1
|
Barreto Fernandes TF, Pilotto JH, Cezar PA, Côrtes FH, Morgado MG, Giacoia-Gripp CBW, De Sá NBR, Da Silva Cazote A, Neves AF, Quintana MDSB, Diniz Ribeiro MP, Cardoso SW, Veloso VG, Grinsztejn B, De Almeida DV. Modulation of RAAS receptors and miRNAs in COVID-19: implications for disease severity, immune response, and potential therapeutic targets. BMC Infect Dis 2025; 25:399. [PMID: 40128651 PMCID: PMC11934810 DOI: 10.1186/s12879-025-10803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
The SARS-CoV-2 spike protein interacts with ACE2, a key receptor within the renin-angiotensin-aldosterone system (RAAS), which plays a critical role in maintaining vascular homeostasis, regulating blood pressure, and modulating inflammation. An observational study analyzed the gene expression profiles of RAAS receptors and associated miRNAs in 88 hospitalized COVID-19 patients and 20 healthy controls, comparing the acute and post-acute phases to assess their impact on disease severity and recovery. Our findings revealed an association between reduced MAS1 expression in both advanced age (P = 0.03) and the need for oxygen supplementation (P = 0.04). Additionally, reduced ACE expression was associated with worse mortality outcomes (P = 0.01). Notably, ACE2 and TMPRSS2 expression was significantly decreased (P < 0.0001) in individuals requiring oxygen supplementation and in those with diabetes mellitus during both the acute and post-COVID-19 phases, further highlighting the impact of these conditions on RAAS. The miRNA analysis revealed significant downregulation of miR-200c (P = 0.005), miR-let-7 (P = 0.01), and miR-122 (P = 0.03) in acute-phase COVID-19 patients. This dysregulation contributes to the inflammatory response and highlights the interaction between viral entry and immune regulation. These results underscore the significance of the ACE2/Ang-(1-7)/MAS1 axis in inflammation regulation and suggest that targeting this pathway may have therapeutic potential. Our study provides valuable insights into the molecular mechanisms of COVID-19 pathogenesis and identifies the modulation of RAAS receptors and miRNAs as promising biomarkers for disease severity and potential therapeutic interventions. CLINICAL TRIAL: Not applicable.
Collapse
Affiliation(s)
| | - Jose Henrique Pilotto
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Priscila Alves Cezar
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Fernanda Heloise Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Mariza G Morgado
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | | | | | - Andressa Da Silva Cazote
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Agatha Freixinho Neves
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | | | | | | | - Valdiléa G Veloso
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brasil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brasil
| | | |
Collapse
|
2
|
Mahmood NMS, Mahmud AMR, Maulood IM. The interactions between melatonin and the renin-angiotensin system (RAS) in vascular attenuation in diabetic and non-diabetic conditions. Acta Diabetol 2025:10.1007/s00592-025-02479-2. [PMID: 40080199 DOI: 10.1007/s00592-025-02479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND The hormone melatonin (MEL), primarily acknowledged for its role in regulating circadian rhythms, has demonstrated itself to be a complicated molecule with significant implications for vascular physiology. Melatonin exerts extensive physiological effects directly via the MEL receptor type 1 (MT1R) and the MEL receptor type 2 (MT2R), as well as indirectly through the improvement of antioxidant vascular tone. OBJECTIVE This review aims to analyse the intricate relationships between MEL and the renin-angiotensin system (RAS) in the vascular attenuation of non-diabetic (non-DM) and diabetic (DM) contexts. Alterations in the expression of RAS components and their dysregulation are prevalent in diabetes. Melatonin exhibits vasoprotective advantages in non-diabetic conditions. In the context of DM, vascular problrms such as vascular endothelial dysfunction (VED), hypertension, and atherosclerosis result from the dysregulation of MEL-RAS interactions. Comprehending the actions of MEL on RAS components in diabetes vasculature is essential for formulating tailored pharmaceutical therapy methods. CONCLUSION This review consolidates existing knowledge regarding the vascular effects of MEL in relation to RAS activation, emphasising its potential role as a modulating factor for angiotensin 1-8 (Ang 1-8), angiotensin-converting enzyme 2 (ACE2), and angiotensin 1-7 (Ang 1-7) in the management of vascular complications associated with DM.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Yasmin S, Ashique S, Taj T, Garg A, Das J, Shorog E, Bhui U, Pal R, Selim S, Panigrahy UP, Begum N, Islam A, Ansari MY. The role of ACE inhibitors and ARBs in preserving cognitive function via hypertension Management: A critical Update. Brain Res 2025; 1850:149400. [PMID: 39681155 DOI: 10.1016/j.brainres.2024.149400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Hypertension poses a significant risk to cognition-related disorders like dementia. As the global population ages, age-related neurological illnesses such as Alzheimer's disease are becoming increasingly prevalent. The primary hypertension treatments, angiotensin receptor blockers, and angiotensin-converting enzyme inhibitors, exhibit neuroprotective properties. However, observational studies suggest that they may independently contribute to cognitive decline and dementia. Some of these medications have shown promise in reducing cognitive impairment and amyloid buildup in Alzheimer's models. While direct comparisons between the two drug classes are limited, angiotensin receptor blockers have been associated with less brain shrinkage, lower dementia incidence, and slower cognitive decline compared to angiotensin-converting enzyme inhibitors. Both types of medications can influence cognition by passing the blood-brain barrier, with angiotensin receptor blockers potentially offering superior neuroprotective effects due to their selective blockade of the angiotensin type 1 receptor.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018 , India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P, 483001, India
| | - Joy Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Eman Shorog
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Utpal Bhui
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Radheshyam Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Uttam Prasad Panigrahy
- Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Science, Assam down town University, SankarMadhab Path,Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha-62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
4
|
Bansal N, Kathuria D, Babu AM, Dhiman S, Lakhanpal S, Prasad KN, Kumar R, Tyagi Y, Kumar B, Singh MP, Gaidhane AM. A perspective on small molecules targeting the renin-angiotensin-aldosterone system and their utility in cardiovascular diseases: exploring the structural insights for rational drug discovery and development. RSC Med Chem 2025:d4md00720d. [PMID: 39925732 PMCID: PMC11803303 DOI: 10.1039/d4md00720d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/12/2025] [Indexed: 02/11/2025] Open
Abstract
Renin-angiotensin-aldosterone system (RAAS) is crucial in cardiovascular homeostasis. Any disruption in this homeostasis often leads to numerous cardiovascular diseases (CVDs) and non-cardiovascular diseases. Small molecules that show ability toward mechanically modulating RAAS components have been developed to address this problem, thus providing opportunities for innovative drug discovery and development. This review is put forth to provide a comprehensive understanding not only on the signaling mechanisms of RAAS that lead to cardiovascular events but also on the use of small molecules targeting the modulation of RAAS components. Further, the detailed descriptions of the drugs affecting the RAAS and their pharmacodynamics, kinetics, and metabolism profiles are provided. This article also covers the limitations of the present therapeutic armory, followed by their mechanistic insights. A brief discussion is offered on the analysis of the chemical space parameters of the drugs affecting RAAS compared to other cardiovascular and renal categories of medications approved by the US FDA. This review provides structural insights and emphasizes the importance of integrating the current therapeutic regimen with pharmacological tactics to accelerate the development of new therapeutics targeting the RAAS components for improved and efficacious cardiovascular outcomes. Finally, chemical spacing parameters of RAAS modulators are provided, which will help in understanding their peculiarities in modulating the RAAS signaling through structural and functional analyses. Furthermore, this review will assist medicinal chemists working in this field in developing better drug regimens with improved selectivity and efficacy.
Collapse
Affiliation(s)
- Nisha Bansal
- Gramothan Vidyapeeth Home Science Girls PG College Sangaria Rajasthan India
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Arockia M Babu
- Institute of Pharmaceutical Research, GLA University 17, Km Stone, National Highway #2, Delhi-Mathura Road Mathura India
| | - Sonia Dhiman
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University Phagwara 144411 Punjab India
| | - K Nagendra Prasad
- KKR and KSR Institute of Technology and Sciences Guntur 522017 Andhra Pradesh India
| | - Roshan Kumar
- Graphic Era (Deemed to be University) Clement Town Dehradun-248002 India
| | - Yogita Tyagi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University Prem Nagar Dehradun 248007 Uttarakhand India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus Srinagar, Garhwal-246174 Uttarakhand India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education Wardha India
| |
Collapse
|
5
|
Vernail VL, Lucas L, Miller AJ, Arnold AC. Angiotensin-(1-7) and Central Control of Cardiometabolic Outcomes: Implications for Obesity Hypertension. Int J Mol Sci 2024; 25:13320. [PMID: 39769086 PMCID: PMC11677932 DOI: 10.3390/ijms252413320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension is a leading independent risk factor for the development of cardiovascular disease, the leading cause of death globally. Importantly, the prevalence of hypertension is positively correlated with obesity, with obesity-related hypertension being difficult to treat due to a lack of current guidelines in this population as well as limited efficacy and adverse off-target effects of currently available antihypertensive therapeutics. This highlights the need to better understand the mechanisms linking hypertension with obesity to develop optimal therapeutic approaches. In this regard, the renin-angiotensin system, which is dysregulated in both hypertension and obesity, is a prime therapeutic target. While research and therapies have typically focused on the deleterious angiotensin II axis of the renin-angiotensin system, emerging evidence shows that targeting the protective angiotensin-(1-7) axis also improves cardiovascular and metabolic functions in animal models of obesity hypertension. While the precise mechanisms involved remain under investigation, in addition to peripheral actions, evidence exists to support a role for the central nervous system in the beneficial cardiometabolic effects of angiotensin-(1-7). This review will highlight emerging translational studies exploring the cardiovascular and metabolic regulatory actions of angiotensin-(1-7), with an emphasis on its central actions in brain regions including the brainstem and hypothalamus. An improved understanding of the central mechanisms engaged by angiotensin-(1-7) to regulate cardiovascular and metabolic functions may provide insight into the potential of targeting this hormone as a novel therapeutic approach for obesity-related hypertension.
Collapse
Affiliation(s)
- Victoria L. Vernail
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.L.V.); or (A.J.M.)
| | - Lillia Lucas
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.L.V.); or (A.J.M.)
| | - Amanda J. Miller
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.L.V.); or (A.J.M.)
