1
|
Rendine M, Venturi S, Marino M, Gardana C, Møller P, Martini D, Riso P, Del Bo C. Effects of Quercetin Metabolites on Glucose-Dependent Lipid Accumulation in 3T3-L1 Adipocytes. Mol Nutr Food Res 2025:e70070. [PMID: 40255141 DOI: 10.1002/mnfr.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
The aim of the study was to assess the effects of quercetin metabolites (QMs) on lipid accumulation in adipocytes under high-glucose and physiological-glucose concentrations and to elucidate the mechanisms involved. 3T3-L1 mature adipocytes were exposed to a physiological glucose concentration, as a model of caloric restriction (CR), or high glucose (control), with and without QMs (quercetin-3-glucuronide [Q3G] and isorhamnetin [ISOR]). Cells were treated with Q3G (0.3 and 0.6 µmol/L) and ISOR (0.2 and 0.4 µmol/L) for 48 h. Lipid accumulation (Oil Red O staining) and Δ glucose level (HPLC) were assessed. Under high glucose, Q3G and ISOR reduced lipid accumulation (-10.8% and -10.4%; p < 0.01) and Δ glucose level (-13.6% and -14.2%; p < 0.05). Under CR, QMs increased Δ glucose level (+21.6% for Q3G and +21% for ISOR; p < 0.05). ISOR increased pAMPK levels under high glucose (+1.4-fold; p < 0.05). Under CR, Q3G and ISOR increased pAMPK (+1.4- and +1.5-fold; p < 0.05), while ISOR upregulated SIRT1 and PGC-1α (+2.3- and +1.5-fold; p < 0.05). Findings support, for the first time, the potential contribution of QMs, especially ISOR, in the regulation of lipid metabolism in vitro, possibly via AMPK activation. Further studies, including in vivo, are encouraged to strengthen evidence of the mechanisms observed.
Collapse
Affiliation(s)
- Marco Rendine
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Samuele Venturi
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Mirko Marino
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Claudio Gardana
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Martini
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Cristian Del Bo
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Fu Y, Hao X, Nie J, Zhang H, Shang P, Zhang B, Zhang H. MUSTN1 and FABP3 interact to regulate adipogenesis and lipid deposition. J Lipid Res 2025:100804. [PMID: 40239869 DOI: 10.1016/j.jlr.2025.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
Lipid deposition is related to agricultural animal production and human health, and elucidating its molecular regulatory mechanisms is a topic of interest and a challenge in current scientific research. Musculoskeletal embryonic nuclear protein 1 (MUSTN1) regulates growth and development, including muscle tissue; however, its role in fat deposition remains unknown. Thus, our objective was to determine this role. Our new findings were as follows: MUSTN1 was highly expressed in the fat tissue of pigs with strong adipose deposition capacity; functionally, MUSTN1 promoted the proliferation and adipogenic differentiation of porcine and mouse preadipocytes. MUSTN1 knockout mice were protected against HFD-induced obesity, hepatic steatosis, and insulin resistance; and fatty acid binding protein 3 was identified as an interacting protein of MUSTN1, which facilitated preadipocyte proliferation and differentiation by activating the phosphatidylinositol 3 kinase/AKT signaling pathways. This study reveals a positive regulator for fat development, which suggesting a novel approach for studying obesity and animal genetic improvement through the modulation of MUSTN1 expression.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Hainan 572000, China; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571339, China
| | - Xin Hao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Hainan 572000, China; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571339, China
| | - Jingru Nie
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Hongliang Zhang
- College of Animal Science, Xizang Agricultural and Animal Husbandry College, Linzhi 860000, China
| | - Peng Shang
- College of Animal Science, Xizang Agricultural and Animal Husbandry College, Linzhi 860000, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Jacobsen V, Kunisch E, Merle C, Xue B, Zheng K, Renkawitz T, Boccaccini AR, Westhauser F. Cerium-doped mesoporous bioactive glass nanoparticles reduce oxidative stress and adipogenic differentiation in human bone marrow-derived mesenchymal stromal cells. J Trace Elem Med Biol 2025; 88:127617. [PMID: 39952087 DOI: 10.1016/j.jtemb.2025.127617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Increased levels of reactive oxygen species (ROS) favor adipogenic over osteogenic differentiation in human bone-marrow derived mesenchymal stromal cells (BMSCs). Therefore, biomaterials containing ROS-suppressing elements such as Cerium (Ce) have been introduced to cell-based bone-tissue-engineering (BTE) approaches. This study was conducted to assess the efficacy of Ce-doped mesoporous bioactive glass nanoparticles (MBGNs) in reducing ROS levels and subsequently inhibiting the adipogenic differentiation of BMSCs. To this end, BMSCs were cultivated in adipogenesis inducing medium (AIM) and exposed to ions released from Ce-free MBGNs (composition in mol%: 86SiO2-14CaO), Low-Ce-MBGNs (composition in mol%: 86.6SiO2-12.1CaO-1.3CeO2) and High-Ce-MBGNs (composition in mol%: 86.0SiO2-11.8CaO-2.2CeO2). The influence of the different MBGNs on the expression of adipogenic and ROS-scavenging genes was assessed as well as their influence on lipid formation and the physical presence of ROS. Ce-MBGNs significantly reduced lipid production and the expression of adipogenic marker genes when compared to BMSCs cultivated in the presence of MBGNs or AIM alone. Furthermore, ROS levels were decreased by Ce-MBGNs alongside an upregulation of the expression of genes encoding for ROS-scavenging enzymes. Ce-MBGNs have proven their antioxidative potential. Mediated by the reduction of ROS, the undesired differentiation of BMSCs towards adipogenic lineage within BTE applications has been effectively suppressed. Ce-MBGNs target differentiation pathways in BMSCs precisely and therefore constitute an attractive biomaterial in the field of ion-based BTE.
Collapse
Affiliation(s)
- V Jacobsen
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany
| | - E Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany
| | - C Merle
- Joint Replacement Centre, Orthopedic Surgery Paulinenhilfe, Diakonie-Klinikum Stuttgart, Rosenbergstraße 38, Stuttgart 70176, Germany
| | - B Xue
- Translational Medicine Research Center, Children's Hospital of Nanjing Medical University, 136 Hanzhong Rd., Nanjing 210029, China
| | - K Zheng
- Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Rd., Nanjing 210029, China
| | - T Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany; Department of Orthopaedics, Regensburg University, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, Bad Abbach 93077, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.
| | - F Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany; Department of Orthopaedics, Regensburg University, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, Bad Abbach 93077, Germany.
| |
Collapse
|
4
|
Lu S, Xiong W, Yi J, Liu S, Zhang F. S-phase kinase-associated protein 1 inhibits orbital fibroblasts adipogenesis to improve thyroid-associated ophthalmopathy (TAO). BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119937. [PMID: 40139511 DOI: 10.1016/j.bbamcr.2025.119937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Thyroid-associated ophthalmopathy (TAO), a localized manifestation of Graves' disease, involves complex autoimmune interactions leading to orbital tissue inflammation and remodeling. The pathophysiology of TAO is marked by significant orbital connective tissue and fat pad expansion, mononuclear cell infiltration, and fibrosis, ultimately affecting eye motility and quality of life. This study explores the role of S-phase kinase-associated protein 1 (SKP1) in the adipogenic differentiation of orbital fibroblasts (OFs), a key process in TAO. Using bioinformatics analysis of gene expression profiles from TAO patients (GSE105149 and GSE58331), SKP1 was identified as a critical regulator of adipogenesis. Experimental validation confirmed that SKP1 expression is significantly downregulated in TAO-derived OFs under adipogenic differentiation for 10 days, correlating with elevated lipid accumulation and increased expression levels of adipogenic markers. Furthermore, downregulation of SKP1 promotes adipogenic differentiation, while upregulation inhibits this process in OFs in vitro and in TAO mice models in vivo. Mechanistically, SKP1 was shown to modulate the PI3K/AKT signaling, with downregulation activating and upregulation inhibiting the pathway, thereby influencing adipogenesis. In summary, SKP1 exerts a crucial regulatory effect on TAO pathogenesis and might act as an underlying therapeutic target for mitigating OFs adipogenesis in TAO.
Collapse
Affiliation(s)
- Shiyao Lu
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China
| | - Wei Xiong
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China
| | - Jinping Yi
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China
| | - Shenghua Liu
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China
| | - Feng Zhang
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, People's Republic of China..
| |
Collapse
|
5
|
Nuamnaichati N, Suriya U, Khine HEE, Sungthong R, Suwannamai P, Sritularak B, Prompetchara E, Laomeephol C, Alduina R, Chaotham C. Arene Substitutions in Orchid Bibenzyls: Mechanistic Insights into Glucose Uptake and Lipid Metabolism for Targeting Metabolic Disorders. Nutrients 2025; 17:1104. [PMID: 40218862 PMCID: PMC11990513 DOI: 10.3390/nu17071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Phytochemicals possess diverse therapeutic potential; however, the impact of arene substitutions on the pharmacological properties of the bibenzyl compounds batatasin III and gigantol, derived from Dendrobium venustum, remains unexplored. OBJECTIVES This study examines how structural differences between these compounds affect cellular glucose uptake and lipid metabolism during adipocyte differentiation. METHODS The effects of both bibenzyl compounds on cytotoxicity and glucose uptake were assessed in mouse and human pre-adipocytes and rat skeletal muscle myoblasts using colorimetric assays. Lipid metabolism was evaluated through Oil Red O staining and quantification of triglyceride and glycerol levels, while protein and gene expression during adipocyte differentiation were analyzed via western blotting and RT-qPCR. RESULTS At the highest non-cytotoxic concentration (25 µM), gigantol significantly enhanced glucose uptake (up to 2-fold) under both basal and insulin-stimulated conditions, whereas batatasin III showed a similar effect only under basal conditions. Gigantol upregulated GLUT1 and GLUT4 in myotubes but downregulated them in adipocytes, whereas batatasin III had minimal impact on these transporters. Both compounds suppressed lipid accumulation in mouse and human adipocytes by decreasing intracellular triglyceride content and promoting extracellular glycerol release. However, batatasin III did not affect extracellular glycerol release during early adipocyte differentiation, as evidenced by the marked downregulation of key lipogenic proteins (PLIN1, LPL, FABP4) observed only with gigantol. Molecular docking analyses suggest that gigantol's greater bioactivity may result from its higher number of arene substitutions. CONCLUSIONS This study provides the first evidence that differences in arene substitutions among orchid-derived bibenzyls influence their pharmacological properties. Our findings support the strategic modification of natural products as a potential approach for managing metabolic disorders.
