1
|
Sharma V, Patial V. Insights into the molecular mechanisms of malnutrition-associated steatohepatitis: A review. Liver Int 2024; 44:2156-2173. [PMID: 38775001 DOI: 10.1111/liv.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 08/10/2024]
Abstract
Malnutrition is a public health epidemic mainly targeting poverty-stricken people, young ones, older people, pregnant women, and individuals with metabolic disorders. Severe malnutrition is linked with several metabolic defects, such as hepatic dysfunction, hypertension, cardiovascular disease, and osteoarthritis. The proper functioning of the liver plays a crucial role in ensuring the supply of nutrients to the body. Consequently, inadequate nutrition can lead to severe periportal hepatic steatosis due to compromised mitochondrial and peroxisome functions. Reduced protein intake disrupts essential metabolic processes like the TCA cycle, oxidative phosphorylation, and β-oxidation, ultimately affecting ATP production. Furthermore, this can trigger a cascade of events, including disturbances in amino acid metabolism, iron metabolism, and gut microbiota, which activate genes involved in de novo lipogenesis, leading to the accumulation of lipids in the liver. The condition, in prolonged cases, progresses to steatohepatitis and liver fibrosis. Limited therapeutic solutions are available; however, few dietary supplements and drugs have demonstrated positive effects on the growth and health of malnourished individuals. These supplements improve parameters such as inflammatory and oxidative status, reduce triglyceride accumulation, enhance insulin sensitivity, and downregulate gene expression in hepatic lipid metabolism. This review elucidates the various mechanisms involved in malnutrition-associated steatohepatitis and provides an overview of the available approaches for treating this condition.
Collapse
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Faienza MF, Cognetti E, Farella I, Antonioli A, Tini S, Antoniotti V, Prodam F. Dietary fructose: from uric acid to a metabolic switch in pediatric metabolic dysfunction-associated steatotic liver disease. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39157959 DOI: 10.1080/10408398.2024.2392150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Fructose consumption in pediatric subjects is rising, as the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Despite increasing evidence supporting the detrimental effects of fructose in the development of Metabolic Syndrome (MetS) and its related comorbidities, the association between fructose intake and liver disease remains unclear, mainly in youths. The current narrative review aims to illustrate the correlation between fructose metabolism and liver functions besides its impact on obesity and MASLD in pediatrics. Fructose metabolism is involved in the liver through the classical lipogenic pathway via de novo lipogenesis (DNL) or in the alternative pathway via uric acid accumulation. Hyperuricemia is one of the main features of MALSD patients, underlining how uric acid is growing interest as a new marker of disease. Observational and interventional studies conducted in children and adolescents, who consumed large amounts of fructose and glucose in their diet, were included. Most of these studies emphasized the association between high fructose intake and weight gain, dyslipidemia, insulin resistance, and MASLD/MASH, even in normal-weight children. Conversely, reducing fructose intake ameliorates liver fat accumulation, lipid profile, and weight. In conclusion, fructose seems a potent inducer of both insulin resistance and hepatic fat accumulation.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Cognetti
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Precision and Regenerative Medicine and Ionian Area, Clinica Medica "A. Murri", University of Bari "Aldo Moro", Bari, Italy
| | | | - Sabrina Tini
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
| | | | - Flavia Prodam
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
- Unit of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
3
|
Ezenwuba BN, Hynes CM. Ultrasound screening of paediatric non-alcoholic fatty liver disease (NAFLD): A critical literature review. Radiography (Lond) 2024; 30:1317-1325. [PMID: 39059181 DOI: 10.1016/j.radi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Paediatric NAFLD is an increasing global health concern, which can be effectively managed with early detection. Screening, using accurate, affordable, and accessible tests is recommended, however, there is currently no consensus on the most appropriate tests. Although ultrasound techniques are widely used, their performance against reference tests have not been fully assessed. METHODS A literature search of related databases for peer-reviewed original articles published from January 2010-March 2024 was conducted. Appropriate tools were used to systematise and document the search results and selected studies were quality assessed and critically appraised. Extracted data was subjected to thematic analysis and narrative synthesis. RESULTS Eighteen articles met the inclusion criteria. B-mode and Quantitative ultrasound techniques were compared against MR spectroscopy, MRI-PDFF and Liver biopsy. CONCLUSION Liver echogenicity and Steato-scores were the B-mode methods used. The former was less effective, with a maximum reported sensitivity of 70%. The latter reached up to 100% sensitivity, and >80% specificity. Ultrasound performed better with moderate-severe steatosis. There was not enough evidence to support steatosis grading, possibly due to small sample sizes and lack of established cut-off values. QUS (Quantitative Ultrasound)) methods including Continuous Attenuation Parameter (CAP), Attenuation Coefficient (AC), Ultrasound derived fat fraction (UDFF), Tissue Scatter Imaging (TSI) Hepato-Renal Index (HRI), Heterogeneity Index (HIA), Computer Assisted Ultrasound (CAUS) and Picture Archiving and Communication System (PACS-based Image analysis performed better than B-mode methods. Although QUS demonstrated excellent performance, with sensitivity and specificity of up to 100%, this will require further verification before implementation in practice. PRACTICE IMPLICATIONS Ultrasound techniques can effectively be used for paediatric NAFLD screening, especially in higher-risk subjects. The steato-scores method is currently recommendable for this, with excellent potential for the use of QUS, after cut-off values and validation requirements have been addressed.
Collapse
Affiliation(s)
| | - C M Hynes
- Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
4
|
Park H, Choi JE, Jun S, Lee H, Kim HS, Lee HA, Park H. Metabolic complications of obesity in children and adolescents. Clin Exp Pediatr 2024; 67:347-355. [PMID: 37986568 PMCID: PMC11222907 DOI: 10.3345/cep.2023.00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 11/22/2023] Open
Abstract
The global prevalence of childhood and adolescent obesity, exacerbated by the coronavirus disease 2019 pandemic, affects school-aged children and preschoolers. Early-onset obesity, which carries a high risk of metabolic complications, may contribute to a lower age at the onset of cardiovascular disease. As metabolic diseases such as diabetes, dyslipidemia, and nonalcoholic fatty liver disease observed in adulthood are increasingly recognized in the pediatric population, there is an emphasis on moving disease susceptibility assessments from adulthood to childhood to enable early detection. However, consensus is lacking regarding the definition of metabolic diseases in children. In response, various indicators such as the pediatric simple metabolic syndrome score, continuous metabolic syndrome score, single-point insulin sensitivity estimator, and fatty liver index have been proposed in several studies. These indicators may aid the early detection of metabolic complications associated with pediatric obesity, although further validation studies are needed. Obesity assessments are shifting in perspective from visual obesity to metabolic health and body composition considerations to fill the gap in health impact assessments. Sarcopenic obesity, defined as the muscle- to-fat ratio, has been proposed in pediatric populations and is associated with metabolic health in children and adolescents. The National Health Screening Program for Children in Korea has expanded but still faces limitations in laboratory testing. These tests facilitate timely intervention by identifying groups at a high risk of metabolic complications. Early detection and intervention through comprehensive health screening are critical for mitigating long-term complications of childhood obesity.