- Department of Physical Therapy, Lebanon Valley College, Annville, PA 17003, USA
| | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.L.V.); or (A.J.M.)
| |
Collapse
|
6
|
Sherif AY, Alshora DH, Ibrahim MA, Jreebi A. Development and Evaluation of Solidified Supersaturated SNEDDS Loaded with Triple Combination Therapy for Metabolic Syndrome. AAPS PharmSciTech 2024; 25:209. [PMID: 39237698 DOI: 10.1208/s12249-024-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The present study aimed to develop and optimize solidified supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) for the combined administration of antihypertensive, antihyperglycemic, and antihyperlipidemic drugs to enhance their solubility and dissolution during the treatment of metabolic syndrome. Various SNEDDS formulations were prepared and subjected to pharmaceutical assessment. The solubility of candesartan (CC), glibenclamide (GB), and rosuvastatin (RC) in SNEDDS and supersaturated SNEDDS formulations was evaluated. The optimized formulation was solidified using Syloid adsorbent at different ratios. Pharmaceutical characterization of the formulations included particle size, zeta potential, in-vitro dissolution, PXRD, FTIR, and SEM analysis. The prepared optimized formulation (F6) was able to form homogeneous nanoemulsion droplets without phase separation, which is composed of Tween 20: PEG-400: Capmul MCM (4: 3: 3). It was mixed with 5% PVP-K30 to prepare a supersaturated liquid SNEDDS formulation (F9). In addition, it was found that the addition of PVP-K30 significantly increased solubility CC and GB from 20.46 ± 0.48 and 6.73 ± 0.05 to 27.67 ± 1.72 and 9.45 ± 0.32 mg/g, respectively. In-vitro dissolution study revealed that liquid and solid SNEDD formulations remarkably improved the dissolution rates of CC, GB, and RC compared to pure drugs. XRPD and FTIR analysis revealed that all drugs present in an amorphous state within prepared solidified supersaturated SNEDDS formulation. SEM images showed that liquid SNEDDS formulation was successfully adsorbed on the surface of Syloid. Overall, optimized F9 and solidified supersaturated SNEDDS formulations showed superior performance in enhancing drug solubility and dissolution rate. The present study revealed that the proposed triple combination therapy of metabolic syndrome holds a promising strategy during the treatment of metabolic syndrome. Further in-vivo studies are required to evaluate the therapeutic efficacy of prepared solidified supersaturated SNEDDS formulation.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Doaa Hasan Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Adel Jreebi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Murdoch JE, Lourenço BN, Berghaus RD, Ames MK, Hammond HK, Coleman AE. Characterization of the circulating markers of the renin-angiotensin-aldosterone system in telmisartan- or enalapril-treated dogs with proteinuric chronic kidney disease. J Vet Intern Med 2024; 38:2535-2547. [PMID: 39206534 PMCID: PMC11423453 DOI: 10.1111/jvim.17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Effects of the renin-angiotensin-aldosterone system (RAAS) inhibitors enalapril and telmisartan on circulating RAAS in dogs with proteinuric chronic kidney disease (pCKD) are undescribed. OBJECTIVES To characterize the RAAS in untreated dogs with pCKD compared to healthy, life-stage- and sex-matched controls, and in dogs with pCKD after 30 days of treatment with enalapril or telmisartan. ANIMALS Dogs with pCKD (n = 36) and healthy controls (n = 20). METHODS Retrospective study of banked samples and previously collected data. Day 0 serum equilibrium concentrations of angiotensin I, II, III, IV, 1-5, and 1-7, and aldosterone, and urinary aldosterone-to-creatinine ratio (UACR) from pCKD dogs were compared to values on day 30 of treatment with enalapril (0.5 mg/kg PO q12) or telmisartan (1 mg/kg PO q24h) and to those of healthy dogs. Data were analyzed using linear mixed models. RESULTS Compared with healthy dogs, pCKD dogs had significantly higher Ang I, III, 1-5, and 1-7 concentrations, and UACR. Relative to pretreatment values, day 30 Ang II concentrations were significantly increased and decreased in telmisartan- and enalapril-treated pCKD dogs, respectively (both P < .001). Mean (95% confidence interval) percentage change from pretreatment value in serum Ang 1-7 concentration was significantly greater in telmisartan- (753% [489%-1134%]) versus enalapril-treated (149% [69%-268%]) dogs (P < .001). Serum aldosterone decreased with treatment (P = .02 for enalapril, P < .001 for telmisartan), with no difference between groups at day 30. CONCLUSIONS AND CLINICAL IMPORTANCE Circulating RAAS activity is higher in dogs with pCKD. Compared with enalapril, treatment with telmisartan caused significantly greater increases in the presumed beneficial peptide Ang 1-7.
Collapse
Affiliation(s)
- Joanna E Murdoch
- Department of Small Animal and Surgery, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Bianca N Lourenço
- Department of Small Animal and Surgery, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Roy D Berghaus
- Department of Population Health, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Marisa K Ames
- Department of Medicine and Epidemiology, University of California, Davis School of Veterinary Medicine, Davis, California, USA
| | - Hillary K Hammond
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Amanda E Coleman
- Department of Small Animal and Surgery, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| |
Collapse
|
8
|
Maurer J, de Groot A, Martin L, Grouzmann E, Wuerzner G, Eugster PJ. Quantification of endogenous Angiotensin 1-10, 1-9, 1-8, 1-7, and 1-5 in human plasma using micro-UHPLC-MS/MS: Outlining the importance of the pre-analytics for reliable results. J Pharm Biomed Anal 2024; 243:116101. [PMID: 38489957 DOI: 10.1016/j.jpba.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Angiotensin peptides (ANGs) play a central role in the renin-angiotensin-aldosterone system, rendering them interesting biomarkers associated with hypertension. Precise quantification of circulating ANGs holds the potential to assess the activity of angiotensin-converting enzyme (ACE), a key protease targeted by widely prescribed drugs, namely ACE inhibitors. This ability could pave the way for personalised medicine, offering insights into the prescription of inhibitors targeting either the proteases or the receptors within the system. Despite recent developments in liquid chromatography-mass spectrometry (LC-MS) methods for measuring circulating ANG concentrations, comprehensive stability studies of ANGs in human plasma are absent in the literature, raising concerns about the reliability of measured concentrations and their link to clinical conditions. To address this critical gap, we conducted an exhaustive evaluation of the pre-analytical stability of ANG1-10, ANG1-9, ANG1-8, ANG1-7, and ANG1-5. By employing surfactants to mitigate non-specific adsorption and a dedicated mix of protease inhibitors to limit protease activity, we established an MS-based assay for these five peptides. We used this method to quantify circulating concentrations of ANGs in the plasma of 11 healthy donors and 3 patients under kidney dialysis. Our findings revealed that ANG1-10 and ANG1-8 circulate at concentrations ranging from 1 to 10 pM in healthy subjects and exhibit a high degree of correlation. Notably, ANG1-9, ANG1-7, and ANG1-5 were undetectable in any of the 14 patients, despite a sub-picomolar limit of detection. This strikingly contrasts with the reference concentrations reported in the literature, which typically fall within the picomolar range. In light of these discrepancies, we strongly advocate for rigorous pre-analytical considerations and comprehensive stability studies to ensure reliable results. We emphasise the pivotal role of heightened pre-analytical awareness within the clinical chemistry community, and we hope for continued growth in this critical area.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anke de Groot
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Léon Martin
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Grégoire Wuerzner
- Service of Hypertension and Nephrology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Bhullar SK, Dhalla NS. Adaptive and maladaptive roles of different angiotensin receptors in the development of cardiac hypertrophy and heart failure. Can J Physiol Pharmacol 2024; 102:86-104. [PMID: 37748204 DOI: 10.1139/cjpp-2023-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Angiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions. Since heart failure under different pathophysiological situations is preceded by adaptive and maladaptive cardiac hypertrophy, we have reviewed the existing literature to gain some information regarding the roles of AT1R, AT2R, and MasR in both acute and chronic conditions of cardiac hypertrophy. It appears that the activation of AT1R may be involved in the development of adaptive and maladaptive cardiac hypertrophy as well as subsequent heart failure because both ACE inhibitors and AT1R antagonists exert beneficial effects. On the other hand, the activation of both AT2R and MasR may prevent the occurrence of maladaptive cardiac hypertrophy and delay the progression of heart failure, and thus therapy with different activators of these antihypertrophic receptors under chronic pathological stages may prove beneficial. Accordingly, it is suggested that a great deal of effort should be made to develop appropriate activators of both AT2R and MasR for the treatment of heart failure subjects.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Ribeiro F, Teixeira M, Alves AJ, Sherwood A, Blumenthal JA. Lifestyle Medicine as a Treatment for Resistant Hypertension. Curr Hypertens Rep 2023; 25:313-328. [PMID: 37470944 DOI: 10.1007/s11906-023-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE OF REVIEW Approximately 10% of the adults with hypertension fail to achieve the recommended blood pressure treatment targets on 3 antihypertensive medications or require ≥ 4 medications to achieve goal. These patients with 'resistant hypertension' have an increased risk of target organ damage, adverse clinical events, and all-cause mortality. Although lifestyle modification is widely recommended as a first-line approach for the management of high blood pressure, the effects of lifestyle modifications in patients with resistant hypertension has not been widely studied. This review aims to provide an overview of the emerging evidence on the benefits of lifestyle modifications in patients with resistant hypertension, reviews potential mechanisms by which lifestyles may reduce blood pressure, and discusses the clinical implications of the recent findings in this field. RECENT FINDINGS Evidence from single-component randomized clinical trials demonstrated that aerobic exercise, weight loss and dietary modification can reduce clinic and ambulatory blood pressure in patients with resistant hypertension. Moreover, evidence from multi-component trials involving exercise and dietary modification and weight management can facilitate lifestyle change, reduce clinic and ambulatory blood pressure, and improve biomarkers of cardiovascular risk. This new evidence supports the efficacy of lifestyle modifications added to optimized medical therapy in reducing blood pressure and improving cardiovascular risk biomarkers in patients with resistant hypertension. These findings need to be confirmed in larger studies, and the persistence of benefit over extended follow-up needs further study.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Institute of Biomedicine (iBiMED), School of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Manuel Teixeira
- Institute of Biomedicine (iBiMED), School of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Alberto J Alves
- University of Maia, Research Center in Sports Sciences, Health Sciences and Human Development, Castêlo da Maia, Portugal
| | - Andrew Sherwood
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - James A Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Colin M, Delaitre C, Foulquier S, Dupuis F. The AT 1/AT 2 Receptor Equilibrium Is a Cornerstone of the Regulation of the Renin Angiotensin System beyond the Cardiovascular System. Molecules 2023; 28:5481. [PMID: 37513355 PMCID: PMC10383525 DOI: 10.3390/molecules28145481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The AT1 receptor has mainly been associated with the pathological effects of the renin-angiotensin system (RAS) (e.g., hypertension, heart and kidney diseases), and constitutes a major therapeutic target. In contrast, the AT2 receptor is presented as the protective arm of this RAS, and its targeting via specific agonists is mainly used to counteract the effects of the AT1 receptor. The discovery of a local RAS has highlighted the importance of the balance between AT1/AT2 receptors at the tissue level. Disruption of this balance is suggested to be detrimental. The fine tuning of this balance is not limited to the regulation of the level of expression of these two receptors. Other mechanisms still largely unexplored, such as S-nitrosation of the AT1 receptor, homo- and heterodimerization, and the use of AT1 receptor-biased agonists, may significantly contribute to and/or interfere with the settings of this AT1/AT2 equilibrium. This review will detail, through several examples (the brain, wound healing, and the cellular cycle), the importance of the functional balance between AT1 and AT2 receptors, and how new molecular pharmacological approaches may act on its regulation to open up new therapeutic perspectives.
Collapse
Affiliation(s)
- Mélissa Colin
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
12
|
Iampanichakul M, Potue P, Rattanakanokchai S, Maneesai P, Khamseekaew J, Settheetham-Ishida W, Pakdeechote P. Limonin ameliorates cardiovascular dysfunction and remodeling in hypertensive rats. Life Sci 2023; 327:121834. [PMID: 37290669 DOI: 10.1016/j.lfs.2023.121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
AIMS Limonin is a tetracyclic triterpenoid isolated from citrus fruits. Here, the effects of limonin on cardiovascular abnormalities in nitric oxide-deficient rats induced by Nω-Nitrol-arginine methyl ester (L-NAME) were explored. MAIN METHODS Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) for 3 weeks and then treated daily with polyethylene glycol (vehicle), limonin (50 or 100 mg/kg) or telmisartan (10 mg/kg) for two weeks. KEY FINDINGS Limonin (100 mg/kg) markedly reduced L-NAME-induced hypertension, cardiovascular dysfunction and remodeling in rats (P < 0.05). Increases in systemic angiotensin-converting enzyme (ACE) activity and angiotensin II (Ang II) and a reduction in circulating ACE2 were restored in hypertensive rats treated with limonin (P < 0.05). Reductions in antioxidant enzymes and nitric oxide metabolites (NOx) and increases in oxidative stress components induced by L-NAME were relieved by limonin treatment (P < 0.05). Limonin suppressed the increased expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in cardiac tissue and circulating TNF-α in rats that received L-NAME (P < 0.05). Changes in Ang II receptor type I (AT1R), Mas receptor (MasR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) and NADPH oxidase subunit 2 (gp91phox) protein expression in cardiac and aortic tissue were normalized by limonin (P < 0.05). SIGNIFICANCE In conclusion, limonin ameliorated L-NAME-induced hypertension, cardiovascular dysfunction and remodeling in rats. These effects were relevant to restorations of the renin-angiotensin system, oxidative stress and inflammation in NO-deficient rats. The molecular mechanisms are associated with the modulation of AT1R, MasR, NF-ĸB and gp91phox protein expression in cardiac and aortic tissue.
