1
|
Santos HO, Penha-Silva N. Revisiting the concepts of de novo lipogenesis to understand the conversion of carbohydrates into fats: Stop overvaluing and extrapolating the renowned phrase "fat burns in the flame of carbohydrate". Nutrition 2025; 130:112617. [PMID: 39566326 DOI: 10.1016/j.nut.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Carbohydrates can be converted into fatty acids via de novo lipogenesis (DNL). Although DNL is considered inefficient, these endogenous fatty acids contribute substantially to the esterification pathway in adipose tissue, together with fatty acids of feeding. This article revisited the concepts of DNL and aimed to discuss the clinical magnitude of carbohydrate overfeeding and fat mass accumulation. Although fat storage resulting from fat intake is more favorable for fat mass accrual than carbohydrates due to molecule structure and metabolism (e.g., oxidation and thermic effect), carbohydrates can substantially participate in lipogenesis and esterification under excess carbohydrate intake over time. Regarding only monosaccharide overfeeding, glucose and fructose favor the subcutaneous and visceral adipose tissue, respectively. While fructose and sucrose are considered villains in nonalcoholic fatty liver disease, energy surplus from carbohydrates, regardless of sources, can be considered an underlying cause of obesity. Interestingly, some degree of DNL in adipocytes may be favorable to mitigate a high deposition of fatty acids in the liver, conferring a physiological role. Although "fat burns in the flame of carbohydrate" is a praiseworthy phrase that has helped describe basic concepts in biochemistry for many decades, it appears to be overvalued and extrapolated even nowadays. DNL cannot be neglected. It is time to consider DNL an efficient biochemical process in health and disease.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Uberlândia Federal University, Uberlândia, MG, Brazil.
| | - Nilson Penha-Silva
- Institute of Biotechnology, Uberlândia Federal University, Uberlândia, MG, Brazil
| |
Collapse
|
2
|
Xu F, Albadry M, Döding A, Chen X, Dirsch O, Schulze-Späte U, Dahmen U. The effects of saturated and unsaturated fatty acids on MASLD: a Mendelian randomization analysis and in vivo experiment. Eur J Nutr 2024; 64:52. [PMID: 39718605 DOI: 10.1007/s00394-024-03560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Excessive intake of fatty acids is a key factor contributing to metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effects of saturated fatty acids (SFA) and unsaturated fatty acids (UFA) on the development of MASLD are uncertain. Therefore, we conducted two-sample Mendelian randomization studies and animal experiments to explore the effects of SFA, monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) on the risk of developing MASLD. METHODS The genetic summary data of exposures and outcome were retrieved from genome-wide association studies (GWASs) and used for five Mendelian randomization methods. A comprehensive sensitivity analysis was performed to verify the robustness of the results. Mice were subjected to different diets followed by assessment of severity of steatosis based on a histological score and determination of hepatic triglyceride levels to investigate the relationships between SFA, MUFA, PUFA and MASLD. RESULTS The Mendelian randomization results showed that MUFA (odds ratio: 1.441, 95% confidence interval: 1.078-1.927, P = 0.014) was causally associated with the incidence of MASLD. SFA and PUFA were not causally associated with the incidence of MASLD. Sensitivity analysis did not identify any significant bias in the results. The animal experiment results showed that a MUFA-enriched diet significantly contributed to the development of hepatic steatosis (P < 0.001). CONCLUSION SFA and PUFA did not have a significant causal effect on MASLD, but MUFA intake is a risk factor for MASLD. A MUFA-enriched diet increased the incidence of macrovesicular steatosis and the hepatic triglyceride levels. Therefore, replacing MUFA intake with a moderate intake of PUFA might help reduce the risk of MASLD.
Collapse
Affiliation(s)
- Fengming Xu
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany
- Else Kröner Graduate School for Medical Students "JSAM", Jena University Hospital, 07747, Jena, Germany
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Mohamed Albadry
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin El Kom , 6131567, Egypt
| | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, Jena University Hospital, 07743, Jena, Germany
| | - Xinpei Chen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany
| | - Olaf Dirsch
- Institute for Pathology, BG Klinikum Berlin, 12683, Berlin, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, Jena University Hospital, 07743, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany.
| |
Collapse
|
3
|
Katsarou A, Tsioulos G, Kassi E, Chatzigeorgiou A. Current and experimental pharmacotherapy for the management of non-alcoholic fatty liver disease. Hormones (Athens) 2024; 23:621-636. [PMID: 39112786 DOI: 10.1007/s42000-024-00588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/17/2024] [Indexed: 10/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease, with its incidence increasing in parallel with the global prevalence of obesity and type 2 diabetes mellitus. Despite our steadily increasing knowledge of its pathogenesis, there is as yet no available pharmacotherapy specifically tailored for NAFLD. To define the appropriate management, it is important to clarify the context in which the disease appears. In the case of concurrent metabolic comorbidities, NAFLD patients are treated by targeting these comorbidities, such as diabetes and obesity. Thus, GLP-1 analogs, PPAR, and SGLT2 inhibitors have recently become central to the treatment of NAFLD. In parallel, randomized trials are being conducted to explore new agents targeting known pathways involved in NAFLD progression. However, there is an imperative need to intensify the effort to design new, safe drugs with biopsy-proven efficacy. Of note, the main target of the pharmacotherapy should be directed to the regression of fibrotic NASH, as this histologic stage has been correlated with increased overall as well as liver-related morbidity and mortality. Herein we discuss the drugs currently at the forefront of NAFLD treatment.
Collapse
Affiliation(s)
- Angeliki Katsarou
- 251 Hellenic Airforce General Hospital, 1 P.Kanellopoulou Str, Athens, 11525, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece.
| | - Georgios Tsioulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 1 Rimini Str, Athens, 12462, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece
| |
Collapse
|
4
|
Sualeheen A, Tan SY, Georgousopoulou E, Daly RM, Tierney AC, Roberts SK, George ES. Mediterranean diet for the management of metabolic dysfunction-associated steatotic liver disease in non-Mediterranean, Western countries: What's known and what's needed? NUTR BULL 2024; 49:444-462. [PMID: 39258424 DOI: 10.1111/nbu.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide, affecting 30% of the population in Western countries. MASLD is considered the hepatic manifestation of the metabolic syndrome, pathophysiologically underpinned by insulin resistance and frequently co-exists with hypertension, central obesity and dyslipidaemia. Currently, safe and effective pharmacotherapies for MASLD are limited, making weight loss with lifestyle changes the mainstay therapy. A Mediterranean diet (MedDiet) has emerged as an effective dietary pattern for preventing and managing MASLD, but most studies have been conducted in Mediterranean countries, necessitating further investigation into its benefits in Western populations. Additionally, the effect of holistic multimodal lifestyle interventions, including physical activity combined with the MedDiet, is not well established. Finally, MASLD's widespread prevalence and rapid growth require improved accessibility to interventions. Digital health delivery platforms, designed for remote access, could be a promising approach to providing timely support to individuals with MASLD. This narrative review summarises the current evidence related to the effects of the MedDiet in Western, multicultural populations with MASLD. This includes a detailed description of the composition, prescription and adherence to dietary interventions in terms of how they have been designed and applied. The evidence related to the role of physical activity or exercise interventions prescribed in combination with the MedDiet for MASLD will also be reviewed. Finally, recommendations for the design and delivery of dietary and physical activity or exercise interventions to inform the design of future randomised controlled trials to facilitate the optimal management of MASLD are outlined.
Collapse
Affiliation(s)
- Ayesha Sualeheen
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Sze-Yen Tan
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ekavi Georgousopoulou
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, New South Wales, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Audrey C Tierney
- School of Allied Health, Centre for Implementation Research, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Stuart K Roberts
- Department of Gastroenterology, Alfred Health, Prahran, Victoria, Australia
- Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Elena S George
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
5
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Sabinari I, Horakova O, Cajka T, Kleinova V, Wieckowski MR, Rossmeisl M. Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Physiol Res 2024; 73:S295-S320. [PMID: 39016154 PMCID: PMC11412347 DOI: 10.33549/physiolres.935396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- I Sabinari
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Perva IT, Simina IE, Bende R, Motofelea AC, Chirita Emandi A, Andreescu N, Sima A, Vlad A, Sporea I, Zimbru C, Tutac PC, Puiu M, Niculescu MD. Use of a Micronutrient Cocktail to Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Adults with Obesity: A Randomized, Double-Blinded Pilot Clinical Trial. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1366. [PMID: 39202647 PMCID: PMC11356300 DOI: 10.3390/medicina60081366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: The goal of this study was to assess the impact of supplementation with a combination of nutrients on metabolic-dysfunction-associated steatotic liver disease (MASLD)-related liver parameters, and other parameters related to metabolic syndrome in adults with obesity. These measurements included anthropometric and lipid profiling, and FibroScan technology (controlled attenuation parameter (CAP) and transient elastography (TE) values). Materials and Methods: A double-blind, placebo-controlled pilot clinical trial was conducted over a three-month treatment period. Adults with metabolic syndrome and obesity were allocated to receive either a cocktail of nutrients with defined daily dosages (5-MTHF, betaine, alpha-linolenic acid, eicosapentaenoic acid, choline bitartrate, docosahexaenoic acid, and vitamin B12) or a placebo. The participants were evaluated at the start and the end of the three-month treatment period. Results: A total of 155 participants entered the study, comprising 84 in the treatment group and 71 in the placebo group. The administration of the nutritional supplement resulted in a notable reduction in both CAP and TE scores when compared to the placebo group. The treatment group exhibited a mean reduction in CAP of 4% (p < 0.05) and a mean reduction in TE of 7.8% (p < 0.05), indicative of a decline in liver fat content and fibrosis. Conclusions: The supplementation over a period of three months led to a significant amelioration of liver fibrosis and steatosis parameters in adults with metabolic syndrome and obesity. These findings suggest that this supplementation regimen could be a beneficial adjunct therapy for improving liver health in adults with obesity-induced MASLD.
Collapse
Affiliation(s)
- Iulia Teodora Perva
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
- Department of Medical Genetics, Asociatia Oncohelp, 300239 Timișoara, Romania
| | - Iulia Elena Simina
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Department of Medical Genetics, Asociatia Oncohelp, 300239 Timișoara, Romania
| | - Renata Bende
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.B.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Adela Chirita Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Nicoleta Andreescu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Alexandra Sima
- Department of Internal Medicine II, Division of Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.S.); (A.V.)
- Center for Research in Preventive Medicine, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Adrian Vlad
- Department of Internal Medicine II, Division of Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.S.); (A.V.)