Collapse
Affiliation(s)
- Hyunjin Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Jung Eun Choi
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Seunghee Jun
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Hyelim Lee
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Hae Soon Kim
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Hye Ah Lee
- Clinical Trial Center, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Hyesook Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
5
|
Sohouli MH, Bagheri SE, Fatahi S, Rohani P. The effects of weight loss interventions on children and adolescents with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Obes Sci Pract 2024; 10:e758. [PMID: 38682153 PMCID: PMC11047132 DOI: 10.1002/osp4.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Background Overall, there is conflicting evidence regarding the beneficial effects of optimal lifestyle modification, particularly weight loss interventions, with nonalcoholic fatty liver disease (non-alcoholic fatty liver disease (NAFLD)). Therefore, this study investigated the effects of weight loss interventions on laboratory and clinical parameters in children and adolescents with NAFLD. Methods Original databases (PubMed/MEDLINE, Web of Science, SCOPUS, and Embase) were searched using standard keywords to identify all controlled trials investigating the effects of weight loss interventions among NAFLD children and adolescents. Pooled weighted mean difference and 95% confidence intervals were achieved by random-effects model analysis. Results Eighteen eligible clinical trials were included in this systematic review and meta-analysis. The pooled findings showed that especially more intense weight loss interventions significantly reduced the glucose (p = 0.007), insulin (p = 0.002), homeostatic model assessment-insulin resistance (HOMA-IR) (p = 0.003), weight (p = 0.025), body mass index (BMI) (p = 0.003), BMI z-score (p < 0.001), waist circumference (WC) (p = 0.013), triglyceride (TG) (p = 0.001), and aspartate transaminase (AST) (p = 0.027). However, no significant changes were found in total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine transaminase (ALT), and hepatic steatosis grades (all p > 0.05) following weight loss interventions. Conclusions Weight loss interventions had significant effects on NAFLD-related parameters including glucose, insulin, HOMA-IR, weight, BMI, BMI z-score, WC, TG, and AST.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research CommitteeDepartment of Clinical Nutrition and DieteticsFaculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
- Pediatric Gastroenterology and Hepatology Research CenterPediatrics Centre of ExcellenceChildren's Medical CenterTehran University of Medical SciencesTehranIran
| | | | - Somaye Fatahi
- Pediatric Gastroenterology, Hepatology, and Nutrition Research CenterResearch Institute for Children's HealthShahid Beheshti University of Medical SciencesTehranIran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research CenterPediatrics Centre of ExcellenceChildren's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
DiStefano JK, Piras IS, Wu X, Sharma R, Garcia-Mansfield K, Willey M, Lovell B, Pirrotte P, Olson ML, Shaibi GQ. Changes in proteomic cargo of circulating extracellular vesicles in response to lifestyle intervention in adolescents with hepatic steatosis. Clin Nutr ESPEN 2024; 60:333-342. [PMID: 38479932 PMCID: PMC10937812 DOI: 10.1016/j.clnesp.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Recent studies suggest that proteomic cargo of extracellular vesicles (EVs) may play a role in metabolic improvements following lifestyle interventions. However, the relationship between changes in liver fat and circulating EV-derived protein cargo following intervention remains unexplored. METHODS The study cohort comprised 18 Latino adolescents with obesity and hepatic steatosis (12 males/6 females; average age 13.3 ± 1.2 y) who underwent a six-month lifestyle intervention. EV size distribution and concentration were determined by light scattering intensity; EV protein composition was characterized by liquid chromatography tandem-mass spectrometry. RESULTS Average hepatic fat fraction (HFF) decreased 23% by the end of the intervention (12.5% [5.5] to 9.6% [4.9]; P = 0.0077). Mean EV size was smaller post-intervention compared to baseline (120.2 ± 16.4 nm to 128.4 ± 16.5 nm; P = 0.031), although the difference in mean EV concentration (1.1E+09 ± 4.1E+08 particles/mL to 1.1E+09 ± 1.8E+08 particles/mL; P = 0.656)) remained unchanged. A total of 462 proteins were identified by proteomic analysis of plasma-derived EVs from participants pre- and post-intervention, with 113 proteins showing differential abundance (56 higher and 57 lower) between the two timepoints (adj-p <0.05). Pathway analysis revealed enrichment in complement cascade, initial triggering of complement, creation of C4 and C2 activators, and regulation of complement cascade. Hepatocyte-specific EV affinity purification identified 40 proteins with suggestive (p < 0.05) differential abundance between pre- and post-intervention samples. CONCLUSIONS Circulating EV-derived proteins, particularly those associated with the complement cascade, may contribute to improvements in liver fat in response to lifestyle intervention.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Xiumei Wu
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Krystine Garcia-Mansfield
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Maya Willey
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Brooke Lovell
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Micah L Olson
- Division of Endocrinology and Diabetes, Phoenix Children's, Phoenix, AZ, USA; Center for Health Promotion and Disease Prevention, Edson College of Nursing, Arizona State University, Phoenix, AZ, USA
| | - Gabriel Q Shaibi
- Division of Endocrinology and Diabetes, Phoenix Children's, Phoenix, AZ, USA; Center for Health Promotion and Disease Prevention, Edson College of Nursing, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
7
|
Zahmatkesh A, Sohouli MH, Shojaie S, Rohani P. The effect of orlistat in the treatment of non-alcoholic fatty liver in adolescents with overweight and obese. Eur J Pediatr 2024; 183:1173-1182. [PMID: 38081992 DOI: 10.1007/s00431-023-05369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 03/20/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which can manifest as nonalcoholic steatohepatitis (NASH) or severe fibrosis, is the most prevalent chronic liver disease in children and adolescents. However, there is no proven cure for it so far. This study was conducted to determine whether adolescents with NAFLD would improve with treatment intervention with orlistat. This study is a randomized controlled trial (RCT). Fifty-three adolescents with overweight/obese as well as with NAFLD randomly allocated to receive orlistat (n = 27) or placebo as control (n = 26) for 12 weeks. In addition, NAFLD activity score, anthropometric factors, biochemical parameters including serum levels of lipid profiles, liver enzyme, and glucose metabolism taken from subjects at baseline and end of the study were investigated. The findings of our article indicated that orlistat improves liver enzymes (alanine transaminase and aspartate transaminase) (P = < 0.001), steatosis score (P = 0.001), NAFLD activity score (P = < 0.001), weight (P = < 0.001), body mass index (BMI) (P = < 0.001), waist circumferences (WC) (P = < 0.001), BMI-Z score (P = < 0.001), glucose metabolism (P = 0.001), total cholesterol (TC) (P = 0.009), low density lipoprotein-cholesterol (LDL) (P = < 0.001), and high density lipoprotein-cholesterol HDL levels (P = 0.014) compared to the control group after adjusting for possible confounders for 12 weeks. However, no significant changes were observed on triglyceride (TG) following intake of orlistat compared to placebo after adjusting for confounders. CONCLUSION The findings of our study reported that orlistat improved NAFLD-related factors and metabolic syndrome-related factors compared to placebo for 12 weeks. TRIAL REGISTRATION (Clinical trial registry number: IRCT20220409054467N2, with a registration date of 2022-05-13). WHAT IS KNOWN • Among the interventions of interest for the management of pediatric NAFLD, we can mention lifestyle and pharmaceutical measures. WHAT IS NEW • This study was conducted to determine whether adolescents with NAFLD would improve with treatment intervention with orlistat. • The findings of our study reported that orlistat improved NAFLD-related factors and metabolic syndrome-related factors compared to placebo for 12 weeks.
Collapse
Affiliation(s)
- Arefeh Zahmatkesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Jin D, Jin S, Zhou T, Cui Z, Guo B, Li G, Zhang C. Regional variation in NAFLD prevalence and risk factors among people living with HIV in Europe: a meta-analysis. Front Public Health 2024; 11:1295165. [PMID: 38259755 PMCID: PMC10802187 DOI: 10.3389/fpubh.2023.1295165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Background and Aim Europe faces an elevated risk of nonalcoholic fatty liver disease (NAFLD) among people living with HIV (PLWH), contributing to the region's highest global burden of NAFLD. However, the prevalence of NAFLD across various European countries and regions remains unclear. This study aims to investigate the prevalence and risk factors associated with NAFLD among PLWH across European countries. Methods A systematic search was conducted across four databases: PubMed, Embase, Web of Science, and Cochrane Library. Data on the prevalence of NAFLD, nonalcoholic steatohepatitis (NASH), and fibrosis, as well as the associated risk factors, were collected among PLWH in Europe. Results Thirty-six studies from 13 European nations were included. The prevalence of NAFLD, NASH, and fibrosis were 42% (95%CI 37-48), 35% (95%CI 21-50) and 13% (95%CI 10-15), respectively. Male gender, BMI, waist circumference, Diabetes, hypertension, metabolic syndrome, dyslipidemia, triglycerides, HDL, LDL, ALT, AST, and years on antiretroviral therapy (ART) were found to be risk factors for NAFLD. High BMI and triglycerides were associated with NASH. Patients with high BMI and triglycerides are at increased risk of significant liver fibrosis. Conclusion The high prevalence of NAFLD, NASH, and fibrosis among PLWH in Europe highlights the need for early screening, intervention, and increased research focus on adolescents living with HIV. Furthermore, the significant variations observed between countries and regions underscore the influence of related risk factors.
Collapse
Affiliation(s)
- Dachuan Jin
- Clinical Laboratory, Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Shunqin Jin
- Department of Radiology, Hebei Medical University, Shijiazhuang, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Zhongfeng Cui
- Clinical Laboratory, Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Baoqiang Guo
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Guangming Li
- Department of Liver Disease, Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Chunming Zhang
- Department of General Surgery, Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
9
|
Ko HJ, Woo S, Han J, Kim YM, Lim HJ, Kim MJ, Park YS, Park KH. Which obesity index is the most useful marker for predicting hepatic steatosis in children and adolescents with obesity? A cross-sectional study using quantitative magnetic resonance imaging. Obes Res Clin Pract 2023; 17:335-342. [PMID: 37336708 DOI: 10.1016/j.orcp.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION We aimed to evaluate the relationships between hepatic steatosis and various indices of obesity, and to identify the most useful index for the prediction of hepatic steatosis in children and adolescents with obesity. METHODS A total of 226 children and adolescents with a mean body mass index (BMI) z-score of 2.65 and a mean age of 11.4 years were subjected to anthropometric and body composition measurements, laboratory testing, abdominal fat mass assessment, and hepatic fat accumulation by magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF). The participants were divided into quartiles according to the severity of their hepatic steatosis, and the presence of hepatic steatosis was defined using an MRI-PDFF ≥ 5%. RESULTS The multivariate ordinal regression analysis showed that the severity of hepatic steatosis was positively associated with BMI, waist circumference, waist-to-hip ratio, waist-to-height ratio, fat mass, fat-free mass, visceral adiposity, and abdominal subcutaneous adiposity. Higher activities of liver enzymes and higher concentrations of triglyceride, C-reactive protein, fasting insulin, and leptin were associated with more severe hepatic steatosis, whereas high-density lipoprotein-cholesterol and adiponectin were negatively associated with hepatic steatosis. The indices of obesity with areas under the receiver operating characteristic curves (AUCs) > 0.8 for the prediction of hepatic steatosis were liver enzymes, visceral adipose tissue area, waist-to-hip ratio, and waist-to-height ratio. CONCLUSION The severity of hepatic steatosis significantly correlated with various indices of obesity and cardiometabolic markers in children and adolescents with obesity. The indices of abdominal obesity would be the most useful for the prediction of hepatic steatosis.
