1
|
Zhang H, Tang J, Cao H, Wang C, Shen C, Liu J. Effect and mechanism of Magnolia officinalis in colorectal cancer: Multi-component-multi-target approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119007. [PMID: 39471878 DOI: 10.1016/j.jep.2024.119007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colorectal cancer (CRC) is a prevalent malignant tumor of the digestive tract. Traditional Chinese medicine (TCM) has a long history of treating CRC, with advantages such as effectiveness, multi-target, multi-pathway, and minimal side effects. TCM Magnolia officinalis (M. officinalis) refers to the dried bark, root bark, and branch bark of either Magnolia officinalis Rehd.et Wils. or Magnolia officinalis Rehd.et Wils. var. biloba Rehd.et Wils. It is commonly utilized to alleviate the side effects of chemotherapy for CRC, owing to its anti-inflammatory and anti-tumor properties. However, current research primarily focuses on the individual components and does not take into consideration the characteristics of multi-component-multi-target action. AIM OF THE STUDY Our aim is to study the new action characteristics of M. officinalis in the treatment of CRC. MATERIALS AND METHODS Utilizing network pharmacology to identify potential active ingredients, key targets, and main signaling pathways of M. officinalis for the treatment of CRC. The binding effect was further validated through molecular docking analysis. Furthermore, the aforementioned components were identified using liquid chromatography-mass spectrometry (LC-MS), and the cleavage pathways of the main components were analyzed. Subsequently, both in vitro and in vivo experiments were carried out to investigate the anti-CRC effect of the active ingredients of M. officinalis and its potential mechanism. RESULTS Network pharmacology and Molecular docking identified 5 main active ingredients and 6 core targets of M. officinalis for the treatment of CRC. Then, LC-MS identified the active components of M. officinalis. At the same time, both in vitro and in vivo experiments have confirmed the ability of Eucalyptol (Euc) and Obovatol (Obo)to inhibit inflammation and tumor cell proliferation. The possible mechanism involved is that Euc and Obo counteract CRC by inhibiting the over-activation of NF-κBp65/JAK and Bcl-2/Caspase signaling pathways, respectively. They also play a role in the anti-CRC effect of M. officinalis. CONCLUSION Magnolol (MAG), Honokiol (HK), Euc, Obo, and Neohesperidin (NHP) in M. officinalis may be the pharmacological substance basis for its anti-cancer effect on CRC. The treatment of CRC with M. officinalis is characterized by its multi-component, multi-target, and multi-pathway approach. These findings provide a theoretical basis for further inspiring the clinical application of M. officinalis and the development of efficacy targets.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Huiliang Cao
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chenguang Wang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chong Shen
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
2
|
Abd El-Hamid MI, El-Malt RMS, Khater SI, Abdelwarith AA, Khamis T, Abd El-Wahab RA, Younis EM, Davies SJ, Mohamed DI, Mohamed RI, Zayed S, Abdelrahman MA, Ibrahim D. Impact of liposomal hesperetin in broilers: prospects for improving performance, antioxidant potential, immunity, and resistance against Listeria monocytogenes. Avian Pathol 2025; 54:120-148. [PMID: 39169883 DOI: 10.1080/03079457.2024.2395357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Liposomal encapsulated phytogenics, such as liposomal hesperetin, are considered novel substitutes for antibiotics in the broiler industry owing to their improved nutritional and therapeutic properties. Therefore, our key goal was to investigate liposomal hesperetin impact on broiler growth performance, health, antioxidant status, tight junction proteins (TJP), and resistance against Listeria monocytogenes. Four broiler groups were fed 0, 150, 250, or 400 mg/kg of liposomal hesperetin-supplemented diets and experimentally infected with L. monocytogenes strain. Herein, liposomal hesperetin, especially at higher concentrations, augmented broilers FCR with upregulation of genes encoding TJP (occludin, JAM-2, MUC-2), and antioxidant attributes (GPX-1, SOD-1, CAT, HO-1, NQO1, COX2), which reflect enhancing health and welfare of broilers. Muscle antioxidant biomarkers were enhanced; meanwhile, muscle MDA, ROS, and H2O2 levels were reduced in response to 400 mg/kg of liposomal hesperetin. Liposomal hesperetin fortification reduced L. monocytogenes loads and expression levels of its virulence-related genes (flaA, hlyA, and ami). Remarkably, histopathological alterations in intestinal and brain tissues of L. monocytogenes-infected broilers were restored post-inclusion at higher levels of liposomal hesperetin, which reflects increase of the birds' resistance to L. monocytogenes infection. Transcription levels of genes encoding cytokines/chemokines (MyD88, AVBD6, CCL20, IL-1β, IL-18), and autophagy (Bcl-2, LC3, AMPK, AKT, CHOP, Bip, p62, XBP1) were ameliorated following dietary liposomal hesperetin fortification, which suggests enhancement of the birds' immunity and health. Collectively, our research recommends liposomal hesperetin application in broiler diets owing to its promoting impact on growth performance, antioxidant status, immunity, health, and welfare besides its antibacterial, and antivirulence characteristics to fight against L. monocytogenes.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, Zagazig, Egypt
| | - Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute, Mansoura Provincial Laboratory (AHRI-Mansoura), Cairo, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud A Abdelrahman
- Bacteriology Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Zhang S, Guan J, Lv J, Dong X, Li R, Wang Y, Jin XA. Neohesperidin exerts subtle yet comprehensive regulation of mouse dental papilla cell-23 in vitro. Arch Oral Biol 2024; 167:106055. [PMID: 39067325 DOI: 10.1016/j.archoralbio.2024.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE The molecular regulation of odontoblasts in dentin formation remains largely uncharacterized. Using neohesperidin (NEO), a well-documented osteoblast regulator, we investigated whether and how NEO participates in odontoblast regulation through longitudinal treatments using various doses of NEO. DESIGN Mouse dental papilla cell-23 (MDPC-23) served as a model for odontoblasts. MDPC-23 were treated with various doses of NEO (0, 1, 5, 10, 15, 20 μmol/L). Proliferation was assessed using the Cell counting kit-8 assay. Survival/apoptosis was assayed by live/dead ratio. Migration capability was assessed using scratch healing and Transwell migration assays. Mineralization was assessed using alkaline phosphatase staining and alizarin red staining. The expression levels of four key genes (Runx2, osteocalcin [OCN], β-catenin, and bone morphogenetic protein [BMP]-2) representing NEO-induced differentiation of MDPC-23 were measured by quantitative reverse transcription polymerase chain reaction. RESULTS The proliferation trajectories of MDPC-23 treated with the five doses of NEO demonstrated similar curves, with a rapid increase in the 10 μmol/L NEO condition after 48 h of treatment. Similar dose-dependent trajectories were observed for survival/apoptosis. All four key genes representing odontogenic differentiation were upregulated in MDPC-23 induced by NEO treatments at two optimal doses (5 μmol/L and 10 μmol/L). Optimal migration and mobility trajectories were observed in MDPC-23 treated with 10 μmol/L NEO. Optimal mineralization was observed in MDPC-23 treated with 5 μmol/L NEO. CONCLUSION NEO can subtly regulate odontoblast proliferation, differentiation, migration, and mineralization in vitro. NEO at 5-10 μmol/L offers a safe and effective perspective for clinical promotion of dentin bridge formation in teenagers.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Science Park of Harbin Medical University, Harbin Medical University, Harbin 150025, China; Sino-russian Institute of Oral Biology, The First Affiliated Hospital of Harbin Medical University, Harbin 15001, China
| | - Jian Guan
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Science Park of Harbin Medical University, Harbin Medical University, Harbin 150025, China; Sino-russian Institute of Oral Biology, The First Affiliated Hospital of Harbin Medical University, Harbin 15001, China
| | - Jing Lv
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Science Park of Harbin Medical University, Harbin Medical University, Harbin 150025, China; Sino-russian Institute of Oral Biology, The First Affiliated Hospital of Harbin Medical University, Harbin 15001, China
| | - Xinhe Dong
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Science Park of Harbin Medical University, Harbin Medical University, Harbin 150025, China; Sino-russian Institute of Oral Biology, The First Affiliated Hospital of Harbin Medical University, Harbin 15001, China
| | - Runhang Li
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Science Park of Harbin Medical University, Harbin Medical University, Harbin 150025, China; Sino-russian Institute of Oral Biology, The First Affiliated Hospital of Harbin Medical University, Harbin 15001, China
| | - Yuhong Wang
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xing-Ai Jin
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Science Park of Harbin Medical University, Harbin Medical University, Harbin 150025, China; Sino-russian Institute of Oral Biology, The First Affiliated Hospital of Harbin Medical University, Harbin 15001, China.
