1
|
Liu C, Xia W, Cao Z, Dai J, Zhou R, Li H, Xu J. Bibliometric analysis and research progress on hydrogen peroxide and persulfate oxidation processes in the remediation of actual oil-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4403-4430. [PMID: 39890764 DOI: 10.1007/s11356-025-35950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Oil pollution poses significant harm to both the ecological environment and human health. The primary sources of oil pollutants in soil are leaks that occur during the extraction, transportation, and production phases. In the face of the severe situation of global soil pollution, chemical oxidation technology has shown potential in the remediation of oil-contaminated soil. However, most current research on chemical oxidation technology remains in the laboratory stage, with limited discussion on its characteristics and application conditions in the actual treatment of oil-contaminated sites. To address this gap, this paper applies bibliometric methods to analyze the development trends of chemical oxidation technology and provides a comprehensive review from the perspective of its real-world applications in remediating oil-contaminated soil. It explores commonly used activators, enhancement measures, and key influencing factors of advanced oxidation processes, focusing particularly on those based on hydrogen peroxide and persulfate. The study highlights significant advantages, such as improving remediation efficiency, reducing treatment time, and compatibility with other remediation methods. Nevertheless, challenges remain, including soil acidification, limited pollutant targeting, and high operational costs. To address these issues, this paper proposes innovative directions such as the development of green and efficient activators, optimization of oxidant application strategies, and integration of chemical oxidation with other remediation technologies. These findings aim to establish a robust theoretical foundation and provide strong technical support for future chemical oxidation treatments of such soils. Through this research, we aspire to develop more scientific and effective strategies and methods for the remediation of oil-contaminated soil.
Collapse
Affiliation(s)
- Chuanyu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Wenzhu Xia
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Zezhuang Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Jianan Dai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Rankang Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Huan Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China.
| |
Collapse
|
2
|
Tang J, Gao Z, Xu L, Zhao Q, Hu T, Luo Y, Dou J, Bai Y, Xia L, Du K. Smartphone-assisted colorimetric biosensor for the rapid visual detection of natural antioxidants in food samples. Food Chem 2025; 462:141026. [PMID: 39216373 DOI: 10.1016/j.foodchem.2024.141026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Quantitative monitoring of the concentrations of epigallocatechin gallate (EGCG) and cysteine (Cys) is of great significance for promoting human health. In this study, iron/aluminum bimetallic MOF material MIL-53 (Fe, Al) was rapidly prepared under room temperature using a co-precipitation method, followed by investigating the peroxidase-like (POD-like) activity of MIL-53(Fe, Al) using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate. The results showed that the Michaelis -Menten constants of TMB and H2O2 as substrates were 0.167 mM and 0.108 mM, respectively. A colorimetric sensing platform for detecting EGCG and Cys was developed and successfully applied for analysis and quantitative detection using a smartphone. The linear detection range for EGCG was 15∼80 μM (R2=0.994) and for Cys was 7∼95 μM (R2=0.998). The limits of detection (LOD) were 0.719 μM and 0.363 μM for EGCG and Cys, respectively. This work provides a new and cost-effective approach for the real-time analysis of catechins and amino acids.
Collapse
Affiliation(s)
- Jun Tang
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Zhenyu Gao
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Longfei Xu
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Qianqian Zhao
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Tianfeng Hu
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Yongfeng Luo
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Jinkang Dou
- Department of Energetic Materials Science and Technology, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Yuanjuan Bai
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Liaoyuan Xia
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Kun Du
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China.
| |
Collapse
|
3
|
Qi Y, Cao W, Zhang Y, Qu R, Mahmoud RK, Abukhadra MR, Huo Z, Zhu F. Efficient degradation of benzalkonium chloride (BAC) by zero-valent iron activated persulfate: Kinetics, reaction mechanisms, theoretical calculations and toxicity evolution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124687. [PMID: 39116919 DOI: 10.1016/j.envpol.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The present study systematically investigated the elimination of benzalkonium chloride (BAC) in the zero valent iron activated persulfate (Fe0/PS) system. The influence of operational parameters, including PS concentration, Fe0 dosage and pH, were investigated through a series of kinetic experiments. When the Fe0 dosage was 5.0 mM, the initial ratio of [PS]: [BAC] was 10:1, the degradation efficiency could achieve 91.7% at pH 7.0 within 60 min. Common inorganic anions and humic acid did not significantly affect BAC degradation, implying that Fe0/PS system had a potential application prospect in the actual wastewater remediation. Based on the electron paramagnetic resonance test and quenching experiments, the BAC degradation was found to be contributed by •OH, SO4•- and Fe(IV). A total of 23 intermediates were identified by the liquid chromatography-mass spectrometry, and the degradation pathways were proposed accordingly, including dealkylation and demethylation, hydroxylation, sulfate substitution and benzyl C-N cleavage reactions. Density functional theory based calculations were conducted to realize the rationality of the proposed reaction mechanisms. The toxicity of transformation products was predicted by ECOSAR program. This work demonstrated the possibility of BAC removal in hospital and municipal wastewater by Fe0/PS treatment, and also provides a safe choice for deep treatment of quaternary ammonium salt wastewater.
Collapse
Affiliation(s)
- Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Wenqian Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ying Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Rehab Khaled Mahmoud
- Department of Chemistry, Faculty of Science, Beni Suef University, Beni Suef city, Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni Suef University, Beni Suef city, Egypt
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu, Nanjing, 210023, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Li D, Fu Y, Hong W, Li S, Qiu M, Yu H, Wang H, Wu J, Yang Q, Yang S, Xu J, Zhang Y, Chen S, Zhong Y, Peng P. Customizable Three-Dimensional Printed Zerovalent Iron: An Efficient and Reusable Fenton-like Reagent for Florfenicol Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19501-19513. [PMID: 39388628 PMCID: PMC11526374 DOI: 10.1021/acs.est.4c06536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Zerovalent iron (Fe0)-based Fenton-like technology has great potential for treating recalcitrant organic pollutants (ROPs) in wastewater. However, rapidly and precisely manufacturing Fe0-based materials with the desired geometries is challenging. Herein, novel three-dimensional printed Fe0 (3DP-Fe0) and bimetallic 3DP-Ni/Fe0 were customized by 3D printing for efficient Fenton-like degradation of florfenicol (FLO), a typical antibiotic in wastewater. 3DP-Ni/Fe0 with hydrogen peroxide (H2O2) exhibited superior reactivity toward FLO than 3DP-Fe0, generating hydroxyl radicals (·OH) and atomic hydrogen to achieve >90% dehalogenation and >70% total organic carbon removal within 10 min. The resulting degradation intermediates possessed lower antibacterial activity than FLO and did not cause resistance gene proliferation in activated sludge. The Fenton-like activity of 3DP-Ni/Fe0 was similar across different shapes but increased with increasing porosity and size. Compared with powdered Ni/Fe0, 3DP-Ni/Fe0 exhibited faster electron transfer during Fe(II)/Fe(III) cycling, which increased the utilization efficiency of dissolved Fe2+ and H2O2 for ·OH production. Moreover, 3DP-Ni/Fe0 could be reused >150 times, 5-fold more than powdered Ni/Fe0, owing to its lower metal ion release and Fe0 depletion. 3DP-Ni/Fe0 with H2O2 can also efficiently remove chemical oxygen demand from real wastewater and other ROPs (e.g., acetaminophen, carbamazepine, thiamphenicol, and tetrabromobisphenol A).
Collapse
Affiliation(s)
- Dan Li
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, China
- State
Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory
of Environmental Protection and Resources Utilization, Guangdong-Hong
Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Wushan, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Environmental Protection and Resources
and Utilization, Guangzhou 510640, China
| | - Yibo Fu
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, China
| | - Wentao Hong
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, China
| | - Shunlu Li
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, China
| | - Mulan Qiu
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, China
| | - Hongdie Yu
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, China
| | - Heli Wang
- State
Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory
of Environmental Protection and Resources Utilization, Guangdong-Hong
Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Wushan, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Environmental Protection and Resources
and Utilization, Guangzhou 510640, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Wu
- State
Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory
of Environmental Protection and Resources Utilization, Guangdong-Hong
Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Wushan, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Environmental Protection and Resources
and Utilization, Guangzhou 510640, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Yang
- State
Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory
of Environmental Protection and Resources Utilization, Guangdong-Hong
Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Wushan, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Environmental Protection and Resources
and Utilization, Guangzhou 510640, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Yang
- State
Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory
of Environmental Protection and Resources Utilization, Guangdong-Hong
Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Wushan, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Environmental Protection and Resources
and Utilization, Guangzhou 510640, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Xu
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, China
| | - Yunfei Zhang
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, China
| | - Shenggui Chen
- School
of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
| | - Yin Zhong
- State
Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory
of Environmental Protection and Resources Utilization, Guangdong-Hong
Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Wushan, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Environmental Protection and Resources
and Utilization, Guangzhou 510640, China
| | - Ping’an Peng
- State
Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory
of Environmental Protection and Resources Utilization, Guangdong-Hong
Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Wushan, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Environmental Protection and Resources
and Utilization, Guangzhou 510640, China
| |
Collapse
|
5
|
Khemkhao M, Domrongpokkaphan V, Nuchdang S, Phalakornkule C. Chemical and biological effects of zero-valent iron (ZVI) concentration on in-situ production of H 2 from ZVI and bioconversion of CO 2 into CH 4 under anaerobic conditions. ENVIRONMENTAL RESEARCH 2024; 256:119230. [PMID: 38810832 DOI: 10.1016/j.envres.2024.119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
The conversion of carbon dioxide (CO2) to methane (CH4) is a strategy for sequestering CO2. Zero-valent iron (ZVI) has been proposed as an alternative electron donor for the CO2 reduction to CH4. In this study, the effects of ZVI concentrations on the abiotic production of H2 (without the action of microorganisms) in the first part and on the biological conversion of CO2 to CH4 using ZVI as a direct electron donor in the second part were examined. In the abiotic H2 production, the increase in the ZVI concentration from 16 to 32, 64, and 96 g/L was found to have positive effects on both the amounts of H2 generated and the rates of H2 production because the extent of ZVI oxidation positively correlates with increasing surface area. Nevertheless, the increase in ZVI concentration from 96 to 224 g/L did not benefit the H2 production because the ZVI dissolution was suppressed by the increasing aqueous pH above 10. In the bioconversion of CO2 to CH4 using ZVI as an electron donor, the main methanogenesis pathway occurred via hydrogenotrophic methanogenesis at pH 8.7-9.5 driven by the genus Methanobacterium of the class Methanobacteria. At ZVI concentrations of 64 g/L and above, the production of volatile fatty acid (VFA) became clear. Acetate was the main VFA, indicating the induction of homoacetogenesis at ZVI concentrations of 64 g/L and above. In addition, the presence of propionate as the second major VFA suggests the production of propionate from CO2 and acetate under conditions with high H2 partial pressure. The results indicated that the pathway for ZVI/CO2 conversion to CH4 was competitive between hydrogenotrophic methanogenesis and homoacetogenesis.
