1
|
Cheng N, Josse AR. Dairy and Exercise for Bone Health: Evidence from Randomized Controlled Trials and Recommendations for Future Research. Curr Osteoporos Rep 2024; 22:502-514. [PMID: 39269594 DOI: 10.1007/s11914-024-00882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE OF REVIEW To examine evidence from randomized controlled trials (RCTs) on how modifiable factors such as exercise and nutrition, with a focus on dairy products, play a role in improving bone health across the lifespan. RECENT FINDINGS Meta-analyses of RCTs demonstrate the advantages of consuming dairy products to improve bone mineral density/content (BMD/BMC) and markers of bone metabolism and turnover (BTMs). Eighteen RCTs were conducted investigating the combined effects of dairy and exercise, with most indicating a benefit in youth and adult populations. Results were less conclusive in older adults, perhaps due to altered requirements for dairy/nutrients and exercise with increased age. RCTs demonstrate that dairy product consumption alone benefits bone health and can enhance the effects of exercise on bone. This may help improve skeletal growth and development in adolescence and prevent osteoporosis with increased age. Future RCTs should account for habitual nutrient intakes, and dairy dosage, timing, and matrix effects.
Collapse
Affiliation(s)
- Nicholas Cheng
- School of Kinesiology and Health Science, Muscle Health Research Centre, Faculty of Health, York University, 4700 Keele Street, ON, M3J 1P3, Toronto, Canada
| | - Andrea R Josse
- School of Kinesiology and Health Science, Muscle Health Research Centre, Faculty of Health, York University, 4700 Keele Street, ON, M3J 1P3, Toronto, Canada.
| |
Collapse
|
2
|
Dong X, He L, Zhang L, Shen Y. Association between sleep duration and sleep quality with pre-sarcopenia in the 20-59-year-old population: evidence from the National Health and Nutrition Examination Surveys 2005-2014. Arch Public Health 2024; 82:162. [PMID: 39294655 PMCID: PMC11409786 DOI: 10.1186/s13690-024-01394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Sarcopenia is a musculoskeletal disease characterized by a significant reduction in muscle mass, strength, and performance. As it mostly affects older adults, it is often recognized as a disease of old age. However, sleep is also closely related to its development. Hence, it becomes critical to explore the relationship between sleep and sarcopenia in populations under 60 years of age to develop strategies for preventing sarcopenia. We here aim to explore the specific association between sleep duration and sleep quality with pre-sarcopenia in the non-elderly population using large population samples. METHODS This study involved 7,187 participants aged 20-59 years from the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2014. Pre-sarcopenia is defined based on the appendicular skeletal muscle mass (ASM) adjusted for body mass index (BMI). Self-reported sleep duration was categorized into three groups: <6 h (short sleep), 6-8 h (normal sleep), and > 8 h (long sleep). Sleep quality was assessed based on the Sleep Disorder and Trouble Sleeping Questionnaire. Univariate analysis and multivariate logistic regression were used to examine the relationship between sleep duration and sleep quality with pre-sarcopenia. RESULTS Sleep quality was significantly linked with the risk of pre-sarcopenia (OR 1.72, 95% CI 1.36-2.18, P < 0.01). Longer or shorter sleep duration did not affect the risk of pre-sarcopenia, in contrast to normal sleep duration. Subgroup analysis demonstrated a more pronounced association in individuals who are > 40 years old (P < 0.01), non-Hispanic (P ≤ 0.01), overweight (P < 0.01), have a higher income (P < 0.01), and are more educated (P ≤ 0.01). Moreover, this association was noted in populations with or without smoking (P < 0.01) and alcohol consumption (P < 0.01), hypertension (P < 0.01) and diabetes (P ≤ 0.02). CONCLUSION Sleep quality is associated with an increased risk of pre-sarcopenia, while sleep duration is not in the population aged 20-59 years. Further prospective cohort studies with a large sample size are needed to determine causality and develop effective interventions for preventing sarcopenia in the population aged 20-59 years.