Collapse
Affiliation(s)
- Narawat Nuamnaichati
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Utid Suriya
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poon Suwannamai
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakachai Prompetchara
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavee Laomeephol
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Lan M, Qin Q, Xie Y, Zhang C, Liu Z, Xu X, Zhang J, Xu S, Yang J, Zhang H, Alatan S, Wang Z, Liu Z. Construction of ceRNA networks of lncRNA and miRNA associated with intramuscular fat deposition in Ujumqin sheep. Front Vet Sci 2025; 12:1559727. [PMID: 40177664 PMCID: PMC11963774 DOI: 10.3389/fvets.2025.1559727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The molecular mechanisms underlying intramuscular fat (IMF) deposition are crucial for enhancing lamb meat quality. This process is regulated by a network of transcription factors. Exploring the role of non-coding RNAs, particularly lncRNAs and miRNAs, in IMF deposition can clarify its complex genetics and offer resources for breeding Inner Mongolian local breeds. Methods We evaluated carcass and lamb meat quality parameters using 60 six-month-old Ujumqin sheep with similar body weights. To investigate non-coding RNA's role in IMF deposition, we identified differentially expressed genes and pathways between the longissimus dorsi and femoral biceps. Additionally, we analyzed these genes and the lncRNA-miRNA-mRNA co-regulatory network in high- and low-IMF femoral biceps groups. Results We identified 11,529 mRNAs (747 differentially expressed), 9,874 lncRNAs (1,428 differentially expressed), and 761 miRNAs (12 differentially expressed). GO and KEGG enrichment analyses showed these genes are involved in lipid metabolism, fatty acid oxidation, and energy metabolism. We constructed a ceRNA network with 12 lncRNAs, 4 miRNAs, and 6 mRNAs. Notably, lncRNA MSTRG.13155.1 interacts with miR-1343-3p_R + 2, promoting IMF deposition by releasing HADHA gene expression. Dual-luciferase reporter assays confirmed MSTRG.13155.1 and HADHA as miR-1343-3p_R + 2 targets. RT-qPCR validated the expression trends of key mRNAs, miRNAs, and lncRNAs, consistent with sequencing results. Discussion Our comprehensive analysis of differentially expressed genes and pathways in Ujumqin sheep's longissimus dorsi and femoral biceps, along with high- and low-IMF groups, has revealed the complex genetics of IMF deposition. This offers valuable resources for Inner Mongolian local breed selection. The interaction between lncRNA MSTRG.13155.1 and miR-1343-3p_R + 2, and their regulation of HADHA expression, provides new insights into IMF deposition mechanisms. Future research can explore these mechanisms' universality and specificity across different breeds and environments.
Collapse
Affiliation(s)
- Mingxi Lan
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuchun Xie
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- College of Animal Science and Technology, Hebei Science and Technology Normal University, Qinhuangdao, Hebei, China
| | - Chongyan Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| | - Zhichen Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingwen Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Songsong Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ji Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haijun Zhang
- Erdos Agricultural and Animal Husbandry Science Research Institute, Ordos, China
| | - Suhe Alatan
- East Ujumqin Banner Hishig Animal Husbandry Development Co., Ltd., East Ujumqin Banner, China
| | - Zhixin Wang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Wei Y, Zheng H, Yang L, Liu H, Xue C. Preparation of Cell-Cultured Fish Fat via Adipogenic Transdifferentiation of Larimichthys crocea Muscle Satellite Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6981-6992. [PMID: 40038623 DOI: 10.1021/acs.jafc.4c12089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Cell-cultured fish fat (CCF) has the potential to enhance the flavor and texture of cell-cultured fish meat (CCM). Herein, CCF was developed through the adipogenic transdifferentiation of Larimichthys crocea muscle satellite cells (LCMSCs). A low-serum culture system and a large-scale culture system were established. A rapid transdifferentiation medium was also developed, and the mechanisms in promoting adipogenic transdifferentiation were preliminarily analyzed. The results indicated that the proliferation rate and morphology of cells were not significantly affected by serum reduction following domestication. These cells can be cultured in bioreactors, achieving a 10-fold increase in density. The combination of horse serum and oleic acid enabled adipogenic transdifferentiation within 8 days. Transcriptomic and metabolomic analyses revealed significant changes in gene expression and lipid metabolism, with enrichment of pathways related to fatty acid metabolism. Five inducers were quantified to assess the quality of CFF. This study provides a feasible method for CCF production and lays the theoretical basis for the development of CCM.
Collapse
Affiliation(s)
- Yingxin Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hongwei Zheng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266109, China
| | - Lu Yang
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266109, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongying Liu
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266109, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266109, China
| |
Collapse
|
8
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
9
|
Zhang ZY, Chen YH, Zheng CY, Gao Y, Fan YY, Yue JM, Zhao JX. Isolation and Bioinspired Synthesis of Lauenones A and B, Skeleton-Rearranged Diterpenoids with Antiadipogenic Activity from Croton laui. Org Lett 2025; 27:2485-2491. [PMID: 40012197 DOI: 10.1021/acs.orglett.5c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Two skeleton-rearranged labdane diterpenoids, lauenones A (1) and B (2) were isolated from Croton laui. Their bioinspired synthesis was accomplished in 9 and 10 steps, respectively, without using any protecting groups. Key steps include a semipinacol rearrangement and a substrate-controlled one-pot reaction cascade involving photooxidation and aldol condensation. Notably, both lauenones A and B exhibit antiadipogenesis in 3T3-L1 adipocytes by downregulating the differentiation factors and liposynthesis enzymes at mRNA transcription and protein expression levels.
Collapse
Affiliation(s)
- Zong-Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yu-Han Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuan Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| |
Collapse
|
10
|
Li Y, Lin Y, Chen Z, Ji W, Liu H. Deficiency of ATF2 retards senescence induced by replication stress and pamidronate in mouse jaw bone marrow stem cells. Cell Signal 2025; 127:111579. [PMID: 39733927 DOI: 10.1016/j.cellsig.2024.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
The aging process is associated with a loss of bone mass and an accumulation of senescent cells, which is under epigenetic control. Morphological and molecular analysis revealed a notable reduction in bone mass and alveolar crest height in aged mice, accompanied by increased levels of senescent mouse jaw bone marrow stem cells (mJBMSCs). To investigate whether specific transcription factors are involved, assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed on mJBMSCs isolated from 2-, 4-, 8-, and 20-month-old mice. In 20-month-old mJBMSCs, increased chromatin accessibility was observed alongside elevated expression of activating transcription factor 2 (ATF2) in both cells and alveolar bone. Silencing Atf2 in mJBMSCs failed to reverse physiological aging, but delayed replication stress and pamidronate (PAM) induced senescence. The analysis of ATAC-seq and RNA sequencing indicated that the differentially expressed genes upregulated by PAM but downregulated by ATF2 deficiency were related to some key biological processes, including negative regulation of cell proliferation, inflammatory response, adipogenesis, and cellular senescence. The dual-luciferase assay was conducted to demonstrate that ATF2 enhances Cdkn2a transcription by binding to its promoter region. Our findings suggest significant chromatin alterations in aged mJBMSCs, positioning ATF2 as a potential target for combating externally induced senescence.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuxiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
11
|
Ma H, Lu Y, Chen W, Gao Z, Wu D, Chong Y, Wu J, Xi D, Deng W, Hong J. Multiple omics analysis reveals the regulation of SIRT4 on lipid deposition and metabolism during the differentiation of bovine preadipocytes. Genomics 2025; 117:111006. [PMID: 39875030 DOI: 10.1016/j.ygeno.2025.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
The differentiation and lipid metabolism of preadipocytes are crucial processes in IMF deposition. Studies have demonstrated that SIRT4 plays essential roles in energy metabolism and redox homeostasis, with its expression being coordinately regulated by multiple transcription factors associated with energy and lipid metabolism. In this study, the findings of multiple omics analysis reveal that SIRT4 significantly up-regulates the expression of genes involved in adipogenesis and enhances the differentiation and lipid deposition of bovine preadipocytes. Furthermore, SIRT4 profoundly influences the expression pattern of metabolites by increasing the abundance of substances involved in lipid synthesis while decreasing those that promote lipid oxidative decomposition. Additionally, SIRT4 broadly up-regulates the expression levels of various lipid classes, including glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. These findings not only provide a theoretical basis for molecular breeding and genetic improvement in beef cattle, but also offer potential therapeutic approaches for energy homeostasis disorders and obesity.
Collapse
Affiliation(s)
- Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wei Chen
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
12
|
Bozdag D, Entezari B, Gurer-Orhan H. The effects of citalopram and sertraline on adipogenesis and lipogenesis in 3T3-L1 cells. Toxicol Lett 2025; 405:67-75. [PMID: 39955080 DOI: 10.1016/j.toxlet.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), widely used antidepressants, have been associated with metabolic adverse effects, including weight gain and disrupted lipid metabolism. This study investigates the potential adipogenic and lipogenic effects of two commonly prescribed SSRIs, citalopram (CIT) and sertraline (SER), using the murine 3T3-L1 preadipocyte cell line. Key markers, such as adiponectin secretion, G3PDH activity, and the expression of critical transcription factors (PPARγ, CEBPα, SREBP1) and lipogenic enzymes (FASN, LPL), were evaluated. Furthermore, assessment of intracellular lipid accumulation via Oil Red O staining was used as a measure for enhanced adipogenesis. The results show that CIT significantly increased adiponectin secretion and G3PDH activity, with comparable potency to the positive control, rosiglitazone. Both SSRIs upregulated the transcription of key adipogenic genes but displayed discrepancies in protein expression. Despite these molecular changes, neither CIT nor SER promoted lipid accumulation, indicating disruption of adipogenic and lipogenic processes without direct stimulation of fat storage. These findings underscore the complexity of SSRI-induced metabolic effects and the need for further studies to evaluate their long-term impact.
Collapse
Affiliation(s)
- Deniz Bozdag
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Bita Entezari
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey.
| |
Collapse
|
13
|
Zeng W, Sun M, Cao J, Chen C, Jiang S, Wang Y, Yang W, Zhao Z, Jin J. Triterpenoids from ilicis rotundae cortex ameliorate hyperlipidemia by affecting bile acids-hepatointestinal FXR axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156537. [PMID: 40023069 DOI: 10.1016/j.phymed.2025.156537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/15/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Hyperlipidemia is a lipid metabolism disorder that, in severe cases, can lead to conditions such as hypertension, coronary heart disease, and cirrhosis. Previous studies have identified Ilicis Rotundae Cortex (IRC) crude extract as having the potential to regulate blood lipids. However, whether the triterpenoids therein are the principal agents responsible for hypolipidemic effects and their specific mechanisms of action remain unexplored. This study aimed to investigate the effects of total triterpenoids (TT) extract derived from IRC on hyperlipidemia and to elucidate their potential mechanisms. METHODS TT extract was first prepared and characterized to assess their hypolipidemic activity in cell models. A hyperlipidemia mouse model was established by using C57BL/6 J mice fed a high-fat, high-sugar, and high-cholesterol diet for 8 weeks. TT extract was administered as a prophylactic intervention for 4 weeks to evaluate its impact on blood lipid levels, liver lipid metabolism, and liver function. Based on progressive analysis, this study integrated serum non-targeted metabolomics analysis strategy and bile acids-targeted metabolomics analysis strategy. It was combined with modern molecular biology techniques to reveal the mechanism by which TT extract ameliorated the symptoms of hyperlipidemia through a cascade approach. RESULTS TT extract treatment significantly reduced lipid levels in hyperlipidemic mice. Notably, TT extract down-regulated bile acid levels, particularly bile acids as FXR antagonists such as T-β-MCA, β-MCA, TUDCA, and UDCA. This effect is likely mediated through alterations in the hepatic FXR-SHP and ileal FXR-FGF15 signaling pathways. TT extract administration led to decreased expression of CYP7A1 and CYP7B1, resulting in reduced bile acid levels in vivo. Additionally, FXR expression was upregulated in both the liver and ileum, potentially activating FGF15 in the ileum, which in turn transmits signals to the liver and modulates SHP and BSEP expression. These changes contribute to the regulation of bile acid synthesis, metabolism, and excretion. In vitro experiments also demonstrated that TT extract influenced the protein expression of FXR and FGF19. CONCLUSION Our findings demonstrate that TT extract from IRC has hypolipidemic effects. This study is the first to reveal the mechanism by which TT extract improves hyperlipidemia from the perspective of the hepatic-intestinal axis and bile acid metabolism. Its underlying mechanism is related to activating the intestinal FXR-FGF15/19 signaling pathway, which transmits signals to the liver, thereby affecting the hepatic FXR-SHP signaling pathway. This results in improved bile acid metabolism, ultimately reducing hepatic injury and ileal inflammation to exert hypolipidemic effects.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Mengjia Sun
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Jiamin Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Caixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yuanyuan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Weiqun Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519000, PR China.
