, Kerr SC, Beveridge CA. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. PLANT PHYSIOLOGY 2023; 192:1420-1434. [PMID: 36690819 PMCID: PMC10231355 DOI: 10.1093/plphys/kiad034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
The inhibition of shoot branching by the growing shoot tip of plants, termed apical dominance, was originally thought to be mediated by auxin. Recently, the importance of the shoot tip sink strength during apical dominance has re-emerged with recent studies highlighting roles for sugars in promoting branching. This raises many unanswered questions on the relative roles of auxin and sugars in apical dominance. Here we show that auxin depletion after decapitation is not always the initial trigger of rapid cytokinin (CK) increases in buds that are instead correlated with enhanced sugars. Auxin may also act through strigolactones (SLs) which have been shown to suppress branching after decapitation, but here we show that SLs do not have a significant effect on initial bud outgrowth after decapitation. We report here that when sucrose or CK is abundant, SLs are less inhibitory during the bud release stage compared to during later stages and that SL treatment rapidly inhibits CK accumulation in pea (Pisum sativum) axillary buds of intact plants. After initial bud release, we find an important role of gibberellin (GA) in promoting sustained bud growth downstream of auxin. We are, therefore, able to suggest a model of apical dominance that integrates auxin, sucrose, SLs, CKs, and GAs and describes differences in signalling across stages of bud release to sustained growth.
Collapse
Affiliation(s)
- Da Cao
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tinashe Chabikwa
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Franziska Fichtner
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lili Dong
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephanie C Kerr
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Wu Y, Zhang J, Li C, Deng X, Wang T, Dong L. Genome-wide analysis of TCP transcription factor family in sunflower and identification of HaTCP1 involved in the regulation of shoot branching. BMC PLANT BIOLOGY 2023; 23:222. [PMID: 37101166 PMCID: PMC10134548 DOI: 10.1186/s12870-023-04211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Sunflower is an important ornamental plant, which can be used for fresh cut flowers and potted plants. Plant architecture regulation is an important agronomic operation in its cultivation and production. As an important aspect of plant architecture formation, shoot branching has become an important research direction of sunflower. RESULTS TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are essential in regulating various development process. However, the role of TCPs in sunflowers has not yet been studied. This study, 34 HaTCP genes were identified and classified into three subfamilies based on the conservative domain and phylogenetic analysis. Most of the HaTCPs in the same subfamily displayed similar gene and motif structures. Promoter sequence analysis has demonstrated the presence of multiple stress and hormone-related cis-elements in the HaTCP family. Expression patterns of HaTCPs revealed several HaTCP genes expressed highest in buds and could respond to decapitation. Subcellular localization analysis showed that HaTCP1 was located in the nucleus. Paclobutrazol (PAC) and 1-naphthylphthalamic acid (NPA) administration significantly delayed the formation of axillary buds after decapitation, and this suppression was partially accomplished by enhancing the expression of HaTCP1. Furthermore, HaTCP1 overexpressed in Arabidopsis caused a significant decrease in branch number, indicating that HaTCP1 played a key role in negatively regulating sunflower branching. CONCLUSIONS This study not only provided the systematic analysis for the HaTCP members, including classification, conserved domain and gene structure, expansion pattern of different tissues or after decapitation. But also studied the expression, subcellular localization and function of HaTCP1. These findings could lay a critical foundation for further exploring the functions of HaTCPs.
Collapse
Affiliation(s)
- Yu Wu
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Jianbin Zhang
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Chaoqun Li
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Xinyi Deng
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Tian Wang
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Lili Dong
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
25
|
Viola IL, Alem AL, Jure RM, Gonzalez DH. Physiological Roles and Mechanisms of Action of Class I TCP Transcription Factors. Int J Mol Sci 2023; 24:ijms24065437. [PMID: 36982512 PMCID: PMC10049435 DOI: 10.3390/ijms24065437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 and 2 (TCP) proteins constitute a plant-specific transcription factors family exerting effects on multiple aspects of plant development, such as germination, embryogenesis, leaf and flower morphogenesis, and pollen development, through the recruitment of other factors and the modulation of different hormonal pathways. They are divided into two main classes, I and II. This review focuses on the function and regulation of class I TCP proteins (TCPs). We describe the role of class I TCPs in cell growth and proliferation and summarize recent progresses in understanding the function of class I TCPs in diverse developmental processes, defense, and abiotic stress responses. In addition, their function in redox signaling and the interplay between class I TCPs and proteins involved in immunity and transcriptional and posttranslational regulation is discussed.