Collapse
Affiliation(s)
- Xiuxun Dong
- Department of Clinical Nutrition, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaian, 223300, Jiangsu Province, China
| | - Lei He
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu Province, China
| | - Li Zhang
- Department of Clinical Nutrition, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong Province, China
| | - Yang Shen
- Department of Clinical Nutrition, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaian, 223300, Jiangsu Province, China.
| |
Collapse
|
3
|
Santos de Souza M, Zaleski Trindade CD, Castro FADS, Buss C, Schneider CD. Protein intake by master swimmers: Implications for practice in Sports Nutrition-A cross-sectional study. Nutr Health 2024:2601060241276918. [PMID: 39215529 DOI: 10.1177/02601060241276918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background: Proteins are essential for the maintenance, repair, and growth of muscle mass. This is particularly important for master athletes because aging has been associated with loss of muscle mass, function, and strength. Moreover, the timing of intake has been shown important for the best protein utilization. Aim: To analyze timing, quantity, and source of dietary protein in competitive master athletes according to current recommendations. Methods: Twenty-one male master swimmers (47.9 ± 10.0 years; 79.2 ± 6.5 kg; 179.1 ± 5.5 cm; 23.5 ± 4.9% body fat; 73.3 ± 4.2% lean mass) participated in this cross-sectional study. Protein intake was analyzed based on 7-day food records, regarding quantity, timing, and sources of intake. Protein intake was evaluated according to current international sports nutrition guidelines, including the International Society of Sports Nutrition Position Stand. Body fat (%) and lean mass (%) were evaluated using dual-energy X-ray absorptiometry. Results: Participants' mean protein intakes were 1.9 ± 0.5 g/kg/day, 0.6 ± 0.2 g/kg/meal post-training, and 33.5 ± 23.9 g during the pre-sleep period. Daily intake was within the recommended values of 1.4 and 2.0 g/kg/day (p = 0.01 and 0.147, respectively). Mean pre-sleep intake was within the recommendation values of 30-40 g (p = 0.28 and 0.147, respectively). Most of the daily protein intake was consumed at lunch (66.7 ± 6.9 g) and dinner (48.0 ± 4.5 g). Regarding protein sources, intakes from animal, vegetal, and supplements were, respectively, 65.7%, 29.2%, and 5.1%. Conclusion: Master swimmers presented a total protein intake within the recommendations for a daily basis, but the majority of intake was at lunch and dinner. Protein intake could be better distributed throughout the day to optimize protein synthesis. Guidance on daily protein intake distribution should be reinforced in clinical practice.
Collapse
Affiliation(s)
- Michelle Santos de Souza
- Course of Nutrition, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | | | | | - Caroline Buss
- Course of Nutrition, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Graduate Program on Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Cláudia Dornelles Schneider
- Course of Nutrition, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Graduate Program on Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
4
|
Yang Z, Li X, Song W, Zhang Y. Associations between meeting 24-h movement guidelines and sarcopenia risk among adults aged ≥ 55 years in five low- and middle-income countries. Complement Ther Clin Pract 2024; 57:101887. [PMID: 39084129 DOI: 10.1016/j.ctcp.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE To diminish the negative influence of sarcopenia on senior adults, the study aimed to investigate the association between adherence to 24-h movement behavior guidelines (physical activity, sedentary behavior, sleep duration) and the risk of sarcopenia among individuals aged ≥55 years in five low- and middle-income countries (LMICs). METHODS A total of 16,503 adults aged ≥55 years were included in this cross-sectional study. The study utilized data from Global Aging and Adult Health Survey (SAGE). Participants reported their information about physical activity, sedentary behavior, and sleep duration using the questionnaire. Sarcopenia was identified as low skeletal muscle mass with a diminished gait speed or weakened handgrip strength. Multiple logistic regression models were used to investigate the association between adherence to 24-h movement behavior guidelines and the risk of sarcopenia. RESULTS Merely 32.73 % of participants met all three 24-h movement behavior guidelines (physical activity, less sedentary behavior, sleep). Meeting all three guidelines (p < 0.01) was significantly associated with a lower risk of sarcopenia. Meeting physical activity only (p < 0.05), or meeting both physical activity and sedentary behaivor (p < 0.05), or meeting both physical activity and sleep duration (p < 0.01) guidelines were also associated with a reduced risk of sarcopenia. Moreover, adults aged 65+ years who adhered to 24-h movement behavior guidelines exhibited a significantly reduced risk of developing sarcopenia. CONCLUSION The findings suggest that the adherence to 24-h movement behavior guidelines for regular physical activity, limited sedentary behavior, and sufficient sleep duration was associated with a reduced risk of sarcopenia in adults aged ≥55 years in five LMICs.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, 518172, China; Physical Activity and Health Promotion Laboratory, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Xinxing Li
- Department of Physical Education, Seoul National University, Seoul, 08826, South Korea; Institute on Aging, Seoul National University, Seoul, 08826, South Korea.