Collapse
Affiliation(s)
- Hae-Jin Ko
- Department of Family Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Sarah Woo
- Department of Medical Sciences, College of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Junhee Han
- Department of Statistics, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Yoon Myung Kim
- University College, Yonsei University International Campus, Incheon 21983, Republic of Korea
| | - Hyun Jung Lim
- Department of Medical Nutrition, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si 14068, Republic of Korea
| | - Yong Soon Park
- Department of Family Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon-si 24253, Republic of Korea
| | - Kyung Hee Park
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University, Anyang-si 14068, Republic of Korea.
| |
Collapse
|
10
|
He S, Zhang Y, Tan C, Tan W, Yin B. Inverted U-shaped relationships between bone mineral density and VCTE-quantified degree of hepatic steatosis in adolescents: Evidence from the NHANES. PLoS One 2023; 18:e0286688. [PMID: 37294745 PMCID: PMC10256176 DOI: 10.1371/journal.pone.0286688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/20/2023] [Indexed: 06/11/2023] Open
Abstract
INTRODUCTION There may be inaccuracies in hepatic steatosis in past research assessing the relationship between bone metabolism and liver steatosis. The goal of the current research was to look at the associations between bone mineral density (BMD) and the hepatic steatosis and fibrosis as detected by vibration-controlled transient elastography (VCTE) in teenagers in the United States. METHODS Weighted multiple linear regression models and smoothed curve fitting were used to investigate the association between BMD and the degree of hepatic steatosis and fibrosis in adolescents. RESULTS In 829 adolescents aged 12-19 years we found a negative association between total BMD and CAP (controlled attenuation parameter) [-32.46 (-58.98, -9.05)] and a significant positive association between lumbar BMD and LSM (liver stiffness measurement) [1.35 (0.19, 2.51)]. The inverted U-shaped relationships were founded between total BMD, lumbar BMD, pelvis BMD, and CAP with inflection points of 221.22 dB/m, 219.88 dB/m, and 216.02 dB/m, respectively. CONCLUSIONS In adolescents, higher BMD is significantly associated with lower levels of hepatic steatosis and higher levels of liver stiffness.
Collapse
Affiliation(s)
- Shengmao He
- Department of Hand and Foot Surgery, The Affiliated Second Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Zhang
- Department of Traumatic and Pediatric Orthopedics, The Affiliated Second Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Caixia Tan
- Department of Traumatic and Pediatric Orthopedics, The Affiliated Second Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenfu Tan
- Department of Traumatic and Pediatric Orthopedics, The Affiliated Second Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bingliang Yin
- Department of Hand and Foot Surgery, The Affiliated Second Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
11
|
Younossi ZM, Stepanova M, Felix S, Jeffers T, Younossi E, Goodman Z, Racila A, Lam BP, Henry L. The combination of the enhanced liver fibrosis and FIB-4 scores to determine significant fibrosis in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2023; 57:1417-1422. [PMID: 36967586 DOI: 10.1111/apt.17472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The presence of fibrosis in NAFLD is the most significant risk factor for adverse outcomes. We determined the cutoff scores of two non-invasive te sts (NITs) to rule in and rule out significant fibrosis among NAFLD patients. METHODS Clinical data and liver biopsies were used for NAFLD patients included in this analysis (2001-2020). The enhanced liver fibrosis (ELF) and FIB-4 NITs were calculated. Liver biopsies were read by a single hematopathologist and scored by the NASH CRN criteria. Significant fibrosis was defined as stage F2-F4. RESULTS There were 463 NAFLD patients included: 48 ± 13 years old, 31% male, 35% type 2 diabetes; 39% had significant fibrosis; mean ELF score was 9.0 ± 1.2, mean FIB-4 score was 1.22 ± 1.05. Patients with significant fibrosis were older, more commonly male, had lower BMI but more components of metabolic syndrome, higher ELF and FIB-4 (p < 0.0001). The performance of the two NITs in identifying significant fibrosis was: AUC (95% CI) = 0.78 (0.74-0.82) for ELF, 0.79 (0.75-0.83) for FIB-4. The combination of ELF score ≥9.8 and FIB-4 ≥ 1.96 returned a positive predictive value of 95% which can reliably rule in significant fibrosis (sensitivity 22%, specificity >99%), while an ELF score ≤7.7 or FIB-4 ≤ 0.30 had a negative predictive value of 95% ruling out significant fibrosis (sensitivity 98%, specificity 22%). CONCLUSIONS The combination of ELF and FIB-4 may provide practitioners with easily obtained information to risk stratify patients with NAFLD who could be referred to specialists or for enrollment in clinical trials.
Collapse
Affiliation(s)
- Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Maria Stepanova
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Diseases, Washington, District of Columbia, USA
| | - Sean Felix
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Thomas Jeffers
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Elena Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Zachary Goodman
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Andrei Racila
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Brian P Lam
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Linda Henry
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
- Inova Medicine Service Line, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Diseases, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Stepan MD, Vintilescu ȘB, Streață I, Podeanu MA, Florescu DN. The Role of Vitamin D in Obese Children with Non-Alcoholic Fatty Liver Disease and Associated Metabolic Syndrome. Nutrients 2023; 15:2113. [PMID: 37432275 DOI: 10.3390/nu15092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a complex chronic condition, which in the absence of screening-monitoring markers and effective standardized treatment is one of the most important issues in pediatric pathology. In this study, we analyzed the role of vitamin D supplementation in obese children with/without NAFLD and the impact on the components of the associated metabolic syndrome (MS). The study included 22 children with simple obesity (SO) and 50 with NAFLD, aged between 6 and 14 years, who received regimen-based therapy or vitamin D supplementation in case of deficiency. Anthropometric and paraclinical data associated with MS were statistically compared before and after treatment. It was observed that there was a statistical association of NAFLD with MS components, which were present both in SO and in the 6-9 years group. Vitamin D deficiency was associated with the presence of obesity, NAFLD and MS components, and correction of the deficiency induced a tendency to normalize the associated parameters. In the case of a treatment strictly based on the regimen, we found decreases in vitamin D values and additional alteration of some parameters. Supplementation with vitamin D potentiates the effects of the specific regimen, and the effects seem to be dependent on the MS components.
Collapse
Affiliation(s)
- Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ștefănița Bianca Vintilescu
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | | | - Dan Nicolae Florescu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| |
Collapse
|
13
|
Fuochi E, Anastasio L, Lynch EN, Campani C, Dragoni G, Milani S, Galli A, Innocenti T. Main factors influencing long-term outcomes of liver transplantation in 2022. World J Hepatol 2023; 15:321-352. [PMID: 37034235 PMCID: PMC10075010 DOI: 10.4254/wjh.v15.i3.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Liver transplant (LT) outcomes have markedly improved in the recent decades, even if long-term morbidity and mortality are still considerable. Most of late deaths are independent from graft function and different comorbidities, including complications of metabolic syndrome and de novo neoplasms, seem to play a key role in determining long-term outcomes in LT recipients. This review discusses the main factors associated with late mortality and suggests possible strategies to improve long-term management and follow-up after liver transplantation. In particular, the reduction of drug toxicity, the use of tools to identify high-risk patients, and setting up a multidisciplinary team also for long-term management of LT recipients may further improve survival after liver transplantation.
Collapse
Affiliation(s)
- Elisa Fuochi
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Lorenzo Anastasio
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Erica Nicola Lynch
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Claudia Campani
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Gabriele Dragoni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Stefano Milani
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Tommaso Innocenti
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| |
Collapse
|
14
|
From Metabolic Syndrome to Type 2 Diabetes in Youth. CHILDREN 2023; 10:children10030516. [PMID: 36980074 PMCID: PMC10047215 DOI: 10.3390/children10030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
In the frame of metabolic syndrome, type 2 diabetes emerges along a continuum of the risk from the clustering of all its components, namely visceral obesity, high blood pressure and lipids, and impaired glucose homeostasis. Insulin resistance is the hallmark common to all the components and, in theory, is a reversible condition. Nevertheless, the load that this condition can exert on the β-cell function at the pubertal transition is such as to determine its rapid and irreversible deterioration leading to plain diabetes. The aim of this review is to highlight, in the context of metabolic syndrome, age-specific risk factors that lead to type 2 diabetes onset in youth; resume age specific screening and diagnostic criteria; and anticipate potential for treatment. Visceral obesity and altered lipid metabolism are robust grounds for the development of the disease. Genetic differences in susceptibility to hampered β-cell function in the setting of obesity and insulin resistance largely explain why some adolescents with obesity do develop diabetes at a young age and some others do not. Lifestyle intervention with a healthy diet and physical activity remains the pillar of the type 2 diabetes treatment in youth. As to the pharmacological management, metformin and insulin have failed to rescue β-cell function and to ensure long-lasting glycemic control in youth. A new era might start with the approval for use in pediatric age of drugs largely prescribed in adults, such as dipeptidyl peptidase-4 and sodium-dependent glucose transport inhibitors, and of new weight-lowering drugs in the pipeline such as single and multiple agonists of the glucagon-like peptide 1 receptor. The latter drugs can have tremendous impact on the natural history of the disease. By treating diabetes, they will reduce the burden of all the metabolic abnormalities belonging to the syndrome while causing a tremendous weight loss hitherto never seen before.
