1
|
Xia W, Li X, Han R, Liu X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J Sports Med 2024; 15:209-228. [PMID: 39691802 PMCID: PMC11651067 DOI: 10.2147/oajsm.s485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (eg, high-fat diet, high carbohydrate diet et.al) have different effects on gut microbiota, which can also affect exercise performance. Furthermore, adaptations to exercise also might be influenced by the gut microbiota, due to its important role in the transformation and expenditure of energy obtained from the diet. Therefore, appropriate dietary supplementation is important during exercise. And exploring the mechanisms by which dietary supplements affect exercise performance by modulating gut microbiota is of considerable interest to athletes wishing to achieve health and athletic performance. In this narrative review, the relationship between gut microbiota, dietary supplements, training adaptations and performance is discussed as follows. (i) The effects of the three main nutritional supplements on gut microbiota and athlete fitness. (ii) Strategies for dietary supplements and how they exerted function through gut microbiota alteration based on the gut-brain axis. (iii) Why dietary supplement interventions on gut microbiota should be tailored to different types of exercise. Our work integrates these factors to elucidate how specific nutritional supplements can modulate gut microbiota composition and, consequently, influence training adaptations and performance outcomes, unlike previous literature that often focuses solely on the effects of exercise or diet independently. And provides a comprehensive framework for athletes seeking to optimize their health and performance through a microbiota-centric approach.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ruixuan Han
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Zeng Z, Gong S, Quan C, Zhou S, Kulyar MFEA, Iqbal M, Li Y, Li X, Li J. Impact of Bacillus licheniformis from yaks following antibiotic therapy in mouse model. Appl Microbiol Biotechnol 2024; 108:139. [PMID: 38229401 DOI: 10.1007/s00253-023-12866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2024]
Abstract
Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.
Collapse
Affiliation(s)
- Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, China.
| |
Collapse
|
3
|
Fu P, Wang C, Zheng S, Gong L. Differences in gut microbiota and metabolites between wrestlers with varying precompetition weight control effect. Physiol Genomics 2024; 56:845-854. [PMID: 39432050 DOI: 10.1152/physiolgenomics.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
This study intended to analyze the effects of body weight control by the diet, training adaptation, and gut microbiota metabolites of wrestlers in the week leading up to competition. According to the weight difference of wrestlers from the target weight 1 wk before the competition, those whose weight control effectiveness is less than 2 kg were classified as the CW group, whereas more than 2 kg were classified as the CnW group. The body weight, body composition, and diet of wrestlers were recorded; urine samples were taken for standard urine testing, and stool samples were collected for the analysis of gut microbiota and metabolites. The data showed that the relative values of carbohydrate and fat energy in the CnW group were significantly higher than those of the CW group, but the relative values of protein energy were significantly lower. The white blood cells, occult blood, and protein appeared in urine in the CnW group. The microbiota with higher abundance values in the CnW group were positively correlated with the relative value of carbohydrate energy, while the abundance value of Streptococcus was negatively correlated, and the functional prediction of differential bacteria was related to riboflavin and selencompound metabolism. The differential metabolites of CW/CnW group were functionally enriched in the processes of lipid and amino acid metabolism. Overall, the extent of weight control in wrestlers was correlated with sensible dietary patterns, adaptability to training load, and distinct gut microbiota and metabolites.NEW & NOTEWORTHY The purpose of this study is to observe the differences in precompetition diet structure, adaptability to training, gut microbiota, and metabolites of wrestlers with different weight control effects and analyze the correlation between them, aiming to provide scientific guidance and advice on weight control for wrestlers.
Collapse
Affiliation(s)
- Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi'an, China
| | - Cuiping Wang
- College of Sports and Health Sciences, Xi'an Physical Education University, Xi'an, China
| | - Shuai Zheng
- Department of Physical Education, Northwestern Polytechnical University, Xi'an, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
5
|
Tavares-Silva E, de Aquino Lemos V, de França E, Silvestre J, dos Santos SA, Ravacci GR, Thomatieli-Santos RV. Protective Effects of Probiotics on Runners' Mood: Immunometabolic Mechanisms Post-Exercise. Nutrients 2024; 16:3761. [PMID: 39519594 PMCID: PMC11547471 DOI: 10.3390/nu16213761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The gut-brain axis may mediate mood changes due to strenuous exercise. Therefore, probiotic supplementation may mitigate mood worsening. PURPOSE The present study aims to evaluate the effect of probiotic supplementation on mood and immunometabolic parameters after a marathon. MATERIALS AND METHODS Fourteen marathon runners were selected and divided into placebo and probiotic groups that were supplemented for 30 days. Before and after the marathon, mood (POMS) was assessed, and blood was collected for analysis of immunometabolic parameters. Statistical analysis was performed, and p < 0.05 was considered to determine statistically differences. RESULTS Tension decreased after the marathon in both groups. Vigor decreased only in the placebo group. Fatigue increased after the marathon in both groups. TMD increased after the marathon in placebo. The IL2/IL-4 ratio decreased in the probiotic group after the marathon compared to before and increased compared to the placebo group. The IL-10 increased after the marathon in placebo. TNF-α increased after the marathon in probiotics. The TNF-α/IL-10 ratio decreased after the marathon in both groups. LPS decreased in the probiotic group after the marathon compared to before and in the placebo group. CONCLUSIONS Thirty days of probiotic supplementation attenuated the impact of marathons on mood worsening. The decrease in LPS in the probiotic group mediated the change in the pro/anti-inflammatory balance, indicating an immunometabolic mechanism by which the gut-brain axis impacts mood after strenuous exercise.
Collapse
Affiliation(s)
- Edgar Tavares-Silva
- Post-Graduate Program in Psychobiology, Federal University of São Paulo, São Paulo 04040-003, SP, Brazil (V.d.A.L.)
| | - Valdir de Aquino Lemos
- Post-Graduate Program in Psychobiology, Federal University of São Paulo, São Paulo 04040-003, SP, Brazil (V.d.A.L.)
| | - Elias de França
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| | - Jean Silvestre
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| | - Samile Amorim dos Santos
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| | - Graziela Rosa Ravacci
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| | - Ronaldo Vagner Thomatieli-Santos
- Post-Graduate Program in Psychobiology, Federal University of São Paulo, São Paulo 04040-003, SP, Brazil (V.d.A.L.)
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| |
Collapse
|
6
|
Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024; 16:3663. [PMID: 39519496 PMCID: PMC11547208 DOI: 10.3390/nu16213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The human gut microbiome is a complex ecosystem of microorganisms that can influence our health and exercise habits. On the other hand, physical exercise can also impact our microbiome, affecting our health. Our narrative review examines the bidirectional relationship between physical activity and the gut microbiome, as well as the potential for targeted probiotic regimens to enhance sports performance. Methods: We conducted a comprehensive literature review to select articles published up till January 2024 on the topics of physical exercise, sports, probiotics, and gut microbiota from major scientific databases, incorporating over 100 studies. Results: We found that the impact of physical activity on the gut microbiome varies with the type and intensity of exercise. Moderate exercise promotes a healthy immune system, while high-intensity exercise for a long duration can cause a leaky gut and consequent systemic inflammation, which may disrupt the microbial balance. Combining aerobic and resistance training significantly affects bacterial diversity, linked to a lower prevalence of chronic metabolic disorders. Furthermore, exercise enhances gut microbiome diversity, increases SCFA production, improves nutrient utilization, and modulates neural and hormonal pathways, improving gut barrier integrity. Our findings also showed probiotic supplementation is associated with decreased inflammation, enhanced sports performance, and fewer gastrointestinal disturbances, suggesting that the relationship between the gut microbiome and physical activity is mutually influential. Conclusions: The bidirectional relationship between physical activity and the gut microbiome is exemplified by how exercise can promote beneficial bacteria while a healthy gut microbiome can potentially enhance exercise ability through various mechanisms. These findings underscore the importance of adding potential tailored exercise regimens and probiotic supplementation that consider individual microbiome profiles into exercise programs.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Department of Biochemistry, Premedical Division, Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (S.V.); (S.R.); (A.K.); (F.Z.)