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ioan Sporea
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.B.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Cristian Zimbru
- Department of Automation and Applied Informatics, Politehnica University Timișoara, 300223 Timișoara, Romania;
| | - Paul Calin Tutac
- Toxicology and Molecular Biology Department, “Pius Brinzeu” Clinical Emergency County Hospital, 300723 Timisoara, Romania;
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Mihai Dinu Niculescu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Advanced Nutrigenomics LLC, Durham, NC 27703, USA
| |
Collapse
|
8
|
Li Z, Wan M, Wang M, Duan J, Jiang S. Modulation of gut microbiota on intestinal permeability: A novel strategy for treating gastrointestinal related diseases. Int Immunopharmacol 2024; 137:112416. [PMID: 38852521 DOI: 10.1016/j.intimp.2024.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Accumulating evidence emphasizes the critical reciprocity between gut microbiota and intestinal barrier function in maintaining the gastrointestinal homeostasis. Given the fundamental role caused by intestinal permeability, which has been scrutinized as a measurable potential indicator of perturbed barrier function in clinical researches, it seems not surprising that recent decades have been marked by augmented efforts to determine the interaction between intestinal microbes and permeability of the individual. However, despite the significant progress in characterizing intestinal permeability and the commensal bacteria in the intestine, the mechanisms involved are still far from being thoroughly revealed. In the present review, based on multiomic methods, high-throughput sequencing and molecular biology techniques, the impacts of gut microbiota on intestinal permeability as well as their complex interaction networks are systematically summarized. Furthermore, the diseases related to intestinal permeability and main causes of changes in intestinal permeability are briefly introduced. The purpose of this review is to provide a novel prospection to elucidate the correlation between intestinal microbiota and permeability, and to explore a promising solution for diagnosis and treatment of gastrointestinal related diseases.
Collapse
Affiliation(s)
- Zhuotong Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meiyu Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Yang J, Félix-Soriano E, Martínez-Gayo A, Ibañez-Santos J, Sáinz N, Martínez JA, Moreno-Aliaga MJ. SIRT1 and FOXO1 role on MASLD risk: effects of DHA-rich n-3 PUFA supplementation and exercise in aged obese female mice and in post-menopausal overweight/obese women. J Physiol Biochem 2024; 80:697-712. [PMID: 39264516 PMCID: PMC11502560 DOI: 10.1007/s13105-024-01044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Sirtuins 1 (SIRT1) and Forkhead box protein O1 (FOXO1) expression have been associated with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). Exercise and/or docosahexaenoic acid (DHA) supplementation have shown beneficial effects on MASLD. The current study aims to assess the relationships between Sirt1, Foxo1 mRNA levels and several MASLD biomarkers, as well as the effects of DHA-rich n-3 PUFA supplementation and/or exercise in the steatotic liver of aged obese female mice, and in peripheral blood mononuclear cells (PBMCs) of postmenopausal women with overweight/obesity. In the liver of 18-month-old mice, Sirt1 levels positively correlated with the expression of genes related to fatty acid oxidation, and negatively correlated with lipogenic and proinflammatory genes. Exercise (long-term treadmill training), especially when combined with DHA, upregulated hepatic Sirt1 mRNA levels. Liver Foxo1 mRNA levels positively associated with hepatic triglycerides (TG) content and the expression of lipogenic and pro-inflammatory genes, while negatively correlated with the lipolytic gene Hsl. In PBMCs of postmenopausal women with overweight/obesity, FOXO1 mRNA expression negatively correlated with the hepatic steatosis index (HSI) and the Zhejiang University index (ZJU). After 16-weeks of DHA-rich PUFA supplementation and/or progressive resistance training (RT), most groups exhibited reduced MASLD biomarkers and risk indexes accompanying with body fat mass reduction, but no significant changes were found between the intervention groups. However, in PBMCs n-3 supplementation upregulated FOXO1 expression, and the RT groups exhibited higher SIRT1 expression. In summary, SIRT1 and FOXO1 could be involved in the beneficial mechanisms of exercise and n-3 PUFA supplementation related to MASLD manifestation.
Collapse
Affiliation(s)
- Jinchunzi Yang
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Current Address: Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518000, China
| | - Elisa Félix-Soriano
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Alejandro Martínez-Gayo
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Javier Ibañez-Santos
- Studies, Research and Sports Medicine Centre (CEIMD), Government of Navarre, 31005, Pamplona, Spain
| | - Neira Sáinz
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - J Alfredo Martínez
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - María J Moreno-Aliaga
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
- IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.
| |
Collapse
|
10
|
Aziz T, Niraj MK, Kumar S, Kumar R, Parveen H. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e68002. [PMID: 39347373 PMCID: PMC11428178 DOI: 10.7759/cureus.68002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder characterized by excessive hepatic fat accumulation without alcohol intake. It can progress to non-alcoholic steatohepatitis, increasing the risk of cirrhosis and liver failure. This study aims to evaluate the efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in treating NAFLD. A systematic review and meta-analysis was conducted including studies published from January 2018 to June 2023. Databases searched included PubMed, Embase, Cochrane Library, and ClinicalTrials.gov. Inclusion criteria comprised randomized controlled trials and cohort studies involving human subjects or animal models with NAFLD. Data were extracted and analyzed to assess the impact of omega-3 PUFAs on liver fat, hepatic enzymes, and serum lipid profiles using RevMan 5.4. A total of 15 studies met the inclusion criteria. Omega-3 supplementation significantly decreased alanine aminotransferase (ALT) (mean difference = -2.12, 95% confidence interval (CI) = -3.36, -0.87) and aspartate aminotransferase (AST) (mean difference = -1.50, 95% CI = -2.59, -0.42). Gamma-glutamyl transferase levels showed a trend toward reduction (mean difference = -0.82, 95% CI = -1.66, 0.02). Serum lipid profiles improved significantly with reductions in triglycerides, low-density lipoprotein, and total cholesterol along with significant reductions in AST, ALT, and alkaline phosphatase in animal models. Omega-3 PUFAs appear to offer beneficial effects on liver enzymes, serum lipid profiles, and anthropometric indices in NAFLD patients. While their impact on liver fat content remains uncertain, omega-3 supplementation could serve as a valuable adjunct treatment for enhancing metabolic profiles and liver function in NAFLD patients.
Collapse
Affiliation(s)
- Tarique Aziz
- Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Mukesh K Niraj
- Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Shishir Kumar
- Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Rajendra Kumar
- Physiology, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Hina Parveen
- Biochemistry, King George's Medical University, Lucknow, IND
| |
Collapse
|
11
|
Lara-Romero C, Romero-Gómez M. Treatment Options and Continuity of Care in Metabolic-associated Fatty Liver Disease: A Multidisciplinary Approach. Eur Cardiol 2024; 19:e06. [PMID: 38983581 PMCID: PMC11231815 DOI: 10.15420/ecr.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 07/11/2024] Open
Abstract
The terms non-alcoholic fatty liver disease and non-alcoholic steatohepatitis have some limitations as they use exclusionary confounder terms and the use of potentially stigmatising language. Recently, a study with content experts and patients has been set to change this nomenclature. The term chosen to replace non-alcoholic fatty liver disease was metabolic dysfunction-associated steatotic liver disease (MASLD), which avoids stigmatising and helps improve awareness and patient identification. MASLD is the most common cause of chronic liver disease with an increasing prevalence, accounting for 25% of the global population. It is considered the hepatic manifestation of the metabolic syndrome with lifestyle playing a fundamental role in its physiopathology. Diet change and physical activity are the cornerstones of treatment, encompassing weight loss and healthier behaviours and a holistic approach. In Europe, there is no approved drug for MASLD to date and there is a substantial unmet medical need for effective treatments for patients with MASLD. This review not only provides an update on advances in evidence for nutrition and physical activity interventions but also explores the different therapeutic options that are being investigated and whose development focuses on the restitution of metabolic derangements and halting inflammatory and fibrogenic pathways.
Collapse
Affiliation(s)
- Carmen Lara-Romero
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| | - Manuel Romero-Gómez
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| |
Collapse
|
12
|
Feng SS, Wang SJ, Guo L, Ma PP, Ye XL, Pan ML, Hang B, Mao JH, Snijders AM, Lu YB, Ding DF. Serum bile acid and unsaturated fatty acid profiles of non-alcoholic fatty liver disease in type 2 diabetic patients. World J Diabetes 2024; 15:898-913. [PMID: 38766436 PMCID: PMC11099371 DOI: 10.4239/wjd.v15.i5.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 03/14/2024] [Indexed: 05/10/2024] Open
Abstract
BACKGROUND The understanding of bile acid (BA) and unsaturated fatty acid (UFA) profiles, as well as their dysregulation, remains elusive in individuals with type 2 diabetes mellitus (T2DM) coexisting with non-alcoholic fatty liver disease (NAFLD). Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM. AIM To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM. METHODS A training model was developed involving 399 participants, comprising 113 healthy controls (HCs), 134 individuals with T2DM without NAFLD, and 152 individuals with T2DM and NAFLD. External validation encompassed 172 participants. NAFLD patients were divided based on liver fibrosis scores. The analytical approach employed univariate testing, orthogonal partial least squares-discriminant analysis, logistic regression, receiver operating characteristic curve analysis, and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers. RESULTS Compared to HCs, both T2DM and NAFLD groups exhibited diminished levels of specific BAs. In UFAs, particular acids exhibited a positive correlation with NAFLD risk in T2DM, while the ω-6:ω-3 UFA ratio demonstrated a negative correlation. Levels of α-linolenic acid and γ-linolenic acid were linked to significant liver fibrosis in NAFLD. The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients. CONCLUSION This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM, proposing their potential as biomarkers in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Su-Su Feng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Si-Jing Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Lin Guo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Pan-Pan Ma
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Xiao-Long Ye
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Ming-Lin Pan
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yi-Bing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Da-Fa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| |
Collapse
|
13
|
Hosseini SA, Shayesteh AA, Hashemi SJ, Rahimi Z, Saki N, Bavi Behbahani H, Cheraghian B, Alipour M. The association between healthy eating index-2015 with anthropometric, cardiometabolic and hepatic indices among patients with non-alcoholic fatty liver disease. BMC Gastroenterol 2024; 24:159. [PMID: 38724894 PMCID: PMC11084087 DOI: 10.1186/s12876-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Obesity, cardiovascular diseases, and metabolic disorders are common problems among participants with non-alcoholic fatty liver disease (NAFLD). However, the association between these problems and the healthy eating index-2015 (HEI-2015) remains unknown. Although the HEI-2015 originated from American dietary guidelines, its comprehensive evaluation of diet quality provides valuable insights for various populations, including Iranians. Therefore, the objective of this study was to investigate the association between anthropometric, hepatic, and cardio-metabolic indices with HEI-2015 scores in participants with NAFLD. METHODS We conducted a cross-sectional analysis of data from the Hoveyzeh Cohort Study, which included adults aged 35 to 70 years between 2016 and 2018. A total of 664 participant with NAFLD (452 females and 212 males) were included in the analysis. The HEI-2015 was assessed using the Food Frequency Questionnaire (FFQ). Various indices, including the body shape index (ABSI), atherogenic index of plasma (AIP), visceral adiposity index (VAI), lipid accumulation product (LAP), cardiometabolic index (CMI), lipoprotein combine index (LCI), AST/ALT ratio, ALD/NAFLD index, and hepatic steatosis index (HSI), were calculated. RESULTS No significant differences were observed in anthropometric, cardio-metabolic, and hepatic indices across the quartiles of HEI-2015. However, among participants with NAFLD, men had significantly higher AIP and LCI levels, while women had significantly higher BMI, ABSI, VAI, LAP, and CMI levels. Additionally, women with NAFLD exhibited higher AST/ALT and HSI levels but lower ALD/NAFLD levels compared to men with NAFLD. Linear regression analysis among men with NAFLD revealed a significant negative correlation between HEI-2015 score and HSI in both the unadjusted model (β=-0.131, SE = 0.058, p = 0.024) and the adjusted model for energy intake (β=-0.129, SE = 0.058, p = 0.028). CONCLUSION The present study demonstrated a correlation between lower HEI-2015 scores and an increased risk of steatosis in men with NAFLD. Moreover, our findings highlighted gender-related differences in NAFLD and cardio-metabolic disorders.