Collapse
|
15
|
Le MH, Yeo YH, Zou B, Barnet S, Henry L, Cheung R, Nguyen MH. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach. Clin Mol Hepatol 2022; 28:841-850. [PMID: 36117442 PMCID: PMC9597215 DOI: 10.3350/cmh.2022.0239] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS Due to increases in obesity and type 2 diabetes, the prevalence of nonalcoholic fatty liver disease (NAFLD) has also been increasing. Current forecast models may not include non-obese NAFLD. Here, we used the Bayesian approach to forecast the prevalence of NAFLD through the year 2040. METHODS Prevalence data from 245 articles involving 2,699,627 persons were used with a hierarchical Bayesian approach to forecast the prevalence of NAFLD through 2040. Subgroup analyses were performed for age, gender, presence of metabolic syndrome, region, and smoking status. Sensitivity analysis was conducted for clinical setting and study quality. RESULTS The forecasted 2040 prevalence was 55.7%, a three-fold increase since 1990 and a 43.2% increase from the 2020 prevalence of 38.9%. The estimated average yearly increase since 2020 was 2.16%. For those aged <50 years and ≥50 years, the 2040 prevalence were not significantly different (56.7% vs. 61.5%, P=0.52). There was a significant difference in 2040 prevalence by sex (males: 60% vs. 50%) but the trend was steeper for females (annual percentage change: 2.5% vs. 1.5%, P=0.025). There was no difference in trends overtime by region (P=0.48). The increase rate was significantly higher in those without metabolic syndrome (3.8% vs. 0.84%, P=0.003) and smokers (1.4% vs. 1.1%, P=0.011). There was no difference by clinical/community setting (P=0.491) or study quality (P=0.85). CONCLUSION By 2040, over half the adult population is forecasted to have NAFLD. The largest increases are expected to occur in women, smokers, and those without metabolic syndrome. Intensified efforts are needed to raise awareness of NAFLD and to determine long-term solutions addressing the driving factors of the disease.
Collapse
Affiliation(s)
- Michael H. Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Yee Hui Yeo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Biyao Zou
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| | - Scott Barnet
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Linda Henry
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Ramsey Cheung
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Division of Gastroenterology and Hepatology, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA, USA
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| |
Collapse
|
16
|
Bauer KC, Littlejohn PT, Ayala V, Creus-Cuadros A, Finlay BB. Nonalcoholic Fatty Liver Disease and the Gut-Liver Axis: Exploring an Undernutrition Perspective. Gastroenterology 2022; 162:1858-1875.e2. [PMID: 35248539 DOI: 10.1053/j.gastro.2022.01.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition affecting one quarter of the global population. Although primarily linked to obesity and metabolic syndrome, undernutrition and the altered (dysbiotic) gut microbiome influence NAFLD progression. Both undernutrition and NAFLD prevalence are predicted to considerably increase, but how the undernourished gut microbiome contributes to hepatic pathophysiology remains far less studied. Here, we present undernutrition conditions with fatty liver features, including kwashiorkor and micronutrient deficiency. We then review the gut microbiota-liver axis, highlighting key pathways linked to NAFLD progression within both overnutrition and undernutrition. To conclude, we identify challenges and collaborative possibilities of emerging multiomic research addressing the pathology and treatment of undernourished NAFLD.
Collapse
Affiliation(s)
- Kylynda C Bauer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Thoracic and Gastrointestinal Malignancies Branch, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Paula T Littlejohn
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria Ayala
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain; Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
| | - Anna Creus-Cuadros
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Wang C, Pai AK, Putra J. Paediatric non-alcoholic fatty liver disease: an approach to pathological evaluation. J Clin Pathol 2022; 75:443-451. [PMID: 35414523 DOI: 10.1136/jclinpath-2022-208246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an increasingly important healthcare issue along with the rising rates of obesity worldwide. It is the most common chronic liver disease in the paediatric population and the fastest growing indication for liver transplant in young adults. The pathogenesis is complex with contributions from multiple factors and genetic predisposition. While non-invasive laboratory tests and imaging modalities are being increasingly used, the liver biopsy continues to play a crucial role in the diagnosis and prognosis of NAFLD. Histologically, the assessment of paediatric fatty liver disease requires special considerations with respect to a periportal predominant pattern seen in prepubertal patients, as well as a different set of disease processes in the differential diagnosis. In this review, we provide a summary of current knowledge on the epidemiology, pathogenesis and clinical course of paediatric NAFLD as well as the clinical guidelines on diagnosis and management. We discuss the indications and limitations of liver biopsy, histological patterns seen in paediatric NAFLD, other entities to be considered in the differential diagnosis, and conclude with appropriate triaging of liver biopsies and essential elements of pathology reporting.
Collapse
Affiliation(s)
- Chiyun Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Anita K Pai
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan Putra
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Bhandari P, Sapra A, Ajmeri MS, Albers CE, Sapra D. Nonalcoholic Fatty Liver Disease: Could It Be the Next Medical Tsunami? Cureus 2022; 14:e23806. [PMID: 35518541 PMCID: PMC9067326 DOI: 10.7759/cureus.23806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rapidly increasing cause of chronic liver disease with excess fat deposition in the liver, without an identifiable cause. NAFLD's benign form is called nonalcoholic fatty liver (NAFL), which can progress to nonalcoholic steatohepatitis (NASH) with or without fibrosis. Over time, NASH can progress to cirrhosis and eventually hepatocellular carcinoma (HCC) or progress to HCC without cirrhosis. Its incidence and prevalence are increasing to epidemic proportions, making it the most common cause of chronic liver disease in the western world. This review article attempts to understand the epidemiology, pathophysiology, evaluation, and management, and, most importantly, to generate awareness of this disease process.
Collapse
|
19
|
Stevanović-Silva J, Beleza J, Coxito P, Costa RC, Ascensão A, Magalhães J. Fit mothers for a healthy future: Breaking the intergenerational cycle of non-alcoholic fatty liver disease with maternal exercise. Eur J Clin Invest 2022; 52:e13596. [PMID: 34120338 DOI: 10.1111/eci.13596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED SPECIAL ISSUE: 'FOIEGRAS-Bioenergetic Remodelling in the Pathophysiology and Treatment of Non-Alcoholic Fatty Liver Disease'. BACKGROUND Non-alcoholic fatty liver disease (NAFLD) emerges as significant health burden worldwide. Lifestyle changes, unhealthy dietary habits and physical inactivity, can trigger NAFLD development. Persisting on these habits during pregnancy affects in utero environment and prompts a specific metabolic response in foetus resulting in offspring metabolic maladjustments potentially critical for developing NAFLD later in life. The increasing prevalence of NAFLD, particularly in children, has shifted the research focus towards preventive and therapeutic strategies. Yet, designing effective approaches that can break the NAFLD intergenerational cycle becomes even more complicated. Regular physical exercise (PE) is a powerful non-pharmacological strategy known to counteract deleterious metabolic outcomes. In this narrative review, we aimed to briefly describe NAFLD pathogenesis focusing on maternal nutritional challenge and foetal programming, and to provide potential mechanisms behind the putative intergenerational effect of PE against metabolic diseases, including liver diseases. METHODS Following detailed electronic database search, recent existing evidence about NAFLD development, intergenerational programming and gestational exercise effects was critically analysed and discussed. RESULTS PE during pregnancy could have a great potential to counteract intergenerational transmission of metabolic burden. The interplay between different PE roles-metabolic, endocrine and epigenetic-could offer a more stable in utero environment to the foetus, thus rescuing offspring vulnerability to metabolic disturbances. CONCLUSIONS The better understanding of maternal PE beneficial consequences on offspring metabolism could reinforce the importance of PE during pregnancy as an indispensable strategy in improving offspring health.
Collapse
Affiliation(s)
- Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Małecki P, Mania A, Tracz J, Łuczak M, Mazur-Melewska K, Figlerowicz M. Adipocytokines as Risk Factors for Development of Nonalcoholic Fatty Liver Disease in Children. J Clin Exp Hepatol 2021; 11:646-653. [PMID: 34866842 PMCID: PMC8617538 DOI: 10.1016/j.jceh.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Noninvasive diagnostics of nonalcoholic fatty liver disease (NAFLD), the most common cause of liver dysfunction in children, are based on imaging, biochemical tests and their compilation. The study aimed to evaluate the serological biomarkers of steatosis, inflammation and liver fibrosis to assess the risk of NAFLD in children. METHODS A total of 73 children were included in the prospective study; 50 of them were diagnosed with NAFLD based on ultrasound, and 23 formed a control group. Basic anthropometric parameters were measured, blood samples were taken for laboratory tests and evaluated proteins were assessed by enzyme-linked immunosorbent assay-adiponectin, tumour necrosis factor alpha, fibroblast growth factor 21, liver fatty acid-binding protein (L-FABP) and interleukin 6. RESULTS Statistically significant differences between the levels of two proteins were found: the adiponectin level was lower in the NAFLD group (12.24 ± 7.01 vs 16.88 ± 9.21 μg/mL, P = 0.024), and L-FABP levels were higher (21.48 ± 20.61 vs 11.74 ± 8.39 ng/mL, P = 0.031). In the group of children with body mass index (BMI)-for-age >1 standard deviation (SD), adiponectin concentration was also significantly lower (12.18 ± 6.43 μg/mL) than in the group with BMI ≤1 SD (17.29 ± 9.42 μg/mL, P = 0.015). The odds ratios and 95% confidence interval for the relation between adiponectin and NAFLD and obesity were 0.868 (0.767-0.982) and 0.838 (0.719-0.977), respectively. CONCLUSION Adiponectin may be useful in evaluating the risk of NAFLD and obesity in children.
