1
|
Miller G, Grundmann O. A Narrative Review of Moringa oleifera Lam., Moringaceae, Swietenia mahagoni L. Jacq., Meliaceae, and Momordica charantia L., Cucurbitaceae Plants Found in The Bahamas as Antidiabetes Phytomedicine. J Med Food 2024. [PMID: 39660368 DOI: 10.1089/jmf.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Moringa (Moringa oleifera Lam., Moringaceae), West Indian mahogany (Swietenia mahagoni [L.] Jacq., Meliaceae), and Cerasee (Momordica charantia L., Cucurbitaceae) are plants that are used for medicinal purposes in The Bahamas. They have various medicinal uses, including treating diabetes, anemia, inflammation, dermatological issues, backaches, cold, flu, and gastrointestinal problems. This review aims to summarize the current knowledge about natural products found in The Bahamas that can be used to treat diabetes mellitus. The search terms "Moringa oleifera Lam.," "Swietenia mahagoni (L.)," "Momordica charantia L.," "Tecoma stans," "Persea americana," "Psidium guajava," "Hamelia patens," and "Carica papaya L." in combination with "diabetes" were utilized to obtain pertinent data by searching PubMed and Google Scholar. Moringa oleifera Lam. significantly decreased fasting glucose levels in rodents after 3 months of consumption. The ethanolic extract of S. mahagoni seeds and the methanol extract of its bark can decrease blood glucose levels. Momordica charantia L. and H. patens Jacq. produce the same hypoglycemic effects as metformin. The plant extracts and compounds of T. stans (L.) Juss. ex Kunth, P. americana Mill., P. guajava L., and C. papaya L. showed diverse pharmacological activities such as reducing fasting glucose, lowering blood pressure and blood sugar, decreasing total triglycerides and total cholesterol, and improving structural damage of cardiac muscles caused by diabetes. Literature analysis reveals that the diverse pharmacological activities of various plants native to The Bahamas show promise as a medicinal food in the treatment of diabetes.
Collapse
Affiliation(s)
- Gloria Miller
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Hua Z, Deng J, Wang G. Moringa isothiocyanate-1 mitigates the damage of oxidative stress and apoptosis in diabetic nephropathy mice. Histol Histopathol 2024; 39:1621-1629. [PMID: 38623789 DOI: 10.14670/hh-18-741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is a prevalent cause of end-stage kidney disease worldwide. Moringa isothiocyanate-1 (MIC-1) has shown potential for DN management, however, the exact mechanisms remain unclear. This research intended to evaluate the impact and mechanism of MIC-1 on DN. METHODS Six C57BLKS/J-db/m mice served as controls. Eighteen C57BLKS/J-db/db mice were randomly separated into three groups: db/db, db/db + irbesartan (IBS), and db/db + MIC-1. Three weeks post-drug administration, the body weight and kidney weight of mice in each group were measured. Concurrently, serum creatinine (Scr), urine albumin, insulin, glycosylated hemoglobin (GHb), oxidative stress-, and inflammatory-related factors were determined. Additionally, the pathological injury, apoptosis, apoptosis-related markers, NLRP3, and ASC levels in the kidney tissues were examined utilizing H&E, Masson, PAS, TUNEL staining, and Western blot. RESULTS MIC-1 decreased the body weight, kidney weight, the levels of Glu, Scr, and urine albumin in db/db mice. Moreover, MIC-1 significantly suppressed the levels of MDA, insulin, GHb, TNF-α, IL-1β, and IL-6, while increased the activities of SOD, CAT, and GPX in the serum of db/db mice. MIC-1 also mitigated the kidney tissue injury in db/db mice. Western blot assay showed that MIC-1 enhanced the Bcl-2 level and suppressed the Bax, cleaved caspase-3, cleaved caspase-9, NLRP3, ASC, and caspase-1 levels of the kidney tissues in db/db mice. CONCLUSIONS MIC-1 ameliorated the kidney injury in DN mice, and its mechanism may be associated with the suppression of renal cell apoptosis, oxidative stress, and inflammatory responses.
Collapse
Affiliation(s)
- Zhou Hua
- Department of Nephrology, The People's Hospital of Suichang County, Lishui City, Zhejiang Province, China
| | - Jiuhong Deng
- Department of Endocrinology, Second People's Hospital of Pingyang County, Wenzhou City, Zhejiang Province, China
| | - Guiying Wang
- Department of Nephrology, Shangyu People's Hospital of Shaoxing, Shaoxing City, Zhejiang Province, China.
| |
Collapse
|
3
|
Elmalawany AM, Osman GY, Mohamed AH, Khalaf FM, Yassien RI. Schistosomicidal Effects of Moringa oleifera Seed Oil Extract on Schistosoma mansoni-Infected Mice. Parasite Immunol 2024; 46:e13070. [PMID: 39494757 DOI: 10.1111/pim.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Schistosomiasis causes severe hepatic fibrosis, making it a global health issue. Moringa oleifera seed oil extract, which had antiparasitic, anti-inflammatory and antioxidant effects, was investigated as an alternative treatment. The 50 mice were divided into control, infected, praziquantel-treated, M. oleifera seed oil extract-treated and combined treatment groups. These treatments were examined for their effects on egg granulomas, hepatic enzymes, total protein, albumin, antioxidant enzymes and pro-inflammatory cytokines. M. oleifera seed oil and/or PZQ significantly reduced egg numbers, granuloma size and liver histopathology. M. oleifera seed oil reduced hepatic enzyme activity, increased total protein and albumin, and increased antioxidant enzyme activity while decreasing malondialdehyde. M. oleifera seed oil reduced the levels of pro-inflammatory cytokines. M. oleifera seed oil may treat schistosomiasis instead of PZQ due to its antifibrotic, immunomodulatory and schistosomicidal properties.
Collapse
Affiliation(s)
- Alshimaa M Elmalawany
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shibin Elkom, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Fatema M Khalaf
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Rania I Yassien
- Histology Department, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
4
|
Wen Y, Li W, Ma S, Sha Y, Sheng J, Li L, Tian Y. Preparation and characterization of moringin-loaded chitosan-coated liposomes and their antibacterial activity against Staphylococcus aureus. Int J Biol Macromol 2024; 282:136815. [PMID: 39461651 DOI: 10.1016/j.ijbiomac.2024.136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
This study aimed to improve the stability of moringin and clarify the inhibitory mechanisms of moringin-loaded chitosan-coated liposomes (MR-CS-LPs) against Staphylococcus aureus. Optimisation of MR-CS-LPs was conducted using the response surface methodology, and extensive characterization was performed. The anti-bacterial activity of MR-CS-LPs was assessed by determining the minimum inhibitory concentration (MIC) and conducting growth curve analyses. The effects of MR-CS-LPs on S. aureus cell wall and membrane integrity were investigated using techniques such as scanning electron microscopy and physical and chemical analyses. Apoptotic effects were evaluated by examining oxidative stress parameters, and the impact on S. aureus biofilm formation was explored. An LC-MS/MS analysis provided insights into the inhibitory mechanism of MR-CS-LPs against S. aureus. The results indicated that MR-CS-LPs achieved an encapsulation rate of 69.02 %. Furthermore, they demonstrated potent anti-bacterial activity against S. aureus, with an MIC of 0.125 mg/mL. MR-CS-LPs disrupted cell wall and membrane integrity, resulting in macromolecule leakage, induced oxidative stress-mediated apoptosis and effectively suppressed biofilm formation, ultimately leading to bacterial death. Metabolomics analysis revealed that MR-CS-LPs inhibit S. aureus by regulating pyruvate pathways. These findings affirm that MR-CS-LPs possess significant anti-microbial properties, underscoring their potential as effective anti-microbial agents against S. aureus.
Collapse
Affiliation(s)
- Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Wenyun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shuyun Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yunrou Sha
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China.
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Pu'er University, Pu'er 665000, China.
| |
Collapse
|
5
|
Amina EE, Adisa JO, Gamde SM, Omoruyi EB, Kwaambwa HM, Mwapagha LM. Hypoglycemic Assessment of Aqueous Leaf Extract of Moringa oleifera on Diabetic Wistar Rats. Biochem Res Int 2024; 2024:9779021. [PMID: 39478982 PMCID: PMC11524682 DOI: 10.1155/2024/9779021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Moringa oleifera leaf is used for diabetes due to its pharmacologic effects. Patients with hyperglycemia experience beta cell destruction. However, no research on risk awareness has been done to ascertain its safety. The present study describes the antidiabetic effect of Moringa oleifera leaf, such as the protection of pancreatic beta cells and the induction of glycogen synthesis, before addressing the secondary effects of diabetes, such as hepatic and renal toxicity. Methods: Forty-five Wistar rats weighed 160 ± 10 g were divided into nine groups. All animal operations complied with the National Institute of Health (NIH) guidelines for the care and use of laboratory animals as approved by the Animal Ethical Committee, University of Jos. Group I was normal control and Group II was diabetic animals induced with alloxan. Insulin and extract doses of 200, 400, and 800 mg/kg were given to diabetic Groups III-VI. Normal animals in Groups VII-IX were given extract at doses of 200, 400, and 800 mg/kg for 28 days. Tissues were retrieved for biochemical and histological investigations using standard techniques. Results: There was decrease relative body weight of diabetic animals (95.50 ± 5.50) when compared to normal control (142.75 ± 20.08) with increased levels of urea (control 6.13 ± 0.523 and diabetes 29.23 ± 1.267) and creatinine (control 0.70 ± 0.057 and diabetes 2.13 ± 0.185). Histology of the liver and pancreas also points to organ damage due to hyperglycemia. However, oral administration of extract showed antidiabetic effect with protection of pancreatic beta cells and the induction of glycogen synthesis, no glycogen was deposited in the liver, addressing the secondary effects of diabetes, such as hepatic and renal toxicity. Further discovery revealed that extract elevated antioxidant enzyme expression. Conclusion: Leaf extract from Moringa oleifera reduces blood sugar and lessens the damage caused by hyperglycemia in the pancreas and liver.
Collapse
Affiliation(s)
- Egbujo Ejike Amina
- Department of Medical Laboratory Science, University of Jos, Plateau, Nigeria
| | - James O. Adisa
- Department of Medical Laboratory Science, University of Jos, Plateau, Nigeria
| | - Solomon Matthias Gamde
- Department of Medical Laboratory Science, Bingham University Karu, New Karu, Nasarawa, Nigeria
| | - Etinosa Beauty Omoruyi
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Habauka M. Kwaambwa
- Department of Biology, Chemistry and Physics, Faculty of Health, Natural Resources and Applied Sciences, Namibia University of Science and Technology, Private Bag 13388, 13 Jackson Kaujeua Street, Windhoek, Namibia
| | - Lamech M. Mwapagha
- Department of Biology, Chemistry and Physics, Faculty of Health, Natural Resources and Applied Sciences, Namibia University of Science and Technology, Private Bag 13388, 13 Jackson Kaujeua Street, Windhoek, Namibia
| |
Collapse
|
6
|
Ramakrishnan M, Fahey JW, Zimmerman AW, Zhou X, Panjwani AA. The role of isothiocyanate-rich plants and supplements in neuropsychiatric disorders: a review and update. Front Nutr 2024; 11:1448130. [PMID: 39421616 PMCID: PMC11484503 DOI: 10.3389/fnut.2024.1448130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Neuroinflammation in response to environmental stressors is an important common pathway in a number of neurological and psychiatric disorders. Responses to immune-mediated stress can lead to epigenetic changes and the development of neuropsychiatric disorders. Isothiocyanates (ITC) have shown promise in combating oxidative stress and inflammation in the nervous system as well as organ systems. While sulforaphane from broccoli is the most widely studied ITC for biomedical applications, ITC and their precursor glucosinolates are found in many species of cruciferous and other vegetables including moringa. In this review, we examine both clinical and pre-clinical studies of ITC on the amelioration of neuropsychiatric disorders (neurodevelopmental, neurodegenerative, and other) from 2018 to the present, including documentation of protocols for several ongoing clinical studies. During this time, there have been 16 clinical studies (9 randomized controlled trials), most of which reported on the effect of sulforaphane on autism spectrum disorder and schizophrenia. We also review over 80 preclinical studies examining ITC treatment of brain-related dysfunctions and disorders. The evidence to date reveals ITC have great potential for treating these conditions with minimal toxicity. The authors call for well-designed clinical trials to further the translation of these potent phytochemicals into therapeutic practice.