Collapse
Affiliation(s)
- Maneerat Khemkhao
- Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand; Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| | - Vichai Domrongpokkaphan
- Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Department of Agro-Industrial, Food and Environmental Technology, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sasikarn Nuchdang
- Research and Development Division, Thailand Institute of Nuclear Technology, Pathumthani, Thailand
| | - Chantaraporn Phalakornkule
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| |
Collapse
|
6
|
Lu B, Fang Z, Tsang PE. Key role of Phyllanthus emblica L. fruit extract promotes ZVI/H 2O 2 process: rich titratable acid, suitable chelating ability, and antioxidant capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55422-55436. [PMID: 39230818 DOI: 10.1007/s11356-024-34644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Phyllanthus emblica L. fruit extract (PFE) was introduced to improve ZVI/H2O2 technology, and the efficiency and mechanism of PFE promoting ZVI/H2O2 technology were explored. With the introduction of PFE, the Norfloxacin (NOR) removal rate and kobs of the process were improved by 41.17% and 5.08 times, respectively. In the ZVI/H2O2/PFE process, the degradation of NOR by the attack of ROS is the main pathway for decontamination and is dominated by the heterogeneous reaction on the catalyst surface. PFE contains 13.92 g/L titratable acid and has good complexing ability and antioxidant ability. The mechanism of PFE promoting ZVI/H2O2 technology was based on lowering the pH, complemented by chelation and antioxidant capacity. With the introduction of PFE, the utilization rate of the reagent was significantly increased (7.56 times for ZVI and 3.21 times for H2O2), the applicable pH range was widened (6-9) and the iron sludge was reduced (32.80%). Meanwhile, the concept of UPR is proposed for the first time. The result is the key role to the selection of green promoters in the ZVI/H2O2 process depends on the abundance of titratable acid, followed by a certain chelating ability and antioxidant capacity.
Collapse
Affiliation(s)
- Baizhou Lu
- School of Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China.
- Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd, Qingyuan, 511500, China.
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| |
Collapse
|
7
|
Lewandowská Š, Vaňková Z, Beesley L, Cajthaml T, Wickramasinghe N, Vojar J, Vítková M, Tsang DCW, Ndungu K, Komárek M. Nano zerovalent Fe did not reduce metal(loid) leaching and ecotoxicity further than conventional Fe grit in contrasting smelter impacted soils: A 1-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171892. [PMID: 38531450 DOI: 10.1016/j.scitotenv.2024.171892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
The majority of the studies on nanoscale zero-valent iron (nZVI) are conducted at a laboratory-scale, while field-scale evidence is scarce. The objective of this study was to compare the metal(loid) immobilization efficiency of selected Fe-based materials under field conditions for a period of one year. Two contrasting metal(loid) (As, Cd, Pb, Zn) enriched soils from a smelter-contaminated area were amended with sulfidized nZVI (S-nZVI) solely or combined with thermally stabilized sewage sludge and compared to amendment with microscale iron grit. In the soil with higher pH (7.5) and organic matter content (TOC = 12.7 %), the application of amendments resulted in a moderate increase in pH and reduced As, Cd, Pb, and Zn leaching after 1-year, with S-nZVI and sludge combined being the most efficient, followed by iron grit and S-nZVI alone. However, the amendments had adverse impacts on microbial biomass quantity, S-nZVI being the least damaging. In the soil with a lower pH (6.0) and organic matter content (TOC = 2.3 %), the results were mixed; 0.01 M CaCl2 extraction data showed only S-nZVI with sludge as remaining effective in reducing extractable concentrations of metals; on the other hand, Cd and Zn concentrations were increased in the extracted soil pore water solutions, in contrast to the two conventional amendments. Despite that, S-nZVI with sludge enhanced the quantity of microbial biomass in this soil. Additional earthworm avoidance data indicated that they generally avoided soil treated with all Fe-based materials, but the presence of sludge impacted their preferences somewhat. In summary, no significant differences between S-nZVI and iron grit were observed for metal(loid) immobilization, though sludge significantly improved the performance of S-nZVI in terms of soil health indicators. Therefore, this study indicates that S-nZVI amendment of soils alone should be avoided, though further field evidence from a broader range of soils is now required.
Collapse
Affiliation(s)
- Šárka Lewandowská
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Zuzana Vaňková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Luke Beesley
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic; School of Science, Engineering and Environment, Peel Building, University of Salford, Manchester M5 4WT, UK
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
| | - Niluka Wickramasinghe
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Jiří Vojar
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Martina Vítková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kuria Ndungu
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579 Oslo, Norway
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
| |
Collapse
|
8
|
Chen W, Li B, Yin W, Zeng W, Li P, Wu J. Promoted iron corrosion and subsequent hexavalent chromium removal in zero-valent iron systems by oxidant activation. CHEMOSPHERE 2024; 352:141391. [PMID: 38325615 DOI: 10.1016/j.chemosphere.2024.141391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Zero-valent iron (ZVI), as an effective medium, is widely used to eliminate heavy metal ions in filter tanks. However, it will react with Cr(VI) to generate Fe-Cr precipitates with low conductivity on its surface, resulting in slow iron corrosion and low Cr(VI) removal efficiency. In this study, three oxidants (KMnO4, NaClO, and Na2S2O8) were employed to promote iron corrosion in ZVI systems for enhanced Cr(VI) removal at a concentration of 5 mg/L through batch tests and column experiments. The ZVI/KMnO4, ZVI/NaClO, and ZVI/Na2S2O8 systems achieved significantly higher Cr(VI) removal rates of 31.5%, 52.8%, and 65.9% than the ZVI system (9.8%). Solid phase characterization confirmed that these improvements were attributed to promoted iron corrosion and secondary mineral formation (e.g., lepidocrocite, ferrihydrite, and magnetite) by oxidants. Those minerals offered more reaction sites for Cr(VI) reduction, adsorption, and sequestration. Cycle experiments indicated that ZVI/oxidant systems could stably remove Cr(VI). In long-term column experiment, the ZVI/NaClO column showed a much longer life-span and exhibited a 34.8 times higher Cr(VI) removal capacity than that of the ZVI column. These findings demonstrated that ZVI in combination with a reasonable amount of oxidants was a promising method for removing Cr(VI) in practical filter tanks and provided a new insight to enhance Cr(VI) removal.
Collapse
Affiliation(s)
- Weiting Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Weilong Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Lu B, Fang Z, Tsang PE. Effect and mechanism of norfloxacin removal by Eucalyptus leaf extract enhanced the ZVI/H 2O 2 process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169820. [PMID: 38199363 DOI: 10.1016/j.scitotenv.2023.169820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The conventional ZVI/H2O2 technology suffers from poor reagent utilization, excess iron sludge generation, and strong low pH dependence. Therefore, eucalyptus leaf extract (ELE) was introduced to improve ZVI/H2O2 technology, and the efficacy and mechanism of ELE promoting ZVI/H2O2 technology were deeply explored. The results showed that the norfloxacin (NOR) removal and kobs of the ZVI/H2O2/ELE process were enhanced by 35.64 % and 3.27 times, respectively, compared to the ZVI/H2O2 process. In the ZVI/H2O2 process, the production of three reactive oxygen species (ROS: 1O2,·O2-,·OH) was effectively promoted by ELE so that the reaction efficacy was significantly enhanced. Moreover, the attack and degradation of pollutants by ROS was the main way to remove pollutants. With the introduction of ELE, the reactive sites on the catalyst appearance were increased to some extent, and the Fe(III)/Fe(II) cycle was improved. The analysis showed that ELE is rich in titratable acids and the ZVI/H2O2 technology is promoted mainly by lowering the pH of the process. In addition, the chelation of ELE and the reduction in pH by the ELE synergistically enhanced the ZVI/H2O2 technology, which significantly improved the reagent utilization (4.70 times for ZVI and 3.03 times for H2O2), broadened the pH range of the technology (6-9) and was able to effectively reduce the iron sludge contamination (30.33 %) of the process. Therefore, the study offers an important value to study eucalyptus leaves in micron-scale ZVI-Fenton technology.
Collapse
Affiliation(s)
- Baizhou Lu
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China; Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd, Qingyuan 511500, China.
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, 00852, Hong Kong
| |
Collapse
|
10
|
Barka E, Nika MC, Galani A, Mamais D, Thomaidis NS, Malamis S, Noutsopoulos C. Evaluating an integrated nano zero-valent iron column system for emerging contaminants removal from different wastewater matrices - Identification of transformation products. CHEMOSPHERE 2024; 352:141425. [PMID: 38340995 DOI: 10.1016/j.chemosphere.2024.141425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The presence of micropollutants in water bodies has become a growing concern due to their persistence, bioaccumulation and potential toxicological effects on aquatic life and humans. In this study, the performance of a column system consisting of zero-valent iron nanoparticles (nZVI) incorporated into a cationic resin and synthesized from green tea extract with the addition of persulfate for the elimination of selected pharmaceuticals and endocrine disruptors from wastewater is evaluated. Ibuprofen, naproxen, diclofenac and ketoprofen were the target pharmaceuticals from non-steroidal anti-inflammatory drugs group, while bisphenol A was the target endocrine disruptor. In this context, different real wastewater effluent matrices were investigated: anaerobic membrane bioreactor (AnMBR), upflow anaerobic sludge blanket reactor (UASB) after microfiltration, tertiary treated by conventional activated sludge system and saturated vertical constructed wetland followed by a sand filtration unit effluent (hybrid). The transformation products of diclofenac and bisphenol A were also identified. The experimental results indicated that the performance of the R-nFe/PS system towards the removal efficiency of the target compounds was enhanced in the order of effluents: tertiary > AnMBR ≈ hybrid > UASB. More than 70% removal was obtained for almost all target compounds when conventional tertiary effluent was used, while the maximum removal efficiency was about 50% in the case of filtered UASB. As far as we know, this is the first time that nZVI has been assessed in combination with persulfate for the removal of micropollutants in a continuous flow system receiving various types of real wastewater with different matrix characteristics.