Collapse
Key Words
- ALF, acute liver failure
- ALT, alanine aminotransferase
- AMPK, adenosine monophosphate–activated protein kinase
- APRI, AST to Platelet Ratio Index
- AST, aspartate aminotransferase
- BMI, body mass index
- ER, endoplasmic reticulum
- FFA, free fatty acid
- FGF-21, fibroblast growth factor 21
- HMW, high-molecular-weight
- IR, insulin resistance
- L-FABP, liver fatty acid-binding protein
- LPS, lipopolysaccharide
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- OR, odds ratio
- PNFS, Paediatric NAFLD Fibrosis Scale
- PPAR-α, peroxisome proliferator–activated receptor-α
- SD, standard deviation
- SOCS3, suppressor of cytokine signalling 3
- TNF-α, tumour necrosis factor α
- US-FLI, ultrasound fatty liver indicator
- WHO, World Health Organization
- adipokines
- children
- nonalcoholic fatty liver disease
Collapse
Affiliation(s)
- Paweł Małecki
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Mania
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Tracz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Łuczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Liu J, Mu C, Li K, Luo H, Liu Y, Li Z. Estimating Global Prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease in Overweight or Obese Children and Adolescents: Systematic Review and Meta-Analysis. Int J Public Health 2021; 66:1604371. [PMID: 34690666 PMCID: PMC8527331 DOI: 10.3389/ijph.2021.1604371] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a new terminology updated from non-alcoholic fatty liver disease (NAFLD). We aim to estimate the global prevalence of MAFLD in overweight or obese children and adolescents, by repurposing existing data on fatty liver disease. Methods: We screened relevant articles published up to December 2020. Pooled prevalence was calculated using Logit transformations. Results: Our search returned 35,441 records, of which 156 studies fulfilled the inclusion criteria. The overall prevalence of MAFLD was 33.78% in the general population and 44.94% in a special population based on child obesity clinics, regardless of the diagnostic techniques. For subgroup analysis, MAFLD prevalence was significantly higher in boys compared to girls (36.05 vs. 26.84% in the general population; 50.20 vs. 35.34% in the child obesity clinics-based population). Interestingly, based on study source, the pooled prevalence of MAFLD was 1.5-fold higher in other “fatty liver disease” studies compared to the classical “NAFLD” studies in the general population. Conclusion: MAFLD is highly prevalent in overweight or obese children and adolescents. Raising awareness and urgent actions are warranted to control the MAFLD pandemic across the globe.
Collapse
Affiliation(s)
- Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyang Mu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kewei Li
- Department of Pediatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Liu
- Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Garcia E, Stratakis N, Valvi D, Maitre L, Varo N, Aasvang GM, Andrusaityte S, Basagana X, Casas M, de Castro M, Fossati S, Grazuleviciene R, Heude B, Hoek G, Krog NH, McEachan R, Nieuwenhuijsen M, Roumeliotaki T, Slama R, Urquiza J, Vafeiadi M, Vos MB, Wright J, Conti DV, Berhane K, Vrijheid M, McConnell R, Chatzi L. Prenatal and childhood exposure to air pollution and traffic and the risk of liver injury in European children. Environ Epidemiol 2021; 5:e153. [PMID: 34131614 PMCID: PMC8196121 DOI: 10.1097/ee9.0000000000000153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Nonalcoholic fatty liver disease is the most prevalent pediatric chronic liver disease. Experimental studies suggest effects of air pollution and traffic exposure on liver injury. We present the first large-scale human study to evaluate associations of prenatal and childhood air pollution and traffic exposure with liver injury. METHODS Study population included 1,102 children from the Human Early Life Exposome project. Established liver injury biomarkers, including alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and cytokeratin-18, were measured in serum between ages 6-10 years. Air pollutant exposures included nitrogen dioxide, particulate matter <10 μm (PM10), and <2.5 μm. Traffic measures included traffic density on nearest road, traffic load in 100-m buffer, and inverse distance to nearest road. Exposure assignments were made to residential address during pregnancy (prenatal) and residential and school addresses in year preceding follow-up (childhood). Childhood indoor air pollutant exposures were also examined. Generalized additive models were fitted adjusting for confounders. Interactions by sex and overweight/obese status were examined. RESULTS Prenatal and childhood exposures to air pollution and traffic were not associated with child liver injury biomarkers. There was a significant interaction between prenatal ambient PM10 and overweight/obese status for alanine aminotransferase, with stronger associations among children who were overweight/obese. There was no evidence of interaction with sex. CONCLUSION This study found no evidence for associations between prenatal or childhood air pollution or traffic exposure with liver injury biomarkers in children. Findings suggest PM10 associations maybe higher in children who are overweight/obese, consistent with the multiple-hits hypothesis for nonalcoholic fatty liver disease pathogenesis.
Collapse
Affiliation(s)
- Erika Garcia
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Nikos Stratakis
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Léa Maitre
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Nerea Varo
- Clinical Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagana
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Maribel Casas
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Montserrat de Castro
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Serena Fossati
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Barbara Heude
- NA, Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Gerard Hoek
- Department Population Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Norun Hjertager Krog
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Mark Nieuwenhuijsen
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Theano Roumeliotaki
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - Rémy Slama
- Department of Prevention and Treatment of Chronic Diseases, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Jose Urquiza
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - Miriam B. Vos
- Department of Pediatrics, Emory University, Atlanta, GA
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - David V. Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York, NY
| | - Martine Vrijheid
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Rob McConnell
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Lida Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
23
|
On the Relationship Between Non-alcoholic Fatty Liver Disease with Body Composition and Bone Mineral Density in Overweight/Obese Adolescents. HEPATITIS MONTHLY 2021. [DOI: 10.5812/hepatmon.112184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is a health problem growing in line with the rising prevalence of obesity in children and adolescents, which may be correlated with different metabolic abnormalities such as osteoporosis. Objectives: This study aimed to evaluate the possible relationship between NAFLD with body composition and bone mineral density (BMD) in obese and overweight adolescents. Methods: This cross-sectional study encompassed 70 adolescents aged 11 - 18 years and was conducted during March 2016 and September 2016 in Mashhad, Iran. Anthropometric parameters and blood biomarkers were measured. Fat mass, fat-free mass, and BMD were determined using dual-energy X‐ray absorptiometry (DXA) scans, and NAFLD was also assessed using Fibroscan. All statistical data were analyzed using SPSS software version 21. Multivariate linear regression assessed the relationship between liver fat content with bone-related indicators, and multivariate logistic regression detected the relationship between body composition and NAFLD. Results: Total and trunk fat mass were significantly correlated with higher NAFLD even after controlling for intervening factors (total fat mass, OR = 1.27; 95% CI, 1.016 to 1.59, P = 0.036; trunk fat mass, OR = 1.35; 95% CI, 0.97 to 1.88, P = 0.045). Moreover, liver fat content was significantly correlated with lower BMD Z-score after adjusting for gender, BMI Z-score, ALT, fat mass index, total lean mass, and physical activity (β = -0.285, P = 0.048). Conclusions: The findings of the present study suggest that excess adipose tissue is correlated with higher NAFLD. Moreover, liver steatosis may be correlated with decreased BMD Z-score in overweight/obese adolescents.
Collapse
|
24
|
Al-Baiaty FDR, Ismail A, Abdul Latiff Z, Muhammad Nawawi KN, Raja Ali RA, Mokhtar NM. Possible Hepatoprotective Effect of Tocotrienol-Rich Fraction Vitamin E in Non-alcoholic Fatty Liver Disease in Obese Children and Adolescents. Front Pediatr 2021; 9:667247. [PMID: 34307250 PMCID: PMC8295474 DOI: 10.3389/fped.2021.667247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Obesity has become a worldwide health concern among the pediatric population. The prevalence of non-alcoholic fatty liver disease (NAFLD) is growing rapidly, alongside the high prevalence of obesity. NAFLD refers to a multifactorial disorder that includes simple steatosis to non-alcoholic steatohepatitis (NASH) with or devoid of fibrosis. NAFLD is regarded as a systemic disorder that influences glucose, lipid, and energy metabolism with hepatic manifestations. A sedentary lifestyle and poor choice of food remain the major contributors to the disease. Prompt and timely diagnosis of NAFLD among overweight children is crucial to prevent the progression of the condition. Yet, there has been no approved pharmacological treatment for NAFLD in adults or children. As indicated by clinical evidence, lifestyle modification plays a vital role as a primary form of therapy for managing and treating NAFLD. Emphasis is on the significance of caloric restriction, particularly macronutrients (fats, carbohydrates, and proteins) in altering the disease consequences. A growing number of studies are now focusing on establishing a link between vitamins and NAFLD. Different types of vitamin supplements have been shown to be effective in treating NAFLD. In this review, we elaborate on the potential role of vitamin E with a high content of tocotrienol as a therapeutic alternative in treating NAFLD in obese children.