Collapse
Affiliation(s)
- Ivana L. Viola
- Correspondence: (I.L.V.); (D.H.G.); Tel.: +54-342-4511370 (ext. 5021) (I.L.V.)
| | | | | | - Daniel H. Gonzalez
- Correspondence: (I.L.V.); (D.H.G.); Tel.: +54-342-4511370 (ext. 5021) (I.L.V.)
| |
Collapse
|
26
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
27
|
The Strigolactone Pathway Is a Target for Modifying Crop Shoot Architecture and Yield. BIOLOGY 2023; 12:biology12010095. [PMID: 36671787 PMCID: PMC9855930 DOI: 10.3390/biology12010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Due to their sessile nature, plants have developed the ability to adapt their architecture in response to their environment. Branching is an integral component of plant architecture, where hormonal signals tightly regulate bud outgrowth. Strigolactones (SLs), being a novel class of phytohormone, are known to play a key role in branching decisions, where they act as a negative regulator of bud outgrowth. They can achieve this by modulating polar auxin transport to interrupt auxin canalisation, and independently of auxin by acting directly within buds by promoting the key branching inhibitor TEOSINTE BRANCHED1. Buds will grow out in optimal conditions; however, when conditions are sub-optimal, SL levels increase to restrict branching. This can be a problem in agricultural applications, as reductions in branching can have deleterious effects on crop yield. Variations in promoter elements of key SL-related genes, such as IDEAL PLANT ARCHITECTURE1, have been identified to promote a phenotype with enhanced yield performance. In this review we highlight how this knowledge can be applied using new technologies to develop new genetic variants for improving crop shoot architecture and yield.
Collapse
|
28
|
Mittelberger C, Hause B, Janik K. The 'Candidatus Phytoplasma mali' effector protein SAP11CaPm interacts with MdTCP16, a class II CYC/TB1 transcription factor that is highly expressed during phytoplasma infection. PLoS One 2022; 17:e0272467. [PMID: 36520844 PMCID: PMC9754288 DOI: 10.1371/journal.pone.0272467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
'Candidatus Phytoplasma mali', is a bacterial pathogen associated with the so-called apple proliferation disease in Malus × domestica. The pathogen manipulates its host with a set of effector proteins, among them SAP11CaPm, which shares similarity to SAP11AYWB from 'Candidatus Phytoplasma asteris'. SAP11AYWB interacts and destabilizes the class II CIN transcription factors of Arabidopsis thaliana, namely AtTCP4 and AtTCP13 as well as the class II CYC/TB1 transcription factor AtTCP18, also known as BRANCHED1 being an important factor for shoot branching. It has been shown that SAP11CaPm interacts with the Malus × domestica orthologues of AtTCP4 (MdTCP25) and AtTCP13 (MdTCP24), but an interaction with MdTCP16, the orthologue of AtTCP18, has never been proven. The aim of this study was to investigate this potential interaction and close a knowledge gap regarding the function of SAP11CaPm. A Yeast two-hybrid test and Bimolecular Fluorescence Complementation in planta revealed that SAP11CaPm interacts with MdTCP16. MdTCP16 is known to play a role in the control of the seasonal growth of perennial plants and an increase of MdTCP16 gene expression has been detected in apple leaves in autumn. In addition to this, MdTCP16 is highly expressed during phytoplasma infection. Binding of MdTCP16 by SAP11CaPm might lead to the induction of shoot proliferation and early bud break, both of which are characteristic symptoms of apple proliferation disease.
Collapse
Affiliation(s)
- Cecilia Mittelberger
- Molecular Biology and Microbiology, Group of Functional Genomics, Research Centre Laimburg, Pfatten (Vadena), South Tyrol, Italy
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Saxony-Anhalt, Germany
| | - Katrin Janik
- Molecular Biology and Microbiology, Group of Functional Genomics, Research Centre Laimburg, Pfatten (Vadena), South Tyrol, Italy
- * E-mail:
| |
Collapse
|
29
|
Wei J, Yang Q, Ni J, Gao Y, Tang Y, Bai S, Teng Y. Early defoliation induces auxin redistribution, promoting paradormancy release in pear buds. PLANT PHYSIOLOGY 2022; 190:2739-2756. [PMID: 36200868 PMCID: PMC9706473 DOI: 10.1093/plphys/kiac426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 06/06/2023]
Abstract
Paradormancy of fruit trees occurs in summer and autumn when signals from adjacent organs stimulate buds to develop slowly. This stage has received less attention that the other stages of dormancy, and the underlying mechanism remains uncharacterized. Early defoliation in late summer and early autumn is usually followed by out-of-season blooming in pear (Pyrus spp.), which substantially decreases the number of buds the following spring and negatively affects fruit production. This early bud flush is an example of paradormancy release. Here, we determined that flower bud auxin content is stable after defoliation; however, polar distribution of the pear (Pyrus pyrifolia) PIN-FORMED auxin efflux carrier 1b (PpyPIN1b) implied that auxin tends to be exported from buds. Transcriptome analysis of floral buds after artificial defoliation revealed changes in auxin metabolism, transport, and signal transduction pathways. Exogenous application of a high concentration of the auxin analog 1-naphthaleneacetic acid (300 mg/L) suppressed PpyPIN1b expression and its protein accumulation in the cell membrane, likely leading to decreased auxin efflux from buds, which hindered flower bud sprouting. Furthermore, carbohydrates and additional hormones also influenced out-of-season flowering. Our results indicate that defoliation-induced auxin efflux from buds accelerates bud paradormancy release. This differs from release of apical-dominance-related lateral bud paradormancy after the apex is removed. Our findings and proposed model further elucidate the mechanism underlying paradormancy and will help researchers to develop methods for inhibiting early defoliation-induced out-of-season bud sprouting.