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Silva AVL, Lima RP, Oliveira FTB, Quinderé ALG, Benevides NMB, Santos FA. Sulfated galactan from Acanthophora muscoides inhibits adipogenesis via regulating adipogenic transcription factors and AMPK in 3T3-L1 cells. BRAZ J BIOL 2025; 85:e289036. [PMID: 39969001 DOI: 10.1590/1519-6984.289036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/07/2024] [Indexed: 02/20/2025] Open
Abstract
Obesity is a global public health issue, closely linked to cardiovascular disease and type 2 diabetes. Pharmacological interventions for weight loss are one option for treating obesity; however, these drugs often come with side effects or limited efficacy, highlighting the need for new therapies. Marine algae offer a promising source of biologically active compounds for human health, including antidiabetic, anti-inflammatory, and anti-obesity properties. Sulfated galactan isolated from the red marine algae Acanthophora muscoides (SGAM) has demonstrated diverse biological activities including anti-inflammatory activity in vivo and in vitro studies. However, its potential impact on adipogenesis remains unexplored. This study evaluated the effect of SGAM on adipogenesis in 3T3-L1 cells using Oil Red O staining and analyzed the protein expression of key transcription factors associated with adipogenesis. SGAM (25-100 μg/mL) was found to reduce intracellular lipid accumulation in adipocytes without compromising cell viability. Furthermore, our findings suggest that SGAM significantly inhibits adipocyte differentiation by downregulating the expression of key adipogenesis-related transcription factors, including C/EBPβ, C/EBPδ, C/EBPα, and PPARγ. Additionally, SGAM reduced the protein expression of SREBP-1 and promoted the activation of AMPK. In conclusion, SGAM inhibits adipogenesis by negatively modulating the expression of the main adipogenic transcription factors and activating AMPK.
Collapse
Affiliation(s)
- A V L Silva
- Universidade Federal do Ceará - UFC, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Fortaleza, CE, Brasil
| | - R P Lima
- Universidade Federal do Ceará - UFC, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Fortaleza, CE, Brasil
| | - F T B Oliveira
- Universidade Federal do Ceará - UFC, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Fortaleza, CE, Brasil
| | - A L G Quinderé
- Universidade Federal do Ceará - UFC, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Fortaleza, CE, Brasil
| | - N M B Benevides
- Universidade Federal do Ceará - UFC, Departamento de Bioquímica e Biologia Molecular, Laboratório de Carboidratos e Lectinas, Fortaleza, CE, Brasil
| | - F A Santos
- Universidade Federal do Ceará - UFC, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Fortaleza, CE, Brasil
| |
Collapse
|
15
|
Fu M, Yoon KS, Ha J, Kang I, Choe W. Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Roles in Metabolic Health. Antioxidants (Basel) 2025; 14:203. [PMID: 40002389 PMCID: PMC11852089 DOI: 10.3390/antiox14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between oxidative stress and adipogenesis is a critical factor in the development of obesity and its associated metabolic disorders. Excessive reactive oxygen species (ROS) disrupt key transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), impairing lipid metabolism, promoting adipocyte dysfunction, and exacerbating inflammation and insulin resistance. Antioxidants, classified as endogenous (e.g., glutathione, superoxide dismutase, and catalase) and exogenous (e.g., polyphenols, flavonoids, and vitamins C and E), are pivotal in mitigating these effects by restoring redox balance and preserving adipocyte functionality. Endogenous antioxidants neutralize ROS and safeguard cellular structures; however, under heightened oxidative stress, these defenses are often insufficient, necessitating dietary supplementation. Exogenous antioxidants derived from plant-based sources, such as polyphenols and vitamins, act through direct ROS scavenging, upregulation of endogenous antioxidant enzymes, and modulation of key signaling pathways like nuclear factor kappa B (NF-κB) and PPARγ, reducing lipid peroxidation, inflammation, and adipocyte dysfunction. Furthermore, they influence epigenetic regulation and transcriptional networks to restore adipocyte differentiation and limit lipid accumulation. Antioxidant-rich diets, including the Mediterranean diet, are strongly associated with improved metabolic health, reduced obesity rates, and enhanced insulin sensitivity. Advances in personalized antioxidant therapies, guided by biomarkers of oxidative stress and supported by novel delivery systems, present promising avenues for optimizing therapeutic interventions. This review, "Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Role in Metabolic Health", highlights the mechanistic pathways by which antioxidants regulate oxidative stress and adipogenesis to enhance metabolic health.
Collapse
Affiliation(s)
- Minghao Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
He X, Xie F, Nie Y, Wang X, Luo J, Chen T, Xi Q, Zhang Y, Sun J. A novel protein encoded by porcine circANKRD17 activates the PPAR pathway to regulate intramuscular fat metabolism. J Anim Sci Biotechnol 2025; 16:19. [PMID: 39905551 DOI: 10.1186/s40104-025-01153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Intramuscular fat is an important factor in evaluating pork quality and varies widely among different pig breeds. However, the regulatory mechanism of circular RNAs (circRNAs) in lipid metabolism remains largely unexplored. RESULTS We combined circRNA-seq and Ribo-seq data to screen a total of 18 circRNA candidates with coding potential, and circANKRD17 was found to be significantly elevated in the longissimus dorsi muscle of Lantang piglets, with a length of 1,844 nucleotides. Using single-cell sequencing, we identified 477 differentially expressed genes in IMF cells between Lantang and Landrace piglets, with enrichment in the PPAR signaling pathway. These genes included FABP4, FABP5, CPT1A, and UBC, consistent with the high levels of acylcarnitines observed in the longissimus dorsi muscles of the Lantang breed, as determined by lipidomic analysis. Further in vitro and in vivo experiments indicated that circANKRD17 can regulate lipid metabolism through various mechanisms involving the PPAR pathway, including promoting adipocyte differentiation, fatty acid transport and metabolism, triglyceride synthesis, and lipid droplet formation and maturation. In addition, we discovered that circANKRD17 has an open reading frame and can be translated into a novel 571-amino-acid protein that promotes lipid metabolism. CONCLUSIONS Our research provides new insights into the role of protein-coding circANKRD17, especially concerning the metabolic characteristics of pig breeds with higher intramuscular fat content.
Collapse
Affiliation(s)
- Xiao He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ying Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xuefeng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
17
|
Ariyanto EF, Farahana AK, Sudirman GSJ, Widiarsih E, Qomarilla N, Rahayu NS, Wikayani TP, Heryaman H, Wira DW, Triatin RD, Bashari MH, Pamela Y, Pratiwi YS, Ghozali M. Oyster Mushroom ( Pleurotus ostreatus) Ethanolic Extract Inhibits Pparg Expression While Maintaining the Methylation of the Pparg Promoter During 3T3-L1 Adipocyte Differentiation. J Exp Pharmacol 2025; 17:27-36. [PMID: 39834594 PMCID: PMC11745172 DOI: 10.2147/jep.s494116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aims to provide new insights into the potential of oyster mushroom (Pleurotus ostreatus) ethanolic extract in preventing obesity through the inhibition of Pparg expression and modulation of methylation level on Pparg promoter during 3T3-L1 adipocyte differentiation. Methods This in vitro quantitative experimental study was conducted by treating the 3T3-L1 cell line differentiated using 0.5 mM methyl-isobutyl-xanthine, 1 μM dexamethasone, and 10 μg/mL insulin-containing medium with oyster mushroom ethanolic extract. The extract was obtained from 80 g of dried oyster mushroom powder extracted three times with 800 mL of ethanol, filtered, evaporated, and reconstituted in dimethyl sulfoxide (DMSO) to final concentrations of 0, 25, 50, and 100 µg/mL, with DMSO limited to 0.5% in all solutions. Pparg mRNA expression was quantified by qRT-PCR analysis and Pparg promoter methylation levels were measured quantitatively by pyrosequencing of bisulfite-treated DNA samples. Results The addition of 25 µg/mL oyster mushroom ethanolic extract significantly suppressed Pparg mRNA expression with no significant change in the Pparg promoter methylation levels. Conclusion Oyster mushroom ethanolic extract inhibited Pparg mRNA expression without altering Pparg promoter methylation, suggesting reduced adipocyte differentiation. This study emphasizes the potential of oyster mushroom in the prevention or treatment of obesity by inhibiting adipocyte differentiation.
Collapse
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Anastasya Kania Farahana
- Undergraduate Program of Medical Doctor, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | | | - Erlina Widiarsih
- Molecular Genetics Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nurul Qomarilla
- Cell Culture Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nurul Setia Rahayu
- Molecular Genetics Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Tenny Putri Wikayani
- Cell Culture Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Henhen Heryaman
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Dwi Wahyudha Wira
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Rima Destya Triatin
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Yunisa Pamela
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Yuni Susanti Pratiwi
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Mohammad Ghozali
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
18
|
Almuraikhy S, Alser M, Naja K, Al-Malki A, Mazloum NA, Elrayess MA. Targeted Inhibition of GATA-3 by Pyrrothiogatain: Implications for Adipocyte Biology and Inflammatory Response. Cells 2025; 14:100. [PMID: 39851528 PMCID: PMC11763435 DOI: 10.3390/cells14020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
GATA-3 is a master regulator of preadipocyte differentiation and function. Pharmacological or genetic targeting of GATA-3 will allow us to understand the function of GATA-3 in regulating metabolism, insulin signaling, and inflammation. Pyrrothiogatain, a novel small molecule inhibitor of GATA family proteins, has emerged as a promising tool for modulating GATA-3 activity. This study aims to investigate the specificity of Pyrrothiogatain in regulating GATA-3-mediated preadipocyte differentiation and adipokine secretion under normal and pathological conditions. Wild-type and GATA-3 knockout 3T3-L1 cells were treated with different concentrations of Pyrrothiogatain in the presence and absence of 4-hydroxy-2-nonenal (4HNE), an inducer of oxidative stress and impairment of adipogenesis. As expected, GATA-3 knockout cells exhibited enhanced adipogenic capacity, characterized by increased cell and lipid droplet sizes, and upregulated expression of key adipogenic markers including CEBPβ, PPARγ, and PGC-1α. Pyrrothiogatain treatment reduced cell proliferation in both wild-type and GATA-3 knockout 3T3-L1 cells, but did not alter their adipogenic capacity. Furthermore, Pyrrothiogatain lowered secreted IL-6 levels and attenuated 4-HNE-induced TNF-α elevation in wild-type, but not in GATA-3 knockout cells. Co-treatment of 4-HNE and Pyrrothiogatain led to increased cell size, suggesting complex interactions between oxidative stress and GATA protein inhibition. This effect was similar to GATA-3 knockout cells, indicating Pyrrothiogatain's potential to modulate cellular stress responses independently of GATA-3 inhibition. These results reveal that Pyrrothiogatain's effects on adipocyte biology extend beyond simple GATA-3 inhibition. While GATA-3 knockout primarily affects adipogenesis, Pyrrothiogatain modulates inflammatory responses and potentially cellular stress mechanisms without directly impacting adipocyte differentiation. This study provides new insights into the multifaceted actions of Pyrrothiogatain and highlights its potential as a therapeutic agent for lowering inflammation and oxidative-stress-related aspects of metabolic disorders, distinct from the direct modulation of adipogenesis.