Collapse
Affiliation(s)
- Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
13
|
Ghatage T, Singh S, Mandal K, Dhar A. MasR and pGCA receptor activation protects primary vascular smooth muscle cells and endothelial cells against oxidative stress via inhibition of intracellular calcium. J Cell Biochem 2023. [PMID: 37210727 DOI: 10.1002/jcb.30422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
Cardiovascular diseases (CVDs) are associated with vascular smooth muscle cell (VSMC) and endothelial cell (EC) damage. Angiotensin1-7 (Ang1-7) and B-type natriuretic peptide (BNP) are responsible for vasodilation and regulation of blood flow. These protective effects of BNP are primarily mediated by the activation of sGCs/cGMP/cGKI pathway. Conversely, Ang1-7 inhibits Angiotensin II-induced contraction and oxidative stress via Mas receptor activation. Thus, the aim of the study was to determine the effect of co-activation of MasR and particulate guanylate cyclase receptor (pGCA) pathways by synthesized novel peptide (NP) in oxidative stress-induced VSMCs and ECs. MTT and Griess reagent assay kits were used for the standardization of the oxidative stress (H2 O2 ) induced model in VSMCs. The expression of targeted receptors in VSMC was done by RT-PCR and Western blot analysis. Protective effect of NP in VSMC and EC was determined by immunocytochemistry, FACS analysis, and Western blot analysis. Underlying mechanisms of EC-dependent VSMC relaxation were done by determining downstream mRNA gene expression and intracellular calcium imaging of cells. Synthesized NP significantly improved oxidative stress-induced injury in VSMCs. Remarkably, the actions of NP were superior to that of the Ang1-7 and BNP alone. Further, a mechanistic study in VSMC and EC suggested the involvement of upstream mediators of calcium inhibition for the therapeutic effect. NP is reported to possess vascular protective activities and is also involved in the improvement of endothelial damage. Moreover, it is highly effective than that of individual peptides BNP and Ang1-7 and therefore it may represent a promising strategy for CVDs.
Collapse
Affiliation(s)
- Trupti Ghatage
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Sameer Singh
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
15
|
Tretter F, Peters EMJ, Sturmberg J, Bennett J, Voit E, Dietrich JW, Smith G, Weckwerth W, Grossman Z, Wolkenhauer O, Marcum JA. Perspectives of (/memorandum for) systems thinking on COVID-19 pandemic and pathology. J Eval Clin Pract 2023; 29:415-429. [PMID: 36168893 PMCID: PMC9538129 DOI: 10.1111/jep.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Is data-driven analysis sufficient for understanding the COVID-19 pandemic and for justifying public health regulations? In this paper, we argue that such analysis is insufficient. Rather what is needed is the identification and implementation of over-arching hypothesis-related and/or theory-based rationales to conduct effective SARS-CoV2/COVID-19 (Corona) research. To that end, we analyse and compare several published recommendations for conceptual and methodological frameworks in medical research (e.g., public health, preventive medicine and health promotion) to current research approaches in medical Corona research. Although there were several efforts published in the literature to develop integrative conceptual frameworks before the COVID-19 pandemic, such as social ecology for public health issues and systems thinking in health care, only a few attempts to utilize these concepts can be found in medical Corona research. For this reason, we propose nested and integrative systemic modelling approaches to understand Corona pandemic and Corona pathology. We conclude that institutional efforts for knowledge integration and systemic thinking, but also for integrated science, are urgently needed to avoid or mitigate future pandemics and to resolve infection pathology.
Collapse
Affiliation(s)
- Felix Tretter
- Bertalanffy Center for the Study of Systems ScienceViennaAustria
| | - Eva M. J. Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and PsychotherapyJustus‐Liebig‐UniversityGiessenHesseGermany
- Internal Medicine and DermatologyUniversitätsmedizin‐CharitéBerlinGermany
| | - Joachim Sturmberg
- College of Health, Medicine and WellbeingUniversity of NewcastleNewcastleNew South WalesAustralia
- International Society for Systems and Complexity Sciences for HealthPrincetonNew JerseyUSA
| | - Jeanette Bennett
- Department of Psychological Science, StressWAVES Biobehavioral Research LabUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Eberhard Voit
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Medicine ISt. Josef Hospital, Ruhr PhilosophyBochumGermany
- Diabetes Centre Bochum/HattingenKlinik BlankensteinHattingenGermany
- Centre for Rare Endocrine Diseases (ZSE), Ruhr Centre for Rare Diseases (CeSER)BochumGermany
- Centre for Diabetes Technology, Catholic Hospitals BochumRuhr University BochumBochumGermany
| | - Gary Smith
- International Society for the Systems SciencesPontypoolUK
| | - Wolfram Weckwerth
- Vienna Metabolomics Center (VIME) and Molecular Systems Biology (MOSYS)University of ViennaViennaAustria
| | - Zvi Grossman
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Olaf Wolkenhauer
- Department of Systems Biology & BioinformaticsUniversity of RostockRostockGermany
| | | |
Collapse
|
16
|
Tanrıverdi LH, Özhan O, Ulu A, Yıldız A, Ateş B, Vardı N, Acet HA, Parlakpinar H. Activation of the Mas receptors by AVE0991 and MrgD receptor using alamandine to limit the deleterious effects of Ang II-induced hypertension. Fundam Clin Pharmacol 2023; 37:60-74. [PMID: 36117326 DOI: 10.1111/fcp.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023]
Abstract
The MrgD receptor agonist, alamandine (ALA) and Mas receptor agonist, AVE0991 have recently been identified as protective components of the renin-angiotensin system. We evaluated the effects of ALA and AVE0991 on cardiovascular function and remodeling in angiotensin (Ang) II-induced hypertension in rats. Sprague Dawley rats were subject to 4-week subcutaneous infusions of Ang II (80 ng/kg/min) or saline after which they were treated with ALA (50 μg/kg), AVE0991 (576 μg/kg), or ALA+AVE0991 during the last 2 weeks. Systolic blood pressure (SBP) and heart rate (HR) values were recorded with tail-cuff plethysmography at 1, 15, and 29 days post-treatment. After euthanization, the heart and thoracic aorta were removed for further analysis and vascular responses. SBP significantly increased in the Ang II group when compared to the control group. Furthermore, Ang II also caused an increase in cardiac and aortic cyclophilin-A (CYP-A), monocyte chemoattractant protein-1 (MCP-1), and cardiomyocyte degeneration but produced a decrease in vascular relaxation. HR, matrix metalloproteinase-2 and -9, NADPH oxidase-4, and lysyl oxidase levels were comparable among groups. ALA, AVE0991, and the drug combination produced antihypertensive effects and alleviated vascular responses. The inflammatory and oxidative stress related to cardiac MCP-1 and CYP-A levels decreased in the Ang II+ALA+AVE0991 group. Vascular but not cardiac angiotensin-converting enzyme-2 levels decreased with Ang II administration but were similar to the Ang II+ALA+AVE0991 group. Our experimental data showed the combination of ALA and AVE0991 was found beneficial in Ang II-induced hypertension in rats by reducing SBP, oxidative stress, inflammation, and improving vascular responses.
Collapse
Affiliation(s)
| | - Onural Özhan
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Science, İnönü University, Malatya, Türkiye
| | - Azibe Yıldız
- Department of Histology and Medical Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Science, İnönü University, Malatya, Türkiye
| | - Nigar Vardı
- Department of Histology and Medical Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hacı Ahmet Acet
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
17
|
Chda A, Bencheikh R. Flavonoids as G Protein-coupled Receptors Ligands: New Potential Therapeutic Natural Drugs. Curr Drug Targets 2023; 24:1346-1363. [PMID: 38037994 DOI: 10.2174/0113894501268871231127105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
G protein coupled receptors (GPCRs) are among the largest family of cell surface receptors found in the human genome. They govern a wide range of physiological responses in both health and diseases, making them one of the potential targeted surface receptors for pharmaceuticals. Flavonoids can modulate GPCRs activity by acting as allosteric ligands. They can either enhance or reduce the GPCR's effect. Emerging research shows that individual flavonoids or mixtures of flavonoids from plant extracts can have relevant pharmacological effects against a number of diseases, particularly by influencing GPCRs. In the present review, we are considering to give a comprehensive overview of flavonoids and related compounds that exhibit GPCRs activity and to further explore which beneficial structural features. Molecular docking was used to strengthen experimental evidence and describe flavonoid-GPCRs interactions at molecular level.
Collapse
Affiliation(s)
- Alae Chda
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LM2BM), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Road of Immouzer, PO Box 2202, Fez, Morocco
- Higher Institute of Nursing and Health Techniques - Fez. Ministry of Health and Social Protection, Fez, Morocco
| | - Rachid Bencheikh
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LM2BM), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Road of Immouzer, PO Box 2202, Fez, Morocco
| |
Collapse
|
18
|
Pizon K, Hampal S, Orzechowska K, Muhammad SN. A Review of Pathology and Analysis of Approaches to Easing Kidney Disease Impact: Host-Pathogen Communication and Biomedical Visualization Perspective : Advanced Microscopy and Visualization of Host-Pathogen Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1406:41-57. [PMID: 37016110 DOI: 10.1007/978-3-031-26462-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
INTRODUCTION In addition to affecting the upper respiratory tract, severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2) can target kidneys resulting in disease impact. There is a lack of effective treatment for SARs-CoV and SARS-CoV-2, and so one approach could be to consider to lower the probable risk and onset of disease amongst immunocompromised and immunosuppressed individuals and patients. Angiotensin Converting Enzyme 2 (ACE2) has a promising impact including acting against SARs-CoV and SARS-CoV-2 symptoms. Current literature states that ACE2 is expressed across several physiological systems, including the lungs, cardiovascular, gut, kidneys, and central nervous, and across endothelia. AIMS This chapter seeks to investigate causes and potential mechanisms during SARS infection (CoV-2), renal interaction, and the effects of acute kidney Injury (AKI). OBJECTIVES This chapter will provide an overview of microscopy and visualization of host-pathogen communication and principles of ACE2 in the context of immunology and impact on renal pathophysiology. DESIGN This chapter focuses to provide basic principles of ACE2 and the analysis and effect of immunology and pathological components important in relation to SARs infection. DISCUSSION There has been a surge in literature surrounding mechanisms attributing to SARS-CoV and SARS-CoV-2 action on immune response to pathogens. There is an advantage to implementing ACE2 treatment to improve immune response against infection. CONCLUSION ACE2 may provide appropriate strategies for the management of symptoms that relate to SARS-CoV and SARS-CoV-2 in most immunocompromised or immunosuppressed patients. Visualization of ACE2 action can be achieved through microscopy to understand host-pathogen communication.