Collapse
Affiliation(s)
- Evridiki Barka
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Maria Christina Nika
- Analytical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece.
| | - Andriani Galani
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Nikolaos S Thomaidis
- Analytical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece.
| | - Simos Malamis
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| |
Collapse
|
11
|
Yang Y, Zhang Y, Jiang S, Shan X, Guo X, Liu H, Shen L, Chang W. Enhancing Fenton-like Degradation of Organic Pollutants at Neutral pH by Multivalent Cu NCs/HAp Nanocatalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:827-836. [PMID: 38150270 DOI: 10.1021/acs.langmuir.3c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Heterogeneous Fenton-like catalysis is a widely used method for the degradation of organic pollutants. However, it still has some limitations such as low activity in the neutral condition, low conversion rates of metals with different valence states, and potential secondary metal pollution. In this study, a Fenton-like nanocatalyst was first created by generating ultrasmall copper nanoclusters (Cu NCs) on the surface of hydroxyapatite (HAp) through a process of doping followed by modification. This resulted in the formation of a composite nanocatalyst known as Cu NCs/HAp. With the help of hydrogen peroxide (H2O2), Cu NCs/HAp exhibits an outstanding Fenton-like catalytic performance by efficiently degrading organic dyes such as methylene blue under mild neutral conditions. The removal rate can reach over 83% within just 30 min, demonstrating ideal catalytic universality and stability. The improved Fenton-like catalytic performance of Cu NCs/HAp can be ascribed to the synergistic effect of the multivalent Cu species through two simultaneous reaction pathways. During route I, the embedded Cu NCs with a core-shell Cu0/Cu+ structure can undergo sequential oxidation to form Cu2+, which continuously activates H2O2 to generate hydroxyl radicals (•OH) and singlet oxygen (1O2). In route II, Cu2+ produced from route I and initially adsorbed on the surface of HAp can be reduced by H2O2, thus regenerating Cu+ species for route I and achieving a closed-loop reaction. This work has confirmed that Cu NCs loaded on HAp may be an alternative Fenton-like catalyst for degradation of organic pollutants and environmental remediation, opening up new avenues for potential applications of other Cu NCs in future water pollution control.
Collapse
Affiliation(s)
- Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, P. R. China
| | - Yunhui Zhang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, P. R. China
| | - Shutong Jiang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, P. R. China
| | - Xianghuan Shan
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, P. R. China
| | - Xu Guo
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, P. R. China
| | - Haiqing Liu
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, P. R. China
| | - Lirui Shen
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, P. R. China
| | - Wengui Chang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, P. R. China
| |
Collapse
|
12
|
Huang B, Yang C, Zeng H, Zhou L. Multivalent iron-based magnetic porous biochar from peach gum polysaccharide as a heterogeneous Fenton catalyst for degradation of dye pollutants. Int J Biol Macromol 2023; 253:126753. [PMID: 37678692 DOI: 10.1016/j.ijbiomac.2023.126753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Water contamination caused by organic dyes has become a significant concern, and catalytic degradation of dye pollutants is an effective solution. However, developing an affordable, easy-to-prepare, high-catalytic-activity, and renewable catalyst has proved challenging. The current study addresses this issue by introducing an efficient heterogeneous Fenton catalyst, known as multivalent iron-based magnetic porous biochar (mFe-MPB). This catalyst comprises multiple iron species, such as Fe3O4, γ-Fe2O3, zero-valent Fe (Fe0), and Fe3C. The mFe-MPB was easily prepared by utilizing a straightforward crosslinking-pyrolysis strategy with natural peach gum polysaccharide (PGP), which has a unique structure and composition that facilitates the creation of multivalent iron species. The mFe-MPB demonstrates high catalytic activity in the degradation of an array of dyes, including cationic dyes such as methylene blue (MB) and methyl violet (MV), as well as anionic new coccine (NC) dye. Its mass standardized rate constant value for catalytic degradation of MB can reach as high as 1.65 L min-1 g-1. Additionally, the catalyst can be easily recovered through magnetic separation and possesses remarkable structural stability, enabling several reuses without compromising its efficiency. Therefore, this study offers a viable strategy to fabricate low-cost, efficient and sustainable Fenton catalyst for removal of dye pollutants from water.
Collapse
Affiliation(s)
- Baotao Huang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Chen Yang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hai Zeng
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Li Zhou
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
13
|
Murtaza B, Ali A, Imran M, Al-Kahtani AA, ALOthman ZA, Natasha N, Shahid M, Shah NS, Naeem MA, Ahmad S, Murtaza G. Comparison of As removal efficiency and health risks from aqueous solution using as-synthesized Fe 0 and Cu 0: modelling, kinetics and reusability. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8989-9002. [PMID: 37154973 DOI: 10.1007/s10653-023-01589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Batch scale removal of arsenic (As) from aqueous media was explored using nano-zero valent iron (Fe0) and copper (Cu0) particles. The synthesized particles were characterized using a Brunauer-Emmett-Teller (BET) surface area analyzer, a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The BET result showed that the surface area (31.5 m2/g) and pore volume (0.0415 cm3/g) of synthesized Fe0 were higher than the surface area (17.56 m2/g) and pore volume (0.0287 cm3/g) of Cu0. The SEM results showed that the morphology of the Fe0 and Cu0 was flowery microspheres and highly agglomerated with thin flakes. The FTIR spectra for Fe0 showed broad and intense peaks as compared to Cu0. The effects of the adsorbent dose (1-4 g/L), initial concentration of As (2 mg/L to 10 mg/L) and solution pH (2-12) were evaluated on the removal of As. Results revealed that effective removal of As was obtained at pH 4 with Fe0 (94.95%) and Cu0 (74.86%). When the dosage increased from 1 to 4 g L-1, the As removal increased from 70.59 to 93.02% with Fe0 and from 67 to 70.59% with Cu0. However, increasing the initial As concentration decreased the As removal significantly. Health risk indices, including estimated daily intake (EDI), hazard quotient (HQ), and cancer risk (CR) were employed and a significant decline (up to 99%) in risk indices was observed in As-treated water using Fe0/Cu0. Among the adsorption isotherm models, the values of R2 showed that isothermal As adsorption by Fe0 and Cu0 was well explained by the Freundlich adsorption isotherm model (R2 > 0.98) while the kinetic experimental data was well-fitted with the Pseudo second order model. The Fe0 showed excellent stability and reusability over five sorption cycles, and it was concluded that, compared to the Cu0, the Fe0 could be a promising technology for remediating As-contaminated groundwater.
Collapse
Affiliation(s)
- Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Asad Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Natasha Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Noor S Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Sajjad Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| |
Collapse
|
14
|
Domingues E, Lincho J, Fernandes MJ, Gomes J, Martins RC. Low-cost materials for swine wastewater treatment using adsorption and Fenton's process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29677-1. [PMID: 37721675 DOI: 10.1007/s11356-023-29677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Untreated swine wastewater (SW) discharge leads to serious consequences such as water quality decreasing related to eutrophication and proliferation of harmful algae containing cyanotoxins, which can cause acute intoxication in humans. The use of untreated pig farming effluent as fertilizer can lead to the accumulation of polluting compounds. Biological treatments can degrade organic matter but have the disadvantage of requiring large areas and high retention times and demonstrating low efficiencies in the degradation of refractory compounds such as pharmaceutical compounds. In this ambit, the performance of four low-cost materials was evaluated for treatment of a swine wastewater using physical-chemical processes such as adsorption and Fenton's process. The tested materials are two natural resources, red volcanic rock from Canary (RVR) Islands and black volcanic rock (BVR) from Azores, and two industry residues, red mud (RM) and iron filings (IF). Among the tested materials, only IFs are catalytically active for Fenton's peroxidation. Still, RVR, BVR, and RM were efficient adsorbents removing up to 67% of COD. The combination between adsorption followed by Fenton's process using IF as catalyst showed interesting results. When RM is applied as adsorbent in the diluted effluent, it was able to remove 67% and 90% of COD for adsorption and adsorption followed by IF Fenton, respectively. At those conditions, the resultant treated effluent accomplishes the requirements for direct discharge in the natural water courses as well as the parameters for water reusing.
Collapse
Affiliation(s)
- Eva Domingues
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| | - João Lincho
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| | - Maria J Fernandes
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| | - João Gomes
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| | - Rui C Martins
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal.
| |
Collapse
|
15
|
Yan J, Brigante M, Mailhot G, Dong W, Wu Y. A comparative study on Fe(III)/H 2O 2 and Fe(III)/S 2O 82- systems modified by catechin for the degradation of atenolol. CHEMOSPHERE 2023; 329:138639. [PMID: 37054842 DOI: 10.1016/j.chemosphere.2023.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/15/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The processes of Fe(III) activated persulfate (PS) and H2O2 modified by catechin (CAT) had been shown to be effective in degrading contaminants. In this study, the performance, mechanism, degradation pathways and products toxicity of PS (Fe(III)/PS/CAT) and H2O2 (Fe(III)/H2O2/CAT) systems were compared using atenolol (ATL) as a model contaminant. 91.0% of ATL degradation was reached after 60 min in H2O2 system which was much higher than that in PS system (52.4%) under the same experimental condition. CAT could react directly with H2O2 to produce small amounts of HO• and the degradation efficiency of ATL was proportional to CAT concentration in H2O2 system. However, the optimal CAT concentration was 5 μM in PS system. The performance of H2O2 system was more susceptible to pH than that of PS system. Quenching experiments were conducted indicating that SO4•- and HO• were produced in PS system while HO• and O2•- accounted for ATL degradation in H2O2 system. Seven pathways with nine byproducts and eight pathways with twelve byproducts were put forward in PS and H2O2 systems respectively. Toxicity experiments showed that the inhibition rates of luminescent bacteria were both decreased about 25% after 60 min reaction in two systems. Although the software simulation result showed few intermediate products of both systems were More toxic than ATL, but the amounts of them were 1-2 orders of magnitude lower than ATL. Moreover, the mineralization rates were 16.4% and 19.0% in PS and H2O2 systems respectively.