| |
Collapse
|
7
|
Mancini A, Vitucci D, Lasorsa VA, Lupo C, Brustio PR, Capasso M, Orrù S, Rainoldi A, Schena F, Buono P. Six months of different exercise type in sedentary primary schoolchildren: impact on physical fitness and saliva microbiota composition. Front Nutr 2024; 11:1465707. [PMID: 39512522 PMCID: PMC11542257 DOI: 10.3389/fnut.2024.1465707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Lifestyle influences microbiota composition. We previously reported a healthier microbiota composition in saliva from active schoolchildren compared to sedentary. In the present study, we evaluated the effects of 6 months of different exercise types on physical fitness and saliva microbiota composition in 8-11-years-old sedentary schoolchildren. Methods Sixty-four sedentary children from five primary schools in Turin, Italy, were divided into three groups: one continued normal curricular activity while two underwent different exercise protocols for 6 months. The Structured Exercise (Sa) group did 2 h per week of muscle activation, strength and coordination exercises supervised by a kinesiologist. The Daily Mile (Dm) group did 1 h per week of Sa plus 15 min of walking/running outdoors four times a week, supervised by a class teacher; control group (Ct) did 2 h a week of curricular exercise supervised by a class teacher. Physical fitness was evaluated before and after the intervention. Saliva samples were collected post-intervention in all participants and analyzed using PCR amplification of 16S rRNA bacterial genes. The Amplicon Sequence Variants were filtered, decontaminated, and phylogenetically classified using DADA2 software. Differential abundance analysis of microbiome taxa and pathway data was conducted using the LEfSe algorithm and PICRUSt. Results The Sa group showed better performances in lower limb power and sprint performance while both the Sa and Dm groups improved in endurance and balance at the end of the intervention; only balance resulted slightly improved in the Ct group. Among the genera differently enriched in saliva after the training intervention, we found that the Prevotella, the Dubosiella and the Family XIII AD3011 group were the most abundant in the Sa group; differently, the Neisseria and the Abiotrophia in Ct group. Four species showed significant the Prevotella melaninogenica and the Prevotella nanceiensis were more abundant in the Sa, conversely, Gemella sanguinis was enriched in Dm and Abiotrophia defectiva in Ct saliva group. Conclusion We demonstrated that Sa and Dm, not curricular exercise, improve the physical fitness components in sedentary schoolchildren correlated to health and promote an enrichment in saliva microbiota species associated to a healthier profile.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Daniela Vitucci
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Corrado Lupo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Mario Capasso
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Stefania Orrù
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Pasqualina Buono
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| |
Collapse
|
8
|
Fu P, Duan X, Zhang Y, Dou X, Gong L. Based on Sportomics: Comparison of Physiological Status of Collegiate Sprinters in Different Pre-Competition Preparation Periods. Metabolites 2024; 14:527. [PMID: 39452908 PMCID: PMC11509790 DOI: 10.3390/metabo14100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to assess the impact of pre-competition training by comparing the differences of collegiate sprinters in physiological state between strengthening and tapering training period by sportomics and combining their sport performance. Fifteen collegiate sprinters were investigated or tested on their body composition, dietary habits, energy expenditure, sleep efficiency, heart rate and respiratory rate during training, blood (blood cells, biochemical and immune markers) and urine (urinalysis), gut microbiome distribution, microbiome and blood metabolites, and their functions during the strengthening (Group A) and tapering training period (Group B) prior to competing in the national competitions. We found that 26.67% of sprinters achieved personal bests (PB) after the competition. The limb skeletal muscle mass and lymphocyte ratio of male sprinters in Group B were lower than those in Group A, and the serum creatine kinase (CK) level was higher than Group A (p < 0.05). The levels of serum CK, interleukin-6 (IL-6), interleukin-1β (IL-1β), and urine-specific gravity (SG) of the two groups were higher than the upper limit of the reference value. The detection rates of urine white blood cell (WBC) and protein in Group B were higher than those in Group A. The gut microbiome health index (GMHI) of Group A was higher than that of Group B, and the microbial dysbiosis index was lower than that of Group B. The ratio of Firmicutes/Bacteroidota (F/B) in Group A was higher than that in Group B. There were 65 differential metabolites in the A/B group, and the enriched pathway was mainly the NF-kappa B signaling pathway (up); B/T cell receptor signaling pathway (up); Th1 and Th2 cell differentiation (up); phenylalanine metabolism (up); and growth hormone synthesis, secretion, and action (up). There were significant differences in blood metabolites between the A and B groups, with a total of 89 differential metabolites, and the enriched pathway was mainly the NF-kappa B signaling pathway (up), T cell receptor signaling pathway (up), Th1 and Th2 cell differentiation (up), and glycerophospholipid metabolism (down). In conclusion, the imbalance of the gut microbiome and inflammation and immune-related metabolites of collegiate sprinters during the pre-competition tapering training period may be the cause of their limited sports performance.
Collapse
Affiliation(s)
- Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi’an 710072, China; (P.F.)
| | - Xiaomin Duan
- Shaanxi Institute of Sports Science, Xi’an 710065, China;
| | - Yuting Zhang
- Department of Physical Education, Northwestern Polytechnical University, Xi’an 710072, China; (P.F.)
| | - Xiangya Dou
- College of Life Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
9
|
Patel BK, Patel KH, Lee CN, Moochhala S. Intestinal Microbiota Interventions to Enhance Athletic Performance-A Review. Int J Mol Sci 2024; 25:10076. [PMID: 39337561 PMCID: PMC11432184 DOI: 10.3390/ijms251810076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recent years have witnessed an uptick in research highlighting the gut microbiota's role as a primary determinant of athletes' health, which has piqued interest in the hypothesis that it correlates with athletes' physical performance. Athletes' physical performances could be impacted by the metabolic activity of the assortment of microbes found in their gut. Intestinal microbiota impacts multiple facets of an athlete's physiology, including immune response, gut membrane integrity, macro- and micronutrient absorption, muscle endurance, and the gut-brain axis. Several physiological variables govern the gut microbiota; hence, an intricately tailored and complex framework must be implemented to comprehend the performance-microbiota interaction. Emerging evidence underscores the intricate relationship between the gut microbiome and physical fitness, revealing that athletes who engage in regular physical activity exhibit a richer diversity of gut microbes, particularly within the Firmicutes phylum, e.g., Ruminococcaceae genera, compared to their sedentary counterparts. In elite sport, it is challenging to implement an unconventional strategy whilst simultaneously aiding an athlete to accomplish feasible, balanced development. This review compiles the research on the effects of gut microbiota modulation on performance in sports and illustrates how different supplementation strategies for gut microbiota have the ability to improve athletic performance by enhancing physical capacities. In addition to promoting athletes' overall health, this study evaluates the existing literature in an effort to shed light on how interventions involving the gut microbiota can dramatically improve performance on the field. The findings should inform both theoretical and practical developments in the fields of sports nutrition and training.
Collapse
Affiliation(s)
- Bharati Kadamb Patel
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Kadamb Haribhai Patel
- Temasek Polytechnic, School of Applied Sciences, 21 Tampines Ave 1, Singapore 529757, Singapore;
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Shabbir Moochhala
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD3, 16 Medical Drive, Singapore 117600, Singapore
| |
Collapse
|
10
|
Urban S, Chmura O, Wątor J, Panek P, Zapała B. The intensive physical activity causes changes in the composition of gut and oral microbiota. Sci Rep 2024; 14:20858. [PMID: 39242653 PMCID: PMC11379964 DOI: 10.1038/s41598-024-71684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
This study aimed to compare the gut and oral microbiota composition of professional male football players and amateurs. Environmental and behavioral factors are well known to modulate intestinal microbiota composition. Active lifestyle behaviors are involved in the improvement of metabolic and inflammatory parameters. Exercise promotes adaptational changes in human metabolic capacities affecting microbial homeostasis. Twenty professional football players and twelve amateurs were invited to the study groups. Fecal and oral microbiota were analyzed using next-generation sequencing of the 16S rRNA gene. Diversity in the oral microbiota composition was similar in amateurs and professionals, while the increase in training intensity reduced the number of bacterial species. In contrast, the analysis of the intestinal microbiota showed the greatest differentiation between professional football players and amateurs, especially during intensive training. Firmicutes were characterized by the largest population in all the studied groups. Intensive physical activity increases the abundance of butyrate and succinate-producing bacteria affecting host metabolic homeostasis, suggesting a very beneficial role for the host immune system's microbiome homeostasis and providing a proper function of the host immune system.
Collapse
Affiliation(s)
- Szymon Urban
- Trauma and Orthopaedics Department, University Hospital in Krakow, Kraków, Poland
| | - Olaf Chmura
- Student Society of Nutrigenomics, Department of Clinical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Julia Wątor
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Piotr Panek
- Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Zapała
- Centre for Innovative Medical Education, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
11
|
Li C, Li J, Zhou Q, Wang C, Hu J, Liu C. Effects of Physical Exercise on the Microbiota in Irritable Bowel Syndrome. Nutrients 2024; 16:2657. [PMID: 39203794 PMCID: PMC11356817 DOI: 10.3390/nu16162657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by abdominal pain, bloating, diarrhea, and constipation. Recent studies have underscored the significant role of the gut microbiota in the pathogenesis of IBS. Physical exercise, as a non-pharmacological intervention, has been proposed to alleviate IBS symptoms by modulating the gut microbiota. Aerobic exercise, such as running, swimming, and cycling, has been shown to enhance the diversity and abundance of beneficial gut bacteria, including Lactobacillus and Bifidobacterium. These bacteria produce short-chain fatty acids that possess anti-inflammatory properties and support gut barrier integrity. Studies involving IBS patients participating in structured aerobic exercise programs have reported significant improvements in their gut microbiota's composition and diversity, alongside an alleviation of symptoms like abdominal pain and bloating. Additionally, exercise positively influences mental health by reducing stress and improving mood, which can further relieve IBS symptoms via the gut-brain axis. Long-term exercise interventions provide sustained benefits, maintaining the gut microbiota's diversity and stability, supporting immune functions, and reducing systemic inflammation. However, exercise programs must be tailored to individual needs to avoid exacerbating IBS symptoms. Personalized exercise plans starting with low-to-moderate intensity and gradually increasing in intensity can maximize the benefits and minimize risks. This review examines the impact of various types and intensities of physical exercise on the gut microbiota in IBS patients, highlighting the need for further studies to explore optimal exercise protocols. Future research should include larger sample sizes, longer follow-up periods, and examine the synergistic effects of exercise and other lifestyle modifications. Integrating physical exercise into comprehensive IBS management plans can enhance symptom control and improve patients' quality of life.