Collapse
Affiliation(s)
- Kacper Pizon
- Department of Life Sciences, Coventry University, Coventry, England, UK
- The Renal Patient Support Group (RPSG), Coventry, England, UK
| | - Savita Hampal
- Department of Life Sciences, Coventry University, Coventry, England, UK
- The Renal Patient Support Group (RPSG), Coventry, England, UK
| | - Kamila Orzechowska
- Department of Life Sciences, Coventry University, Coventry, England, UK
- The Renal Patient Support Group (RPSG), Coventry, England, UK
| | - Shahid Nazir Muhammad
- Department of Health, and Life Sciences, Coventry University, Coventry, England, UK.
- University Hospitals Bristol NHS Foundation Trust, Bristol, England, UK.
| |
Collapse
|
19
|
Filip N, Cojocaru E, Badulescu OV, Clim A, Pinzariu AC, Bordeianu G, Jehac AE, Iancu CE, Filip C, Maranduca MA, Sova IA, Serban IL. SARS-CoV-2 Infection: What Is Currently Known about Homocysteine Involvement? Diagnostics (Basel) 2022; 13:10. [PMID: 36611302 PMCID: PMC9818222 DOI: 10.3390/diagnostics13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world causing health, social and economic instability. The severity and prognosis of patients with SARS-CoV-2 infection are associated with the presence of comorbidities such as cardiovascular disease, hypertension, chronic lung disease, cerebrovascular disease, diabetes, chronic kidney disease, and malignancy. Thrombosis is one of the most serious complications that can occur in patients with COVID-19. Homocysteine is a non-proteinogenic α-amino acid considered a potential marker of thrombotic diseases. Our review aims to provide an updated analysis of the data on the involvement of homocysteine in COVID-19 to highlight the correlation of this amino acid with disease severity and the possible mechanisms by which it intervenes.
Collapse
Affiliation(s)
- Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morpho-Functional Sciences (I), Discipline of Morphopathology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Viola Badulescu
- Department of Morpho-Functional Sciences (II), Discipline of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Elena Jehac
- Department of Dentoalveolar and Maxillofacial Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Elena Iancu
- Department of Biochemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristiana Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ivona Andreea Sova
- IOSUD Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
20
|
Pelle MC, Zaffina I, Lucà S, Forte V, Trapanese V, Melina M, Giofrè F, Arturi F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life (Basel) 2022; 12:1605. [PMID: 36295042 PMCID: PMC9604693 DOI: 10.3390/life12101605] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2, a novel coronavirus found in Wuhan (China) at the end of 2019, is the etiological agent of the current pandemic that is a heterogeneous disease, named coronavirus disease 2019 (COVID-19). SARS-CoV-2 affects primarily the lungs, but it can induce multi-organ involvement such as acute myocardial injury, myocarditis, thromboembolic eventsandrenal failure. Hypertension, chronic kidney disease, diabetes mellitus and obesity increase the risk of severe complications of COVID-19. There is no certain explanation for this systemic COVID-19 involvement, but it could be related to endothelial dysfunction, due to direct (endothelial cells are infected by the virus) and indirect damage (systemic inflammation) factors. Angiotensin-converting enzyme 2 (ACE2), expressed in human endothelium, has a fundamental role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In fact, ACE2 is used as a receptor by SARS-CoV-2, leading to the downregulation of these receptors on endothelial cells; once inside, this virus reduces the integrity of endothelial tissue, with exposure of prothrombotic molecules, platelet adhesion, activation of coagulation cascades and, consequently, vascular damage. Systemic microangiopathy and thromboembolism can lead to multi-organ failure with an elevated risk of death. Considering the crucial role of the immunological response and endothelial damage in developing the severe form of COVID-19, in this review, we will attempt to clarify the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Lucà
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Forte
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Trapanese
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Melania Melina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
21
|
Gao G, Nakamura S, Asaba S, Miyata Y, Nakayama H, Matsui T. Hesperidin Preferentially Stimulates Transient Receptor Potential Vanilloid 1, Leading to NO Production and Mas Receptor Expression in Human Umbilical Vein Endothelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11290-11300. [PMID: 36039965 DOI: 10.1021/acs.jafc.2c04045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, the mechanism of vasorelaxant Mas receptor (MasR) expression elevated by hesperidin in spontaneously hypertensive rats was investigated in human umbilical vein endothelial cells (HUVECs). HUVECs were cultured with 1 μM hesperidin for 2 h, following the measurements of nitric oxide (NO) production and vasomotor-related receptors' expression. Hesperidin significantly promoted NO production (224.1 ± 18.3%, P < 0.01 vs control) in the HUVECs. Only the MasR expression was upregulated (141.2 ± 12.5%, P < 0.05 vs control), whereas a MasR antagonist did not alter the hesperidin-induced NO production. When a transient receptor potential vanilloid 1 (TRPV1) was knocked down by silencing RNA or Ca2+/calmodulin-dependent kinase II (CaMKII) and p38 mitogen-activated protein kinase (p38 MAPK) were inhibited, the increased MasR expression by hesperidin was abrogated. The inhibitions of CaMKII and endothelial NO synthase (eNOS) abolished the hesperidin-induced NO production. The structure-activity relationship analysis of flavonoids demonstrated that the B ring of the twisted flavonoid skeleton with a hydroxy group at the 3' position was a crucial factor for TRPV1 stimulation. Taken together, it was demonstrated that hesperidin may stimulate TRPV1-mediated cascades, leading to the activation of two signaling axes, CaMKII/p38 MAPK/MasR expression and CaMKII/eNOS/NO production in HUVECs.
Collapse
Affiliation(s)
- Guanzhen Gao
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Saya Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sumire Asaba
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Miyata
- Industrial Technology Center of Nagasaki, 2-1303-8 Ikeda, Omura, Nagasaki 856-0026, Japan
| | - Hisayuki Nakayama
- Industrial Technology Center of Nagasaki, 2-1303-8 Ikeda, Omura, Nagasaki 856-0026, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Chávez-Ontiveros J, Reyes-Moreno C, Ramírez-Torres GI, Figueroa-Salcido OG, Arámburo-Gálvez JG, Montoya-Rodríguez A, Ontiveros N, Cuevas-Rodríguez EO. Extrusion Improves the Antihypertensive Potential of a Kabuli Chickpea ( Cicer arietinum L.) Protein Hydrolysate. Foods 2022; 11:2562. [PMID: 36076750 PMCID: PMC9455076 DOI: 10.3390/foods11172562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Chickpea hydrolysates could have antihypertensive potential, but there are no evaluations in vivo. Thus, the antihypertensive potential of a chickpea protein hydrolysate obtained before and after extrusion (a process that modifies protein digestibility) was evaluated. Protein precipitates were obtained from extruded and unextruded chickpea flours by isoelectric precipitation and hydrolyzed (α-amylase/pepsin/pancreatin). Chemical composition was determined (standard methods). ACE-I inhibition assays were carried out using a colorimetric test. For antihypertensive effect evaluations, spontaneously hypertensive rats (n = 8) received the treatments intragastrically (extruded or unextruded hydrolysate (1.2 g/kg), captopril (25 mg/kg), or water only). Fat, ash, and carbohydrate contents were lower in extruded chickpea flour (p < 0.05 versus unextruded). The protein content varied between protein precipitates (91.03%/78.66% unextruded/extruded (dry basis)) (p < 0.05). The hydrolysates’ IC50 values (mg/mL) were 0.2834 (unextruded)/0.3218 (extruded) (p > 0.05). All treatments lowered the blood pressure (p < 0.05 vs. water). The extruded hydrolysate showed a more potent antihypertensive effect than the unextruded one (p < 0.05), an effect similar to captopril (p > 0.05). The results suggest that protein extrusion can be used to generate protein hydrolysates with improved health benefits. The findings have implications for the design and production of functional foods that could help to prevent hypertension or serve as an adjunct in its treatment.
Collapse
Affiliation(s)
- Jeanett Chávez-Ontiveros
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
- Postgraduate Program in Food Science and Technology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
| | - Cuauhtémoc Reyes-Moreno
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
- Postgraduate Program in Food Science and Technology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
| | - Giovanni Isaí Ramírez-Torres
- Faculty of Physical Education and Sports, Autonomous University of Sinaloa, Culiacan 80013, Mexico
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80019, Mexico
| | - Oscar Gerardo Figueroa-Salcido
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80019, Mexico
| | - Jesús Gilberto Arámburo-Gálvez
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition Sciences, Autonomous University of Sinaloa, Culiacan 80019, Mexico
- Postgraduate Program in Health Sciences, Division of Biological and Health Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Alvaro Montoya-Rodríguez
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
| | - Noé Ontiveros
- Clinical and Research Laboratory (LACIUS, URS), Department of Chemical, Biological, and Agricultural Sciences (DC-QB), Division of Sciences and Engineering, University of Sonora, Navojoa 85880, Mexico
| | - Edith Oliva Cuevas-Rodríguez
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
- Postgraduate Program in Food Science and Technology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Mexico
| |
Collapse
|
23
|
Suzuki S, Iida M, Hiroaki Y, Tanaka K, Kawamoto A, Kato T, Oshima A. Structural insight into the activation mechanism of MrgD with heterotrimeric Gi-protein revealed by cryo-EM. Commun Biol 2022; 5:707. [PMID: 35840655 PMCID: PMC9287403 DOI: 10.1038/s42003-022-03668-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
MrgD, a member of the Mas-related G protein-coupled receptor (MRGPR) family, has high basal activity for Gi activation. It recognizes endogenous ligands, such as β-alanine, and is involved in pain and itch signaling. The lack of a high-resolution structure for MrgD hinders our understanding of whether its activation is ligand-dependent or constitutive. Here, we report two cryo-EM structures of the MrgD-Gi complex in the β-alanine-bound and apo states at 3.1 Å and 2.8 Å resolution, respectively. These structures show that β-alanine is bound to a shallow pocket at the extracellular domains. The extracellular half of the sixth transmembrane helix undergoes a significant movement and is tightly packed into the third transmembrane helix through hydrophobic residues, creating the active form. Our structures demonstrate a structural basis for the characteristic ligand recognition of MrgD. These findings provide a framework to guide drug designs targeting the MrgD receptor.
Collapse
Affiliation(s)
- Shota Suzuki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Momoko Iida
- Division of Biological Science, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yoko Hiroaki
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Japan Biological Informatics Consortium (JBIC), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kotaro Tanaka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsunori Oshima
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
24
|
Ozdener MH, Mahavadi S, Mummalaneni S, Lyall V. Relationship between ENaC Regulators and SARS-CoV-2 Virus Receptor (ACE2) Expression in Cultured Adult Human Fungiform (HBO) Taste Cells. Nutrients 2022; 14:2703. [PMID: 35807883 PMCID: PMC9268489 DOI: 10.3390/nu14132703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
In addition to the α, β, and γ subunits of ENaC, human salt-sensing taste receptor cells (TRCs) also express the δ-subunit. At present, it is not clear if the expression and function of the ENaC δ-subunit in human salt-sensing TRCs is also modulated by the ENaC regulatory hormones and intracellular signaling effectors known to modulate salt responses in rodent TRCs. Here, we used molecular techniques to demonstrate that the G-protein-coupled estrogen receptor (GPER1), the transient receptor potential cation channel subfamily V member 1 (TRPV1), and components of the renin-angiotensin-aldosterone system (RAAS) are expressed in δ-ENaC-positive cultured adult human fungiform (HBO) taste cells. Our results suggest that RAAS components function in a complex with ENaC and TRPV1 to modulate salt sensing and thus salt intake in humans. Early, but often prolonged, symptoms of COVID-19 infection are the loss of taste, smell, and chemesthesis. The SARS-CoV-2 spike protein contains two subunits, S1 and S2. S1 contains a receptor-binding domain, which is responsible for recognizing and binding to the ACE2 receptor, a component of RAAS. Our results show that the binding of a mutated S1 protein to ACE2 decreases ACE2 expression in HBO cells. We hypothesize that changes in ACE2 receptor expression can alter the balance between the two major RAAS pathways, ACE1/Ang II/AT1R and ACE2/Ang-(1-7)/MASR1, leading to changes in ENaC expression and responses to NaCl in salt-sensing human fungiform taste cells.