Collapse
Affiliation(s)
- Farah D R Al-Baiaty
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aziana Ismail
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zarina Abdul Latiff
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Najmi Muhammad Nawawi
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Trandafir LM, Frasinariu OE, Leon-Constantin MM, Chiriac Ş, Trandafirescu MF, Miron IC, Luca AC, Iordache AC, Cojocaru E. Pediatric nonalcoholic fatty liver disease - a changing diagnostic paradigm. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:1023-1031. [PMID: 34171051 PMCID: PMC8343491 DOI: 10.47162/rjme.61.4.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/22/2021] [Indexed: 11/05/2022]
Abstract
Worldwide, nonalcoholic fatty liver disease (NAFLD) has emerged as the leading cause of chronic liver disease in children and adolescents, but also as a real public health issue. Over the last decades, the increase in the rates of obesity and overweight in children has led to the increase in the worldwide prevalence of pediatric NAFLD. Detection of a hyperechoic appearance of the liver at ultrasounds or elevated levels of transaminases, identified during a routine control in children, suggests NAFLD. The disorder can be diagnosed with either non-invasive strategies or through liver biopsy, which further allows the identification of specific histological aspects, distinct from those found in adults. Since NAFLD is a clinically heterogeneous disease, there is an imperative need to identify noninvasive biomarkers and screening techniques for early diagnosis in children, in order to prevent metabolic and cardiovascular complications later in adulthood. This review emphasizes the main diagnosis tools in pediatric NAFLD, a systemic disorder with multifactorial pathogenesis and varying clinical manifestations.
Collapse
Affiliation(s)
- Laura Mihaela Trandafir
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Otilia Elena Frasinariu
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | | | - Ştefan Chiriac
- First Medical Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | | | - Ingrith Crenguţa Miron
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Alina Costina Luca
- Department of Mother and Child Medicine – Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Alin Constantin Iordache
- Second Surgery Department – Neurosurgery, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I – Pathology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
26
|
CYTOKERATIN-18 AS A MARKER OF NON-ALCOHOLIC FATTY LIVER DISEASE IN OBESE ADOLESCENTS. EUREKA: HEALTH SCIENCES 2020. [DOI: 10.21303/2504-5679.2020.001415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In parallel with the obesity epidemic in the world, the prevalence of non-alcoholic fatty liver disease among children and adolescents is growing. Current data suggest that insulin resistance is one of the main factors in the pathogenesis of non-alcoholic fatty liver disease, and the content of fragments of caspase-cleaved cytokeratin-18 in the blood serum may be one of the informative indicators of non-alcoholic fatty liver disease progression.
The aim. To determine mechanisms of formation and progression of non-alcoholic fatty liver disease in obese children and adolescents by evaluating the level of cytokeratin-18.
Materials and methods. The study involved 46 adolescents with obesity and non-alcoholic fatty liver disease aged 12–17 years: 19 boys (41.3 %) and 27 girls (58.7 %). Clinical (weight, height, waist and hip circumference), laboratory (glucose, immunoreactive insulin, lipid metabolism, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase, cytokeratin-18) parameters were studied and instrumental examination (abdominal ultrasound) was performed. To assess insulin resistance the triglyceride-glucose index was calculated.
Results. Depending on the presence of insulin resistance patients were divided into two groups: 21 (45.7 %) of adolescents with insulin resistance and 25 (54.3 %) of adolescents without insulin resistance. Blood tests in patients with insulin resistance revealed significantly higher levels of total cholesterol, triglycerides, very low-density lipoprotein cholesterol, fasting immunoreactive insulin, cytokeratin-18 and gamma-glutamyl transpeptidase. All adolescents were divided into 2 groups depending on the level of cytokeratin-18: patients with cytokeratin-18 >233 mIU/ml and <233 mIU/ml (15 (32.6 %) and 31 (67.4 %) respectively). It was found that there were significantly more patients with insulin resistance in the group with the level of cytokeratin-18 >233 mIU/ml.
Conclusion. In obese adolescents with non-alcoholic fatty liver disease insulin resistance is associated with more pronounced disorders of lipid and carbohydrate metabolism and higher levels of markers that characterize the state of the liver such as cytokeratin-18 and gamma-glutamyl transpeptidase. Adolescents with obesity and non-alcoholic fatty liver disease with a threshold level of cytokeratin-18, which indicates the transformation of steatosis into steatohepatitis, two times more often have present insulin resistance.
Collapse
|
27
|
Jayanti S, Vítek L, Tiribelli C, Gazzin S. The Role of Bilirubin and the Other "Yellow Players" in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E900. [PMID: 32971784 PMCID: PMC7555389 DOI: 10.3390/antiox9090900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin reductase; altogether the "yellow players"-YPs) have been recognized playing a protective role in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific contributions to pathological conditions of the central nervous system (CNS) and their role in these diseases are limited. In this review, we will focus on the most recent evidence linking the role of the YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as potentially worsening effects of the YP's activity will be discussed.
Collapse
Affiliation(s)
- Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
- Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, University of Trieste, 34127 Trieste, Italy
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| |
Collapse
|
28
|
Bauer KC, Huus KE, Brown EM, Bozorgmehr T, Petersen C, Cirstea MS, Woodward SE, McCoy J, Hun J, Pamplona R, Ayala V, Finlay BB. Dietary Intervention Reverses Fatty Liver and Altered Gut Microbiota during Early-Life Undernutrition. mSystems 2020; 5:e00499-20. [PMID: 32900869 PMCID: PMC7483509 DOI: 10.1128/msystems.00499-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/01/2020] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), largely studied as a condition of overnutrition, also presents in undernourished populations. Like NAFLD, undernutrition disrupts systemic metabolism and has been linked to gut microbiota dysbiosis. Indeed, chronic exposures to fecal microbes contribute to undernutrition pathology in regions with poor sanitation. Despite a growing prevalence of fatty liver disease, the influence of undernutrition and the gut microbiota remain largely unexplored. Here, we utilize an established murine model (C57BL/6J mice placed on a malnourished diet that received iterative Escherichia coli/Bacteroidales gavage [MBG mice]) that combines a protein/fat-deficient diet and iterative exposure to specific, fecal microbes. Fecal-oral contamination exacerbates triglyceride accumulation in undernourished mice. MBG livers exhibit diffuse lipidosis accompanied by striking shifts in fatty acid, glycerophospholipid, and retinol metabolism. Multiomic analyses revealed metabolomic pathways linked to the undernourished gut microbiome and hepatic steatosis, including phenylacetate metabolism. Intriguingly, fatty liver features were observed only in the early-life, but not adult, MBG model despite similar liver metabolomic profiles. Importantly, we demonstrate that dietary intervention largely mitigates aberrant metabolomic and microbiome features in MBG mice. These findings indicate a crucial window in early-life development that, when disrupted by nutritional deficiency, may significantly influence liver function. Our work provides a multifaceted study of how diet and gut microbes inform fatty liver progression and reversal during undernutrition.IMPORTANCE Nonalcoholic fatty liver disease (NAFLD) remains a global epidemic, but it is often studied in the context of obesity and aging. Nutritional deficits, however, also trigger hepatic steatosis, influencing health trajectories in undernourished pediatric populations. Here, we report that exposure to specific gut microbes impacts fatty liver pathology in mice fed a protein/fat-deficient diet. We utilize a multiomics approach to (i) characterize NAFLD in the context of early undernutrition and (ii) examine the impact of diet and gut microbes in the pathology and reversal of hepatic steatosis. We provide compelling evidence that an early-life, critical development window facilitates undernutrition-induced fatty liver pathology. Moreover, we demonstrate that sustained dietary intervention largely reverses fatty liver features and microbiome shifts observed during early-life malnutrition.
Collapse
Affiliation(s)
- K C Bauer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - K E Huus
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - E M Brown
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Petersen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - M S Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - S E Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - J McCoy
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Hun
- The Metabolomics Innovation Centre, University of Victoria, British Columbia, Canada
| | - R Pamplona
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain
- Department of Metabolomic Physiology, Universitat de Lleida, Lleida, Spain
| | - V Ayala
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain
- Department of Metabolomic Physiology, Universitat de Lleida, Lleida, Spain
| | - B B Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Cytochrome P450 (CYP) Enzymes. Pharmaceuticals (Basel) 2020; 13:ph13090222. [PMID: 32872474 PMCID: PMC7560175 DOI: 10.3390/ph13090222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive fat in the liver. An international consensus panel has recently proposed to rename the disease to metabolic dysfunction associated with fatty liver disease (MAFLD). The disease can range from simple steatosis (fat accumulation) to nonalcoholic steatohepatitis (NASH) which represents a severe form of NAFLD and is accompanied by inflammation, fibrosis, and hepatocyte damage in addition to significant steatosis. This review collates current knowledge of changes in human hepatic cytochrome P450 enzymes in NAFLD. While the expression of these enzymes is well studied in healthy volunteers, our understanding of the alterations of these proteins in NAFLD is limited. Much of the existing knowledge on the subject is derived from preclinical studies, and clinical translation of these findings is poor. Wherever available, the effect of NAFLD on these proteins in humans is debatable and currently lacks a consensus among different reports. Protein expression is an important in vitro physiological parameter controlling the pharmacokinetics of drugs and the last decade has seen a rise in the accurate estimation of these proteins for use with physiologically based pharmacokinetic (PBPK) modeling to predict drug pharmacokinetics in special populations. The application of label-free, mass spectrometry-based quantitative proteomics as a promising tool to study NAFLD-associated changes has also been discussed.