Collapse
Affiliation(s)
- Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Shayesteh
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Jalal Hashemi
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Rahimi
- Hearing Research Center, Clinical Sciences Research Institute, Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Saki
- Hearing Research Center, Clinical Sciences Research Institute, Department of Otolaryngology, Head and Neck Surgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Bavi Behbahani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bahman Cheraghian
- Hearing Research Center, Clinical Sciences Research Institute, Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| |
Collapse
|
14
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
15
|
Peleman C, Francque S, Berghe TV. Emerging role of ferroptosis in metabolic dysfunction-associated steatotic liver disease: revisiting hepatic lipid peroxidation. EBioMedicine 2024; 102:105088. [PMID: 38537604 PMCID: PMC11026979 DOI: 10.1016/j.ebiom.2024.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterised by cell death of parenchymal liver cells which interact with their microenvironment to drive disease activity and liver fibrosis. The identification of the major death type could pave the way towards pharmacotherapy for MASH. To date, increasing evidence suggest a type of regulated cell death, named ferroptosis, which occurs through iron-catalysed peroxidation of polyunsaturated fatty acids (PUFA) in membrane phospholipids. Lipid peroxidation enjoys renewed interest in the light of ferroptosis, as druggable target in MASH. This review recapitulates the molecular mechanisms of ferroptosis in liver physiology, evidence for ferroptosis in human MASH and critically appraises the results of ferroptosis targeting in preclinical MASH models. Rewiring of redox, iron and PUFA metabolism in MASH creates a proferroptotic environment involved in MASH-related hepatocellular carcinoma (HCC) development. Ferroptosis induction might be a promising novel approach to eradicate HCC, while its inhibition might ameliorate MASH disease progression.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
17
|
Moore E, Patanwala I, Jafari A, Davies IG, Kirwan RP, Newson L, Mazidi M, Lane KE. A systematic review and meta-analysis of randomized controlled trials to evaluate plant-based omega-3 polyunsaturated fatty acids in nonalcoholic fatty liver disease patient biomarkers and parameters. Nutr Rev 2024; 82:143-165. [PMID: 37290426 PMCID: PMC10777680 DOI: 10.1093/nutrit/nuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is prevalent in 25-30% of British and European populations, representing a potential global public health crisis. Marine omega-3 (n-3) polyunsaturated fatty acids offer well-evidenced benefits to NAFLD biomarkers; however, the effect of plant-based n-3 has not been evaluated with a systematic review and meta-analysis. OBJECTIVE The review aimed to systematically evaluate the effect of plant-based n-3 supplementation on NAFLD surrogate biomarkers and parameters. DATA SOURCES Medline (EBSCO), PubMed, CINAHL (EBSCO), Cochrane Central Register of Controlled Trials, the International Clinical Trials Registry Platform, and Google Scholar databases were searched to identify randomized controlled trials published between January 1970 and March 2022 evaluating the impact of plant-based n-3 interventions on diagnosed NAFLD. The review followed the PRISMA checklist and is PROSPERO registered (CRD42021251980). DATA EXTRACTION A random-effects model and generic inverse variance methods synthesized quantitative data, followed by a leave-one-out method for sensitivity analysis. We identified 986 articles; after the application of selection criteria, six studies remained with 362 patients with NAFLD. RESULTS The meta-analysis showed that plant-based n-3 fatty acid supplementation significantly reduced alanine aminotransferase (ALT) (mean difference: 8.04 IU/L; 95% confidence interval: 14.70, 1.38; I2 = 48.61%) and plasma/serum triglycerides (44.51 mg/dL; 95% confidence interval: -76.93, -12.08; I2 = 69.93%), alongside body-composition markers in patients with NAFLD (P < 0.05). CONCLUSION Plant-based n-3 fatty acid supplementation improves ALT enzyme biomarkers, triglycerides, body mass index, waist circumference, and weight loss when combined with lifestyle interventions to increase physical activity and a calorie-controlled diet. Further research is needed to identify the most effective plant-based n-3 sources in larger numbers of patients with NAFLD over longer study durations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021251980.
Collapse
Affiliation(s)
- Ella Moore
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Alireza Jafari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ian G Davies
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Richard P Kirwan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lisa Newson
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Katie E Lane
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
18
|
Worthmann A, Ridder J, Piel SYL, Evangelakos I, Musfeldt M, Voß H, O'Farrell M, Fischer AW, Adak S, Sundd M, Siffeti H, Haumann F, Kloth K, Bierhals T, Heine M, Pertzborn P, Pauly M, Scholz JJ, Kundu S, Fuh MM, Neu A, Tödter K, Hempel M, Knippschild U, Semenkovich CF, Schlüter H, Heeren J, Scheja L, Kubisch C, Schlein C. Fatty acid synthesis suppresses dietary polyunsaturated fatty acid use. Nat Commun 2024; 15:45. [PMID: 38167725 PMCID: PMC10762034 DOI: 10.1038/s41467-023-44364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.
Collapse
Affiliation(s)
- Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julius Ridder
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sharlaine Y L Piel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ioannis Evangelakos
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melina Musfeldt
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section / Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie O'Farrell
- Sagimet Biosciences Inc., 155 Bovet Rd., San Mateo, CA, 94402, USA
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Monica Sundd
- National Institute of Immunology, New Delhi, India
| | - Hasibullah Siffeti
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Haumann
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mira Pauly
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia-Josefine Scholz
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021 and Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, 403726, India
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Neu
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Hartmut Schlüter
- Section / Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Cáceres A, Cruz SM, de León C, Méndez R. Yield and Chemical Characteristics of Salvia hispanica L. (Chia) Oil from Native Seeds from Four Provenances of Guatemala. Comb Chem High Throughput Screen 2024; 27:555-561. [PMID: 37183473 DOI: 10.2174/1386207326666230512124457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Chia (Salvia hispanica L.) is a plant from the Lamiaceae family that has been used as ancestral food, medicine, and oil, with culinary, artistic, and religious purposes by most of the Mesoamerican civilizations. Native from Mesoamerica, introduced into South America, Australia, and Europe, it is presently consumed as a nutritional and functional food. OBJECTIVE This research aims to characterize ancient native cultivars from four provenances in Guatemala to recommend their direct consumption by the population as well as to establish its trade. METHODS Seed samples were collected in four places where they have been cultivated for several generations. The oil was obtained by expression and analyzed chemically by gas chromatography following standard qualitative and quantitative methods. RESULTS Variations in oil yield and some of the characteristic parameters of the phytochemical analysis were obtained. In general, the profile was similar to most of the reported data in the literature, with the saturated fatty acids (8.54-9.25%) relatively lower than the references (7.95-11.45%) but a higher concentration of unsaturated fatty oils, particularly of omega-3 (64.68-68.62%). CONCLUSION The oil from native cultivars contains high quantities of omega-3, which might help pregnant women during gestation and to control other conditions such as metabolic syndrome, particularly in low- and middle-income populations where these seeds are consumed regularly. The suggestion is made to encourage the cultivation and use of these ancestral seeds with the possibility of commercialization abroad with an appellation of origin label.
Collapse
Affiliation(s)
- Armando Cáceres
- Laboratorio de Investigación de Productos Naturales (Lipronat), Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos, Cdad. de Guatemala, 01002, Guatemala
- Laboratorio de Productos Naturales Farmaya, Guatemala
| | - Sully M Cruz
- Laboratorio de Investigación de Productos Naturales (Lipronat), Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos, Cdad. de Guatemala, 01002, Guatemala
| | - Claudia de León
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas, Universidad Mariano Gálvez, Cdad. de Guatemala, Guatemala
| | - Rebeca Méndez
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas, Universidad Mariano Gálvez, Cdad. de Guatemala, Guatemala
| |
Collapse
|
20
|
Shrestha A, Dellett SK, Yang J, Sharma U, Ramalingam L. Effects of Fish Oil Supplementation on Reducing the Effects of Paternal Obesity and Preventing Fatty Liver in Offspring. Nutrients 2023; 15:5038. [PMID: 38140297 PMCID: PMC10745816 DOI: 10.3390/nu15245038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious public health concern, which calls for appropriate diet/nutrition intervention. Fish oil (FO) has several benefits in reducing obesity, but its intergenerational role in reducing the effects of paternal obesity has not been established. Hence, we hypothesized that FO supplementation to an obese father during the pre-conceptional period could improve the metabolic health of the offspring, specifically in the liver. Three groups of male mice were fed with a low-fat (LF), high-fat (HF), or high-fat diet supplemented with FO (HF-FO) for 10 weeks and were then allowed to mate with female mice fed a chow diet. Offspring were sacrificed at 16 weeks. The liver tissue was harvested for genomic and histological analyses. The offspring of HF and HF-FO fathers were heavier compared to that of the LF mice during 9-16 weeks. The glucose tolerance of the offspring of HF-FO fathers were significantly improved as compared to the offspring of HF fathers. Paternal FO supplementation significantly lowered inflammation and fatty acid synthesis biomarkers and increased fatty acid oxidation biomarkers in the offspring liver. In summary, FO supplementation in fathers shows the potential to reduce metabolic and cardiovascular diseases through genetic means in offspring.