Collapse
Affiliation(s)
| | - Sunila Mahavadi
- Department of Biology, Center for Biomedical Research, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
25
|
Abstract
Long COVID refers to the lingering symptoms which persist or appear after the acute illness. The dominant long COVID symptoms in the two years since the pandemic began (2020-2021) have been depression, anxiety, fatigue, concentration and cognitive impairments with few reports of psychosis. Whether other symptoms will appear later on is not yet known. For example, dopamine-dependent movement disorders generally take many years before first symptoms are seen. Post-stroke depression and anxiety may explain many of the early long COVID cases. Hemorrhagic, hypoxic and inflammatory damages of the central nervous system, unresolved systematic inflammation, metabolic impairment, cerebral vascular accidents such as stroke, hypoxia from pulmonary damages and fibrotic changes are among the major causes of long COVID. Glucose metabolic and hypoxic brain issues likely predispose subjects with pre-existing diabetes, cardiovascular or lung problems to long COVID as well. Preliminary data suggest that psychotropic medications may not be a danger but could instead be beneficial in combating COVID-19 infection. The same is true for diabetes medications such as metformin. Thus, a focus on sigma-1 receptor ligands and glucose metabolism is expected to be useful for new drug development as well as the repurposing of current drugs. The reported protective effects of psychotropics and antihistamines against COVID-19, the earlier reports of reduced number of sigma-1 receptors in post-mortem schizophrenic brains, with many antidepressant and antipsychotic drugs being antihistamines with significant affinity for the sigma-1 receptor, support the role of sigma and histamine receptors in neuroinflammation and viral infections. Literature and data in all these areas are accumulating at a fast rate. We reviewed and discussed the relevant and important literature.
Collapse
|
26
|
Lumpuy-Castillo J, Vales-Villamarín C, Mahíllo-Fernández I, Pérez-Nadador I, Soriano-Guillén L, Lorenzo O, Garcés C. Association of ACE2 Polymorphisms and Derived Haplotypes With Obesity and Hyperlipidemia in Female Spanish Adolescents. Front Cardiovasc Med 2022; 9:888830. [PMID: 35586646 PMCID: PMC9108422 DOI: 10.3389/fcvm.2022.888830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
BackgroundIn the cardiovascular (CV) system, overactivation of the angiotensin converting enzyme (ACE) may trigger deleterious responses derived from angiotensin (Ang)-II, which can be attenuated by stimulation of ACE2 and subsequent Ang-(1-7) metabolite. However, ACE2 exhibits a high degree of genetic polymorphism that may affect its structure and stability, interfering with these cardioprotective actions. The aim of this study was to analyse the relationship of ACE2 polymorphisms with cardiovascular risk factors in children.MethodologyFive ACE2-single nucleotide polymorphisms (SNP), rs4646188, rs2158083, rs233575, rs879922, and rs2074192, previously related to CV risk factors, were analyzed in a representative sample of 12–16-year-old children and tested for their potential association with anthropometric parameters, insulin levels and the lipid profile.ResultsGirls (N = 461) exhibited lower rates of overweight, obesity, blood pressure, and glycemia than boys (N = 412), though increased plasma lipids. The triglycerides (TG)/HDL-C ratio was, however, lower in females. Interestingly, only in girls, the occurrence of overweight/obesity was associated with the SNPs rs879922 [OR 1.67 (1.02–2.75)], rs233575 [OR 1.98 (1.21- 3.22)] and rs2158083 [OR 1.67 (1.04–2.68)]. Also, TG levels were linked to the rs879922, rs233575, and rs2158083 SNPs, and the TG/HDL-C ratio was associated with rs879922 and rs233575. Levels of TC and LDL-C were associated with rs2074192 and rs2158083. Furthermore, the established cut-off level for TG ≥ 90 mg/dL was related to rs879922 [OR 1.78 (1.06–2.96)], rs2158083 [OR 1.75 (1.08–2.82)], and rs233575 [OR 1.62 (1.00–2.61)]. The cut-off level for TC ≥ 170 mg/dL was associated with rs2074192 OR 1.54 (1.04–2.28) and rs2158083 [OR 1.53 (1.04–2.25)]. Additionally, the haplotype (C-G-C) derived from rs879922-rs2158083-rs233575 was related to higher prevalence of overweight/obesity and TG elevation.ConclusionThe expression and activity of ACE2 may be essential for CV homeostasis. Interestingly, the ACE2-SNPs rs879922, rs233575, rs2158083 and rs2074192, and the haplotype (C-G-C) of the three former could induce vulnerability to obesity and hyperlipidemia in women. Thus, these SNPs might be used as predictive biomarkers for CV diseases and as molecular targets for CV therapy.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | | | | | - Iris Pérez-Nadador
- Lipid Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
- *Correspondence: Oscar Lorenzo
| | - Carmen Garcés
- Lipid Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| |
Collapse
|
27
|
Seyedmehdi SM, Imanparast F, Mohaghegh P, Mahmoudian S, Dehlaqi MK, Mehvari F, Abdullah MP. Patients with severe COVID-19 have reduced circulating levels of angiotensin-(1-7): A cohort study. Health Sci Rep 2022; 5:e564. [PMID: 35308416 PMCID: PMC8919452 DOI: 10.1002/hsr2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aims Angiotensin-converting enzyme 2 (ACE2) acts as a functional receptor for the entry of severe acute respiratory syndrome coronavirus 2 into host cells. Angiotensin (1-7) (Ang (1-7)) obtained from the function of ACE2 improves heart and lung function. We investigated the relationship between Ang (1-7) level and disease severity in patients with coronavirus disease 2019 (COVID-19). Methods This cohort study was carried out at Masih Daneshvari Hospital in Tehran, Iran from September 2020 to October 2020. To do so, the Ang (1-7) levels of 331 hospitalized COVID-19 patients with and without underlying disease were measured by ELISA kit. The need for oxygen, intubation, and mechanical ventilation were recorded for all the patients. Results Results showed a significant inverse relationship between the levels of Ang 1-7 and the severity of the disease (needed oxygen, intubation, and mechanical ventilation). According to the results, median (interquartile range) of Ang (1-7) levels was significantly lower in patients who needed oxygen versus those who needed no oxygen (44.50 (91) vs. 82.25 (68), p = 0.002), patients who needed intubation and mechanical ventilation versus those who did not (9.80 (62) vs. 68.70 (102), p < 0.000) and patients hospitalized in an intensive care unit (ICU) than people hospitalized in other wards. We also found that the older patients were more in need of ICU and mechanical ventilation than younger patients. Conclusions Higher levels of Ang (1-7) have been associated with decreased disease severity. Besides this, we perceived that synthetic Ang 1-7 peptides may be useful to treat and reduce the complications of COVID-19.
Collapse
Affiliation(s)
| | - Fatemeh Imanparast
- Infectious Diseases Research Center (IDRC)Arak University of Medical SciencesArakIran
- Department of Biochemistry and Genetics, Faculty of MedicineArak University of Medical SciencesArakIran
| | - Pegah Mohaghegh
- Community and Preventive Medicine Specialist, Department of Community Medicine, Faculty of MedicineArak University of Medical sciencesArakIran
| | - Saeed Mahmoudian
- Dr. Masih Daneshvari HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Mona Karimi Dehlaqi
- Dr. Masih Daneshvari HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Mehvari
- Department of Biochemistry and Genetics, Faculty of MedicineArak University of Medical SciencesArakIran
| | - Mihan Pour Abdullah
- Dr. Masih Daneshvari HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
28
|
Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. ENDOCRINOLOGIA, DIABETES Y NUTRICION 2022; 69:52-62. [PMID: 35232560 PMCID: PMC8882059 DOI: 10.1016/j.endien.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
The renin–angiotensin system (RAS) is one of the most complex hormonal regulatory systems, involving several organs that interact to regulate multiple body functions. The study of this system initially focused on investigating its role in the regulation of both cardiovascular function and related pathologies. From this approach, pharmacological strategies were developed for the treatment of cardiovascular diseases. However, new findings in recent decades have suggested that the RAS is much more complex and comprises two subsystems, the classic RAS and an alternative RAS, with antagonistic effects that are usually in equilibrium. The classic system is involved in pathologies where inflammatory, hypertrophic and fibrotic phenomena are common and is related to the development of chronic diseases that affect various body systems. This understanding has been reinforced by the evidence that local renin–angiotensin systems exist in many tissue types and by the role of the RAS in the spread and severity of COVID-19 infection, where it was discovered that viral entry into cells of the respiratory system is accomplished through binding to angiotensin-converting enzyme 2, which is present in the alveolar epithelium and is overexpressed in patients with chronic cardiometabolic diseases. In this narrative review, preclinical and clinical aspects of the RAS are presented and topics for future research are discussed some aspects are raised that should be clarified in the future and that call for further investigation of this system.
Collapse
Affiliation(s)
- Rafael Antonio Vargas Vargas
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia; Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia.
| | - Jesús María Varela Millán
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia; Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | | |
Collapse
|
29
|
Castoldi G, Carletti R, Ippolito S, Stella A, Zerbini G, Pelucchi S, Zatti G, di Gioia CRT. Angiotensin Type 2 and Mas Receptor Activation Prevents Myocardial Fibrosis and Hypertrophy through the Reduction of Inflammatory Cell Infiltration and Local Sympathetic Activity in Angiotensin II-Dependent Hypertension. Int J Mol Sci 2021; 22:ijms222413678. [PMID: 34948475 PMCID: PMC8708804 DOI: 10.3390/ijms222413678] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022] Open
Abstract
Compound 21 (C21), an AT2 receptor agonist, and Angiotensin 1-7 (Ang 1-7), through Mas receptor, play an important role in the modulation of the protective arm of the renin-angiotensin system. The aim of this study was to investigate in an experimental model of angiotensin II-dependent hypertension whether the activation of the potentially protective arm of the renin-angiotensin system, through AT2 or Mas receptor stimulation, counteracts the onset of myocardial fibrosis and hypertrophy, and whether these effects are mediated by inflammatory mechanism and/or sympathetic activation. Sprague Dawley rats (n = 67) were treated for 1 (n = 25) and 4 (n = 42) weeks and divided in the following groups: (a) Angiotensin II (Ang II, 200 ng/kg/min, osmotic minipumps, sub cutis); (b) Ang II+Compound 21 (C21, 0.3 mg/kg/day, intraperitoneal); (c) Ang II+Ang 1-7 (576 µg/kg/day, intraperitoneal); (d) Ang II+Losartan (50 mg/kg/day, per os); (e) control group (physiological saline, sub cutis). Systolic blood pressure was measured by tail cuff method and, at the end of the experimental period, the rats were euthanized and the heart was excised to evaluate myocardial fibrosis, hypertrophy, inflammatory cell infiltration and tyrosine hydroxylase expression, used as marker of sympathetic activity. Ang II caused a significant increase of blood pressure, myocardial interstitial and perivascular fibrosis and myocardial hypertrophy, as compared to control groups. C21 or Ang 1-7 administration did not modify the increase in blood pressure in Ang II treated rats, but both prevented the development of myocardial fibrosis and hypertrophy. Treatment with losartan blocked the onset of hypertension and myocardial fibrosis and hypertrophy in Ang II treated rats. Activation of AT2 receptors or Mas receptors prevents the onset of myocardial fibrosis and hypertrophy in Ang II-dependent hypertension through the reduction of myocardial inflammatory cell infiltration and tyrosine hydroxylase expression. Unlike what happens in case of treatment with losartan, the antifibrotic and antihypertrophic effects that follow the activation of the AT2 or Mas receptors are independent on the modulation of blood pressure.