Collapse
Affiliation(s)
- Jiaying Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Zhang X, Sun H, Shi Y, Ling C, Li M, Liang C, Jia F, Liu X, Zhang L, Ai Z. Oxalated zero valent iron enables highly efficient heterogeneous Fenton reaction by self-adapting pH and accelerating proton cycle. WATER RESEARCH 2023; 235:119828. [PMID: 36905733 DOI: 10.1016/j.watres.2023.119828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Heterogeneous Fenton reactions of zero-valent iron (ZVI) requires the sufficient release of Fe(II) to catalyze the H2O2 decomposition. However, the rate-limiting step of proton transfer through the passivation layer of ZVI restricted the Fe(II) release via Fe0 core corrosion. Herein we modified the shell of ZVI with highly proton-conductive FeC2O4·2H2O by ball-milling (OA-ZVIbm), and demonstrated its high heterogeneous Fenton performance of thiamphenicol (TAP) removal, with 500 times enhancement of the rate constant. More importantly, the OA-ZVIbm/H2O2 showed little attenuation of the Fenton activity during 13 successive cycles, and was applicable across a wide pH range of 3.5-9.5. Interestingly, the OA-ZVIbm/H2O2 reaction showed pH self-adapting ability, which initially reduced and then sustained the solution pH in the range of 3.5-5.2. The abundant intrinsic surface Fe(II) of OA-ZVIbm (45.54% vs. 27.52% in ZVIbm, according to Fe 2p XPS profiles) was oxidized by H2O2 and hydrolyzed to generate protons, and the FeC2O4·2H2O shell favored the fast transfer of protons to inner Fe0, therefore, the consumption-regeneration cycle of protons were accelerated to drove the production of Fe(II) for Fenton reactions, demonstrated by the more prominent H2 evolution and nearly 100% H2O2 decomposition by OA-ZVIbm. Furthermore, the FeC2O4·2H2O shell was stable and slightly decreased from 1.9% to 1.7% after the Fenton reaction. This study clarified the significance of proton transfer on the reactivity of ZVI, and provided an efficient strategy to achieve the highly efficient and robust heterogeneous Fenton reaction of ZVI for pollution control.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
17
|
Patel B, Gundaliya R, Desai B, Shah M, Shingala J, Kaul D, Kandya A. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1331-1358. [PMID: 35962925 DOI: 10.1007/s10653-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is consumed by a large number of people as their primary source of drinking water globally. Among all the countries worldwide, nations in South Asia, particularly India and Bangladesh, have severe problem of groundwater arsenic (As) contamination so are on our primary focus in this study. The objective of this review study is to provide a viewpoint about the source of As, the effect of As on human health and agriculture, and available treatment technologies for the removal of As from water. The source of As can be either natural or anthropogenic and exposure mediums can either be air, drinking water, or food. As-polluted groundwater may lead to a reduction in crop yield and quality as As enters the food chain and disrupts it. Chronic As exposure through drinking water is highly associated with the disruption of many internal systems and organs in the human body including cardiovascular, respiratory, nervous, and endocrine systems, soft organs, and skin. We have critically reviewed a complete spectrum of the available ex situ technologies for As removal including oxidation, coagulation-flocculation, adsorption, ion exchange, and membrane process. Along with that, pros and cons of different techniques have also been scrutinized on the basis of past literatures reported. Among all the conventional techniques, coagulation is the most efficient technique, and considering the advanced and emerging techniques, electrocoagulation is the most prominent option to be adopted. At last, we have proposed some mitigation strategies to be followed with few long and short-term ideas which can be adopted to overcome this epidemic.
Collapse
Affiliation(s)
- Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Rohan Gundaliya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavya Desai
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Jainish Shingala
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
18
|
Lai X, Huang N, Zhao X, Li Y, He Y, Li J, Deng J, Ning XA. Oxidation of simulated wastewater by Fe 2+-catalyzed system: The selective reactivity of chlorine radicals and the oxidation pathway of aromatic amines. CHEMOSPHERE 2023; 317:137816. [PMID: 36638926 DOI: 10.1016/j.chemosphere.2023.137816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Aromatic amines (AAs), a characteristic pollutant with electron-donating groups in textile industry, having high reactivity with reactive chlorine free radicals, is probably the precursor of chlorinated aromatic products in advanced oxidation treatment. In this study, Fe2+/peroxydisulfate (PDS)/Cl- and Fe2+/H2O2/Cl-systems were used to treat four kinds of AAs (5-Nitro-o-toluidine (NT), 4-Aminoazobenzol (AAB), O-Aminoazotoluene (OAAT), 4,4'-Methylene-bis(2-chloroaniline) (MBCA)) in simulated wastewater, and the selectivity of various reactive species to AAs, the oxidation law and pathway of AAs were explored. The results showed that dichloride anion radical (Cl2·-) could effectively oxidize four AAs, and chlorine radical (·Cl) was strongly reactive to AAB and MBCA, especially MBCA. The largest f - (Fukui function) of MBCA is 0.0822, which is the lowest of the four AAs, so ·Cl might be more sensitive to electrophilic point than hydroxyl radical (·OH). The oxidation pathway of NT and MBCA showed that ·Cl mainly played the role of electron transfer to AAs instead of generating chlorinated products, but the addition of ·OH to -NH2 generated aromatic nitro compounds with higher toxicity than NT and MBCA. Therefore, the electron transfer of ·Cl and Cl2·- could not only improve the removal of AAs but also reduce the generation of toxic products. This study found that the reactivity of reactive chlorine free radicals was not necessarily related to chlorination, which provided a theoretical basis for the further studies into the formation mechanism of chlorination products.
Collapse
Affiliation(s)
- Xiaojun Lai
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Nuoyi Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaohua Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Li
- College of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou, China
| | - Jinhuan Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun-An Ning
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
19
|
Tang F, Wang Y, Li J, Sun S, Su Y, Chen H, Cui W, Zhao C, Liu Q. Pollution characteristics of groundwater in an agricultural hormone-contaminated site and implementation of Fenton oxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35670-35682. [PMID: 36538219 DOI: 10.1007/s11356-022-24734-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The groundwater polluted by an agricultural hormone site was taken as the research object, and a total of 7 groundwater samples were collected at different locations in the plant. The main pollutants in the research area were determined to be extractable petroleum hydrocarbons (C10-C40); 1,2-dichloroethane; 1,1,2-trichloroethane; carbon tetrachloride; vinyl chloride, and chloroform; the maximum content of these pollutants can reach 271 mg/L, 1.68 × 107 µg/L, 1.56 × 104 µg/L, 9.53 × 104 µg/L, 6.58 × 104 µg/L, and 4.81 × 104 µg/L, respectively. Aiming at the problems of groundwater pollution in this area, two sets of oxidation experiments have been carried out. The addition of NaHSO3 modified Fenton oxidation system was used in this contaminated water, which enhanced (2.2 ~ 46.7%) chemical oxygen demand (COD) removal rate. The highest removal rate of extractable petroleum hydrocarbons (C10-C40) can reach 99%. And the degradation rate of chlorinated hydrocarbon pollutants can reach 99% to 100%, which almost achieved the purpose of complete removal. In the NaHSO3 modified Fenton oxidation system, the addition of NaHSO3 accelerates the cycle of Fe3+/Fe2+ and ensures the continuous existence of Fe2+ in the reaction system, thereby producing more ·OH and further oxidizing and degrading organic pollutants. Our work has provided important insights for this economically important treatment of this type water body and laid the foundation for the engineering of this method.
Collapse
Affiliation(s)
- Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Jing Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Wu Cui
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| |
Collapse
|
20
|
Rezaei M, Mengelizadeh N, Berizi Z, Salehnia S, Asgari M, Balarak D. Synthesis of MMT−CuFe
2
O
4
Composite as a Peroxymonosulfate Activator for the Degradation of Reactive Black 5. ChemistrySelect 2023. [DOI: 10.1002/slct.202201729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mohsen Rezaei
- Instructor, Department of Environmental Health Torbat Jam Faculty of Medical Sciences Torbat Jam Iran
| | - Nezamaddin Mengelizadeh
- Department of Environmental Health Engineering, Faculty of Health Larestan University of medical Sciences Larestan Iran
| | - Zohreh Berizi
- Department of Environmental Health Engineering, Faculty of Health Larestan University of medical Sciences Larestan Iran
| | - Salehe Salehnia
- Department of Environmental Health Engineering, Ferdows School of Paramedical and Health Birjand University of Medical Sciences Birjand Iran
| | - Mahdi Asgari
- Department of Medical Physics, Faculty of Medicine Semnan University of Medical Sciences Semnan Iran
| | - Davoud Balarak
- Department of Environmental Health, Health Promotion Research Center Zahedan University of Medical Sciences Zahedan Iran
| |
Collapse
|
21
|
Ferromagnetic Biochar Prepared from Hydrothermally Modified Calcined Mango Seeds for Fenton-like Degradation of Indigo Carmine. Mol Vis 2022. [DOI: 10.3390/c8040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biochar and ferromagnetic biochar obtained from the pyrolysis of dried mango seeds and modified using a hydrothermal method were used as catalyst for the heterogeneous degradation of indigo carmine in an aqueous medium. These prepared biochars were characterized using different techniques: Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The analyses of the results revealed the presence of iron oxide in the form of magnetite (Fe3O4) in the catalyst. The catalytic tests carried out with this composite material showed a significant degradation of indigo carmine. The maximum degradation of indigo carmine in the aqueous solution was reached after 240 min of agitation. The Fenton degradation process using irradiation with a 100 W electric lamp and hydrogen peroxide (concentration 4 mol/L) showed the best results at pH = 3. From this study, it emerged that the second-order kinetic model better described the degradation process, and it gave lower half-lives compared to those obtained with the first-order kinetic law. The study also showed that ferromagnetic biochar could be prepared from mango seeds and used for the degradation of indigo carmine in an aqueous solution.
Collapse
|
22
|
Wanakai IS, Kareru GP, Sujee MD, Madivoli SE, Gachui ME, Kairigo KP. Kinetics of Rifampicin Antibiotic Degradation Using Green Synthesized Iron Oxide Nanoparticles. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ai Z, Zheng S, Liu D, Wang S, Wang H, Huang W, Lei Z, Zhang Z, Yang F, Huang W. Zero-valent iron is not always effective in enhancing anaerobic digestion performance. CHEMOSPHERE 2022; 306:135544. [PMID: 35779688 DOI: 10.1016/j.chemosphere.2022.135544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Liquid nitrogen was employed as a low-temperature medium to activate zero-valent iron (ZVI) powder in an attempt to strengthen its enhancement effect on anaerobic digestion (AD) of swine manure (SM). Surprisingly, it was found that both pristine ZVI and liquid nitrogen-pretreated ZVI (LZVI) did not significantly improve the AD performance or change the archaeal community structure. It was hypothesized that ZVI might not be effective at stress-free environment like in these digesters. To confirm this, an additional set of AD experiments were performed at high ammonia stress (about 4000 mg/L), results showed that ZVI and LZVI greatly alleviated ammonia inhibition and increased the CH4 yield by 11.6% and 28.2%, respectively. Apparently, ZVI mainly affected AD systems by changing the metabolism pathways and enhancing the microbial activity to overcome process inhibition, and pretreatment of liquid nitrogen could significantly accelerate the dissolution of ZVI and improve its utilization efficiency, contributing to a greater extend of process recovery and improvement.
