1
|
Baroni L, Bonetto C, Rizzo G, Galchenko A, Guidi G, Visaggi P, Savarino E, Zavoli M, de Bortoli N. Nutrient Composition of Four Dietary Patterns in Italy: Results from an Online Survey (the INVITA Study). Foods 2024; 13:2103. [PMID: 38998609 PMCID: PMC11240948 DOI: 10.3390/foods13132103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Though Italy is a native land of Mediterranean diet, its adherence in the Italian population is low, witnessed by the high rates of overweight in its inhabitants. Vegetarian dietary patterns (i.e., lacto-ovo-vegetarian and vegan) are increasing in western countries, and also in Italy, where 9.5% of the population self-declared as vegetarian in 2023. Though the vegetarian diet has been associated with beneficial health effects, speculation on its alleged nutrient inadequacy exists. For this reason, we assessed the nutrient composition of the diet of 470 participants enrolled in an online survey (the INVITA study), who completed a weighted food questionnaire on three different days. Participants were divided into four dietary groups obtained according to their self-declared dietary intakes: 116 Meat Eaters (MEs), 49 Fish Eaters (FEs), 116 Lacto-Ovo-Vegetarians (LOVs), and 189 VegaNs (VNs). The mean intake of most of the main nutrients was similar among all groups and within the normal range expected for the Italian population, supporting the adequacy of diets within our Italian sample, especially the LOV and VN diet. Since the Mediterranean diet is a plant-based diet, some of its components still persist in the current Italian diet, representing a staple also for people adopting a vegetarian diet.
Collapse
Affiliation(s)
- Luciana Baroni
- Scientific Society for Vegetarian Nutrition-SSNV, 30171 Venice, Italy
| | - Chiara Bonetto
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | | | - Alexey Galchenko
- Scientific Society for Vegetarian Nutrition-SSNV, 30171 Venice, Italy
- Earth Philosophical Society "Melodia Vitae", International, Toronto, CA, Canada
| | - Giada Guidi
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Pierfrancesco Visaggi
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy
- Gastroenterology Unit, University Hospital of Padua, 35124 Padua, Italy
| | - Martina Zavoli
- Scientific Society for Vegetarian Nutrition-SSNV, 30171 Venice, Italy
| | - Nicola de Bortoli
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- NUTRAFOOD, Interdepartmental Center for Nutraceutical Research and Nutrition for Health, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Armah A, Jackson C, Kolba N, Gracey PR, Shukla V, Padilla-Zakour OI, Warkentin T, Tako E. Effects of Pea ( Pisum sativum) Prebiotics on Intestinal Iron-Related Proteins and Microbial Populations In Vivo ( Gallus gallus). Nutrients 2024; 16:1856. [PMID: 38931211 PMCID: PMC11206367 DOI: 10.3390/nu16121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.
Collapse
Affiliation(s)
- Abigail Armah
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Peter R. Gracey
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Viral Shukla
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Olga I. Padilla-Zakour
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Tom Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada;
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| |
Collapse
|
3
|
Jiang J, Zhou X, Chen H, Wang X, Ruan Y, Liu X, Ma J. 18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134319. [PMID: 38657511 DOI: 10.1016/j.jhazmat.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18β-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18β-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
4
|
Lisciani S, Marconi S, Le Donne C, Camilli E, Aguzzi A, Gabrielli P, Gambelli L, Kunert K, Marais D, Vorster BJ, Alvarado-Ramos K, Reboul E, Cominelli E, Preite C, Sparvoli F, Losa A, Sala T, Botha AM, Ferrari M. Legumes and common beans in sustainable diets: nutritional quality, environmental benefits, spread and use in food preparations. Front Nutr 2024; 11:1385232. [PMID: 38769988 PMCID: PMC11104268 DOI: 10.3389/fnut.2024.1385232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
In recent decades, scarcity of available resources, population growth and the widening in the consumption of processed foods and of animal origin have made the current food system unsustainable. High-income countries have shifted towards food consumption patterns which is causing an increasingly process of environmental degradation and depletion of natural resources, with the increased incidence of malnutrition due to excess (obesity and non-communicable disease) and due to chronic food deprivation. An urgent challenge is, therefore, to move towards more healthy and sustainable eating choices and reorientating food production and distribution to obtain a human and planetary health benefit. In this regard, legumes represent a less expensive source of nutrients for low-income countries, and a sustainable healthier option than animal-based proteins in developed countries. Although legumes are the basis of many traditional dishes worldwide, and in recent years they have also been used in the formulation of new food products, their consumption is still scarce. Common beans, which are among the most consumed pulses worldwide, have been the focus of many studies to boost their nutritional properties, to find strategies to facilitate cultivation under biotic/abiotic stress, to increase yield, reduce antinutrients contents and rise the micronutrient level. The versatility of beans could be the key for the increase of their consumption, as it allows to include them in a vast range of food preparations, to create new formulations and to reinvent traditional legume-based recipes with optimal nutritional healthy characteristics.
Collapse
Affiliation(s)
- Silvia Lisciani
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Stefania Marconi
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Cinzia Le Donne
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Emanuela Camilli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Altero Aguzzi
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Paolo Gabrielli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Loretta Gambelli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Karl Kunert
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Diana Marais
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Chiara Preite
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Alessia Losa
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Montanaso Lombardo, Italy
| | - Tea Sala
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Montanaso Lombardo, Italy
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Marika Ferrari
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
5
|
Tafazzoli K, Ghavami M, Khosravi-Darani K. Production of iron enriched Saccharomyces boulardii: impact of process variables. Sci Rep 2024; 14:4844. [PMID: 38418660 PMCID: PMC10902395 DOI: 10.1038/s41598-024-55433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
About half of the 1.62 billion cases of anemia are because of poor diet and iron deficiency. Currently, the use of iron-enriched yeasts can be used as the most effective and possible way to prevent and treat anemia due to the ability of biotransformation of mineral compounds into the organic form. In this research, for the first time, Saccharomyces (S.) boulardii was used for iron enrichment with the aim that the probiotic properties of yeast provide a potential iron supplement besides improving the bioavailability of iron. Also, due to its higher resistance than other Saccharomyces strains against stresses, it can protect iron against processing temperatures and stomach acidic-enzymatic conditions. So, the effect of three important variables, including concentration of iron, molasses and KH2PO4 on the growth and biotransformation of yeast was investigated by the Box-Behnken design (BBD). The best conditions occurred in 3 g/l KH2PO4, 20 g/l molasses and 12 mg/l FeSO4 with the highest biotransformation 27 mg Fe/g dry cell weight (DCW) and 6 g/l biomass weight. Such yeast can improve fermented products, provide potential supplement, and restore the lost iron of bread, which is a useful iron source, even for vegetarians-vegans and play an important role in manage with anemia. It is recommended that in future researches, attention should be paid to increasing the iron enrichment of yeast through permeabilizing the membrane and overcoming the structural barrier of the cell wall.
Collapse
Affiliation(s)
- Kiyana Tafazzoli
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Ghavami
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sullivan KE, Swanhall A, Livingston S. Interpretation of Serum Analytes for Nutritional Evaluation. Vet Clin North Am Exot Anim Pract 2024; 27:135-154. [PMID: 37735025 DOI: 10.1016/j.cvex.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Serum micronutrient analysis can provide insight into diet and clinical assessment, despite the complicated interplay between micronutrients and species idiosyncrasies. Approach serum nutrient analytes with skepticism, before jumping to alter diets or offering supplementation. Utilize across species but know that some exotics have exceptions to typical ranges, such as calcium in rabbits or iron in reptiles. Make sure you trust that referenced ranges reflect normal and healthy for that species. Micronutrients are integral to every bodily process, so measurement of serum analytes can tell a story that aids in the clinical picture, when one can recognize what stands out.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA.
| | - Alyxandra Swanhall
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA
| | - Shannon Livingston
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA
| |
Collapse
|
7
|
Świątek M, Antosik A, Kochanowska D, Jeżowski P, Smarzyński K, Tomczak A, Kowalczewski PŁ. The potential for the use of leghemoglobin and plant ferritin as sources of iron. Open Life Sci 2023; 18:20220805. [PMID: 38152583 PMCID: PMC10751998 DOI: 10.1515/biol-2022-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Iron is an essential component for the body, but it is also a major cause for the development of many diseases such as cancer, cardiovascular diseases, and autoimmune diseases. It has been suggested that a diet rich in meat products, especially red meat and highly processed products, constitute a nutritional model that increases the risk of developing. In this context, it is indicated that people on an elimination diet (vegetarians and vegans) may be at risk of deficiencies in iron, because this micronutrient is found mainly in foods of animal origin and has lower bioavailability in plant foods. This article reviews the knowledge on the use of leghemoglobin and plant ferritin as sources of iron and discusses their potential for use in vegetarian and vegan diets.