| |
Collapse
|
4
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
5
|
Raimondi MV, Rigogliuso S, Saiano F, Poma P, Labbozzetta M, Barreca M, Barbera M, Bivacqua R, Li Petri G, Buscemi S, Sardo I, Spanò V, Palumbo Piccionello A, Montalbano A, Barraja P, Notarbartolo M. Citrus wastewater as a source of value-added products: Quali-quantitative analysis and in vitro screening on breast cancer cell lines. Arch Pharm (Weinheim) 2024:e2400530. [PMID: 39363788 DOI: 10.1002/ardp.202400530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
Citrus wastewater from industries is a source of bioactive compounds whose recovery could be a useful approach to convert processing waste into potential resources to be exploited in food, pharmaceutical, and chemical companies. Citrus wastewater, obtained from the industrial processing of Citrus sinensis, was freeze-dried and qualitative/quantitative evaluated using HPLC/MS Q-TOF analysis. Antiproliferative activity was investigated on MDA-MB-231 (triple-negative breast cancer cell line), MCF-7 (breast cancer cell line), and its multidrug-resistant variant MCF-7R. Fraction 8 emerged for its cytotoxicity toward MCF-7R cells. Its main component, the polymethoxylated flavone nobiletin (80%), is likely involved in increasing the number of G1-phase MCF-7R cells without inducing cell death. Notably, fraction 8 sensitizes MCF7-R cells to the antiproliferative effects of doxorubicin, thus contributing to overcoming MCF7-R multidrug resistance. Our studies highlighted the possibility of applying a sustainable strategy for citrus wastewater recycling to recover functional compounds as useful adjuvants for the prevention and treatment of malignancies.
Collapse
Affiliation(s)
- Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Filippo Saiano
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Palermo, Italy
| | - Paola Poma
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Manuela Labbozzetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Marcella Barbera
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giovanna Li Petri
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Palermo, Italy
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ignazio Sardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Roseti L, Borciani G, Grassi F, Desando G, Gambari L, Grigolo B. Nutraceuticals in osteoporosis prevention. Front Nutr 2024; 11:1445955. [PMID: 39416651 PMCID: PMC11479890 DOI: 10.3389/fnut.2024.1445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Nutraceuticals are gaining popularity as they can contribute to bone health by delaying the onset or slowing down the progression of pathological bone loss. Osteoporosis's bone loss is a concern for older adults and a crucial aspect of aging. Maintaining healthy bones is the key to living a full and active life. Our review explores the current knowledge on the role of nutraceuticals in preventing osteoporosis by focusing on three main aspects. First, we provide an overview of osteoporosis. Second, we discuss the latest findings on natural nutraceuticals and their efficacy in reducing bone loss, emphasizing clinical trials. Third, we conduct a structured analysis to evaluate nutraceuticals' pros and cons and identify translational gaps. In conclusion, we must address several challenges to consolidate our knowledge, better support clinicians in their prescriptions, and provide people with more reliable nutritional recommendations to help them lead healthier lives.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | |
Collapse
|
7
|
Yang J, Qin S, Sun N, Cai Y, Li J, Zhai Z, An J, Wang H, Du R, Qin J. Neohesperidin alleviates the inhibitory effect of bisphenol A on the myogenic differentiation of umbilical cord mesenchymal stem cells via the IGF1R/AKT1/RHOA signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116804. [PMID: 39083871 DOI: 10.1016/j.ecoenv.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Bisphenol A (BPA), a typical environmental endocrine disruptor, has raised concerns among researchers due to its toxicological effects. Whether neohesperidin (NEO) can intervene in the toxic effects of BPA remains unknown. This study aims to investigate the effects and mechanisms of NEO on the myogenic differentiation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) exposed to BPA. Sheep UC-MSCs were isolated, characterized, and induced to myogenic differentiation. BPA decreased cell viability, cell migration, and the expressions of myogenic marker genes, leading to myogenic differentiation inhibition, which were reversed by NEO. Network pharmacology suggested the IGF1R/AKT1/RHOA pathway as potential targets of BPA and NEO regulating muscle development. Western blot results showed that NEO could reverse the down-regulation of the pathway proteins induced by BPA, and counteract the effects of picropodophyllin (PPP) or MK-2206 dihydrochloride (MK-2206) in the myogenic differentiation of sheep UC-MSCs. Additionally, the expression levels of (p-) IGF1R, AKT1, and RHOA were positively correlated. Taken together, the mechanisms of NEO resistance to BPA involved the IGF1R/AKT1/RHOA signaling pathway. These findings provide a scientific basis for alleviating BPA toxicity, preventing and treating muscular dysplasia, and promoting muscle damage repair.