Collapse
Affiliation(s)
- Monica Ramakrishnan
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jed W. Fahey
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Institute of Medicine, University of Maine, Orono, ME, United States
| | - Andrew W. Zimmerman
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, United States
| | - Xinyi Zhou
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Anita A. Panjwani
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Alves RRDV, de Oliveira AM, dos Prazeres GB, da Silva AR, Costa FF, Barros BRDS, Souza TGDS, Coelho LCBB, de Melo CML, Ferreira MRA, Soares LAL, Chagas CA, Macedo MLR, Napoleão TH, Fernandes MP, Paiva PMG. Evaluation of Cytotoxicity and Acute Oral Toxicity of Saline Extract and Protein-Rich Fraction from Moringa oleifera Lam. Leaves. Pharmaceuticals (Basel) 2024; 17:1045. [PMID: 39204150 PMCID: PMC11357182 DOI: 10.3390/ph17081045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 09/03/2024] Open
Abstract
Moringa oleifera Lam. (horseradish tree) leaves demonstrate high nutritional value, are rich in proteins, and are widely used in folk medicine and food. This study investigated the presence of secondary metabolites and antinutritional proteins in leaf extract (LE) and the protein-rich fraction (PRF) derived from M. oleifera leaves, as well as the cytotoxicity to human cells, hemolytic activity, and in vivo acute toxicity and genotoxicity in mice. The flavonoids rutin and vitexin as well as trypsin inhibitors and lectins were detected in LE and PRF. Neither sample demonstrated toxicity against human peripheral blood mononuclear cells and both showed low hemolytic action. In vivo, LE and PRF did not show antinutritional effects and caused no death. The hematological parameters of the animals in the treated group were similar to those of the control. A significant increase in the serum levels of alanine aminotransferase and a discrete leukocyte infiltration with cytoplasmic vacuolization of the hepatocytes in the liver were detected in LE-treated animals. The preparations were not genotoxic or mutagenic. This study shows that LE and PRF are not antinutritional agents and presented low acute toxicity and no genotoxicity or mutagenicity. The present study contributes to the determination of the safety of using M. oleifera leaf proteins.
Collapse
Affiliation(s)
- Robson Raion de Vasconcelos Alves
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.R.d.V.A.); (A.M.d.O.); (G.B.d.P.); (A.R.d.S.); (L.C.B.B.C.); (T.H.N.)
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.R.d.V.A.); (A.M.d.O.); (G.B.d.P.); (A.R.d.S.); (L.C.B.B.C.); (T.H.N.)
| | - Gabryella Borges dos Prazeres
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.R.d.V.A.); (A.M.d.O.); (G.B.d.P.); (A.R.d.S.); (L.C.B.B.C.); (T.H.N.)
| | - Abdênego Rodrigues da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.R.d.V.A.); (A.M.d.O.); (G.B.d.P.); (A.R.d.S.); (L.C.B.B.C.); (T.H.N.)
| | - Franciele Florencio Costa
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.F.C.); (M.R.A.F.); (L.A.L.S.)
| | - Bárbara Rafaela da Silva Barros
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (B.R.d.S.B.); (C.M.L.d.M.)
| | - Talita Giselly dos Santos Souza
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão 55608-680, PE, Brazil; (T.G.d.S.S.); (C.A.C.); (M.P.F.)
| | - Luana Cassandra Breintenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.R.d.V.A.); (A.M.d.O.); (G.B.d.P.); (A.R.d.S.); (L.C.B.B.C.); (T.H.N.)
| | - Cristiane Moutinho Lagos de Melo
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (B.R.d.S.B.); (C.M.L.d.M.)
| | - Magda Rhayanny Assunção Ferreira
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.F.C.); (M.R.A.F.); (L.A.L.S.)
| | - Luiz Alberto Lira Soares
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.F.C.); (M.R.A.F.); (L.A.L.S.)
| | - Cristiano Aparecido Chagas
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão 55608-680, PE, Brazil; (T.G.d.S.S.); (C.A.C.); (M.P.F.)
| | - Maria Lígia Rodrigues Macedo
- Departamento de Tecnologia de Alimentos e da Saúde, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.R.d.V.A.); (A.M.d.O.); (G.B.d.P.); (A.R.d.S.); (L.C.B.B.C.); (T.H.N.)
| | - Mariana Pinheiro Fernandes
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão 55608-680, PE, Brazil; (T.G.d.S.S.); (C.A.C.); (M.P.F.)
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.R.d.V.A.); (A.M.d.O.); (G.B.d.P.); (A.R.d.S.); (L.C.B.B.C.); (T.H.N.)
| |
Collapse
|
8
|
Dong W, Bian X, Wan M, Jin L, Wang Y, Jing C, Yao Z, Gao W, Xi Z, Guo C. Moringa oleifera leaf extracts improve exercise performance in young male adults: A pilot study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155751. [PMID: 38852476 DOI: 10.1016/j.phymed.2024.155751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Moringa oleifera leaves are rich in bioactive substances. PURPOSE The purpose of this study was to evaluate the effects of Moringa oleifera leaf aqueous extract supplements on energy metabolism and antioxidant function in young male adults. METHODS Forty-four young male adults (26.3 ± 3.5 years) were randomly assigned to two groups: a supplement group (n = 23) receiving aqueous extract of Moringa oleifera leaves and a placebo group (n = 21). The supplementation period lasted for 30 days. Baseline measurements were taken at the beginning of the study, and further measurements were taken at the end of the supplementation period. Changes in upper- and lower-body strength, treadmill endurance, and certain blood biochemical parameters were evaluated. RESULTS After 30 days of supplementation, participants in the supplement group exhibited enhanced performance in push-ups and treadmill exhaustion tests compared to the placebo group. Levels of glucose, urea, malondialdehyde, and glutathione peroxidase activity in serum were also improved in the supplement group. CONCLUSION The findings suggest that Moringa oleifera leaf aqueous extracts have the potential to improve post-exercise energy metabolism and antioxidant function in young male adults.
Collapse
Affiliation(s)
- Weiyun Dong
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Xiangyu Bian
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Min Wan
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Lu Jin
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Yanxian Wang
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Che Jing
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Zhanxin Yao
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Weina Gao
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Zhuge Xi
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Changjiang Guo
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| |
Collapse
|
9
|
Giugliano R, Ferraro V, Chianese A, Della Marca R, Zannella C, Galdiero F, Fasciana TMA, Giammanco A, Salerno A, Cannillo J, Rotondo NP, Lentini G, Cavalluzzi MM, De Filippis A, Galdiero M. Antiviral Properties of Moringa oleifera Leaf Extracts against Respiratory Viruses. Viruses 2024; 16:1199. [PMID: 39205173 PMCID: PMC11359668 DOI: 10.3390/v16081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a plant widely used for its beneficial properties both in medical and non-medical fields. Because they produce bioactive metabolites, plants are a major resource for drug discovery. In this study, two different cultivars of leaves of M. oleifera (Salento and Barletta) were obtained by maceration or microwave-assisted extraction (MAE). We demonstrated that extracts obtained by MAE exhibited a lower cytotoxic profile compared to those obtained by maceration at concentrations ranged from 25 to 400 µg/mL, on both Vero CCL-81 and Vero/SLAM cells. We examined their antiviral properties against two viruses, i.e., the human coronavirus 229E (HCoV-229E) and measles virus (MeV), which are both responsible for respiratory infections. The extracts were able to inhibit the infection of both viruses and strongly prevented their attack and entry into the cells in a range of concentrations from 50 to 12 µg/mL. Particularly active was the variety of Salento that registered a 50% inhibitory concentration (IC50) at 21 µg/mL for HCoV-229E and at 6 µg/mL for MeV. We identified the presence of several compounds through high performance liquid chromatography (HPLC); in particular, chlorogenic and neochlorogenic acids, quercetin 3-O-β-d-glucopyranoside (QGP), and glucomoringin (GM) were mainly observed. In the end, M. oleifera can be considered a promising candidate for combating viral infections with a very strong action in the early stages of viral life cycle, probably by destructuring the viral particles blocking the virus-cell fusion.
Collapse
Affiliation(s)
- Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Valeria Ferraro
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Francesca Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Teresa M. A. Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (T.M.A.F.); (A.G.)
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (T.M.A.F.); (A.G.)
| | - Antonio Salerno
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy; (A.S.); (J.C.)
| | - Joseph Cannillo
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy; (A.S.); (J.C.)
| | - Natalie Paola Rotondo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Giovanni Lentini
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| |
Collapse
|
10
|
Javaid S, Qureshi IZ, Khurshid A, Afsar T, Husain FM, Khurshid M, Trembley JH, Razak S. Photoactive metabolite mediated photodynamic therapy of Rhabdomyosarcoma cell lines using medicinal plants and Doxorubicin co-treatments. BMC Complement Med Ther 2024; 24:270. [PMID: 39010043 PMCID: PMC11251096 DOI: 10.1186/s12906-024-04575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Medicinal plant-mediated combinational therapies have gained importance globally due to minimal side effects and enhanced treatment outcomes compared to single-drug modalities. We aimed to analyze the cytotoxic potential of each conventional treatment i.e., photodynamic therapy (PDT), chemotherapy (doxorubicin hydrochloride; Dox-HCl) with or without various concentrations of medicinal plant extracts (PE) on soft tissue cancer Rhabdomyosarcoma (RD) cell line. METHODS The Rhabdomyosarcoma (RD) cell line was cultured and treated with Photosensitizer (Photosense (AlPc4)), Chemo (Dox-HCl), and their combinations with different concentrations of each plant extract i.e., Thuja occidentalis, Moringa oleifera, Solanum surattense. For the source of illumination, a Diode laser (λ = 630 nm ± 1 nm, Pmax = 1.5 mW) was used. Photosensitizer uptake time (∼ 45 min) was optimized through spectrophotometric measurements (absorption spectroscopy). Drug response of each treatment arm was assessed post 24 h of administration using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- 5-diphenyl-2 H- tetrazolium bromide (MTT) assay. RESULTS PE-mediated Chemo-Photodynamic therapy (PDT) exhibited synergistic effects (CI < 1). Moreover, Rhabdomyosarcoma culture pretreated with various plant extracts for 24 h exhibited significant inhibition of cell viability however most effective outcomes were shown by low and high doses of Moringa oleifera compared to other plant extracts. Post low doses treated culture with all plant extracts followed by PDT came up with more effectiveness when compared to all di-therapy treatments. CONCLUSION The general outcome of this work shows that the ethanolic plant extracts (higher doses) promote the death of cancerous cells in a dose-dependent way and combining Dox-HCl and photo-mediated photodynamic therapy can yield better therapeutic outcomes.