Collapse
|
30
|
Khan HH, Klingert CE, Kumar S, Lyons H. Cirrhosis in a Young Child Due to Fatty Liver; Importance of Early Screening: A Case Report and Review of the Literature. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e923250. [PMID: 32583813 PMCID: PMC7334835 DOI: 10.12659/ajcr.923250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Patient: Male, 9-year-old Final Diagnosis: Liver cirrhosis Symptoms: Abdominal pain • vomiting Medication:— Clinical Procedure: CT scan • fibroscan • liver biopsy • ultrasonography Specialty: Laboratory Diagnostics • Gastroenterology and Hepatology • Pathology • Pediatrics and Neonatology
Collapse
Affiliation(s)
- Hamza Hassan Khan
- Department of Pediatrics, Ascension St. John Children's Hospital, Detroit, MI, USA
| | - Christine E Klingert
- Department of Pediatrics, Ascension St. John Children's Hospital, Detroit, MI, USA.,Wayne State University, School of Medicine, Detroit, MI, USA
| | - Sanjay Kumar
- Wayne State University, School of Medicine, Detroit, MI, USA.,Department of Pediatric Gastroenterology, Ascension St. John Children's Hospital, Detroit, MI, USA
| | - Hernando Lyons
- Wayne State University, School of Medicine, Detroit, MI, USA.,Department of Pediatric Gastroenterology, Ascension St. John Children's Hospital, Detroit, MI, USA
| |
Collapse
|
31
|
Albakheet SS, Yoon H, Shin HJ, Koh H, Kim S, Lee MJ. Bone marrow fat change in pediatric patients with non-alcoholic fatty liver disease. PLoS One 2020; 15:e0234096. [PMID: 32484830 PMCID: PMC7266329 DOI: 10.1371/journal.pone.0234096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives To investigate changes of fat in bone marrow (BM) and paraspinal muscle (PSM) associated with the degree of fatty liver in pediatric patients with non-alcoholic fatty liver disease (NAFLD) in consideration of age and body mass index (BMI). Methods Hepatic fat, BM fat, and PSM fat from proton density fat fraction of liver MRI between June 2015 and April 2019 were quantitatively evaluated on axial images of the fat map at the mid-level of T11-L2 vertebral bodies for BM fat and at the mid-level of L2 for PSM fat. Age, height, and weight at the time of MRI were recorded and BMI was calculated. Correlation analysis was performed. Results A total of 147 patients (114 male) were included with a mean age of 13.3 ± 2.9 years (range 7–18 years). The mean fat fractions were 24.3 ± 13.0% (2–53%) in liver, 37.4 ± 8.6% (17.3–56%) in vertebral BM, and 2.7 ± 1.1% (1.0–6.9%) in PSM. Age, height, weight, and BMI were not correlated with liver fat or BM fat. However, weight (ρ = 0.174, p = 0.035) and BMI (ρ = 0.247, p = 0.003) were positively correlated with PSM fat. Liver fat showed positive correlation with BM fat when adjusting age and BMI (ρ = 0.309, p<0.001), but not with PSM fat. Conclusions BM fat positively correlates with liver fat, but not with age or BMI in pediatric NAFLD patients.
Collapse
Affiliation(s)
- Salman S. Albakheet
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiology, King Faisal General Hospital, Al-Hofuf, Kingdom of Saudi Arabia
| | - Haesung Yoon
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Joo Shin
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Koh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Children’s Hospital, Severance Pediatric Liver Disease Research Group, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Kim
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Children’s Hospital, Severance Pediatric Liver Disease Research Group, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi-Jung Lee
- Department of Radiology, Severance Hospital, Severance Pediatric Liver Disease Research Group, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
32
|
Altamimi E. Effect of COVID-19 Pandemic and Lockdown on Children With Gastrointestinal Disorders. Gastroenterology Res 2020; 13:125-128. [PMID: 32655731 PMCID: PMC7331857 DOI: 10.14740/gr1290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Eyad Altamimi
- Pediatric Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Pediatric Department, King Abdullah University Hospital, Ramtha, Jordan
| |
Collapse
|
33
|
De Jesus DF, Orime K, Kaminska D, Kimura T, Basile G, Wang CH, Haertle L, Riemens R, Brown NK, Hu J, Männistö V, Silva AM, Dirice E, Tseng YH, Haaf T, Pihlajamäki J, Kulkarni RN. Parental metabolic syndrome epigenetically reprograms offspring hepatic lipid metabolism in mice. J Clin Invest 2020; 130:2391-2407. [PMID: 32250344 PMCID: PMC7190992 DOI: 10.1172/jci127502] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Although gene-environment interactions have been implicated in the etiology of several disorders, the impact of paternal and/or maternal metabolic syndrome on the clinical phenotypes of offspring and the underlying genetic and epigenetic contributors of NAFLD have not been fully explored. To this end, we used the liver-specific insulin receptor knockout (LIRKO) mouse, a unique nondietary model manifesting 3 hallmarks that confer high risk for the development of NAFLD: hyperglycemia, insulin resistance, and dyslipidemia. We report that parental metabolic syndrome epigenetically reprograms members of the TGF-β family, including neuronal regeneration-related protein (NREP) and growth differentiation factor 15 (GDF15). NREP and GDF15 modulate the expression of several genes involved in the regulation of hepatic lipid metabolism. In particular, NREP downregulation increases the protein abundance of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and ATP-citrate lyase (ACLY) in a TGF-β receptor/PI3K/protein kinase B-dependent manner, to regulate hepatic acetyl-CoA and cholesterol synthesis. Reduced hepatic expression of NREP in patients with NAFLD and substantial correlations between low serum NREP levels and the presence of steatosis and nonalcoholic steatohepatitis highlight the clinical translational relevance of our findings in the context of recent preclinical trials implicating ACLY in NAFLD progression.
Collapse
Affiliation(s)
- Dario F. De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Kazuki Orime
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Dorota Kaminska
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tomohiko Kimura
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chih-Hao Wang
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Larissa Haertle
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Renzo Riemens
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Würzburg, Germany
| | - Natalie K. Brown
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, and
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Würzburg, Germany
| | - Jussi Pihlajamäki
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Seth A, Orkin S, Yodoshi T, Liu C, Fei L, Hardy J, Trout AT, Clachar ACA, Bramlage K, Xanthakos S, Mouzaki M. Severe obesity is associated with liver disease severity in pediatric non-alcoholic fatty liver disease. Pediatr Obes 2020; 15:e12581. [PMID: 31657145 PMCID: PMC8006543 DOI: 10.1111/ijpo.12581] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/08/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Paediatric non-alcoholic fatty liver disease (NAFLD) is highly prevalent among children with obesity. The primary objective of this study was determining whether obesity severity is associated with NAFLD severity. By using paediatric classifications for severe obesity, clinicians may be able to better risk stratify patients, which in turn would guide more effective management and treatment. METHODS Retrospective cohort study including patients followed at Cincinnati Children's Medical Center for NAFLD. Patients were categorized as overweight or class I, II, III obese based on established body mass index (BMI) cut-offs. Liver disease severity was determined using biochemical, imaging (magnetic resonance elastography [MRE]), and histologic evidence of liver injury. RESULTS Three cohorts were studied individually based on the method used to assess disease severity (biochemical n = 767, imaging n = 366, and histology n = 249). Between the three cohorts, there were significant differences in age, proportion of patients with class II and class III obesity, and serum alanine transaminase (ALT) levels. In the biochemistry cohort, the odds of having ALT > 80 U/L were highest in patients with class III obesity (P = .026). In the imaging cohort, liver stiffness was significantly different between BMI groups of patients (P = .001). In the histology cohort, those with class III obesity had significantly higher odds of NAFLD activity score (NAS) ≥ 5 (P = .012). DISCUSSION Obesity severity is associated with liver disease severity. Patients with more severe obesity are more likely to have more advanced liver disease, a finding that can assist in risk stratification, as well as monitoring and treatment approaches.
Collapse
Affiliation(s)
- Aradhna Seth
- Division of Digestive Disease, University of Cincinnati, Cincinnati, Ohio
| | - Sarah Orkin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Toshifumi Yodoshi
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Chunyan Liu
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lin Fei
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jennifer Hardy
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew T. Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ana-Catalina Arce Clachar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kristin Bramlage
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stavra Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marialena Mouzaki
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
35
|
Omagari K, Asakawa E, Sasao M, Narita S, Hisano M, Fukuda A, Suruga K, Ichimura M, Tsuneyama K. Age-Related Alterations of Nonalcoholic Steatohepatitis in Sprague-Dawley Rats Fed a High-Fat and High-Cholesterol Diet. J Nutr Sci Vitaminol (Tokyo) 2019; 65:349-356. [PMID: 31474685 DOI: 10.3177/jnsv.65.349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonalcoholic steatohepatitis (NASH), a subtype of nonalcoholic fatty liver disease (NAFLD), has a potentially progressive course that can lead to liver cirrhosis. Age is strongly associated with the development and progression of NAFLD/NASH, but the natural history of pediatric NAFLD is still not fully understood. Here, we evaluated the age-related alterations of NASH in 5-, 9- and 13-wk-old male Sprague-Dawley rats that were fed a high-fat and high-cholesterol diet (30% fat, 1.25% cholesterol and 0.5% sodium cholate, w/w) for 9 wk (6 rats/group). Our results showed that the cumulative energy intake, body weight gain and food efficacy during the 9-wk rearing period were highest in the youngest group and lowest in the oldest group. Serologically, almost all parameters including the serum triglyceride and total cholesterol were similar regardless of age. Histopathological findings, such as hepatic steatosis, lobular inflammation and hepatocyte ballooning, were also similar regardless of age, but hepatic fibrosis was more evident in the oldest group. Also, the mRNA expression levels of some fibrogenic, inflammatory, oxidative stress and cholesterol or lipid metabolism-related genes in the liver were highest in the oldest group and lowest in the youngest group, although the difference was not statistically significant. These results indicated that aging is likely associated with the development of NASH. Because the cumulative energy intake and daily food intake/body weight were not similar among groups in the present study, further studies designed with an equivalent daily food intake/body weight among groups are needed in order to interpret the exact nutritional effect.