Collapse
Affiliation(s)
- Jie Yang
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Sen Qin
- School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Nannan Sun
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yang Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Junling Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhuhui Zhai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Hejie Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jian Qin
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Center of Experiment Teaching, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
8
|
Zhang J, Chen X, Cao J, Geng A, Chu Q, Yan Z, Zhang Y, Liu H. Metabolomics Reveals Glycerophospholipids, Peptides, and Flavonoids Contributing to Breast Meat Flavor and Benefit Properties of Beijing-You Chicken. Foods 2024; 13:2549. [PMID: 39200476 PMCID: PMC11354068 DOI: 10.3390/foods13162549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Unique metabolites contribute to the performance of meat flavor and potential function. In this study, UHPLC-Q Exactive HF-X-based metabolomics and multivariate analysis were applied to explore the characteristic metabolites in the breast meat of Beijing-You chicken (BYC) aged 150, 300, and 450 days (D150, D300, and D450). Based on the criteria of variable importance in the projection (VIP) > 1 and p < 0.05, a total of 154 and 97 differential metabolites (DMs) were screened out compared with D450 (D450 vs. D150, D450 vs. D300), respectively. In general, the relative content of carnosine, L-L-homoglutathione, demethyloleuropein, neohesperidin dihydrochalcone, 7-chloro-2-(3,4-dimethoxyphenyl)-3,5-dihydroxy-6,8-dimethoxy-4H-chromen-4-one, glycerophospholipids, exhibited the highest abundance at D450, while balenine, anserine, L-beta-aspartyl-L-leucine, glutathione, oxidized glutathione, stearoylcarnitine, ganoderic acid alpha, oleuroside, Lysoglycerophospholipid species (LGP) presented a downward trend with age. These 210 DMs were involved in 10 significantly enriched pathways related to the synthesis and metabolism of amino acids, peptides, and glycerophospholipid, such as glutathione metabolism, histidine metabolism, glycerophospholipid metabolism, arginine biosynthesis, tyrosine metabolism, and lysine degradation. In conclusion, this work could not only facilitate a better understanding of the differences of chicken flavor and benefit properties with age, but also provide potential valuable bioactive compounds for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (X.C.); (J.C.); (A.G.); (Q.C.); (Z.Y.); (Y.Z.)
| |
Collapse
|
9
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
10
|
Zhang N, Zhang S, Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed Pharmacother 2024; 176:116811. [PMID: 38795641 DOI: 10.1016/j.biopha.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Central nervous system (CNS) disorders exhibit exceedingly intricate pathogenic mechanisms. Pragmatic and effective solutions remain elusive, significantly compromising human life and health. Activating transcription factor 4 (ATF4) participates in the regulation of multiple pathophysiological processes, including CNS disorders. Considering the widespread involvement of ATF4 in the pathological process of CNS disorders, the targeted regulation of ATF4 by plant-derived bioactive compounds (PDBCs) may become a viable strategy for the treatment of CNS disorders. However, the regulatory relationship between PDBCs and ATF4 remains incompletely understood. Here, we aimed to comprehensively review the studies on PDBCs targeting ATF4 to ameliorate CNS disorders, thereby offering novel directions and insights for the treatment of CNS disorders. A computerized search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases to identify preclinical experiments related to PDBCs targeting ATF4 for the treatment of CNS disorders. The search timeframe was from the inception of the databases to December 2023. Two assessors conducted searches using the keywords "ATF4," "Central Nervous System," "Neurological," "Alzheimer's disease," "Parkinson's Disease," "Stroke," "Spinal Cord Injury," "Glioblastoma," "Traumatic Brain Injury," and "Spinal Cord Injury." Overall, 31 studies were included, encompassing assessments of 27 PDBCs. Combining results from in vivo and in vitro studies, we observed that these PDBCs, via ATF4 modulation, prevent the deposition of amyloid-like fibers such as Aβ, tau, and α-synuclein. They regulate ERS, reduce the release of inflammatory factors, restore mitochondrial membrane integrity to prevent oxidative stress, regulate synaptic plasticity, modulate autophagy, and engage anti-apoptotic mechanisms. Consequently, they exert neuroprotective effects in CNS disorders. Numerous PDBCs targeting ATF4 have shown potential in facilitating the restoration of CNS functionality, thereby presenting expansive prospects for the treatment of such disorders. However, future endeavors necessitate high-quality, large-scale, and comprehensive preclinical and clinical studies to further validate this therapeutic potential.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun, Liaoning 113000, China
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
11
|
Park J, Lee HJ. Specific Foods Associated with Depressive Symptoms among Young Adults and Their Bioactive Effects. Nutrients 2024; 16:1818. [PMID: 38931173 PMCID: PMC11206412 DOI: 10.3390/nu16121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Depression represents a widespread and devastating psychiatric public health challenge globally. It is particularly prevalent among young adults in Korea. Certain foods may have medicinal properties that alleviate depressive symptoms. This study aimed to examine the association between specific foods and depressive symptoms among young adults, exploring their bioactive effects and possible mechanisms. We conducted a cross-sectional study involving 1000 Korean young adults aged 18-39 years. Food frequency questionnaires were used to assess diets and their associations with depressive symptoms. Results from multivariable logistic regression analysis indicated associations between several specific foods and their effects: milk (odds ratio = 0.58, 95% confidence interval: 0.36-0.94), eggs (0.55, 0.35-0.87), bananas (0.58, 0.36-0.94), oranges (0.62, 0.40-0.96), sweet potatoes (0.60, 0.37-0.97), mushrooms (0.53, 0.31-0.92, females only), and kimchi (0.40, 0.17-0.95, males only). Furthermore, molecular docking indicated that hesperidin had the highest docking score of 5.86 in oranges. Several bioactive compounds identified as potentially beneficial in combatting depression include calcium, casein, alpha-lactalbumin, tryptophan (TRP), vitamin B6 and B12, magnesium, flavonoids (especially hesperidin), carotenoids, ergothioneine, fiber, and probiotics. To recommend these foods in the management of depression among young adults, further clinical intervention studies are necessary.