Collapse
Affiliation(s)
- Sumbal Javaid
- Animal Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Biophotonics and Photonanomedicine Research laboratory (BPRL), Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Irfan Zia Qureshi
- Animal Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ahmat Khurshid
- Animal Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Biophotonics and Photonanomedicine Research laboratory (BPRL), Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Khurshid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, 11451, Saudi Arabia.
| |
Collapse
|
11
|
Gugliandolo A, Calì G, Muscarà C, Artimagnella O, Rollin P, Perenzoni D, Iori R, Mazzon E, Chiricosta L. α-Cyclodextrin/Moringin Induces an Antioxidant Transcriptional Response Activating Nrf2 in Differentiated NSC-34 Motor Neurons. Antioxidants (Basel) 2024; 13:813. [PMID: 39061882 PMCID: PMC11274022 DOI: 10.3390/antiox13070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress is a common feature of neurodegenerative diseases. Different natural compounds mediate neuroprotective effects by activating the Nrf2 antioxidant response. Some isothiocyanates are Nrf2 activators, including Moringin (MOR). In this study, the transcriptional profile of differentiated NSC-34 motor neurons was evaluated after treatment for 48 h and 96 h with concentrations of 0.5, 5, and 10 µM of a new MOR formulation obtained with α-cyclodextrin (α-CD). All the concentrations increased gene expression and cytoplasmic protein levels of Nrf2 at 96 h. However, the highest dose also increased nuclear Nrf2 levels at 96 h. Then, Nrf2 interactors were selected using STRING, and common biological process (BP) terms between the groups were evaluated. α-CD/MOR was able to modulate BP related to responses to oxidative stress, proteostasis, and autophagy. Specifically, the treatment with 10 µM of α-CD/MOR for 96 h induced genes involved in glutathione synthesis and proteasome subunits and reduced the expression of genes related to endoplasmic reticulum stress. Moreover, this group showed the lowest levels of the apoptotic markers Bax, cleaved caspase 9, and cleaved caspase 3. These results indicate the beneficial effects of prolonged α-CD/MOR supplementation that are mediated, at least in part, by Nrf2 activation. Then, α-CD/MOR could be a valuable treatment against neurodegenerative diseases, in particular motor neuron degeneration.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Gabriella Calì
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Claudia Muscarà
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Osvaldo Artimagnella
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Patrick Rollin
- Institute of Organic and Analytical Chemistry (ICOA), Université d’Orléans, UMR 7311, BP 6759, F-45067 Orléans, Cedex 2, France
| | - Daniele Perenzoni
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Renato Iori
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
12
|
Chatzimitakos T, Athanasiadis V, Kotsou K, Mantiniotou M, Kalompatsios D, Makrygiannis I, Bozinou E, Lalas SI. Optimization of Pressurized Liquid Extraction (PLE) Parameters for Extraction of Bioactive Compounds from Moringa oleifera Leaves and Bioactivity Assessment. Int J Mol Sci 2024; 25:4628. [PMID: 38731845 PMCID: PMC11083225 DOI: 10.3390/ijms25094628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize PLE parameters, such as temperature, extraction duration, and pressure, to maximize bioactive compound (polyphenols, flavonoids, and ascorbic acid) yield from M. oleifera leaves and evaluate their antioxidant and anti-inflammatory activities. According to the outcomes of this research, the maximum achieved total polyphenol content was 24.10 mg gallic acid equivalents (GAE)/g of dry weight (dw), and the total flavonoid content was increased up to 19.89 mg rutin equivalents (RtE)/g dw. Moreover, after HPLC-DAD analysis, neochlorogenic and chlorogenic acids, catechin and epicatechin, rutin, and narirutin were identified and quantified. As far as the optimum ascorbic acid content is concerned, it was found to be 4.77 mg/g dw. The antioxidant activity was evaluated by three different methods: ferric reducing antioxidant power (FRAP), the DPPH method, and the anti-hydrogen peroxide activity (AHPA) method, resulting in 124.29 μmol ascorbic acid equivalent (AAE)/g dw, 131.28 μmol AAE/g dw, and 229.38 μmol AAE/g dw values, respectively. Lastly, the albumin denaturation inhibition was found to be 37.54%. These findings underscore the potential of PLE as an efficient extraction method for preparing extracts from M. oleifera leaves with the maximum content of bioactive compounds.
Collapse
Affiliation(s)
| | - Vassilis Athanasiadis
- Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Street, 43100 Karditsa, Greece; (T.C.); (K.K.); (M.M.); (D.K.); (I.M.); (E.B.); (S.I.L.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Camilleri E, Blundell R. A comprehensive review of the phytochemicals, health benefits, pharmacological safety and medicinal prospects of Moringaoleifera. Heliyon 2024; 10:e27807. [PMID: 38496871 PMCID: PMC10944276 DOI: 10.1016/j.heliyon.2024.e27807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Moringa oleifera has emerged as a subject of increasing interest, drawing attention for its diverse phytochemical composition and potential health benefits. This review delves into Moringa oleifera's phytochemical constituents, including but not limited to flavonoids, alkaloids, and carotenoids. Expanding beyond its chemical intricacies, the spectrum of health advantages attributed to it are explored, encompassing its remarkable anticancer, antioxidant, anti-diabetic, anti-inflammatory, antimicrobial, and cardioprotective effect. Throughout this review, the underlying physiological mechanisms attributed to these properties by its phytochemicals are explored. Concurrently, the review addresses its pharmacological safety, ensuring a nuanced understanding of its applications in medicinal industries. In summary, this literature review presents a comprehensive exploration of Moringa oleifera, focusing on its phytochemical composition, health benefits, physiological mechanisms, pharmacological safety and nutritional importance.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Msida, Malta
| |
Collapse
|
14
|
Cortes-Alvarez SI, Delgado-Enciso I, Rodriguez-Hernandez A, Hernandez-Fuentes GA, Aurelien-Cabezas NS, Moy-Lopez NA, Cortes-Alvarez NY, Guzman-Muñiz J, Guzman-Esquivel J, Rodriguez-Sanchez IP, Martinez-Fierro ML, Mokay-Ramirez KA, Barajas-Saucedo CE, Sanchez-Ramirez CA. Efficacy of Hot Tea Infusion vs. Ethanolic Extract of Moringa oleifera for the Simultaneous Treatment of Nonalcoholic Fatty Liver, Hyperlipidemia, and Hyperglycemia in a Murine Model Fed with a High-Fat Diet. J Nutr Metab 2024; 2024:2209581. [PMID: 38375319 PMCID: PMC10876314 DOI: 10.1155/2024/2209581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Moringa oleifera (MO) is a native tree of Asia and is cultivated in some areas of Mexico as part of traditional horticulture. The aim of the present study was to compare the efficacy of MO infusion vs. MO ethanolic extract for the simultaneous treatment of nonalcoholic fatty liver (NAFLD), hyperlipidemia, and hyperglycemia in a murine model fed with a high-fat diet (HFD). BALB/c mice were fed a balanced diet (healthy control) or an HFD for 6 months. With this, the NAFLD model was established before starting a therapeutic intervention with MO for two months. The phytochemical analysis by nuclear magnetic resonance in 1H and 13C experiments showed signals for pyrrole alkaloids and triterpenes as the main constituents of the extract and infusion preparation. A significant reduction of SGPT, SGOT, lipids, urea, and glucose in blood among NAFLD groups treated with MO (infusion or extract) was found, when compared to the NAFLD-placebo group. Steatosis and liver inflammation were found to be decreased in the MO groups, as infusion or ethanolic extract. Infusion produced a better therapeutic effect than the extract in all parameters, except glycemic control, where the extract was better. As an additional finding, it is noteworthy that treatment with MO, particularly through infusion, resulted in improved motor activity. Moreover, a reduction in anxiety-like behavior was observed exclusively with the administration of infusion. These observations provide valuable insights into the potential broader effects of Moringa oleifera beyond the primary aim of the study.
Collapse
Affiliation(s)
- Salma I. Cortes-Alvarez
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Alejandrina Rodriguez-Hernandez
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
| | - Gustavo A. Hernandez-Fuentes
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
| | - Nomely S. Aurelien-Cabezas
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Norma A. Moy-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima, Mexico
| | - Nadia Y. Cortes-Alvarez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima, Mexico
- Department of Nursing and Midwifery, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Jorge Guzman-Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima, Mexico
| | - Jose Guzman-Esquivel
- Department of Research, Mexican Social Security Institute, Villa de Alvarez, Colima, Mexico
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University, Zacatecas, Zacatecas, Mexico
| | - Karen A. Mokay-Ramirez
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Carlos E. Barajas-Saucedo
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Carmen A. Sanchez-Ramirez
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
| |
Collapse
|
15
|
Hussein J, El-Bana M, Abdel-Latif Y, El-Sayed S, Shaarawy S, Medhat D. Moringa oleifera leaves extract loaded gold nanoparticles offers a promising approach in protecting against experimental nephrotoxicity. Prostaglandins Other Lipid Mediat 2024; 170:106800. [PMID: 38029886 DOI: 10.1016/j.prostaglandins.2023.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Cisplatin is one of the most important antitumor drugs, however; it has numerous adverse effects like nephrotoxicity which is considered one of cisplatin uses . The study was planned to evaluate the nephroprotective effect of M. oleifera leaves extract loaded gold nanoparticles (Au-NPs) against cisplatin-induced nephrotoxicity in rats. Initially, total phenolic contents (TPC) and the antioxidant activity of the M. oleifera leaves extract were evaluated and recorded 8.50 mg/g and 39.89 % respectively. After that, the dry leaves of M. oleifera were grinded into fine powder and extracted using water extraction system. Then, different volumes (0.5, 1 and 2 mL) of M. Oleifera were blended with constant volume of Au-NPs (1 mL). Both Au-NPs and M. oleifera extract loaded Au-NPs were investigated using transmission electron microscope (TEM) that illustrated the deposition of M. Oleifera onto Au-NPs. The experimental study was performed on seventy male albino rats alienated into seven groups. Group I healthy rats, group II injected with one dose of cisplatin (CisPt), groups from III to VII treated groups received CisPt then received M. Oleifera leaves extract alone and /or Au-NPs with different ratios and concentrations. After the experiment' time, serum urea and creatinine, kidney injury molecule-1 (KIM-1), advanced oxidation protein products (AOPP), monocyte chemoattractant protein-1 (MCP-1), tumor necrotic factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated as markers of renal nephrotoxicity. The kidneys of rats were excised for malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) assessments. Induction of CisPt showed a highly significant disturbance in oxidant/anti-oxidant balance and inducing inflammatory cascades supporting nephrotoxicity, while treatment with M. Oleifera leaves extract, Au-NPs, and the different concentrations of the extract loaded on Au-NPs had a crucial role in attenuating oxidative stress, enhancing antioxidant systems, and reducing inflammatory biomarkers, although the most significant results showed a powerful scavenging activity against nephrotoxicity induced by CisPt was obtained with M. Oleifera leaves extract loaded on Au-NPs with a concentration of 2:1 respectively.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt.
| | - Mona El-Bana
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Samah El-Sayed
- Dairy Science Department, National Research Centre, Dokki 12622, Egypt
| | - Sahar Shaarawy
- Pre-Treatment and Finishing of Cellulosic Fabric Department, National Research Centre, Dokki 12622, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| |
Collapse
|
16
|
Adarthaiya S, Sehgal A. Moringa oleifera Lam. as a potential plant for alleviation of the metabolic syndrome-A narrative review based on in vivo and clinical studies. Phytother Res 2024; 38:755-775. [PMID: 38015048 DOI: 10.1002/ptr.8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The metabolic syndrome (MetS) refers to the co-occurrence of risk factors, including hyperglycaemia, increased body weight, hypertension and dyslipidemia, which eventually lead to diabetes and cardiovascular disease, a common health problem worldwide. Recently, there has been an increasing interest in the use of plant-based products for the management of MetS, because of their less detrimental and more beneficial effects. Moringa oleifera (Moringaceae), commonly known as drumstick, is cultivated worldwide for its nutritional and medicinal properties. This review focuses on the in vivo and human studies concerning the potential of M. oleifera in the alleviation of MetS and its comorbidities. The search for relevant articles was carried out in PubMed and Google Scholar databases. Randomised controlled and clinical trials from the PubMed database were included in this review. The results suggested that the administration of M. oleifera, in vivo, shows clear signs of improvement in MetS indices. Despite fewer human studies, the existing data documented convincing results that uphold the potential of M. oleifera against MetS. Therefore, future research discussing the probable mechanism of action is much needed which could further assure the usage of M. oleifera in the treatment regimen of MetS.