Collapse
Affiliation(s)
- Giovanna Castoldi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (A.S.); (S.P.); (G.Z.)
- Correspondence: ; Tel.: +39-2-64488058
| | - Raffaella Carletti
- Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Universita’ di Roma, 00161 Rome, Italy;
| | - Silvia Ippolito
- Laboratorio Analisi Chimico Cliniche, Ospedale San Gerardo, ASST Monza, 20900 Monza, Italy;
| | - Andrea Stella
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (A.S.); (S.P.); (G.Z.)
| | - Gianpaolo Zerbini
- Unita Complicanze del Diabete, IRCCS Istituto Scientifico San Raffaele, 20132 Milan, Italy;
| | - Sara Pelucchi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (A.S.); (S.P.); (G.Z.)
| | - Giovanni Zatti
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, 20900 Monza, Italy; (A.S.); (S.P.); (G.Z.)
- Clinica Ortopedica, Ospedale San Gerardo, ASST Monza, 20900 Monza, Italy
| | - Cira R. T. di Gioia
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomopatologiche, Istituto di Anatomia Patologica, Sapienza Universita’ di Roma, 00161 Rome, Italy;
| |
Collapse
|
30
|
Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. ACTA ACUST UNITED AC 2021; 69:52-62. [PMID: 34723133 PMCID: PMC8547789 DOI: 10.1016/j.endinu.2021.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
The renin–angiotensin system (RAS) is one of the most complex hormonal regulatory systems, involving several organs that interact to regulate multiple body functions. The study of this system initially focused on investigating its role in the regulation of both cardiovascular function and related pathologies. From this approach, pharmacological strategies were developed for the treatment of cardiovascular diseases. However, new findings in recent decades have suggested that the RAS is much more complex and comprises two subsystems, the classic RAS and an alternative RAS, with antagonistic effects that are usually in equilibrium. The classic system is involved in pathologies where inflammatory, hypertrophic and fibrotic phenomena are common and is related to the development of chronic diseases that affect various body systems. This understanding has been reinforced by the evidence that local renin–angiotensin systems exist in many tissue types and by the role of the RAS in the spread and severity of COVID-19 infection, where it was discovered that viral entry into cells of the respiratory system is accomplished through binding to angiotensin-converting enzyme 2, which is present in the alveolar epithelium and is overexpressed in patients with chronic cardiometabolic diseases. In this narrative review, preclinical and clinical aspects of the RAS are presented and topics for future research are discussed some aspects are raised that should be clarified in the future and that call for further investigation of this system.
Collapse
Affiliation(s)
- Rafael Antonio Vargas Vargas
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia.,Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | - Jesús María Varela Millán
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia.,Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | | |
Collapse
|
31
|
Pucci F, Annoni F, dos Santos RAS, Taccone FS, Rooman M. Quantifying Renin-Angiotensin-System Alterations in COVID-19. Cells 2021; 10:2755. [PMID: 34685735 PMCID: PMC8535134 DOI: 10.3390/cells10102755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in a wide series of physiological processes, among which inflammation and blood pressure regulation. One of its key components, the angiotensin-converting enzyme 2, has been identified as the entry point of the SARS-CoV-2 virus into the host cells, and therefore a lot of research has been devoted to study RAS dysregulation in COVID-19. Here we discuss the alterations of the regulatory RAS axes due to SARS-CoV-2 infection on the basis of a series of recent clinical investigations and experimental analyzes quantifying, e.g., the levels and activity of RAS components. We performed a comprehensive meta-analysis of these data in view of disentangling the links between the impaired RAS functioning and the pathophysiological characteristics of COVID-19. We also review the effects of several RAS-targeting drugs and how they could potentially help restore the normal RAS functionality and minimize the COVID-19 severity. Finally, we discuss the conflicting evidence found in the literature and the open questions on RAS dysregulation in SARS-CoV-2 infection whose resolution would improve our understanding of COVID-19.
Collapse
Affiliation(s)
- Fabrizio Pucci
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (F.A.); (F.S.T.)
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (F.A.); (F.S.T.)
| | - Marianne Rooman
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|
32
|
Ravichandran B, Grimm D, Krüger M, Kopp S, Infanger M, Wehland M. SARS-CoV-2 and hypertension. Physiol Rep 2021; 9:e14800. [PMID: 34121359 PMCID: PMC8198473 DOI: 10.14814/phy2.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
The objective of this review is to give an overview of the pathophysiological effects of the Coronavirus Disease 2019 (COVID-19) in relation to hypertension (HT), with a focus on the Renin-Angiotensin-Aldosterone System (RAAS) and the MAS receptor. HT is a multifactorial disease and a public health burden, as it is a risk factor for diseases like stroke, coronary artery disease, and heart failure, leading to 10.4 million deaths yearly. Blood pressure is regulated by the RAAS. The system consists of two counter-regulatory axes: ACE/ANG-II/AT1 R and ACE2/ANG-(1-7)/MAS. The main regulatory protein in balancing the RAAS is angiotensin-converting enzyme 2 (ACE2). The protein also functions as the main mediator of endocytosis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell. SARS-CoV-2 is the cause of COVID-19 and has caused a worldwide pandemic; however, the treatment and prophylaxis of COVID-19 are limited. Several drugs and vaccines are currently being tested in clinical trials with a few already approved by EMA and FDA. HT is a major risk factor regarding the severity and fatality of COVID-19, and the RAAS plays an important role in COVID-19 infection since SARS-CoV-2 can lead to a dysregulation of the system by reducing the ACE2 expression. The exact mechanisms of HT in relation to COVID-19 remain uncertain, and more research is needed for further elucidation.
Collapse
Affiliation(s)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
33
|
Delaitre C, Boisbrun M, Lecat S, Dupuis F. Targeting the Angiotensin II Type 1 Receptor in Cerebrovascular Diseases: Biased Signaling Raises New Hopes. Int J Mol Sci 2021; 22:ijms22136738. [PMID: 34201646 PMCID: PMC8269339 DOI: 10.3390/ijms22136738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
The physiological and pathophysiological relevance of the angiotensin II type 1 (AT1) G protein-coupled receptor no longer needs to be proven in the cardiovascular system. The renin–angiotensin system and the AT1 receptor are the targets of several classes of therapeutics (such as angiotensin converting enzyme inhibitors or angiotensin receptor blockers, ARBs) used as first-line treatments in cardiovascular diseases. The importance of AT1 in the regulation of the cerebrovascular system is also acknowledged. However, despite numerous beneficial effects in preclinical experiments, ARBs do not induce satisfactory curative results in clinical stroke studies. A better understanding of AT1 signaling and the development of biased AT1 agonists, able to selectively activate the β-arrestin transduction pathway rather than the Gq pathway, have led to new therapeutic strategies to target detrimental effects of AT1 activation. In this paper, we review the involvement of AT1 in cerebrovascular diseases as well as recent advances in the understanding of its molecular dynamics and biased or non-biased signaling. We also describe why these alternative signaling pathways induced by β-arrestin biased AT1 agonists could be considered as new therapeutic avenues for cerebrovascular diseases.
Collapse
Affiliation(s)
- Céline Delaitre
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | | | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | - François Dupuis
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: ; Tel.: +33-372747272
| |
Collapse
|
34
|
Implication of RAS in Postnatal Cardiac Remodeling, Fibrosis and Dysfunction Induced by Fetal Undernutrition. PATHOPHYSIOLOGY 2021; 28:273-290. [PMID: 35366262 PMCID: PMC8830479 DOI: 10.3390/pathophysiology28020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Fetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated cardiovascular fibrosis and remodeling, and lactation is a key developmental window. We aimed to assess if alterations in RAS during lactation participate in cardiac dysfunction associated with fetal undernutrition. Control dams received food ad libitum, and MUN had 50% nutrient restriction during the second half of gestation. Both dams were fed ad libitum during lactation, and male offspring were studied at weaning. We assessed: ventricular structure and function (echocardiography); blood pressure (intra-arterially, anesthetized rats); collagen content and intramyocardial artery structure (Sirius red, Masson Trichromic); myocardial and intramyocardial artery RAS receptors (immunohistochemistry); plasma angiotensin-II (ELISA) and TGF-β1 protein expression (Western Blot). Compared to Control, MUN offspring exhibited significantly higher plasma Angiotensin-II and a larger left ventricular mass, as well as larger intramyocardial artery media/lumen, interstitial collagen and perivascular collagen. In MUN hearts, TGF-β1 tended to be higher, and the end-diastolic diameter and E/A ratio were significantly lower with no differences in ejection fraction or blood pressure. In the myocardium, no differences between groups were detected in AT1, AT2 or Mas receptors, with MrgD being significantly lower in the MUN group. In intramyocardial arteries from MUN rats, AT1 and Mas receptors were significantly elevated, while AT2 and MrgD were lower compared to Control. Conclusions. In rats exposed to fetal undernutrition, RAS disbalance and associated cardiac remodeling during lactation may set the basis for later heart dysfunction.
Collapse
|
35
|
Flinn B, Royce N, Gress T, Chowdhury N, Santanam N. Dual role for angiotensin-converting enzyme 2 in Severe Acute Respiratory Syndrome Coronavirus 2 infection and cardiac fat. Obes Rev 2021; 22:e13225. [PMID: 33660398 PMCID: PMC8013367 DOI: 10.1111/obr.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been an increasingly prevalent target for investigation since its discovery 20 years ago. The finding that it serves a counterregulatory function within the traditional renin-angiotensin system, implicating it in cardiometabolic health, has increased its clinical relevance. Focus on ACE2's role in cardiometabolic health has largely centered on its apparent functions in the context of obesity. Interest in ACE2 has become even greater with the discovery that it serves as the cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opening up numerous mechanisms for deleterious effects of infection. The proliferation of ACE2 within the literature coupled with its dual role in SARS-CoV-2 infection and obesity necessitates review of the current understanding of ACE2's physiological, pathophysiological, and potential therapeutic functions. This review highlights the roles of ACE2 in cardiac dysfunction and obesity, with focus on epicardial adipose tissue, to reconcile the data in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Brendin Flinn
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Nicholas Royce
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Todd Gress
- Research Service, Hershel "Woody" Williams VA Medical Center, Huntington, West Virginia, USA
| | - Nepal Chowdhury
- Department of Cardiovascular and Thoracic Surgery, St. Mary's Heart Center, Huntington, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| |
Collapse
|
36
|
Uzunova VV, Todev A, Zarkos J, Addai D, Ananiev J, Rashev P, Alexandrova R, Tolekova A. Strengthening CoViD-19 therapy via combinations of RAS modulators. Med Hypotheses 2021; 150:110571. [PMID: 33799164 PMCID: PMC7992309 DOI: 10.1016/j.mehy.2021.110571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Evidence has accumulated that the pathology of CoViD-19 is strongly related to the renin-angiotensin system (RAS). The blockage of the angiotensin converting enzyme 2 (ACE2) by the SARS-CoV-2 virus leads to downstream consequences such as increased vascular tone, extensive fibrosis and pronounced immune reactions. Different approaches to tackle the adverse viral effects by compensating the lost ACE2 function have been suggested. Here, we use an unequal-arm lever model to describe a simplified version of the biased regulation exercised by the angiotensin II and angiotensin-(1-7) hormones, which are the substrate and the product of ACE2, respectively. We reason upon the lever dynamics and its disruptions caused by the virus, and propose that a combination of RAS modulators will most efficiently compensate the imbalance due to the excess of angiotensin II and the scarcity of angiotensin-(1-7). Specifically, we focus on the possible benefits of the simultaneous application of two agents, a MAS-receptor agonist and an angiotensin-II-type-2-receptor agonist. We conjecture that this combination has the potential to introduce a beneficial synergistic action that promotes anti-hypoxic, anti-fibrotic and anti-proliferative effects, thereby improving the clinical management of acute and chronic CoViD-19 pathologies.