Collapse
Affiliation(s)
- Junghyun Park
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hae-Jeung Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Clinical Research Center, Gachon University Gil Medical Center, Incheon 21999, Republic of Korea
| |
Collapse
|
12
|
Emran TB, Eva TA, Zehravi M, Islam F, Khan J, Kareemulla S, Arjun UVNV, Balakrishnan A, Taru PP, Nainu F, Salim E, Rab SO, Nafady MH, Wilairatana P, Park MN, Kim B. Polyphenols as Therapeutics in Respiratory Diseases: Moving from Preclinical Evidence to Potential Clinical Applications. Int J Biol Sci 2024; 20:3236-3256. [PMID: 38904027 PMCID: PMC11186353 DOI: 10.7150/ijbs.93875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/04/2024] [Indexed: 06/22/2024] Open
Abstract
Respiratory diseases are the most common and severe health complication and a leading cause of death worldwide. Despite breakthroughs in diagnosis and treatment, few safe and effective therapeutics have been reported. Phytochemicals are gaining popularity due to their beneficial effects and low toxicity. Polyphenols are secondary metabolites with high molecular weights found at high levels in natural food sources such as fruits, vegetables, grains, and citrus seeds. Over recent decades, polyphenols and their beneficial effects on human health have been the subject of intense research, with notable successes in preventing major chronic non-communicable diseases. Many respiratory syndromes can be treated effectively with polyphenolic supplements, including acute lung damage, pulmonary fibrosis, asthma, pulmonary hypertension, and lung cancer. This review summarizes the role of polyphenols in respiratory conditions with sufficient experimental data, highlights polyphenols with beneficial effects for each, and identifies those with therapeutic potential and their underlying mechanisms. Moreover, clinical studies and future research opportunities in this area are discussed.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Shaik Kareemulla
- Department of Pharmacy Practice, M. M. College of Pharmacy (Maharishi Markandeshwar Deemed University), Mullana-Ambala, Haryana 133207, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Tamil Nadu, India
| | - Anitha Balakrishnan
- Department of Pharmaceutics, GRT Institute of Pharmaceutical Education and Research, Tiruttani, India
| | - Poonam Popatrao Taru
- Department of Pharmacognosy, School of Pharmacy, Vishwakarma University, Kondhwa, Pune, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Emil Salim
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| |
Collapse
|
13
|
Jamal A, Brettle H, Jamil DA, Tran V, Diep H, Bobik A, van der Poel C, Vinh A, Drummond GR, Thomas CJ, Jelinic M, Al-Aubaidy HA. Reduced Insulin Resistance and Oxidative Stress in a Mouse Model of Metabolic Syndrome following Twelve Weeks of Citrus Bioflavonoid Hesperidin Supplementation: A Dose-Response Study. Biomolecules 2024; 14:637. [PMID: 38927040 PMCID: PMC11201492 DOI: 10.3390/biom14060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities affecting ~25% of adults and is linked to chronic diseases such as cardiovascular disease, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are key drivers of MetS. Hesperidin, a citrus bioflavonoid, has demonstrated antioxidant and anti-inflammatory properties; however, its effects on MetS are not fully established. We aimed to determine the optimal dose of hesperidin required to improve oxidative stress, systemic inflammation, and glycemic control in a novel mouse model of MetS. Male 5-week-old C57BL/6 mice were fed a high-fat, high-salt, high-sugar diet (HFSS; 42% kcal fat content in food and drinking water with 0.9% saline and 10% high fructose corn syrup) for 16 weeks. After 6 weeks of HFSS, mice were randomly allocated to either the placebo group or low- (70 mg/kg/day), mid- (140 mg/kg/day), or high-dose (280 mg/kg/day) hesperidin supplementation for 12 weeks. The HFSS diet induced significant metabolic disturbances. HFSS + placebo mice gained almost twice the weight of control mice (p < 0.0001). Fasting blood glucose (FBG) increased by 40% (p < 0.0001), plasma insulin by 100% (p < 0.05), and HOMA-IR by 150% (p < 0.0004), indicating insulin resistance. Hesperidin supplementation reduced plasma insulin by 40% at 140 mg/kg/day (p < 0.0001) and 50% at 280 mg/kg/day (p < 0.005). HOMA-IR decreased by 45% at both doses (p < 0.0001). Plasma hesperidin levels significantly increased in all hesperidin groups (p < 0.0001). Oxidative stress, measured by 8-OHdG, was increased by 40% in HFSS diet mice (p < 0.001) and reduced by 20% with all hesperidin doses (p < 0.005). In conclusion, hesperidin supplementation reduced insulin resistance and oxidative stress in HFSS-fed mice, demonstrating its dose-dependent therapeutic potential in MetS.
Collapse
Affiliation(s)
- Abdulsatar Jamal
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Holly Brettle
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Dina A. Jamil
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- NewMed Education Australia, Hamilton, QLD 4007, Australia
| | - Vivian Tran
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Henry Diep
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Alexander Bobik
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 3004, Australia
| | - Chris van der Poel
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Colleen J. Thomas
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Hayder A. Al-Aubaidy
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- NewMed Education Australia, Hamilton, QLD 4007, Australia
| |
Collapse
|
14
|
Mancim-Imbriani MJ, Duarte JL, Di Filippo LD, Durão LPL, Chorilli M, Palomari Spolidorio DM, Maquera-Huacho PM. Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis. Pharmaceutics 2024; 16:698. [PMID: 38931821 PMCID: PMC11206411 DOI: 10.3390/pharmaceutics16060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Alternative therapies associating natural products and nanobiotechnology show new perspectives on controlled drug release. In this context, nanoemulsions (NEs) present promising results for their structural design and properties. Hesperetin (HT), a flavonoid mainly found in citrus fruits, presents highlighted bone benefits. In this context, we developed a hesperetin-loaded nanoemulsion (HT-NE) by sonication method and characterized it by dynamic light scattering, analyzing its encapsulation efficiency, and cumulative release. The biocompatibility in human osteoblasts Saos-2-like was evaluated by the cytotoxicity assay and IC50. Then, the effects of the HT-NE on osteogenesis were evaluated by the cellular proliferation, calcium nodule formation, bone regulators gene expression, collagen quantification, and alkaline phosphatase activity. The results showed that the formulation presented ideal values of droplet size, polydispersity index, and zeta potential, and the encapsulation efficiency was 74.07 ± 5.33%, showing a gradual and controlled release. Finally, HT-NE was shown to be biocompatible and increased cellular proliferation, and calcium nodule formation, regulated the expression of Runx2, ALPL, and TGF-β genes, and increased the collagen formation and alkaline phosphatase activity. Therefore, the formulation of this NE encapsulated the HT appropriately, allowing the increasing of its effects on mechanisms to improve or accelerate the osteogenesis process.