Collapse
Affiliation(s)
- Michał Świątek
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Adrianna Antosik
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Dominika Kochanowska
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965Poznań, Poland
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| |
Collapse
|
8
|
Rathee S, Ojha A, Upadhyay A, Xiao J, Bajpai VK, Ali S, Shukla S. Biogenic engineered nanomaterials for enhancing bioavailability via developing nano-iron-fortified smart foods: advances, insight, and prospects of nanobionics in fortification of food. Food Funct 2023; 14:9083-9099. [PMID: 37750182 DOI: 10.1039/d3fo02473c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Iron deficiency is a significant cause of iron deficiency anemia (IDA). Treatment of IDA is challenging due to several challenges, including low target bioavailability, low palatability, poor pharmacokinetics, and extended therapeutic regimes. Nanotechnology holds the promise of revolutionizing the management and treatment of IDA. Smart biogenic engineered nanomaterials (BENMs) such as lipids, protein, carbohydrates, and complex nanomaterials have been the subject of extensive research and opened new avenues for people and the planet due to their enhanced physicochemical, rheological, optoelectronic, thermomechanical, biological, magnetic, and nutritional properties. Additionally, they show eco-sustainability, low biotoxicity, active targeting, enhanced permeation and retention, and stimuli-responsive characteristics. We examine the opportunities offered by emerging smart BENMs for the treatment of iron deficiency anemia by utilizing iron-fortified smart foods. We review the progress made so far and other future directions to maximize the impact of smart nanofortification on the global population. The toxicity effects are also discussed with commercialization challenges.
Collapse
Affiliation(s)
- Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ankur Ojha
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, South Korea.
| | - Shruti Shukla
- Department of Nanotechnology, North Eastern Hill University (NEHU), East Khasi Hills, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
9
|
Anne Marie U, Murererehe J, Rehman M, Chittilla M, Uwambaye P, Razzaque MS. Oral manifestations of iron imbalance. Front Nutr 2023; 10:1272902. [PMID: 37899821 PMCID: PMC10611504 DOI: 10.3389/fnut.2023.1272902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Uwitonze Anne Marie
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| | - Julienne Murererehe
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mahum Rehman
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Mythri Chittilla
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Peace Uwambaye
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mohammed S. Razzaque
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| |
Collapse
|
10
|
Zhang H, Song J, Dong F, Li Y, Ge S, Wei B, Liu Y. Multiple roles of wheat ferritin genes during stress treatment and TaFER5D-1 as a positive regulator in response to drought and salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107921. [PMID: 37544121 DOI: 10.1016/j.plaphy.2023.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Ferritin not only regulates the plant's iron content but also plays a significant role in the plant's development and resistance to oxidative damage. However, the role of the FER family in wheat has not been systematically elucidated. In this study, 39 FERs identified from wheat and its ancestral species were clustered into two subgroups, and gene members from the same group contain relatively conservative protein models. The structural analyses indicated that the gene members from the same group contained relatively conserved protein models. The cis-acting elements and expression patterns analysis suggested that TaFERs might play an important role combating to abiotic and biotic stresses. In the transcriptional analysis, the TaFER5D-1 gene was found to be significantly up-regulated under drought and salt stresses and was, therefore, selected to further explore the biological functions Moreover, the GFP expression assay revealed the subcellular localization of TaFER5D-1 proteins in the chloroplast, nucleus, membrane and cytoplasm. Over-expression of TaFER5D-1 in transgenic Arabidopsis lines conferred greater tolerance to drought and salt stress. According to the qRT-PCR data, TaFER5D-1 gene over-expression increased the expression of genes related to root development (Atsweet-17 and AtRSL4), iron storage (AtVIT1 and AtYSL1), and stress response (AtGolS1 and AtCOR47). So it is speculated that TaFER5D-1 could improve stress tolerance by promoting root growth, iron storage, and stress-response ability. Thus, the current study provides insight into the role of TaFER genes in wheat.
Collapse
Affiliation(s)
- Huadong Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Jinghan Song
- National Key Laboratory of Rice Biology/Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feiyan Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Yaqian Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Shijie Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Bo Wei
- Peking University Institute of Advanced Agricultural Sciences/National Key Laboratory of Wheat Improvement, Weifang, Shandong, 261325, China.
| | - Yike Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.
| |
Collapse
|
11
|
Storz MA, Brommer M, Lombardo M, Rizzo G. Soy Milk Consumption in the United States of America: An NHANES Data Report. Nutrients 2023; 15:2532. [PMID: 37299495 PMCID: PMC10255813 DOI: 10.3390/nu15112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
With the increasing adoption of plant-based diets in the United States, more and more individuals replace cow milk with plant-based milk alternatives. Soy milk is a commonly used cow milk substitute, which is characterized by a higher content of polyunsaturated fatty acids and fibers. Despite these favorable characteristics, little is known about the current prevalence of soy milk consumption the United States. We used data from the National Health and Nutrition Examination Surveys (NHANES) to assess soy milk usage in the United States and identified potential predictors for its consumption in the US general population. The proportion of individuals reporting soy milk consumption in the NHANES 2015-2016 cycle was 2%, and 1.54% in the NHANES 2017-2020 cycle. Non-Hispanic Asian and Black ethnicities (as well as other Hispanic and Mexican American ethnicities in the 2017-2020 cycle) significantly increased the odds for soy milk consumption. While a college degree and weekly moderate physical activity were associated with significantly higher odds for consuming soy milk (OR: 2.21 and 2.36, respectively), sex was not an important predictor. In light of the putative health benefits of soy milk and its more favorable environmental impact as compared to cow milk, future investigations should attempt to identify strategies that may help promote its consumption in selected populations.