Collapse
Affiliation(s)
- Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yinxin Tang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Yantai Institute, China Agricultural University, Yantai, Shandong 264670, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
30
|
Xiao F, Zhao Y, Wang X, Yang Y. Targeted Metabolic and Transcriptomic Analysis of Pinus yunnanensis var. pygmaea with Loss of Apical Dominance. Curr Issues Mol Biol 2022; 44:5485-5497. [PMID: 36354683 PMCID: PMC9688957 DOI: 10.3390/cimb44110371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 08/26/2023] Open
Abstract
Pinus yunnanensis var. pygmaea demonstrates obvious loss of apical dominance, inconspicuous main trunk, which can be used as an ideal material for dwarfing rootstocks. In order to find out the reasons for the lack of apical dominance of P. pygmaea, endogenous phytohormone content determination by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and comparative transcriptomes were performed on the shoot apical meristem and root apical meristem of three pine species (P. massoniana, P. pygmaea, and P. elliottii). The results showed that the lack of CK and the massive accumulation of ABA and GA-related hormones may be the reasons for the loss of shoot apical dominance and the formation of multi-branching, the abnormal synthesis of diterpenoid biosynthesis may lead to the influence of GA-related synthesis, and the high expression of GA 2-oxidase (GA2ox) gene may be the cause of dwarfing. Weighted correlation network analysis (WGCNA) screened some modules that were highly expressed in the shoot apical meristem of P. pygmaea. These findings provided valuable information for identifying the network regulation of shoot apical dominance loss in P. pygmaea and enhanced the understanding of the molecular mechanism of shoot apical dominance growth differences among Pinus species.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
| | - Yao Yang
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| |
Collapse
|
31
|
Wen S, Tu Z, Wei L, Li H. Liriodendron chinense LcMAX1 regulates primary root growth and shoot branching in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:1-10. [PMID: 36084353 DOI: 10.1016/j.plaphy.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Strigolactones (SLs) play prominent roles in regulating shoot branching and root architecture in model plants. However, their roles in non-model (particularly woody) plants remain unclear. Liriodendron chinense is a timber tree species widely planted in southern China. The outturn percentage and wood quality of L. chinense are greatly affected by the branching characteristics of its shoot, and the rooting ability of the cuttings is key for its vegetative propagation. Here, we isolated and analyzed the function of the MORE AXILLARY GROWTH 1 (LcMAX1) gene, which is involved in L. chinense SL biosynthesis. RT-qPCR showed that LcMAX1 was highly expressed in the roots and axillary buds. LcMAX1 was located in the endoplasmic reticulum (ER) and nucleus. LcMAX1 ectopic expression promoted primary root growth, whereas there were no phenotypic differences in shoot branching between transgenic and wild-type (WT) A. thaliana plants. LcMAX1 overexpression in the max1 mutant restored them to the WT A. thaliana phenotypes. Additionally, AtPIN1, AtPIN2, and AtBRC1 expressions were significantly upregulated in transgenic A. thaliana and the max1 mutant. It was therefore speculated that LcMAX1 promotes primary root growth by regulating expression of auxin transport-related genes in A. thaliana, and LcMAX1 inhibits shoot branching by upregulating expression of AtBRC1 in the max1 mutant. Altogether, these results demonstrated that the root development and shoot branching functions of LcMAX1 were similar to those of AtMAX1. Our findings provide a foundation for obtaining further insights into root and branch development in L. chinense.
Collapse
Affiliation(s)
- Shaoying Wen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Lingming Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
32
|
Kebrom TH, Doust AN. Activation of apoplastic sugar at the transition stage may be essential for axillary bud outgrowth in the grasses. FRONTIERS IN PLANT SCIENCE 2022; 13:1023581. [PMID: 36388483 PMCID: PMC9643854 DOI: 10.3389/fpls.2022.1023581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Shoot branches develop from buds in leaf axils. Once formed from axillary meristems, the buds enter a transition stage before growing into branches. The buds may transition into dormancy if internal and environmental factors limit sucrose supply to the buds. A fundamental question is why sucrose can be limiting at the transition stage for bud outgrowth, whereas new buds continue to be formed. Sucrose is transported to sink tissues through symplastic or apoplastic pathways and a shift from symplastic to apoplastic pathway is common during seed and fruit development. In addition, symplastic connected tissues are stronger sinks than symplastically isolated tissues that rely on sugars effluxed to the apoplast. Recent studies in sorghum, sugarcane, and maize indicate activation of apoplastic sugar in buds that transition to outgrowth but not to dormancy, although the mode of sugar transport during bud formation is still unclear. Since the apoplastic pathway in sorghum buds was specifically activated during bud outgrowth, we posit that sugar for axillary bud formation is most likely supplied through the symplastic pathway. This suggests a key developmental change at the transition stage, which alters the sugar transport pathway of newly-formed buds from symplastic to apoplastic, making the buds a less strong sink for sugars. We suggest therefore that bud outgrowth that relies on overflow of excess sucrose to the apoplast will be more sensitive to internal and environmental factors that enhance the growth of sink tissues and sucrose demand in the parent shoot; whereas bud formation that relies on symplastic sucrose will be less affected by these factors.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
- Center for Computational Systems Biology, College of Engineering, Prairie View A&M University, Prairie View, TX, United States
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
33
|
Dutt M, Mahmoud LM, Nehela Y, Grosser JW, Killiny N. The Citrus sinensis TILLER ANGLE CONTROL 1 (CsTAC1) gene regulates tree architecture in sweet oranges by modulating the endogenous hormone content. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111401. [PMID: 35905898 DOI: 10.1016/j.plantsci.2022.111401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Citrus is a major fruit crop cultivated on a global scale. Citrus trees are long lived perennials with a large canopy. Understanding the genetic control of tree architecture could provide tools for breeding and selection of citrus cultivars suitable for high density planting with improved light exposure. Tree architecture is modulated by the TILLER ANGLE CONTROL 1 (TAC1) gene which plays an important role in the regulation of the shoot angle. Herein, we used CRISPR/Cas9 technology to knockout the CsTAC1 gene for the biochemical and molecular analysis of its function. Nine transgenic lines were obtained, and five edited plants were confirmed based on T7EI mismatch detection assay and Sanger sequencing. The transgenic citrus lines exhibited pleiotropic phenotypes, including differences in branch angle and stem growth. Additionally, silencing CsTAC1 led to enhanced CsLAZY1 transcript levels in the tested lines. Analysis of the phytohormonal profile revealed that TAC1-edited plants exhibited lower auxin contents and increased cytokinin levels in the leaves compared to the wild-type plants. The GA7 gibberellin level was enhanced in most of the edited lines. Collectively, TAC1 affects branch angle in association with hormone signals in citrus.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA.