Collapse
Affiliation(s)
- Saikrupa Adarthaiya
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
17
|
Zhang S, Cao Y, Huang Y, Zhang S, Wang G, Fang X, Bao W. Aqueous M. oleifera leaf extract alleviates DSS-induced colitis in mice through suppression of inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116929. [PMID: 37480965 DOI: 10.1016/j.jep.2023.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (M. oleifera) is a perennial deciduous tree with considerable agricultural and pharmacological value. Nearly all parts of the tree are edible, and nearly all parts are used in traditional medicine. Leaves of M. oleifera have the functions of hypoglycemic (antidiabetic), anti-cancer and anti-oxidant stress, but less research pay attention to the anti-inflammatory effect of M. oleifera leaves. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal medication. Here, we investigated the anti-inflammatory effects of aqueous extract of M. oleifera leaves. MATERIALS AND METHODS Intestinal organoids and mice as in vitro and in vivo models to investigate the effects of aqueous extract of M. oleifera leaves on inflammation induced by TNF-α and dextran sulfate sodium (DSS) respectively. The expression of inflammatory cytokines and proliferation-related genes were evaluated by RT-qPCR, respectively. The compounds in the leaf extract were determined by LC/MS, and network pharmacology approach was employed to predict 54 anti-IBD potential targets of quercetin-3-galactoside (QG) and isoquercitrin (IS). RESULTS We found that the extract protected against damage to intestinal organoids caused by tumor necrosis factor (TNF-α), and significantly down-regulated the expression of inflammatory cytokines. The extract also suppressed the TNF-α-induced expression of Pcna, c-Myc, and c-Jun. Additionally, oral administration of the extract also ameliorated DSS-induced colon damage (colonic shortening, loss of goblet cells and overall abnormal cellularity), and inhibited the expression of inflammatory cytokines and proliferation-related genes in colitis. By LC/MS we identified nearly 2000 of the compounds in the leaf extract, of the flavonoids identified, QG and IS made up the largest percentage; both have been shown to have anti-inflammatory properties. Moreover, network pharmacology approach was employed to predict 54 anti-IBD potential targets of QG and IS. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the overlapping targets participated in response to oxidative stress and PI3K-Akt signaling pathway respectively. CONCLUSIONS The present study demonstrated the anti-inflammatory capability, in vitro and in vivo, of the aqueous extract of M. oleifera leaves and suggests its potential phytotherapeutic treatment for IBD.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaomin Fang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Jimoh OA, Oyeyemi BF, Oyeyemi WA, Ayodele SO, Okin-Aminu HO, Ayodele AD, Faniyi TO, Nwachukwu CU. Herbal inclusions ameliorate effect of heat stress on haematology, proinflammatory cytokines, adipokines and oxidative stress of weaned rabbit does in humid tropics. J Anim Physiol Anim Nutr (Berl) 2024; 108:55-63. [PMID: 37526207 DOI: 10.1111/jpn.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
A study was designed to evaluate the effect of Moringa oleifera, Phyllanthus amarus and Viscum album leaf meal as herbal inclusions to alleviate the detrimental outcomes of heat stress in weaned female rabbits. Forty (40) weaned rabbit does (527.99 ± 10.35 g; 28 days old) were randomly allotted to four dietary groups consisting of Diet 1(control diet; without leaf meal), Diets 2 (supplemented with 10% V. album); 3 (supplemented with 10% M. oleifera) and 4 (supplemented with 10% P. amarus) in an 84 days trial at the peak of heat stress in Southwest Nigeria. At the end of the trial, blood samples were collected to assess physiological responses and oxidative status of the rabbit does. The results obtained revealed that rabbit does were exposed to heat stress; rabbit does fed control diet had higher leucocyte and neutrophil/lymphocyte ratio compared to rabbit does fed on herbal inclusions. The herbal inclusions enhanced oxidative stability of rabbit does by lowering lipid peroxidation and enhancing antioxidant activities during heat stress conditions. Rabbit does fed control-based diet had significantly higher heat shock protein 70, leptin and adiponectin compared to rabbit does on M. oleifera, P. amarus and V. album supplemented diets. The herbal inclusions tend to suppress proinflammatory cytokines in rabbit does during heat stress condition. In conclusion, the herbal inclusions suppress inflammation, adipokines and promotes oxidative stability of rabbit does exposed to heat stress conditions.
Collapse
Affiliation(s)
- Olatunji A Jimoh
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Bolaji F Oyeyemi
- Department of Science Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Wahab A Oyeyemi
- Department of Physiology, Osun State University Oshogbo, Osogbo, Osun State, Nigeria
| | - Simeon O Ayodele
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ado Ekiti, Ekiti State, Nigeria
| | - Hafsat O Okin-Aminu
- Animal Science Department, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ayoola D Ayodele
- Department of Agricultural and Industrial Technology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Tolulope O Faniyi
- Department of Crop and Animal Science, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Chinwe Uchechi Nwachukwu
- Department of Agricultural Science Education, School of Vocational and Technical Education, Alvan Ikoku Federal College of Education, Owerri, Imo State, Nigeria
| |
Collapse
|
19
|
Xi C, Li W, Liu X, Xie J, Li S, Tian Y, Song S. The Potential Role of Moringa oleifera Lam. Leaf Proteins in Moringa Allergy by Functionally Activating Murine Bone Marrow-Derived Dendritic Cells and Inducing Their Differentiation toward a Th2-Polarizing Phenotype. Nutrients 2023; 16:7. [PMID: 38201837 PMCID: PMC10780893 DOI: 10.3390/nu16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Moringa oleifera leaves are an inexpensive substitute for staple foods. Despite limited data, Moringa oleifera leaf protein (Mo-Pr) may be allergenic in BALB/c mice. In mouse models and allergic patients, dendritic cells (DCs) may be involved in food allergy. In addition, some allergens, including food allergens, can directly activate DCs and induce Th2 polarization. We investigated whether Mo-Pr can modulate the functional profile of murine bone marrow-derived dendritic cells (BMDCs) in vitro. BMDCs were obtained from mouse bone marrow cultured with granulocyte-macrophage colony-stimulating factor (GM-CSF) for 7 days and then treated with lipopolysaccharide (LPS) or Mo-Pr. BMDC phenotypes were evaluated via flow cytometry, cytokine production was assessed using ELISA, the expression of key genes was studied using qRT-PCR, the effects on T-cell differentiation were investigated using mixed lymphocyte reaction (MLR), and transcriptional changes in BMDCs were investigated using RNA-Seq. Mo-Pr-specific IgE was investigated in recipient serum after BMDC transfer. Mo-Pr treatment significantly induced BMDC maturation, increased the expression of CD80/86 and MHC II, resulted in the production of IL-12 and TNF-α, and induced T-cell differentiation. Mo-Pr treatment stimulated BMDCs' expression of the Th2 promoters OX40L and TIM-4, induced the production of the Th2-type chemokines CCL22 and CCL17, and decreased the Th1/Th2 ratio in vitro. Healthy recipients of Mo-Pr-treated BMDCs produced Mo-Pr-specific IgE.
Collapse
Affiliation(s)
- Chuyu Xi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (X.L.); (J.X.); (S.L.); (Y.T.)
| | - Wenjie Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (X.L.); (J.X.); (S.L.); (Y.T.)
| | - Xiaoxue Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (X.L.); (J.X.); (S.L.); (Y.T.)
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (X.L.); (J.X.); (S.L.); (Y.T.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shijun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (X.L.); (J.X.); (S.L.); (Y.T.)
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (X.L.); (J.X.); (S.L.); (Y.T.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shuang Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (X.L.); (J.X.); (S.L.); (Y.T.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
20
|
Jikah AN, Edo GI. Moringa oleifera: a valuable insight into recent advances in medicinal uses and pharmacological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7343-7361. [PMID: 37532676 DOI: 10.1002/jsfa.12892] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Moringa oleifera is an important medicinal plant in several countries; for example, Nigeria, the USA, Turkey, Germany, Greece, and Ukraine. The abundant bioactive and nutritional properties of this plant make it useful in many and diverse areas of life, including the health, cosmetic, agricultural, and food industries to mention but a few. Research has found that the presence of proteins, carbohydrates, lipids, vitamins, minerals, flavonoids, phenols, alkaloids, fatty acids, saponins, essential oils, folate, aromatic hydrocarbons, sterols, glucosinolates, and glycosides, among others, characterize the moringa nutrient profile and, as a result, give rise to its remedial effects on ailments such as wounds, stomach and duodenal ulcers, allergies, obesity, diabetes, inflammation, asthma, and so on. It is the aim of this review to provide an insight into such medicinal and pharmacological remedies attributed to moringa, stating both the past and recent discoveries. This review article also takes a look into the botanical features, bioactive compounds, antinutrients, food applications, bacterial fermentation products, biosafety, industrial applications, and other uses of moringa. Finally, with the belief that knowledge is progressive, we acknowledge that there are things yet undiscovered about this wonder plant that will be of value both to medicine and general life; we therefore recommend that research work continues on the moringa plant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Great Iruoghene Edo
- Department of Chemical Science, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
21
|
Bania JK, Deka JR, Hazarika A, Das AK, Nath AJ, Sileshi GW. Modelling habitat suitability for Moringa oleifera and Moringa stenopetala under current and future climate change scenarios. Sci Rep 2023; 13:20221. [PMID: 37980365 PMCID: PMC10657390 DOI: 10.1038/s41598-023-47535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023] Open
Abstract
Moringa oleifera Lam and Moringa stenopetala (Baker f.) Cufod are being widely promoted as multipurpose trees across the tropics for their nutritional, medicinal and soil health benefits. Different parts of these species are edible, have therapeutic values and their seeds are used for water purification. Although the two species are similar in many ways, they have contrasting distributions. However, their current promotion is not guided by adequate knowledge of the suitability of the target areas. Information is also scanty on the suitability of habitats for these species under the current and future climate change scenarios. Therefore, the objective of this study was to predict the habitat suitability of M. oleifera and M. stenopetala under current and future climate change scenarios using an ensemble of models assuming four shared socio-economic pathways, namely, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 for 2050 and 2070. The results suggest that areas that are highly suitable for M. oleifera will increase by 0.1% and 3.2% under SSP1-2.6 to SSP5-8.5 by 2050, respectively. By 2070, the area suitable for M. oleifera would likely decrease by 5.4 and 10.6% under SSP1-2.6 and SSP5-8.5 scenarios, respectively. The habitat that is highly suitable for M. stenopetala was predicted to increase by 85-98% under SSP3-7.0 and SSP5-8.5 scenarios by 2050 and by 2070, while suitable areas could increase by up to 143.6% under SSP5-8.5. The most influential bioclimatic variables for both species were mean diurnal temperature range, mean temperature of driest quarter, precipitation of wettest month, and isothermality. Additionally, soil pH, elevation and water holding capacity were influential variables in the distribution of M. oleifera, while soil pH, soil salinity and slope were influential in M. stenopetala distribution. This study has provided baseline information on the current distribution and possible future habitat suitability, which will be helpful to guide formulation of good policies and practices for promoting Moringa species outside their current range.
Collapse
Affiliation(s)
- Jintu Kumar Bania
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | | | - Animekh Hazarika
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Ashesh Kumar Das
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Arun Jyoti Nath
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Gudeta W Sileshi
- Department of Plant Biology and Biodiversity Management, Addis Ababa, Ethiopia.
| |
Collapse
|
22
|
Souza HCA, Souza MDA, Sousa CS, Viana EKA, Alves SKS, Marques AO, Ribeiro ASN, de Sousa do Vale V, Islam MT, de Miranda JAL, da Costa Mota M, Rocha JA. Molecular Docking and ADME-TOX Profiling of Moringa oleifera Constituents against SARS-CoV-2. Adv Respir Med 2023; 91:464-485. [PMID: 37987297 PMCID: PMC10660866 DOI: 10.3390/arm91060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2019) etiological agent, which has a high contagiousness and is to blame for the outbreak of acute viral pneumonia, is the cause of the respiratory disease COVID-19. The use of natural products grew as an alternative treatment for various diseases due to the abundance of organic molecules with pharmacological properties. Many pharmaceutical studies have focused on investigating compounds with therapeutic potential. Therefore, this study aimed to identify potential antiviral compounds from a popular medicinal plant called Moringa oleifera Lam. against the spike, Mpro, ACE2, and RBD targets of SARS-CoV-2. For this, we use molecular docking to identify the molecules with the greatest affinity for the targets through the orientation of the ligand with the receptor in complex. For the best results, ADME-TOX predictions were performed to evaluate the pharmacokinetic properties of the compounds using the online tool pkCSM. The results demonstrate that among the 61 molecules of M. oleifera, 22 molecules showed promising inhibition results, where the compound ellagic acid showed significant molecular affinity (-9.3 kcal.mol-1) in interaction with the spike protein. These results highlight the relevance of investigating natural compounds from M. oleifera as potential antivirals against SARS-CoV-2; however, additional studies are needed to confirm the antiviral activity of the compounds.