Collapse
Affiliation(s)
- Maria Júlia Mancim-Imbriani
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Letícia Pereira Lima Durão
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Patricia Milagros Maquera-Huacho
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| |
Collapse
|
15
|
Baudin J, Hernandez-Baixauli J, Quesada-Vázquez S, Mulero F, Puiggròs F, Arola L, Caimari A. Combined supplementation with hesperidin, phytosterols and curcumin decreases adiposity and improves metabolic health in ovariectomized rats. Food Funct 2024; 15:4905-4924. [PMID: 38598180 DOI: 10.1039/d3fo05122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17β-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| |
Collapse
|
16
|
Zhang X, Geng A, Cao D, Dugarjaviin M. Identification of mulberry leaf flavonoids and evaluating their protective effects on H 2O 2-induced oxidative damage in equine skeletal muscle satellite cells. Front Mol Biosci 2024; 11:1353387. [PMID: 38650596 PMCID: PMC11033687 DOI: 10.3389/fmolb.2024.1353387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction: Horses are susceptible to oxidative stress during strenuous endurance exercise, leading to muscle fatigue and damage. Mulberry leaf flavonoids (MLFs) possess significant antioxidant properties. However, the antioxidant efficacy of MLFs can be influenced by the extraction process, and their impact on H2O2-induced oxidative stress in equine skeletal muscle satellite cells (ESMCs) remains unexplored. Methods: Our study employed three extraction methods to obtain MLFs: ultrasound-assisted extraction (CEP), purification with AB-8 macroporous resin (RP), and n-butanol extraction (NB-EP). We assessed the protective effects of these MLFs on H2O2-induced oxidative stress in ESMCs and analyzed the MLF components using metabolomics. Results: The results revealed that pre-treatment with MLFs dose-dependently protected ESMCs against H2O2-induced oxidative stress. The most effective concentrations were 0.8 mg/mL of CEP, 0.6 mg/mL of RP, and 0.6 mg/mL of NB-EP, significantly enhancing EMSC viability (p < 0.05). These optimized MLF concentrations promoted the GSH-Px, SOD and T-AOC activities (p < 0.05), while reducing MDA production (p < 0.05) in H2O2-induced ESMCs. Furthermore, these MLFs enhanced the gene expression, including Nrf2 and its downstream regulatory genes (TrxR1, GPX1, GPX3, SOD1, and SOD2) (p < 0.05). In terms of mitochondrial function, ESMCs pre-treated with MLFs exhibited higher basal respiration, spare respiratory capacity, maximal respiration, ATP-linked respiration compared to H2O2-induced ESMCs (p < 0.05). Additionally, MLFs enhanced cellular basal glycolysis, glycolytic reserve, and maximal glycolytic capacity (p < 0.05). Metabolomics analysis results revealed significant differences in mulberrin, kaempferol 3-O-glucoside [X-Mal], neohesperidin, dihydrokaempferol, and isobavachalcone among the three extraction processes (p < 0.05). Discussion: Our study revealed that MLFs enhance antioxidant enzyme activity, alleviate oxidative damage in ESMCs through the activation of the Nrf2 pathway, and improve mitochondrial respiration and cell energy metabolism. Additionally, we identified five potential antioxidant flavonoid compounds, suggesting their potential incorporation into the equine diet as a strategy to alleviate exercise-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Manglai Dugarjaviin
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
17
|
Chang X, Fang X, Yao Y, Xu Z, Wu C, Lu L. Identification and Characterization of Glycosyltransferases Involved in the Biosynthesis of Neodiosmin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4348-4357. [PMID: 38354268 DOI: 10.1021/acs.jafc.3c09308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Glycosylation plays a very important role in plant secondary metabolic modifications. Neodiosmin, identified as diosmetin-7-O-neohesperidoside, not only acts to mitigate bitterness and enhance the flavor of food but also serves as a pivotal metabolite that reinforces plant immunity. Investigating its biosynthetic pathway in plants is crucial for optimizing fruit quality and fortifying plant immune responses. In this study, through analysis of transcriptomic data from Astilbe chinensis, we identified two novel uridine diphosphate (UDP)-glycosyltransferases (UGTs): Ach14791 (AcUGT73C18), responsible for flavonoid 7-O-glycosylation and Ach15849 (AcUGT79B37), involved in flavonoid-7-O-glucoside-2″-O-rhamnosylation. By delving into enzymatic properties and catalytic promiscuity, we developed a biosynthesis route of neodiosmin by establishing a one-pot enzyme-catalyzed cascade reaction. Simultaneously, lonicerin and rhoifolin were also successfully synthesized using the same one-pot dual-enzyme catalytic reaction. Taken together, our findings not only identified two novel UGTs involved in neodiosmin biosynthesis but also provided important biocatalytic components for the microorganism-based biosynthesis of flavonoid-7-O-disaccharide compounds.
Collapse
Affiliation(s)
- Xiaosa Chang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xueting Fang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Yao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhenni Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Lu
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Hongshan Laboratory, Wuhan 430071, China
| |
Collapse
|
18
|
Zhang W, Lei X, Tu Y, Ma T, Wen T, Yang T, Xue L, Ji J, Xue H. Coffee and the risk of osteoarthritis: a two-sample, two-step multivariable Mendelian randomization study. Front Genet 2024; 15:1340044. [PMID: 38362204 PMCID: PMC10867243 DOI: 10.3389/fgene.2024.1340044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Purpose: To investigate the potential causal relationship between coffee consumption and osteoarthritis (OA), and to disentangle whether body mass index (BMI) and Bone mineral density (BMD) mediate this relationship. Methods: We performed two-sample and two-step Mendelian randomization (MR) analyses utilizing publicly available genome-wide association studies (GWAS) summary statistics to estimate the association between coffee intake and OA risk (including knee OA, hip OA, knee or hip OA, and total OA), as well as the possible mediating effects of BMI and BMD. In addition, data of different coffee types (decaffeinated coffee, instant coffee, ground coffee-including espresso, filter, etc., and other coffee types) were used to explore the effect of coffee type on the risk of OA. Results: In two-sample MR, coffee intake increased the risk of OA in various sites, with the most significant impact observed in knee osteoarthritis (KOA) (odds ratio [OR] 2.03, 95% confidence interval [CI] 1.57-2.61, p < 0.001). The effect on self-reported OA was minimal (OR 1.03, 95% CI 1.01-1.05, p = 0.006). Further analysis of different types of coffee revealed that only decaffeinated coffee was causally associated with both KOA (OR 4.40, 95% CI 1.71-11.33, p = 0.002) and self-reported OA (OR 1.13, 95% CI 1.02-1.26, p = 0.022). In two-step MR, BMI explained over half of the coffee intake-all OA risk association, while BMD accounted for less than 5% of the mediation effect. Conclusion: Our study suggests that coffee intake increase the risk of OA, with BMI playing a significant mediating role. Decaffeinated coffee appears to have the greatest impact on OA risk compared to other types of coffee. Therefore, managing BMI and selecting appropriate types of coffee should be included in the health management of individuals who frequently consume coffee.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huaming Xue
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Zheng Y, Wang J, Xu K, Chen X. Intake of dietary flavonoids in relation to bone loss among U.S. adults: a promising strategy for improving bone health. Food Funct 2024; 15:766-778. [PMID: 38126227 DOI: 10.1039/d3fo02065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dietary flavonoids have been recommended for improving bone health due to their antioxidant, anti-inflammatory and osteogenic properties. However, the effectiveness of each flavonoid subclass in the prevention and treatment of osteoporosis remains controversial. The objective of the current study was to examine the association between the intake of flavonoid subclasses and bone loss in 10 480 U.S. adults in the National Health and Nutrition Examination Survey. We employed a multinomial logistic regression model to calculate the odds ratios (OR) and 95% confidence intervals (95% CI). The intake of flavones, isoflavones, and flavanones was beneficially associated with osteoporosis (ORQ5 vs. Q1 = 0.44; 95% CI: 0.30-0.64 for flavones; ORQ5 vs. Q1 = 0.53; 95% CI: 0.37-0.77 for isoflavones; ORQ5 vs. Q1 = 0.66; 95% CI: 0.45-0.97 for flavanones). A higher intake of flavones and flavanones was significantly associated with a lower risk of bone loss at the femoral neck rather than the lumbar spine. Notably, stratified analysis showed that genistein had a harmful association with osteopenia in the population with lower serum calcium levels, whereas it had a beneficial association with osteoporosis in the population with higher serum calcium levels. Multiple sensitivity analyses were performed to test the robustness of the results, including subgroup analysis, exclusion of individuals' use of anti-osteoporosis, corticosteroid, and estrogenic medications, adjusting more potential confounders and calculation of the E-value. Overall, incorporating this modifiable diet into an individual's lifestyle could provide potential possibilities to prevent and ameliorate osteoporosis.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jiacheng Wang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
20
|
Li J, Wang Y, Ullah A, Zhang R, Sun Y, Li J, Kou G. Network Pharmacology and Molecular Modeling Techniques in Unraveling the Underlying Mechanism of Citri Reticulatae Pericarpium aganist Type 2 Diabetic Osteoporosis. Nutrients 2024; 16:220. [PMID: 38257113 PMCID: PMC10819846 DOI: 10.3390/nu16020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Type 2 diabetic osteoporosis (T2DOP) is a common complication in diabetic patients that seriously affects their health and quality of life. The pathogenesis of T2DOP is complex, and there are no targeted governance means in modern medicine. Citri Reticulatae Pericarpium (CRP) is a traditional Chinese medicine that has a long history and has been used in the treatment of osteoporosis diseases. However, the molecular mechanism for the CRP treatment of T2DOP is not clear. Therefore, this study aimed to explore the underlying mechanisms of CRP for the treatment of T2DOP by using network pharmacology and molecular modeling techniques. By retrieving multiple databases, we obtained 5 bioactive compounds and 63 common targets of bioactive compounds with T2DOP, and identified AKT 1, TP 53, JUN, BCL 2, MAPK 1, NFKB 1, and ESR 1 as the core targets of their PPI network. Enrichment analysis revealed that these targets were mainly enriched in the estrogen signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway in diabetics, which were mainly related to oxidative stress and hormonal regulation. Molecular docking and molecular dynamics simulations have shown the excellent binding effect of the bioactive compounds of CRP and the core targets. These findings reveal that CRP may ameliorate T2DOP through multiple multicomponent and multitarget pathways.