Collapse
Affiliation(s)
- Ziyin Ai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Sichao Zheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Dan Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Siyuan Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Hongqin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, 570228, China.
| |
Collapse
|
24
|
Koryam A, El-Wakeel ST, Radwan EK, Darwish ES, Abdel Fattah AM. One-Step Room-Temperature Synthesis of Bimetallic Nanoscale Zero-Valent FeCo by Hydrazine Reduction: Effect of Metal Salts and Application in Contaminated Water Treatment. ACS OMEGA 2022; 7:34810-34823. [PMID: 36211085 PMCID: PMC9535644 DOI: 10.1021/acsomega.2c03128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/09/2022] [Indexed: 05/25/2023]
Abstract
The effect of initial salt composition on the formation of zero-valent bimetallic FeCo was investigated in this work. Pure crystalline zero-valent FeCo nanoparticles (NPs) were obtained using either chloride or nitrate salts of both metals. Smaller NPs can be obtained using nitrate salts. Comparing the features of the FeCo prepared at room temperature and the solvothermal method revealed that both materials are almost identical. However, the room-temperature method is simpler, quicker, and saves energy. Energy-dispersive X-ray (EDX) analysis of the FeCo NPs prepared using nitrate salts at room temperature demonstrated the absence of oxygen and the presence and uniform distribution of Fe and Co within the structure with the atomic ratio very close to the initially planned one. The particles were sphere-like with a mean particle size of 7 nm, saturation magnetization of 173.32 emu/g, and surface area of 30 m2/g. The removal of Cu2+ and reactive blue 5 (RB5) by FeCo in a single-component system was conformed to the pseudo-first-order and pseudo-second-order models, respectively. The isotherm study confirmed the ability of FeCo for the simultaneous removal of Cu2+ and RB5 with more selectivity toward Cu2+. The RB5 has a synergistic effect on Cu2+ removal, while Cu2+ has an antagonistic effect on RB5 removal.
Collapse
Affiliation(s)
- Asmaa
A. Koryam
- Water
Pollution Research Department, National
Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt
| | - Shaimaa T. El-Wakeel
- Water
Pollution Research Department, National
Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt
| | - Emad K. Radwan
- Water
Pollution Research Department, National
Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt
| | - Elham S. Darwish
- Department
of Chemistry, Faculty of Science, University
of Cairo, 12613 Giza, Egypt
| | - Azza M. Abdel Fattah
- Department
of Chemistry, Faculty of Science, University
of Cairo, 12613 Giza, Egypt
| |
Collapse
|
25
|
Lai X, Huang N, Pillai SC, Sarmah AK, Li Y, Wang G, Wang H. Formation and transformation of reactive species in the Fe 2+/peroxydisulfate/Cl - system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115219. [PMID: 35537272 DOI: 10.1016/j.jenvman.2022.115219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The influence of Cl- on the formation mechanism of active components is often neglected in the Fe2+/peroxydisulfate (PDS) system containing a large amount of ferryl ion reactive specie (Fe(Ⅳ)). In the current investigation, the effects of Cl- concentration on the removal of methyl phenyl sulfoxide (PMSO), the formation of methyl phenyl sulfone (PMSO2), the transformation of reactive species and oxidation products were investigated under different reaction conditions that included Fe2+ dosage, PDS dosage, and pH0. The results showed that Cl- complexing Fe2+ increased the formation path of sulfate radical (SO4·-) in the Fe2+/PDS system. Fe2+ dosage and pH0 value affected the content and morphology of Fe2+-Cl- complex, thus affecting the composition of reactive species. According to the experiment of free radical steady-state concentration, it was found that low concentration of Cl- reacted with SO4·- and increased the steady-state concentration of chlorine radicals (8.09 × 10-13 M [·Cl]ss at 1.41 mM Cl-), while at high concentration of Cl-, the contents of SO4·-, hydroxyl radical (·OH) and dichloride anion radicals (Cl2·-) increased and the contents of Fe(Ⅳ) and ·Cl decreased. ·Cl had strong reactivity with PMSO, and PMSO and its oxidation products were chlorinated under the combined action of ·Cl and Cl2·-. This work reveals the reaction mechanism and environmental application risks of Fe2+/PDS technology and lays the groundwork for subsequent industrial application of Fe2+/PDS system.
Collapse
Affiliation(s)
- Xiaojun Lai
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Nuoyi Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group and the Health and Biomedical (HEAL) Research Centre, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Yang Li
- College of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Guangwen Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
26
|
Chêne C, Jeljeli MM, Rongvaux-Gaïda D, Thomas M, Rieger F, Batteux F, Nicco C. A Fenton-like cation can improve arsenic trioxide treatment of sclerodermatous chronic Graft-versus-Host Disease in mice. Front Immunol 2022; 13:917739. [PMID: 36016953 PMCID: PMC9395715 DOI: 10.3389/fimmu.2022.917739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Graft-versus Host Disease (GvHD) is a major complication of hematopoietic stem cell transplant. GvHD is characterized by the chronic activation of immune cells leading to the development of systemic inflammation, autoimmunity, fibrosis and eventually death. Arsenic trioxide (ATO) is a therapeutic agent under clinical trial for the treatment of patients with systemic lupus erythematosus (SLE) and chronic GvHD (cGvHD). This therapy is admittedly rather safe although adverse effects can occur and may necessitate short interruptions of the treatment. The aim of this study was to combine ATO with a divalent cation, to generate a Fenton or Fenton-like reaction in order to potentiate the deletion of activated immune cells through the reactive oxygen species (ROS)-mediated effects of ATO in a mouse model, and thereby enabling the use of lower and safer ATO concentrations to treat patients with cGvHD. In vitro, among the various combinations of divalent cations tested, we observed that the combination of ATO and CuCl2 (copper chloride) induced a high level of oxidative stress in HL-60 and A20 cells. In addition, this co-treatment also decreased the proliferation of CD4+ T lymphocytes during a mixed lymphocyte reaction (MLR). In vivo, in a cGvHD mouse model, daily injections of ATO 2.5 µg/g + CuCl2 0.5 µg/g induce a decrease in lymphocyte activation and fibrosis that was equivalent to that induced by ATO 5 µg/g. Our results show that the addition of CuCl2 improved the effects of ATO and significantly limited the development of the disease. This co-treatment could be a real benefit in human patients to substantially decrease the known ATO side effects and optimize ATO treatment in pathologies characterized by activated cells sensitive to an increase in oxidative stress.
Collapse
Affiliation(s)
- Charlotte Chêne
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
- MEDSENIC SAS, Strasbourg, France
| | - Mohamed Maxime Jeljeli
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
- Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d’immunologie biologique, Paris, France
| | | | - Marine Thomas
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | | | - Frédéric Batteux
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
- Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d’immunologie biologique, Paris, France
- *Correspondence: Frédéric Batteux, ; Carole Nicco,
| | - Carole Nicco
- Département 3I Infection, Immunité et Inflammation , Institut Cochin, INSERM U1016, Université de Paris, Paris, France
- *Correspondence: Frédéric Batteux, ; Carole Nicco,
| |
Collapse
|
27
|
Qasim GH, Fareed H, Lee M, Lee W, Han S. Aqueous monomethylmercury degradation using nanoscale zero-valent iron through oxidative demethylation and reductive isolation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128990. [PMID: 35523091 DOI: 10.1016/j.jhazmat.2022.128990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This paper proposes a Fenton-like reaction activated by nanoscale zero-valent iron (nZVI) for aqueous monomethylmercury (MMHg) decomposition. Reacting 10 μg L-1 MMHg with 280 mg L-1 nZVI removed 70% of the aqueous MMHg within 1 min, and its main product was aqueous Hg(II). Within 1 - 5 min, the aqueous Hg(II) decreased while the aqueous, solid, and gas-phase Hg(0) increased with 92% MMHg removal. Then, a secondary Hg(II) reduction to solid Hg(0) was prevalent within 30 - 60 min, with 98% MMHg removal. Diverse-shaped magnetite crystals were observed on the surface of nZVI in 2 h, suggesting that Fe(II) oxidation on magnetite can be a source of electrons for secondary Hg(II) reduction. When FeCl2 and H2O2 were added to the MMHg solution without nZVI, 99% of the MMHg changed to Hg(II) within 1 min. The reactive oxygen species (ROS) produced by the Fenton-like reaction accounted for the rapid demethylation but not for the further reduction of Hg(II) to Hg(0). The results suggest a three-step pathway of MMHg decomposition by nZVI: (1) rapid MMHg demethylation by ROS; (2) rapid Hg(II) reduction by Fe(0); and (3) slow Hg(II) reduction by magnetite on the nZVI surface.
Collapse
Affiliation(s)
- Ghulam Hussain Qasim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hasan Fareed
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mijin Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Woojin Lee
- Department of Civil and Environmental Engineering, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan 010000, Kazakhstan
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
28
|
Optimising zero-valent iron from industrial waste using a modified air-Fenton system to treat cutting oil wastewater using response surface methodology. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Nath A, Biswas S, Pal A. A comprehensive review on BPA degradation by heterogeneous Fenton-like processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:714-745. [PMID: 36038973 DOI: 10.2166/wst.2022.219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthetic organic pollutants emanating continuously in the ecosystem have become a global concern because of their toxicity and persistent nature. Bisphenol A (BPA) is one such pollutant which threatens public health and safety. It is a monomer used in manufacturing plastics, polycarbonate resins, epoxy resins and is a well-recognised endocrine disruptor mimicking estrogen. BPA leaches into food and beverages stored in containers causing contamination issues. Its widespread exposure and potential toxicity is an environmental health concern. In this review, a systematic investigation has been carried out on the heterogeneous catalysts used for Fenton-like processes for BPA degradation. The Fenton-like reaction is one such reaction that is used for wastewater remediation purposes. The reaction advances through the generation of powerful oxidizing radicals like •OH and SO4•- in the presence of a suitable catalyst. The application of various Fenton catalysts, with their distinguished morphological characteristics, oxidizing properties, toxicity analysis, and the present state of the art of BPA degradation by these catalysts, have been documented in the current work. This review also highlights a few challenges and prospects for analysing degradation products of landfill leachate.