Collapse
Affiliation(s)
- Chunpeng Li
- Russian Sports University, Moscow 105122, Russia;
| | - Jianmin Li
- School of Tai Chi Culture Handan University, Handan 056005, China;
| | - Qiaorui Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Jiahui Hu
- Moscow State Normal University, Moscow 127051, Russia
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
12
|
Kazeminasab F, Miraghajani M, Mokhtari K, Karimi B, Rosenkranz SK, Santos HO. The effects of probiotic supplementation and exercise training on liver enzymes and cardiometabolic markers in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab (Lond) 2024; 21:59. [PMID: 39090657 PMCID: PMC11293022 DOI: 10.1186/s12986-024-00826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver ailment worldwide, in which nonpharmacological strategies have a considerable role in the treatment. Probiotic supplementation as well as physical exercise can improve cardiometabolic parameters, but further research is needed to determine the effects of combined treatment versus exercise alone in managing NAFLD-associated biomarkers, primarily liver enzymes, lipid markers, and insulin resistance. OBJECTIVES This systematic review and meta-analysis aimed to evaluate the effects of probiotic supplementation, combined with exercise versus exercise alone, on liver enzymes and cardiometabolic markers in patients with NAFLD. METHODS A systematic review and meta-analysis of randomized clinical trials was performed by searching PubMed, Scopus, and Web of Science databases up to April 2024. The search was restricted to articles published in the English language and human studies. Random effects models were used to calculate weighted mean differences (WMD). RESULTS Pooled estimates (9 studies, 615 patients, intervention durations ranging from 8 to 48 weeks) revealed that probiotics plus exercise decreased aspartate transaminase (AST) [WMD=-5.64 U/L, p = 0.02], gamma-glutamyl transferase (GGT) [WMD=-7.09 U/L, p = 0.004], low-density lipoprotein (LDL) [WMD=-8.98 mg/dL, p = 0.03], total cholesterol (TC) [WMD=-16.97 mg/dL, p = 0.01], and homeostatic model assessment for insulin resistance (HOMA-IR) [WMD=-0.94, p = 0.005] significantly more than exercise only. However, probiotics plus exercise did not significantly change high-density lipoprotein (HDL) [WMD = 0.07 mg/dL, p = 0.9], fasting insulin [WMD=-1.47 µIU/mL, p = 0.4] or fasting blood glucose (FBG) [WMD=-1.57 mg/dL, p = 0.3] compared with exercise only. While not statistically significant, there were clinically relevant reductions in alanine aminotransferase (ALT) [WMD=-6.78 U/L, p = 0.1], triglycerides (TG) [WMD=-21.84 mg/dL, p = 0.1], and body weight (BW) [WMD=-1.45 kg, p = 0.5] for probiotics plus exercise compared with exercise only. The included studies exhibited significant heterogeneity for AST (I2 = 78.99%, p = 0.001), GGT (I2 = 73.87%, p = 0.004), LDL (I2 = 62.78%, p = 0.02), TC (I2 = 72.41%, p = 0.003), HOMA-IR (I2 = 93.86%, p = 0.001), HDL (I2 = 0.00%, p = 0.9), FBG (I2 = 66.30%, p = 0.01), ALT (I2 = 88.08%, p = 0.001), and TG (I2 = 85.46%, p = 0.001). There was no significant heterogeneity among the included studies for BW (I2 = 0.00%, p = 0.9). CONCLUSION Probiotic supplementation combined with exercise training elicited better results compared to exercise alone on liver enzymes, lipid profile, and insulin resistance in patients with NAFLD. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42023424290.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Maryam Miraghajani
- Department of Cancer Research Center, Shahid Beheshti of Medical Sciences, Tehran, Iran
| | - Khatereh Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Bahareh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Para Street, 1720, Umuarama. Block 2H, Uberlandia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
13
|
Zhang Y, Wang C, Lang H, Yu H, Zhou M, Rao X, Zhang Q, Yi L, Zhu J, Mi M. The Contrasting Effects of Two Distinct Exercise Training Modalities on Exhaustive Exercise-Induced Muscle Damage in Mice May Be Associated with Alterations in the Gut Microbiota. Int J Mol Sci 2024; 25:7837. [PMID: 39063080 PMCID: PMC11277320 DOI: 10.3390/ijms25147837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Exhaustive exercise is known to induce muscle damage characterized by inflammation and oxidative stress. Although "regular" and "weekend warrior" exercise regimens have been shown to confer comparable health benefits in human studies, such as reduced risks of all-cause, cardiovascular disease (CVD), and cancer mortality, their differential impacts on muscle damage post-exhaustive exercise remain unclear. This study aimed to compare the effects of long-term, moderate-intensity (LTMI) and short-term, high-intensity (STHI) training modalities, matched for total exercise volume, on gut microbiota, short-chain fatty acids (SCFAs), and exhaustive exercise-induced muscle damage in mice, as well as to evaluate the correlation between these factors. LTMI is considered a regular exercise regimen, while STHI shares some similarities with the "weekend warrior" pattern, such as promoting exercise intensity and condensing training sessions into a short period. Our findings indicate that LTMI training significantly enhanced the abundance of SCFA-producing bacteria, including Akkermansia, Prevotellaceae_NK3B31_group, Odoribacter, Alistipes, and Lactobacillus, thereby increasing SCFA levels and attenuating muscle damage following exhaustive swimming. In contrast, STHI training increased the abundance of opportunistic pathogens such as Staphylococcus and Bilophila, without altering SCFA levels, and was associated with exacerbated muscle damage. Moreover, we observed a significant negative correlation between the abundance of SCFA-producing bacteria and SCFA levels with the expression of inflammatory cytokines in the muscle of mice post-exhaustive exercise. Conversely, the abundance of Staphylococcus and Bilophila showed a notable positive correlation with these cytokines. Additionally, the effects of LTMI and STHI on exhaustive exercise-induced muscle damage were transmissible to untrained mice via fecal microbiota transplantation, suggesting that gut microbiota changes induced by these training modalities may contribute to their contrasting impacts on muscle damage. These results underscore the significance of selecting an appropriate training modality prior to engaging in exhaustive exercise, with implications for athletic training and injury prevention.
Collapse
|
14
|
Li S, Miao XY, Zhang JS, Wei DD, Dong HJ, Xue R, Li JC, Zhang Y, Feng XX, Li J, Zhang YZ. Far-infrared therapy promotes exercise capacity and glucose metabolism in mice by modulating microbiota homeostasis and activating AMPK. Sci Rep 2024; 14:16314. [PMID: 39009692 PMCID: PMC11251280 DOI: 10.1038/s41598-024-67220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Yao Miao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin-Shui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dong-Dong Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hua-Jin Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing-Cao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Xing Feng
- Grahope New Materials Technologies Inc., Shenzhen, 518063, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
15
|
Raheem MA, Rahim MA, Gul I, Reyad-Ul-Ferdous M, Zhang CY, Yu D, Pandey V, Du K, Wang R, Han S, Han Y, Qin P. COVID-19: Post infection implications in different age groups, mechanism, diagnosis, effective prevention, treatment, and recommendations. Life Sci 2024:122861. [PMID: 38925222 DOI: 10.1016/j.lfs.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
SARS-CoV-2 is a highly contagious pathogen that predominantly caused the COVID-19 pandemic. The persistent effects of COVID-19 are defined as an inflammatory or host response to the virus that begins four weeks after initial infection and persists for an undetermined length of time. Chronic effects are more harmful than acute ones thus, this review explored the long-term effects of the virus on various human organs, including the pulmonary, cardiovascular, and neurological, reproductive, gastrointestinal, musculoskeletal, endocrine, and lymphoid systems and found that SARS-CoV-2 adversely affects these organs of older adults. Regarding diagnosis, the RT-PCR is a gold standard method of diagnosing COVID-19; however, it requires specialized equipment and personnel for performing assays and a long time for results production. Therefore, to overcome these limitations, artificial intelligence employed in imaging and microfluidics technologies is the most promising in diagnosing COVID-19. Pharmacological and non-pharmacological strategies are the most effective treatment for reducing the persistent impacts of COVID-19 by providing immunity to post-COVID-19 patients by reducing cytokine release syndrome, improving the T cell response, and increasing the circulation of activated natural killer and CD8 T cells in blood and tissues, which ultimately reduces fever, nausea, fatigue, and muscle weakness and pain. Vaccines such as inactivated viral, live attenuated viral, protein subunit, viral vectored, mRNA, DNA, or nanoparticle vaccines significantly reduce the adverse long-term virus effects in post-COVID-19 patients; however, no vaccine was reported to provide lifetime protection against COVID-19; consequently, protective measures such as physical separation, mask use, and hand cleansing are promising strategies. This review provides a comprehensive knowledge of the persistent effects of COVID-19 on people of varying ages, as well as diagnosis, treatment, vaccination, and future preventative measures against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Muhammad Ajwad Rahim
- College of Animal Science and Technology, Ahnui Agricultural University, Hefei, PR China
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Md Reyad-Ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Yuxing Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
16
|
Álvarez-Herms J. Summatory Effects of Anaerobic Exercise and a 'Westernized Athletic Diet' on Gut Dysbiosis and Chronic Low-Grade Metabolic Acidosis. Microorganisms 2024; 12:1138. [PMID: 38930520 PMCID: PMC11205432 DOI: 10.3390/microorganisms12061138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, this specific nutrition could be classified as an acidic diet and defined as 'Westernized athletic nutrition'. The maintenance of a chronic physiological state of low-grade metabolic acidosis produces detrimental effects on systemic health, physical performance, and inflammation. Therefore, nutrition must be capable of compensating for systemic acidosis from anaerobic exercise. The healthy gut microbiota can contribute to improving health and physical performance in athletes and, specifically, decrease the systemic acidic load through the conversion of lactate from systemic circulation to short-chain fatty acids in the proximal colon. On the contrary, microbial dysbiosis results in negative consequences for host health and physical performance because it results in a greater accumulation of systemic lactate, hydrogen ions, carbon dioxide, bacterial endotoxins, bioamines, and immunogenic compounds that are transported through the epithelia into the blood circulation. In conclusion, the systemic metabolic acidosis resulting from anaerobic exercise can be aggravated through an acidic diet, promoting chronic, low-grade metabolic acidosis in athletes. The individuality of athletic training and nutrition must take into consideration the acid-base homeostasis to modulate microbiota and adaptive physiological responses.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab, Physiology and Molecular Laboratory, 40170 Collado Hermoso, Segovia, Spain
| |
Collapse
|
17
|
Long C, Zhou X, Xia F, Zhou B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. BIOLOGY 2024; 13:243. [PMID: 38666855 PMCID: PMC11048184 DOI: 10.3390/biology13040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.
Collapse
Affiliation(s)
- Changrui Long
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Zhou
- Department of Cardiovascular, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
18
|
Park T, Yoon J, Yun Y, Unno T. Comparison of the fecal microbiota with high- and low performance race horses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:425-437. [PMID: 38628692 PMCID: PMC11016738 DOI: 10.5187/jast.2023.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 04/19/2024]
Abstract
Exercise plays an important role in regulating energy homeostasis, which affects the diversity of the intestinal microbial community in humans and animals. To the best of the authors' knowledge, few studies have reported the associations between horse gut microbiota along with their predicted metabolic activities and the athletic ability of Jeju horses and Thoroughbreds living in Korea. This study was conducted to investigate the association between the gut microbiota and athletic performance in horses. This study sequenced the V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from racehorse fecal samples and compared the fecal microbiota between high- and low-performance Jeju horses and Thoroughbreds. Forty-nine fecal samples were divided into four groups: high-performance Jeju horses (HJ, n = 13), low-performance Jeju horses (LJ, n = 17), high-performance Thoroughbreds (HT, n = 9), and low-performance Thoroughbreds (LT, n = 10). The high-performance horse groups had a higher diversity of the bacterial community than the low-performance horse groups. Two common functional metabolic activities of the hindgut microbiota (i.e., tryptophan and succinate syntheses) were observed between the low-performance horse groups, indicating dysbiosis of gut microbiota and fatigue from exercise. On the other hand, high-performance horse groups showed enriched production of polyamines, butyrate, and vitamin K. The racing performance may be associated with the composition of the intestinal microbiota of Jeju horses and Thoroughbreds in Korea.