Collapse
Affiliation(s)
- Akriti Shrestha
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Sarah Katherine Dellett
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Junhui Yang
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| |
Collapse
|
21
|
Gowda D, Shekhar C, B. Gowda SG, Chen Y, Hui SP. Crosstalk between Lipids and Non-Alcoholic Fatty Liver Disease. LIVERS 2023; 3:687-708. [DOI: 10.3390/livers3040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a complex liver disorder that can result in non-alcoholic steatohepatitis, cirrhosis, and liver cancer, is the accumulation of fat in the liver seen in people due to metabolic dysfunction. The pathophysiology of NAFLD is influenced by several variables, such as metabolic dysregulation, oxidative stress, inflammation, and genetic susceptibility. This illness seriously threatens global health because of its link to obesity, insulin resistance, type 2 diabetes, and other metabolic disorders. In recent years, lipid–NAFLD crosstalk has drawn a lot of interest. Through numerous methods, lipids have been connected to the onset and advancement of the illness. The connection between lipids and NAFLD is the main topic of the current review, along with the various therapeutic targets and currently available drugs. The importance of hepatic lipid metabolism in the progression of NAFLD is summarized with the latest results in the field.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Chandra Shekhar
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0812, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
22
|
Fjære E, Secher Myrmel L, Rasinger JD, Bernhard A, Frøyland L, Madsen L. Refined mackerel oil increases hepatic lipid accumulation and reduces choline and choline-containing metabolites in the liver tissue in mice fed a Western diet. Food Res Int 2023; 173:113450. [PMID: 37803779 DOI: 10.1016/j.foodres.2023.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
In this study, we aimed to evaluate the impact of consuming refined mackerel oil (MO) from rest raw material on hepatic fat accumulation, glucose tolerance, and metabolomic changes in the liver from male C57BL/6N mice. The mice were fed either a Western diet (WD) or a chow diet, with 30 g or 60 g MO per kg of diet (3% or 6%) for 13 weeks. Body weight, energy intake, and feed efficiency were monitored throughout the experiment. A glucose tolerance test was conducted after 11 weeks, and metabolomic analyses of the liver were performed at termination. Inclusion of MO in the WD, but not in the chow diet, led to increased liver weight, hepatic lipid accumulation, elevated fasting blood glucose, reduced glucose tolerance, and insulin sensitivity. Hepatic levels of eicosapentaenoic and docosahexaenoic acid increased, but no changes in levels of saturated and monounsaturated fatty acids were observed. The liver metabolomic profile was different between mice fed a WD with or without MO, with a reduction in choline ether lipids, phosphatidylcholines, and sphingomyelins in mice fed MO. This study demonstrates that supplementing the WD, but not the chow diet, with refined MO accelerates accumulation of hepatic fat droplets and negatively affects blood glucose regulation. The detrimental effects of supplementing a WD with MO were accompanied by increased fat digestibility and overall energy intake, and lower levels of choline and choline-containing metabolites in liver tissue.
Collapse
Affiliation(s)
- Even Fjære
- Institute of Marine Research, Bergen, Norway.
| | | | | | | | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
23
|
Gora AH, Rehman S, Dias J, Fernandes JMO, Olsvik PA, Sørensen M, Kiron V. Microbial oil, alone or paired with β-glucans, can control hypercholesterolemia in a zebrafish model. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159383. [PMID: 37657755 DOI: 10.1016/j.bbalip.2023.159383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Dyslipidemia is often associated with unhealthy dietary habits, and many mammalian studies have explored the mode of action of certain bioactive compounds such as β-glucans and n-3 PUFAs to understand their potential to normalize the lipid metabolism. There are only a few investigations that adopted omic approaches to unveil their combined effect on hypercholesterolemia. Zebrafish (Danio rerio) was used as a model organism to reveal the efficacy of Schizochytrium oil and β-glucans (from Euglena gracilis and Phaeodactylum tricornutum) against cholesterol-rich diet induced dyslipidemia. One of the folowing four diets was fed to a particular group of fish: a control high-cholesterol diet, a Schizochytrium oil diet or one of the two diets containing the oil and β-glucan. The plasma HDL, expression of hepatic genes linked to, among others, ferric ion binding and plasma phosphatidylcholines were higher and plasma cholesterol esters and triacylglycerols were lower in the microbial oil-fed fish compared to the fish fed high cholesterol diet. While the fish fed a mix of microbial oil and Euglena β-glucan had lower plasma triacylglycerols and expression of hepatic genes linked to PPAR signaling pathway and enriched biosynthesis of plasma unsaturated fatty acids, the fish fed microbial oil-Phaeodactylum β-glucan combination had lower abundance of triacylglycerols rich in saturated and mono-unsaturated fatty acids and cholesterol esters in the plasma.
Collapse
Affiliation(s)
- Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
24
|
von Schacky C, Kuipers RS, Pijl H, Muskiet FAJ, Grobbee DE. Omega-3 fatty acids in heart disease-why accurately measured levels matter. Neth Heart J 2023; 31:415-423. [PMID: 36795219 PMCID: PMC10602979 DOI: 10.1007/s12471-023-01759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/17/2023] Open
Abstract
Current guidelines barely support marine omega‑3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in cardiology, mainly because results of large trials were equivocal. Most large trials have tested EPA alone or EPA + DHA combined as a drug, thereby disregarding the relevance of their blood levels. These levels are frequently assessed with the Omega‑3 Index (percentage of EPA + DHA in erythrocytes), which is determined using a specific standardised analytical procedure. EPA and DHA are present in every human being at unpredictable levels (even in the absence of intake), and their bioavailability is complex. Both facts need to be incorporated into trial design and should direct clinical use of EPA and DHA. An Omega‑3 Index in the target range of 8-11% is associated with lower total mortality, fewer major adverse cardiac and other cardiovascular events. Moreover, functions of organs such as the brain benefit from an Omega‑3 Index in the target range, while untoward effects, such as bleeding or atrial fibrillation, are minimised. In pertinent intervention trials, several organ functions were improved, with improvements correlating with the Omega‑3 Index. Thus, the Omega‑3 Index is relevant in trial design and clinical medicine, which calls for a widely available standardised analytical procedure and a discussion on possible reimbursement of this test.
Collapse
Affiliation(s)
| | - R S Kuipers
- Heart Centre, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
- Department of Cardiology, Dijklander Hospital, Purmerend/Hoorn, The Netherlands
| | - H Pijl
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - F A J Muskiet
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - D E Grobbee
- Julius Global Health, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Wood A, Ismail I. Wünderlich's syndrome in a haemodialysis patient. BMJ Case Rep 2023; 16:e255985. [PMID: 37816578 PMCID: PMC10565273 DOI: 10.1136/bcr-2023-255985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Wünderlich's syndrome, or spontaneous renal haemorrhages, are rare, atraumatic, intraparenchymal and perirenal haemorrhages, which are difficult to diagnose and can be potentially fatal.Patients who are dialysis-dependent are at an increased risk of bleeding, due to an association between uraemia and platelet dysfunction; for this reason, the use of double antiplatelets is avoided in this cohort. Case studies exist demonstrating spontaneous bleeds in these patients.Fish oil is used increasingly within medicine: however, it is known to interfere with platelet aggregation, therefore, theoretically increasing the tendency to bleed. The topic remains under debate, with systemic reviews refuting a correlation between intraoperative and postoperative bleeding and fish oil consumption. There is, however, an absence of literature on the adverse effects of fish oil when taken in large quantities.This case study explores the case of a patient who had a spontaneous renal bleed following a large, self-medicated dose of fish oil.
Collapse
Affiliation(s)
- Anna Wood
- Nephrology, Cairns Hospital, Cairns North, Queensland, Australia
| | - Ibrahim Ismail
- Nephrology, Cairns Hospital, Cairns, Queensland, Australia
| |
Collapse
|
26
|
Barroso LN, Salarini J, Leite NC, Villela-Nogueira CA, Dávalos A, Carmo MDGT, Ferreira Peres WA. Effect of fish oil supplementation on the concentration of miRNA-122, FGF-21 and liver fibrosis in patients with NAFLD: Study protocol for a randomized, double-blind and placebo-controlled clinical trial. Clin Nutr ESPEN 2023; 57:117-125. [PMID: 37739645 DOI: 10.1016/j.clnesp.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS To date, no specific drugs are available for non-alcoholic fatty liver disease (NAFLD), though the effect of fish oil supplementation on improving fibrosis in patients with NAFLD has been evaluated. N-3 polyunsaturated fatty acids (n-3 PUFA) may modulate the concentration of microRNAs (miRNAs) and fibroblast growth factor (FGF)-21, which have been identified as non-invasive markers of liver fibrosis. The present study aims to evaluate whether n-3 PUFA supplementation can modulate miRNA-122 and FGF-21 and improve liver fibrosis and steatosis, measured by transient hepatic elastography (THE), in individuals with NAFLD. METHODS A randomized, double-blind, placebo-controlled clinical trial will be conducted to evaluate the effect of 4 g/day supplementation of fish oil (2100 mg EPA and 924 mg DHA) in patients with NAFLD over a 6-month period. Fifty-two patients aged >19 years will be randomly assigned to either a placebo (olive oil) or treatment (fish oil) group. Anthropometric data, food intake, physical activity, body composition, resting energy expenditure (evaluated using indirect calorimetry), liver enzymes, platelets, lipids and glucose profile, inflammatory markers (such as C-reactive protein, neutrophil/lymphocyte, platelet/lymphocyte, and monocyte/lymphocyte ratios), miRNA-122 and FGF-21 concentration, and incorporation of fatty acids into the erythrocyte membrane (analyzed using gas chromatography) as well as the degree of liver fibrosis and steatosis assessed using THE (Fibroscan® Touch 502, Paris, France) and liver biomarkers Steato-Brazilian Longitudinal Study of Adult Health, Fatty Liver Index, NAFLD Fibrosis Score, Fibrosis-4 score, and FibroScan-AST score will be evaluated at the beginning and end of the treatment. Continuous variables with normal distribution will be compared between placebo and intervention groups using Student's T test for independent samples; continuous non-parametric variables will be compared using Dunn or Mann-Whitney test. Associations between categorical variables will be analyzed using the chi-square test, and within-group differences will be evaluated using the Wilcoxon signed-ranks test. The criterion for determining significance will be set at 5%. CONCLUSION The present study protocol will investigate the supplementation of EPA-rich fish oil as an alternative treatment for NAFLD and its feasibility in affecting the concentration of miRNA-122 and FGF-21 markers. Its findings will offer valuable contributions to the literature. REGISTRATION ReBEC number RBR-8dp876.