Collapse
Affiliation(s)
- Maximilian Andreas Storz
- Department of Internal Medicine II, Centre for Complementary Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Maria Brommer
- Interdisciplinary Medical Intensive Care (IMIT), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy;
| |
Collapse
|
12
|
Harahap IA, Kuligowski M, Schmidt M, Suliburska J. The impact of soy products, isoflavones, and Lactobacillus acidophilus on iron status and morphological parameters in healthy female rats. J Trace Elem Med Biol 2023; 78:127183. [PMID: 37120971 DOI: 10.1016/j.jtemb.2023.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Isoflavones and probiotics are two major factors involved in bone health. Osteoporosis and disturbances in iron (Fe) levels are common health problems in aging women. This study aimed to analyze how soybean products, daidzein, genistein, and Lactobacillus acidophilus (LA) affect Fe status and blood morphological parameters in healthy female rats. METHODS A total of 48 Wistar rats aged 3 months were randomly divided into six groups. The control group (K) received a standard diet (AIN 93 M). The remaining five groups received a standard diet supplemented with the following: tempeh flour (TP); soy flour (RS); daidzein and genistein (DG); Lactobacillus acidophilus DSM20079 (LA); as well as a combination of daidzein, genistein, and L. acidophilus DSM20079 (DGLA). After 8 weeks of intervention, blood samples of the rats were collected for morphological analysis, whereas tissue samples were collected and kept at -80 °C until Fe analysis. Red blood cells, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, platelets (PLTs), red cell distribution width, white blood cells, neutrophils (NEUT), lymphocytes (LYM), monocytes, eosinophils (EOS), and basophils were measured for blood morphological analysis. Fe concentrations were determined using flame atomic spectrometry. For statistical analysis, an ANOVA test for significance at the 5 % level was used. The relationship between tissue Fe levels and blood morphological parameters was determined using Pearson's correlation. RESULTS Although no significant differences were observed in the Fe content between all diets, the TP group showed significantly higher levels of NEUT and lower levels of LYM than the control group. Compared with the DG and DGLA groups, the TP group showed a dramatically higher PLT level. In addition, the RS group showed significantly higher Fe concentrations in the spleen compared with the standard diet. Compared with the DG, LA, and DGLA groups, the RS group also showed significantly higher Fe concentrations in the liver. Compared with the TP, DG, LA, and DGLA groups, the RS group showed dramatically higher Fe concentrations in the femur. Pearson's correlations between blood morphological parameters and Fe levels in tissues were observed, especially a negative correlation between the Fe level in the femur and the NEUT concentration (-0.465) and a strong positive correlation between the Fe level in the femur and the LYM concentration (0.533). CONCLUSION Soybean flour was found to increase Fe levels in rats, whereas tempeh may alter anti-inflammatory blood parameters. Isoflavones and probiotics did not affect Fe status in healthy female rats.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
13
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
14
|
Zielińska-Dawidziak M, Białas W, Piasecka-Kwiatkowska D, Staniek H, Niedzielski P. Digestibility of Protein and Iron Availability from Enriched Legume Sprouts. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01045-x. [PMID: 36729316 PMCID: PMC10363042 DOI: 10.1007/s11130-023-01045-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Plant ferritin is suggested as a good source of iron for human. Usually present in trace amounts, it was induced in legumes seeds by their sprouting in FeSO4 solution. Fortified sprouts were digested in the in vitro model of the human gastrointestinal tract. ~49% of lupine and ~ 45% of soy proteins were extracted into gastric fluid and next ~ 12% and only ~ 1% into intestine fluid from lupine and soybean, respectively. Gastric digestion released mainly ferrous iron (~ 85% from lupine and ~ 95% in soybean sprouts). Complexed iron constituted ~ 43% of total iron in intestine after lupine digestion and ~ 55% after soybean digestion. Intestine digestion doubled the total iron released from lupine sprouts (from ~ 21% up to 38%), while in soybean it increased from ~ 16% up to ~ 23%. Ferritin presence was confirmed by the specific antibodies in digestive fluids, but it is only partially extracted from sprouts during in vitro digestion.
Collapse
Affiliation(s)
- Magdalena Zielińska-Dawidziak
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Dorota Piasecka-Kwiatkowska
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Halina Staniek
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
15
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
16
|
Abiotic stress treatment to improve the iron bio-availability in cereal grains and its validation in biscuits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Sun M, Gan J, Li Y, Dai S, Lv C, Zhao G. Fabrication of a donkey spleen ferritin-pectin complex to reduce iron release and enhance the iron supplementation efficacy. Food Funct 2022; 13:8500-8508. [PMID: 35876550 DOI: 10.1039/d2fo01338j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron deficiency is a global issue, influencing more than one-third of the population in the world. Ferritin as a natural iron-containing protein is considered a marvelous iron supplement due to its biocompatibility, biodegradability and bioavailability. However, foodstuffs contain plenty of reductants which could induce iron release from the cavity of ferritin and cause oxidative damage. In this study, we aimed to prevent the iron release from donkey spleen ferritin (DSF) by pectin encapsulation driven by the electrostatic interaction and evaluated the iron supplementation of the DSF-pectin complex (DPC). After DSF was purified, we fabricated the DPC and the iron release was decreased by 53.68% after 60 min when DSF : pectin was 1 : 10 (w/w). TEM analysis showed that ferritin in the DPC is clustered in a linear pattern, and the cell viability assay indicated that the DPC has no toxicity towards Caco-2 cells. In the mouse experiment, the DPC increased the content of serum iron and serum ferritin with no significant difference from the control check. Furthermore, the DPC increased the iron content in the liver, suppressed the expression of hepcidin and increased the expression of ferroportin. These results suggested that the DPC could prevent the interactions between food components and ferritin and is a promising iron supplement to ameliorate iron deficiency.
Collapse
Affiliation(s)
- Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
| | - Yuehuan Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Shuhan Dai
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
18
|
Ilmiyati L, Indarto D, Wasita B. Daily iron intake and BMI for age but not for daily tannin intake increase hemoglobin levels in young females at Karanganyar Regency, Central Java, Indonesia. Folia Med (Plovdiv) 2022; 64:437-442. [PMID: 35856105 DOI: 10.3897/folmed.64.e64593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract.
Collapse
|
19
|
Beasley JT, Bonneau JP, Moreno-Moyano LT, Callahan DL, Howell KS, Tako E, Taylor J, Glahn RP, Appels R, Johnson AAT. Multi-year field evaluation of nicotianamine biofortified bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1168-1182. [PMID: 34902177 DOI: 10.1111/tpj.15623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Conventional breeding efforts for iron (Fe) and zinc (Zn) biofortification of bread wheat (Triticum aestivum L.) have been hindered by a lack of genetic variation for these traits and a negative correlation between grain Fe and Zn concentrations and yield. We have employed genetic engineering to constitutively express (CE) the rice (Oryza sativa) nicotianamine synthase 2 (OsNAS2) gene and upregulate biosynthesis of two metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - in bread wheat, resulting in increased Fe and Zn concentrations in wholemeal and white flour. Here we describe multi-location confined field trial (CFT) evaluation of a low-copy transgenic CE-OsNAS2 wheat event (CE-1) over 3 years and demonstrate higher concentrations of NA, DMA, Fe, and Zn in CE-1 wholemeal flour, white flour, and white bread and higher Fe bioavailability in CE-1 white flour relative to a null segregant (NS) control. Multi-environment models of agronomic and grain nutrition traits revealed a negative correlation between grain yield and grain Fe, Zn, and total protein concentrations, yet no correlation between grain yield and grain NA and DMA concentrations. White flour Fe bioavailability was positively correlated with white flour NA concentration, suggesting that NA-chelated Fe should be targeted in wheat Fe biofortification efforts.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Laura T Moreno-Moyano
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, 3125, Australia
| | - Kate S Howell
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, 14853, USA
| | - Rudi Appels
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
20
|
Gandhi K, Gautam PB, Sharma R, Mann B, Kumar K. Effect of incorporation of iron-whey protein concentrate (Fe-WPC) conjugate on physicochemical characteristics of dahi (curd). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:478-487. [PMID: 35153305 PMCID: PMC8814099 DOI: 10.1007/s13197-021-05030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 02/03/2023]
Abstract
Dahi samples were prepared from milk incorporated with spray-dried iron-whey protein concentrate (Fe-WPC) conjugate and ferrous sulfate (FeSO4) with three different concentrations of iron i.e. 15, 20 and 25 mg/L and their quality characteristics were determined. Fe-WPC conjugate incorporated dahi showed better sensory, textural and physical attributes as compared with those of FeSO4 fortified and control dahi. Non-significant (p > 0.05) changes were observed in attributes like acidity and flavor, color and appearance, body and texture scores of dahi fortified with Fe-WPC conjugate with upto 20 mg/L iron as compared to those of control. In contrast, definite metallic flavor was perceptible in case of FeSO4 incorporated dahi even at 15 mg/L level. Water holding capacity, viscosity and firmness were significantly (p < 0.05) higher in 20 mg/L Fe-WPC conjugate incorporated dahi samples as compared with those of 20 mg/L FeSO4 incorporated dahi samples. In vitro bio accessibility of iron from Fe-WPC conjugate incorporated dahi was found to be significantly (p < 0.05) higher than that from FeSO4 incorporated dahi. Therefore, the results indicated that Fe-WPC conjugate can be fortified in dahi with upto 20 mg/L without significantly altering its physicochemical properties and with a higher bioaccessibillity of iron.