| | - Lamiaa M Mahmoud
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Yasser Nehela
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31512, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA
| | - Nabil Killiny
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
34
|
Zhang H, Hua R, Wang X, Wu H, Ou H, Lu X, Huang Y, Liu D, Sui S. CpMAX1a, a Cytochrome P450 Monooxygenase Gene of Chimonanthus praecox Regulates Shoot Branching in Arabidopsis. Int J Mol Sci 2022; 23:ijms231810888. [PMID: 36142797 PMCID: PMC9503991 DOI: 10.3390/ijms231810888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Strigolactones (SLs) are a class of important hormones in the regulation of plant branching. In the model plant Arabidopsis, AtMAX1 encodes a cytochrome P450 protein and is a crucial gene in the strigolactone synthesis pathway. Yet, the regulatory mechanism of MAX1 in the shoot branching of wintersweet (Chimonanthus praecox) remains unclear. Here we identified and isolated three MAX1 homologous genes, namely CpMAX1a, CpMAX1b, and CpMAX1c. Quantitative real-time PCR (qRT-PCR) revealed the expression of CpMAX1a in all tissues, being highest in leaves, whereas CpMAX1b was only expressed in stems, while CpMAX1c was expressed in both roots and stem tips. However, CpMAX1a’s expression decreased significantly after decapitation; hence, we verified its gene function. CpMAX1a was located in Arabidopsis chloroplasts. Overexpressing CpMAX1a restored the phenotype of the branching mutant max1−3, and reduced the rosette branch number, but resulted in no significant phenotypic differences from the wild type. Additionally, expression of AtBRC1 was significantly upregulated in transgenic lines, indicating that the CpMAX1a gene has a function similar to the homologous gene of Arabidopsis. In conclusion, our study shows that CpMAX1a plays a conserved role in regulating the branch development of wintersweet. This work provides a molecular and theoretical basis for better understanding the branch development of wintersweet.
Collapse
|
35
|
Yang L, Zhu S, Xu J. Roles of auxin in the inhibition of shoot branching in 'Dugan' fir. TREE PHYSIOLOGY 2022; 42:1411-1431. [PMID: 35088089 DOI: 10.1093/treephys/tpac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching substantially impacts vegetative and reproductive growth as well as wood characteristics in perennial woody species by shaping the shoot system architecture. Although plant hormones have been shown to play a fundamental role in shoot branching in annual species, their corresponding actions in perennial woody plants are largely unknown, in part due to the lack of branching mutants. Here, we demonstrated the role of plant hormones in bud dormancy transition toward activation and outgrowth in woody plants by comparing the physiological and molecular changes in the apical shoot stems of 'Yangkou' 020 fir and 'Dugan' fir, two Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) clones with normal and completely abolished branching phenotypes, respectively. Our studies showed that the defect in bud outgrowth was the cause of failed shoot branching in 'Dugan' fir whereas apically derived signals acted as triggers of this ectopic bud activity. Further studies indicated that auxin played a key role in inhibiting bud outgrowth in 'Dugan' fir. During bud dormancy release, the differential auxin resistant 1/Like AUX1 (AUX1/LAX) and PIN-formed (PIN) activity resulted in an ectopic auxin/indole-3-acetic acid (IAA) accumulation in the apical shoot stem of 'Dugan' fir, which could inhibit the cell cycle in the axillary meristem by decreasing cytokinin (CK) biosynthesis but increasing abscisic acid (ABA) production and response through the signaling pathway. In contrast, during bud activation and outgrowth, the striking increase in auxin biosynthesis and PIN activity in the shoot tip of 'Dugan' fir may trigger the correlative inhibition of axillary buds by modulating the polar auxin transport stream (PATS) and connective auxin transport (CAT) in shoots, and by influencing the biosynthesis of secondary messengers, including CK, gibberellin (GA) and ABA, thereby inducing the paradormancy of axillary buds in 'Dugan' fir by apical dominance under favorable conditions. The findings of this study provide important insights into the roles of plant hormones in bud outgrowth control in perennial woody plants.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Sheng Zhu
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
- Department of Molecular Biology and Biochemistry, College of Biology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Jin Xu
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| |
Collapse
|
36
|