Collapse
Affiliation(s)
- Ankurita Nath
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Both authors have contributed equally to this paper
| | - Subhadeep Biswas
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India E-mail: ; Both authors have contributed equally to this paper
| | - Anjali Pal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India E-mail:
| |
Collapse
|
30
|
Nunes RF, Teixeira ACSC. An overview on surfactants as pollutants of concern: Occurrence, impacts and persulfate-based remediation technologies. CHEMOSPHERE 2022; 300:134507. [PMID: 35395256 DOI: 10.1016/j.chemosphere.2022.134507] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Surfactants are molecules that reduce interfacial energy and increase solubility of other pollutants in water. These properties make them suitable for various domestic and industrial applications, soil remediation, pesticide formulation, among others. The increase in their use and the lack of strict regulations regarding their disposal and management is a matter of concern and requires more attention since the release and distribution of these compounds into the environment can modify important water quality parameters. As a result of these changes, different toxicological effects to aquatic organisms are discussed and exposed herein. On this basis, we provide an overview of the classes of surfactants, as well as their occurrence in different aqueous matrices. In addition, existing regulations around the world regarding their concentration limit for different environments are discussed. Current research focuses on the application of conventional treatments, such as biological treatments; notwithstanding, more toxic and bioaccumulative products can be generated. Advanced Oxidation Processes are promising alternatives and have also been widely applied for the removal of surfactants. This study provides, for the first time, an overview of the application of persulfate-based processes for surfactants degradation based on recent literature findings, as well as the various factors related to the activation of the persulfate anions. This review also highlights the challenges and opportunities for future research to overcome the obstacles to the practical application of this process.
Collapse
Affiliation(s)
- Roberta Frinhani Nunes
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, Brazil.
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, Brazil.
| |
Collapse
|
31
|
Sanabria P, Wilde ML, Ruiz-Padillo A, Sirtori C. Trends in Fenton and photo-Fenton processes for degradation of antineoplastic agents in water matrices: current knowledge and future challenges evaluation using a bibliometric and systematic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42168-42184. [PMID: 34403053 DOI: 10.1007/s11356-021-15938-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Antineoplastic agents present potential hazards to human health and the environment. For this reason, these compounds have attracted a great deal of attention from researchers in the environmental sciences field. In order to help guide future research, it is important to understand the current state of investigation of the occurrence of these microcontaminants and methods for their removal, especially focusing on Fenton and photo-Fenton processes applied to various aqueous matrices in which this class of pharmaceuticals is present. For this purpose, a systematic review of these topics was performed by bibliometric analysis of articles published during the last decade and available in the Scopus and Web of Science databases. This study enables visualization of the current panorama and trends in this field, providing a guide for future collaborative research and exchange of knowledge. Various strategies have been suggested to improve the efficiency of Fenton and photo-Fenton processes, mainly by means of the application of multiples additions of iron, the use of heterogeneous catalysts, and/or the use of chelating agents. Some studies have evaluated different radiation sources employed for photo-Fenton processes, such as solar and/or artificial radiation. In turn, the identification of transformation products generated by Fenton and photo-Fenton treatments, together with their evaluation by in silico (Q)SAR predictions or experimental toxicological bioassays, are related subjects that have been less reported in published works and that should be studied in depth. These subjects can support treatment evaluations that are more realistic, considering their limitations or potentials.
Collapse
Affiliation(s)
- Pedro Sanabria
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Marcelo L Wilde
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Alejandro Ruiz-Padillo
- Mobility and Logistics Laboratory. Transportation Department, Federal Universityof Santa Maria, Roraima Av., 1000, Santa Maria, RS, Brazil
| | - Carla Sirtori
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Kandel S, Katsenovich YP, Boglaienko D, Emerson HP, Levitskaia TG. Time dependent zero valent iron oxidation and the reductive removal of pertechnetate at variable pH. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127400. [PMID: 34638077 DOI: 10.1016/j.jhazmat.2021.127400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Elemental iron Fe0 is a promising reductant for removal of radioactive technetium-99 (Tc) from complex aqueous waste streams that contain sulfate, halides, and other inorganic anions generated during processing of legacy radioactive waste. The impact of sulfate on the kinetics of oxidation and reduction capacity of Fe0 in the presence of Tc has not been examined. We investigated the oxidative transformation of Fe0 and reductive removal of TcO4- in 0.1 M Na2SO4 as a function of initial pH (i.e., pHi 4, 7, and 10) under aerobic conditions up to 30 days. Tc reduction was the fastest at pHi 7 and slowest at pHi 10 (Tc reduction rate pHi 7 > 4 > 10). Aqueous fraction of Tc was measured at 0.4% at pHi 7 within 6 h, whereas ≥ 97% of Tc was removed from solutions at pHi of 4 and 10 within 24 h. Solid phase characterization showed that magnetite was the only oxidized crystalline phase for the first 6 h regardless of initial pH. Lepidocrocite was the most abundant oxidized product for pHi 10 after 5 days, but was not observed at pH of 4 or 7.
Collapse
Affiliation(s)
- Shambhu Kandel
- Applied Research Center, Florida International University, 10555W Flagler St, Miami, FL 33174, USA
| | - Yelena P Katsenovich
- Applied Research Center, Florida International University, 10555W Flagler St, Miami, FL 33174, USA.
| | - Daria Boglaienko
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| | - Hilary P Emerson
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Tatiana G Levitskaia
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| |
Collapse
|
33
|
Austenitic Stainless Steel as a Catalyst Material for Photo-Fenton Degradation of Organic Dyes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this paper, a typical austenitic stainless steel was used as a catalyst in the visible photo-Fenton degradation process of two model dyes, methylene blue and methylorange, in the presence of hydrogen peroxide and potassium persulfate as free radical-generating species. The concentration intervals for both peroxide and persulfate were in the range of 333–1667 μg/L. Very high photodecoloration efficiencies have been achieved using peroxide (>93%), while moderate ones have been achieved using persulfate (>75%) at a pH value of 6.5. For methylene blue, the maximum mineralization yield of 74.5% was achieved using 1665 μg/L of hydrogen peroxide, while methylorange was better mineralized using 999 μg/L of persulfate. The photodegradation of the dye occurred in two distinct steps, which were successfully modeled by the Langmuir–Hinshelwood pseudo-first-order kinetic model. Reaction rate constants k between 0.1 and 4.05 h−1 were observed, comparable to those presented in the reference literature at lower pH values and higher concentrations of total iron from the aqueous media.
Collapse
|
34
|
Altaf S, Zafar R, Zaman WQ, Ahmad S, Yaqoob K, Syed A, Khan AJ, Bilal M, Arshad M. Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe 3O 4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112826. [PMID: 34592521 DOI: 10.1016/j.ecoenv.2021.112826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Levofloxacin antibiotic is frequently being detected in the environment and regarded as an emerging contaminant. The present study was focused on the green synthesis of magnetite (Fe3O4 - gINPs) nanoparticles from Moringa olifera and its efficiency for removal of levofloxacin from aqueous solution. The adsorbent magnetite nanoparticles (Fe3O4) were prepared by green synthesis using Moringa olifera and coprecipitation method. Characterizations analyses of both chemically and green synthesized nanoparticles were performed by SEM, XRD, and FTIR. The average crystallite size of gINPs was 14.34 nm and chemically synthesized was 18.93 nm. The performance of the synthesized product was evaluated by adsorption capacity and removal efficiency. The parameters considered included adsorbent (gINPs) dosage, initial concentration of adsorbate, pH, contact time, and temperature. The obtained data were fitted to kinetic and isotherm models to determine the mechanism. Adsorption batch experiments were conducted to determine the reaction mechanism by studying kinetics while fitting isotherm models for samples analyzed using HPLC at 280 nm. Results showed that 86.15% removal efficiency of 4 mg L-1 levofloxacin was achieved by 100 mg L-1 gINPs in 24 h contact time when all other parameters (pH 7, temperature 25 °C) were kept constant. The maximum adsorption capacity achieved at equilibrium was 22.47 mg/g. Further, it was identified as a pseudo-second-order model with R2 = 0.965 for adsorption kinetics while isotherm data better fitted to the Freundlich model compared to Langmuir isotherm with R2 = 0.994. The potential pathway determined for levofloxacin removal was chemisorption with minor diffusion, multilayer, spontaneous and exothermic processes on the gINPs (Fe3O4). Reusability experiments were conducted in four cycles and removal efficiency varied from 85.35% to 80.47%, indicating very high potential of the adsorbent for re-use.
Collapse
Affiliation(s)
- Sikandar Altaf
- School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Rabeea Zafar
- School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; Department of Environmental Design, Health and Nutritional Sciences, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Waqas Qamar Zaman
- School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Shakil Ahmad
- School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Khurram Yaqoob
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Asim Jahangir Khan
- Department of Geohydraulics and Engineering Hydrology, University of Kassel, Kassel 34125, Germany
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Arshad
- School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| |
Collapse
|
35
|
Sun X, Lyu S. l-cysteine-modified Fe 3 O 4 nanoparticles as a novel heterogeneous catalyst for persulfate activation on BTEX removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:3023-3036. [PMID: 34676621 DOI: 10.1002/wer.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
l-cysteine-modified Fe3 O4 nanoparticles (l-cys@nFe3 O4 ) were synthesized successfully and used as catalyst to activate persulfate (PS) for benzene, toluene, ethylbenzene, and xylenes (BTEX) degradation. The composite was fully characterized, and the l-cys@nFe3 O4 had more protrusions and l-cys was combined on the surface of nFe3 O4 . The removals of BTEX were 78.2%, 85.1%, 85.3%, 81.2%, respectively, in PS/l-cys@nFe3 O4 system, while only 52.7% 57.8%, 60.8%, and 56.3% of BTEX removals reached under the same condition for nFe3 O4 chelated with l-cys in 48 h. Four successive cycles of BTEX degradation were completed in PS/l-cys@nFe3 O4 system. The synergistic mechanisms of BTEX degradation in PS/l-cys@nFe3 O4 system were investigated by electron paramagnetic resonance (EPR), benzoic acid (BA) probe and X-ray photoelectron spectroscopy (XPS) tests. SFe bond in l-cys-Fe complexes promoted the electron transfer between nFe3 O4 core and the solution, iron and iron at the interface, thereby promoting the Fe3+ /Fe2+ cycle and the catalytic capacity of nFe3 O4 . The optimal pH of PS/l-cys@nFe3 O4 system was 3, while HCO3 - and Cl- exhibited negative influences on BTEX degradation. Only 14.2%, 15.5%, 15.9%, and 15.6% BTEX had been removed in the presence of 0.12-M PS and 8.0 g/L l-cys@nFe3 O4 under the actual groundwater condition. However, expanding the dosage of PS and l-cys@nFe3 O4 was an effective strategy to overcome the adverse effect. PRACTITIONER POINTS: L-cys@nFe3 O4 were synthesized successfully and used as catalyst to activate PS for BTEX degradation. Four successive cycles of BTEX degradation were completed in PS/L-cys@nFe3 O4 system. lS-Fe bond in L-cys@nFe3 O4 promoted the electron transfer between PS and nFe3 O4 core.