| | - Wook Song
- Department of Physical Education, Seoul National University, Seoul, 08826, South Korea; Institute on Aging, Seoul National University, Seoul, 08826, South Korea; Institute of Sport Science, Seoul National University, 08826, Seoul Korea
| | - Yanjie Zhang
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, 518172, China; Physical Activity and Health Promotion Laboratory, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
5
|
Peters B, Vahlhaus J, Pivovarova-Ramich O. Meal timing and its role in obesity and associated diseases. Front Endocrinol (Lausanne) 2024; 15:1359772. [PMID: 38586455 PMCID: PMC10995378 DOI: 10.3389/fendo.2024.1359772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Meal timing emerges as a crucial factor influencing metabolic health that can be explained by the tight interaction between the endogenous circadian clock and metabolic homeostasis. Mistimed food intake, such as delayed or nighttime consumption, leads to desynchronization of the internal circadian clock and is associated with an increased risk for obesity and associated metabolic disturbances such as type 2 diabetes and cardiovascular diseases. Conversely, meal timing aligned with cellular rhythms can optimize the performance of tissues and organs. In this review, we provide an overview of the metabolic effects of meal timing and discuss the underlying mechanisms. Additionally, we explore factors influencing meal timing, including internal determinants such as chronotype and genetics, as well as external influences like social factors, cultural aspects, and work schedules. This review could contribute to defining meal-timing-based recommendations for public health initiatives and developing guidelines for effective lifestyle modifications targeting the prevention and treatment of obesity and associated metabolic diseases. Furthermore, it sheds light on crucial factors that must be considered in the design of future food timing intervention trials.
Collapse
Affiliation(s)
- Beeke Peters
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Janna Vahlhaus
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Wu C, Deng J, Gao C. Effects of pre-sleep protein supplementation on plasma markers of muscle damage and inflammatory cytokines resulting from sprint interval training in trained swimmers. J Int Soc Sports Nutr 2023; 20:2244478. [PMID: 37543952 PMCID: PMC10405750 DOI: 10.1080/15502783.2023.2244478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Pre-sleep protein has been shown to improve muscle recovery overnight following exercise-induced muscle damage. Whether such an approach affects recovery from sprint interval training (SIT) has yet to be elucidated. This study examined the effects of protein supplementation every night before sleep on early (45 min post-SIT) and late (24 and 48 h after SIT) responses of creatine kinase (CK) and inflammatory cytokines, including interleukin-6 and 10 (IL-6 and IL-10) and tumor necrosis factor-alpha (TNFα). METHODS Twenty trained swimmers underwent a 2-week in-water swimming SIT (two sets of 12 × 50-m all-out swims, interspersed by 1:1 recovery between each sprint and 3 min of rest between sets) and were randomized to two intervention groups receiving either 0.5 g kg-1 day-1 protein beverage (PRO) or the same amount of carbohydrate (CHO) preceding going to bed every night. For initial and final training sessions, CK and cytokine responses were analyzed at different time points, including resting, immediately after completion, 45 min post-SIT, and 24 and 48 h after SIT. RESULTS CK concentrations elevated from resting point to 24 and 48 h post-SIT for both PRO and CHO groups (p < 0.05). In both training groups, the peak levels of IL-6 and 10 were observed 45 min post-SIT on both occasions. TNFα levels significantly elevated from rest to immediately after SIT (p < 0.001) and returned to values equivalent to the baseline afterward in both groups and on both occasions. In both groups, swimming SIT also switched the cytokine response 48 hours after exercise to an anti-inflammatory status by decreasing the ratio of IL-6 to IL-10 (p < 0.04) in the last training session. CONCLUSIONS Pre-sleep protein ingestion failed to ameliorate blood markers of muscle damage. The late anti-inflammatory profile of cytokines and exercise-induced muscle damage improved after two weeks of swimming SIT with either protein or carbohydrate ingestion before sleep.