Collapse
Affiliation(s)
- Taemook Park
- Equine Clinic, Jeju Racecourse, Korea
Racing Authority, Jeju 63066, Korea
| | - Jungho Yoon
- Equine Clinic, Jeju Racecourse, Korea
Racing Authority, Jeju 63066, Korea
| | - YoungMin Yun
- College of Veterinary Medicine, Jeju
National University, Jeju 63243, Korea
- Veterinary Medical Research Institute,
Jeju National University, Jeju 63243, Korea
| | - Tatsuya Unno
- Department of Microbiology, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
19
|
Fernandez-Sanjurjo M, Fernandez J, Martinez-Camblor P, Rodriguez-Alonso M, Ortolano-Rios R, Pinto-Hernandez P, Castilla-Silgado J, Coto-Vilcapoma A, Ruiz L, Villar CJ, Tomas-Zapico C, Margolles A, Fernandez-Garcia B, Iglesias-Gutierrez E, Lombó F. Dynamics of Gut Microbiota and Short-Chain Fatty Acids during a Cycling Grand Tour Are Related to Exercise Performance and Modulated by Dietary Intake. Nutrients 2024; 16:661. [PMID: 38474789 DOI: 10.3390/nu16050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Regular exercise has been described to modify both the diversity and the relative abundance of certain bacterial taxa. To our knowledge, the effect of a cycling stage race, which entails extreme physiological and metabolic demands, on the gut microbiota composition and its metabolic activity has not been analysed. OBJECTIVE The aim of this cohort study was to analyse the dynamics of faecal microbiota composition and short-chain fatty acids (SCFAs) content of professional cyclists over a Grand Tour and their relationship with performance and dietary intake. METHODS 16 professional cyclists competing in La Vuelta 2019 were recruited. Faecal samples were collected at four time points: the day before the first stage (A); after 9 stages (B); after 15 stages (C); and on the last stage (D). Faecal microbiota populations and SCFA content were analysed using 16S rRNA sequencing and gas chromatography, respectively. A principal component analysis (PCA) followed by Generalised Estimating Equation (GEE) models were carried out to explore the dynamics of microbiota and SCFAs and their relationship with performance. RESULTS Bifidobacteriaceae, Coriobacteriaceae, Erysipelotrichaceae, and Sutterellaceae dynamics showed a strong final performance predictive value (r = 0.83, ranking, and r = 0.81, accumulated time). Positive correlations were observed between Coriobacteriaceae with acetate (r = 0.530) and isovalerate (r = 0.664) and between Bifidobacteriaceae with isobutyrate (r = 0.682). No relationship was observed between SCFAs and performance. The abundance of Erysipelotrichaceae at the beginning of La Vuelta was directly related to the previous intake of complex-carbohydrate-rich foods (r = 0.956), while during the competition, the abundance of Bifidobacteriaceae was negatively affected by the intake of simple carbohydrates from supplements (r = -0.650). CONCLUSIONS An ecological perspective represents more realistically the relationship between gut microbiota composition and performance compared to single-taxon approaches. The composition and periodisation of diet and supplementation during a Grand Tour, particularly carbohydrates, could be designed to modulate gut microbiota composition to allow better performance.
Collapse
Affiliation(s)
- Manuel Fernandez-Sanjurjo
- Department of Functional Biology (Physiology), University of Oviedo, 33006 Oviedo, Spain
- Translational Interventions for Health (ITS) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Javier Fernandez
- University Institute of Oncology (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Department of Functional Biology (Microbiology), University of Oviedo, 33006 Oviedo, Spain
- Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Pablo Martinez-Camblor
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia 7500912, Chile
| | | | - Raquel Ortolano-Rios
- Research Centre for High Performance Sport, Catholic University of Murcia, 30107 Murcia, Spain
| | - Paola Pinto-Hernandez
- Department of Functional Biology (Physiology), University of Oviedo, 33006 Oviedo, Spain
- Translational Interventions for Health (ITS) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Castilla-Silgado
- Department of Functional Biology (Physiology), University of Oviedo, 33006 Oviedo, Spain
- Basic-Clinical Research in Neurology Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Almudena Coto-Vilcapoma
- Department of Functional Biology (Physiology), University of Oviedo, 33006 Oviedo, Spain
- Basic-Clinical Research in Neurology Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias-Spanish Research Council (IPLA-CSIC), 33300 Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Claudio J Villar
- University Institute of Oncology (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Department of Functional Biology (Microbiology), University of Oviedo, 33006 Oviedo, Spain
- Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Cristina Tomas-Zapico
- Department of Functional Biology (Physiology), University of Oviedo, 33006 Oviedo, Spain
- Translational Interventions for Health (ITS) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias-Spanish Research Council (IPLA-CSIC), 33300 Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Benjamin Fernandez-Garcia
- Department of Functional Biology (Physiology), University of Oviedo, 33006 Oviedo, Spain
- Department of Morphology and Cell Biology (Anatomy), University of Oviedo, 33006 Oviedo, Spain
| | - Eduardo Iglesias-Gutierrez
- Department of Functional Biology (Physiology), University of Oviedo, 33006 Oviedo, Spain
- Translational Interventions for Health (ITS) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Felipe Lombó
- University Institute of Oncology (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Department of Functional Biology (Microbiology), University of Oviedo, 33006 Oviedo, Spain
- Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC) Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
20
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
21
|
Nolte S, Krüger K, Lenz C, Zentgraf K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. BIOLOGY 2023; 12:1491. [PMID: 38132317 PMCID: PMC10740793 DOI: 10.3390/biology12121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The human gut microbiota can be compared to a fingerprint due to its uniqueness, hosting trillions of living organisms. Taking a sport-centric perspective, the gut microbiota might represent a physiological system that relates to health aspects as well as individualized performance in athletes. The athletes' physiology has adapted to their exceptional lifestyle over the years, including the diversity and taxonomy of the microbiota. The gut microbiota is influenced by several physiological parameters and requires a highly individual and complex approach to unravel the linkage between performance and the microbial community. This approach has been taken in this review, highlighting the functions that the microbial community performs in sports, naming gut-centered targets, and aiming for both a healthy and sustainable athlete and performance development. With this article, we try to consider whether initiating a microbiota analysis is practicable and could add value in elite sport, and what possibilities it holds when influenced through a variety of interventions. The aim is to support enabling a well-rounded and sustainable athlete and establish a new methodology in elite sport.
Collapse
Affiliation(s)
- Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Claudia Lenz
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karen Zentgraf
- Department 5: Psychology & Sports Sciences, Institute for Sports Sciences, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
22
|
Iwasaka C, Ninomiya Y, Nakagata T, Nanri H, Watanabe D, Ohno H, Tanisawa K, Konishi K, Murakami H, Tsunematsu Y, Sato M, Watanabe K, Miyachi M. Association between physical activity and the prevalence of tumorigenic bacteria in the gut microbiota of Japanese adults: a cross-sectional study. Sci Rep 2023; 13:20841. [PMID: 38012174 PMCID: PMC10682492 DOI: 10.1038/s41598-023-47442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Escherichia coli harboring polyketide synthase (pks+ E. coli) has been suggested to contribute to colorectal cancer development. Physical activity is strongly associated with lower colorectal cancer risks, but its effects on pks+ E. coli remain unclear. The aim of this study was to investigate the association between pks+ E. coli prevalence and physical activity. A cross-sectional study was conducted on 222 Japanese adults (27-79-years-old, 73.9% female). Triaxial accelerometers were used to measure light-intensity physical activity, moderate-to-vigorous intensity physical activity, the physical activity level, step-count, and time spent inactive. Fecal samples collected from participants were used to determine the prevalence of pks+ E. coli. Multivariate logistic regression analysis and restricted cubic spline curves were used to examine the association between pks+ E. coli prevalence and physical activity. The prevalence of pks+ E. coli was 26.6% (59/222 participants). The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the highest tertile with reference to the lowest tertile of physical activity variables were as follows: light-intensity physical activity (OR 0.63; 95% CI 0.26-1.5), moderate-to-vigorous intensity physical activity (OR 0.85; 95% CI 0.39-1.87), physical activity level (OR 0.69; 95% CI 0.32-1.51), step-count (OR 0.92; 95% CI 0.42-2.00) and time spent inactive (OR 1.30; 95% CI 0.58-2.93). No significant dose-response relationship was found between all physical activity variables and pks+ E. coli prevalence. Our findings did not suggest that physical activity has beneficial effects on the prevalence of pks+ E. coli. Longitudinal studies targeting a large population are needed to clarify this association.
Collapse
Affiliation(s)
- Chiharu Iwasaka
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Yuka Ninomiya
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Takashi Nakagata
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hinako Nanri
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan.
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| | - Daiki Watanabe
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Harumi Ohno
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Department of Nutrition, Kiryu University, Gunma, Japan
| | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Kana Konishi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan.