Collapse
|
21
|
Yuan J, Li D, Shen C, Wu C, Khan N, Pan F, Yang H, Li X, Guo W, Chen B, Li X. Transcriptome Analysis Revealed the Molecular Response Mechanism of Non-heading Chinese Cabbage to Iron Deficiency Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:848424. [PMID: 35371147 PMCID: PMC8964371 DOI: 10.3389/fpls.2022.848424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 05/10/2023]
Abstract
Iron is a trace metal that is found in animals, plants, and the human body. Human iron absorption is hampered by plant iron shortage, which leads to anemia. Leafy vegetables are one of the most direct and efficient sources of iron for humans. Despite the fact that ferrotrophic disorder is common in calcareous soil, however, non-heading Chinese cabbage performs a series of reactions in response to iron deficiency stress that help to preserve iron homeostasis in vivo. In this study, we discovered that iron deficiency stress caused leaf yellowing and impeded plant development in both iron-deficient and control treatments by viewing or measuring phenotypic, chlorophyll content, and Fe2+ content in both iron-deficient and control treatments. We found a total of 9213 differentially expressed genes (DEGs) in non-heading Chinese cabbage by comparing root and leaf transcriptome data with iron deficiency and control treatments. For instance, 1927 DEGs co-expressed in root and leaf, including 897 up-regulated and 1030 down-regulated genes, respectively. We selected some key antioxidant genes, hormone signal transduction, iron absorption and transport, chlorophyll metabolism, and transcription factors involved in the regulation of iron deficiency stress utilizing GO enrichment, KEGG enrichment, multiple types of functional annotation, and Weighted Gene Co-expression Network Analysis (WGCNA). This study identifies prospective genes for maintaining iron homeostasis under iron-deficient stress, offering a theoretical foundation for further research into the molecular mechanisms of greater adaptation to iron-deficient stress, and perhaps guiding the development of iron-tolerant varieties.
Collapse
Affiliation(s)
- Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
- *Correspondence: Jingping Yuan,
| | - Daohan Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Changwei Shen
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Chunhui Wu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Nadeem Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Feifei Pan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Helian Yang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Xin Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Weili Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Bihua Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| |
Collapse
|
22
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
23
|
Szymandera‐Buszka K, Zielińska‐Dawidziak M, Makowska A, Majcher M, Jędrusek‐Golińska A, Kaczmarek A, Niedzielski P. Quality assessment of corn snacks enriched with soybean ferritin among young healthy people and patient with Crohn’s disease: the effect of extrusion conditions. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Agnieszka Makowska
- Faculty of Food Science and Nutrition Poznan University of Life Sciences Poznan Poland
| | - Małgorzata Majcher
- Faculty of Food Science and Nutrition Poznan University of Life Sciences Poznan Poland
| | | | - Anna Kaczmarek
- Faculty of Food Science and Nutrition Poznan University of Life Sciences Poznan Poland
| | | |
Collapse
|
24
|
Gazan R, Maillot M, Reboul E, Darmon N. Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability. Nutrients 2021; 13:nu13093059. [PMID: 34578936 PMCID: PMC8466503 DOI: 10.3390/nu13093059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/22/2023] Open
Abstract
The French food-based dietary guidelines recommend eating pulses at least twice a week and to reduce meat consumption. This study assessed the impact on the sustainability characteristics (nutrition, cost, environment) of individual diets of meeting the pulse guideline. Dietary data of 2028 adults from the Esteban survey were completed with the nutritional content (considering bioavailability on iron, zinc and protein), price and environmental impacts of foods. When the pulse guideline (i.e., 57 g/day) was not met, two substitution scenarios raised the quantity of pulses to the recommended level, in replacement of an equivalent portion of (i) starches or (ii) meat. Only 9.6% of the participants reached the pulse guideline. Diet sustainability characteristics improved with the meat scenario (nutritional indicators improved; diet cost, greenhouse gas emissions and acidification decreased), while several indicators deteriorated with the starches scenario. Zinc available for absorption slightly decreased in both scenarios while iron available for absorption decreased in the meat scenario only. Increasing pulse consumption to two portions/week could modestly improve the sustainability of diets when pulses replace meat but not starches. Cultural acceptability of that substitution still needs to be proven, and iron and zinc status of individuals at risk of deficiency should be monitored.
Collapse
Affiliation(s)
- Rozenn Gazan
- MS-Nutrition, 13005 Marseille, France;
- Correspondence: ; Tel.: +33-491-324-594
| | | | | | - Nicole Darmon
- MOISA, Université de Montpellier, CIRAD, CIHEAM-IAMM, INRAE, Institut Agro, 34060 Montpellier, France;
| |
Collapse
|
25
|
The Use of Iron-Enriched Yeast for the Production of Flatbread. Molecules 2021; 26:molecules26175204. [PMID: 34500637 PMCID: PMC8434235 DOI: 10.3390/molecules26175204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
The most common cause of iron deficiency is an improperly balanced diet, in which the body’s need for iron cannot be met by absorption of this element from food. Targeted iron supplementation and food fortification may be the main treatments for iron deficiency in the population. However, many iron-rich supplements and foods have low bioavailability of this element. In our study, we used yeast enriched with iron ions to produce flatbread. The yeast cells accumulated iron ions from the medium supplemented with Fe(NO3)3·9H2O, additionally one of the cultures was treated with pulsed electric field in order to increase the accumulation. The potential bioavailability of iron from flatbread containing 385.8 ± 4.12 mg of iron in 100 g dry mass was 10.83 ± 0.94%. All the flatbreads had a moderate glycemic index. There were no significant differences in antioxidant activity against DPPH• between flatbread with iron-enriched and non-iron-enriched yeast. Sensory evaluation showed that this product is acceptable to consumers since no metallic aftertaste was detected. Iron enriched flatbread can potentially be an alternative to dietary supplements in iron deficiency states.
Collapse
|
26
|
Apolonia S, Maria Ł, Magdalena K, Maria F, Magdalena S, Anna B. Protective responses of tolerant and sensitive wheat seedlings to systemic and local zearalenone application - Electron paramagnetic resonance studies. BMC PLANT BIOLOGY 2021; 21:393. [PMID: 34418972 PMCID: PMC8379791 DOI: 10.1186/s12870-021-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mycotoxins are among the environmental stressors whose oxidative action is currently widely studied. The aim of this paper was to investigate the response of seedling leaves to zearalenone (ZEA) applied to the leaves (directly) and to the grains (indirectly) in tolerant and sensitive wheat cultivars. RESULTS Biochemical analyses of antioxidant activity were performed for chloroplasts and showed a similar decrease in this activity irrespective of plant sensitivity and the way of ZEA application. On the other hand, higher amounts of superoxide radical (microscopic observations) were generated in the leaves of plants grown from the grains incubated in ZEA solution and in the sensitive cultivar. Electron paramagnetic resonance (EPR) studies showed that upon ZEA treatment greater numbers of Mn - aqua complexes were formed in the leaves of the tolerant wheat cultivar than in those of the sensitive one, whereas the degradation of Fe-protein complexes occurred independently of the cultivar sensitivity. CONCLUSION The changes in the quantity of stable, organic radicals formed by stabilizing reactive oxygen species on biochemical macromolecules, indicated greater potential for their generation in leaf tissues subjected to foliar ZEA treatment. This suggested an important role of these radical species in protective mechanisms mainly against direct toxin action. The way the defense mechanisms were activated depended on the method of the toxin application.