Collapse
Affiliation(s)
- Cairong Wu
- Zhengde Polytechnic College, Department of Public Education, Nanjing, Jiangsu, China
- Adamson University, Graduate School, Metro Manila, Philippines
| | - Jie Deng
- Nanjing University of Aeronautics and Astronautics, Department of Physical Education, Nanjing, Jiangsu, China
| | - Chengli Gao
- Sanjiang University, Department of Physical Education, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Greenwalt CE, Angeles E, Vukovich MD, Smith-Ryan AE, Bach CW, Sims ST, Zeleny T, Holmes KE, Presby DM, Schiltz KJ, Dupuit M, Renteria LI, Ormsbee MJ. Pre-sleep feeding, sleep quality, and markers of recovery in division I NCAA female soccer players. J Int Soc Sports Nutr 2023; 20:2236055. [PMID: 37470428 PMCID: PMC10360998 DOI: 10.1080/15502783.2023.2236055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
Pre-sleep nutrition habits in elite female athletes have yet to be evaluated. A retrospective analysis was performed with 14 NCAA Division I female soccer players who wore a WHOOP, Inc. band - a wearable device that quantifies recovery by measuring sleep, activity, and heart rate metrics through actigraphy and photoplethysmography, respectively - 24 h a day for an entire competitive season to measure sleep and recovery. Pre-sleep food consumption data were collected via surveys every 3 days. Average pre-sleep nutritional intake (mean ± sd: kcals 330 ± 284; cho 46.2 ± 40.5 g; pro 7.6 ± 7.3 g; fat 12 ± 10.5 g) was recorded. Macronutrients and kcals were grouped into high and low categories based upon the 50th percentile of the mean to compare the impact of a high versus low pre-sleep intake on sleep and recovery variables. Sleep duration (p = 0.10, 0.69, 0.16, 0.17) and sleep disturbances (p = 0.42, 0.65, 0.81, 0.81) were not affected by high versus low kcal, PRO, fat, CHO intake, respectively. Recovery (p = 0.81, 0.06, 0.81, 0.92), RHR (p = 0.84, 0.64, 0.26, 0.66), or HRV (p = 0.84, 0.70, 0.76, 0.93) were also not affected by high versus low kcal, PRO, fat, or CHO consumption, respectively. Consuming a small meal before bed may have no impact on sleep or recovery.