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan.
| |
Collapse
|
23
|
Yu C, Zhang P, Liu S, Niu Y, Fu L. SESN2 ablation weakens exercise benefits on resilience of gut microbiota following high-fat diet consumption in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
24
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|
25
|
Agostini D, Gervasi M, Ferrini F, Bartolacci A, Stranieri A, Piccoli G, Barbieri E, Sestili P, Patti A, Stocchi V, Donati Zeppa S. An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients 2023; 15:nu15081802. [PMID: 37111021 PMCID: PMC10141535 DOI: 10.3390/nu15081802] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
A decline in muscle mass and function represents one of the most problematic changes associated with aging, and has dramatic effects on autonomy and quality of life. Several factors contribute to the inexorable process of sarcopenia, such as mitochondrial and autophagy dysfunction, and the lack of regeneration capacity of satellite cells. The physiologic decline in muscle mass and in motoneuron functionality associated with aging is exacerbated by the sedentary lifestyle that accompanies elderly people. Regular physical activity is beneficial to most people, but the elderly need well-designed and carefully administered training programs that improve muscle mass and, consequently, both functional ability and quality of life. Aging also causes alteration in the gut microbiota composition associated with sarcopenia, and some advances in research have elucidated that interventions via the gut microbiota-muscle axis have the potential to ameliorate the sarcopenic phenotype. Several mechanisms are involved in vitamin D muscle atrophy protection, as demonstrated by the decreased muscular function related to vitamin D deficiency. Malnutrition, chronic inflammation, vitamin deficiencies, and an imbalance in the muscle-gut axis are just a few of the factors that can lead to sarcopenia. Supplementing the diet with antioxidants, polyunsaturated fatty acids, vitamins, probiotics, prebiotics, proteins, kefir, and short-chain fatty acids could be potential nutritional therapies against sarcopenia. Finally, a personalized integrated strategy to counteract sarcopenia and maintain the health of skeletal muscles is suggested in this review.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandro Stranieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
26
|
Sabater C, Iglesias-Gutiérrez E, Ruiz L, Margolles A. Next-generation sequencing of the athletic gut microbiota: a systematic review. MICROBIOME RESEARCH REPORTS 2023; 2:5. [PMID: 38045609 PMCID: PMC10688803 DOI: 10.20517/mrr.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 12/05/2023]
Abstract
Aim: There is growing evidence that physical activity modulates gut microbiota composition through complex interactions between diet and microbial species. On the other hand, next-generation sequencing techniques include shotgun metagenomics and 16S amplicon sequencing. These methodologies allow a comprehensive characterisation of microbial communities of athletes from different disciplines as well as non-professional players and sedentary adults exposed to training. This systematic review summarises recent applications of next-generation sequencing to characterise the athletic gut microbiome. Methods: A systematic review of microbiome research was performed to determine the association of microbiota composition profiles with sports performance. Results: Bibliographic analysis revealed the importance of a novel research trend aiming at deciphering the associations between individual microbial species and sports performance. In addition, literature review highlighted the role of butyrate-producing bacteria such as Anaerostipes hadrus, Clostridium bolteae, Faecalibacterium prausnitzii, Roseburia hominis and unidentified species belonging to Clostridiales, Lachnospiraceae and Subdoligranulum species in gut health and sports performance across several disciplines. Interestingly, metabolic activities of Prevotella copri and Veillonella atypica involved in branched amino acid and lactate metabolism may contribute to reducing muscular fatigue. Other microbial metabolic pathways of interest involved in carbohydrate metabolism showed increased proportions in athletes´ metagenomes. Conclusion: Future research will aim at developing personalised nutrition interventions to modulate key species associated with certain components of exercise.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa 33300, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Area of Physiology, Universidad de Oviedo, Avda. Julián Clavería 6, Oviedo 33006, Spain
- Traslational Interventions for Health (ITS) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa 33300, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa 33300, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
27
|
Wang Y, Pu Z, Zhang Y, Du Z, Guo Z, Bai Q. Exercise training has a protective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model with improved neural and intestinal pathology and modified intestinal flora. Behav Brain Res 2023; 439:114240. [PMID: 36455673 DOI: 10.1016/j.bbr.2022.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with the exact etiology still unclear, but gut microbial disorders are thought to be related to the initiation and progression of it. Exercise training has a significant effect on the intestinal flora, so to investigate the promotion effect of exercise training on Parkinson's disease, we performed a rotarod walking training (5 times a week at 25 rpm for 20 min for 8 weeks) on a chronic mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed the locomotor function of mice, function of dopaminergic neurons, intestinal mucosal barrier condition, intestinal inflammation and the structure and composition of intestinal flora. The results showed in these PD mice, exercise training improved their motility, increased the dopamine (DA) content in the striatum, along with promoted the gene expression of tyrosine hydroxylase and brain-derived neurotrophic factor in the striatum, which suggests this exercise training might protect striatal dopaminergic neurons from MPTP damage; the results also showed exercise training promoted recovery from ileal pathology, reduced the gene expression of intestinal inflammatory factors, and significantly altered the composition and structure of the intestinal flora in these mice.
Collapse
Affiliation(s)
- Yongjun Wang
- Chongqing Technology and Business University, No. 19 Xue Fu Road, Nanan District, Chongqing 401334, PR China.
| | - Zhengjia Pu
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Yiran Zhang
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Zhaohui Du
- Chongqing Technology and Business University, No. 19 Xue Fu Road, Nanan District, Chongqing 401334, PR China.
| | - Zeming Guo
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| | - Qunhua Bai
- School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, PR China.
| |
Collapse
|
28
|
Prevention of Metabolic Syndrome by Phytochemicals and Vitamin D. Int J Mol Sci 2023; 24:ijms24032627. [PMID: 36768946 PMCID: PMC9917154 DOI: 10.3390/ijms24032627] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, attention has focused on the roles of phytochemicals in fruits and vegetables in maintaining and improving the intestinal environment and preventing metabolic syndrome. A high-fat and high-sugar diet, lack of exercise, and excess energy accumulation in the body can cause metabolic syndrome and induce obesity, diabetes, and disorders of the circulatory system and liver. Therefore, the prevention of metabolic syndrome is important. The current review shows that the simultaneous intake of phytochemicals contained in citruses and grapes together with vitamin D improves the state of gut microbiota and immunity, preventing metabolic syndrome and related diseases. Phytochemicals contained in citruses include polyphenols such as hesperidin, rutin, and naringin; those in grapes include quercetin, procyanidin, and oleanolic acid. The intake of these phytochemicals and vitamin D, along with prebiotics and probiotics, nurture good gut microbiota. In general, Firmicutes are obese-prone gut microbiota and Bacteroidetes are lean-prone gut microbiota; good gut microbiota nurture regulatory T cells, which suppress inflammatory responses and upregulate immunity. Maintaining good gut microbiota suppresses TNF-α, an inflammatory cytokine that is also considered to be a pathogenic contributor adipokine, and prevents chronic inflammation, thereby helping to prevent metabolic syndrome. Maintaining good gut microbiota also enhances adiponectin, a protector adipokine that prevents metabolic syndrome. For the prevention of metabolic syndrome and the reduction of various disease risks, the intake of phytochemicals and vitamin D will be important for human health in the future.
Collapse
|
29
|
Combined Effect of Feed and Housing System Affects Free Amino Acid Content of Egg Yolk and Albumen in Brown Layer Chickens. J Poult Sci 2023; 60:2023007. [PMID: 36756045 PMCID: PMC9884636 DOI: 10.2141/jpsa.2023007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/24/2022] [Indexed: 01/25/2023] Open
Abstract
In recent years, the market share for cage-free eggs has gradually increased. Because commercially available cage-free eggs are often produced not only by several housing systems but also with different feed crude protein (CP) levels, there are combined effects of feed and housing systems between cage-free and cage eggs. Therefore, using field data, this study aimed to determine the combined effects of feed and housing systems on egg traits and yolk and albumen amino acids in table eggs. Brown layers (n = 40) at the middle laying stage under two feed and housing systems (cage, CP 15.5% diet; barn, CP 17.0% diet) were used. One-way analysis of variance and Pearson's correlation analysis were used to evaluate 10 egg traits, 19 yolk amino acid traits, and 20 albumen amino acid traits. We observed significant effects of feed and housing on two egg traits (yolk weight and eggshell color redness), 16 yolk amino acids (Asp, Glu, Asn, Ser, Gln, His, Arg, Thr, Ala, Tyr, Met, Cys, Ile, Leu, Phe, and Lys), and 14 albumen amino acids (Asp, Asn, Ser, Gln, Gly, His, Arg, Thr, Ala, Val, Met, Cys, Ile, and Leu). This study revealed that eggs from the barn system (CP 17.0%) contained higher levels of free amino acids in 15 yolk and nine albumen amino acid traits. Phenotypic correlations among the 49 egg traits indicated similar correlation patterns in both systems, which implies that the balance of free amino acid content in yolk and albumen is similar in each system. Although some potential confounding factors may be present for comparing egg content between cage (CP 15.5%) and barn (CP 17.0%) systems, this study suggests that commercially available cage-free eggs may be different from cage eggs not only in external egg traits but also yolk and albumen amino acid traits.
Collapse
|
30
|
Donati Zeppa S, Agostini D, Ferrini F, Gervasi M, Barbieri E, Bartolacci A, Piccoli G, Saltarelli R, Sestili P, Stocchi V. Interventions on Gut Microbiota for Healthy Aging. Cells 2022; 12:cells12010034. [PMID: 36611827 PMCID: PMC9818603 DOI: 10.3390/cells12010034] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the improvement in health and social conditions has led to an increase in the average lifespan. Since aging is the most important risk factor for the majority of chronic human diseases, the development of therapies and intervention to stop, lessen or even reverse various age-related morbidities is an important target to ameliorate the quality of life of the elderly. The gut microbiota, that is, the complex ecosystem of microorganisms living in the gastrointestinal tract, plays an important role, not yet fully understood, in maintaining the host's health and homeostasis, influencing metabolic, oxidative and cognitive status; for this reason, it is also named "the forgotten endocrine organ" or "the second brain". On the other hand, the gut microbiota diversity and richness are affected by unmodifiable factors, such as aging and sex, and modifiable ones, such as diet, pharmacological therapies and lifestyle. In this review, we discuss the changes, mostly disadvantageous, for human health, induced by aging, in microbiota composition and the effects of dietary intervention, of supplementation with probiotics, prebiotics, synbiotics, psychobiotics and antioxidants and of physical exercise. The development of an integrated strategy to implement microbiota health will help in the goal of healthy aging.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Univerity San Raffaele, 00166 Rome, Italy
| |
Collapse
|
31
|
Domínguez-Balmaseda D, Bressa C, Fernández-Romero A, de Lucas B, Pérez-Ruiz M, San Juan AF, Roller M, Issaly N, Larrosa M. Evaluation of a Zingiber officinale and Bixa orellana Supplement on the Gut Microbiota of Male Athletes: A Randomized Placebo-Controlled Trial. PLANTA MEDICA 2022; 88:1245-1255. [PMID: 35226949 DOI: 10.1055/a-1671-5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The gut microbiota has emerged as a factor that influences exercise performance and recovery. The present study aimed to test the effect of a polyherbal supplement containing ginger and annatto called "ReWin(d)" on the gut microbiota of recreational athletes in a pilot, randomized, triple-blind, placebo-controlled trial. Thirty-four participants who practice physical activity at least three times weekly were randomly allocated to two groups, a ReWin(d) group or a maltodextrin (placebo) group. We evaluated the gut microbiota, the production of short-chain fatty acids, and the serum levels of interleukin-6 and lipopolysaccharide at baseline and after 4 weeks. Results showed that ReWin(d) supplementation slightly increased gut microbiota diversity. Pairwise analysis revealed an increase in the relative abundance of Lachnospira (β-coefficient = 0.013; p = 0.001), Subdoligranulum (β-coefficient = 0.016; p = 0.016), Roseburia (β-coefficient = 0.019; p = 0.001), and Butyricicoccus (β-coefficient = 0.005; p = 0.035) genera in the ReWin(d) group, and a decrease in Lachnoclostridium (β-coefficient = - 0.008; p = 0.009) and the Christensenellaceae R7 group (β-coefficient = - 0.010; p < 0.001). Moreover, the Christensenellaceae R-7 group correlated positively with serum interleukin-6 (ρ = 0.4122; p = 0.032), whereas the Lachnospira genus correlated negatively with interleukin-6 (ρ = - 0.399; p = 0.032). ReWin(d) supplementation had no effect on short-chain fatty acid production or on interleukin-6 or lipopolysaccharide levels.