Collapse
Affiliation(s)
- Shamma Almuraikhy
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (S.A.); (M.A.); (K.N.)
| | - Maha Alser
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (S.A.); (M.A.); (K.N.)
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (S.A.); (M.A.); (K.N.)
| | - Aisha Al-Malki
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, Doha P.O. Box 24144, Qatar; (A.A.-M.); (N.A.M.)
| | - Nayef A. Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, Doha P.O. Box 24144, Qatar; (A.A.-M.); (N.A.M.)
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (S.A.); (M.A.); (K.N.)
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
19
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. Synergistic Effect of Lactobacillus Mixtures and Lagerstroemia speciosa Leaf Extract in Reducing Obesity in High-Fat Diet-Fed Mice. BIOLOGY 2024; 13:1047. [PMID: 39765714 PMCID: PMC11673097 DOI: 10.3390/biology13121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 in combination with the leaf extract of L. speciosa significantly attenuated fat tissue formation and body weight gain in mice fed a high-fat diet. The white adipose fat mass, comprising the inguinal and epididymal fat pads, was most effectively reduced when the probiotic mixture and L. speciosa leaf extract was orally administered to the mice in combination. This combination also reduced the mRNA expression of adipogenic genes (those encoding CCAAT/enhancer-binding protein alpha, peroxisome proliferator-activated receptor gamma, and fatty acid-binding protein 4) in inguinal and epididymal white adipose tissue depots and the liver. Finally, the combination of reduced blood glucose concentrations regulated the insulin resistance of high-fat diet-fed obese mice. These findings provide insight into the mechanisms underlying the effect of this combination and suggest that using Lactobacillus mixture (HY7601 and KY1032) is as safe as microbial monotherapy, but more effective at preventing obesity.
Collapse
Affiliation(s)
| | | | - Joo Yun Kim
- R&BD Center, hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.J.S.)
| | | | - Jae Hwan Lee
- R&BD Center, hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.J.S.)
| |
Collapse
|
20
|
Sysoeva V, Semina E, Klimovich P, Kulebyakin K, Dzreyan V, Sotskaya E, Shchipova A, Popov V, Shilova A, Brodsky I, Khabibullin N, Voloshin N, Tkachuk V, Rubina K. T-cadherin modulates adipogenic differentiation in mesenchymal stem cells: insights into ligand interactions. Front Cell Dev Biol 2024; 12:1446363. [PMID: 39717846 PMCID: PMC11663858 DOI: 10.3389/fcell.2024.1446363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/16/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive. Previously, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene, which encodes the T-cadherin protein, and characterized their phenotype. Methods Using wild-type (WT) and T-cadherin-deficient mice (Cdh13ΔExon3), we isolated and cultured mesenchymal stem cells to explore the role of T-cadherin in adipogenic differentiation. The experimental approaches employed include culturing cells under standard or adipogenic conditions, performing Oil Red O and Nile Red staining followed by quantitative analysis, conducting rescue experiments to reintroduce T-cadherin using lentiviral constructs in T-cadherin-deficient cells combined with automated adipocyte differentiation quantification via a neural network. Additionally, Western blotting, ELISA assays, and statistical analysis were utilized to verify the results. Results In this study, we demonstrate for the first time that T-cadherin influences the adipogenic differentiation of MSCs. The presence of T-cadherin dictates distinct morphological characteristics in MSCs. Lack of T-cadherin leads to spontaneous differentiation into adipocytes with the formation of large lipid droplets. T-cadherin-deficient cells (T-/- MSCs) exhibit an enhanced adipogenic potential upon induction with differentiating factors. Western Blot, ELISA assays, and rescue experiments collectively corroborate the conclusion that T-/- MSCs are predisposed toward adipogenic differentiation. We carried out an original comparative analysis to explore the effects of T-cadherin ligands on lipid droplet accumulation. LDL stimulate adipogenic differentiation, while T-cadherin expression mitigates the impact of LDL on lipid droplet accumulation. We also examined the effects of both low molecular weight (LMW) and high molecular weight (HMW) adiponectin on lipid droplet accumulation relative to T-cadherin. LMW adiponectin suppressed lipid droplet accumulation independently of T-cadherin, while the absence of T-cadherin enhanced susceptibility to the suppressive effects of HMW adiponectin on adipogenesis. Discussion These findings shed light on the role of T-cadherin in adipogenic differentiation and suggest an interplay with other receptors, such as LDLR and AdipoRs, wherein downstream signaling may be modulated through lateral interactions with T-cadherin.
Collapse
Affiliation(s)
- Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Polina Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Valentina Dzreyan
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Anna Shchipova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Alena Shilova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya Brodsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Nikita Khabibullin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Zhu N, Wang X, Zhu H, Zheng Y. Exploring the role of alternative lengthening of telomere-related genes in diagnostic modeling for non-alcoholic fatty liver disease. Sci Rep 2024; 14:30309. [PMID: 39638831 PMCID: PMC11621558 DOI: 10.1038/s41598-024-81129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Previous studies have reported an association between telomere length and non-alcoholic fatty liver disease (NAFLD). This study aimed to explore the involvement of alternative lengthening of telomere-related genes (ALTRGs) in the pathology of NAFLD, construct a risk signature, and evaluate both treatment and prognosis. Three NAFLD datasets (GSE48452, GSE89632, and GSE63067) were collected from the GEO database and merged into combined GEO datasets. ALTRGs were collected from GeneCards and PubMed databases. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. This study employed a support vector machine algorithm and least absolute shrinkage and selection operator regression analysis to identify key genes for constructing a diagnostic model. High- and low-risk groups were identified from the combined GEO datasets using the diagnostic model. Gene set enrichment analysis, regulatory network analysis, and intergroup immune infiltration analysis were performed. This study identified the key genes using receiver operating characteristic and Friends analysis. Expression of these genes was validated in a mouse model of NAFLD. Twenty-five genes were differentially expressed, with a positive correlation between FOS and EGR1 and a negative correlation between MYC and CEBPA. A diagnostic model was constructed using 12 genes, and high- and low-risk groups were identified. CAMK2G, ERBB2, FOSB, WT1, and CEBPA showed certain accuracy, and their expression levels were significantly different in the model. Immune infiltration analysis between the risk groups revealed that six immune cells were statistically significant. This includes a strong negative interaction between type 2 T helper cells and SPHK2 in the high-risk group. These findings suggest that ALTRDEGs are potential therapeutic targets and prognostic indicators for NAFLD. However, further investigations are required to elucidate the specific underlying mechanisms.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Department of Internal Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Xiaoliang Wang
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Huiting Zhu
- Department of Internal Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Yue Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Department of Gastroenterology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China.
| |
Collapse
|
22
|
Nakamura K, Kohrogi R, Shimamoto S, Katafuchi A, Nakashima K, Tomonaga S, Ohtsuka A, Ijiri D. Phenotypic characteristics of adipocyte-like cells generated from C2C12 myoblasts cultured with chicken serum. Biochem Biophys Res Commun 2024; 736:150843. [PMID: 39447277 DOI: 10.1016/j.bbrc.2024.150843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The aim of this study was to clarify the transcriptional and metabolic characteristics of C2C12 myoblasts cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 20 % chicken serum (CHS) (C2C12-CHS cells) compared with C2C12 myoblasts cultured in DMEM containing 20 % fetal bovine serum (FBS) (C2C12-FBS cells). After 3 days of culture, C2C12-CHS cells showed a marked accumulation of lipid droplets, accompanied by increased expression levels of brown adipocyte-related genes (i.e., Bmp7, Prdm16, Ucp1, Cidea, Pgc1α, Cox7a1, Cox8, and β3-adorenoceptor). Furthermore, stimulation of β3-adorenoceptor by its selective agonist, mirabegron, increased the mRNA expression of Ucp1 and Pgc1α in C2C12-CHS cells. Wide-targeted metabolomic analysis performed by gas chromatography-tandem mass spectrometry revealed that the metabolic profile of C2C12-CHS cells was obviously different to that of C2C12-FBS cells. Additionally, the metabolomic analysis indicated that β3-adrenoceptor stimulation by mirabegron upregulated energy metabolism in C2C12-CHS cells as seen in brown adipocytes. These results suggest that C2C12-CHS cells may differentiate into brown adipocyte-like cells, accompanied by increased functional β3-adrenoceptor.
Collapse
Affiliation(s)
- Kiriko Nakamura
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Rukana Kohrogi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Saki Shimamoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Ayumi Katafuchi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Kazuki Nakashima
- Department of Life and Environmental Science, Kagoshima Prefectural College, 1-52-1 Shimoishiki, Kagoshima, 890-0005, Japan
| | - Shozo Tomonaga
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akira Ohtsuka
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Daichi Ijiri
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
23
|
Zohdi RM, Adli MA, Mukhtar SM, Awang Junaidi AH, Bakar MZA. Sygyzium claviflorum fruit extract preadipocyte differentiation inhibition in 3T3-L1 cells. J Taibah Univ Med Sci 2024; 19:1181-1192. [PMID: 39807375 PMCID: PMC11728925 DOI: 10.1016/j.jtumed.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/01/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Objective Concerns over the increasing number of obese individuals and the associated health risks have prompted therapeutic option explorations. Similarly, this study aimed to establish Sygyzium claviflorum fruit extract (SCFE) anti-adipogenic attributes in 3T3-L1 cells. Methods The polyphenolic compounds in SCFE were identified with Reverse phase-high performance liquid chromatography (RP-HPLC). Meanwhile, murine 3T3-L1 preadipocytes, measuring leptin levels, reactive oxygen species (ROS), and lipid and triglyceride (TG) contents were utilized during anti-adipogenic activity assessments. Concurrently, the effects of SCFE on adipogenic transcription factors were established with quantitative real-time-polymerase chain reaction (qRT-PCR). Results The RP-HPLC results indicated three polyphenolic compounds in SCFE, including one flavonoid (naringin) and two phenolic acids (syringic and p-coumaric). Although SCFE treatments (250-1000 μg/mL) did not result in cell toxicity, they significantly reduced dose-dependent lipid accumulation, ROS production, and TG and leptin levels relative to control-differentiated adipocytes. Moreover, SCFE suppressed sterol regulatory element binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and CCAAT/enhancer-binding protein-alpha (C/EBP-α) gene expressions during preadipocyte differentiation into adipocytes. Conclusion The findings revealed the anti-adipogenic properties of SCFE, indicating its potential as a natural obesity management remedy. Nevertheless, more studies are necessary to elucidate the reactions resulting in SCFE anti-adipogenic effects and the active constituents responsible for the property.