Collapse
Affiliation(s)
- Casey E Greenwalt
- Florida State University, Institute of Sports Science and Medicine, Nutrition and Integrative Physiology Department, Tallahassee, FL, USA
| | - Elisa Angeles
- Florida State University, Institute of Sports Science and Medicine, Nutrition and Integrative Physiology Department, Tallahassee, FL, USA
| | - Matthew D Vukovich
- College of Education and Human Sciences, South Dakota State University, Brookings, SD, USA
| | - Abbie E Smith-Ryan
- University of North Carolina at Chapel Hill, Applied Physiology Laboratory, Department of Exercise and Sport Science, Chapel Hill, NC, USA
| | - Chris W Bach
- Department of Athletics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Tucker Zeleny
- Department of Athletics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - David M Presby
- WHOOP, Inc, Department of Data Science and Research, Boston, MA, USA
| | - Katie J Schiltz
- Florida State University, Institute of Sports Science and Medicine, Nutrition and Integrative Physiology Department, Tallahassee, FL, USA
| | - Marine Dupuit
- Florida State University, Institute of Sports Science and Medicine, Nutrition and Integrative Physiology Department, Tallahassee, FL, USA
- Clermont Auvergne University, Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France
| | - Liliana I Renteria
- Florida State University, Institute of Sports Science and Medicine, Nutrition and Integrative Physiology Department, Tallahassee, FL, USA
| | - Michael J Ormsbee
- Florida State University, Institute of Sports Science and Medicine, Nutrition and Integrative Physiology Department, Tallahassee, FL, USA
- University of KwaZulu-Natal, School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, Durban, South Africa
| |
Collapse
|
8
|
Chapman S, Roberts J, Roberts AJ, Ogden H, Izard R, Smith L, Chichger H, Struszczak L, Rawcliffe AJ. Pre-sleep protein supplementation does not improve performance, body composition, and recovery in British Army recruits (part 1). Front Nutr 2023; 10:1262044. [PMID: 38144428 PMCID: PMC10748761 DOI: 10.3389/fnut.2023.1262044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Dietary protein is crucial for optimising physical training adaptations such as muscular strength and mass, which are key aims for athletic populations, including British Army recruits. New recruits fail to meet the recommended protein intake during basic training (BT), with negligible amounts consumed in the evening. This study assessed the influence of a daily bolus of protein prior to sleep on performance adaptations, body composition and recovery in British Army recruits. 99 men and 23 women [mean ± standard deviation (SD): age: 21.3 ± 3.5 years, height: 174.8 ± 8.4 cm, body mass 75.4 ± 12.2 kg] were randomised into a dietary control (CON), carbohydrate placebo (PLA), moderate (20 g) protein (MOD) or high (60 g) protein (HIGH) supplementation group. Supplements were isocaloric and were consumed on weekday evenings between 2000 and 2100 for 12 weeks during BT. Performance tests (mid-thigh pull, medicine ball throw, 2 km run time, maximal push-up, and maximal vertical jump) and body composition were assessed at the start and end of BT. Dietary intake, energy expenditure, salivary hormones, urinary nitrogen balance, perceived muscle soreness, rating of perceived exertion, mood, and fatigue were assessed at the start, middle and end of BT. Protein supplementation increased protein intake in HIGH (2.16 ± 0.50 g⸱kg-1⸱day-1) and MOD (1.71 ± 0.48 g⸱kg-1⸱day-1) compared to CON (1.17 ± 0.24 g⸱kg-1⸱day-1) and PLA (1.31 ± 0.29 g⸱kg-1⸱day-1; p < 0.001). Despite this, there was no impact of supplementation on mid-thigh pull performance (CON = 7 ± 19%, PLA = 7 ± 19%, MOD = 0 ± 16%, and HIGH = 4 ± 14%; p = 0.554) or any other performance measures (p > 0.05). Fat-free mass changes were also similar between groups (CON = 4 ± 3%, PLA = 4 ± 4%, MOD = 3 ± 3%, HIGH = 5 ± 4%, p = 0.959). There was no impact of protein supplementation on any other body composition or recovery measure. We conclude no benefits of pre-bed protein supplementation to improve performance, body composition and recovery during BT. It is possible the training stimulus was great enough, limiting the impact of protein supplementation. However, the high degree of inter-participant variability suggests an individualised use of protein supplementation should be explored, particularly in those who consume sub-optimal (<1.6 g⸱kg-1⸱day-1) habitual amounts of protein. Clinical trial registration: The study was registered with ClinicalTrials.gov, U.S. national institutes (identifier: NCT05998590).