Li T, Wu Z, Xiang J, Zhang D, Teng N. Overexpression of a novel heat-inducible ethylene-responsive factor gene LlERF110 from Lilium longiflorum decreases thermotolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111246. [PMID: 35487655 DOI: 10.1016/j.plantsci.2022.111246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
AP2/ERF (APETALA2/ethylene-responsive factor) family transcription factors are involved in various plant-specific processes, especially in plant development and response to abiotic stress. However, their roles in thermotolerance are still largely unknown. In the current study, we identified a heat-inducible ERF member LlERF110 from Lilium longiflorum that was rapidly induced by high temperature. Its protein was localized in the nucleus, and transcriptional activation activity was observed in yeast and plant cells. In addition, LlERF110 was able to bind to GCC- and CGG-elements, but not to DRE-elements. Overexpression of LlERF110 conferred delayed bolting and bushy phenotype, with decreased thermotolerance accompanied by a disrupted ROS (reactive oxygen species) homeostasis in transgenic plants. The accumulation of LlERF110 may activate certain repressors related to heat stress response (HSR) and indirectly damage the normal expression of heat stress (HS)-protective genes such as AtHSFA2, which consequently leads to reduced thermotolerance. Our results implied that LlERF110 might function as a heat-inducible gene but may hinder the establishment of thermotolerance.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China; College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Xiang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China.
| |
Collapse
|
37
|
Del Rosario Cárdenas-Aquino M, Sarria-Guzmán Y, Martínez-Antonio A. Review: Isoprenoid and aromatic cytokinins in shoot branching. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111240. [PMID: 35487650 DOI: 10.1016/j.plantsci.2022.111240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is an important event of plant development that defines growth and reproduction. The BRANCHED1 gene (BRC1/TB1/FC1) is crucial for this process. Within the phytohormones, cytokinins directly activate axillary buds to promote shoot branching. In addition, strigolactones and auxins inhibit bud outgrowth. This review addresses the involvement of aromatic and isoprenoid cytokinins in shoot branching. And how auxins and strigolactones contribute to regulating this process also. The results obtained by others and our working group with lemongrass (Cymbopogon citratus) show that cytokinins affect both shoot and root apical meristem development, consistent with other plant species. However, many questions remain about how cytokinins and strigolactones antagonistically regulate BRC1 gene expression. Additionally, many details of the interaction among cytokinins, auxins, and strigolactones need to be clarified. We will gain a more comprehensive scheme of bud outgrowth with these details.
Collapse
Affiliation(s)
| | - Yohanna Sarria-Guzmán
- Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria del Área Andina, Transv 22 Bis #4-105, Valledupar 200005, Cesar, Colombia
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, México.
| |
Collapse
|
38
|
Yao H, Yang T, Qian J, Deng X, Dong L. Genome-Wide Analysis and Exploration of WRKY Transcription Factor Family Involved in the Regulation of Shoot Branching in Petunia. Genes (Basel) 2022; 13:855. [PMID: 35627239 PMCID: PMC9141166 DOI: 10.3390/genes13050855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/16/2023] Open
Abstract
The WRKY transcription factors (TFs) participate in various physiological, growth and developmental processes of plants. In our study, a total of 79 WRKY family members were identified and classified into three groups (Group I, Group IIa-e, and Group III) based on phylogenetic and conservative domain analyses. Conserved motif analysis showed that seven WRKYGQK domains changed. The promoter sequence analysis suggested that there were multiple stress- and hormone-related cis-regulatory elements in the promoter regions of PhWRKY genes. Expression patterns of PhWRKYs based on RNA-seq data revealed their diverse expression profiles in five tissues and under different treatments. Subcellular localization analysis showed that PhWRKY71 was located in the nucleus. In addition, overexpression of PhWRKY71 caused a significant increase in branch number. This indicated that PhWRKY71 played a critical role in regulating the shoot branching of Petuniahybrida. The above results lay the foundation for further revealing the functions of PhWRKY genes.
Collapse
Affiliation(s)
| | | | | | | | - Lili Dong
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (T.Y.); (J.Q.); (X.D.)