Collapse
Affiliation(s)
- Rozaini M. Zohdi
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Selangor Branch, Puncak Alam, Selangor, Malaysia
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam, Selangor, Malaysia
| | - Muhammad A. Adli
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Selangor Branch, Puncak Alam, Selangor, Malaysia
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam, Selangor, Malaysia
| | - Shahida M. Mukhtar
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Selangor Branch, Puncak Alam, Selangor, Malaysia
| | - Awang H. Awang Junaidi
- Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Md Zuki A. Bakar
- Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Boczki P, Colombo M, Weiner J, Rapöhn I, Lacher M, Kiess W, Hanschkow M, Körner A, Landgraf K. Inhibition of AHCY impedes proliferation and differentiation of mouse and human adipocyte progenitor cells. Adipocyte 2024; 13:2290218. [PMID: 38064408 PMCID: PMC10732623 DOI: 10.1080/21623945.2023.2290218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
S-adenosyl-homocysteine-hydrolase (AHCY) plays an important role in the methionine cycle regulating cellular methylation levels. AHCY has been reported to influence proliferation and differentiation processes in different cell types, e.g. in cancer cells and mouse embryonic stem cells. In the development of adipose tissue, both the proliferation and differentiation of adipocyte progenitor cells (APCs) are important processes, which in the context of obesity are often dysregulated. To assess whether AHCY might also be involved in cell proliferation and differentiation of APCs, we investigated the effect of reduced AHCY activity on human and mouse APCs in vitro. We show that the inhibition of AHCY using adenosine dialdehyde (AdOx) and the knockdown of AHCY using gene-specific siRNAs reduced APC proliferation and number. Inhibition of AHCY further reduced APC differentiation into mature adipocytes and the expression of adipogenic differentiation markers. Global DNA methylation profiling in human APCs revealed that inhibition of AHCY is associated with alterations in CpG methylation levels of genes involved in fat cell differentiation and pathways related to cellular growth. Our findings suggest that AHCY is necessary for the maintenance of APC proliferation and differentiation and inhibition of AHCY alters DNA methylation processes leading to a dysregulation of the expression of genes involved in the regulation of these processes.
Collapse
Affiliation(s)
- Paula Boczki
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Marco Colombo
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Umoru GU, Atangwho IJ, David-Oku E, Uti DE, Agwupuye EI, Obeten UN, Maitra S, Subramaniyan V, Wong LS, Aljarba NH, Kumarasamy V. Tetracarpidium conophorum nuts (African walnuts) up-regulated adiponectin and PPAR-γ expressions with reciprocal suppression of TNF-α gene in obesity. J Cell Mol Med 2024; 28:e70086. [PMID: 39698791 DOI: 10.1111/jcmm.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 12/20/2024] Open
Abstract
Tetracarpidium conophorum nuts are nutrient-dense Nigerian snacks associated with weight regulation. This study explores the nuts' impact on adipose tissue gene expression associated with low-grade inflammation. Ethanol whole extract (EWE), ethyl-acetate fraction (EAF) and the resulting residue (RES) were orally administered once daily to MSG-induced obese rats for 6 weeks (n = 6). Afterward, the RNA synthesis of inflammation-associated genes was measured, and GC-MS ligands in the extract and fractions were docked against their protein products in silico. The study found that in obese animals, PPAR-γ and Adiponectin expressions were down-regulated, while TNF-α was up-regulated, indicating an increased low-grade inflammatory process in adipose tissue. After 6-week oral treatments with EWE, EAF and RES, PPAR-γ and Adiponectin expressions increased significantly, while TNF-α expression decreased, suggesting the modulation of obesity-induced inflammation in adipose tissue. The in silico molecular docking analysis identified four lead compounds likely responsible for the observed effect, namely 6-Isopropenyl-4,8a-dimethyl-4a,5,67,8,8a-hexahydro-1H-naphthalen-2-one, 9,12,15-Octadecatrienoic methyl ester (Z,Z,Z), 9,12,15-Octadecatrienoic acid and Hexanedioic acid, bis(2-ethylhexyl). Of these compounds, 6-Isopropenyl-4,8a-dimethyl-4a,5,67,8,8a-hexahydro-1H-naphthalen-2-one demonstrated the strongest affinity to the binding cavities of PPARγ (-7.3 kcal/mol), Leptin (-5.2 kcal/mol), Adiponectin (-7.1 kcal/mol) and TNF-α (-6.3 kcal/mol) and was better than the standard drug, Orlistat (-6.7, -4.4, -6.8 and - 4.5 kcal/mol, respectively). The study reveals that T. conophorum nuts possess bioactive compounds/drug candidates that can exert positive modulation, at the molecular level, the low-grade inflammatory process associated with obesity, which normally facilitates the outset of complications.
Collapse
Affiliation(s)
- Grace Ufedo Umoru
- Department of Biochemistry, College of Sciences, Evangel University Akaeze, Okpoto, Ebonyi State, Nigeria
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esien David-Oku
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Daniel Ejim Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
- Department of Research and Publications, Kampala International University, Kampala, Uganda
| | - Eyuwa Ignatius Agwupuye
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Abakaliki, Ebonyi State, Nigeria
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
- Department of Medical Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Nada H Aljarba
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Huang W, Jiang M, Wang X, Pan D, Chen W, Fan L. Non-Sugar Sweetener Rubusoside Alleviates Lipid Metabolism Disorder In Vivo and In Vitro by Targeting PPARγ/α, Lgals3, and Mknk2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25601-25619. [PMID: 39508235 DOI: 10.1021/acs.jafc.4c06018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Rubusoside─a high-sweetened, nonsugar sweetener─is mainly extracted from Rubus chingii var. suavissimus (S. Lee) L. T. Lu or Rubus suavissimus S. Lee (Chinese sweet leaf tea). We previously reported that rubusoside regulates lipid metabolism disorder in Syrian golden hamsters on a high-fat diet (HFD). This study aimed to reveal the underlying mechanisms through which rubusoside alleviates lipid metabolism disorder in vivo and in vitro. First, we analyzed the therapeutic properties of rubusoside in alleviating HFD-induced lipid metabolism disorder in C57BL/6J mice. Then, we analyzed the adipogenic effect of rubusoside in normal and Lgals3/Mknk2-overexpressing 3T3-L1 cells by exploring the mechanisms on peroxisome proliferator-activated receptor-γ/α (PPARγ/α), galectin-3 (Lgals3), mitogen-activated protein kinase interacting serine/threonine kinase-2 (Mknk2), p38 mitogen-activated protein kinase (p38MAPK), and extracellular regulated protein kinases 1/2 (ERK1/2) with RT-qPCR and Western blot. Our results showed a rubusoside-mediated reduction of HFD-induced weight gain, dyslipidemia, and decelerated hepatic steatosis and adipose tissue expansion in mice as well as improved adipogenesis in 3T3-L1 cells. Mechanistically, rubusoside up-regulated the PPARγ/α expression while down-regulating Lgals3 and Mknk2 expression in vivo and in vitro. Furthermore, rubusoside attenuated the adipogenic activity of PPARγ through increasing its site-specific phosphorylation mediated by p38MAPK and ERK1/2. Taken together, our findings suggest that rubusoside alleviates lipid metabolism disorder through multiple pathways and thus holds potential for future development.
Collapse
Affiliation(s)
- Wanfang Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Manjing Jiang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Xue Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Dongjin Pan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Wenya Chen
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| |
Collapse
|
27
|
Çil EN, Soysal Y. Anti-Obesity Effects of Calcium Fructoborate by Inhibiting Adipogenesis and Increasing SIRT's Expression in 3T3-L1 Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04444-6. [PMID: 39531139 DOI: 10.1007/s12011-024-04444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Obesity is a global public health problem that can lead to mortality and morbidity. Studies on the pathophysiology of obesity for effective and safe treatments are focused on the mechanisms of adipogenesis. The association between boron treatment and weight loss has been reported, but its anti-adipogenic mechanisms and effects on preadipocytes remain unclear. This study aims to investigate the effects of boron compounds boric acid (BA) and calcium fructoborate (CaFB) on adipogenesis using the most widely used in vitro 3T3-L1 cellular model. In our study, cytotoxicity, Oil Red O (ORO), gene and protein expression analyses and cellular NAD measurements of boron compounds were performed. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) transcription factors are the main regulators of adipogenesis, and boron compounds affect them at gene and protein levels by showing anti-obesity effects. This is the first study to show that CaFB has anti-obesity properties in mouse adipocytes. Sirtuins, known as the longevity genes, were also activated from boron treatment. Results of this research provide new basic knowledge and insights into the effect of boron-based compounds on obesity. It also offers potential prospects for the development of effective treatment and/or supportive treatment methods.
Collapse
Affiliation(s)
- Ezgi Nur Çil
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Yasemin Soysal
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
28
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 PMCID: PMC11550672 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Bhatta MP, Won GW, Lee SH, Choi SH, Oh CH, Moon JH, Hoang HH, Lee J, Lee SD, Park JI. Determination of adipogenesis stages of human umbilical cord-derived mesenchymal stem cells using three-dimensional label-free holotomography. Methods 2024; 231:204-214. [PMID: 39395684 DOI: 10.1016/j.ymeth.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Adipogenesis involves complex changes in gene expression, morphology, and cytoskeletal organization. However, the quantitative analysis of live cell images to identify their stages through morphological markers is limited. Distinct adipogenesis markers on human umbilical cord-derived mesenchymal stem cells (UC-MSCs) were identified through holotomography, a label-free live cell imaging technique. In the MSC-to-preadipocyte transition, the nucleus-to-cytoplasm ratio (0.080 vs. 0.052) and lipid droplet (LD) refractive index variation decreased (0.149 % vs. 0.061 %), whereas the LD number (20 vs. 65) increased. This event was also accompanied by the downregulation and upregulation of THY1 and Preadipocyte Factor-1 (PREF-1), respectively. In the preadipocyte to immature adipocyte shift, cell sphericity (0.20 vs. 0.43) and LD number (65 vs. 200) surged, large LDs (>10 μm3) appeared, and the major axis of the cell was reduced (143.7 μm vs. 83.12 μm). These findings indicate features of preadipocyte and immature adipocyte stages, alongside the downregulation of PREF-1 and upregulation of Peroxisome Proliferator-Activated Receptor gamma (PPARγ). In adipocyte maturation, along with PPARγ and Fatty Acid-Binding Protein 4 upregulation, cell compactness (0.15 vs. 0.29) and sphericity (0.43 vs. 0.59) increased, and larger LDs (>30 μm3) formed, marking immature and mature adipocyte stages. The study highlights the distinct adipogenic morphological biomarkers of adipogenesis stages in UC-MSCs, providing potential applications in biomedical and clinical settings, such as fostering innovative medical strategies for treating metabolic disease.