Collapse
Affiliation(s)
- Lygia N Barroso
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 367/CCS - Block J2, University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil; School of (M)edicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Prof. Rodolpho Paulo Rocco Street, 255 - University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Jessica Salarini
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 367/CCS - Block J2, University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil; School of (M)edicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Prof. Rodolpho Paulo Rocco Street, 255 - University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Nathalie Carvalho Leite
- School of (M)edicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Prof. Rodolpho Paulo Rocco Street, 255 - University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Cristiane A Villela-Nogueira
- School of (M)edicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Prof. Rodolpho Paulo Rocco Street, 255 - University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA), Madrid, Spain
| | - Maria das Graças Tavares Carmo
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 367/CCS - Block J2, University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Wilza Arantes Ferreira Peres
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 367/CCS - Block J2, University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide, particularly in obese and type 2 diabetic individuals. Currently, there are no therapies for NAFLD that have been approved by the US Food and Drug Administration. Herein, we examine the rationale for using ω3 polyunsaturated fatty acids (PUFAs) in NAFLD therapy. This focus is based on the finding that NAFLD severity is associated with a reduction of hepatic C20-22 ω3 PUFAs. Because C20-22 ω3 PUFAs are pleiotropic regulators of cell function, loss of C20-22 ω3 PUFAs has the potential to significantly impact hepatic function. We describe NAFLD prevalence and pathophysiology as well as current NAFLD therapies. We also present evidence from clinical and preclinical studies that evaluated the capacity of C20-22 ω3 PUFAs to treat NAFLD. Given the clinical and preclinical evidence, dietary C20-22 ω3 PUFA supplementation has the potential to decrease human NAFLD severity by reducing hepatosteatosis and liver injury.
Collapse
Affiliation(s)
- Melinda H Spooner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
28
|
Jamioł-Milc D, Gudan A, Kaźmierczak-Siedlecka K, Hołowko-Ziółek J, Maciejewska-Markiewicz D, Janda-Milczarek K, Stachowska E. Nutritional Support for Liver Diseases. Nutrients 2023; 15:3640. [PMID: 37630830 PMCID: PMC10459677 DOI: 10.3390/nu15163640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The liver is a key organ that is responsible for the metabolism of proteins, fats, and carbohydrates and the absorption and storage of micronutrients. Unfortunately, the prevalence of chronic liver diseases at various stages of advancement in the world population is significant. Due to the physiological function of the liver, its dysfunction can lead to malnutrition and sarcopenia, and the patient's nutritional status is an important prognostic factor. This review discusses key issues related to the diet therapy of patients with chronic liver diseases, as well as those qualified for liver transplantation and in the postoperative period.
Collapse
Affiliation(s)
- Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Joanna Hołowko-Ziółek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| |
Collapse
|
29
|
Hegazi OE, Alalalmeh SO, Alnuaimi GRH, Shahwan M, Jairoun AA, Alorfi NM, Majrashi SA, Alkhanani MF, Alkhattabi A, Alourfi MM, Alsolami FA, Alsharif S, Alshahrani H. NAFLD and nutraceuticals: a review of completed phase III and IV clinical trials. Front Med (Lausanne) 2023; 10:1227046. [PMID: 37601777 PMCID: PMC10433184 DOI: 10.3389/fmed.2023.1227046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Background Nonalcoholic Fatty Liver Disease (NAFLD) has become a significant public health concern, affecting approximately one-fourth of the population. Despite its prevalence, no FDA-approved drug treatments specifically target NAFLD. Aim To provide a review of clinical trials investigating the use of herbal remedies and dietary supplements in NAFLD management, utilizing the ClinicalTrials.gov database. Methods This review evaluates the current evidence by examining completed phase III and IV clinical trials registered on ClinicalTrials.gov. An exhaustive search was performed on April 17, 2023, using the terms "Nonalcoholic Fatty Liver Disease" and "NAFLD." Two independent reviewers appraised eligible trials based on pre-defined inclusion and exclusion criteria. Results An initial search yielded 1,226 clinical trials, with 12 meeting the inclusion criteria after filtration. The majority of trials focused on Omega-3 fatty acids (20.0%) and vitamin D (26.7%), followed by caffeine, chlorogenic acid, ginger, phosphatidylcholine, Trigonella Foenum-graecum seed extract, vitamin C, and vitamin E (each 6.7%). Most studies were Phase 3 (75.0%) and used a parallel assignment model (91.7%). Quadruple masking was the most prevalent technique (58.3%), and Iran was the leading country in terms of trial locations (25.0%). These interventions constitute two herbal interventions and nine supplement interventions. Conclusion This reveals a diverse range of nutraceuticals, with Omega-3 fatty acids and vitamin D being predominant in the management of NAFLD. The global distribution of trials highlights the widespread interest in these therapeutics. However, more rigorous, large-scale trials are needed to establish safety, efficacy, and optimal dosages.
Collapse
Affiliation(s)
- Omar E. Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O. Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ghala Rashid Humaid Alnuaimi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, University Sains Malaysia (USM), Pulau Pinang, Malaysia
| | - Nasser M. Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shaker A. Majrashi
- Department of Laparoscopic Surgery, King Fahad Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Mustfa Faisal Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | | | - Mansour M. Alourfi
- Department of Gastroenterology, East Jeddah Hospital, Jeddah, Saudi Arabia
- Internal Medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
| | - Faris A. Alsolami
- Khulais General Hospital, Makkah cluster, Ministry of Health, Makkah, Saudi Arabia
| | - Saeed Alsharif
- Gastroenterology Department, Armed force hospital of Southern region, Khamis Mushait, Saudi Arabia
| | - Hatim Alshahrani
- Internal medicine Department, Khamis Mushait General hospital, Khamis Mushait, Saudi Arabia
| |
Collapse
|
30
|
Liu W, Zhu M, Gong M, Zheng W, Zeng X, Zheng Q, Li X, Fu F, Chen Y, Cheng J, Rao Z, Lu Y, Chen Y. Comparison of the Effects of Monounsaturated Fatty Acids and Polyunsaturated Fatty Acids on Liver Lipid Disorders in Obese Mice. Nutrients 2023; 15:3200. [PMID: 37513618 PMCID: PMC10386220 DOI: 10.3390/nu15143200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is a recognized epidemic worldwide, and the accumulation of excess free saturated fatty acids (SFAs) in cells induces cellular lipotoxic damage and increases the risk of a wide spectrum of metabolic diseases including type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have been reported to combat SFA-induced cellular damage. However, the comparative studies of the two types of unsaturated fatty acids (UFAs) are still limited. We investigated the effects of different MUFAs and PUFAs in the human hepatocyte line L-02 cells in vitro, and in high-fat-diet (HFD)-induced obese C57BL/6 mice in vivo. The results of the in vitro study showed that SFAs induced significant cellular lipotoxic damage, but the combination of MUFAs/PUFAs with SFAs significantly improved the impaired cell viability. Particularly, oleic acid (OA) was superior to eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), and arachidonic acid (AA) in terms of its anti-apoptotic effect and inhibition of endoplasmic reticulum (ER) stress. In vivo, both olive-oil-enriched (HFD + OO) and fish-oil-enriched high-fat diets (HFD + FO) reduced hepatic steatosis and improved insulin sensitivity in obese mice. However, FO induced an abnormal increase in serum aspartate aminotransferase (AST) and an increase in the oxidative stress indicator Malondialdehyde (MDA). Liver-targeted lipidomic analysis showed that liver lipid metabolites under the two types of UFA dietary interventions differed from the HFD group, modulating the abundance of some lipid metabolites such as triglycerides (TGs) and glycerophospholipids. Furthermore, the FO diet significantly increased the abundance of the associated FA 20:5 long-chain lipid metabolites, whereas the OO diet regulated the unsaturation of all fatty acids in general and increased the abundance of FA 18:1 in the overall lipid metabolites, especially TGs, which may primarily contribute to the FO, and OO drove protection in NAFLD.
Collapse
Affiliation(s)
- Wen Liu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yingyi Chen
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
31
|
Vell MS, Creasy KT, Scorletti E, Seeling KS, Hehl L, Rendel MD, Schneider KM, Schneider CV. Omega-3 intake is associated with liver disease protection. Front Public Health 2023; 11:1192099. [PMID: 37538264 PMCID: PMC10394692 DOI: 10.3389/fpubh.2023.1192099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease are among the most common liver diseases worldwide, and there are currently no Food and Drug Administration (FDA)-approved treatments. Recent studies have focused on lifestyle changes to prevent and treat NAFLD. Omega-3 supplementation is associated with improved outcomes in patients with chronic liver disease. However, it is unclear whether Omega-3 supplementation can prevent the development of liver disease, particularly in individuals at an increased (genetic) risk. Methods In this UK Biobank cohort study, we established a multivariate cox proportional hazards model for the risk of incident liver disease during an 11 year follow up time. We adjusted the model for diabetes, prevalent cardiovascular disorders, socioeconomic status, diet, alcohol consumption, physical activity, medication intake (insulin, biguanides, statins and aspirin), and baseline characteristics. Results Omega-3 supplementation reduced the risk of incident liver disease (HR = 0.716; 95% CI: 0.639, 0.802; p = 7.6 × 10-9). This protective association was particularly evident for alcoholic liver disease (HR = 0.559; 95% CI: 0.347, 0.833; p = 4.3 × 10-3), liver failure (HR = 0.548; 95% CI: 0.343, 0.875; p = 1.2 × 10-2), and non-alcoholic liver disease (HR = 0.784; 95% CI: 0.650, 0.944; p = 1.0 × 10-2). Interestingly, we were able to replicate the association with reduced risk of NAFLD in a subset with liver MRIs (HR = 0.846; 95% CI: 0.777, 0.921; p = 1.1 × 10-4). In particular, women benefited from Omega-3 supplementation as well as heterozygous allele carriers of the liver-damaging variant PNPLA3 rs738409. Conclusions Omega-3 supplementation may reduce the incidence of liver disease. Our study highlights the potential of personalized treatment strategies for individuals at risk of metabolic liver disease. Further evaluation in clinical trials is warranted before Omega-3 can be recommended for the prevention of liver disease.