Collapse
Affiliation(s)
- Jiangtao Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Wang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyang Zhang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuge Sun
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Irnich D, Bäumler P. [Concept for integrative pain treatment of osteoarthritis of the knee based on the evidence for conservative and complementary therapies]. Schmerz 2023; 37:413-425. [PMID: 37505229 DOI: 10.1007/s00482-023-00739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Osteoarthritis of the knee (gonarthritis) represents a medical challenge. RESEARCH QUESTION What is the evidence with respect to approaches of complementary medicine and their integration into multimodal pain management concepts? MATERIAL AND METHODS Qualitative nonsystematic literature search on the epidemiology and pathophysiology as well as informative clinical trials, meta-analyses and clinical guidelines about conservative treatment including complementary therapy for gonarthritis. RESULTS Osteoarthritis of the knee is a frequent condition with biopsychosocial risks factors for chronification. The German S2k clinical guideline (k = consensus-based, not based on scientific systematic literature searches) published by the Association of the Scientific Medical Societies in Germany (AWMF) in 2017 has not yet been updated. The current guidelines of the American College of Rheumatology (ACR) date from 2020. Both guidelines recommend exercise therapy, weight reduction, short-term analgesics, topical therapy, intra-articular corticoid injections and acupuncture with variable strengths. Furthermore, transcutaneous electrical nerve stimulation (TENS), laser and other electrophysical therapies, shock waves, traction treatment, ergotherapy, comfrey poultices and mudpacks can also be used. Current research supports the benefits of tai chi/qigong and medicinal leaches. CONCLUSION Complementary treatment approaches, such as acupuncture, tai chi/qigong, topical naturopathic self-treatment and leeches (with limitations) can, in addition to behavioral changes, exercise therapy and short-term pharmacological treatment, be important evidence-based components of integrative pain management concepts, e.g. in terms of an interdisciplinary multimodal pain treatment (IMPT). Besides pain reduction and functional improvement they promote the internal control conviction through the possibility of self-treatment and self-exercise.
Collapse
Affiliation(s)
- Dominik Irnich
- Interdisziplinäre Schmerzambulanz, Klinik für Anaesthesiologie, Klinikum der Ludwig-Maximilians-Universität München, LMU München, Campus Innenstadt, Pettenkoferstr. 8a, 80336, München, Deutschland.
| | - Petra Bäumler
- Interdisziplinäre Schmerzambulanz, Klinik für Anaesthesiologie, Klinikum der Ludwig-Maximilians-Universität München, LMU München, Campus Innenstadt, Pettenkoferstr. 8a, 80336, München, Deutschland
| |
Collapse
|
22
|
Deng X, He S, Han Y, Chen Y. Metabolites profiling reveals the dynamic changes of non-volatiles in Pu-erh during Ganpu tea processing. Food Chem X 2023; 19:100774. [PMID: 37780327 PMCID: PMC10534103 DOI: 10.1016/j.fochx.2023.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 10/03/2023] Open
Abstract
Ganpu is an unique tea product made by Pu-erh tea and citrus peel. In this study, the non-volatiles changes of Pu-erh during Ganpu tea processing were fully analyzed by UPLC-ESI-MS/MS. Total 276 significantly differential metabolites in Pu-erh during Ganpu processing were detected (P < 0.05, VIP > 1), and their change trend were clustered into 8 subclasses by K-means analysis. Metabolites of Pu-erh present at various processes were revealed. 72 differential metabolites (P < 0.05, VIP > 1 and fold change ≥2 or ≤0.5) between any two stages were identified and fixation was the key step with 61 differential metabolites. 39 flavonoids and 2 lignans and coumarins were significantly decreased after fixation, while 5 terpenoids, 3 amino acids, 1 organic acids, 2 nucleotides and derivatives and newly detected jasminoside A (Log2FC = 9.90), picrocrocin (Log2FC = 9.90) and nomilinic acid (Log2FC = 7.56) were significantly increased. The results provided valuable information about the effect of Ganpu processing on dynamic changes of non-volatiles in Pu-erh.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Shiqiang He
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Yang P, Zhong J, Zhao X, Ali K, Wu L, Bu Z. Exploring the Potential of Hesperidin in Preventing Hypertrophic Scars: Insights from a Rabbit Ear Model. Clin Cosmet Investig Dermatol 2023; 16:2957-2963. [PMID: 37876381 PMCID: PMC10591605 DOI: 10.2147/ccid.s428587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Background Hypertrophic scars, commonly occurring after trauma or surgery in critical areas like the head and joints, pose significant challenges to both physical and mental health due to their impact on skin function and aesthetics. While the complex pathogenesis involves fibroblast activation and collagen deposition, effective treatments are lacking, underscoring the importance of exploring pathogenesis and targeted therapies. Hesperidin, a bioactive compound in citrus fruits with diverse health benefits, including anti-fibrotic and anti-angiogenic effects, is the focus of this study with the aim of investigating its impact on hypertrophic scar formation, given its potential to promote blood flow and improve skin microcirculation. Objective This study aimed to observe the inhibitory effect of topical hesperidin on hypertrophic scars in rabbits. Methods A total of 8 healthy adult New Zealand white rabbits were used to establish a rabbit hypertrophic scarring animal model. Five wounds were created on each rabbit's two ears, with three wounds on the left ear (groups A, B, and C) and two wounds on the right ear (groups D and E). After six days of wound drying postoperatively, the wounds were locally treated with medication as followed: group A, 0.1% hesperidin; group B, 1% hesperidin; group C, 1% triamcinolone acetonide; group D, Vaseline; and group E, blank control without any medication. After 28 days, the scar tissue samples were collected for histological examination. Results The results showed that the scar texture of groups B and C was softer and lighter in color, and the number of fibroblasts, capillaries, and inflammatory cells in the tissue was significantly less than those in the other three groups. The hypertrophic scar indices of groups B and C were significantly smaller than those of groups A, D, and E, and the difference was statistically significant (P < 0.05). There were no significant difference between groups B and C. Conclusion Topical application of hesperidin demonstrated promising potential for reducing hypertrophic scar formation in rabbits.