Collapse
Affiliation(s)
- Hellen Cris Araújo Souza
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Maycon Douglas Araújo Souza
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Cássio Silva Sousa
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Edilanne Katrine Amparo Viana
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Sabrina Kelly Silva Alves
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Alex Oliveira Marques
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Arthur Serejo Neves Ribeiro
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Vanessa de Sousa do Vale
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - João Antônio Leal de Miranda
- Department of Medicine, Senador Helvidio Nunes de Barros Center, Federal University of Piauí (UFPI), Picos 64607-670, PI, Brazil
| | - Marcelo da Costa Mota
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Jefferson Almeida Rocha
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| |
Collapse
|
23
|
Amsler E, Mahevas T, Soria A, Barbaud A. Fixed food eruption to Moringa oleifera. Contact Dermatitis 2023; 89:301-302. [PMID: 37455586 DOI: 10.1111/cod.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Emmanuelle Amsler
- Médecine Sorbonne Université, Service de dermatologie et d'allergologie, Hôpital Tenon, Assistance Publique des Hôpitauxde Paris (AP-HP), Hôpital Tenon, AP-HP, Paris, France
| | | | - Angele Soria
- Médecine Sorbonne Université, Service de dermatologie et d'allergologie, Hôpital Tenon, Assistance Publique des Hôpitauxde Paris (AP-HP), Hôpital Tenon, AP-HP, Paris, France
- Cimi-Paris, INSERM 1135, Paris, France
| | - Annick Barbaud
- Médecine Sorbonne Université, Service de dermatologie et d'allergologie, Hôpital Tenon, Assistance Publique des Hôpitauxde Paris (AP-HP), Hôpital Tenon, AP-HP, Paris, France
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP Sorbonne Université, Paris, France
| |
Collapse
|
24
|
Fu Y, Du X, Cui Y, Xiong K, Wang J. Nutritional intervention is promising in alleviating liver injury during tuberculosis treatment: a review. Front Nutr 2023; 10:1261148. [PMID: 37810929 PMCID: PMC10552157 DOI: 10.3389/fnut.2023.1261148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Liver injury is a main adverse effect of first-line tuberculosis drugs. Current management of tuberculosis-drug-induced liver injury (TBLI) mainly relies on withdrawing tuberculosis drugs when necessary. No effective treatment exists. Various nutrients and functional food ingredients may play a protective role in TBLI. However, a comprehensive review has not been conducted to compare the effects of these nutrients and functional food ingredients. We searched Pubmed and Web of Science databases from the earliest date of the database to March 2023. All available in-vitro, animal and clinical studies that examined the effects of nutritional intervention on TBLI were included. The underlying mechanism was briefly reviewed. Folic acid, quercetin, curcumin, Lactobacillus casei, spirulina and Moringa oleifera possessed moderate evidence to have a beneficial effect on alleviating TBLI mostly based on animal studies. The evidence of other nutritional interventions on TBLI was weak. Alleviating oxidative stress and apoptosis were the leading mechanisms for the beneficial effects of nutritional intervention on TBLI. In conclusion, a few nutritional interventions are promising for alleviating TBLI including folic acid, quercetin, curcumin, L. casei, spirulina and M. oleifera, the effectiveness and safety of which need further confirmation by well-designed randomized controlled trials. The mechanisms for the protective role of these nutritional interventions on TBLI warrant further study, particularly by establishing the animal model of TBLI using the tuberculosis drugs separately.
Collapse
Affiliation(s)
- Yujin Fu
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xianfa Du
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingchun Cui
- Department of Infectious Diseases, The 971 Naval Hospital, Qingdao, China
| | - Ke Xiong
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jinyu Wang
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Masarkar N, Ray SK, Saleem Z, Mukherjee S. Potential anti-cancer activity of Moringa oleifera derived bio-active compounds targeting hypoxia-inducible factor-1 alpha in breast cancer. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 0:jcim-2023-0182. [PMID: 37712721 DOI: 10.1515/jcim-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer (BC) will become a highly detected malignancy in females worldwide in 2023, with over 2 million new cases. Studies have established the role of hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls cellular response to hypoxic stress, and is essential for BC spread. HIF-1 is implicated in nearly every critical stage of the metastatic progression, including invasion, EMT, intravasation, extravasation, angiogenesis, and the formation of metastatic niches. HIF-1 overexpression has been associated with poor prognosis and increased mortality in BC patients. This is accomplished by controlling the expression of HIF-1 target genes involved in cell survival, angiogenesis, metabolism, and treatment resistance. Studies have indicated that inhibiting HIF-1 has an anti-cancer effect on its own and that inhibiting HIF-1-mediated signaling improves the efficacy of anti-cancer therapy. Approximately 74 % of recognized anti-cancer drugs are sourced from plant species. Studies on anti-cancer characteristics of phytochemicals derived from Moringa oleifera (MO), also known as the 'Tree of Life', have revealed a high therapeutic potential for BC. In this review, we have highlighted the various mechanisms through which bioactive compounds present in MO may modulate HIF and its regulatory genes/pathways, to prove their efficacy in treating and preventing BC.
Collapse
Affiliation(s)
- Neha Masarkar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | | | - Zirha Saleem
- Department of Biotechnology, Institute for Excellence in Higher Education, Bhopal, Madhya Pradesh, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
26
|
Alam MN, Singh L, Khan NA, Asiri YI, Hassan MZ, Afzal O, Altamimi ASA, Hussain MS. Ameliorative Effect of Ethanolic Extract of Moringa oleifera Leaves in Combination with Curcumin against PTZ-Induced Kindled Epilepsy in Rats: In Vivo and In Silico. Pharmaceuticals (Basel) 2023; 16:1223. [PMID: 37765031 PMCID: PMC10534968 DOI: 10.3390/ph16091223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
The ameliorative effect of ethanolic extract of M. oleifera (MOEE) leaves in combination with curcumin against seizures, cognitive impairment, and oxidative stress in the molecular docking of PTZ-induced kindled rats was performed to predict the potential phytochemical effects of MOEE and curcumin against epilepsy. The effect of pretreatment with leaves of M. oleifera ethanolic extracts (MOEE) (250 mg/kg and 500 mg/kg, orally), curcumin (200 mg/kg and 300 mg/kg, orally), valproic acid used as a standard (100 mg/kg), and the combined effect of MOEE (250 mg/kg) and curcumin (200 mg/kg) at a low dose on Pentylenetetrazole was used for (PTZ)-induced kindling For the development of kindling, individual Wistar rats (male) were injected with pentyletetrazole (40 mg/kg, i.p.) on every alternate day. Molecular docking was performed by the Auto Dock 4.2 tool to merge the ligand orientations in the binding cavity. From the RCSB website, the crystal structure of human glutathione reductase (PDB ID: 3DK9) was obtained. Curcumin and M. oleifera ethanolic extracts (MOEE) showed dose-dependent effects. The combined effects of MOEE and curcumin leaves significantly improved the seizure score and decreased the number of myoclonic jerks compared with a standard dose of valproic acid. PTZ kindling induced significant oxidative stress and cognitive impairment, which was reversed by pretreatment with MOEE and curcumin. Glutathione reductase (GR) is an enzyme that plays a key role in the cellular control of reactive oxygen species (ROS). Therefore, activating GR can uplift antioxidant properties, which leads to the inhibition of ROS-induced cell death in the brain. The combination of the ethanolic extract of M. oleifera (MOEE) leaves and curcumin has shown better results than any other combination for antiepileptic effects by virtue of antioxidant effects. As per the docking study, chlorogenic acid and quercetin treated with acombination of curcumin have much more potential.
Collapse
Affiliation(s)
- Md. Niyaz Alam
- Faculty of Pharmacy, IFTM University, Moradabad 244102, Uttar Pradesh, India
- Department of Pharmacology, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Subharti University, Meerut 250005, Uttar Pradesh, India;
| | - Najam Ali Khan
- GMS College of Pharmacy, Shakarpur, Rajabpure, Amroha 244221, Uttar Pradesh, India;
| | - Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohd. Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Md. Sarfaraj Hussain
- Lord Buddha Koshi College of Pharmacy, Baijnathpur, Saharsa 852201, Bihar, India;
| |
Collapse
|
27
|
Oluwole O, Ibidapo O, Arowosola T, Raji F, Zandonadi RP, Alasqah I, Lho LH, Han H, Raposo A. Sustainable transformation agenda for enhanced global food and nutrition security: a narrative review. Front Nutr 2023; 10:1226538. [PMID: 37599683 PMCID: PMC10433737 DOI: 10.3389/fnut.2023.1226538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The world's population is currently growing at an exponential rate, which is estimated to be over 8 billion inhabitants as reported by United Nations on November 15, 2022. According to FAO, 870 million people out of this population do not have enough food to eat, with the vast majority of hungry people (98%) living in developing countries, where almost 15% of the population is undernourished. Furthermore, the world's population is estimated to come to 9 billion by 2050, which would incur severe food scarcity and would seriously hamper global food security. Food losses, especially post-harvest loss as a result of poor agricultural practices have also been reported to greatly impact the economy, the environment, and the livelihoods of low and medium countries and Sub-Saharan-African. Therefore, realistic options should be established for promoting sustainable agriculture systems, improving nutrition, and achieving food security to end hunger in our nations. This paper elucidates the drivers of food insecurity including food losses, escalating population growth, hunger, and food production, among others, and provided some transformation approaches such as value addition through appropriate and emerging food processing and preservation techniques, application of biotechnological options through genetically modified foods and functional foods consumption and integration of indigenous underutilized nutrient-dense food crops which could serve as all-inclusive and sustainable transformation options for enhanced food and nutrition security, especially in developing countries, which is where the hunger burden and the prevalence of malnutrition and non-communicable diseases are high.
Collapse
Affiliation(s)
- Oluwatoyin Oluwole
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria
| | - Olubunmi Ibidapo
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria
| | - Temiloluwa Arowosola
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria
| | - Fatima Raji
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria
| | - Renata Puppin Zandonadi
- University of Brasília, Faculty of Health Sciences, Nutrition Department, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Ibrahim Alasqah
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukairiyah, Saudi Arabia
| | - Linda Heejung Lho
- Division of Tourism and Hotel Management, College of Business, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
28
|
Abubakar JO, Temidayo DO, Ololade OAH, Abosede OO. Herbal supplements suppress pro-inflammatory cytokines, boost humoral immunity, and modulate adipokines to enhance the productivity traits of rabbit bucks in hot climatic conditions. Trop Anim Health Prod 2023; 55:227. [PMID: 37227575 DOI: 10.1007/s11250-023-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Thermal stress is the main stressor accounting for reduced productivity, compromised immunity, and collapse of thermoregulatory measures in rabbits in the tropics. The current climate change depicts worsening assault of heat stress in the time ahead; hence, the need to develop combative measures for animal productivity. This research investigates the influence of herbal supplements of three tropical herbs Viscum album (mistletoe), Moringa oleifera (Moringa), and Phyllanthus amarus (Phyllanthus) on immune response, oxidative status, adipokines, and growth of eighty weaned rabbits during heat stress in tropical climate. The bucks were fed with four standard diets; a control and others supplemented with each of Moringa, Phyllanthus, and mistletoe for an eight-week feed trial. Performance indicators were monitored and blood were sampled and assayed for hematology, pro-inflammatory cytokines, adipokines, and oxidative status. The result shows that the performance of bucks fed with Phyllanthus and mistletoe supplements was superior to other groups. The neutrophil/lymphocyte ratio was significantly (p < 0.05) lower in the bucks fed with Moringa supplement, with significantly (p < 0.05) highest values obtained in the control group. Total antioxidant activity of the bucks fed with supplements was significantly (p < 0.05) higher than those on control, with the significantly (p < 0.05) highest value recorded in bucks fed with Phyllanthus. Serum lipid peroxidation of the bucks on control was significantly (p < 0.05) highest and significantly (p < 0.05) least value was obtained in bucks on mistletoe. Heat shock protein 70, adiponectin, and leptin of the bucks on control were significantly (p < 0.05) higher than bucks on herbal supplements. Interleukin 6, interleukin β, and tumor necrosis factor α of bucks on control were significantly (p < 0.05) higher than bucks fed on herbal supplements. In conclusion, the inclusion of herbal supplements Moringa, Phyllanthus, or mistletoe suppressed pro-inflammatory cytokines, boost humoral immunity, enhance the anti-oxidative status, and promote the growth of rabbit bucks during thermal discomfort.