Collapse
Affiliation(s)
- Xuecheng Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
36
|
Photo-Fenton Oxidation of Methyl Orange Dye Using South African Ilmenite Sands as a Catalyst. Catalysts 2021. [DOI: 10.3390/catal11121452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, the viability of South African ilmenite sands as a catalyst in the photo-Fenton-like degradation of methyl orange (MO) dye was investigated. The mineralogy and other properties of the material were characterized. Complete decolorization occurred under acidic conditions (pH < 4) in the presence of ilmenite and H2O2. Light irradiation accelerated the rate of reaction. Parameter optimization revealed that a pH of 2.5, UVB irradiation, 2 g/L catalyst loading, and a hydrogen peroxide concentration of 1.0 mM were required. Under these conditions, complete decolorization was observed after 45 min. Degradation kinetics were best described by the pseudo-first order (PFO) model. Rate constants of 0.095 and 0.034 min−1 were obtained for 5 and 20 mg/L MO concentrations, respectively. A 37% total organic carbon removal was observed after 60 min. This suggests a stepwise MO degradation pathway with intermediate formation rather than complete mineralization. Although iron leaching was detected, the mineralogy of the catalyst recovered after the reaction was similar to the fresh catalyst.
Collapse
|
37
|
Abbas T, Wadhawan T, Khan A, McEvoy J, Khan E. Iron turning waste: Low cost and sustainable permeable reactive barrier media for remediating dieldrin, endrin, DDT and lindane in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117825. [PMID: 34330012 DOI: 10.1016/j.envpol.2021.117825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The feasibility and effectiveness of iron turning waste as low cost and sustainable permeable reactive barrier (PRB) media for remediating dieldrin, endrin, dichlorodiphenyltrichloroethane (DDT), and lindane individually (batch system) and combined (continuous flow column) in water were investigated. After 10 min of reaction in a batch system, removal of endrin, dieldrin, and DDT was higher (86-91 %) than lindane (41 %) using 1 g of iron turning waste in 200 mL of pesticide solution (20 μg/L for each pesticide). Among the studied pesticides, only lindane removal decreased substantially in the presence of nitrate (37 %) and magnesium (18 %). Acidic water environment (pH = 4) favored the pesticide removal than neutral and basic environments. For the column experiments, sand alone as PRB media was ineffective for remediating the pesticides in water. When only iron turning was used, the removal efficiencies of lindane, endrin, and dieldrin were 83-88 % and remained stable during 60 min of the experiments. DDT removal was less than other pesticides (58 %). Sandwiching the iron turning waste media between two sand layers improved DDT removal (79 %) as well as limited the iron content below a permissible level in product water. In a long-term PRB column performance evaluation, iron turning waste (150 g) removed all pesticides in water (initial concentration of each pesticide = 2 μg/L) effectively (≥94 %) at a hydraulic retention time of 1.6 h. Iron turning waste, which was mainly in the form of zerovalent iron (Fe0), was oxidized to ferrous (Fe2+) and ferric (Fe3+) iron during its reaction with pesticides, and electrons donated by Fe0 and Fe2+ were responsible for complete dechlorination of all the pesticides. Therefore, it can be used as inexpensive and sustainable PRB media for groundwater remediation especially in developing countries where groundwater contamination with pesticides is more prevalent.
Collapse
Affiliation(s)
- Tauqeer Abbas
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108-6050, USA; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA, 89154-4015.
| | | | - Asad Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA, 89154-4015.
| |
Collapse
|
38
|
Furia F, Minella M, Gosetti F, Turci F, Sabatino R, Di Cesare A, Corno G, Vione D. Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron. CHEMOSPHERE 2021; 283:131170. [PMID: 34467949 DOI: 10.1016/j.chemosphere.2021.131170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
The Fenton process activated by Zero Valent Iron (ZVI-Fenton) is shown here to effectively remove antibiotics reserved for hospital settings (specifically used to treat antibiotic-resistant infections) from wastewater, thereby helping in the fight against bacterial resistance. Effective degradation of cefazolin, imipenem and vancomycin in real urban wastewater was achieved at pH 5, which is quite near neutrality when compared with classic Fenton that works effectively at pH 3-4. The possibility to operate successfully at pH 5 has several advantages compared to operation at lower pH values: (i) lower reagent costs for pH adjustment; (ii) insignificant impact on wastewater conductivity, because lesser acid is required to acidify and lesser or no base for neutralization; (iii) undetectable release of dissolved Fe, which could otherwise be an issue for wastewater quality. The cost of reagents for the treatment ranges between 0.04 and 0.07 $ m-3, which looks very suitable for practical applications. The structures of the degradation intermediates of the studied antibiotics and their likely abundance suggest that, once the primary compound is eliminated, most of the potential to trigger antibiotic action has been removed. Application of the ZVI-Fenton technique to wastewater treatment could considerably lower the possibility for antibiotics to trigger the development of resistance in bacteria.
Collapse
Affiliation(s)
- Francesco Furia
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Fabio Gosetti
- Dipartimento di Scienze Dell'Ambiente e Della Terra, Università di Milano - Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Francesco Turci
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Raffaella Sabatino
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Gianluca Corno
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy.
| |
Collapse
|
39
|
Sadegh F, Politakos N, de San Roman EG, Sanz O, Modarresi-Alam AR, Tomovska R. Toward enhanced catalytic activity of magnetic nanoparticles integrated into 3D reduced graphene oxide for heterogeneous Fenton organic dye degradation. Sci Rep 2021; 11:18343. [PMID: 34526552 PMCID: PMC8443561 DOI: 10.1038/s41598-021-97712-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Composite Fenton nanocatalyst was prepared by water-based in situ creation of Fe3O4 nanoparticles integrated within the self-assembly 3D reduced graphene oxide (rGO) aerogel. The hybrid applied for the degradation of Acid Green 25 (AG-25) organic dye in an aqueous solution, in the presence of H2O2. By investigating the conditions that maximize the dye adsorption by the 3D composite, it was found that the pH of the solution should be adjusted between the pKa of the functional groups present on the rGO surface (carboxylic acid) and that of the dye (sulfonic acid) to promote electrostatic interactions dye-3D structure. Performed under these conditions, Fenton degradation of AG-25 in presence of H2O2 was completed in less than 30 min, including all the intermediate products, as demonstrated by MALDI-TOF-MS analysis of the aqueous solution after discoloration. Moreover, this was achieved in a solution with as high a dye concentration of 0.5 mg/mL, with only 10 mg of 3D composite catalyst, at room temperature and without additional energy input. The high performance was attributed to the creation of charge-transfer complex between rGO and Fe3O4 nanoparticles throughout covalent bond C-O-Fe, the formation of which was promoted by the in situ synthesis procedure. For the first time, up to the authors' knowledge, AG-25 degradation mechanism was proposed.
Collapse
Affiliation(s)
- Fatemeh Sadegh
- POLYMAT, Facultad de Ciencias, Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta, Center - Avda. Tolosa, 72, 20018, San Sebastian, Spain
- Organic and Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Nikolaos Politakos
- POLYMAT, Facultad de Ciencias, Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta, Center - Avda. Tolosa, 72, 20018, San Sebastian, Spain
| | - Estibaliz Gonzalez de San Roman
- POLYMAT, Facultad de Ciencias, Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta, Center - Avda. Tolosa, 72, 20018, San Sebastian, Spain
| | - Oihane Sanz
- Departamento de Química Aplicada, Facultad de Ciencias, Químicas, University of the Basque Country, UPV/EHU, P. Manuel de Lardizabal 3, 20018, San Sebastian, Spain
| | - Ali Reza Modarresi-Alam
- Organic and Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
- Renewable Energies Research Institute, University of Sistan and Baluchestan, Zahedan, Iran
| | - Radmila Tomovska
- POLYMAT, Facultad de Ciencias, Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta, Center - Avda. Tolosa, 72, 20018, San Sebastian, Spain.
- Ikerbasque, The Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| |
Collapse
|
40
|
Simultaneous Galvanic Generation of Fe2+ Catalyst and Spontaneous Energy Release in the Galvano-Fenton Technique: A Numerical Investigation of Phenol’s Oxidation and Energy Production and Saving. Catalysts 2021. [DOI: 10.3390/catal11080943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present paper investigates the potential of the Galvano-Fenton process as an advanced technique in terms of the simultaneous oxidation of a model pollutant, phenol, and the energy release and saving as compared to conventional electrochemical techniques, namely, Fenton, Fenton-like, and Electro-Fenton. A numerical model describing the electrochemical, electrolytic, and phenol’s mineralization reactions is presented. Simulations are conducted to predict the kinetics of ferrous and ferric ions, radicals’ formation, and phenol degradation along with released power. Parametric analysis and comparisons are also performed between the basic configuration of the Galvano-Fenton process and its upgraded version integrating a pre-immersion stage of the electrodes in the electrolyte equivalent to 25% of the total experiment’s duration. The ratio of the initial concentration of H2O2 to the concentration of the released/added Fe2+ catalyst is varied from 10 to 30. The effect of phenol concentration is inspected over the range of 0.188 to 10 mg/L as well. Compared to conventional Fenton-based techniques, the Galvano-Fenton process demonstrated a higher performance by reaching 1.34% of degradation efficiency per released J. This is associated with the generation of hydroxyl radicals of 0.047 nM/released J with initial concentrations of hydrogen peroxide and phenol of 0.187 mM and 2 µM, respectively. Moreover, the integration of the pre-immersion stage allowed the overcoming the barrier of the null degradation rate at the initial instant.
Collapse
|
41
|
Liu S, Yu W, Cai H, Lai F, Fang H, Huang H, He J. A comparison study of applying natural iron minerals and zero-valent metals as Fenton-like catalysts for the removal of imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42217-42229. [PMID: 33797048 DOI: 10.1007/s11356-021-13731-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Natural iron minerals and zero-valent metals have been widely tested as catalysts for the Fenton-like process, but the systematical comparison study about their catalytic performance was rarely conducted, and the risk of the secondary pollution of toxic heavy metals was still not uncertain. In this paper, a comparison study of applying pyrite, ilmenite, vanadium titano-magnetite (VTM), zero-valent iron (ZVI), and zero-valent copper (ZVC) as Fenton-like catalysts for the removal of imidacloprid was performed. The results showed that ZVI exhibited the highest activity among the recyclable solid catalysts with a removal rate of 96.8% at initial pH 3 using 10.78 mmol/L H2O2, due to iron corrosive dissolution. Vanadium titano-magnetite (VTM) exhibited the best activity at first use among tested minerals but with low reusability. Pyrite with stable morphology showed a medium but sustainable ability to degrade imidacloprid, achieving a removal rate of 10.5% in the fifth use. The reaction much favored the acidic condition of initial pH around 2 or 3. Meanwhile, there was a significant positive correlation between removal efficiency and dissolved Fe or Cu concentration. Pyrite was considered to be a promising catalyst in Fenton-like reaction. It was suggested that the system proceeded predominantly through a homogeneous route via dissolved Fe or Cu ions. Except ZVC and VTM, other tested catalysts showed the low possibility of causing secondary pollution of toxic metals in the application of Fenton-like process.