Collapse
Affiliation(s)
| | - Angel Todev
- Trakia University, Medical Faculty, Department of Physiology, Pathophysiology and Pharmacology, Stara Zagora, Bulgaria
| | - Jacqueline Zarkos
- Trakia University, Medical Faculty, Department of Physiology, Pathophysiology and Pharmacology, Stara Zagora, Bulgaria
| | - Daniel Addai
- Trakia University, Medical Faculty, Department of Physiology, Pathophysiology and Pharmacology, Stara Zagora, Bulgaria
| | - Julian Ananiev
- Trakia University, Medical Faculty, Department of General and Clinical Pathology, Stara Zagora, Bulgaria
| | - Pavel Rashev
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Radostina Alexandrova
- Institute of Experimental Morphology, Pathology and Anthropology Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Tolekova
- Trakia University, Medical Faculty, Department of Physiology, Pathophysiology and Pharmacology, Stara Zagora, Bulgaria; Trakia University, Medical College, Stara Zagora, Bulgaria.
| |
Collapse
|
37
|
Issa H, Eid AH, Berry B, Takhviji V, Khosravi A, Mantash S, Nehme R, Hallal R, Karaki H, Dhayni K, Faour WH, Kobeissy F, Nehme A, Zibara K. Combination of Angiotensin (1-7) Agonists and Convalescent Plasma as a New Strategy to Overcome Angiotensin Converting Enzyme 2 (ACE2) Inhibition for the Treatment of COVID-19. Front Med (Lausanne) 2021; 8:620990. [PMID: 33816521 PMCID: PMC8012486 DOI: 10.3389/fmed.2021.620990] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most concerning health problem worldwide. SARS-CoV-2 infects cells by binding to angiotensin-converting enzyme 2 (ACE2). It is believed that the differential response to SARS-CoV-2 is correlated with the differential expression of ACE2. Several reports proposed the use of ACE2 pharmacological inhibitors and ACE2 antibodies to block viral entry. However, ACE2 inhibition is associated with lung and cardiovascular pathology and would probably increase the pathogenesis of COVID-19. Therefore, utilizing ACE2 soluble analogs to block viral entry while rescuing ACE2 activity has been proposed. Despite their protective effects, such analogs can form a circulating reservoir of the virus, thus accelerating its spread in the body. Levels of ACE2 are reduced following viral infection, possibly due to increased viral entry and lysis of ACE2 positive cells. Downregulation of ACE2/Ang (1-7) axis is associated with Ang II upregulation. Of note, while Ang (1-7) exerts protective effects on the lung and cardiovasculature, Ang II elicits pro-inflammatory and pro-fibrotic detrimental effects by binding to the angiotensin type 1 receptor (AT1R). Indeed, AT1R blockers (ARBs) can alleviate the harmful effects associated with Ang II upregulation while increasing ACE2 expression and thus the risk of viral infection. Therefore, Ang (1-7) agonists seem to be a better treatment option. Another approach is the transfusion of convalescent plasma from recovered patients with deteriorated symptoms. Indeed, this appears to be promising due to the neutralizing capacity of anti-COVID-19 antibodies. In light of these considerations, we encourage the adoption of Ang (1-7) agonists and convalescent plasma conjugated therapy for the treatment of COVID-19 patients. This therapeutic regimen is expected to be a safer choice since it possesses the proven ability to neutralize the virus while ensuring lung and cardiovascular protection through modulation of the inflammatory response.
Collapse
Affiliation(s)
- Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
- College of Public Health, Phoenicia University, Zahrani, Lebanon
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Bassam Berry
- Institut Pasteur, Paris 6 University, Paris, France
| | - Vahideh Takhviji
- Transfusion Research Center, High Institute for Research and Education in Transfusion, Tehran, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion, Tehran, Iran
| | - Sarah Mantash
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Rawan Nehme
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Rawan Hallal
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Hussein Karaki
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Kawthar Dhayni
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
- EA7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
| | - Wissam H. Faour
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Nehme
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
38
|
Chen IC, Lin JY, Liu YC, Chai CY, Yeh JL, Hsu JH, Wu BN, Dai ZK. Angiotensin-Converting Enzyme 2 Activator Ameliorates Severe Pulmonary Hypertension in a Rat Model of Left Pneumonectomy Combined With VEGF Inhibition. Front Med (Lausanne) 2021; 8:619133. [PMID: 33681251 PMCID: PMC7933511 DOI: 10.3389/fmed.2021.619133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a life-threatening and deteriorating disease with no promising therapy available currently due to its diversity and complexity. An imbalance between vasoconstriction and vasodilation has been proposed as the mechanism of PAH. Angiotensin-converting enzyme 2 (ACE2), which catalyzes the hydrolysis of the vasoconstrictor angiotensin (Ang) II into the vasodilator Ang-(1-7), has been shown to be an important regulator of blood pressure and cardiovascular diseases. Herein we hypothesized diminazene aceturate (DIZE), an ACE2 activator, could ameliorate the development of PAH and pulmonary vascular remodeling. Methods: A murine model of PAH was established using left pneumonectomy (PNx) on day 0 followed by injection of a single dose of the VEGF receptor-2 inhibitor SU5416 (25 mg/kg) subcutaneously on day 1. All hemodynamic and biochemical measurements were done at the end of the study on day 42. Animals were divided into 4 groups (n = 6–8/group): (1) sham-operated group, (2) vehicle-treatment group (SuPNx42), (3) early treatment group (SuPNx42/DIZE1−42) with DIZE at 15 mg/kg/day, subcutaneously from day 1 to day 42, and (4) late treatment group (SuPNx42/DIZE29−42) with DIZE from days 29–42. Results: In both the early and late treatment groups, DIZE significantly attenuated the mean pulmonary artery pressure, pulmonary arteriolar remodeling, and right ventricle brain natriuretic peptide (BNP), as well as reversed the overexpression of ACE while up-regulating the expression of Ang-(1-7) when compared with the vehicle-treatment group. In addition, the early treatment group also significantly decreased plasma BNP and increased the expression of eNOS. Conclusions: ACE2 activator has therapeutic potentials for preventing and attenuating the development of PAH in an animal model of left pneumonectomy combined with VEGF inhibition. Activation of ACE2 may thus be a useful therapeutic strategy for the treatment of human PAH.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jao-Yu Lin
- Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Liu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Wray S, Arrowsmith S. The Physiological Mechanisms of the Sex-Based Difference in Outcomes of COVID19 Infection. Front Physiol 2021; 12:627260. [PMID: 33633588 PMCID: PMC7900431 DOI: 10.3389/fphys.2021.627260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The scale of the SARS-CoV-2 pandemic has thrust a spotlight on the sex-based differences in response to viral diseases; morbidity and mortality are greater in men than women. We outline the mechanisms by which being female offers a degree of protection from COVID19, that persists even when confounders such as comorbidities are considered. The physiological and immunological mechanisms are fascinating and range from incomplete X chromosome inactivation of immune genes, a crucial role for angiotensin converting enzyme 2 (ACE2), and regulation of both immune activity and ACE2 by sex steroids. From this flows understanding of why lung and other organs are more susceptible to COVID19 damage in men, and how their distinct immunological landscapes need to be acknowledged to guide prognosis and treatment. Pregnancy, menopause, and hormone replacement therapy bring changed hormonal environments and the need for better stratification in COVID19 studies. We end by noting clinical trials based on increasing estrogens or progesterone or anti-testosterone drugs; excellent examples of translational physiology.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women’s and Children’s Health, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
40
|
Dong Z, Dai H, Feng Z, Liu W, Gao Y, Liu F, Zhang Z, Zhang N, Dong X, Zhao Q, Zhou X, Du J, Liu B. Mechanism of herbal medicine on hypertensive nephropathy (Review). Mol Med Rep 2021; 23:234. [PMID: 33537809 PMCID: PMC7893801 DOI: 10.3892/mmr.2021.11873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephropathy is the most common complication of hypertension, and is one of the main causes of end-stage renal disease (ESRD) in numerous countries. The basic pathological feature of hypertensive nephropathy is arteriolosclerosis followed by renal parenchymal damage. The etiology of this disease is complex, and its pathogenesis is mainly associated with renal hemodynamic changes and vascular remodeling. Despite the increased knowledge on the pathogenesis of hypertensive nephropathy, the current clinical treatment methods are still not effective in preventing the development of the disease to ESRD. Herbal medicine, which is used to relieve symptoms, can improve hypertensive nephropathy through multiple targets. Since there are few clinical studies on the treatment of hypertensive nephropathy with herbal medicine, this article aims to review the progress on the basic research on the treatment of hypertensive nephropathy with herbal medicine, including regulation of the renin angiotensin system, inhibition of sympathetic excitation, antioxidant stress and anti-inflammatory protection of endothelial cells, and improvement of obesity-associated factors. Herbal medicine with different components plays a synergistic and multi-target role in the treatment of hypertensive nephropathy. The description of the mechanism of herbal medicine in the treatment of hypertensive nephropathy will contribute towards the progress of modern medicine.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, P.R. China
| | - Zhandong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing 101200, P.R. China
| | - Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zihan Zhang
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
41
|
Abdul-Hafez A, Mohamed T, Uhal BD. Angiotensin Converting Enzyme-2 (ACE-2) role in disease and future in research. JOURNAL OF LUNG, PULMONARY & RESPIRATORY RESEARCH 2021; 8:54-60. [PMID: 34414260 PMCID: PMC8373052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Like the 2002-2003 epidemic severe acute respiratory syndrome coronavirus (SARS-CoV), angiotensin converting enzyme-2 (ACE-2) has been identified as the SARS-CoV-2 receptor.1-3 The virus docks into host cell via its spike protein binding to ACE-2 and undergoes proteolytic cleavage by TMPRSS2 protease to facilitate membrane fusion. The spike protein binding to ACE-2 has been shown to be stronger in the novel SARS-CoV-2 virus.1 This review will present an overview of ACE-2 biology.
Collapse
Affiliation(s)
- Amal Abdul-Hafez
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Tarek Mohamed
- Department of Pediatrics and Human Development, Michigan State University, USA
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, USA
| |
Collapse
|
42
|
Zoja C, Xinaris C, Macconi D. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Front Pharmacol 2020; 11:586892. [PMID: 33519447 PMCID: PMC7845653 DOI: 10.3389/fphar.2020.586892] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. The standard treatments for diabetic patients are glucose and blood pressure control, lipid lowering, and renin-angiotensin system blockade; however, these therapeutic approaches can provide only partial renoprotection if started late in the course of the disease. One major limitation in developing efficient therapies for DN is the complex pathobiology of the diabetic kidney, which undergoes a set of profound structural, metabolic and functional changes. Despite these difficulties, experimental models of diabetes have revealed promising therapeutic targets by identifying pathways that modulate key functions of podocytes and glomerular endothelial cells. In this review we will describe recent advances in the field, analyze key molecular pathways that contribute to the pathogenesis of the disease, and discuss how they could be modulated to prevent or reverse DN.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,University of Nicosia Medical School, Nicosia, Cyprus
| | - Daniela Macconi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
43
|
Pucci F, Bogaerts P, Rooman M. Modeling the Molecular Impact of SARS-CoV-2 Infection on the Renin-Angiotensin System. Viruses 2020; 12:E1367. [PMID: 33265982 PMCID: PMC7760740 DOI: 10.3390/v12121367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection is mediated by the binding of its spike protein to the angiotensin-converting enzyme 2 (ACE2), which plays a pivotal role in the renin-angiotensin system (RAS). The study of RAS dysregulation due to SARS-CoV-2 infection is fundamentally important for a better understanding of the pathogenic mechanisms and risk factors associated with COVID-19 coronavirus disease and to design effective therapeutic strategies. In this context, we developed a mathematical model of RAS based on data regarding protein and peptide concentrations; the model was tested on clinical data from healthy normotensive and hypertensive individuals. We used our model to analyze the impact of SARS-CoV-2 infection on RAS, which we modeled through a downregulation of ACE2 as a function of viral load. We also used it to predict the effect of RAS-targeting drugs, such as RAS-blockers, human recombinant ACE2, and angiotensin 1-7 peptide, on COVID-19 patients; the model predicted an improvement of the clinical outcome for some drugs and a worsening for others. Our model and its predictions constitute a valuable framework for in silico testing of hypotheses about the COVID-19 pathogenic mechanisms and the effect of drugs aiming to restore RAS functionality.