Collapse
Affiliation(s)
- Sieprawska Apolonia
- Institute of Biology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
| | - Łabanowska Maria
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Kurdziel Magdalena
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Filek Maria
- Institute of Biology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
| | - Skórka Magdalena
- Institute of Biology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
| | - Barbasz Anna
- Institute of Biology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
27
|
Singhal T, Satyavathi CT, Singh SP, Kumar A, Sankar SM, Bhardwaj C, Mallik M, Bhat J, Anuradha N, Singh N. Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-parental Recombinant Inbred Line Mapping Population in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:659789. [PMID: 34093617 PMCID: PMC8169987 DOI: 10.3389/fpls.2021.659789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 05/24/2023]
Abstract
Pearl millet is a climate-resilient, nutritious crop with low input requirements that could provide economic returns in marginal agro-ecologies. In this study, we report quantitative trait loci (QTLs) for iron (Fe) and zinc (Zn) content from three distinct production environments. We generated a genetic linkage map using 210 F6 recombinant inbred line (RIL) population derived from the (PPMI 683 × PPMI 627) cross using genome-wide simple sequence repeats (SSRs). The molecular linkage map (seven linkage groups) of 151 loci was 3,273.1 cM length (Kosambi). The content of grain Fe in the RIL population ranged between 36 and 114 mg/Kg, and that of Zn from 20 to 106 mg/Kg across the 3 years (2014-2016) at over the three locations (Delhi, Dharwad, and Jodhpur). QTL analysis revealed a total of 22 QTLs for grain Fe and Zn, of which 14 were for Fe and eight were for Zn on three consecutive years at all locations. The observed phenotypic variance (R 2) explained by different QTLs for grain Fe and Zn content ranged from 2.85 (QGFe.E3.2014-2016_Q3) to 19.66% (QGFe.E1.2014-2016_Q3) and from 2.93 (QGZn.E3.2014-2016_Q3) to 25. 95% (QGZn.E1.2014-2016_Q1), respectively. Two constitutive expressing QTLs for both Fe and Zn co-mapped in this population, one on LG 2 and second one on LG 3. Inside the QTLs candidate genes such as Ferritin gene, Al3+ Transporter, K+ Transporters, Zn2+ transporters and Mg2+ transporters were identified using bioinformatics approaches. The identified QTLs and candidate genes could be useful in pearl millet population improvement programs, seed, restorer parents, and marker-assisted selection programs.
Collapse
Affiliation(s)
- Tripti Singhal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - C. Tara Satyavathi
- ICAR-All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - S. P. Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | - C. Bhardwaj
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M. Mallik
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jayant Bhat
- Regional Research Centre, ICAR-Indian Agricultural Research Institute, Dharwad, India
| | - N. Anuradha
- Acharya N. G. Ranga Agricultural University, Vizianagaram, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
28
|
Nutrient status and growth in vegan children. Nutr Res 2021; 91:13-25. [PMID: 34130207 DOI: 10.1016/j.nutres.2021.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Vegan diets have risen in popularity over the past 9 years. However, few studies have examined nutrient status and the effect of a vegan diet on the growth of children. This study analysed the existing literature on the health impact and growth impact of selected nutrients in vegan children. We assessed the intake of calories and protein, as well as the nutrients iron, calcium, vitamin D, cobalamin and folate. With a small percentage of outliers, vegan children showed normal growth and were less often obese. We found limited evidence that children on a vegan diet can obtain all the examined nutrients. Furthermore, as proper planning and supplementation by caregivers is needed, it is currently unknown how often vegan children follow well-planned diets. Deficiencies in cobalamin, calcium, and vitamin D seem to be the biggest risks associated with a poorly planned vegan diet. For a more definitive assessment, data on the intake and nutrient status of omega-3 fatty acids, zinc, iodine, and selenium in vegan children are needed. Future research should account for demographic shifts in those following a vegan diet, and should discriminate between vegan sub-populations that are open or closed towards scientific approaches, towards health in general, and toward supplementation. Studies should assess the modes and dosages of supplementation and the use of fortified foods or drinks, as well as adherence to the diet itself. Plant ferritin as a source of iron and endogenous cobalamin synthesis warrants further scientific inquiry. In summary, the current literature suggests that a well-planned vegan diet using supplementation is likely to provide the recommended amounts of critical nutrients to provide for normal progression of height and weight in children, and can be beneficial in some aspects. However, data on 5 critical nutrients are still missing, hampering a more definitive conclusion.
Collapse
|
29
|
Abstract
Excessive gut luminal iron contributes to the initiation and progression of colorectal cancer. However, emerging evidence suggests that reduced iron intake and low systemic iron levels are also associated with the pathogenesis of colorectal cancer. This is important because patients with colorectal cancer often present with iron deficiency. Iron is necessary for appropriate immunological functions; hence, iron deficiency may hinder cancer immunosurveillance and potentially modify the tumor immune microenvironment, both of which may assist cancer development. This is supported by studies showing that patients with colorectal cancer with iron deficiency have inferior outcomes and reduced response to therapy. Here, we provide an overview of the immunological consequences of iron deficiency and suggest ensuring adequate iron therapy to limit these outcomes.
Collapse
Affiliation(s)
- Oliver Phipps
- O. Phipps, M.J. Brookes, and H.O. Al-Hassi are with the Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Matthew J Brookes
- O. Phipps, M.J. Brookes, and H.O. Al-Hassi are with the Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Royal Wolverhampton Hospitals NHS Trust, Gastroenterology Unit Wolverhampton, Wolverhampton, United Kingdom
| | - Hafid O Al-Hassi
- O. Phipps, M.J. Brookes, and H.O. Al-Hassi are with the Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
30
|
Kawakami Y, Bhullar NK. Delineating the future of iron biofortification studies in rice: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2099-2113. [PMID: 32974681 DOI: 10.1093/jxb/eraa446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Iron (Fe) deficiency in humans is a widespread problem worldwide. Fe biofortification of rice (Oryza sativa) is a promising approach to address human Fe deficiency. Since its conceptualization, various biofortification strategies have been developed, some of which have resulted in significant increases in grain Fe concentration. However, there are still many aspects that have not yet been addressed in the studies to date. In this review, we first overview the important rice Fe biofortification strategies reported to date and the complications associated with them. Next, we highlight the key outstanding questions and hypotheses related to rice Fe biofortification. Finally, we make suggestions for the direction of future rice biofortification studies.
Collapse
Affiliation(s)
- Yuta Kawakami
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
31
|
Lurthy T, Pivato B, Lemanceau P, Mazurier S. Importance of the Rhizosphere Microbiota in Iron Biofortification of Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:744445. [PMID: 34925398 PMCID: PMC8679237 DOI: 10.3389/fpls.2021.744445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 05/13/2023]
Abstract
Increasing the iron content of plant products and iron assimilability represents a major issue for human nutrition and health. This is also a major challenge because iron is not readily available for plants in most cultivated soils despite its abundance in the Earth's crust. Iron biofortification is defined as the enhancement of the iron content in edible parts of plants. This biofortification aims to reach the objectives defined by world organizations for human nutrition and health while being environment friendly. A series of options has been proposed to enhance plant iron uptake and fight against hidden hunger, but they all show limitations. The present review addresses the potential of soil microorganisms to promote plant iron nutrition. Increasing knowledge on the plant microbiota and plant-microbe interactions related to the iron dynamics has highlighted a considerable contribution of microorganisms to plant iron uptake and homeostasis. The present overview of the state of the art sheds light on plant iron uptake and homeostasis, and on the contribution of plant-microorganism (plant-microbe and plant-plant-microbe) interactions to plant nutritition. It highlights the effects of microorganisms on the plant iron status and on the co-occurring mechanisms, and shows how this knowledge may be valued through genetic and agronomic approaches. We propose a change of paradigm based on a more holistic approach gathering plant and microbial traits mediating iron uptake. Then, we present the possible applications in plant breeding, based on plant traits mediating plant-microbe interactions involved in plant iron uptake and physiology.
Collapse
|
32
|
Tong J, Sun M, Wang Y, Zhang Y, Rasheed A, Li M, Xia X, He Z, Hao Y. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. Int J Mol Sci 2020; 21:E9280. [PMID: 33291360 PMCID: PMC7730113 DOI: 10.3390/ijms21239280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.