Collapse
Affiliation(s)
- Diego Domínguez-Balmaseda
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Carlo Bressa
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Biomedicine Department, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Arantxa Fernández-Romero
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Beatriz de Lucas
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Margarita Pérez-Ruiz
- Research Group on Exercise, health and biomarkers applied, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alejandro F San Juan
- Department of Health and Human Performance, Sport Biomechanics Laboratory, Faculty of Physical Activity and Sport Sciences, INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | - Mar Larrosa
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Department of Nutrition and Food Science, School of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
32
|
Puce L, Hampton-Marcell J, Trabelsi K, Ammar A, Chtourou H, Boulares A, Marinelli L, Mori L, Cotellessa F, Currà A, Trompetto C, Bragazzi NL. Swimming and the human microbiome at the intersection of sports, clinical, and environmental sciences: A scoping review of the literature. Front Microbiol 2022; 13:984867. [PMID: 35992695 PMCID: PMC9382026 DOI: 10.3389/fmicb.2022.984867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The human microbiota is comprised of more than 10–100 trillion microbial taxa and symbiotic cells. Two major human sites that are host to microbial communities are the gut and the skin. Physical exercise has favorable effects on the structure of human microbiota and metabolite production in sedentary subjects. Recently, the concept of “athletic microbiome” has been introduced. To the best of our knowledge, there exists no review specifically addressing the potential role of microbiomics for swimmers, since each sports discipline requires a specific set of techniques, training protocols, and interactions with the athletic infrastructure/facility. Therefore, to fill in this gap, the present scoping review was undertaken. Four studies were included, three focusing on the gut microbiome, and one addressing the skin microbiome. It was found that several exercise-related variables, such as training volume/intensity, impact the athlete’s microbiome, and specifically the non-core/peripheral microbiome, in terms of its architecture/composition, richness, and diversity. Swimming-related power-/sprint- and endurance-oriented activities, acute bouts and chronic exercise, anaerobic/aerobic energy systems have a differential impact on the athlete’s microbiome. Therefore, their microbiome can be utilized for different purposes, including talent identification, monitoring the effects of training methodologies, and devising ad hoc conditioning protocols, including dietary supplementation. Microbiomics can be exploited also for clinical purposes, assessing the effects of exposure to swimming pools and developing potential pharmacological strategies to counteract the insurgence of skin infections/inflammation, including acne. In conclusion, microbiomics appears to be a promising tool, even though current research is still limited, warranting, as such, further studies.
Collapse
Affiliation(s)
- Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Khaled Trabelsi
- Institut Supérieur du Sport et de l’Éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, Sfax University, Sfax, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Sport Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), Université Paris Lumières, Paris Nanterre University, Nanterre, France
| | - Hamdi Chtourou
- Institut Supérieur du Sport et de l’Éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisia
| | - Ayoub Boulares
- Higher Institute of Sports and Physical Education of Ksar-Said, University of Manouba, Tunis, Tunisia
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Filippo Cotellessa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Currà
- Department of Medical-Surgical Sciences and Biotechnologies, A. Fiorini Hospital, Sapienza University of Rome, Latina, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
- *Correspondence: Nicola Luigi Bragazzi,
| |
Collapse
|
33
|
Mundula T, Russo E, Curini L, Giudici F, Piccioni A, Franceschi F, Amedei A. Chronic systemic low-grade inflammation and modern lifestyle: the dark role of gut microbiota on related diseases with a focus on pandemic COVID-19. Curr Med Chem 2022; 29:5370-5396. [PMID: 35524667 DOI: 10.2174/0929867329666220430131018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Inflammation is a physiological, beneficial and auto-limiting response of the host to alarming stimuli. Conversely, a chronic systemic low-grade inflammation (CSLGI), known as a long-time persisting condition, causes organs and host tissues' damage, representing a major risk for chronic diseases. Currently, a worldwide a high incidence of inflammatory chronic diseases is observed, often linked to the lifestyle-related changes occurred in the last decade's society. The mains lifestyle-related factors are a proinflammatory diet, psychological stress, tobacco smoking, alcohol abuse, physical inactivity, and finally indoor living and working with its related consequences such as indoor pollution, artificial light exposure and low vitamin D production. Recent scientific evidences found that gut microbiota (GM) has a main role in shaping the host's health, particularly as CSLGI mediator. As a matter of facts, based on the last discoveries regarding the remarkable GM activity, in this manuscript we focused on the elements of actual lifestyle that influence the composition and function of intestinal microbial community, in order to elicit the CSLGI and its correlated pathologies. In this scenario, we provide a broad review of the interplay between modern lifestyle, GM and CSLGI with a special focus on the COVID symptoms and emerging long-COVID syndrome.
Collapse
Affiliation(s)
- Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Piccioni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
34
|
Sisti D, Pazienza V, Piccini F, Citterio B, Baffone W, Donati Zeppa S, Biavasco F, Prospero E, De Luca A, Artico M, Taurone S, Minelli A, Perri F, Binda E, Pracella R, Santolini R, Amatori S, Sestili P, Rocchi MBL, Gobbi P. A proposal for the reference intervals of the Italian microbiota "scaffold" in healthy adults. Sci Rep 2022; 12:3952. [PMID: 35273317 PMCID: PMC8913673 DOI: 10.1038/s41598-022-08000-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Numerous factors, ranging from genetics, age, lifestyle, and dietary habits to local environments, contribute to the heterogeneity of the microbiota in humans. Understanding the variability of a “healthy microbiota” is a major challenge in scientific research. The gut microbiota profiles of 148 healthy Italian volunteers were examined by 16S rRNA gene sequencing to determine the range and diversity of taxonomic compositions in the gut microbiota of healthy populations. Possible driving factors were evaluated through a detailed anamnestic questionnaire. Microbiota reference intervals were also calculated. A “scaffold” of a healthy Italian gut microbiota composition was identified. Differences in relative quantitative ratios of microbiota composition were detected in two clusters: a bigger cluster (C2), which included 124 subjects, was characterized by more people from the northern Italian regions, who habitually practised more physical activity and with fewer dietary restrictions. Species richness and diversity were significantly higher in this cluster (C2) than in the other one (C1) (C1: 146.67 ± 43.67; C2: 198.17 ± 48.47; F = 23.40; P < 0.001 and C1: 16.88 ± 8.66; C2: 35.01 ± 13.40; F = 40.50; P < 0.001, respectively). The main contribution of the present study was the identification of the existence of a primary healthy microbiological framework that is only marginally affected by variations. Taken together, our data help to contextualize studies on population-specific variations, including marginal aspects, in human microbiota composition. Such variations must be related to the primary framework of a healthy microbiota and providing this perspective could help scientists to better design experimental plans and develop strategies for precision tailored microbiota modulation.
Collapse
Affiliation(s)
- Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | | | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Wally Baffone
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60121, Ancona, Italy
| | - Emilia Prospero
- Department of Biomedical Sciences, Università Politecnica delle Marche, 60121, Ancona, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Marco Artico
- Department of Sense Organs, La Sapienza University, 00185, Rome, Italy
| | - Samanta Taurone
- Department of Sense Organs, La Sapienza University, 00185, Rome, Italy
| | - Andrea Minelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Francesco Perri
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Elena Binda
- Cancer Stem Cells Unit ISBReMIT, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit ISBReMIT, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Riccardo Santolini
- Department of Humanities, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy.