Collapse
Affiliation(s)
- Katsuhisa Omagari
- Division of Nutrition Science, Graduate School of Human Health Science, University of Nagasaki.,Department of Nutrition, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Eri Asakawa
- Department of Nutrition, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Marin Sasao
- Department of Nutrition, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Sumire Narita
- Department of Nutrition, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Mei Hisano
- Department of Nutrition, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Ayumi Fukuda
- Division of Nutrition Science, Graduate School of Human Health Science, University of Nagasaki
| | - Kazuhito Suruga
- Division of Nutrition Science, Graduate School of Human Health Science, University of Nagasaki.,Department of Nutrition, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Mayuko Ichimura
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School
| |
Collapse
|
36
|
Christensen K, Lawler T, Mares J. Dietary Carotenoids and Non-Alcoholic Fatty Liver Disease among US Adults, NHANES 2003⁻2014. Nutrients 2019; 11:nu11051101. [PMID: 31108934 PMCID: PMC6566688 DOI: 10.3390/nu11051101] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is highly prevalent worldwide. Oxidative stress is thought to be a major mechanism, and previous epidemiological studies found higher serum levels of antioxidant carotenoids were associated with reduced risk for development and progression of NAFLD. The objective of this analysis is to examine cross-sectional associations between dietary and serum levels of carotenoids in relation to NAFLD among a nationally representative sample of US adults. We used data from the 2003–2014 National Health and Nutrition Examination Survey (NHANES). Dietary carotenoid intake was estimated from a 24-hour recall, while serum carotenoids were measured from 2003 to 2006. The NAFLD status was determined based upon US Fatty Liver Index (FLI) value ≥30. Regression models were used to estimate associations between carotenoids and NAFLD by controlling for covariates and adjusting for survey design variables. Overall, 33% of participants were classified as having NAFLD. Intake of all carotenoids, with the exception of lycopene, was lower among those with NAFLD. This association was significant for the highest quartiles of intake of α-carotene, β-carotene, β-cryptoxanthin, and lutein/zeaxanthin. For serum measures, the highest level of all carotenoids was associated with significantly reduced odds of NAFLD. In conclusion, higher intake and serum levels of most carotenoids were associated with lower odds of having NAFLD. Identification of such modifiable lifestyle factors provide an opportunity to limit or prevent the disease and its progression.
Collapse
Affiliation(s)
- Krista Christensen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 610 N. Walnut Street, 1069 WARF Building, Madison, WI 53726, USA;
- Correspondence: ; Tel.: +1-60-8265-3192
| | - Thomas Lawler
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA;
| | - Julie Mares
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 610 N. Walnut Street, 1069 WARF Building, Madison, WI 53726, USA;
| |
Collapse
|
37
|
VoPham T. Environmental risk factors for liver cancer and nonalcoholic fatty liver disease. CURR EPIDEMIOL REP 2019; 6:50-66. [PMID: 31080703 DOI: 10.1007/s40471-019-0183-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of review The objective of this review was to summarize recent epidemiologic research examining the associations between environmental exposures and liver cancer and nonalcoholic fatty liver disease (NAFLD). Recent findings There were 28 liver cancer studies showing positive associations for exposures to aflatoxin, air pollution, polycyclic aromatic hydrocarbons, asbestos, chimney sweeping occupation, and paints; an inverse association for ultraviolet radiation; and null/inconsistent results for organic solvents, pesticides, perfluorooctanoic acid, nuclear radiation, iron foundry occupation, and brick kiln pollution. There were n=5 NAFLD studies showing positive associations for heavy metals, methyl tertiary-butyl ether, and selenium; and no association with trihalomethanes. Summary Evidence suggests that particular environmental exposures may be associated with liver cancer and NAFLD. Future liver cancer studies should examine specific histological subtypes and assess historical environmental exposures. Future NAFLD research should examine incident, biopsy-confirmed cases and the potential role of obesity and/or diabetes in studies of environmental factors and NAFLD.
Collapse
Affiliation(s)
- Trang VoPham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Takaki Y, Mizuochi T, Nishioka J, Eda K, Yatsuga S, Yamashita Y. Nonalcoholic fatty liver disease with prolactin-secreting pituitary adenoma in an adolescent: A case report. Medicine (Baltimore) 2018; 97:e12879. [PMID: 30335007 PMCID: PMC6211884 DOI: 10.1097/md.0000000000012879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Nonalcoholic fatty liver disease (NAFLD), among the commonest chronic liver disorders in children and adolescents, is considered a reflection of the current obesity epidemic in children and adults. This liver disease has been linked with various metabolic disorders, but not with prolactinoma (PRLoma). PATIENT CONCERNS A 13-year-old Japanese girl manifested obesity, serum transaminase and γ-glutamyltransferase elevations, and amenorrhea. Abdominal ultrasonography showed fatty liver. Her serum prolactin concentration was elevated, and cranial magnetic resonance imaging showed a pituitary mass consistent with macroadenoma. DIAGNOSES NAFLD and PRLoma. INTERVENTIONS AND OUTCOMES After the patient's NAFLD failed to respond to diet and exercise, cabergoline treatment of the PRLoma decreased body weight, serum transaminase and γ-glutamyltransferase elevations, and ultrasonographic fatty liver grade as the tumor became smaller. LESSONS Physicians should consider the possibility of PRLoma when diet and exercise fail to improve fatty liver disease in a patient with endocrine symptoms such as amenorrhea.
Collapse
|
39
|
Birerdinc A, Stoddard S, Younossi ZM. The Stomach as an Endocrine Organ: Expression of Key Modulatory Genes and Their Contribution to Obesity and Non-alcoholic Fatty Liver Disease (NAFLD). Curr Gastroenterol Rep 2018; 20:24. [PMID: 29675753 DOI: 10.1007/s11894-018-0629-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW Obesity is currently seen in epidemic proportions globally and is one of the largest contributors to the development of NAFLD. The spectrum of NAFLD, particularly the progressive forms of NASH, is likely to become the leading cause of liver disease in the next decade. RECENT FINDINGS Soluble molecules, encoded by the stomach tissue, have been shown to have pleiotropic effects in both central and peripheral systems involved in energy homeostasis and obesity regulation. As such, the stomach is one of the important players in the complex, multi-system deregulation leading to obesity and NAFLD. The understanding of the stomach tissue as an active endocrine organ that contributes to the signaling milieu leading to the development of obesity and NAFLD is crucial.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Sasha Stoddard
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA.
- Department of Medicine and Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA.
| |
Collapse
|
40
|
Treviño LS, Katz TA. Endocrine Disruptors and Developmental Origins of Nonalcoholic Fatty Liver Disease. Endocrinology 2018; 159:20-31. [PMID: 29126168 PMCID: PMC5761605 DOI: 10.1210/en.2017-00887] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic worldwide, particularly in countries that consume a Western diet, and can lead to life-threatening conditions such as cirrhosis and hepatocellular carcinoma. With increasing prevalence of NAFLD in both children and adults, an understanding of the factors that promote NAFLD development and progression is crucial. Environmental agents, including endocrine-disrupting chemicals (EDCs), which have been linked to other diseases, may play a role in NAFLD development. Increasing evidence supports a developmental origin of liver disease, and early-life exposure to EDCs could represent one risk factor for the development of NAFLD later in life. Rodent studies provide the strongest evidence for this link, but further studies are needed to define whether there is a causal link between early-life EDC exposure and NAFLD development in humans. Elucidating the molecular mechanisms underlying development of NAFLD in the context of developmental EDC exposures may identify biomarkers for people at risk, as well as potential intervention and/or therapeutic opportunities for the disease.
Collapse
Affiliation(s)
- Lindsey S. Treviño
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Tiffany A. Katz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
41
|
Isocaloric Dietary Changes and Non-Alcoholic Fatty Liver Disease in High Cardiometabolic Risk Individuals. Nutrients 2017; 9:nu9101065. [PMID: 28954437 PMCID: PMC5691682 DOI: 10.3390/nu9101065] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/28/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) incorporates an extensive spectrum of histologic liver abnormalities, varying from simple triglyceride accumulation in hepatocytes non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), and it is the most frequent chronic liver disease in the industrialized world. Beyond liver related complications such as cirrhosis and hepatocellular carcinoma, NAFLD is also an emerging risk factor for type 2 diabetes and cardiovascular disease. Currently, lifestyle intervention including strategies to reduce body weight and to increase regular physical activity represents the mainstay of NAFLD management. Total caloric intake plays a very important role in both the development and the treatment of NAFLD; however, apart from the caloric restriction alone, modifying the quality of the diet and modulating either the macro- or micronutrient composition can also markedly affect the clinical evolution of NAFLD, offering a more realistic and feasible treatment alternative. The aim of the present review is to summarize currently available evidence from randomized controlled trials on the effects of different nutrients including carbohydrates, lipids, protein and other dietary components, in isocaloric conditions, on NAFLD in people at high cardiometabolic risk. We also describe the plausible mechanisms by which different dietary components could modulate liver fat content.
Collapse
|