Collapse
Affiliation(s)
- Mara Sophie Vell
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
| | - Eleonora Scorletti
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katharina Sophie Seeling
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Leonida Hehl
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Miriam Daphne Rendel
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Kai Markus Schneider
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Carolin Victoria Schneider
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Bosomworth NJ. Indications for omega-3 fatty acid supplementation in prevention of cardiovascular disease: From fish to pharmaceuticals. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2023; 69:459-468. [PMID: 37452000 PMCID: PMC10348792 DOI: 10.46747/cfp.6907459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To explore the evidence for omega-3 fatty acid (O3FA) supplementation in primary and secondary prevention of cardiovascular disease (CVD). SOURCES OF INFORMATION PubMed, Cochrane reviews, and Google Scholar were searched for meta-analyses and reviews related to O3FAs and CVD. Salient, recent randomized controlled trials referenced in these reviews were retrieved. Current lipid guidelines were reviewed. MAIN MESSAGE Most O3FAs are derived from marine or aquatic microalgae, which are consumed by fish. The essential fatty acids eicosapentaenoic acid and docosahexaenoic acid are mainly sourced from fish, with a small fraction coming from plants. Omega-3 fatty acids modestly lower triglyceride levels, but the major impact on CVD is through a variety of other mechanisms related to cell membrane function, antioxidant properties, and reduction of atherogenic small low-density lipoprotein cholesterol particles. Guidelines continue to recommend eating 2 servings of fish per week. There is little evidence of benefit of O3FAs in primary prevention of CVD. Given that 40% of Canadians have insufficient levels and that these low levels may be associated with other chronic diseases over time, supplementation with O3FAs could be considered, particularly in those with hypertriglyceridemia, in those who eat no fish, or for vegetarians or vegans. Doses up to 1 g daily are considered safe. For secondary prevention after statin optimization, if triglyceride levels are between 1.5 and 5.6 mmol/L, guidelines recommend with level 1A evidence taking 2 g of icosapent ethyl twice a day. This is also recommended in primary prevention for patients with diabetes and hypertriglyceridemia and additional CVD risk factors. As fish stocks dwindle over time, preserving fisheries for developing countries and obtaining O3FA from microalgal or genetically modified plant sources may become important. CONCLUSION All guidelines recommend at least 2 servings of oily fish per week, although benefit from O3FAs is mostly seen in secondary prevention. Fish oil and combination preparations of eicosapentaenoic acid and docosahexaenoic acid have failed to show benefit at any dose at any level of prevention in patients who are appropriately prescribed statins. High-dose eicosapentaenoic acid shows substantial benefit in selected patients taking statins who have high triglyceride levels.
Collapse
Affiliation(s)
- N John Bosomworth
- Honorary Lecturer in the Department of Family Practice at the University of British Columbia in Vancouver.
| |
Collapse
|
33
|
Bosomworth NJ. Indications relatives à un supplément d’acides gras oméga-3 pour prévenir les maladies cardiovasculaires. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2023; 69:e134-e144. [PMID: 37452003 PMCID: PMC10348787 DOI: 10.46747/cfp.6907e134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Objectif Explorer les données probantes en faveur d’un supplément d’acides gras oméga-3 (AGO3) en prévention primaire et secondaire des maladies cardiovasculaires (MCV). Sources de l’information Une recherche documentaire a été effectuée dans PubMed, la bibliothèque Cochrane et Google Scholar pour trouver des méta-analyses et des revues portant sur les AGO3 et les MCV. Les études randomisées contrôlées récentes et pertinentes qui ont été citées dans ces revues ont été retenues. Les lignes directrices actuelles sur les lipides ont été examinées. Message principal La plupart des AGO3 dérivent des microalgues marines ou aquatiques qui sont consommées par le poisson. Les acides gras essentiels, notamment l’acide eicosapentaénoïque et l’acide docosahexaénoïque, sont principalement tirés du poisson, et une petite fraction vient des végétaux. Les acides gras oméga-3 abaissent modestement les taux de triglycérides, mais l’effet le plus important sur les MCV se produit par l’intermédiaire de divers autres mécanismes liés au fonctionnement des membranes cellulaires, aux propriétés antioxydantes et à la réduction des petites particules de cholestérol à lipoprotéines de basse densité athérogènes. Les lignes directrices continuent de recommander de consommer 2 portions de poisson par semaine. Il existe peu de données probantes sur les bienfaits des AGO3 en prévention primaire des MCV. Étant donné que 40 % des Canadiens en ont des taux insuffisants et que ces faibles taux peuvent être associés à d’autres maladies chroniques avec le temps, des suppléments d’AGO3 pourraient être envisagés, surtout pour ceux qui ont une hypertriglycéridémie ou qui ne mangent pas de poisson, ou pour les végétariens et les végans. Des doses allant jusqu’à 1 g par jour sont jugées sécuritaires. Pour la prévention secondaire après l’optimisation des statines, si les taux de triglycérides se situent entre 1,5 et 5,6 mmol/L, les lignes directrices recommandent, sur la base de données probantes de niveau 1A, de prendre 2 g d’icosapent éthyle 2 fois par jour. Cette même recommandation s’applique en prévention primaire pour les patients qui ont le diabète, une hypertriglycéridémie et un facteur de risque additionnel de MCV. À mesure que les stocks de poisson diminuent avec le temps, la préservation des pêches pour les pays en développement et l’obtention des AGO3 à partir des microalgues ou de sources végétales génétiquement modifiées pourraient prendre de l’importance. Conclusion Toutes les lignes directrices recommandent au moins 2 portions de poisson gras par semaine, même si les bienfaits des AGO3 sont principalement observés en prévention secondaire. Les huiles de poisson et les préparations composées d’acide eicosapentaénoïque et d’acide docosahexaénoïque n’ont pas démontré de bienfaits, quels que soient la dose et le niveau de prévention, chez les patients à qui on a prescrit des statines de manière appropriée. L’acide eicosapentaénoïque à forte dose procure des bienfaits considérables chez certains patients qui prennent des statines et ont des taux élevés de triglycérides.
Collapse
Affiliation(s)
- N John Bosomworth
- Chargé de cours honoraire au Département de pratique familiale de l'Université de la Colombie-Britannique à Vancouver.
| |
Collapse
|
34
|
Baradeiya AM, Taghlabi KM, Saleh AN, Manikonda S, Salim SS. Can Nutritional Supplements Benefit Patients With Nonalcoholic Steatohepatitis and Nonalcoholic Fatty Liver Disease? Cureus 2023; 15:e40849. [PMID: 37489221 PMCID: PMC10363331 DOI: 10.7759/cureus.40849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
A characteristic of nonalcoholic fatty liver disease (NAFLD) is the buildup of excess fat in the liver which encompasses various clinical phases, including steatosis, inflammation, ballooning, fibrosis, and liver cirrhosis. Nonalcoholic steatohepatitis (NASH) represents a severe form of NAFLD. The prevalence of NAFLD, particularly NASH, is notably high among Hispanics and those with morbid obesity. Diabetes, obesity, and dyslipidemia are significant risk factors in patients with NAFLD. The pathogenesis of NAFLD involves complex interactions between hormonal, nutritional, and genetic factors. Different clinical trials have been conducted to determine if there are any supplements that could help patients with NASH. Evidence has shown that vitamin E decreased the NAFLD activity score but not fibrosis. Our review summarizes the influence of supplementation on patients with NAFLD and NASH, focusing on the use of different clinical trials, systematic reviews, and meta-analyses. In the future, patients and physicians will play crucial roles in exploring diverse approaches and finding effective solutions to address this growing issue.
Collapse
Affiliation(s)
- Ahmed M Baradeiya
- Advanced Liver Therapies Research, Baylor College of Medicine, Houston, USA
| | | | | | | | - Siffat S Salim
- Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, BGD
| |
Collapse
|
35
|
Tsamos G, Vasdeki D, Koufakis T, Michou V, Makedou K, Tzimagiorgis G. Therapeutic Potentials of Reducing Liver Fat in Non-Alcoholic Fatty Liver Disease: Close Association with Type 2 Diabetes. Metabolites 2023; 13:metabo13040517. [PMID: 37110175 PMCID: PMC10141666 DOI: 10.3390/metabo13040517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most widespread chronic liver disease worldwide, confers a significant burden on health systems and leads to increased mortality and morbidity through several extrahepatic complications. NAFLD comprises a broad spectrum of liver-related disorders, including steatosis, cirrhosis, and hepatocellular carcinoma. It affects almost 30% of adults in the general population and up to 70% of people with type 2 diabetes (T2DM), sharing common pathogenetic pathways with the latter. In addition, NAFLD is closely related to obesity, which acts in synergy with other predisposing conditions, including alcohol consumption, provoking progressive and insidious liver damage. Among the most potent risk factors for accelerating the progression of NAFLD to fibrosis or cirrhosis, diabetes stands out. Despite the rapid rise in NAFLD rates, identifying the optimal treatment remains a challenge. Interestingly, NAFLD amelioration or remission appears to be associated with a lower risk of T2DM, indicating that liver-centric therapies could reduce the risk of developing T2DM and vice versa. Consequently, assessing NAFLD requires a multidisciplinary approach to identify and manage this multisystemic clinical entity early. With the continuously emerging new evidence, innovative therapeutic strategies are being developed for the treatment of NAFLD, prioritizing a combination of lifestyle changes and glucose-lowering medications. Based on recent evidence, this review scrutinizes all practical and sustainable interventions to achieve a resolution of NAFLD through a multimodal approach.
Collapse
Affiliation(s)
- Georgios Tsamos
- Division of Gastroenterology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Vassiliki Michou
- Sports Medicine Laboratory, School of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
36
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Musazadeh V, Karimi A, Malekahmadi M, Ahrabi SS, Dehghan P. Omega-3 polyunsaturated fatty acids in the treatment of non-alcoholic fatty liver disease: An umbrella systematic review and meta-analysis. Clin Exp Pharmacol Physiol 2023; 50:327-334. [PMID: 36692292 DOI: 10.1111/1440-1681.13750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
There has been conflicting evidence from meta-analyses on the effect of polyunsaturated fatty acids (PUFA) on non-alcoholic fatty liver disease (NAFLD). Therefore, in this umbrella meta-analysis, we are evaluating whether omega-3 PUFA supplementation has any benefit in treating NAFLD. Electronic databases such as PubMed, Web of Science, Scopus, Embase and Google Scholar were assessed to October 2022. This meta-analysis included all meta-analyses that examined the effect of PUFAs on liver fat and liver function tests [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT)]. Meta-analysis was conducted using a random effects model. Subgroup analyses and sensitivity analyses were also performed. In total, eight articles involving 6,561 participants met the eligibility criteria. Advantageous impacts PUFA supplementation were observed on ALT (ESWMD = -6.72 IU/L; 95% CI: -8.61, -4.84; p < 0.001, and ESSMD = -0.52 IU/L; 95% CI: -0.84, -0.20, p < 0.001), AST (ESWMD = -3.73 IU/L, 95% CI: -5.93, -1.53, p < 0.001, and ESSMD = -0.65 IU/L; 95% CI: -1.08, -0.22, p = 0.003), GGT levels (ESWMD = -4.20 IU/L, 95% CI: -6.85, -1.55, p = 0.002), and liver fat (ESWMD = -5.16; 95% CI: -8.49, -1.82, p < 0.001). Intervention with omega-3 PUFAs improves ALT, AST, GGT, and liver fat in patients with NAFLD. Thus, omega-3 PUFAs could be considered as a therapeutic option in the treatment of NAFLD.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Karimi
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Malekahmadi
- Nutrition Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Sana Sedgh Ahrabi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review aims to discuss the potential roles of omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) in the prevention and treatment of metabolic diseases, to provide the latest evidence from epidemiological and clinical studies, and to highlight novel insights into this field. RECENT FINDINGS Higher dietary or circulating ω-3 PUFA levels are related to a lower risk of metabolic syndrome. Novel findings in obesity indicate higher proportions of ω-6 and ω-3 PUFAs, a modulated oxylipin profile and an altered transcriptome in subcutaneous white adipose tissue, that seem resistant to the effects of ω-3 PUFAs compared with what occurs in normal weight individuals. ω-3 PUFAs may improve the blood lipid profile and glycemic outcomes in patients with type 2 diabetes mellitus and reduce liver fat in nonalcoholic fatty liver disease (NAFLD); the findings of several recent meta-analyses support these effects. Genetic background affects inter-individual variability in the insulin sensitivity response to ω-3 PUFA supplementation. ω-3 PUFAs have prebiotic effects, altering the gut microbiota. SUMMARY Although evidence for health benefits of ω-3 PUFAs is strong, recent findings suggest a more personalized approach to ω-3 PUFA intake for individuals at high risk for metabolic diseases.