Collapse
Affiliation(s)
- Shaun Chapman
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Andrew J. Roberts
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
| | - Henry Ogden
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
| | - Rachel Izard
- Defence Science and Technology, UK Ministry of Defence, Salisbury, United Kingdom
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, United Kingdom
| | - Havovi Chichger
- Biomedical Science Research Group, School of Life Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Lauren Struszczak
- Public Health and Sports Sciences, University of Exeter, Exeter, United Kingdom
| | - Alex J. Rawcliffe
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
9
|
Chapman S, Roberts J, Roberts AJ, Ogden H, Izard R, Smith L, Chichger H, Struszczak L, Rawcliffe AJ. Pre-sleep protein supplementation does not improve recovery from load carriage in British Army recruits (part 2). Front Nutr 2023; 10:1264042. [PMID: 38130446 PMCID: PMC10733965 DOI: 10.3389/fnut.2023.1264042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
British Army basic training (BT) is physically demanding with new recruits completing multiple bouts of physical activity each day with limited recovery. Load carriage is one of the most physically demanding BT activities and has been shown to induce acute exercise-induced muscle damage (EIMD) and impair muscle function. Protein supplementation can accelerate muscle recovery by attenuating EIMD and muscle function loss. This study investigated the impact of an additional daily bolus of protein prior to sleep throughout training on acute muscle recovery following a load carriage test in British Army recruits. Ninety nine men and 23 women (mean ± SD: age: 21.3 ± 3.5 yrs., height: 174.8 ± 8.4 cm, body mass 75.4 ± 12.2 kg) were randomized to dietary control (CON), carbohydrate placebo (PLA), moderate (20 g; MOD) or high (60 g; HIGH) protein supplementation. Muscle function (maximal jump height), perceived muscle soreness and urinary markers of muscle damage were assessed before (PRE), immediately post (POST), 24-h post (24 h-POST) and 40-h post (40 h-POST) a load carriage test. There was no impact of supplementation on muscle function at POST (p = 0.752) or 40 h-POST (p = 0.989) load carriage but jump height was greater in PLA compared to HIGH at 24 h-POST (p = 0.037). There was no impact of protein supplementation on muscle soreness POST (p = 0.605), 24 h-POST (p = 0.182) or 40 h-POST (p = 0.333). All groups had increased concentrations of urinary myoglobin and 3-methylhistidine, but there was no statistical difference between groups at any timepoint (p > 0.05). We conclude that pre-sleep protein supplementation does not accelerate acute muscle recovery following load carriage in British Army recruits during basic training. The data suggests that consuming additional energy in the form of CHO or protein was beneficial at attenuating EIMD, although it is acknowledged there were no statistical differences between groups. Although EIMD did occur as indicated by elevated urinary muscle damage markers, it is likely that the load carriage test was not arduous enough to reduce muscle function, limiting the impact of protein supplementation. Practically, protein supplementation above protein intakes of 1.2 g⸱kg-1⸱day-1 following load carriage over similar distances (4 km) and carrying similar loads (15-20 kg) does not appear to be warranted.