Collapse
Affiliation(s)
- Siwan Liu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Wenwei Yu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Huang Cai
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Faying Lai
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, Nanchang, 330045, People's Republic of China
| | - Hansun Fang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, Nanchang, 330045, People's Republic of China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, Nanchang, 330045, People's Republic of China
| | - Jinbao He
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
42
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
43
|
Ahmed N, Vione D, Rivoira L, Carena L, Castiglioni M, Bruzzoniti MC. A Review on the Degradation of Pollutants by Fenton-Like Systems Based on Zero-Valent Iron and Persulfate: Effects of Reduction Potentials, pH, and Anions Occurring in Waste Waters. Molecules 2021; 26:4584. [PMID: 34361737 PMCID: PMC8347750 DOI: 10.3390/molecules26154584] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Among the advanced oxidation processes (AOPs), the Fenton reaction has attracted much attention in recent years for the treatment of water and wastewater. This review provides insight into a particular variant of the process, where soluble Fe(II) salts are replaced by zero-valent iron (ZVI), and hydrogen peroxide (H2O2) is replaced by persulfate (S2O82-). Heterogeneous Fenton with ZVI has the advantage of minimizing a major problem found with homogeneous Fenton. Indeed, the precipitation of Fe(III) at pH > 4 interferes with the recycling of Fe species and inhibits oxidation in homogeneous Fenton; in contrast, suspended ZVI as iron source is less sensitive to the increase of pH. Moreover, persulfate favors the production of sulfate radicals (SO4•-) that are more selective towards pollutant degradation, compared to the hydroxyl radicals (•OH) produced in classic, H2O2-based Fenton. Higher selectivity means that degradation of SO4•--reactive contaminants is less affected by interfering agents typically found in wastewater; however, the ability of SO4•- to oxidize H2O/OH- to •OH makes it difficult to obtain conditions where SO4•- is the only reactive species. Research results have shown that ZVI-Fenton with persulfate works best at acidic pH, but it is often possible to get reasonable degradation at pH values that are not too far from neutrality. Moreover, inorganic ions that are very common in water and wastewater (Cl-, HCO3-, CO32-, NO3-, NO2-) can sometimes inhibit degradation by scavenging SO4•- and/or •OH, but in other cases they even enhance the process. Therefore, ZVI-Fenton with persulfate might perform unexpectedly well in some saline waters, although the possible formation of harmful by-products upon oxidation of the anions cannot be ruled out.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy; (L.R.); (L.C.); (M.C.)
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy; (L.R.); (L.C.); (M.C.)
| | | | | | | | - Maria Concetta Bruzzoniti
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy; (L.R.); (L.C.); (M.C.)
| |
Collapse
|
44
|
Conde-Cid M, Paíga P, Moreira MM, Albergaria JT, Álvarez-Rodríguez E, Arias-Estévez M, Delerue-Matos C. Sulfadiazine removal using green zero-valent iron nanoparticles: A low-cost and eco-friendly alternative technology for water remediation. ENVIRONMENTAL RESEARCH 2021; 198:110451. [PMID: 33188761 DOI: 10.1016/j.envres.2020.110451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
In this work, the effectiveness of green zero-valent iron nanoparticles (gnZVIs) for the removal of the antibiotic sulfadiazine (SDZ) from water via adsorption and reduction was tested. Additionally, the effectiveness of this material as a catalyst for the Fenton and photo-Fenton processes was also investigated. This represents the first study concerning the use of gnZVIs for the degradation of a sulfonamide antibiotic. The results obtained indicate that gnZVIs were able to remove up to 58% of SDZ via adsorption and up to 69% via adsorption plus reduction using a SDZ/Fe3+ molar ratio of 1:61.6. Furthermore, gnZVIs showed strong effectiveness as a catalyst for the Fenton and photo-Fenton reactions, with complete SDZ removal in 8 h and 5 min, respectively, using a SDZ/Fe3+/H2O2 molar ratio of 1:38.4:38.4. These results demonstrate that the use of gnZVIs constitutes an attractive and potential alternative technology for water remediation, reducing environmental impact and operational costs.
Collapse
Affiliation(s)
- M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain.
| | - P Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Instituto Politécnico Do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - M M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Instituto Politécnico Do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - J T Albergaria
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Instituto Politécnico Do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Instituto Politécnico Do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| |
Collapse
|
45
|
Gasmi I, Haddour N, Hamdaoui O, Kerboua K, Alghyamah A, Buret F. A Novel Energy-from-Waste Approach for Electrical Energy Production by Galvano-Fenton Process. Molecules 2021; 26:molecules26134013. [PMID: 34209359 PMCID: PMC8271935 DOI: 10.3390/molecules26134013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022] Open
Abstract
A novel approach allowing the production of electrical energy by an advanced oxidation process is proposed to eliminate organic micropollutants (MPs) in wastewaters. This approach is based on associating the Galvano–Fenton process to the generation of electrical power. In the previous studies describing the Galvano–Fenton (GF) process, iron was directly coupled to a metal of more positive potential to ensure degradation of organic pollutants without any possibility of producing electrical energy. In this new approach, the Galvano–Fenton process is constructed as an electrochemical cell with an external circuit allowing recovering electrons exchanged during the process. In this study, Malachite Green (MG) dye was used as a model of organic pollutant. Simultaneous MG degradation and electrical energy production with the GF method were investigated in batch process. The investigation of various design parameters emphasis that utilization of copper as a low-cost cathode material in the galvanic couple, provides the best treatment and electrical production performances. Moreover, these performances are improved by increasing the surface area of the cathode. The present work reveals that the GF process has a potential to provide an electrical power density of about 200 W m−2. These interesting performances indicate that this novel Energy-from-Waste strategy of the GF process could serve as an ecological solution for wastewater treatment.
Collapse
Affiliation(s)
- Intissar Gasmi
- Laboratoire Ampère, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (I.G.); (F.B.)
- Laboratory of Environmental Engineering, Process Engineering Department, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba 23000, Algeria; (O.H.); (K.K.)
| | - Naoufel Haddour
- Laboratoire Ampère, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (I.G.); (F.B.)
- Correspondence:
| | - Oualid Hamdaoui
- Laboratory of Environmental Engineering, Process Engineering Department, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba 23000, Algeria; (O.H.); (K.K.)
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Kaouther Kerboua
- Laboratory of Environmental Engineering, Process Engineering Department, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba 23000, Algeria; (O.H.); (K.K.)
- Department of Second Cycle, Higher School of Industrial Technologies, P.O. Box 218, Annaba 23000, Algeria
| | - Abdulaziz Alghyamah
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - François Buret
- Laboratoire Ampère, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (I.G.); (F.B.)
| |
Collapse
|
46
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Removal of Pb(II) from aqueous solutions by using steelmaking industry wastes: Effect of blast furnace dust’s chemical composition. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Lei M, Gao Q, Zhou K, Gogoi P, Liu J, Wang J, Song H, Wang S, Liu X. Catalytic degradation and mineralization mechanism of 4-chlorophenol oxidized by phosphomolybdic acid/H2O2. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Abbas T, Wadhawan T, Khan A, McEvoy J, Khan E. Virgin (Fe 0) and microbially regenerated (Fe 2+) iron turning waste for treating chlorinated pesticides in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122980. [PMID: 32492619 DOI: 10.1016/j.jhazmat.2020.122980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
This work investigated the applicability of iron turning waste as filtration media for treating mixture of organochlorine pesticides (OCPs) in water and the ability of non-pathogenic bacterium Shewanella oneidensis to regenerate the exhausted iron turning waste for reuse. In batch experiments, 1.5 × 104 mg/L of iron turning waste efficiently removed (≥85%) five out of six pesticides in 200 mL of water (20 μg/L for each pesticide) in 10 min. Increasing the iron dose from 2.5 × 103 to 1.5 × 104 mg/L enhanced the removal of heptachlor, endosulfan, dieldrin, and endrin by 5.7, 13.2, 23.3, and 39.4%, respectively, whereas lindane and dichlorodiphenyltrichloroethane removal was comparable when using 2.5 × 103 and 1.5 × 104 mg/L of iron. Better pesticide removal (except lindane) was achieved when the initial concentration of each pesticide was higher (20 μg/L versus 1 μg/L) in the solution. Acidic pH favored OCPs (except endosulfan) removal. S. oneidensis efficiently reduced 80 ± 5% of dissolved ferric iron (Fe3+) to ferrous iron (Fe2+) in 72 h. Microbially regenerated Fe2+ iron removed all six OCPs in water efficiently (52-91%) and at similar levels as provided by virgin iron turning (38-100%). Lindane, endosulfan, and dieldrin removal increased 4-fold using S. oneidensis regenerated iron compared to exhausted iron.
Collapse
Affiliation(s)
- Tauqeer Abbas
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108-6050, USA; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, Nevada 89154-4015, USA
| | | | - Asad Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, Nevada 89154-4015, USA.
| |
Collapse
|
50
|
Magnetite and Hematite in Advanced Oxidation Processes Application for Cosmetic Wastewater Treatment. Processes (Basel) 2020. [DOI: 10.3390/pr8111343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wastewater from a cosmetic factory, with an initial total organic carbon (TOC) of 146.4 mg/L, was treated with Fe2O3/Fe0/H2O2, Fe3O4/Fe0/H2O2, light/Fe2O3/Fe0/H2O2, and light/Fe3O4/Fe0/H2O2 processes. The light-supported processes were more effective than the lightless processes. The fastest TOC removal was observed during the first 15 min of the process. Out of the four tested kinetic models, the best fit was obtained for the modified second-order reaction with respect to the TOC value. The best treatment efficiency was obtained for the light/Fe3O4/Fe0/H2O2 process with 250/750 mg/L Fe3O4/Fe0 reagent doses, a 1:1 hydrogen peroxide to Chemical Oxygen Demand (H2O2/COD) mass ratio, and a 120 min process time. These conditions allowed 75.7% TOC removal to a final TOC of 35.52 mg/L and 90.5% total nitrogen removal to a final content of 4.9 mg/L. The five-day Biochemical Oxygen Demand to Chemical Oxygen Demand (BOD5/COD) ratio was increased slightly from 0.124 to 0.161. Application of Head Space Solid-Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) analysis allows for the detection and identification of 23 compounds contained in the raw wastewater. The identified compounds were eliminated during the applied process. The HS-SPME-GC-MS results confirmed the high efficiency of the treatment processes.
Collapse
|