| |
Collapse
|
39
|
Jin K, Wang Y, Zhuo R, Xu J, Lu Z, Fan H, Huang B, Qiao G. TCP Transcription Factors Involved in Shoot Development of Ma Bamboo ( Dendrocalamus latiflorus Munro). FRONTIERS IN PLANT SCIENCE 2022; 13:884443. [PMID: 35620688 PMCID: PMC9127963 DOI: 10.3389/fpls.2022.884443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 05/10/2023]
Abstract
Ma bamboo (Dendrocalamus latiflorus Munro) is the most widely cultivated clumping bamboo in Southern China and is valuable for both consumption and wood production. The development of bamboo shoots involving the occurrence of lateral buds is unique, and it affects both shoot yield and the resulting timber. Plant-specific TCP transcription factors are involved in plant growth and development, particularly in lateral bud outgrowth and morphogenesis. However, the comprehensive information of the TCP genes in Ma bamboo remains poorly understood. In this study, 66 TCP transcription factors were identified in Ma bamboo at the genome-wide level. Members of the same subfamily had conservative gene structures and conserved motifs. The collinear analysis demonstrated that segmental duplication occurred widely in the TCP transcription factors of Ma bamboo, which mainly led to the expansion of a gene family. Cis-acting elements related to growth and development and stress response were found in the promoter regions of DlTCPs. Expression patterns revealed that DlTCPs have tissue expression specificity, which is usually highly expressed in shoots and leaves. Subcellular localization and transcriptional self-activation experiments demonstrated that the five candidate TCP proteins were typical self-activating nuclear-localized transcription factors. Additionally, the transcriptome analysis of the bamboo shoot buds at different developmental stages helped to clarify the underlying functions of the TCP members during the growth of bamboo shoots. DlTCP12-C, significantly downregulated as the bamboo shoots developed, was selected to further verify its molecular function in Arabidopsis. The DlTCP12-C overexpressing lines exhibited a marked reduction in the number of rosettes and branches compared with the wild type in Arabidopsis, suggesting that DlTCP12-C conservatively inhibits lateral bud outgrowth and branching in plants. This study provides useful insights into the evolutionary patterns and molecular functions of the TCP transcription factors in Ma bamboo and provides a valuable reference for further research on the regulatory mechanism of bamboo shoot development and lateral bud growth.
Collapse
Affiliation(s)
- Kangming Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Forestry Faculty, Nanjing Forestry University, Nanjing, China
| | - Yujun Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Huijin Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Biyun Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
40
|
Confraria A, Muñoz-Gasca A, Ferreira L, Baena-González E, Cubas P. Shoot Branching Phenotyping in Arabidopsis and Tomato. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2494:47-59. [PMID: 35467200 DOI: 10.1007/978-1-0716-2297-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shoot branching is an important trait that depends on the activity of axillary meristems and buds and their outgrowth into branches. It is remarkably plastic, being influenced by a number of external cues, such as light, temperature, soil nutrients, and mechanical manipulation. These are transduced into an internal hormone signaling network where auxin, cytokinins, and strigolactones play leading regulatory roles. Recently, sugars have also emerged as important signals promoting bud activation. These signals are in part integrated by the bud-specific growth repressor BRANCHED1 (BRC1).To understand how shoot branching is affected by particular growth conditions or in specific plant lines, it is necessary to count the number of branches and/or quantify other branch-related parameters. Here we describe how to perform such quantifications in Arabidopsis and in tomato.
Collapse
Affiliation(s)
- Ana Confraria
- Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal.
| | - Aitor Muñoz-Gasca
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Liliana Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Hirakawa T, Tanno S. In Vitro Propagation of Humulus lupulus through the Induction of Axillary Bud Development. PLANTS 2022; 11:plants11081066. [PMID: 35448794 PMCID: PMC9031650 DOI: 10.3390/plants11081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Humulus lupulus (hop) is a necessary material for beer brewing. Improved breeding cultivars of hops with enhanced tolerance to environmental stresses, such as drought and heat stress, accompanying climate change have been developed. However, a propagation system, which is needed for the proliferation of new cultivars, is not currently available for hops. In this study, we found that treatment of stem explants with 0.01–0.05 ppm gibberellic acid (GA3) induced the development of axillary buds in the hop cultivar Kirin-2, resulting in the proliferation of shoot branching. Additionally, 0.01 ppm benzyl adenine (BA) enhanced the development of axillary buds formed in response to 0.05 ppm GA3 in various hop cultivars, particularly Nugget. The development of axillary buds was strongly repressed by the application of 0.05 ppm BA at a concentration equal to the 0.05 ppm GA3 concentration, which showed the possibility that a high concentration of cytokinin preferentially prevents the effect of GA3 on the development of axillary buds in hops. These results indicated that combined treatment of stem explants with GA3 and cytokinin at appropriate concentrations is effective for the propagation of proliferated hop cultivars through shoot branching.
Collapse
|
42
|
Patil SB, Barbier FF, Zhao J, Zafar SA, Uzair M, Sun Y, Fang J, Perez-Garcia MD, Bertheloot J, Sakr S, Fichtner F, Chabikwa TG, Yuan S, Beveridge CA, Li X. Sucrose promotes D53 accumulation and tillering in rice. THE NEW PHYTOLOGIST 2022; 234:122-136. [PMID: 34716593 DOI: 10.1111/nph.17834] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/24/2021] [Indexed: 05/25/2023]
Abstract
Shoot branching is regulated by multiple signals. Previous studies have indicated that sucrose may promote shoot branching through suppressing the inhibitory effect of the hormone strigolactone (SL). However, the molecular mechanisms underlying this effect are unknown. Here, we used molecular and genetic tools to identify the molecular targets underlying the antagonistic interaction between sucrose and SL. We showed that sucrose antagonizes the suppressive action of SL on tillering in rice and on the degradation of D53, a major target of SL signalling. Sucrose inhibits the gene expression of D3, the orthologue of the Arabidopsis F-box MAX2 required for SL signalling. Overexpression of D3 antagonizes sucrose inhibition of D53 degradation and enables the SL inhibition of tillering under high sucrose. Sucrose prevents SL-induced degradation of D14, the SL receptor involved in D53 degradation. In contrast to D3, D14 overexpression enhances D53 protein levels and sucrose-induced tillering, even in the presence of SL. Our results show that sucrose inhibits SL response by affecting key components of SL signalling and, together with previous studies reporting the inhibition of SL synthesis by nitrate and phosphate, demonstrate the central role played by SLs in the regulation of plant architecture by nutrients.