Collapse
Affiliation(s)
- Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| | - Philippe Bogaerts
- Biosystems Modeling and Control, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50, 1050 Brussels, Belgium;
| |
Collapse
|
44
|
Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020; 177:4825-4844. [PMID: 32333398 PMCID: PMC7572451 DOI: 10.1111/bph.15082] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
Angiotensin Converting Enzyme2 is the cell surface binding site for the coronavirus SARS-CoV-2, which causes COVID-19. We propose that an imbalance in the action of ACE1- and ACE2-derived peptides, thereby enhancing angiotensin II (Ang II) signalling is primary driver of COVID-19 pathobiology. ACE1/ACE2 imbalance occurs due to the binding of SARS-CoV-2 to ACE2, reducing ACE2-mediated conversion of Ang II to Ang peptides that counteract pathophysiological effects of ACE1-generated ANG II. This hypothesis suggests several approaches to treat COVID-19 by restoring ACE1/ACE2 balance: (a) AT receptor antagonists; (b) ACE1 inhibitors (ACEIs); (iii) agonists of receptors activated by ACE2-derived peptides (e.g. Ang (1-7), which activates MAS1); (d) recombinant human ACE2 or ACE2 peptides as decoys for the virus. Reducing ACE1/ACE2 imbalance is predicted to blunt COVID-19-associated morbidity and mortality, especially in vulnerable patients. Importantly, approved AT antagonists and ACEIs can be rapidly repurposed to test their efficacy in treating COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
| | - Paul A. Insel
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
45
|
Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020. [PMID: 32333398 DOI: 10.1111/bph.15082.10.1111/bph.15082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Angiotensin Converting Enzyme2 is the cell surface binding site for the coronavirus SARS-CoV-2, which causes COVID-19. We propose that an imbalance in the action of ACE1- and ACE2-derived peptides, thereby enhancing angiotensin II (Ang II) signalling is primary driver of COVID-19 pathobiology. ACE1/ACE2 imbalance occurs due to the binding of SARS-CoV-2 to ACE2, reducing ACE2-mediated conversion of Ang II to Ang peptides that counteract pathophysiological effects of ACE1-generated ANG II. This hypothesis suggests several approaches to treat COVID-19 by restoring ACE1/ACE2 balance: (a) AT receptor antagonists; (b) ACE1 inhibitors (ACEIs); (iii) agonists of receptors activated by ACE2-derived peptides (e.g. Ang (1-7), which activates MAS1); (d) recombinant human ACE2 or ACE2 peptides as decoys for the virus. Reducing ACE1/ACE2 imbalance is predicted to blunt COVID-19-associated morbidity and mortality, especially in vulnerable patients. Importantly, approved AT antagonists and ACEIs can be rapidly repurposed to test their efficacy in treating COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, Lucia A. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 2020; 18:251-275. [PMID: 33037326 DOI: 10.1038/s41569-020-00437-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Hypertension affects approximately one third of the world's adult population and is a major cause of premature death despite considerable advances in pharmacological treatments. Growing evidence supports the use of lifestyle interventions for the prevention and adjuvant treatment of hypertension. In this Review, we provide a summary of the epidemiological research supporting the preventive and antihypertensive effects of major lifestyle interventions (regular physical exercise, body weight management and healthy dietary patterns), as well as other less traditional recommendations such as stress management and the promotion of adequate sleep patterns coupled with circadian entrainment. We also discuss the physiological mechanisms underlying the beneficial effects of these lifestyle interventions on hypertension, which include not only the prevention of traditional risk factors (such as obesity and insulin resistance) and improvements in vascular health through an improved redox and inflammatory status, but also reduced sympathetic overactivation and non-traditional mechanisms such as increased secretion of myokines.
Collapse
Affiliation(s)
| | - Pedro Carrera-Bastos
- Centre for Primary Health Care Research, Lund University/Region Skane, Skane University Hospital, Malmö, Sweden
| | - Beatriz G Gálvez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,IMDEA Alimentacion, Madrid, Spain
| | - Luis M Ruilope
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain. .,Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
47
|
Lumpuy-Castillo J, Lorenzo-Almorós A, Pello-Lázaro AM, Sánchez-Ferrer C, Egido J, Tuñón J, Peiró C, Lorenzo Ó. Cardiovascular Damage in COVID-19: Therapeutic Approaches Targeting the Renin-Angiotensin-Aldosterone System. Int J Mol Sci 2020; 21:E6471. [PMID: 32899833 PMCID: PMC7555368 DOI: 10.3390/ijms21186471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is usually more severe and associated with worst outcomes in individuals with pre-existing cardiovascular pathologies, including hypertension or atherothrombosis. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can differentially infect multiple tissues (i.e., lung, vessel, heart, liver) in different stages of disease, and in an age- and sex-dependent manner. In particular, cardiovascular (CV) cells (e.g., endothelial cells, cardiomyocytes) could be directly infected and indirectly disturbed by systemic alterations, leading to hyperinflammatory, apoptotic, thrombotic, and vasoconstrictive responses. Until now, hundreds of clinical trials are testing antivirals and immunomodulators to decrease SARS-CoV-2 infection or related systemic anomalies. However, new therapies targeting the CV system might reduce the severity and lethality of disease. In this line, activation of the non-canonical pathway of the renin-angiotensin-aldosterone system (RAAS) could improve CV homeostasis under COVID-19. In particular, treatments with angiotensin-converting enzyme inhibitors (ACEi) and angiotensin-receptor blockers (ARB) may help to reduce hyperinflammation and viral propagation, while infusion of soluble ACE2 may trap plasma viral particles and increase cardioprotective Ang-(1-9) and Ang-(1-7) peptides. The association of specific ACE2 polymorphisms with increased susceptibility of infection and related CV pathologies suggests potential genetic therapies. Moreover, specific agonists of Ang-(1-7) receptor could counter-regulate the hypertensive, hyperinflammatory, and hypercoagulable responses. Interestingly, sex hormones could also regulate all these RAAS components. Therefore, while waiting for an efficient vaccine, we suggest further investigations on the non-canonical RAAS pathway to reduce cardiovascular damage and mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular pathology. Instituto de Investigaciones Sanitarias-Hospital Fundación Jiménez Díaz. Universidad Autónoma, 28040 Madrid, Spain; (J.L.-C.); (J.E.); (J.T.)
| | - Ana Lorenzo-Almorós
- Department of Internal Medicine. Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | | | - Carlos Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (C.S.-F.); (C.P.)
| | - Jesús Egido
- Laboratory of Diabetes and Vascular pathology. Instituto de Investigaciones Sanitarias-Hospital Fundación Jiménez Díaz. Universidad Autónoma, 28040 Madrid, Spain; (J.L.-C.); (J.E.); (J.T.)
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28029 Madrid, Spain
| | - José Tuñón
- Laboratory of Diabetes and Vascular pathology. Instituto de Investigaciones Sanitarias-Hospital Fundación Jiménez Díaz. Universidad Autónoma, 28040 Madrid, Spain; (J.L.-C.); (J.E.); (J.T.)
- Department of Cardiology. Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (C.S.-F.); (C.P.)
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular pathology. Instituto de Investigaciones Sanitarias-Hospital Fundación Jiménez Díaz. Universidad Autónoma, 28040 Madrid, Spain; (J.L.-C.); (J.E.); (J.T.)
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28029 Madrid, Spain
| |
Collapse
|
48
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
49
|
Aksoy H, Karadag AS, Wollina U. Angiotensin II receptors: Impact for COVID-19 severity. Dermatol Ther 2020; 33:e13989. [PMID: 32645228 PMCID: PMC7361069 DOI: 10.1111/dth.13989] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
COVID-19 is an outbreak of viral pneumonia which became a global health crisis, and the risk of morbidity and mortality of people with obesity are higher. SARS-CoV-2, the pathogen of COVID-19, enters into cells through binding to the Angiotensin Converting Enzyme (ACE) homolog-2 (ACE2). ACE2 is a regulator of two contrary pathways in renin angiotensin system (RAS): ACE-Ang-II-AT1R axis and ACE2-Ang 1-7-Mas axis. Viral entry process eventuates in downregulation of ACE2 and subsequent activation of ACE-Ang-II-AT1R axis. ACE-Ang II-AT1R axis increases lipid storage, reduces white-to-beige fat conversion and plays role in obesity. Conversely, adipose tissue is an important source of angiotensin, and obesity results in increased systemic RAS. ACE-Ang-II-AT1R axis, which has proinflammatory, profibrotic, prothrombotic, and vasoconstrictive effects, is potential mechanism of more severe SARS-CoV-2 infection. The link between obesity and severe COVID-19 may be attributed to ACE2 consumption and subsequent ACE-Ang-II-AT1R axis activation. Therefore, patients with SARS-CoV-2 infection may benefit from therapeutic strategies that activate ACE2-Ang 1-7-Mas axis, such as Ang II receptor blockers (ARBs), ACE inhibitors (ACEIs), Mas receptor agonists and ACE2.
Collapse
Affiliation(s)
- Hasan Aksoy
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Ayse Serap Karadag
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital of the Technical University, Dresden, Germany
| |
Collapse
|
50
|
Shete A. Urgent need for evaluating agonists of angiotensin-(1-7)/Mas receptor axis for treating patients with COVID-19. Int J Infect Dis 2020; 96:348-351. [PMID: 32389847 PMCID: PMC7204665 DOI: 10.1016/j.ijid.2020.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023] Open
Abstract
ACE2 is a receptor of entry of SARS-CoV-2 into the host cells, and its upregulation has been implicated in increasing susceptibility of individuals to this infection. The clinical picture of COVID-19 suggests a role of ACE2 blockade, rather than its overexpression, in causing the pathogenesis. ACE2 blockade results in increased angiotensin II activity with simultaneous hampering of functions of angiotensin-(1-7)/MasR axis. Acute respiratory distress due to interstitial pulmonary fibrosis, cardiomyopathy and shock reported in COVID-19 patients can be explained by imbalanced angiotensin II and angiotensin-(1-7) activities. Failure of angiotensin II type 1 receptor blockers to control the severity of SARS-CoV-2 infections indicates the importance of simultaneous induction of angiotensin-(1-7)/MasR axis for correcting pathological conditions in COVID-19 through its anti-fibrotic, anti-inflammatory, vasodilatory, and cardioprotective roles. MasR agonists have also shown organ protective effects in a number of animal studies. Unfortunately, these agonists have not been tested in clinical studies. Their evaluation in seriously ill COVID-19 patients is urgently warranted to reduce mortality due to infection.
Collapse
|