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Marco B L Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 7, 61029, Urbino, Italy
| |
Collapse
|
35
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
36
|
Donati Zeppa S, Ferrini F, Agostini D, Amatori S, Barbieri E, Piccoli G, Sestili P, Stocchi V. Nutraceuticals and Physical Activity as Antidepressants: The Central Role of the Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11020236. [PMID: 35204119 PMCID: PMC8868311 DOI: 10.3390/antiox11020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental illness. Evidence suggests that the gut microbiota play an essential role in regulating brain functions and the pathogenesis of neuropsychiatric diseases, including MDD. There are numerous mechanisms through which the gut microbiota and brain can exchange information in a continuous, bidirectional communication. Current research emphasizes the interexchange of signals influenced by the gut microbiota that are detected and transduced in information from the gut to the nervous system involving neural, endocrine, and inflammatory mechanisms, suggesting a relationship between oxidative stress and the pathophysiology of MDD via the hyperactivation of inflammatory responses. Potential sources of inflammation in the plasma and hippocampus of depressed individuals could stem from increases in intestinal permeability. Some nutraceuticals, such as specific probiotics, namely psychobiotics, polyphenols, carotenoids, butyrate, and prebiotics, have been demonstrated to exert an antidepressant activity, but most of them need to be metabolized and activated by gut microorganisms. By inducing changes in the gut microbiota composition, physical exercise might also exert a role in alleviating depression-like symptoms. The mutual relationships among nutraceuticals, exercise, and depression will be discussed, and the potential role of the gut microbiota as a therapeutic target to treat depression will be explored.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
- Correspondence:
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | | |
Collapse
|
37
|
The use of Dietary and Protein Supplements by Women Attending Fitness Clubs on a Recreational Basis and an Analysis of the Factors Influencing their Consumption. CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2022. [DOI: 10.18276/cej.2022.3-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Xie Y, Wu Z, Zhou L, Sun L, Xiao L, Wang G. Swimming Exercise Modulates Gut Microbiota in CUMS-Induced Depressed Mice. Neuropsychiatr Dis Treat 2022; 18:749-760. [PMID: 35411144 PMCID: PMC8994653 DOI: 10.2147/ndt.s355723] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gut microbiota is associated with anxiety and depression, while exercise has been proved to alleviate depressive symptoms. However, the interaction of exercise, depression, and gut microbiota remains unclear. METHODS Male C57/BL6J mice were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks and then were subjected to a 5-week swimming program. Behavioral tests, including sucrose preference test (SPT), open field test (OFT), elevated plus-maze (EPM) test, and tail suspension test (TST), were conducted to assess the anxiety-like and depressive behaviors. Gut microbiota analysis was carried out after sample collection. RESULTS This study showed that CUMS induced depressive behaviors, but swimming exercise increased sucrose preference rate in the SPT, increased time in the center and number of rearing in the OFT, decreased time in the closed arm and increased time in the open arm in EPM, and decreased immobility time in the TST. Firmicutes were the predominant phylum in the gut microbiome, followed by the phyla Bacteroidetes and Proteobacteria. We further found that CUMS and swimming influenced the relative abundance of the genus Desulfovibrio, genus Streptococcus, genus p-75-a5. Among the metabolic pathways, aromatic biogenic amine degradation (PWY-7431), mono-trans and polycis decaprenyl phosphate biosynthesis (PWY-6383), chlorosalicylate degradation (PWY-6107), mycothiol biosynthesis (PWY1G-0), mycolyl-arabinogalactan-peptidoglycan complex biosynthesis (PWY-6397), toluene degradation I (aerobic) (via o-cresol) (PWY-5180), toluene degradation II (aerobic) (via 4-methylcatechol) (PWY-5182), and starch degradation III (PWY-6731) may be related to the mechanism of anti-depression effect. CONCLUSION Swimming exercise reverses CUMS-induced depressive behaviors, and the alteration of gut microbiota composition and regulation of microbiota metabolic pathways are involved.
Collapse
Affiliation(s)
- Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| |
Collapse
|
39
|
Donati Zeppa S, Amatori S, Sisti D, Gervasi M, Agostini D, Piccoli G, Pazienza V, Gobbi P, Rocchi MBL, Sestili P, Stocchi V. Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students. J Int Soc Sports Nutr 2021; 18:74. [PMID: 34922581 PMCID: PMC8684107 DOI: 10.1186/s12970-021-00471-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults. Methods The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed. Results Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F [1, 32]=3.97, p=0.029; classes: F [1, 32]=3.39, p=0.033, orders: F [1, 32]=3.17, p=0.044, families: F [1, 32]=1.54, p=0.037, genera: F [1, 32]=1.46, p=0.015, species: F [1, 32]=1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features. Conclusions Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00471-z.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Valerio Pazienza
- Division of Gastroenterology "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Marco B L Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | | |
Collapse
|
40
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
41
|
Impact of Probiotics on the Performance of Endurance Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111576. [PMID: 34770090 PMCID: PMC8583504 DOI: 10.3390/ijerph182111576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Background: Probiotic supplements contain different strains of living microorganisms that promote the health of the host. These dietary supplements are increasingly being used by athletes to improve different aspects such as athletic performance, upper respiratory tract infections (URTIs), the immune system, oxidative stress, gastrointestinal (GI) problems, etc. This study aimed to identify the current evidence on the management of probiotics in endurance athletes and their relationship with sports performance. Methods: A systematic review of the last five years was carried out in PubMed, Scopus, Web of science, Sportdiscus and Embase databases. Results: Nine articles met the quality criteria. Of these, three reported direct benefits on sports performance. The remaining six articles found improvements in the reduction of oxidative stress, increased immune response and decreased incidence of URTIs. There is little scientific evidence on the direct relationship between the administration of probiotics in endurance athletes and sports performance. Conclusions: Benefits were found that probiotics could indirectly influence sports performance by improving other parameters such as the immune system, response to URTIs and decreased oxidative stress, as well as the monitoring of scheduled workouts.
Collapse
|
42
|
Tripodi L, Molinaro D, Farini A, Cadiao G, Villa C, Torrente Y. Flavonoids and Omega3 Prevent Muscle and Cardiac Damage in Duchenne Muscular Dystrophy Animal Model. Cells 2021; 10:2917. [PMID: 34831140 PMCID: PMC8616158 DOI: 10.3390/cells10112917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
Nutraceutical products possess various anti-inflammatory, antiarrhythmic, cardiotonic, and antioxidant pharmacological activities that could be useful in preventing oxidative damage, mainly induced by reactive oxygen species. Previously published data showed that a mixture of polyphenols and polyunsaturated fatty acids, mediate an antioxidative response in mdx mice, Duchenne muscular dystrophy animal model. Dystrophic muscles are characterized by low regenerative capacity, fibrosis, fiber necrosis, inflammatory process, altered autophagic flux and inadequate anti-oxidant response. FLAVOmega β is a mixture of flavonoids and docosahexaenoic acid. In this study, we evaluated the role of these supplements in the amelioration of the pathological phenotype in dystrophic mice through in vitro and in vivo assays. FLAVOmega β reduced inflammation and fibrosis, dampened reactive oxygen species production, and induced an oxidative metabolic switch of myofibers, with consequent increase of mitochondrial activity, vascularization, and fatigue resistance. Therefore, we propose FLAVOmega β as food supplement suitable for preventing muscle weakness, delaying inflammatory milieu, and sustaining physical health in patients affected from DMD.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Centro Dino Ferrari, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.T.); (D.M.); (A.F.); (G.C.)
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Centro Dino Ferrari, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.T.); (D.M.); (A.F.); (G.C.)
| |
Collapse
|
43
|
Lee MC, Hsu YJ, Ho HH, Kuo YW, Lin WY, Tsai SY, Chen WL, Lin CL, Huang CC. Effectiveness of human-origin Lactobacillus plantarum PL-02 in improving muscle mass, exercise performance and anti-fatigue. Sci Rep 2021; 11:19469. [PMID: 34593921 PMCID: PMC8484333 DOI: 10.1038/s41598-021-98958-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota is very important for energy metabolism and regulation, which in turn affect the health and physiological functions of the host, and provide energy required for exercise. Supplementation with probiotics may be one of the ways to change the gut microbiota. In recent years, many studies have shown that probiotic supplementation can effectively improve sports performance. In this study, we screened Lactobacillus plantarum (PL-02), a probiotic of human-origin, from the intestines of 2008 Olympic women's 48 kg weightlifting gold medalist and explored the role of PL-02 in improved exercise endurance performance, reduced fatigue biochemical parameters, and changes in body composition. Male Institute of Cancer Research (ICR) mice were assigned to 0, 2.05 × 109, 4.10 × 109 and 1.03 × 1010 CFU/kg/day groups and were fed by oral gavage once daily for 4 weeks. The results showed that 4 weeks of PL-02 supplementation could significantly increase muscle mass, muscle strength and endurance performance, and hepatic and muscular glycogen storage. Furthermore, PL-02 could significantly decrease lactate, blood urea nitrogen (BUN), ammonia, and creatine kinase (CK) levels after exercise (p < 0.05). We believe that PL-02 can be used as a supplement to improve exercise performance and for its anti-fatigue effect.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Hsieh-Hsun Ho
- Research and Development Department, Bioflag Biotech Co, Ltd, Tainan, Taiwan
| | - Yi-Wei Kuo
- Research and Development Department, Bioflag Biotech Co, Ltd, Tainan, Taiwan
| | - Wen-Yang Lin
- Research and Development Department, Bioflag Biotech Co, Ltd, Tainan, Taiwan
| | - Shin-Yu Tsai
- Research and Development Department, Bioflag Biotech Co, Ltd, Tainan, Taiwan
| | - Wei-Ling Chen
- Department of Sports Training Science-Athletics, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Che-Li Lin
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan.
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan.
| |
Collapse
|
44
|
Tanaka Y, Shimizu S, Shirotani M, Yorozu K, Kitamura K, Oehorumu M, Kawai Y, Fukuzawa Y. Nutrition and Cancer Risk from the Viewpoint of the Intestinal Microbiome. Nutrients 2021; 13:nu13103326. [PMID: 34684330 PMCID: PMC8541425 DOI: 10.3390/nu13103326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
There are various important factors in reducing the risk of cancer development and progression; these factors may correct an unbalanced intake of nutrients to maintain the living body’s homeostasis, detoxify toxic materials, acting as an external factor, and maintain and strengthen the body’s immune function. In a normal cell environment, nutrients, such as carbohydrates, lipids, proteins, vitamins, and minerals, are properly digested and absorbed into the body, and, as a result, an environment in which cancer can develop and progress is prevented. It is necessary to prevent toxic materials from entering the body and to detoxify poisons in the body. If these processes occur correctly, cells work normally, and genes cannot be damaged. The most important factor in the fight against cancer and prevention of the development and progression of cancer is the immune system. This requires a nutritional state in which the immune system works well, allowing the intestinal microbiome to carry out all of its roles. In order to grow intestinal microbiota, the consumption of prebiotics, such as organic vegetables, fruits, and dietary fiber, and probiotics of effective intestinal microbiota, such as fermented foods and supplements, is required. Symbiosis, in which these organisms work together, is an effective means of reducing the risk of cancer. In addition, fecal microbiota transplantation (FMT) using ultrafine bubble water, produced specially by the Association for Clinical Research of Fecal Microbiota Transplantation Japan, is also useful for improving the nutritional condition and reducing the risk of cancer.