Collapse
Affiliation(s)
- Ping Yang
- Department of Dermatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - JianBo Zhong
- Department of Dermatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - XingYun Zhao
- Department of Dermatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Kamran Ali
- Department of Dermatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, People’s Republic of China
| | - Liming Wu
- Department of Dermatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - ZhangYu Bu
- Department of Dermatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
24
|
Winiarska-Mieczan A, Muszyński S, Tomaszewska E, Kwiecień M, Donaldson J, Tomczyk-Warunek A, Blicharski T. The Impact of Tannic Acid Consumption on Bone Mineralization. Metabolites 2023; 13:1072. [PMID: 37887397 PMCID: PMC10609055 DOI: 10.3390/metabo13101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Tannic acid (TA) is an organic compound belonging to the tannin group. Like other tannins, it has an affinity for endogenous proteins, including digestive enzymes, which can result in the reduced digestibility and absorption of nutrients. It can also form complexes with mineral components, reducing their absorption. In some cases, this can be beneficial, such as in the case of toxic metals, but sometimes it may have a detrimental effect on the body when it involves essential mineral components like Ca, P, Mg, Na, K, or Fe. Therefore, the impact of TA on bone health should be considered from both perspectives. This relatively short review summarizes the available information and research findings on TA, with a particular focus on its potential impact on bone health. It is worth noting that future research and clinical studies may provide more detailed and precise information on this topic, allowing for a better understanding of the role of TA in maintaining the integrity of the musculoskeletal system. Despite its brevity, this paper represents a valuable contribution to the analysis of the potential benefits and challenges associated with TA in the context of bone health. We anticipate that future research will continue along this important research line, expanding our knowledge of the influence of this compound on the skeletal system and its potential therapeutic applications.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Małgorzata Kwiecień
- Department of Animal Nutrition, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor System Research, Department of Rehabilitation and Physiotherapy, Medical University in Lublin, 20-090 Lublin, Poland;
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University in Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
25
|
Leal SS, Gusmão GODM, Uchôa VT, Figueiredo-Silva J, Pinto LSS, Tim CR, Assis L, Maia-Filho ALM, de Oliveira RA, Lobo AO, Pavinatto A. Evaluation of How Methacrylate Gelatin Hydrogel Loaded with Ximenia americana L. Extract (Steam Bark) Effects Bone Repair Activity Using Rats as Models. J Funct Biomater 2023; 14:438. [PMID: 37754851 PMCID: PMC10531560 DOI: 10.3390/jfb14090438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The use of bioactive materials, such as Ximenia americana L., to stimulate the bone repair process has already been studied; however, the synergistic effects of its association with light emitting diode (LED) have not been reported. The present work aims to evaluate the effect of its stem bark extract incorporated into methacrylate gelatin hydrogel (GelMA) on the bone repair process using pure hydrogel and hydrogel associated with LED therapy. For this purpose, the GelMA hydrogel loaded with Ximenia americana L. extract (steam bark) was produced, characterized and applied in animal experiments. The tests were performed using 50 male Wistar rats (divided into 5 groups) submitted to an induced tibia diaphyseal fracture. The therapy effects were verified for a period of 15 and 30 days of treatment using histological analysis and Raman spectroscopy. After 15 days of induced lesion/treatment, the new bone formation was significantly higher in the GXG (GelMA + X. americana L.) group compared to the control group (p < 0.0001). After 30 days, a statistically significant difference was observed when comparing the GXLEDG (GelMA + X. americana L. + LED) and the control group (p < 0.0001), the GXG and the control group (p < 0.001), and when comparing the GG, GXG (p < 0.005) and GXLEDG (p < 0.001) groups. The results shows that the Ximenia americana L. stem extract incorporated into GelMA hydrogel associated with LED therapy is a potentiator for animal bone repair.
Collapse
Affiliation(s)
- Seânia Santos Leal
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | | | | | - José Figueiredo-Silva
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | - Lucielma Salmito Soares Pinto
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | - Carla R. Tim
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| | - Antonio Luiz Martins Maia-Filho
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina 64049-550, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| |
Collapse
|
26
|
Subramaniam S, Kamath S, Ariaee A, Prestidge C, Joyce P. The impact of common pharmaceutical excipients on the gut microbiota. Expert Opin Drug Deliv 2023; 20:1297-1314. [PMID: 37307224 DOI: 10.1080/17425247.2023.2223937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Increasing attention is being afforded to understanding the bidirectional relationships that exist between oral medications and the gut microbiota, in an attempt to optimize pharmacokinetic performance and mitigate unwanted side effects. While a wealth of research has investigated the direct impact of active pharmaceutical ingredients (APIs) on the gut microbiota, the interactions between inactive pharmaceutical ingredients (i.e. excipients) and the gut microbiota are commonly overlooked, despite excipients typically representing over 90% of the final dosage form. AREAS COVERED Known excipient-gut microbiota interactions for various classes of inactive pharmaceutical ingredients, including solubilizing agents, binders, fillers, sweeteners, and color additives, are reviewed in detail. EXPERT OPINION Clear evidence indicates that orally administered pharmaceutical excipients directly interact with gut microbes and can either positively or negatively impact gut microbiota diversity and composition. However, these relationships and mechanisms are commonly overlooked during drug formulation, despite the potential for excipient-microbiota interactions to alter drug pharmacokinetics and interfere with host metabolic health. The insights derived from this review will inform pharmaceutical scientists with the necessary design considerations for mitigating potential adverse pharmacomicrobiomic interactions when formulating oral dosage forms, ultimately providing clear avenues for improving therapeutic safety and efficacy.