Collapse
Affiliation(s)
- Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| |
Collapse
|
33
|
Zhang YY, Stockmann R, Ng K, Ajlouni S. Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability: A review. Compr Rev Food Sci Food Saf 2020; 20:652-685. [PMID: 33443794 DOI: 10.1111/1541-4337.12669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Understanding of the mechanism of interactions between dietary elements, their salts, and complexing/binding ligands is vital to manage both deficiency and toxicity associated with essential element bioavailability. Numerous mineral ligands are found in both animal and plant foods and are known to exert bioactivity via element chelation resulting in modulation of antioxidant capacity or micobiome metabolism among other physiological outcomes. However, little is explored in the context of dietary mineral ligands and element bioavailability enhancement, particularly with respect to ligands from plant-derived food sources. This review highlights a novel perspective to consider various plant macro/micronutrients as prospective bioavailability enhancing ligands of three essential elements (Fe, Zn, and Ca). We also delineate the molecular mechanisms of the ligand-binding interactions underlying mineral bioaccessibility at the luminal level. We conclude that despite current understandings of some of the structure-activity relationships associated with strong mineral-ligand binding, the physiological links between ligands as element carriers and uptake at targeted sites throughout the gastrointestinal (GI) tract still require more research. The binding behavior of potential ligands in the human diet should be further elucidated and validated using pharmacokinetic approaches and GI models.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,CSIRO Agriculture & Food, Werribee, VIC, Australia
| | | | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Huan H, Jiang Q, Wu Y, Qiu X, Lu C, Su C, Zhou J, Li Y, Ming T, Su X. Structure determination of ferritin from Dendrorhynchus zhejiangensis. Biochem Biophys Res Commun 2020; 531:195-202. [PMID: 32792196 DOI: 10.1016/j.bbrc.2020.07.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
Ferritin is an important hub of iron metabolism because it stores iron during times of iron overload and releases iron during iron deficiency. Here, we present the first crystal structure of ferritin from the marine invertebrate Dendrorhynchus zhejiangensis with a 2.3 Å resolution. D. zhejiangensis ferritin (DzFer) exhibits a common cage-shaped hollow sphere with 24 subunits containing the ferroxidase centers and 3-fold and 4-fold channels. The structure of DzFer shows highly conserved catalytic residues in the ferroxidase center. The metal wire formed by ferrous ions in the 3-fold channel reveals the path that iron ions use to enter and translocate into the ferroxidase site to be oxidized and finally arrive at the nucleation site. However, the electrostatic environment of the channels and pores exhibits significant and extensive variability, suggesting that ferritins execute diverse functions in different environments.
Collapse
Affiliation(s)
- Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo, Zhejiang, 315800, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China.
| |
Collapse
|
35
|
Chan DL, Tam PTH, Kan IY, Wong SKH, Ng EKW. Bariatric Surgery in Vegetarians: Asia-Pacific Metabolic and Bariatric Surgery Society (APMBSS) survey of Asian surgeon experience. Asian J Surg 2020; 44:303-306. [PMID: 32800753 DOI: 10.1016/j.asjsur.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Bariatric and metabolic surgery is increasing in Asia to address the growing obesity epidemic. Literature is scarce regarding this surgery in vegetarian patients. We aim to survey surgeons regarding their practices and experiences with the vegetarian population. MATERIALS AND METHODS The regional bariatric and metabolic surgery society distributed a multi-national electronic questionnaire to surgeon members. The questionnaire was in the English and Chinese languages. RESULTS Fifty-six bariatric and metabolic surgeons responded to the questionnaire (response rate 40.6%). Twenty-two respondents (48.9%) have vegetarian patients in their case volume. Patients mostly consume a vegetarian diet for religious (66.7%) and health (66.7%) reasons. More than 60% of surgeons are unsure of micronutrient deficiency status amongst these patients. Over half of the respondents (58.8%) reported that their vegetarian patients do not take multivitamins or vitamin supplements. Significant proportions of respondents (44.4-61.1%) were unsure of the iron, vitamin B12, vitamin D, zinc, and folic acid deficiency status of these patients. Only 38.9% of respondents routinely prescribe multivitamin supplementation. CONCLUSIONS Vegetarian bariatric patients in East and South-East Asia are an under-recognized patient cohort at risk of micronutrient deficiencies. There is a knowledge gap among regional surgeons in long-term nutritional assessment and management.
Collapse
Affiliation(s)
- Daniel Leonard Chan
- Division of Upper Gastrointestinal & Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Medicine, Western Sydney University, Sydney, New South Wales, Australia; Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Prudence Tai-Huen Tam
- Division of Upper Gastrointestinal & Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ingrid Ym Kan
- Division of Upper Gastrointestinal & Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kin-Hung Wong
- Division of Upper Gastrointestinal & Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Enders Kwok-Wai Ng
- Division of Upper Gastrointestinal & Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Sun Y, Li JQ, Yan JY, Yuan JJ, Li GX, Wu YR, Xu JM, Huang RF, Harberd NP, Ding ZJ, Zheng SJ. Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1193-1212. [PMID: 32619040 DOI: 10.1111/jipb.12986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Because Iron (Fe) is an essential element, Fe storage in plant seeds is necessary for seedling establishment following germination. However, the mechanisms controlling seed Fe storage during seed development remain largely unknown. Here we reveal that an ERF95 transcription factor regulates Arabidopsis seed Fe accumulation. We show that expression of ERF95 increases during seed maturation, and that lack of ERF95 reduces seed Fe accumulation, consequently increasing sensitivity to Fe deficiency during seedling establishment. Conversely, overexpression of ERF95 has the opposite effects. We show that lack of ERF95 decreases abundance of FER1 messenger RNA in developing seed, which encodes Fe-sequestering ferritin. Accordingly, a fer1-1 loss-of-function mutation confers reduced seed Fe accumulation, and suppresses ERF95-promoted seed Fe accumulation. In addition, ERF95 binds to specific FER1 promoter GCC-boxes and transactivates FER1 expression. We show that ERF95 expression in maturing seed is dependent on EIN3, the master transcriptional regulator of ethylene signaling. While lack of EIN3 reduces seed Fe content, overexpression of ERF95 rescues Fe accumulation in the seed of ein3 loss-of-function mutant. Finally, we show that ethylene production increases during seed maturation. We conclude that ethylene promotes seed Fe accumulation during seed maturation via an EIN3-ERF95-FER1-dependent signaling pathway.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia Qi Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Jun Jie Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rong Feng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nicholas P Harberd
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Plant Science, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
37
|
Roschzttardtz H, Gaymard F, Dubos C. Transcriptional Regulation of Iron Distribution in Seeds: A Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:725. [PMID: 32547590 PMCID: PMC7273024 DOI: 10.3389/fpls.2020.00725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 05/28/2023]
Abstract
Several transcription factors have been involved in the regulation of gene expression during seed development. Nutritional reserves, including iron, are principally accumulated during seed maturation stages. Using the model plant Arabidopsis thaliana, it has been shown that iron is stored during seed development in vacuoles of the endodermis cell layer. During seed germination, these iron reserves are remobilized and used by the seedling during the heterotrophic to autotrophic metabolism switch. To date, no information about how iron distribution is genetically regulated has been reported.
Collapse
Affiliation(s)
- Hannetz Roschzttardtz
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Frederic Gaymard
- BPMP, University of Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Christian Dubos
- BPMP, University of Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| |
Collapse
|
38
|
Yin J, Wu X, Li S, Li C, Guo Z. Impact of environmental factors on gastric cancer: A review of the scientific evidence, human prevention and adaptation. J Environ Sci (China) 2020; 89:65-79. [PMID: 31892402 DOI: 10.1016/j.jes.2019.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Globally, gastric cancer (GC) ranks fifth in prevalence and third in fatalities, and shows a distinct geographical distribution in morbidity and mortality. Such a spatial pattern indicates that environmental factors could be an important contributor to GC. We reviewed a total of 135 relevant peer-reviewed articles and other literature published 1936-2019 to investigate the scientific evidence concerning the effects of environmental factors on GC worldwide. Environmental factors affect GC from the aspects of water, soil, air, radiation, and geology. Risk factors identified include water type, water pollution, water hardness, soil type, soil pollution, soil element content, climate change, air pollution, radiation, altitude, latitude, topography, and lithology; and most of them have an adverse impact on GC. Furthermore, we found that their effects followed five common rules: (1) the leading environmental factors that affect GC incidence and mortality vary by region, (2) the same environmental factors may have different effects on GC in different regions, (3) some different environmental factors have similar effects on GC in essence, (4) different environmental factors often interact to have combined or synergistic effects on GC, and (5) environmental factors can affect human factors to have an impact on GC. Environmental factors have a great impact on GC. Human beings may prevent GC by controlling carcinogenic factors, screening high-risk populations and providing symptomatic and rehabilitative treatments. Furthermore, adaptation measures are recommended to reduce GC risk on private and public levels. Future studies should transcend existing empirical studies to develop causal relationship models and focus on vulnerable population analysis.