Collapse
Affiliation(s)
- Jimoh Olatunji Abubakar
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ado-Ekiti, Ekiti State, Nigeria.
| | | | | | - Ojo Olayinka Abosede
- Department of Animal Production, Fisheries and Aquaculture, Kwara State University, Molete, Kwara State, Nigeria
| |
Collapse
|
29
|
Aljazzaf B, Regeai S, Elghmasi S, Alghazir N, Balgasim A, Hdud Ismail IM, Eskandrani AA, Shamlan G, Alansari WS, AL-Farga A, Alghazeer R. Evaluation of Antidiabetic Effect of Combined Leaf and Seed Extracts of Moringa oleifera ( Moringaceae) on Alloxan-Induced Diabetes in Mice: A Biochemical and Histological Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9136217. [PMID: 37215365 PMCID: PMC10198764 DOI: 10.1155/2023/9136217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 05/24/2023]
Abstract
Moringa oleifera (Moringaceae) is a medicinal plant rich in biologically active compounds. The aim of the present study was to screen M. oleifera methanolic leaf (L) extract, seed (S) extract, and a combined leaf/seed extract (2L : 1S ratio) for antidiabetic and antioxidant activities in mice following administration at a dose level of 500 mg/kg of body weight/day. Diabetes was induced by alloxan administration. Mice were treated with the extracts for 1 and 3 months and compared with the appropriate control. At the end of the study period, the mice were euthanized and pancreas, liver, kidney, and blood samples were collected for the analysis of biochemical parameters and histopathology. The oral administration of the combined L/S extract significantly reduced fasting blood glucose to normal levels compared with L or S extracts individually; moreover, a significant decrease in cholesterol, triglycerides, creatinine, liver enzymes, and oxidant markers was observed, with a concomitant increase in antioxidant biomarkers. Thus, the combined extract has stronger antihyperlipidemic and antioxidant properties than the individual extracts. The histopathological results also support the biochemical parameters, showing recovery of the pancreas, liver, and kidney tissue. The effects of the combined L/S extracts persisted throughout the study period tested. To the best of our knowledge, this is the first study to report on the antidiabetic, antioxidant, and antihyperlipidemic effects of a combined L/S extract of M. oleifera in an alloxan-induced diabetic model in mice. Our results suggest the potential for developing a natural potent antidiabetic drug from M. oleifera; however, clinical studies are required.
Collapse
Affiliation(s)
- Badriyah Aljazzaf
- Department of Food Sciences and Nutrition, College of Health Sciences, The Public Authority for Applied Education and Training, Kuwait
| | - Sassia Regeai
- Department of Life Sciences, School of Basic Science, Libyan Academy of Postgraduate Studies, Janzour, Libya
- Histology and Genetics Department, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Sana Elghmasi
- Department of Biochemistry, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Nadia Alghazir
- Department of Pediatrics, Tripoli University Hospital, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Amal Balgasim
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud Ismail
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Rabia Alghazeer
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
30
|
Ahmad S, Pandey AR, Rai AK, Singh SP, Kumar P, Singh S, Gulzar F, Ahmad I, Sashidhara KV, Tamrakar AK. Moringa oleifera impedes protein glycation and exerts reno-protective effects in streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116117. [PMID: 36584917 DOI: 10.1016/j.jep.2022.116117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera is a valued plant with wide distribution in tropical and subtropical regions of the world. It is traditionally used for the treatment of fever, infections, rheumatism, cancer, improving cardiac, renal and hepatic functions, and regulating blood glucose level. The plant has been scientifically reported for the anti-inflammatory, antioxidant, renoprotective, and anti-diabetic properties. Diabetic patients are prone to develop end-stage renal diseases due to incidence of diabetes-induced renal dysfunctions. Given that, increased production and accumulation of advanced glycation end-products (AGEs) play a conspicuous role in the development of diabetes-linked renal dysfunctions, nature-based interventions with AGEs inhibitory activity can prevent renal dysfunctions leading to renoprotection. AIM OF THE STUDY The study aimed to demonstrate the preventive effects of the ethanolic extract of the leaves of Moringa oleifera (EEMO) on protein glycation and its further assessment for the renoprotective effect in diabetic rats. MATERIALS AND METHODS Antiglycation activity of EEMO was assessed in vitro using bovine serum albumin. For reno-protective activity assessment, streptozotocin (STZ)-induced diabetic rats were orally treated with EEMO (100 mg/kg) or standard antiglycation agent aminoguanidine (100 mg/kg) for consecutive 8 weeks. The effects on glucose homeostasis, renal functions, and renal morphology were assessed by clinical biochemistry, molecular and histological examination. RESULTS Presence of EEMO efficiently prevented glucose-, fructose- or methylglyoxal-mediated glycation of protein. Under in vivo set-up, compared to diabetic control rats, EEMO treatment effectively improved the glucose tolerance and body weight, and reduced the serum levels of triglycerides and total cholesterol. Additionally, EEMO administration significantly ameliorated renal dysfunctions in diabetic rats characterized by improved levels of creatinine, urea nitrogen, and uric acid in serum, and total protein level in urine, accompanied by improved kidney morphology. The diabetes-associated pro-inflammatory response characterized by upregulated expression of the inducible nitric oxide synthase (iNos), activation of nuclear factor kappa B (NF-κB) and the raised levels of inflammatory factors, interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) in renal tissue was significantly attenuated in EEMO-treated rats. Moreover, EEMO treatment diminished renal reactive oxygen species (ROS) levels in diabetic animals. CONCLUSIONS Our study demonstrated that EEMO prevented AGEs formation and ameliorated renal dysfunctions in diabetic rats by blocking inflammatory/oxidative pathways. Our observations justify M. oleifera as a potential source of therapeutic interventions for diabetic nephropathy management.
Collapse
Affiliation(s)
- Shadab Ahmad
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Amit K Rai
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Suriya P Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Pawan Kumar
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Sushmita Singh
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Farah Gulzar
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ishbal Ahmad
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Akhilesh K Tamrakar
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
31
|
Fontana R, Caproni A, Sicurella M, Manfredini S, Baldisserotto A, Marconi P. Effects of Flavonoids and Phenols from Moringa oleifera Leaf Extracts on Biofilm Processes in Xanthomonas campestris pv. campestris. PLANTS (BASEL, SWITZERLAND) 2023; 12:1508. [PMID: 37050135 PMCID: PMC10096499 DOI: 10.3390/plants12071508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Xanthomonas campestris pv. campestris is the causal agent of black rot in crucifers, a plant disease with significant economic impact. Xanthomonadaceae is a large family of Gram-negative bacteria that cause symptoms by blocking water flow in plants by invading the xylem. To accomplish this, the main mechanism the bacteria use to adapt to environmental changes and colonize tissues is biofilm formation. In recent years, growing interest in natural antimicrobial compounds has led to the study of different phytocomplexes derived from plants. In this work, Moringa oleifera was selected, as its leaves are rich in phenols, essential oils, and vitamins that exert antibacterial activity. X. campestris pv. campestris biofilm, one of its major virulence factors, was studied. Biofilm formation and removal were analyzed on abiotic and biotic surfaces with and without M. oleifera leaf extracts. The data from the analysis show that Moringa oleifera leaf extracts and single phenols were able to inhibit biofilm growth on abiotic surfaces, but the activity of the whole phytocomplex was significantly higher compared to that of individual phenols. The effect of Moringa oleifera extracts on cabbage leaves in vivo was also found to be very important, as scanning electron microscopy showed that treatment with the extracts led to clear unblocking of the xylem, implying many advantages for use in black rot control.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 441211 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara 44121, Italy
| |
Collapse
|
32
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
33
|
Du H, Li T, Xue Q, Tian Y, Hu Y. Optimization and validation of folate extraction from Moringa oleifera leaves powder. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
34
|
Kumar S, Verma PK, Shukla A, Singh RK, Patel AK, Yadav L, Kumar S, Kumar N, Acharya A. Moringa oleifera L. leaf extract induces cell cycle arrest and mitochondrial apoptosis in Dalton's Lymphoma: An in vitro and in vivo study. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115849. [PMID: 36306933 DOI: 10.1016/j.jep.2022.115849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The present work is based on a wide spectrum of evidences available from scientific literature which reflects nutritional and medicinal values of natural products such as plants and their extracts. Moringa oleifera is one such popular plant species amidst indigenous tribal communities which is frequently used to treat ailments such as piles, sore throat, eye and ear infections and even poisonous bites of tropical fauna such as insects or snakes. Furthermore decoction of leaf and bark was used to cure fever and cough. Evidences further reveal that Moringa oleifera L. (Family Moringaceae), is widely distributed not only over the Indian sub-continent, but also over Philippines, Central America, Saudi Arabia and the Caribbean Islands and have been traditionally used to treat cancers since ancient times. However, therapeutic effects of Moringa oleifera on Non-Hodgkin Lymphoma (NHL) are yet to be established. AIM OF THE STUDY The study aims to investigate the anti-cancer effects of Moringa oleifera leaf extract against murine NHL Non-Hodgkin cells in vitro and in vivo. MATERIAL AND METHODS The pharmacologically active compounds of Moringa oleifera leaf extract were identified by GC-HRMS analysis. Tests of Moringa oleifera leaf extract's cytotoxicity against DL cells were carried out using the MTT assay. Chromatin condensation along with other morphological alterations were visualized through Fluorescence microscopy. Changes in the mitochondrial membrane potential (ΔΨm), the cell cycle, and apoptosis were analysed through flow cytometer. We tried to identify proteins involved in apoptosis and cell cycle through Western blotting using BALB/c mice as a model organism. RESULTS GC-HRMS study revealed that a methanol based leaf extract of Moringa oleifera (MOML) comprises of a variety of bioactive chemicals. Our results indicate that MOML successfully reduced the proliferation of DL cells by lowering ΔΨm, changing overall cell morphology. DL cells treated with MOML showed arrested cell cycle at the G2/M phase and substantially up-regulated the expression of p53 and p21. Elevated levels of Bax, Cyt-c, and Caspase-3 and lowered expression levels of Bcl-2 protein suggested induction of apoptosis. Mechanistically, the anticancer efficacy of MOML is attributed to MEK/ERK-mediated pathway inactivation in DL cells. It is also interesting to note that MOML-mediated inhibition of DL growth was accompanied by apoptosis induction and improvement in hematological parameters in DL-bearing mice. CONCLUSION Our finding suggested that MOML induces apoptosis and abrogates the growth of Dalton's lymphoma both in vitro and in vivo.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Praveen Kumar Verma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Alok Shukla
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Anand Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Lokesh Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P, India.
| |
Collapse
|
35
|
Polo-Castellano C, Mateos RM, Visiedo F, Palma M, Barbero GF, Ferreiro-González M. Optimizing an Enzymatic Extraction Method for the Flavonoids in Moringa ( Moringa oleifera Lam.) Leaves Based on Experimental Designs Methodologies. Antioxidants (Basel) 2023; 12:antiox12020369. [PMID: 36829929 PMCID: PMC9952375 DOI: 10.3390/antiox12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera Lam. is known to have significant antioxidant properties. Because of this, the development of an optimal extraction method is crucial to obtain pharmacological products based on the bioactive compounds produced by this tree. Through a Plackett-Burman and a Box-Behnken design, enzymatic extraction conditions (temperature, agitation, solvent pH and composition, sample-to-solvent ratio, enzyme-to-sample ratio and extraction time) have been optimized using normalized areas (UA/g) as response variable and relative mass (mg/g) as quantification variable. Extractions were performed in an incubator, where all the extraction conditions could be digitally controlled. Thus, 58.9 °C, 50 rpm, 4.0 pH, 32.5% EtOH, 0.2 g sample in 15 mL solvent and 106 U/g were established as the optimal extraction conditions for the extraction with a mix of pectinases coming from Aspergillus niger. Under these optimal conditions, two-minute extractions were performed and evaluated through a single factor design. The enzymatic extraction method demonstrated its suitability to produce extracts with good antioxidant power (antioxidant activity 4.664 ± 0.059 mg trolox equivalent/g sample and total phenolic compounds 6.245 ± 0.101 mg gallic acid equivalent/g sample). The method was also confirmed to have good repeatability (1.39%) and intermediate precision (2.37%) levels.
Collapse
Affiliation(s)
- Curro Polo-Castellano
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Rosa María Mateos
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, 11519 Cadiz, Spain
| | - Francisco Visiedo
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| |
Collapse
|
36
|
Preliminary Phytochemical Screening and Antioxidant Activity of Commercial Moringa oleifera Food Supplements. Antioxidants (Basel) 2023; 12:antiox12010110. [PMID: 36670972 PMCID: PMC9855063 DOI: 10.3390/antiox12010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Moringa oleifera has been reported to possess a high number of bioactive compounds; hence, several food supplements are commercially available based on it. This work aimed to analyze the phytochemical composition and antioxidant activity of commercial food supplements. The phenolic composition of methanolic extracts was determined by using high-performance liquid chromatography with diode-array and electrospray ionization mass spectrometric detection (HPLC-DAD-ESI-MSn), and the antioxidant activity was assessed by ABTS·+ and DPPH assays. Thirty-three compounds were identified, and all the main compounds were quantified, observing that the main contribution to the phenolic profile was due to kaempferol and quercetin glucosides. The antioxidant activity in both assays agreed with the phenolic content: the higher the phenolic levels, the higher the antioxidant activity. The obtained results were compared with those previously published regarding Moringa oleifera leaves to establish the potential benefits of food supplement consumption in the diet.