Collapse
Affiliation(s)
- Mahesh Prakash Bhatta
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gun-Woo Won
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seung Hoon Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Seung-Hyeon Choi
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Cheong-Hae Oh
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ji Hyun Moon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | | | | | - Sang Do Lee
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
| |
Collapse
|
30
|
Modaresi S, Pacelli S, Chakraborty A, Coyle A, Luo W, Singh I, Paul A. Engineering a Microfluidic Platform to Cryopreserve Stem Cells: A DMSO-Free Sustainable Approach. Adv Healthc Mater 2024; 13:e2401264. [PMID: 39152923 PMCID: PMC11582517 DOI: 10.1002/adhm.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Indexed: 08/19/2024]
Abstract
Human adipose-derived stem cells (hASCs) are cryopreserved traditionally using dimethyl sulfoxide (DMSO) as the cryoprotectant agent. DMSO penetrates cell membranes and prevents cellular damage during cryopreservation. However, DMSO is not inert to cells, inducing cytotoxic effects by causing mitochondrial dysfunction, reduced cell proliferation, and impaired hASCs transplantation. Additionally, large-scale production of DMSO and contamination can adversely impact the environment. A sustainable, green alternative to DMSO is trehalose, a natural disaccharide cryoprotectant agent that does not pose any risk of cytotoxicity. However, the cellular permeability of trehalose is less compared to DMSO. Here, a microfluidic chip is developed for the intracellular delivery of trehalose in hASCs. The chip is designed for mechanoporation, which creates transient pores in cell membranes by mechanical deformation. Mechanoporation allows the sparingly permeable trehalose to be internalized within the cell cytosol. The amount of trehalose delivered intracellularly is quantified and optimized based on cellular compatibility and functionality. Furthermore, whole-transcriptome sequencing confirms that less than 1% of all target genes display at least a twofold change in expression when cells are passed through the chip compared to untreated cells. Overall, the results confirm the feasibility and effectiveness of using this microfluidic chip for DMSO-free cryopreservation of hASCs.
Collapse
Affiliation(s)
- Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, The University of Kansas, Lawrence, KS, 66045, USA
| | - Settimio Pacelli
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Wei Luo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77840, USA
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Department of Chemistry, The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
31
|
Li A, Wang Y, Li R, Lin Y, Li Y, Wang Y, Liu W, Yan X. Neuron-derived neurotrophic factor promotes the differentiation of intramuscular and subcutaneous adipocytes in goat. Anim Biotechnol 2024; 35:2346223. [PMID: 38739480 DOI: 10.1080/10495398.2024.2346223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adipocyte play an important role in human health and meat quality by influencing the tenderness, flavor, and juiciness of mutton It has been shown that neuron-derived neurotrophic factor (NENF) is closely related to energy metabolism and adipocyte differentiation in bovine. However, the role of NENF in the goats remains unclear. The aim of this study was to detect the expression of NENF in goat subcutaneous and intramuscular adipocytes, temporal expression profiles of the NENF, and overexpressed NENF on the differentiation of different adipocytes. In this study, PCR amplification successfully cloned the goat NENF gene with a fragment length of 521 bp. In addition, the time point of highest expression of NENF differed between these two adipocytes differentiation processes. Overexpression of NENF in intramuscular and subcutaneous adipocytes promoted the expression levels of differentiation markers CEBPβ and SREBP, which in turn promoted the differentiation of intramuscular and subcutaneous adipocytes. This study will provide basic data for further study of the role of goats in goat adipocyte differentiation and for the final elucidation of its molecular mechanisms in regulating goat adipocyte deposition.
Collapse
Affiliation(s)
- An Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yaqiu Lin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Wei Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Xiong Yan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| |
Collapse
|
32
|
Xiao Q, Tang L, Chen S, Mei Y, Wang C, Yang J, Shang J, Li S, Wang W. Two-Pronged Attack: Dual Activation of Fat Reduction Using Near-Infrared-Responsive Nanosandwich for Targeted Anti-Obesity Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406985. [PMID: 39324577 DOI: 10.1002/advs.202406985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Excessive fat accumulation and chronic inflammation are two typical characteristics of obesity. AMP-activated protein kinase (AMPK), a master regulator of energy metabolism, is involved in adipogenesis, lipogenesis, and inflammation modulation in adipose tissue (AT). Thus, effective lipid reduction and anti-inflammation through AMPK regulation play vital roles in treating obesity. Herein, an anti-obesity nanosandwich is fabricated through attaching polymetformin (PolyMet) onto photothermal agent black phosphorus nanosheets (BP). PolyMet activates AMPK to inhibit adipogenesis, promote browning, and mitigate AT inflammation by decreasing macrophage infiltration, repolarizing macrophage phenotype, and downregulating pro-inflammatory cytokines. Additionally, BP induces lipolysis and apoptosis of adipocytes and macrophages through a photothermal effect. By further functionalization using hyaluronic acid (HA) and MMP2 substrate-linking P3 peptide-modified HA (P3-HA), an enhanced anti-obesity effect is obtained by dual-targeting of P3 and HA, and HA-mediated CD44 poly-clustering after MMP2 cleavage. Upon laser irradiation, the designed nanosandwich (P3-HA/PM@BP) effectively inhibits obesity development in obese mice, increases M2/M1 ratio in AT, reduces the serum levels of cholesterol/triglyceride and improves insulin sensitivity, exhibiting promising research potential to facilitate the clinical development of modern anti-obesity therapies.
Collapse
Affiliation(s)
- Qiaqia Xiao
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Siying Chen
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Chuying Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jing Yang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jing Shang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
33
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
34
|
Gómez-López I, Eseberri I, Krisa S, Cano MP, Portillo MP. Effects of Opuntia stricta var. dillenii Extracts Obtained from Prickly Pear and an Industrial By-Product on Maturing Pre-Adipocytes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2967. [PMID: 39519886 PMCID: PMC11547701 DOI: 10.3390/plants13212967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Opuntia stricta var. dillenii, a member of the Cactaceae family, produces a fruit known as prickly pear. This fruit is rich in bioactive compounds, including betalains and phenolic compounds, which play an important role in health promotion due to their antioxidant and anti-inflammatory properties. This study aims to investigate the impact of prickly pear extracts obtained from the whole fruit, peel, pulp, and an industrial by-product (bagasse) on the differentiation of 3T3-L1 pre-adipocytes. During the differentiation process, 3T3-L1 pre-adipocytes were treated with prickly pear extracts at concentrations ranging from 10 to 100 μg/mL from day 0 to day 8 post-induction. Moreover, the potential mechanisms justifying the observed effects were assessed by RT-PCR. All extracts led to an increase in both triacylglycerol accumulation and cell number. In conclusion, the analysed extracts demonstrated adipogenic effects in 3T3-L1 maturing pre-adipocytes by increasing the expression of the c/ebp-β, srebf-1, and c/ebp-α genes. Additionally, a potential anti-inflammatory effect was observed through the upregulation of adiponectin.
Collapse
Affiliation(s)
- Iván Gómez-López
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.G.-L.); (M.P.C.)
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Stéphanie Krisa
- University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33140 Villenave d’Ornon, France;
| | - M. Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.G.-L.); (M.P.C.)
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
35
|
Oliveira BA, Levy D, Paz JL, de Freitas FA, Reichert CO, Rodrigues A, Bydlowski SP. 7-Ketocholesterol Effects on Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:11380. [PMID: 39518932 PMCID: PMC11545361 DOI: 10.3390/ijms252111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in osteogenic or adipogenic media. Osteogenic and adipogenic differentiation was evaluated by Alizarin red and Oil Red O staining, respectively. Osteogenic (ALPL, RUNX2, BGLAP) and adipogenic markers (PPARƔ, C/EBPα) were determined by RT-PCR. Differentiation signaling pathways (SHh, Smo, Gli-3, β-catenin) were determined by indirect immunofluorescence. ATMSCs treated with 7-KC in osteogenic media stained positively for Alizarin Red. 7-KC in adipogenic media decreased the number of adipocytes. 7-KC increased ALPL and RUNX2 but not BGLAP expressions. 7-KC decreased expression of PPARƔ and C/EBPα, did not change SHh, Smo, and Gli-3 expression, and increased the expression of β-catenin. In conclusion, 7-KC favors osteogenic differentiation of ATMSCs through the expression of early osteogenic genes (matrix maturation phase) by activating the Wnt/β-catenin signaling pathway, while inhibiting adipogenic differentiation. This knowledge can be potentially useful in regenerative medicine, in treatments for bone diseases.
Collapse
Affiliation(s)
- Beatriz Araújo Oliveira
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Jessica Liliane Paz
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Fabio Alessandro de Freitas
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Alessandro Rodrigues
- Department of Earth and Exact Sciences, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
36
|
Zhao J, Alimu A, Li Y, Lin Z, Li J, Wang X, Wang Y, Lv G, Lin H, Lin Z. Potential Anti-Obesity Effect of Hazel Leaf Extract in Mice and Network Pharmacology of Selected Polyphenols. Pharmaceuticals (Basel) 2024; 17:1349. [PMID: 39458990 PMCID: PMC11510286 DOI: 10.3390/ph17101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity is gradually becoming a widespread health problem, and treatment using natural compounds has seen an increasing trend. As a by-product of hazelnut, hazel leaf is usually disposed of as waste, but it is widely used in traditional and folk medicines around the world. Aim of this study: Based on previous studies, the effects of the regulation of lipid metabolism and the mechanism of hazel leaf polyphenol extraction obesity were investigated. Methods: In this study, a high-fat diet-fed mouse model of obesity and 3T3-L1 preadipocytes were established. The ameliorative effects of the hazel leaf polyphenol extract on obesity and the regulating lipid metabolisms were explored based on network pharmacology, gut microbiota, and molecular docking. Results: Network pharmacology showed that hazel leaf polyphenols may play a role by targeting key targets, including PPARγ, and regulating the PPAR signaling pathway. They significantly improved body weight gain, the liver index, and adiposity and lipid levels; regulated the gut microbiota and short-chain fatty acid contents; down-regulated the expression of lipid synthesis proteins SREBP1c, PPARγ, and C/EBP-α; and up-regulated the expression of p-AMPK in obese mice. They inhibited the differentiation of 3T3-L1 cells, and the expression of related proteins is consistent with the results in vivo. The molecular docking results indicated that gallic acid, quercetin-3-O-beta-D-glucopyranoside, quercetin, myricetin, and luteolin-7-O-glucoside in the hazel leaf polyphenol extract had strong binding activities with PPARγ, C/EBP-α, and AMPK. Conclusions: The results demonstrate that the hazel leaf polyphenol extract can improve obesity by regulating lipid metabolism, which provides a valuable basis for developing health products made from hazel leaf polyphenols in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.Z.); (A.A.); (Y.L.); (Z.L.); (J.L.); (X.W.); (Y.W.); (G.L.)
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.Z.); (A.A.); (Y.L.); (Z.L.); (J.L.); (X.W.); (Y.W.); (G.L.)
| |
Collapse
|
37
|
Entezari B, Akbaba H, Gurer-Orhan H. Modulation of adipogenesis and lipogenesis by indomethacin and pantoprazole. Toxicol In Vitro 2024; 100:105895. [PMID: 39004236 DOI: 10.1016/j.tiv.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Endocrine disruptors are suggested to act as potential "obesogens" by interacting with various metabolic processes in adipose tissue. Besides industrial chemicals that are blamed for acting as endocrine disruptors as well as obesogens, pharmaceuticals can also cause obesogenic effects as unintended adverse effects. However, limited studies evaluated the obesogenic adverse effects of pharmaceuticals. Based on this information, the present study aimed to investigate the possible in vitro adipogenic/lipogenic potential of indomethacin and pantoprazole that are prescribed during pregnancy. Their effects on lipid accumulation, adiponectin level, glycerol-3-phosphate dehydrogenase (G3PDH) activity, and expression of adipogenic genes and proteins were investigated in 3 T3-L1 cell line. The range of concentrations of the pharmaceuticals was selected according to their Cmax values. Lipid accumulation was increased dependently with indomethacin dose and with pantoprazole at its highest concentration. Both pharmaceuticals also increased adiponectin levels, which was thought to play a role in stimulating the adipogenesis pathway. Moreover, both pharmaceuticals altered the gene and/or protein expression of some adipogenic/lipogenic transcriptional factors, which may lead to disruption of metabolic pathways during the fetal period. In conclusion, indomethacin and pantoprazole may have obesogenic effects through different mechanisms and their potential to cause obesity should be investigated by further in vivo and epidemiological studies.