Collapse
Affiliation(s)
- Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Suping Li
- The Second People's Hospital of Lanzhou City, Lanzhou 730046, China
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Zhiyi Guo
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
39
|
Abdulwaliyu I, Arekemase SO, Adudu JA, Batari ML, Egbule MN, Okoduwa SIR. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2019.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Poschenrieder C, Busoms S, Barceló J. How Plants Handle Trivalent (+3) Elements. Int J Mol Sci 2019; 20:E3984. [PMID: 31426275 PMCID: PMC6719099 DOI: 10.3390/ijms20163984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Plant development and fitness largely depend on the adequate availability of mineral elements in the soil. Most essential nutrients are available and can be membrane transported either as mono or divalent cations or as mono- or divalent anions. Trivalent cations are highly toxic to membranes, and plants have evolved different mechanisms to handle +3 elements in a safe way. The essential functional role of a few metal ions, with the possibility to gain a trivalent state, mainly resides in the ion's redox activity; examples are iron (Fe) and manganese. Among the required nutrients, the only element with +3 as a unique oxidation state is the non-metal, boron. However, plants also can take up non-essential trivalent elements that occur in biologically relevant concentrations in soils. Examples are, among others, aluminum (Al), chromium (Cr), arsenic (As), and antimony (Sb). Plants have evolved different mechanisms to take up and tolerate these potentially toxic elements. This review considers recent studies describing the transporters, and specific and unspecific channels in different cell compartments and tissues, thereby providing a global vision of trivalent element homeostasis in plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Silvia Busoms
- Plant Sciences, Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
41
|
Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects. Food Res Int 2019; 121:404-411. [DOI: 10.1016/j.foodres.2019.03.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 11/18/2022]
|
42
|
Beasley JT, Hart JJ, Tako E, Glahn RP, Johnson AAT. Investigation of Nicotianamine and 2' Deoxymugineic Acid as Enhancers of Iron Bioavailability in Caco-2 Cells. Nutrients 2019; 11:E1502. [PMID: 31262064 PMCID: PMC6683067 DOI: 10.3390/nu11071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotianamine (NA) is a low-molecular weight metal chelator in plants with high affinity for ferrous iron (Fe2+) and other divalent metal cations. In graminaceous plant species, NA serves as the biosynthetic precursor to 2' deoxymugineic acid (DMA), a root-secreted mugineic acid family phytosiderophore that chelates ferric iron (Fe3+) in the rhizosphere for subsequent uptake by the plant. Previous studies have flagged NA and/or DMA as enhancers of Fe bioavailability in cereal grain although the extent of this promotion has not been quantified. In this study, we utilized the Caco-2 cell system to compare NA and DMA to two known enhancers of Fe bioavailability-epicatechin (Epi) and ascorbic acid (AsA)-and found that both NA and DMA are stronger enhancers of Fe bioavailability than Epi, and NA is a stronger enhancer of Fe bioavailability than AsA. Furthermore, NA reversed Fe uptake inhibition by Myricetin (Myr) more than Epi, highlighting NA as an important target for biofortification strategies aimed at improving Fe bioavailability in staple plant foods.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia.
| | - Jonathan J Hart
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Elad Tako
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | | |
Collapse
|
43
|
Reiche EMV, Gelinksi JR, Alfieri DF, Flauzino T, Lehmann MF, de Araújo MCM, Lozovoy MAB, Simão ANC, de Almeida ERD, Maes M. Immune-inflammatory, oxidative stress and biochemical biomarkers predict short-term acute ischemic stroke death. Metab Brain Dis 2019; 34:789-804. [PMID: 30875023 DOI: 10.1007/s11011-019-00403-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
The aim of the study was to define new immune-inflammatory, oxidative stress and biochemical biomarkers, which predict mortality within a period of 3 months after acute ischemic stroke (AIS). We recruited 176 healthy volunteers and 145 AIS patients, categorized as AIS survivors and non-survivors, and measured interleukin (IL)-6, high sensitivity C-reactive protein (hsCRP), ferritin, iron, total serum protein (TSP), erythrocyte sedimentation rate (ESR), white blood cells (WBC), 25 hydroxyvitamin D [25(OH)D], lipid hydroperoxides (CL-LOOH), insulin, glucose and high-density lipoprotein (HDL)-cholesterol. In patients, these biomarkers were measured within 24 h after AIS onset. We also computed two composite scores reflecting inflammatory indices, namely INFLAM index1 (sum of z scores of hsCRP+IL-6 + ferritin+ESR + WBC) and INFLAM index2 (z INFLAM index1 - z 25(OH)D - z iron + z TSP). Three months after AIS, non-survivors (n = 54) showed higher baseline levels of IL-6, hsCRP, ferritin and glucose and lower levels of HDL-cholesterol and 25(OH)D than survivors (n = 91). Non-survivors showed higher baseline ESR and lowered TSP than controls, while survivors occupied an intermediate position. Death after AIS was best predicted by increased IL-6, glucose, ferritin and CL-LOOH and lowered 25(OH)D levels. The area under the receiver operating curves computed on the INFLAM index1 and 2 scores were 0.851 and 0.870, respectively. In conclusion, activation of peripheral immune-inflammatory, oxidative and biochemical pathways is critically associated with mortality after AIS. Our results may contribute to identify new biomarker sets, which may predict post-stroke death, as well as suggest that IL-6 trans-signaling coupled with redox imbalances may be possible new targets in the prevention of short-term outcome AIS death.
Collapse
Affiliation(s)
- Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, Londrina State University, Av. Robert Koch, 60, CEP 86.038-440, Londrina, Paraná, Brazil.
| | - Jair Roberto Gelinksi
- Clinical and Laboratory Pathophysiology Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniela Frizon Alfieri
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Tamires Flauzino
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Marcio Francisco Lehmann
- Department of Clinical Surgery, Health Sciences Center, and Neurosurgery Service of the University Hospital, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Marcell Alysson Batisti Lozovoy
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, Londrina State University, Av. Robert Koch, 60, CEP 86.038-440, Londrina, Paraná, Brazil
| | - Andrea Name Colado Simão
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, Londrina State University, Av. Robert Koch, 60, CEP 86.038-440, Londrina, Paraná, Brazil
| | - Elaine Regina Delicato de Almeida
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, Londrina State University, Av. Robert Koch, 60, CEP 86.038-440, Londrina, Paraná, Brazil
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
44
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
45
|
Gulisano A, Alves S, Martins JN, Trindade LM. Genetics and Breeding of Lupinus mutabilis: An Emerging Protein Crop. FRONTIERS IN PLANT SCIENCE 2019; 10:1385. [PMID: 31737013 PMCID: PMC6831545 DOI: 10.3389/fpls.2019.01385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/07/2019] [Indexed: 05/19/2023]
Abstract
Protein crops have gained increasing interest in recent years, as a transition towards plant-protein based diets appears pivotal to ensure global food security and preserve the environment. The Andean species Lupinus mutabilis emerges as an ideal protein crop with great potential for Europe and other regions with temperate climates. This species is characterized by oil and protein content similar to soybean and is highly valued for its adaptability to colder climates and low input agriculture on marginal land. However, its introduction outside the Andes has yet to take off. To date, L. mutabilis remains an under-studied crop, lacking high yield, early maturity and a consistent breeding history. This review paper identifies L. mutabilis limitations and potential uses, and suggests the main breeding targets for further improvement of this crop. It also highlights the potential of new molecular tools and available germplasm resources that can now be used to establish L. mutabilis as a viable protein crop.