Collapse
|
37
|
Mahmoud HK, Farag MR, Reda FM, Alagawany M, Abdel-Latif HMR. Dietary supplementation with Moringa oleifera leaves extract reduces the impacts of sub-lethal fipronil in Nile tilapia, Oreochromis niloticus. Sci Rep 2022; 12:21748. [PMID: 36526884 PMCID: PMC9758223 DOI: 10.1038/s41598-022-25611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
This study assessed the restorative dietary effects of Moringa oleifera (MO) leaves extract against the negative impacts of sub-lethal fipronil (FIP) toxicity in Nile tilapia. To achieve this purpose, the growth, body composition, haemato-biochemical measurements, serum immunity, and antioxidant condition of Nile tilapia have been examined. Fish were arranged into 6 experimental groups in quadruplicates. Three groups were fed on diets supplemented with 0.0 (reference group), 1.0 (MO1), and 2.0 (MO2) g kg-1 of MO leaf extract. The other three groups were fed on the same MO levels and concomitantly subjected to a sub-lethal FIP concentration (4.2 µg L-1 for 3 h only per day) and defined as FIP, FIP + MO1, and FIP + MO2. The experiment lasted for 8 weeks. Results unveiled that growth parameters were significantly decreased alongside an increased feed conversion ratio in the FIP-intoxicated group. The moisture and crude protein (%) were decreased significantly together with a significant increase of the crude lipids (%) in the fish body of the FIP group. Sub-lethal FIP toxicity induced hypochromic anemia, leukopenia, hypoproteinemia, hypoalbuminemia, hypoglobulinemia, and hepato-renal failure (increased urea and creatinine concentrations, as well as ALT and AST enzymes). Exposure to sub-lethal FIP also induced (a) immunosuppression manifested by a decline in total IgM, complement C3, and lysozyme activities, (b) enzymatic antioxidant misbalance manifested by decreases in SOD and CAT activities, and (c) oxidative stress (declined T-AOC and elevated of MDA concentrations). On the other side, dietary supplementation with MO leaf extract in FIP + MO1 and FIP + MO2 groups noticeably modulated the aforementioned parameters. Therefore, we can conclude that dietary MO could reduce sub-lethal FIP toxicity in Nile tilapia with a possible recommendation for regular prophylaxis supplementation in Nile tilapia diets.
Collapse
Affiliation(s)
- Hemat K. Mahmoud
- grid.31451.320000 0001 2158 2757Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Mayada R. Farag
- grid.31451.320000 0001 2158 2757Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511 Egypt
| | - Fayiz M. Reda
- grid.31451.320000 0001 2158 2757Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Mahmoud Alagawany
- grid.31451.320000 0001 2158 2757Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Hany M. R. Abdel-Latif
- grid.7155.60000 0001 2260 6941Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
38
|
Younis N, Khan MI, Zahoor T, Faisal MN. Phytochemical and antioxidant screening of Moringa oleifera for its utilization in the management of hepatic injury. Front Nutr 2022; 9:1078896. [PMID: 36590207 PMCID: PMC9797499 DOI: 10.3389/fnut.2022.1078896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Phytochemicals present in Moringa oleifera (M. oleifera) leaves have performed several physiological functions in human system such as anticarcinogenic, antidiabetic, antioxidant, immunomodulatory, hepatoprotective and antiatherogenic functions. Methods Phytochemical and antioxidant potential of M. oleifera leaves extracts were measured. Histopathology, biochemical analysis, and gene expression tests were performed on serum, blood, and liver in animal model. Results and discussions The toxic dose of N-acetyl-para-aminophenol (APAP) induced severe structural and functional changes in liver. Pre-treatment with M. oleifera ameliorated organ injury by normalizing the level of liver biomarkers and serum proteins. A low expression level of MAPK-8, TRAF-4, and TRAF-6 genes was observed in the M. oleifera treated group in comparison to positive control (hepatotoxic rats). M. oleifera leaves pretreatment amended APAP induced apoptosis and replenished hepatic cells. M. oleifera leaves extract as low-cost and sustainable treatment could be used in pharmaceutical industry for reducing hepatic degenerative changes in non-communicable diseases.
Collapse
Affiliation(s)
- Noor Younis
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan,*Correspondence: Muhammad Issa Khan,
| | - Tahir Zahoor
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
39
|
Genome-Wide Identification and Expression Analysis of the Aux/IAA Gene Family of the Drumstick Tree ( Moringa oleifera Lam.) Reveals Regulatory Effects on Shoot Regeneration. Int J Mol Sci 2022; 23:ijms232415729. [PMID: 36555370 PMCID: PMC9779525 DOI: 10.3390/ijms232415729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Auxin plays a critical role in organogenesis in plants. The classical auxin signaling pathway holds that auxin initiates downstream signal transduction by degrading Aux/IAA transcription repressors that interact with ARF transcription factors. In this study, 23 MoIAA genes were identified in the drumstick tree genome. All MoIAA genes were located within five subfamilies based on phylogenetic evolution analysis; the gene characteristics and promoter cis-elements were also analyzed. The protein interaction network between the MoIAAs with MoARFs was complex. The MoIAA gene family responded positively to NAA treatment, exhibiting different patterns and degrees, notably for MoIAA1, MoIAA7 and MoIAA13. The three genes expressed and functioned in the nucleus; only the intact encoding protein of MoIAA13 exhibited transcriptional activation activity. The shoot regeneration capacity in the 35S::MoIAA13-OE transgenic line was considerably lower than in the wild type. These results establish a foundation for further research on MoIAA gene function and provide useful information for improved tissue culture efficiency and molecular breeding of M. oleifera.
Collapse
|
40
|
Mundkar M, Bijalwan A, Soni D, Kumar P. Neuroprotective potential of Moringa oleifera mediated by NF-kB/Nrf2/HO-1 signaling pathway: A review. J Food Biochem 2022; 46:e14451. [PMID: 36206551 DOI: 10.1111/jfbc.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Moringa oleifera is a traditional Indian herb belonging to the Moringaceae family, it is commonly known as the horse-radish tree, drumstick, or sahajna. In developing countries, Moringa is used as feed for both humans and animals due to its well-known antioxidant, anti-inflammatory, and anti-apoptotic properties owing to its several phytoconstituents including β-carotene, quercetin, kaempferol, ascorbic acid, flavonoids, phenolic acid, rhamnose, glycosylates, glucomoringin, and isothiocyanates. These constituents help to maintain the brain antioxidant enzyme levels, mitochondrial functions, and neurogenesis, showing neuroprotective effects in several neurodegenerative disorders including Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, and Amyotrophic lateral sclerosis. This review discusses various phytoconstituent of moringa and their therapeutic potential in various neurological disorders. Additionally, we also concise the safety and toxicity profile, of different molecular pathways involved in the neuroprotective effect of M. oleifera including M. oleifera nanoparticles for better therapeutic value. PRACTICAL APPLICATIONS: Several clinical and preclinical studies on Moringa oleifera have been conducted, and the outcomes indicate moringa could be used in the treatment of brain disorders. As a result, we conclude that moringa and its nanoformulations could be employed to treat neurological problems. In the future, M. oleifera phytoconstituents could be evaluated against specific signaling pathways, which could aid researchers in discovering their mechanism of action. Furthermore, the use of moringa as a nutraceutical owing to its myriad pharmacological potential will go a long way in boosting the economy of countries that grow moringa on a large scale.
Collapse
Affiliation(s)
- Maroti Mundkar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Anjali Bijalwan
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
41
|
Combination of Spirulina platensis, Ganoderma lucidum and Moringa oleifera Improves Cardiac Functions and Reduces Pro-Inflammatory Biomarkers in Preclinical Models of Short-Term Doxorubicin-Mediated Cardiotoxicity: New Frontiers in Cardioncology? J Cardiovasc Dev Dis 2022; 9:jcdd9120423. [PMID: 36547420 PMCID: PMC9780956 DOI: 10.3390/jcdd9120423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.
Collapse
|
42
|
The Therapeutic Effect and the Potential Mechanism of Flavonoids and Phenolics of Moringa oleifera Lam. Leaves against Hyperuricemia Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238237. [PMID: 36500329 PMCID: PMC9738809 DOI: 10.3390/molecules27238237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study is to evaluate the anti-hyperuricemia effect and clarify the possible mechanisms of flavonoids and phenolics of MOL (MOL-FP) in mice. Hyperuricemia mice were generated via intraperitoneal (i.p.) administration of potassium oxonate (PO) and oral gavage (p.o.) of hypoxanthine (HX). Serum uric acid (UA), weight, serum XO activity, hepatic XO activity, urea nitrogen (BUN), creatinine (CRE), serum AST level, serum ALT level, mRNA expression of renal urate-anion transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporters 1 (OAT1), organic anion transporters 3 (OAT3), and ATP-binding cassette transporter G2 (ABCG2) were determined. The molecular docking was conducted using AutoDock Vina 1.2.0 to screen potential XO inhibitors in MOL-FP. Serum metabolomics was established to collect the metabolic profiles of mice and explore the metabolic changes that occurred after MOL-FP treatment. MOL-FP could notably reduce the serum UA level of hyperuricemia mice by inhibiting XO activity and regulating renal urate transporters. Molecular docking studies indicated that 5-p-coumaroylquinic acid, 3-p-coumaroylquinic acid, and catechin could be potential XO inhibitors. Besides, MOL-FP prevented the pathological process of hyperuricemia by regulating biomarkers associated with purine metabolism, amino acid metabolism, and lipid metabolism.
Collapse
|
43
|
Singh J, Gautam DNS, Sourav S, Sharma R. Role of
Moringa oleifera
Lam. in cancer: Phytochemistry and pharmacological insights. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jyoti Singh
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Simant Sourav
- Department of Sharira Kriya, Government Ayurvedic College and Hospital Patna India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| |
Collapse
|
44
|
Mahmoud MS, El-Kott AF, AlGwaiz HIM, Fathy SM. Protective effect of Moringa oleifera Lam. leaf extract against oxidative stress, inflammation, depression, and apoptosis in a mouse model of hepatic encephalopathy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83783-83796. [PMID: 35771324 DOI: 10.1007/s11356-022-21453-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to assess the antioxidative, anti-inflammatory, antiapoptotic, and anti-depression impacts of Moringa oleifera Lam. leaf ethanolic extract (MOLE) in the hippocampus and cerebral cortex of CCl4-induced hepatic encephalopathy mouse model. High-performance liquid chromatography was used to detect marker compounds: rutin and β-sitosterol. Animals were divided into four groups: vehicle group, CCl4-treated group, MOLE-treated group, and (CCl4 + MOLE) group treated with MOLE for 14 days before CCl4-induced neurotoxicity. MOLE decreased alanine aminotransferase, aspartate aminotransferase, corticosterone, and ammonia levels in serum and improved the antioxidant status of CCl4-treated mice in the hippocampus and cerebral cortex. It reduced the expression of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation primary response 88 (MYD88), and nuclear factor-kappa B (NF-κB) genes and the protein levels of the pro-inflammatory cytokines. MOLE also attenuated apoptosis, as revealed by the reduced expression of caspase3, and prevented histological deterioration. Furthermore, MOLE attenuated CCl4-induced anxiety and depression-like behavioral changes. Collectively, MOLE modulates neuroinflammation, oxidative stress, TLR4/2-MyD88/NF-κB signaling, and apoptosis in the hippocampus and cerebral cortex of the hepatic encephalopathy experimental model.