Collapse
Affiliation(s)
- Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
39
|
Ivashkin VT, Maevskaya MV, Zharkova MS, Kotovskaya YV, Tkacheva ON, Troshina EA, Shestakova MV, Maev IV, Breder VV, Gheivandova NI, Doshchitsin VL, Dudinskaya EN, Ershova EV, Kodzoeva KB, Komshilova KA, Korochanskaya NV, Mayorov AY, Mishina EE, Nadinskaya MY, Nikitin IG, Pogosova NV, Tarzimanova AI, Shamkhalova MS. Clinical Practice Guidelines of the Russian Scientific Liver Society, Russian Gastroenterological Association, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians and National Society for Preventive Cardiology on Diagnosis and Treatment of Non-Alcoholic Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:104-140. [DOI: 10.22416/1382-4376-2022-32-4-104-140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim:present clinical guidelines, aimed at general practitioners, gastroenterologists, cardiologists, endocrinologists, comprise up-to-date methods of diagnosis and treatment of non-alcoholic fatty liver disease.Key points.Nonalcoholic fatty liver disease, the most wide-spread chronic liver disease, is characterized by accumulation of fat by more than 5 % of hepatocytes and presented by two histological forms: steatosis and nonalcoholic steatohepatitis. Clinical guidelines provide current views on pathogenesis of nonalcoholic fatty liver disease as a multisystem disease, methods of invasive and noninvasive diagnosis of steatosis and liver fibrosis, principles of nondrug treatment and pharmacotherapy of nonalcoholic fatty liver disease and associated conditions. Complications of nonalcoholic fatty liver disease include aggravation of cardiometabolic risks, development of hepatocellular cancer, progression of liver fibrosis to cirrhotic stage.Conclusion.Progression of liver disease can be avoided, cardiometabolic risks can be reduced and patients' prognosis — improved by the timely recognition of diagnosis of nonalcoholic fatty liver disease and associated comorbidities and competent multidisciplinary management of these patients.
Collapse
Affiliation(s)
| | | | | | - Yu. V. Kotovskaya
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
| | - O. N. Tkacheva
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
| | | | | | - I. V. Maev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - V. V. Breder
- Blokhin National Medical Research Center of Oncology
| | | | | | - E. N. Dudinskaya
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cho K, Park S, Koyanagi A, Jacob L, Yon DK, Lee SW, Kim MS, Kim SU, Kim BK, Shin JI, Smith L. The effect of pharmacological treatment and lifestyle modification in patients with nonalcoholic fatty liver disease: An umbrella review of meta-analyses of randomized controlled trials. Obes Rev 2022; 23:e13464. [PMID: 35582982 DOI: 10.1111/obr.13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a liver disease that affects approximately 25% of the world's population, and various treatments have been applied for NAFLD patients. We compared the effectiveness of each intervention conducted to treat NAFLD by evaluating meta-analyses of pharmacological interventions and lifestyle modification including diet and exercise. We searched Pubmed/Medline, Embase, and Cochrane Library and included meta-analyses of randomized controlled trials investigating the effects of pharmacological intervention and lifestyle modification on NAFLD. The quality of included meta-analyses was evaluated by AMSTAR-2. If the effect size was expressed as mean difference, it was converted to standardized mean difference based on the random-effects model. A total of 1694 meta-analyses were identified, and 27 meta-analyses were eventually included in the review. Regarding pharmacological interventions, there was a high strength of evidence for the ALT reduction effect of silymarin on inactive controls (SMD = 0.88, p < 0.01, seven trials, 518 participants). Meanwhile, it was confirmed that appropriate diet and exercise were important in reducing liver fat (SMD = 1.51, p < 0.01, 12 trials, 765 participants). This umbrella review assessed the effects of pharmacological interventions and lifestyle modifications in the treatment of NAFLD. The results of this review can be utilized for clinical decisions when treating NAFLD patients.
Collapse
Affiliation(s)
- Kyuyeon Cho
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, 08830, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, 08830, Barcelona, Spain
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
- Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Min Seo Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lee Smith
- Cambridge Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
41
|
Ferro Y, Pujia R, Mazza E, Lascala L, Lodari O, Maurotti S, Pujia A, Montalcini T. A new nutraceutical (Livogen Plus®) improves liver steatosis in adults with non-alcoholic fatty liver disease. Lab Invest 2022; 20:377. [PMID: 35986358 PMCID: PMC9392294 DOI: 10.1186/s12967-022-03579-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Currently, there is no approved medication for non-alcoholic fatty liver disease management. Pre-clinical and clinical studies showed that several bioactive molecules in plants or foods (i.e., curcumin complex, bergamot polyphenol fraction, artichoke leaf extract, black seed oil, concentrate fish oil, picroliv root, glutathione, S-adenosyl-l-methionine and other natural ingredients) have been associated with improved fatty liver disease. Starting from these evidences, our purpose was to evaluate the effects of a novel combination of abovementioned nutraceuticals as a treatment for adults with fatty liver disease.
Methods
A total of 140 participants with liver steatosis were enrolled in a randomized, double-blind, placebo controlled clinical trial. The intervention group received six softgel capsules daily of a nutraceutical (namely Livogen Plus®) containing a combination of natural bioactive components for 12 weeks. The control group received six softgel capsules daily of a placebo containing maltodextrin for 12 weeks. The primary outcome measure was the change in liver fat content (CAP score). CAP score, by transient elastography, serum glucose, lipids, transaminases, and cytokines were measured at baseline and after intervention.
Results
After adjustment for confounding variables (i.e., CAP score and triglyceride at baseline, and changes of serum γGT, and vegetable and animal proteins, cholesterol intake at the follow-up), we found a greater CAP score reduction in the nutraceutical group rather than placebo (− 34 ± 5 dB/m vs. − 20 ± 5 dB/m, respectively; p = 0.045). The CAP score reduction (%) was even greater in those with aged 60 or less, low baseline HDL-C, AST reduction as well as in men.
Conclusion
Our results showed that a new combination of bioactive molecules as nutraceutical was safe and effective in reducing liver fat content over 12 weeks in individuals with hepatic steatosis.
Trial registration ISRCTN, ISRCTN70887063. Registered 03 August 2021—retrospectively registered, https://doi.org/10.1186/ISRCTN70887063
Collapse
|
42
|
Musazadeh V, Kavyani Z, Naghshbandi B, Dehghan P, Vajdi M. The beneficial effects of omega-3 polyunsaturated fatty acids on controlling blood pressure: An umbrella meta-analysis. Front Nutr 2022; 9:985451. [PMID: 36061895 PMCID: PMC9435313 DOI: 10.3389/fnut.2022.985451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Several meta-analyses have revealed that n-3 PUFAs can lower blood pressure, but the findings are conflicting. In this regard, the present umbrella meta-analysis aimed was performed to clarify whether n-3 PUFAs have effects on blood pressure. PubMed, Scopus, Embase, Web of Science, and Google Scholar were used as international databases from inception to May 2022. To examine the effects of n-3 PUFA supplementation on blood pressure, a random-effects model was applied. The leave-one-out method was performed for the sensitivity analysis. The pooled estimate of 10 meta-analyses with 20 effect sizes revealed significant reductions in both systolic (ES = -1.19 mmHg; 95% CI: -1.76, -0.62, p < 0.001) and diastolic blood pressure (ES = -0.91 mmHg, 95% CI: -1.35, -0.47; p < 0.001) following n-3 PUFAs supplementation. In studies with a sample size of ≤ 400 participants and a mean age over 45, SBP and DBP were found to be substantially reduced. Overall, this umbrella meta-analysis indicates that n-3 PUFAs supplementation might play a role in improving DBP and SBP.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Naghshbandi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Lu XT, Wang YD, Zhu TT, Zhu HL, Liu ZY. Dietary fatty acids and risk of non-alcoholic steatohepatitis: A national study in the United States. Front Nutr 2022; 9:952451. [PMID: 35958253 PMCID: PMC9360798 DOI: 10.3389/fnut.2022.952451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH), the early invertible stage of non-alcoholic fatty liver disease, has become a public health challenge due to the great burden and lack of effective treatment. Dietary nutrients are one of the modifiable factors to prevent and slow down disease progression. However, evidence linking dietary fatty acids intake and risk of NASH is lacking. Objectives This study aimed to examine the association between dietary total saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), their subtypes, the ratio of unsaturated (UFAs) to SFAs, and the risk of NASH among a nationwide population in the United States. Methods This cross-sectional study was conducted among 4,161 adults in the national health and nutrition examination survey in 2017-2018 cycle. Moreover, NASH was defined by transient elastography. Dietary fatty acids were assessed using a validated 24-h food recall method. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). Results A total of 2,089 (50.2%) participants with NASH were identified. Compared with participants in the bottom tercile of dietary intakes of total PUFAs, those in the highest tercile had lower risk of NASH, with an adjusted OR of 0.67 (95% CI: 0.46-0.97). Similar associations were found between the subtype of PUFA 18:3 and NASH, while the fully adjusted OR in the highest tercile was 0.67 (95% CI: 0.47-0.96). Interactions of dietary PUFAs and body mass index (BMI) could be found influencing NASH risk. Stronger associations of dietary total PUFAs intakes with NASH risk were found in obese participants (OR, 95% CI: 0.41, 0.22-0.75) than in the non-obese participants (OR, 95% CI: 1.00, 0.70-1.43; p-interaction = 0.006). Similar effects on risk of NASH were also observed between BMI and dietary intakes of PUFA 18:3. However, no significant associations were observed between NASH risk and dietary total SFAs, MUFAs, their subtypes as well as the ratio of UFAs to SFAs. Conclusion Dietary intakes of total PUFAs, as well as its subtype of PUFA 18:3, were inversely associated with risk of NASH. The further large prospective studies need to be conducted to confirm the findings of this study.