Collapse
Affiliation(s)
- Agata Gulisano
- Wageningen University & Research Plant Breeding, Wageningen University, Wageningen, Netherlands
| | - Sofia Alves
- DRAT, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal
| | - João Neves Martins
- DRAT, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal
| | - Luisa M. Trindade
- Wageningen University & Research Plant Breeding, Wageningen University, Wageningen, Netherlands
- *Correspondence: Luisa M. Trindade,
| |
Collapse
|
46
|
Kawakami Y, Bhullar NK. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1181-1198. [PMID: 30468300 DOI: 10.1111/jipb.12751] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/21/2018] [Indexed: 05/07/2023]
Abstract
More than a billion people suffer from iron or zinc deficiencies globally. Rice (Oryza sativa L.) iron and zinc biofortification; i.e., intrinsic iron and zinc enrichment of rice grains, is considered the most effective way to tackle these deficiencies. However, rice iron biofortification, by means of conventional breeding, proves difficult due to lack of sufficient genetic variation. Meanwhile, genetic engineering has led to a significant increase in the iron concentration along with zinc concentration in rice grains. The design of impactful genetic engineering biofortification strategies relies upon vast scientific knowledge of precise functions of different genes involved in iron and zinc uptake, translocation and storage. In this review, we present an overview of molecular processes controlling iron and zinc homeostasis in rice. Further, the genetic engineering approaches adopted so far to increase the iron and zinc concentrations in polished rice grains are discussed in detail, highlighting the limitations and/or success of individual strategies. Recent insight suggests that a few genetic engineering strategies are commonly utilized for elevating iron and zinc concentrations in different genetic backgrounds, and thus, it is of great importance to accumulate scientific evidence for diverse genetic engineering strategies to expand the pool of options for biofortifying farmer-preferred cultivars.
Collapse
Affiliation(s)
- Yuta Kawakami
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitaetsstrasse 2, 8092 Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitaetsstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
47
|
Modification of soybean and lupine sprouting conditions: influence on yield, ROS generation, and antioxidative systems. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Gitz JC, Sadot N, Zaccai M, Zarivach R. A Colorimetric Method for Measuring Iron Content in Plants. J Vis Exp 2018:57408. [PMID: 30247485 PMCID: PMC6235139 DOI: 10.3791/57408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Iron, one of the most important micronutrients in living organisms, is involved in basic processes, such as respiration and photosynthesis. Iron content is rather low in all organisms, amounting in plants to about 0.009% of dry weight. To date, one of the most accurate methods for measuring iron concentration in plant tissues is flame absorption atomic spectroscopy. However, this approach is time-consuming and expensive and requires specific equipment not commonly found in plant laboratories. Therefore, a simpler, yet accurate method that can be routinely used is needed. The colorimetric Prussian Blue method is regularly used for qualitative iron staining in animal and plant histological sections. In this study, we adapted the Prussian Blue method for quantitative measurements of iron in tobacco leaves. We validated the accuracy of this method using both atomic spectroscopy and Prussian Blue staining to measure iron content in the same samples and found a linear regression (R2 = 0.988) between the two procedures. We conclude that the Prussian Blue method for quantitative iron measurement in plant tissues is precise, simple, and inexpensive. However, the linear regression presented here may not be appropriate for other plant species, due to potential interactions between the sample and the reagent. Establishment of a regression curve is thus needed for different plant species.
Collapse
Affiliation(s)
- Jonas C Gitz
- Department of Life Sciences, Ben-Gurion University of the Negev; National Institute for Biotechnology in the Negev (NIBN);
| | - Noy Sadot
- Department of Life Sciences, Ben-Gurion University of the Negev
| | - Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev; National Institute for Biotechnology in the Negev (NIBN)
| |
Collapse
|
49
|
Perfecto A, Rodriguez-Ramiro I, Rodriguez-Celma J, Sharp P, Balk J, Fairweather-Tait S. Pea Ferritin Stability under Gastric pH Conditions Determines the Mechanism of Iron Uptake in Caco-2 Cells. J Nutr 2018; 148:1229-1235. [PMID: 29939292 PMCID: PMC6074850 DOI: 10.1093/jn/nxy096] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/26/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Iron deficiency is an enduring global health problem that requires new remedial approaches. Iron absorption from soybean-derived ferritin, an ∼550-kDa iron storage protein, is comparable to bioavailable ferrous sulfate (FeSO4). However, the absorption of ferritin is reported to involve an endocytic mechanism, independent of divalent metal ion transporter 1 (DMT-1), the transporter for nonheme iron. Objective Our overall aim was to examine the potential of purified ferritin from peas (Pisum sativum) as a food supplement by measuring its stability under gastric pH treatment and the mechanisms of iron uptake into Caco-2 cells. Methods Caco-2 cells were treated with native or gastric pH-treated pea ferritin in combination with dietary modulators of nonheme iron uptake, small interfering RNA targeting DMT-1, or chemical inhibitors of endocytosis. Cellular ferritin formation, a surrogate measure of iron uptake, and internalization of pea ferritin with the use of specific antibodies were measured. The production of reactive oxygen species (ROS) in response to equimolar concentrations of native pea ferritin and FeSO4 was also compared. Results Pea ferritin exposed to gastric pH treatment was degraded, and the released iron was transported into Caco-2 cells by DMT-1. Inhibitors of DMT-1 and nonheme iron absorption reduced iron uptake by 26-40%. Conversely, in the absence of gastric pH treatment, the iron uptake of native pea ferritin was unaffected by inhibitors of nonheme iron absorption, and the protein was observed to be internalized in Caco-2 cells. Chlorpromazine (clathrin-mediated endocytosis inhibitor) reduced the native pea ferritin content within cells by ∼30%, which confirmed that the native pea ferritin was transported into cells via a clathrin-mediated endocytic pathway. In addition, 60% less ROS production resulted from native pea ferritin in comparison to FeSO4. Conclusion With consideration that nonheme dietary inhibitors display no effect on iron uptake and the low oxidative potential relative to FeSO4, intact pea ferritin appears to be a promising iron supplement.
Collapse
Affiliation(s)
- Antonio Perfecto
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | - Jorge Rodriguez-Celma
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Biological Chemistry, John Innes Center, Norwich, United Kingdom
| | - Paul Sharp
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Janneke Balk
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Biological Chemistry, John Innes Center, Norwich, United Kingdom
| | | |
Collapse
|
50
|
Chen XX, Li YY, Chang XJ, Xie XL, Liang YT, Wang KJ, Zheng WY, Liu HP. A CqFerritin protein inhibits white spot syndrome virus infection via regulating iron ions in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:104-112. [PMID: 29341872 DOI: 10.1016/j.dci.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
It is well known that iron is an essential element for all living organism. The intracellular iron availability is also important for the host's innate immune response to various pathogens, in which the iron homeostasis can be regulated by ferritin due to its iron storage property. In this study, a full-length cDNA sequence of ferritin (named as CqFerritin) was identified with 1410 bp from red claw crayfish Cherax quadricarinatus, which contained an open reading frame of 513 bp, encoding 170 amino acids with a conserved ferritin domain. Tissue distribution analysis demonstrated that CqFerritin was widely expressed in various tissues with high presence in haemocyte, haematopoietic tissue (Hpt) and heart, while lowest expression in hepatopancreas. In addition, loss-of-function of CqFerritin by gene silencing resulted in significantly higher expression of an envelope protein VP28 of white spot syndrome virus (WSSV) in red claw crayfish Hpt cell cultures, indicating the potential antiviral response of CqFerritin. To further explore the effect on WSSV replication by CqFerritin, recombinant CqFerritin protein (rCqFerritin) was transfected into Hpt cells followed by WSSV infection. Importantly, the replication of WSSV was obviously decreased in Hpt cells if transfected with rCqFerritin protein, suggesting that CqFerritin had clearly negative effect on WSSV infection. Furthermore, intracellular accumulation of iron ions was found to promote the WSSV replication in a dose-dependent manner, illustrating that the iron level regulated by CqFerritin was likely to be vital for WSSV infection in red claw crayfish. Taken together, these data suggest that CqFerritin plays an important role in immune defense against WSSV infection in a crustacean C. quadricarinatus.
Collapse
Affiliation(s)
- Xiao-Xiao Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; State Key Laboratory of Marine Environmental Science; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Yan-Yao Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; State Key Laboratory of Marine Environmental Science; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Xue-Jiao Chang
- State Key Laboratory of Marine Environmental Science; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Xiao-Lu Xie
- State Key Laboratory of Marine Environmental Science; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Yu-Ting Liang
- State Key Laboratory of Marine Environmental Science; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Wen-Yun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China.
| |
Collapse
|