Collapse
Affiliation(s)
- Mohammed S Mahmoud
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 11474, Riyadh, Saudi Arabia
| | - Samah M Fathy
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
45
|
Gu F, Tao L, Chen R, Zhang J, Wu X, Yang M, Sheng J, Tian Y. Ultrasonic-Cellulase Synergistic Extraction of Crude Polysaccharides from Moringa oleifera Leaves and Alleviation of Insulin Resistance in HepG2 Cells. Int J Mol Sci 2022; 23:12405. [PMID: 36293262 PMCID: PMC9604441 DOI: 10.3390/ijms232012405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2023] Open
Abstract
Moringa oleifera leaves (MOL) are a new food resource, rich in functional factors. MOL polysaccharides are important active macromolecules within MOL. However, there are problems, such as low extraction rates and lack of evidence for functional activity. Therefore, in this experiment, single-factor experiments were carried out using MOL powder as the raw material, and the Plackett-Burman test was used to screen the significantly influential test factors. The extraction process of MOL polysaccharide was optimized by response surface methodology. The insulin resistance alleviating activity of MOLP polysaccharides was initially explored. The results showed that the extraction of Moringa oleifera leaves crude polysaccharides (MOLP) by ultrasonic assisted cellulase enzymatic digestion was (17.03 ± 1.03)%, and the obtained MOLP was a crude polysaccharide with an average molecular weight (Mw) of 279.48 kDa, consisting of fucose, rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid. MOLP had an IC50 value of 8.02 mg/mL for α-glucosidase and scavenging activity against free radicals such as ABTS, DPPH, hydroxyl radicals, and superoxide anion with an IC50 value of 0.21 mg/mL 0.31 mg/mL 0.97 mg/mL 0.49 mg/mL. At the same time, MOLP significantly enhanced the glucose consumption, glycogen synthesis, CAT, SOD, GSH-Px activity, and reduced the MDA and ROS content in high glucose-induced insulin-resistant HepG2 (IR-HepG2) cells. This experiment improved the extraction rate of MOLP and demonstrated that MOLP has antioxidant activity and α-glucosidase inhibitory activity, which can alleviate the insulin resistance of high glucose-induced HepG2 cells. It provides partial data support for the possible hypoglycemic effect of MOLP by alleviating oxidative stress, and also provides new ideas for the in-depth study of basic research and industrial application of MOLP.
Collapse
Affiliation(s)
- Fan Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Runling Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xingzhong Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
46
|
de Barros MC, Silva AGB, Souza TGDS, Chagas CA, Machado JCB, Ferreira MRA, Soares LAL, Xavier VL, de Araújo LCC, Borba EFDO, da Silva TG, Alves RRDV, Coelho LCBB, de Oliveira AM, Napoleão TH, Paiva PMG. Evaluation of acute toxicity, 28-day repeated dose toxicity, and genotoxicity of Moringa oleifera leaves infusion and powder. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115504. [PMID: 35760258 DOI: 10.1016/j.jep.2022.115504] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. leaves infusion and powder are widely used by population due the nutritional and medicinal potentials, however data regarding safety of use are still inconclusive, leading to prohibition of this plant in some countries. AIM OF THE STUDY The present work investigated the nutritional and phytochemical composition, acute and 28-day repeated dose toxicity, and genotoxicity of M. oleifera leaves infusion and powder. MATERIALS AND METHODS For nutritional characterization of leaf powder, it was determined: humidity; mineral residue (ash); total lipid, protein, carbohydrate, and crude fiber contents; and total caloric value. Phytochemical composition was determined by high performance liquid chromatography (HPLC). The acute toxicity assay used Swiss female albino mice and oral administration in a single dose at 2000 and 5000 mg/kg of infusion or powder. The 28-day repeated dose toxicity assay employed female and male mice, with oral administration of infusion or powder at the doses 250, 500 and 1000 mg/kg. The animals were evaluated for body weight, water and feed consumption, biochemical and hematological parameters, and histology of the liver, spleen, and kidneys. In vivo genotoxicity and mutagenicity (2000 mg/kg) were evaluated by the comet assay and the micronucleus test, respectively. RESULTS Nutritional characterization confirmed that M. oleifera leaves are rich in proteins, carbohydrates, lipids, minerals, and fiber. HPLC indicated the presence of flavonoids and cinnamic derivatives as major polyphenols. Acute toxicity did not reveal alterations in weight gain and water and feed consumptions and no change in biochemical, hematological, and histological parameters. Behavior alterations was observed in the first 2 h after administration at 5000 mg/kg in both treatments. Infusion did not present toxicity when administered for 28 days. Conversely, the powder at 500 and 1000 mg/kg promoted liver and kidney damages observed through biochemical parameters and histopathology. Genotoxicity and mutagenicity were not detected at 2000 mg/kg. CONCLUSIONS The present study reveals that M. oleifera leaves are an important source of polyphenols and nutrients. Indiscriminate use of both infusion and crude leaf powder above 2000 mg/kg and powder at 500 and 1000 mg/kg are not recommended. Chronic toxicological studies and establishment of preparation protocols are suggested aiming to guarantee the safety in the use of M. oleifera leaves as nutraceutical by population.
Collapse
Affiliation(s)
| | | | | | - Cristiano Aparecido Chagas
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil.
| | - Janaína Carla Barbosa Machado
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | - Luiz Alberto Lira Soares
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Viviane Lansky Xavier
- Departamento de Nutrição, Centro Ciências da Saúde, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Larissa Cardoso Corrêa de Araújo
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil.
| | | | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil.
| | | | | | | | | | | |
Collapse
|
47
|
A Comprehensive Review with Updated Future Perspectives on the Ethnomedicinal and Pharmacological Aspects of Moringa oleifera. Molecules 2022; 27:molecules27185765. [PMID: 36144493 PMCID: PMC9504211 DOI: 10.3390/molecules27185765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Moringa oleifera is an ancient remedy plant, known as the miraculous plant due to its many prominent uses and significant health benefits. It is a nutrient-rich plant, with exceptional bioactive compounds, such as polyphenols that possess several medicinal properties. Many significant studies have been carried out to evaluate the ethnomedicinal and pharmacological properties of M. oleifera in various applications. Therefore, this comprehensive review compiles and summarizes important findings from recent studies on the potential properties of different parts of M. oleifera. The pharmacological properties of M. oleifera have been studied for various potential biological properties, such as cardio-protective, anti-oxidative, antiviral, antibacterial, anti-diabetic and anti-carcinogenic effects. Therefore, the potential of this plant is even more anticipated. This review also highlights the safety and toxicity effects of M. oleifera treatment at various doses, including in vitro, in vivo and clinical trials from human studies.
Collapse
|
48
|
Vetrani C, Piscitelli P, Muscogiuri G, Barrea L, Laudisio D, Graziadio C, Marino F, Colao A. "Planeterranea": An attempt to broaden the beneficial effects of the Mediterranean diet worldwide. Front Nutr 2022; 9:973757. [PMID: 36118764 PMCID: PMC9480100 DOI: 10.3389/fnut.2022.973757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Non-communicable diseases (NCDs) lead to a dramatic burden on morbidity and mortality worldwide. Diet is a modifiable risk factor for NCDs, with Mediterranean Diet (MD) being one of the most effective dietary strategies to reduce diabetes, cardiovascular diseases, and cancer. Nevertheless, MD transferability to non-Mediterranean is challenging and requires a shared path between the scientific community and stakeholders. Therefore, the UNESCO Chair on Health Education and Sustainable Development is fostering a research project-"Planeterranea"-aiming to identify a healthy dietary pattern based on food products available in the different areas of the world with the nutritional properties of MD. This review aimed to collect information about eating habits and native crops in 5 macro-areas (North America, Latin America, Africa, Asia, and Australia). The information was used to develop specific "nutritional pyramids" based on the foods available in the macro-areas presenting the same nutritional properties and health benefits of MD.
Collapse
Affiliation(s)
- Claudia Vetrani
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Prisco Piscitelli
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
| | - Daniela Laudisio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Chiara Graziadio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
49
|
Chang J, Marczuk-Rojas JP, Waterman C, Garcia-Llanos A, Chen S, Ma X, Hulse-Kemp A, Van Deynze A, Van de Peer Y, Carretero-Paulet L. Chromosome-scale assembly of the Moringa oleifera Lam. genome uncovers polyploid history and evolution of secondary metabolism pathways through tandem duplication. THE PLANT GENOME 2022; 15:e20238. [PMID: 35894687 DOI: 10.1002/tpg2.20238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The African Orphan Crops Consortium (AOCC) selected the highly nutritious, fast growing and drought tolerant tree crop moringa (Moringa oleifera Lam.) as one of the first of 101 plant species to have its genome sequenced and a first draft assembly was published in 2019. Given the extensive uses and culture of moringa, often referred to as the multipurpose tree, we generated a significantly improved new version of the genome based on long-read sequencing into 14 pseudochromosomes equivalent to n = 14 haploid chromosomes. We leveraged this nearly complete version of the moringa genome to investigate main drivers of gene family and genome evolution that may be at the origin of relevant biological innovations including agronomical favorable traits. Our results reveal that moringa has not undergone any additional whole-genome duplication (WGD) or polyploidy event beyond the gamma WGD shared by all core eudicots. Moringa duplicates retained following that ancient gamma events are also enriched for functions commonly considered as dosage balance sensitive. Furthermore, tandem duplications seem to have played a prominent role in the evolution of specific secondary metabolism pathways including those involved in the biosynthesis of bioactive glucosinolate, flavonoid, and alkaloid compounds as well as of defense response pathways and might, at least partially, explain the outstanding phenotypic plasticity attributed to this species. This study provides a genetic roadmap to guide future breeding programs in moringa, especially those aimed at improving secondary metabolism related traits.
Collapse
Affiliation(s)
- Jiyang Chang
- Dep. of Plant Biotechnology and Bioinformatics, Ghent Univ., Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Juan Pablo Marczuk-Rojas
- Dep. of Biology and Geology, Univ. of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), Univ. of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Carrie Waterman
- Dep. of Nutrition, Univ. of California, Davis, CA, 95616, USA
| | | | - Shiyu Chen
- Seed Biotechnology Center, Univ. of California, Davis, CA, 95616, USA
| | - Xiao Ma
- Dep. of Plant Biotechnology and Bioinformatics, Ghent Univ., Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Amanda Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
- Dep. of Crop and Soil Sciences, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Allen Van Deynze
- Seed Biotechnology Center, Univ. of California, Davis, CA, 95616, USA
| | - Yves Van de Peer
- Dep. of Plant Biotechnology and Bioinformatics, Ghent Univ., Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
- Dep. of Biochemistry, Genetics and Microbiology, Univ. of Pretoria, Pretoria, 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Lorenzo Carretero-Paulet
- Dep. of Biology and Geology, Univ. of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), Univ. of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| |
Collapse
|
50
|
Mounika A, Ilangovan B, Mandal S, Shraddha Yashwant W, Priya Gali S, Shanmugam A. Prospects of ultrasonically extracted food bioactives in the field of non-invasive biomedical applications - A review. ULTRASONICS SONOCHEMISTRY 2022; 89:106121. [PMID: 35987106 PMCID: PMC9403563 DOI: 10.1016/j.ultsonch.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
Foods incorporated with bioactive compounds, called nutraceuticals, can fight or prevent or alleviate diseases. The contribution of nutraceuticals or phytochemicals to non-invasive biomedical applications is increasing. Although there are many traditional methods for extracting bioactive compounds or secondary metabolites, these processes come with many disadvantages like lower yield, longer process time, high energy consumption, more usage of solvent, yielding low active principles with low efficacy against diseases, poor quality, poor mass transfer, higher extraction temperature, etc. However, nullifying all these disadvantages of a non-thermal technology, ultrasound has played a significant role in delivering them with higher yield and improved bio-efficacy. The physical and chemical effects of acoustic cavitation are the crux of the output. This review paper primarily discusses the ultrasound-assisted extraction (USAE) of bioactives in providing non-invasive prevention and cure to diseases and bodily dysfunctions in human and animal models. The outputs of non-invasive bioactive components in terms of yield and the clinical efficacy in either in vitro or in vitro conditions are discussed in detail. The non-invasive biomedical applications of USAE bioactives providing anticancer, antioxidant, cardiovascular health, antidiabetic, and antimicrobial benefits are analyzed in-depth and appraised. This review additionally highlights the improved performance of USAE compounds against conventionally extracted compounds. In addition, an exhaustive analysis is performed on the role and application of the food bioactives in vivo and in vitro systems, mainly for promoting these efficient USAE bioactives in non-invasive biomedical applications. Also, the review explores the recovery of bioactives from the less explored food sources like cactus pear fruit, ash gourd, sweet granadilla, basil, kokum, baobab, and the food processing industrial wastes like peel, pomace, propolis, wine residues, bran, etc., which is rare in literature.
Collapse
Affiliation(s)
- Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Bhaargavi Ilangovan
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Sushmita Mandal
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Waghaye Shraddha Yashwant
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Swetha Priya Gali
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India.
| |
Collapse
|