Collapse
Affiliation(s)
- Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing,, 100081, China
| | - Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing,, 100081, China
| | - Syed A Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing,, 100081, China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing,, 100081, China
| | - Yinglu Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing,, 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing,, 100081, China
| | | | - Jessica Bertheloot
- INRAE, IRHS, SFR 4207 QUASAV, Institut Agro, Université d'Angers, Angers, 49000, France
| | - Soulaiman Sakr
- INRAE, IRHS, SFR 4207 QUASAV, Institut Agro, Université d'Angers, Angers, 49000, France
| | - Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tinashe G Chabikwa
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing,, 100081, China
| |
Collapse
|
43
|
Wang M, Ogé L, Pérez Garcia MD, Launay-Avon A, Clément G, Le Gourrierec J, Hamama L, Sakr S. Antagonistic Effect of Sucrose Availability and Auxin on Rosa Axillary Bud Metabolism and Signaling, Based on the Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:830840. [PMID: 35392520 PMCID: PMC8982072 DOI: 10.3389/fpls.2022.830840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is crucial for successful plant development and plant response to environmental factors. Extensive investigations have revealed the involvement of an intricate regulatory network including hormones and sugars. Recent studies have demonstrated that two major systemic regulators-auxin and sugar-antagonistically regulate plant branching. However, little is known regarding the molecular mechanisms involved in this crosstalk. We carried out two complementary untargeted approaches-RNA-seq and metabolomics-on explant stem buds fed with different concentrations of auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the combined effect of auxin and sugar by massive reprogramming of the transcriptome and metabolome. The antagonistic effect of sucrose and auxin targeted several important physiological processes, including sink strength, the amino acid metabolism, the sulfate metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). These new findings represent a cornerstone to further investigate the diverse molecular mechanisms that drive the integration of endogenous factors during shoot branching.
Collapse
Affiliation(s)
- Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Laurent Ogé
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jose Le Gourrierec
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Latifa Hamama
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
44
|
Nicolas M, Torres-Pérez R, Wahl V, Cruz-Oró E, Rodríguez-Buey ML, Zamarreño AM, Martín-Jouve B, García-Mina JM, Oliveros JC, Prat S, Cubas P. Spatial control of potato tuberization by the TCP transcription factor BRANCHED1b. NATURE PLANTS 2022; 8:281-294. [PMID: 35318445 DOI: 10.1038/s41477-022-01112-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The control of carbon allocation, storage and usage is critical for plant growth and development and is exploited for both crop food production and CO2 capture. Potato tubers are natural carbon reserves in the form of starch that have evolved to allow propagation and survival over winter. They form from stolons, below ground, where they are protected from adverse environmental conditions and animal foraging. We show that BRANCHED1b (BRC1b) acts as a tuberization repressor in aerial axillary buds, which prevents buds from competing in sink strength with stolons. BRC1b loss of function leads to ectopic production of aerial tubers and reduced underground tuberization. In aerial axillary buds, BRC1b promotes dormancy, abscisic acid responses and a reduced number of plasmodesmata. This limits sucrose accumulation and access of the tuberigen protein SP6A. BRC1b also directly interacts with SP6A and blocks its tuber-inducing activity in aerial nodes. Altogether, these actions help promote tuberization underground.
Collapse
Affiliation(s)
- Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain.
| | - Rafael Torres-Pérez
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanessa Wahl
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Eduard Cruz-Oró
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - María Luisa Rodríguez-Buey
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel María Zamarreño
- Department of Environmental Biology, Faculty of Sciences-BIOMA Institute, University of Navarra, Pamplona, Spain
| | - Beatriz Martín-Jouve
- Electron Microscopy Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - José María García-Mina
- Department of Environmental Biology, Faculty of Sciences-BIOMA Institute, University of Navarra, Pamplona, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Salomé Prat
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
- Department of Plant Development and Signal Transduction, Centre for Research in Agricultural Genomics (CRAG-CSIC), Barcelona, Spain
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
45
|
Grundmann L, Känel A, Muth J, Beinecke F, Jekat M, Shen Y, Kudithipudi C, Xu D, Yang J, Warek U, Strickland J, Prüfer D, Noll GA. Tissue-specific expression of barnase in tobacco delays axillary shoot development after topping. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:411-413. [PMID: 34861093 PMCID: PMC8882766 DOI: 10.1111/pbi.13759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Lena Grundmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEMünsterGermany
| | - Andrea Känel
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Jost Muth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Farina Beinecke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEMünsterGermany
| | - Marion Jekat
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEMünsterGermany
| | | | | | | | | | | | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEMünsterGermany
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Gundula A. Noll
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEMünsterGermany
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| |
Collapse
|
46
|
Périlleux C, Huerga-Fernández S. Reflections on the Triptych of Meristems That Build Flowering Branches in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:798502. [PMID: 35211138 PMCID: PMC8861353 DOI: 10.3389/fpls.2022.798502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Branching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: (i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, (ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and (iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence.