Collapse
Affiliation(s)
- Yoshimu Tanaka
- Jinzenkai Tanaka Clinic, 2-3-8, Ikunonishi, Ikuno-ku, Osaka 544-0024, Japan
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Correspondence:
| | - Shin Shimizu
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Symbiosis Research Institute, 6-7-4-106, Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiko Shirotani
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Luke’s Ashiya Clinic, 8-2, Ohara-cho, Ashiya, Hyogo 659-0092, Japan
| | - Kensho Yorozu
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Ishinkai Yorozu Clinic, 1-118-4, Mihagino, Tottori 689-0202, Japan
| | - Kunihiro Kitamura
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Kitamura Clinic, 4-3-8, Nishiki-machi, Onojo, Fukuoka 816-0935, Japan
| | - Masayuki Oehorumu
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- LIFE Clinic Tateshina, 3317-1, Toyohira, Chino, Nagano 391-0213, Japan
| | - Yuichi Kawai
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Yuakai Kawai Clinic for Internal Medicine, 3-7-14, Higashi-Nakahama, Joto-ku, Osaka 536-0023, Japan
| | - Yoshitaka Fukuzawa
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Aichi Medical Preemptive and Integrative Medicine Center, Aichi Medical University Hospital, Yazakokarimata, Nagakute, Aichi 480-1103, Japan
| |
Collapse
|
45
|
Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med 2021; 52:725-740. [PMID: 34542868 PMCID: PMC8450723 DOI: 10.1007/s40279-021-01561-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
It is well established that physical activity reduces all-cause mortality and can prolong life. Ultra-endurance running (UER) is an extreme sport that is becoming increasingly popular, and comprises running races above marathon distance, exceeding 6 h, and/or running fixed distances on multiple days. Serious acute adverse events are rare, but there is mounting evidence that UER may lead to long-term health problems. The purpose of this review is to present the current state of knowledge regarding the potential long-term health problems derived from UER, specifically potential maladaptation in key organ systems, including cardiovascular, respiratory, musculoskeletal, renal, immunological, gastrointestinal, neurological, and integumentary systems. Special consideration is given to youth, masters, and female athletes, all of whom may be more susceptible to certain long-term health issues. We present directions for future research into the pathophysiological mechanisms that underpin athlete susceptibility to long-term issues. Although all body systems can be affected by UER, one of the clearest effects of endurance exercise is on the cardiovascular system, including right ventricular dysfunction and potential increased risk of arrhythmias and hypertension. There is also evidence that rare cases of acute renal injury in UER could lead to progressive renal scarring and chronic kidney disease. There are limited data specific to female athletes, who may be at greater risk of certain UER-related health issues due to interactions between energy availability and sex-hormone concentrations. Indeed, failure to consider sex differences in the design of female-specific UER training programs may have a negative impact on athlete longevity. It is hoped that this review will inform risk stratification and stimulate further research about UER and the implications for long-term health.
Collapse
|
46
|
Bo W, Xi Y, Tian Z. The role of exercise in rehabilitation of discharged COVID-19 patients. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:194-201. [PMID: 34541561 PMCID: PMC8438861 DOI: 10.1016/j.smhs.2021.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly caused pneumonia and pulmonary fibrosis through upper respiratory tract infection, which resulted in acute respiratory distress syndrome (ARDS) and multiorgan damage of cardiovascular, nervous, digestive, and genitourinary systems. Although the virus test turned negative after the patient recovered, the damage to multiorgan caused by SARS-CoV-2 may irreversible. Therefore, the health status of the recovered patients has gradually become the focus of people's attention. Whether coronavirus disease 2019 (COVID-19) patients can receive exercise rehabilitation training after discharge? and what's the basis? We try to analyze and answer these questions, will provide some ideas about the patients to develop a reasonable and effective exercise rehabilitation program.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- ACS, acute coronary syndrome
- AKI, acute kidney injury
- ARDS, acute respiratory distress syndrome
- Ang II, accumulation of angiotensin Ⅱ
- BDNF, brain-derived neurotrophic factor
- CHI3L1, chitinase-3-like protein 1
- CNS, central nervous system
- COPD, chronic obstructive pulmonary disease
- COVID-19
- COVID-19, coronavirus disease 2019
- CRS, cytokine release syndrome
- EcSOD, extracellular superoxide dismutase
- Exercise rehabilitation
- Exercise response factor
- FGF21, fibroblast growth factor 21
- FSTL1, follistatin-related protein 1
- GDF-15, growth/differentiation factor-15
- ICU, intensive care unit
- Inflammation cytokine storm
- LIF, leukemia inhibitory factor
- NK, natural killer
- PBMCs, peripheral blood mononuclear cells
- RAAS, renin-angiotensin-aldosterone system
- ROS, reactive oxygen species
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- TMPRSS2, transmembrane protease serine 2
- TNF, tumor necrosis factor
- WBV, whole-body vibration
Collapse
Affiliation(s)
- Wenyan Bo
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yue Xi
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
47
|
Koutouratsas T, Philippou A, Kolios G, Koutsilieris M, Gazouli M. Role of exercise in preventing and restoring gut dysbiosis in patients with inflammatory bowel diseases: A review. World J Gastroenterol 2021; 27:5037-5046. [PMID: 34497433 PMCID: PMC8384738 DOI: 10.3748/wjg.v27.i30.5037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) include a spectrum of chronic inflammatory disorders of the gastrointestinal tract whose pathogenesis is yet to be elucidated. The intestinal microbiome has been studied as a causal component, with certain microbiotic alterations having been observed in subtypes of IBD. Physical exercise is a modulator of the intestinal microbiome, causing shifts in its composition that are partially corrective of those observed in IBD; furthermore, physical exercise may be beneficial in patients with certain IBD subtypes. This review studies the effects of physical exercise on the human gut microbiome while investigating pathophysiologic mechanisms that could explain physical activity’s clinical effects on patients with IBD.
Collapse
Affiliation(s)
- Tilemachos Koutouratsas
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anastassios Philippou
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Kolios
- Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michael Koutsilieris
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
48
|
Hsu YJ, Wu MF, Lee MC, Huang CC. Exercise training combined with Bifidobacterium longum OLP-01 treatment regulates insulin resistance and physical performance in db/db mice. Food Funct 2021; 12:7728-7740. [PMID: 34296722 DOI: 10.1039/d0fo02939d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic disease characterized by hyperglycemia and insulin resistance. Regular exercise is one of the effective lifestyle interventions for maintaining healthy weight and blood glucose levels in the normal range and lowering risk factors. Probiotics, live microorganisms that are beneficial to health, are involved in the regulation of host metabolism. We thus hypothesize that the combination of exercise training and Bifidobacterium longum OLP-01 (OLP-01) could improve insulin sensitivity, blood glucose control and body composition in db/db mice. Twenty-four C57BL/6 J db/db male mice (20-weeks old) were divided into four groups (n = 6 per group): vehicle, OLP-01 supplementation (OLP-01), exercise training (EX) and exercise training with OLP-01 supplementation (EX + OLP-01). Animals in the EX and EX + OLP-01 groups underwent strength exercise training for 6 weeks, 5 days per week. After the exercise training, we tested forelimb grip strength, exhaustive running, oral glucose tolerance test (OGTT) and serum biomarkers. Results: Combined intervention of EX and OLP-01 prevented elevation of body weight and body fat. Grip strength and exhaustive swimming time were significantly higher in the EX + OLP-01 group than in the other groups. We found that EX OLP-01 reduced glycolipid parameters (fasting blood glucose and hemoglobin A1c), improved insulin sensitivity (oral glucose tolerance test and HOMA-IR), relieved liver injury parameters (aspartate aminotransferase and alanine aminotransferase) and repaired pancreas damage. Based on our findings, we speculate that the positive effects of combining EX with OLP-01 on capacity for physical activity, blood glucose control and body composition suggest an integrative approach to treating type 2 diabetes. Altogether, the combination of EX with OLP-01 treatment might be a good candidate for preventing and treating diabetes.
Collapse
Affiliation(s)
- Yi-Ju Hsu
- Graduate Institute of Sports Science, Natioal Taiwan Sport University, Taoyuan City 33301, Taiwan.
| | | | | | | |
Collapse
|
49
|
Mortaz E, Bezemer G, Alipoor SD, Varahram M, Mumby S, Folkerts G, Garssen J, Adcock IM. Nutritional Impact and Its Potential Consequences on COVID-19 Severity. Front Nutr 2021; 8:698617. [PMID: 34291074 PMCID: PMC8287001 DOI: 10.3389/fnut.2021.698617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: During late 2019 a viral disease due to a novel coronavirus was reported in Wuhan, China, which rapidly developed into an exploding pandemic and poses a severe threat to human health all over the world. Until now (May 2021), there are insufficient treatment options for the management of this global disease and shortage of vaccines. Important aspects that help to defeat coronavirus infection seems to be having a healthy, strong, and resilient immune system. Nutrition and metabolic disorders, such as obesity and diabetes play a crucial role on the community health situation in general and especially during this new pandemic. There seems to be an enormous impact of lifestyle, metabolic disorders, and immune status on coronavirus disease 2019 (COVID-19) severity and recovery. For this reason, it is important to consider the impact of lifestyle and the consumption of well-defined healthy diets during the pandemic. Aims: In this review, we summarise recent findings on the effect of nutrition on COVID-19 susceptibility and disease severity and treatment. Understanding how specific dietary features might help to improve the public health strategies to reduce the rate and severity of COVID-19.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gillina Bezemer
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Shamila D. Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Center of Excellence Immunology, Nutricia Research, Utrecht, Netherlands
| | - Ian M. Adcock
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
50
|
Dietary Habits and Gut Microbiota in Healthy Adults: Focusing on the Right Diet. A Systematic Review. Int J Mol Sci 2021; 22:ijms22136728. [PMID: 34201611 PMCID: PMC8269086 DOI: 10.3390/ijms22136728] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Diet is the first to affect our intestinal microbiota and therefore the state of eubiosis. Several studies are highlighting the potential benefits of taking certain nutritional supplements, but a dietary regime that can ensure the health of the intestinal microbiota, and the many pathways it governs, is not yet clearly defined. We performed a systematic review of the main studies concerning the impact of an omnivorous diet on the composition of the microbiota and the production of short-chain fatty acids (SCFAs). Some genera and phyla of interest emerged significantly and about half of the studies evaluated consider them to have an equally significant impact on the production of SCFAs, to be a source of nutrition for our colon cells, and many other processes. Although numerous randomized trials are still needed, the Mediterranean diet could play a valuable role in ensuring our health through direct interaction with our microbiota.
Collapse
|