Collapse
Affiliation(s)
- Bita Entezari
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Izmir, Türkiye
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, 35040 Izmir, Türkiye
| | - Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Izmir, Türkiye.
| |
Collapse
|
38
|
Kowalska K, Olejnik A. Rosehip Extract Decreases Reactive Oxygen Species Production and Lipid Accumulation in Hypertrophic 3T3-L1 Adipocytes with the Modulation of Inflammatory State. Nutrients 2024; 16:3269. [PMID: 39408236 PMCID: PMC11478984 DOI: 10.3390/nu16193269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Rosa canina L. (rosehip) is used worldwide in traditional medicine as a plant with medicinal properties. However, its anti-obesity effects are not fully explained on a transcriptional level. METHODS In the present work, the 3T3-L preadipocytes were utilized to explore the impact of R. canina fruit extract (RCE) on the cellular and molecular pathways involved in adipocyte hypertrophy. RESULTS Obtained results showed the ability of RCE to reduce lipid overloads in hypertrophic adipocytes associated with the down-regulation of mRNA expressions of adipogenic transcription factors such as PPARγ, C/EBPα, and SREBP-1c as well as genes involved in lipid biosyntheses such as FAS, LPL, and aP2. Moreover, obesity-associated oxidative stress (antioxidant enzyme activities and ROS generation) and inflammation were ameliorated in RCE-treated hypertrophic adipocytes. The mRNA and protein levels of adipokines such as leptin, resistin, and adiponectin were restored to more favorable levels. CONCLUSIONS Rosa canina fruit might be a valuable source of phytochemicals in preventing obesity and obesity-related metabolic complications.
Collapse
Affiliation(s)
- Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland;
| | | |
Collapse
|
39
|
Felemban AH, Alshammari GM, Yagoub AEA, Saleh A, Yahya MA. Royal Jelly Exerts a Potent Anti-Obesity Effect in Rats by Activating Lipolysis and Suppressing Adipogenesis. Nutrients 2024; 16:3174. [PMID: 39339774 PMCID: PMC11435164 DOI: 10.3390/nu16183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objective: This study examined the anti-obesity effect of royal jelly (RJ) in rats fed with a high-fat diet by targeting the major pathways involved in adipogenesis and lipolysis. In addition, it examined whether this effect is AMPK-dependent. Methods: Five groups of adult male albino rats were used (n = 6 each as 1); the control rats were fed with a normal diet (2.9 kcal), and the other groups were as follows: control + RJ (300 mg/kg), HFD (4.75 kcal), HFD + RJ (300 mg/kg), and HFD + RJ (300 mg/kg) + dorsomorphin (an AMPK inhibitor) (0.2 mg/kg). Results: RJ was administered orally to all rats. With no changes in food and energy intake, RJ significantly reduced gains in body weight, fat weight, body mass index (BMI), the Lee index, abdominal circumference (AC), and the adiposity index (AI). It also reduced fasting glucose and insulin levels, HOMA-IR, and the circulatory levels of free fatty acids (FFAs), triglycerides, cholesterol, and LDL-c in the HFD-fed rats. RJ also increased serum glycerol levels and adiponectin levels, but reduced the serum levels of leptin, IL-6, and TNF-α. Moreover, RJ reduced the secretion of IL-6 and TNF-α from isolated WAT. At the tissue level, the HFD + RJ rats exhibited a smaller adipocyte size compared to the HFD rats. At the molecular level, RJ increased the phosphorylation of AMPK, SREBP1, and ACC-1 and increased the mRNA and protein levels of HSL and ATG in the WAT of the HFD rats. In concomitance, RJ increased the mRNA levels of PGC-α1, reduced the protein levels of PPARγ, and repressed the transcriptional activities of PPARγ, SREBP1, and C/EBPαβ in the WAT of these rats. All the aforementioned effects of RJ were prevented by co-treatment with dorsomorphin. Conclusions: RJ exerts a potent anti-obesity effect in rats that is mediated by the AMPk-dependent suppression of WAT adipogenesis and the stimulation of lipolysis.
Collapse
Affiliation(s)
- Alaa Hasanain Felemban
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Hyun J, Lee HG, Je JG, Choi YS, Song KM, Kim TK, Ryu B, Kang MC, Jeon YJ. L-Fucose-Rich Sulfated Glycans from Edible Brown Seaweed: A Promising Functional Food for Obesity and Energy Expenditure Improvement. Int J Mol Sci 2024; 25:9738. [PMID: 39273687 PMCID: PMC11395595 DOI: 10.3390/ijms25179738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The global obesity epidemic, exacerbated by the sedentary lifestyle fostered by the COVID-19 pandemic, presents a growing socioeconomic burden due to decreased physical activity and increased morbidity. Current obesity treatments show promise, but they often come with expensive medications, frequent injections, and potential side effects, with limited success in improving obesity through increased energy expenditure. This study explores the potential of a refined sulfated polysaccharide (SPSL), derived from the brown seaweed Scytosiphon lomentaria (SL), as a safe and effective anti-obesity treatment by promoting energy expenditure. Chemical characterization revealed that SPSL, rich in sulfate and L-fucose content, comprises nine distinct sulfated glycan structures. In vitro analysis demonstrated potent anti-lipogenic properties in adipocytes, mediated by the downregulation of key adipogenic modulators, including 5' adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Inhibiting AMPK attenuated the anti-adipogenic effects of SPSL, confirming its involvement in the mechanism of action. Furthermore, in vivo studies using zebrafish models showed that SPSL increased energy expenditure and reduced lipid accumulation. These findings collectively highlight the therapeutic potential of SPSL as a functional food ingredient for mitigating obesity-related metabolic dysregulation by promoting energy expenditure. Further mechanistic and preclinical investigations are warranted to fully elucidate its mode of action and evaluate its efficacy in obesity management, potentially offering a novel, natural therapeutic avenue for this global health concern.
Collapse
Affiliation(s)
- Jimin Hyun
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Kyung-Mo Song
- Department of Food Science & Biotechnology, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Bomi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
41
|
Hasan S, Ghani N, Zhao X, Good J, Huang A, Wrona HL, Liu J, Liu CJ. Dietary pyruvate targets cytosolic phospholipase A2 to mitigate inflammation and obesity in mice. Protein Cell 2024; 15:661-685. [PMID: 38512816 PMCID: PMC11365557 DOI: 10.1093/procel/pwae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Obesity has a multifactorial etiology and is known to be a state of chronic low-grade inflammation, known as meta-inflammation. This state is associated with the development of metabolic disorders such as glucose intolerance and nonalcoholic fatty liver disease. Pyruvate is a glycolytic metabolite and a crucial node in various metabolic pathways. However, its role and molecular mechanism in obesity and associated complications are obscure. In this study, we reported that pyruvate substantially inhibited adipogenic differentiation in vitro and its administration significantly prevented HFD-induced weight gain, white adipose tissue inflammation, and metabolic dysregulation. To identify the target proteins of pyruvate, drug affinity responsive target stability was employed with proteomics, cellular thermal shift assay, and isothermal drug response to detect the interactions between pyruvate and its molecular targets. Consequently, we identified cytosolic phospholipase A2 (cPLA2) as a novel molecular target of pyruvate and demonstrated that pyruvate restrained diet-induced obesity, white adipose tissue inflammation, and hepatic steatosis in a cPLA2-dependent manner. Studies with global ablation of cPLA2 in mice showed that the protective effects of pyruvate were largely abrogated, confirming the importance of pyruvate/cPLA2 interaction in pyruvate attenuation of inflammation and obesity. Overall, our study not only establishes pyruvate as an antagonist of cPLA2 signaling and a potential therapeutic option for obesity but it also sheds light on the mechanism of its action. Pyruvate's prior clinical use indicates that it can be considered a safe and viable alternative for obesity, whether consumed as a dietary supplement or as part of a regular diet.
Collapse
Affiliation(s)
- Sadaf Hasan
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Nabil Ghani
- Department of Medicine, Division of Internal Medicine, Saint Peter’s University Hospital, Rutgers University, New Brunswick, NJ 08901, United States
| | - Xiangli Zhao
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- Department of Orthopedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Julia Good
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Amanda Huang
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- Cornell University, Ithaca, New York, NY, United States
| | - Hailey Lynn Wrona
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- Department of Biomedical Engineering, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jody Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- New York University, NY 14853, United States
| | - Chuan-ju Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, United States
- Department of Orthopedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
42
|
Tsai T, Vyas PD, Crowell LL, Tran M, Ward DW, Qin Y, Castro A, Adams TNG. Electrical signature of heterogeneous human mesenchymal stem cells. Electrophoresis 2024; 45:1562-1573. [PMID: 38738344 DOI: 10.1002/elps.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Human mesenchymal stem cells (hMSCs) have gained traction in transplantation therapy due to their immunomodulatory, paracrine, immune-evasive, and multipotent differentiation potential. The inherent heterogeneity of hMSCs poses a challenge for therapeutic treatments and necessitates the identification of robust biomarkers to ensure reproducibility in both in vivo and in vitro experiments. In this study, we utilized dielectrophoresis (DEP), a label-free electrokinetic phenomenon, to investigate the heterogeneity of hMSCs derived from bone marrow (BM) and adipose tissue (AD). The electrical properties of BM-hMSCs were compared to homogeneous mouse fibroblasts (NIH-3T3), human fibroblasts (WS1), and human embryonic kidney cells (HEK-293). The DEP profile of BM-hMSCs differed most from HEK-293 cells. We compared the DEP profiles of BM-hMSCs and AD-hMSCs and found that they have similar membrane capacitances, differing cytoplasm conductivity, and transient slopes. Inducing both populations to differentiate into adipocyte and osteoblast cells revealed that they behave differently in response to differentiation-inducing cytokines. Histology and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses of the differentiation-related genes revealed differences in heterogeneity between BM-hMSCs and AD-hMSCs. The differentiation profiles correlate well with the DEP profiles developed and indicate differences in the heterogeneity of BM-hMSCs and AD-hMSCs. Our results demonstrate that using DEP, membrane capacitance, cytoplasm conductivity, and transient slope can uniquely characterize the inherent heterogeneity of hMSCs to guide robust and reproducible stem cell transplantation therapies.