Collapse
Affiliation(s)
- Santhni Subramaniam
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Amin Ariaee
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Clive Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
27
|
Jayusman PA, Nasruddin NS, Baharin B, Ibrahim N‘I, Ahmad Hairi H, Shuid AN. Overview on postmenopausal osteoporosis and periodontitis: The therapeutic potential of phytoestrogens against alveolar bone loss. Front Pharmacol 2023; 14:1120457. [PMID: 36909165 PMCID: PMC9995413 DOI: 10.3389/fphar.2023.1120457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Osteoporosis and periodontitis are two major chronic diseases of postmenopausal women. The association between these two diseases are evident through systemic bone loss and alveolar bone loss. Both postmenopausal osteoporosis and periodontitis impose a considerable personal and socioeconomic burden. Biphosphonate and hormone replacement therapy are effective in preventing bone loss in postmenopausal osteoporosis and periodontitis, but they are coupled with severe adverse effects. Phytoestrogens are plant-based estrogen-like compounds, which have been used for the treatment of menopause-related symptoms. In the last decades, numerous preclinical and clinical studies have been carried out to evaluate the therapeutic effects of phytoestrogens including bone health. The aim of this article is to give an overview of the bidirectional interrelationship between postmenopausal osteoporosis and periodontitis, summarize the skeletal effects of phytoestrogens and report the most studied phytoestrogens with promising alveolar bone protective effect in postmenopausal osteoporosis model, with and without experimental periodontitis. To date, there are limited studies on the effects of phytoestrogens on alveolar bone in postmenopausal osteoporosis. Phytoestrogens may have exerted their bone protective effect by inhibiting bone resorption and enhancing bone formation. With the reported findings on the protective effects of phytoestrogens on bone, well-designed trials are needed to better investigate their therapeutic effects. The compilation of outcomes presented in this review may provide an overview of the recent research findings in this field and direct further in vivo and clinical studies in the future.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Badiah Baharin
- Unit of Periodontology, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College, Melaka, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
28
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
29
|
Akhter S, Arman MSI, Tayab MA, Islam MN, Xiao J. Recent advances in the biosynthesis, bioavailability, toxicology, pharmacology, and controlled release of citrus neohesperidin. Crit Rev Food Sci Nutr 2022; 64:5073-5092. [PMID: 36416093 DOI: 10.1080/10408398.2022.2149466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neohesperidin (hesperetin 7-O-neohesperidoside), a well-known flavanone glycoside widely found in citrus fruits, exhibits a variety of biological activities, with potential applications ranging from food ingredients to therapeutics. The purpose of this manuscript is to provide a comprehensive overview of the chemical, biosynthesis, and pharmacokinetics profiles of neohesperidin, as well as the therapeutic effects and mechanisms of neohesperidin against potential diseases. This literature review covers a wide range of pharmacological responses elicited by Neohesperidin, including neuroprotective, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, with a focus on the mechanisms of those pharmacological responses. Additionally, the mechanistic pathways underlying the compound's osteoporosis, antiulcer, cardioprotective, and hepatoprotective effects have been outlined. This review includes detailed illustrations of the biosynthesis, biopharmacokinetics, toxicology, and controlled release of neohesperidine. Neohesperidin demonstrated a broad range of therapeutic and biological activities in the treatment of a variety of complex disorders, including neurodegenerative, hepato-cardiac, cancer, diabetes, obesity, infectious, allergic, and inflammatory diseases. Neohesperidin is a promising therapeutic candidate for the management of various etiologically complex diseases. However, further in vivo and in vitro studies on mechanistic potential are required before clinical trials to confirm the safety, bioavailability, and toxicity profiles of neohesperidin.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
30
|
Rejuvenation: Turning Back Time by Enhancing CISD2. Int J Mol Sci 2022; 23:ijms232214014. [PMID: 36430496 PMCID: PMC9695557 DOI: 10.3390/ijms232214014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The aging human population with age-associated diseases has become a problem worldwide. By 2050, the global population of those who are aged 65 years and older will have tripled. In this context, delaying age-associated diseases and increasing the healthy lifespan of the aged population has become an important issue for geriatric medicine. CDGSH iron-sulfur domain 2 (CISD2), the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928), plays a pivotal role in mediating lifespan and healthspan by maintaining mitochondrial function, endoplasmic reticulum integrity, intracellular Ca2+ homeostasis, and redox status. Here, we summarize the most up-to-date publications on CISD2 and discuss the crucial role that this gene plays in aging and age-associated diseases. This review mainly focuses on the following topics: (1) CISD2 is one of the few pro-longevity genes identified in mammals. Genetic evidence from loss-of-function (knockout mice) and gain-of-function (transgenic mice) studies have demonstrated that CISD2 is essential to lifespan control. (2) CISD2 alleviates age-associated disorders. A higher level of CISD2 during natural aging, when achieved by transgenic overexpression, improves Alzheimer's disease, ameliorates non-alcoholic fatty liver disease and steatohepatitis, and maintains corneal epithelial homeostasis. (3) CISD2, the expression of which otherwise decreases during natural aging, can be pharmaceutically activated at a late-life stage of aged mice. As a proof-of-concept, we have provided evidence that hesperetin is a promising CISD2 activator that is able to enhance CISD2 expression, thus slowing down aging and promoting longevity. (4) The anti-aging effect of hesperetin is mainly dependent on CISD2 because transcriptomic analysis of the skeletal muscle reveals that most of the differentially expressed genes linked to hesperetin are regulated by hesperetin in a CISD2-dependent manner. Furthermore, three major metabolic pathways that are affected by hesperetin have been identified in skeletal muscle, namely lipid metabolism, protein homeostasis, and nitrogen and amino acid metabolism. This review highlights the urgent need for CISD2-based pharmaceutical development to be used as a potential therapeutic strategy for aging and age-associated diseases.
Collapse
|
31
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Phytochemical and Pharmacological Research in Agrimonia eupatoria L. Herb Extract with Anti-Inflammatory and Hepatoprotective Properties. PLANTS 2022; 11:plants11182371. [PMID: 36145771 PMCID: PMC9502318 DOI: 10.3390/plants11182371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
The most promising plant from the genus Agrimony (Agrimonia L.) of the Rosaceae family for use in medical practice is Agrimonia eupatoria L. Phytochemical and pharmacological research in Agrimonia eupatoria L. herb extract, obtained with using 40% ethanol solution as an extractant were carried out. A total of 11 free and 17 bound monosaccharides, 17 amino acids were found in the studied extract, 9 of which are essential. Gallic and ellagic acids, gallocatechin, epigallocatechin, catechin, epicatechin, and epicatechin gallate were identified in the extract of A. eupatoria by the HPLC method; as well as hydroxycinnamic acids: hydroxyphenylacetate, caffeic, syringic, p-coumaric, ferulic, sinapic, cinnamic and quinic acid; flavonoids: quercetin-3-D-glucoside (isoquercitrin), neohesperidin, naringenin, luteolin were found, and their quantitative content was determined, as well by spectrophotometric methods. The herb extract of A. eupatoria belongs to practically non-toxic substances and has pronounced anti-inflammatory (at a dose of 10.0 mg/kg anti-exudative activity reached a maximum in 5 h (88.17%)) and hepatoprotective activity (at a dose of 25 mg/kg it reduce AlAt level by 1.1 and 1.2 times, respectively; AsAt by 1.2 and 1.1 times, respectively), reduces the level of lipid peroxidation and stabilizes the membrane structures of liver cells. Thus, the herb extract of A. eupatoria is a promising substance for the creation of phytomedicines with anti-inflammatory and hepatoprotective activity.
Collapse
|