Collapse
Affiliation(s)
- Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yong-Dong Wang
- Department of Internal Medicine, Shaoguan First People's Hospital, Shaoguan, China
| | - Ting-Ting Zhu
- Department of Food Science and Engineering, School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Patel M. Evidence-based management of patients with nonalcoholic fatty liver disease. JAAPA 2022; 35:20-24. [PMID: 35881712 DOI: 10.1097/01.jaa.0000840492.53680.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Over the past decade, fatty liver disease has become a forefront health issue. The clinical implication of this silent disease extends well beyond just the liver and is linked to a variety of health concerns, including cardiovascular disease, diabetes, and cancer. The prevalence of fatty liver disease in the United States is estimated to be 25% and increasing. This article reviews the pathophysiology of fatty liver disease, how clinicians can recognize contributing factors, and appropriate interventions based on the American Association for the Study of Liver Disease's guidelines.
Collapse
Affiliation(s)
- Minal Patel
- Minal Patel practices in gastroenterology/hepatology at Digestive Disease Associates in Wyomissing, Pa. The author has disclosed no potential conflicts of interest, financial or otherwise
| |
Collapse
|
45
|
Early biochemical observations point to nutritional strategies to manage non-alcoholic fatty liver disease. Clin Sci (Lond) 2022; 136:1019-1023. [PMID: 35775425 DOI: 10.1042/cs20220380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease globally. The first stage of NAFLD is steatosis, the accumulation of triacylglycerols within hepatocytes. Inflammation and oxidative stress both contribute to progression to more severe disease. In 2004 Clinical Science published two papers reporting on fatty acids and oxidative stress markers in the livers of patients with NAFLD; both these papers are highly cited. One paper reported an altered pattern of fatty acids within the livers of patients with NAFLD; there was a lower contribution of polyunsaturated fatty acids (PUFAs) including both n - 6 and n - 3 PUFAs and an altered balance between n - 6 and n - 3 PUFAs in favour of the former. Ratios of precursor PUFAs to their long chain more unsaturated derivatives were altered in NAFLD and were interpreted to indicate a reduced activity of the pathway of synthesis of long chain highly unsaturated PUFAs. The authors interpreted their findings to indicate that a low hepatic content of n - 3 PUFAs has a causal role in NAFLD. The second paper reported lower hepatic antioxidant defences and increased markers of oxidative stress in NAFLD, consistent with a role for oxidative stress in the disease. Many studies have now explored the effect of supplemental n - 3 PUFAs or antioxidants, including vitamin E, in patients with NAFLD with some benefits being reported. There remains much interest in n - 3 PUFAs and antioxidants as preventive and therapeutic strategies in NAFLD and therefore it seems likely that citation of the two papers from 2004 will be sustained.
Collapse
|
46
|
Maev IV, Andreev DN, Kucheryavyy YA. Metabolically associated fatty liver disease – a disease of the 21st century: A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.5.201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Metabolically associated fatty liver disease (MAFLD) is a widespread chronic disease characterized by increased accumulation of fat in the liver, which is based on metabolic dysfunction. The incidence of MAFLD is well over 20% in most regions of the world and is on an increasing trend. Current thinking considers the etiology and pathogenesis of MAFLD under the concept of "multiple parallel blows". According to this model, the development and progression of the disease are due to the interaction of multiple genetic, environmental and adaptive factors, which include specific genetic polymorphisms (e.g., the PNPLA3 gene) and epigenetic modifications, dietary patterns (e.g. high saturated fat and fructose intake), sedentary activity, obesity, insulin resistance, dysregulation of adipokines, lipotoxicity, oxidative stress, and gut microbiota dysbiosis (small intestinal bacterial overgrowth syndrome). The basis for the diagnosis of MAFLD is the presence of proven hepatic steatosis in combination with one of the following criteria: overweight/obesity, presence of type 2 diabetes mellitus, signs of metabolic dysregulation. Nonmedicamental therapies recommended for patients with MAFLD include weight loss (if overweight or obese), reduction of saturated fatty acid and fructose intake, and inclusion of adequate amounts of omega-3 polyunsaturated fatty acids and dietary fibre (psyllium) in the diet. Pharmacotherapy of MAFLD should be aimed at correcting insulin resistance, improving liver function and reducing the risk of associated diseases.
Collapse
|
47
|
Calder PC. Omega-3 fatty acids and metabolic partitioning of fatty acids within the liver in the context of nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2022; 25:248-255. [PMID: 35762160 DOI: 10.1097/mco.0000000000000845] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is now the most prevalent form of liver disease globally, affecting about 25% of the world's adult population. It is more common in those living with obesity, where it may affect as many as 80% of individuals. The aim of this article is to describe recent human studies evaluating the influence of omega-3 fatty acids on de novo lipogenesis (DNL) and hepatic fatty acid partitioning between incorporation into triacylglycerols (TAGs) and β-oxidation, to discuss the relevance of these effects in the context of NAFLD, and to provide an overview of the mechanisms that might be involved. RECENT FINDINGS The omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) decrease hepatic DNL and partition fatty acids away from TAG synthesis and toward β-oxidation. EPA and DHA affect multiple hepatic transcription factors resulting in down-regulation of the DNL pathway and upregulation of β-oxidation. The net result is decreased accumulation of hepatic TAG and lowering of circulating TAG concentrations. Human trials demonstrate that EPA and DHA can decrease liver fat in patients with NAFLD. SUMMARY Increased intake of EPA and DHA may reduce the likelihood of hepatic TAG accumulation and could be used to reduce liver fat in patients with NAFLD.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
48
|
Deng KQ, Huang X, Lei F, Zhang XJ, Zhang P, She ZG, Cai J, Ji YX, Li H. Role of hepatic lipid species in the progression of nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2022; 323:C630-C639. [PMID: 35759443 DOI: 10.1152/ajpcell.00123.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease due to the global pandemic of metabolic diseases. Dysregulation of hepatic lipid metabolism plays a central role in the initiation and progression of NAFLD. With the advancement of lipidomics, an increasing number of lipid species and underlying mechanisms associating hepatic lipid components have been revealed. Therefore, the focus of this mini-review is to highlight the links between hepatic lipid species and their mechanisms mediating the pathogenesis of NAFLD. We first summarized the interplay between NAFLD and hepatic lipid disturbances. Next, we focused on reviewing the role of saturated fatty acids, cholesterol, oxidized phospholipids, and their respective intermediates in the pathogenesis of NAFLD. The mechanisms by which monounsaturated fatty acids and other pro-resolving mediators exert protective effects are also addressed. Finally, we further discussed the implication of different analysis approaches in lipidomic. Evolving insights into the pathophysiology of NAFLD will provide the opportunity for drug development.
Collapse
Affiliation(s)
- Ke-Qiong Deng
- Department of Cardiology, Center Hospital of Huanggang, Huanggang, China.,Huanggang Institute of Translation Medicine, Huanggang, China.,Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuewei Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Hongliang Li
- Huanggang Institute of Translation Medicine, Huanggang, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Videla LA, Hernandez-Rodas MC, Metherel AH, Valenzuela R. Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102441. [PMID: 35537354 DOI: 10.1016/j.plefa.2022.102441] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Polyunsaturated fatty acids (PUFA) play essential roles in cell membrane structure and physiological processes including signal transduction, cellular metabolism and tissue homeostasis to combat diseases. PUFA are either consumed from food or synthesized by enzymatic desaturation, elongation and peroxisomal β-oxidation. The nutritionally essential precursors α-linolenic acid (C18:3n-3; ALA) and linoleic acid (C18:2n-6; LA) are subjected to desaturation by Δ6D/Δ5D desaturases and elongation by elongases 2/5, enzymes that are induced by insulin and repressed by PUFA. Maintaining an optimally low n-6/n-3 PUFA ratio is linked to prevention of the development of several diseases, including nonalcoholic fatty liver disease (NAFLD) that is characterized by depletion of PUFA promoting hepatic steatosis and inflammation. In this context, supplementation with n-3 PUFA revealed significant lowering of hepatic steatosis in obese patients, whereas prevention of fatty liver by high-fat diet in mice is observed in n-3 PUFA and hydroxytyrosol co-administration. The aim of this work is to review the role of nutritional status and nutrient availability on markers of PUFA biosynthesis. In addition, the impact of oxidative stress developed as a result of NAFLD, a redox imbalance that may alter the expression and activity of the enzymes involved, and diminished n-3 PUFA levels by free-radical dependent peroxidation processes will be discussed.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Musazadeh V, Roshanravan N, Dehghan P, Ahrabi SS. Effect of Probiotics on Liver Enzymes in Patients With Non-alcoholic Fatty Liver Disease: An Umbrella of Systematic Review and Meta-Analysis. Front Nutr 2022; 9:844242. [PMID: 35677540 PMCID: PMC9169800 DOI: 10.3389/fnut.2022.844242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become prevalent in recent decades, especially in developed countries; yet the approaches for preventing and treating NAFLD are not clear. This study aimed to summarize meta-analyses of randomized controlled trials that examined the effects of probiotics on NAFLD. We systematically searched PubMed, Scopus, Embase, Web of Science, and Cochrane Central Library databases up to August 2021. All Meta-analysis studies assessing the effect of probiotics on liver function tests [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Gamma-glutamyl transferase (GGT)] were included. Meta-analysis was conducted using a random-effects model. Sensitivity and subgroup analyses were also performed. The umbrella study covered ten eligible studies involving 5,162 individuals. Beneficial effects of probiotics supplementation were revealed on ALT (ES = −10.54 IU/L; 95% CI: −12.70, −8.39; p < 0.001; I2 = 60.9%, p = 0.006), AST (ES = −10.19 IU/L, 95%CI: −13.08, −7.29, p < 0.001; I2 = 79.8%, p < 0.001), and GGT (ES = −5.88 IU/L, 95% CI: −7.09, −4.67, p = 0.009; I2 = 0.0%, p = 0.591) levels. Probiotics have ameliorating effects on ALT, AST, and GGT levels in patients with NAFLD. Overall, Probiotics could be recommended as an adjuvant therapeutic method for the management of NAFLD.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Faculty of Nutrition and Food Science, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Parvin Dehghan,
| | - Sana Sedgh Ahrabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|