Collapse
Affiliation(s)
- Tunglin Tsai
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
| | - Prema D Vyas
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
| | - Lexi L Crowell
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
| | - Mary Tran
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
| | - Destiney W Ward
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
| | - Yufan Qin
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
| | - Angie Castro
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
| | - Tayloria N G Adams
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| |
Collapse
|
43
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
44
|
Chen H, Sun B, Gao W, Qiu Y, Wei W, Li Y, Ye W, Song H, Hua C, Lin X. PIK3CA mutations enhance the adipogenesis of ADSCs in facial infiltrating lipomatosis through TRPV1. iScience 2024; 27:110467. [PMID: 39104411 PMCID: PMC11298645 DOI: 10.1016/j.isci.2024.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Facial infiltrating lipomatosis (FIL) is a congenital disorder. The pathogenesis of FIL is associated with PIK3CA mutations, but the underlying mechanisms remain undetermined. We found that the adipose tissue in FIL demonstrated adipocytes hypertrophy and increased lipid accumulation. All adipose-derived mesenchymal stem cells from FIL (FIL-ADSCs) harbored PIK3CA mutations. Moreover, FIL-ADSCs exhibited a greater capacity for adipogenesis. Knockdown of PIK3CA resulted in a reduction in the adipogenic potential of FIL-ADSCs. Furthermore, WX390, a dual-target PI3K/mTOR inhibitor, was found to impede PIK3CA-mediated adipogenesis both in vivo and in vitro. RNA sequencing (RNA-seq) revealed that the expression of transient receptor potential vanilloid subtype 1 (TRPV1) was upregulated after PI3K pathway inhibition, and overexpression or activation of TRPV1 both inhibited adipogenesis. Our study showed that PIK3CA mutations promoted adipogenesis in FIL-ADSCs and this effect was achieved by suppressing TPRV1. Pathogenesis experiments suggested that WX390 may serve as an agent for the treatment of FIL.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Wei
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | - Yongguo Li
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | - Wei Ye
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | | | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
45
|
Hwang JY, Jeong HH, Baek J, Lee J, Ryu H, Kim JI, Lee B. The Inhibitory Effects of Maclurin on Fatty Acid Synthase and Adipocyte Differentiation. Int J Mol Sci 2024; 25:8579. [PMID: 39201266 PMCID: PMC11354920 DOI: 10.3390/ijms25168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Obesity is a complex health condition characterized by excessive adipose tissue accumulation, leading to significant metabolic disturbances such as insulin resistance and cardiovascular diseases. Fatty acid synthase (FAS), a key enzyme in lipogenesis, has been identified as a potential therapeutic target for obesity due to its role in adipocyte differentiation and lipid accumulation. This study employed a multidisciplinary approach involving in silico and in vitro analyses to investigate the anti-adipogenic properties of maclurin, a natural phenolic compound derived from Morus alba. Using SwissDock software (ChEMBL version 23), we predicted protein interactions and demonstrated a high probability (95.6%) of maclurin targeting FAS, surpassing the interaction rates of established inhibitors like cerulenin. Docking simulations revealed maclurin's superior binding affinity to FAS, with a binding score of -7.3 kcal/mol compared to -6.7 kcal/mol for cerulenin. Subsequent in vitro assays confirmed these findings, with maclurin effectively inhibiting FAS activity in a concentration-dependent manner in 3T3-L1 adipocytes, without compromising cell viability. Furthermore, maclurin treatment resulted in significant reductions in lipid accumulation and the downregulated expression of critical adipogenic genes such as PPARγ, C/EBPα, and FAS, indicating the suppression of adipocyte differentiation. Maclurin shows potential as a novel FAS inhibitor with significant anti-adipogenic effects, offering a promising therapeutic avenue for the treatment and prevention of obesity.
Collapse
Affiliation(s)
- Ji Young Hwang
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.H.); (H.H.J.)
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.H.); (H.H.J.)
| | - Jiwon Baek
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
| | - Jiyun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
| | - Bonggi Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.H.); (H.H.J.)
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
46
|
You YL, Choi HS. Nootkatone (NK), a grapefruit-derived aromatic compound, inhibited lipid accumulation by regulating JAK2-STAT signaling and antioxidant response in adipocyte. Food Sci Biotechnol 2024; 33:2631-2641. [PMID: 39144189 PMCID: PMC11319697 DOI: 10.1007/s10068-024-01522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 08/16/2024] Open
Abstract
Nootkatone (NK) is an aromatic compound derived from grapefruit. This study aimed to investigate the inhibitory effect of NK on lipid accumulation and its underlying mechanism in adipocytes. NK effectively inhibited adipogenic lipid storage by downregulating C/EBPα and PPARγ, while upregulating KLF2, an early inhibitory factor, downregulating C/EBPβ, an early promoting factor. In addition, NK inhibited the JAK2-STAT signaling pathway by decreasing the phosphorylation of STAT3 and STAT5 in the early adipogenic stage. NK significantly reduced ROS generation while elevating antioxidant enzymes such as catalase and glutathione peroxidase. It activated NRF2-HO-1 signaling, responsible for antioxidant response, by increasing protein levels. Furthermore, NK regulated adipokines, increasing adiponectin and visfatin, while downregulating resistin. Collectively, NK inhibited adipogenic lipid accumulation through the suppression of JAK2-STAT signaling and the augmentation of antioxidant response. This study highlights the potential of NK as an edible agent to alleviate obesity and its associated metabolic diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01522-2.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
47
|
Gupta VK, Sahu L, Sonwal S, Suneetha A, Kim DH, Kim J, Verma HK, Pavitra E, Raju GSR, Bhaskar L, Lee HU, Huh YS. Advances in biomedical applications of vitamin D for VDR targeted management of obesity and cancer. Biomed Pharmacother 2024; 177:117001. [PMID: 38936194 DOI: 10.1016/j.biopha.2024.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND 1,25(OH)2D3 is a fat-soluble vitamin, involved in regulating Ca2+ homeostasis in the body. Its storage in adipose tissue depends on the fat content of the body. Obesity is the result of abnormal lipid deposition due to the prolonged positive energy balance and increases the risk of several cancer types. Furthermore, it has been associated with vitamin D deficiency and defined as a low 25(OH)2D3 blood level. In addition, 1,25(OH)2D3 plays vital roles in Ca2+-Pi and glucose metabolism in the adipocytes of obese individuals and regulates the expressions of adipogenesis-associated genes in mature adipocytes. SCOPE AND APPROACH The present contribution focused on the VDR mediated mechanisms interconnecting the obese condition and cancer proliferation due to 1,25(OH)2D3-deficiency in humans. This contribution also summarizes the identification and development of molecular targets for VDR-targeted drug discovery. KEY FINDINGS AND CONCLUSIONS Several studies have revealed that cancer development in a background of 1,25(OH)2D3 deficient obesity involves the VDR gene. Moreover, 1,25(OH)2D3 is also known to influence several cellular processes, including differentiation, proliferation, and adhesion. The multifaceted physiology of obesity has improved our understanding of the cancer therapeutic targets. However, currently available anti-cancer drugs are notorious for their side effects, which have raised safety issues. Thus, there is interest in developing 1,25(OH)2D3-based therapies without any side effects.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Lipina Sahu
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Sonam Sonwal
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Achanti Suneetha
- Department of Pharmaceutical Analysis, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh 520010, India
| | - Dong Hyeon Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, Munich 85764, Germany
| | - Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Hyun Uk Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon 34133, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
48
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
49
|
Xie F, Wang Y, Chan S, Zheng M, Xue M, Yang X, Luo Y, Fang M. Testosterone Inhibits Lipid Accumulation in Porcine Preadipocytes by Regulating ELOVL3. Animals (Basel) 2024; 14:2143. [PMID: 39123669 PMCID: PMC11310965 DOI: 10.3390/ani14152143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Castration is commonly used to reduce stink during boar production. In porcine adipose tissue, castration reduces androgen levels resulting in metabolic disorders and excessive fat deposition. However, the underlying detailed mechanism remains unclear. In this study, we constructed porcine preadipocyte models with and without androgen by adding testosterone exogenously. The fluorescence intensity of lipid droplet (LD) staining and the fatty acid synthetase (FASN) mRNA levels were lower in the testosterone-treated cells than in the untreated control cells. In contrast, the mRNA levels of adipose triglycerides lipase (ATGL) and androgen receptor (AR) were higher than in the testosterone-treated cells than in the control cells. Subsequently, transcriptomic sequencing of porcine preadipocytes incubated with and without testosterone showed that the mRNA expression levels of very long-chain fatty acid elongase 3 (ELOVL3), a key enzyme involved in fatty acids synthesis and metabolism, were high in control cells. The siRNA-mediated knockdown of ELOVL3 reduced LD accumulation and the mRNA levels of FASN and increased the mRNA levels of ATGL. Next, we conducted dual-luciferase reporter assays using wild-type and mutant ELOVL3 promoter reporters, which showed that the ELOVL3 promoter contained an androgen response element (ARE); furthermore, its transcription was negatively regulated by AR overexpression. In conclusion, our study reveals that testosterone inhibits fat deposition in porcine preadipocytes by suppressing ELOVL3 expression. Moreover, our study provides a theoretical basis for further studies on the mechanisms of fat deposition caused by castration.
Collapse
Affiliation(s)
- Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.X.); (S.C.); (M.X.); (X.Y.)
| | - Yubei Wang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China;
| | - Shuheng Chan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.X.); (S.C.); (M.X.); (X.Y.)
| | - Meili Zheng
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.X.); (S.C.); (M.X.); (X.Y.)
| | - Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.X.); (S.C.); (M.X.); (X.Y.)
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.X.); (S.C.); (M.X.); (X.Y.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.X.); (S.C.); (M.X.); (X.Y.)
- Sanya Research Institute, China Agricultural University, Sanya 572025, China;
| |
Collapse
|
50
|
Kim B, Lee Y, Lee C, Jung ES, Kang H, Holzapfel WH. Comprehensive Amelioration of Metabolic Dysfunction through Administration of Lactiplantibacillus plantarum APsulloc 331261 (GTB1™) in High-Fat-Diet-Fed Mice. Foods 2024; 13:2227. [PMID: 39063311 PMCID: PMC11276112 DOI: 10.3390/foods13142227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The beneficial effects of probiotics for the improvement of metabolic disorders have been studied intensively; however, these effects are evident in a probiotic strain-specific and disease-specific manner. Thus, it is still essential to evaluate the efficacy of each strain against a target disease. Here, we present an anti-obese and anti-diabetic probiotic strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1™), which was isolated from green tea and tested for safety previously. In high-fat-diet-induced obese mice, GTB1™ exerted multiple beneficial effects, including significant reductions in adiposity, glucose intolerance, and dyslipidemia, which were further supported by improvements in levels of circulating hormones and adipokines. Lipid metabolism in adipose tissues was restored through the activation of PPAR/PGC1α signaling by GTB1™ treatment, which was facilitated by intestinal microbiota composition changes and short-chain fatty acid production. Our findings provide evidence to suggest that GTB1™ is a potential candidate for probiotic supplementation for comprehensive improvement in metabolic disorders.
Collapse
Affiliation(s)
- Bobae Kim
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea
| | - Yuri Lee
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea
| | - Chungho Lee
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
| | - Eun Sung Jung
- Multi-Omics Center, HEM Pharma Inc., Suwon 16229, Republic of Korea;
| | - Hyeji Kang
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
- Global Green Research Institute, Handong Global University, Pohang 37554, Republic of Korea
| | - Wilhelm H. Holzapfel
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|