Collapse
Affiliation(s)
- Claire Périlleux
- Laboratory of Plant Physiology, Research Unit InBioS—PhytoSYSTEMS, Institute of Botany B22 Sart Tilman, University of Liège, Liège, Belgium
| | | |
Collapse
|
47
|
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, Feil R, Lunn JE, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022. [PMID: 34996873 DOI: 10.1101/2021.09.03.458935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
Affiliation(s)
- Harry Klein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Joseph Gallagher
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - María Jazmín Abraham-Juárez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato 36821, Mexico
| | - Michelle Heeney
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - George Chuck
- Plant Gene Expression Center, University of California, Berkeley, CA 94710
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - David Jackson
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003;
| |
Collapse
|
48
|
Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022; 119:2115871119. [PMID: 34996873 PMCID: PMC8764674 DOI: 10.1073/pnas.2115871119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floral morphology is immensely diverse. One developmental process acting to shape this diversity is growth suppression. For example, grass flowers exhibit extreme diversity in floral sexuality, arising through differential suppression of stamens or carpels. The genes regulating this growth suppression and how they have evolved remain largely unknown. We discovered that two classic developmental genes with ancient roles in controlling vegetative branching were recruited to suppress carpel development in maize. Our results highlight the power of forward genetics to reveal unpredictable genetic interactions and hidden pleiotropy of developmental genes. More broadly, our findings illustrate how ancient gene functions are recruited to new developmental contexts in the evolution of plant form. Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
|
49
|
Zhang H, Wang W, Huang J, Wang Y, Hu L, Yuan Y, Lyu M, Wu B. Role of gibberellin and its three GID1 receptors in Jasminum sambac stem elongation and flowering. PLANTA 2021; 255:17. [PMID: 34889996 DOI: 10.1007/s00425-021-03805-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Taken together, our results establish a reciprocal relationship between vine elongation and flowering, and reveal that GA is a positive signal for stem elogation but a negative regulator of flowering in this species. Vines or climbing plants exhibit vigorous vegetative shoot extension. GA have long been recognized as an important signal for seasonal stem elongation and flowering in many woody perennials. However, less is explored as how GA pathway is involved in the regulation of shoot extension in woody vines. Here, we investigated the role of GA and its signaling components in shoot elongation in Jasminum sambac. We found high accumulation of GA4 in the elongating internode, in contrast to a depletion of GAs in the floral differentiating shoot, which in turn featured a higher zeatin content, and a lower IAA and JA concentrations. This GA accumulation was coincident with the strong expression of JsGA20ox1 and JsGAS1 in the leaves, as well as of the JsGA2ox3 in the internode. Treatment of GA biosynthesis inhibitor reduced elongation while stimulated the terminal flowering. Remarkably, three B-type GA-receptor genes were abundantly expressed in both internodes and leaves of the extending shoots, which could enhance GA responsiveness in heterologous transgenic Arabidopsis. Furthermore, these JsGID1s showed distinct GA-dependent interaction with the JsDELLA in a yeast-two-hybrid assay. Taken together, our results establish a reciprocal relationship between vine elongation and flowering, and reveal that GA is a positive signal for stem elogation but a negative regulator of flowering in this species.
Collapse
Affiliation(s)
- Hongliang Zhang
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wei Wang
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jinfeng Huang
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yuting Wang
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Li Hu
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yuan Yuan
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Meiling Lyu
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Binghua Wu
- College of Horticulture and Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
50
|
Garighan J, Dvorak E, Estevan J, Loridon K, Huettel B, Sarah G, Farrera I, Leclercq J, Grynberg P, Coiti Togawa R, Mota do Carmo Costa M, Costes E, Andrés F. The Identification of Small RNAs Differentially Expressed in Apple Buds Reveals a Potential Role of the Mir159-MYB Regulatory Module during Dormancy. PLANTS (BASEL, SWITZERLAND) 2021; 10:2665. [PMID: 34961136 PMCID: PMC8703471 DOI: 10.3390/plants10122665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warmer temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of 17 micro RNAs (miRNAs) that change their pattern of expression in apple buds during dormancy. Furthermore, the functional analysis of their predicted target genes suggests a main role of the 17 miRNAs in phenylpropanoid biosynthesis, gene regulation, plant development and growth, and response to stimulus. Finally, we studied the conservation of the Arabidopsis thaliana regulatory miR159-MYB module in apple in the context of the plant hormone abscisic acid homeostasis.
Collapse
Affiliation(s)
- Julio Garighan
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Etienne Dvorak
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Joan Estevan
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Karine Loridon
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Bruno Huettel
- Genome Centre, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany;
| | - Gautier Sarah
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Isabelle Farrera
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Julie Leclercq
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
- UMR AGAP Institute, CIRAD, F-34398 Montpellier, France
| | - Priscila Grynberg
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Roberto Coiti Togawa
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Marcos Mota do Carmo Costa
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Evelyne Costes
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Fernando Andrés
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| |
Collapse
|