Collapse
Affiliation(s)
- Shaun Chapman
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Andrew J. Roberts
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
| | - Henry Ogden
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
| | - Rachel Izard
- Defence Science and Technology, UK Ministry of Defence, Salisbury, United Kingdom
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, United Kingdom
| | - Havovi Chichger
- Biomedical Science Research Group, School of Life Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Lauren Struszczak
- Public Health and Sports Sciences, University of Exeter, Exeter, United Kingdom
| | - Alex J. Rawcliffe
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
10
|
Li X, He J, Sun Q. Sleep Duration and Sarcopenia: An Updated Systematic Review and Meta-Analysis. J Am Med Dir Assoc 2023; 24:1193-1206.e5. [PMID: 37295459 DOI: 10.1016/j.jamda.2023.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES In adults, short and long sleep duration has been associated with sarcopenia risk. Studies have shown that various factors, including biological and psychological factors, could be the underlying cause of the association between aberrant sleep duration and sarcopenia risk. In this study, we have qualitatively and quantitatively summarized previously published studies on sleep duration to assess the relationship between sleep duration and sarcopenia risk in adults. This would aid in enhancing our understanding of recent advancements in this field and the association between sleep duration and sarcopenia risk. DESIGN Systematic review and meta-analysis. SETTING AND PARTICIPANTS In this review, we included studies evaluating the association between the duration of sleep and sarcopenia in adults in observational studies. METHODS Five electronic databases (PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure, and Web of Science) were searched to April 20, 2023, to identify studies related to sarcopenia and sleep duration. Next, we calculated the odds ratios (ORs) for sarcopenia prevalence based on the adjusted data from individual studies. Statistical analyses were performed using Stata 11.0. RESULTS Sarcopenia prevalence was high (18%) in adults with long sleep duration. Our results showed a significant association between short duration of sleep and high sarcopenia prevalence in older adults (OR 1.2, 95% CI 1.02-1.41, I2 = 56.6%). Furthermore, a significant association was observed between all participants with long-duration sleep and high sarcopenia prevalence (OR 1.53, 95% CI 1.34-1.75, I2 = 56.8%). We also observed significant heterogeneity in the adjusted ORs. CONCLUSIONS AND IMPLICATIONS There was a correlation between sarcopenia and short or long sleep duration, especially in older adults. In adults with a long duration of sleep, sarcopenia prevalence was relatively high.
Collapse
Affiliation(s)
- Xiaoyan Li
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qiuhua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
11
|
Trommelen J, van Lieshout GAA, Pabla P, Nyakayiru J, Hendriks FK, Senden JM, Goessens JPB, van Kranenburg JMX, Gijsen AP, Verdijk LB, de Groot LCPGM, van Loon LJC. Pre-sleep Protein Ingestion Increases Mitochondrial Protein Synthesis Rates During Overnight Recovery from Endurance Exercise: A Randomized Controlled Trial. Sports Med 2023; 53:1445-1455. [PMID: 36857005 PMCID: PMC10289916 DOI: 10.1007/s40279-023-01822-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Casein protein ingestion prior to sleep has been shown to increase myofibrillar protein synthesis rates during overnight sleep. It remains to be assessed whether pre-sleep protein ingestion can also increase mitochondrial protein synthesis rates. Though it has been suggested that casein protein may be preferred as a pre-sleep protein source, no study has compared the impact of pre-sleep whey versus casein ingestion on overnight muscle protein synthesis rates. OBJECTIVE We aimed to assess the impact of casein and whey protein ingestion prior to sleep on mitochondrial and myofibrillar protein synthesis rates during overnight recovery from a bout of endurance-type exercise. METHODS Thirty-six healthy young men performed a single bout of endurance-type exercise in the evening (19:45 h). Thirty minutes prior to sleep (23:30 h), participants ingested 45 g of casein protein, 45 g of whey protein, or a non-caloric placebo. Continuous intravenous L-[ring-13C6]-phenylalanine infusions were applied, with blood and muscle tissue samples being collected to assess overnight mitochondrial and myofibrillar protein synthesis rates. RESULTS Pooled protein ingestion resulted in greater mitochondrial (0.087 ± 0.020 vs 0.067 ± 0.016%·h-1, p = 0.005) and myofibrillar (0.060 ± 0.014 vs 0.047 ± 0.011%·h-1, p = 0.012) protein synthesis rates when compared with placebo. Casein and whey protein ingestion did not differ in their capacity to stimulate mitochondrial (0.082 ± 0.019 vs 0.092 ± 0.020%·h-1, p = 0.690) and myofibrillar (0.056 ± 0.009 vs 0.064 ± 0.018%·h-1, p = 0.440) protein synthesis rates. CONCLUSIONS Protein ingestion prior to sleep increases both mitochondrial and myofibrillar protein synthesis rates during overnight recovery from exercise. The overnight muscle protein synthetic response to whey and casein protein does not differ. CLINICAL TRIAL REGISTRATION NTR7251 .
Collapse
Affiliation(s)
- Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Glenn A A van Lieshout
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- FrieslandCampina, 3818 LE, Amersfoort, The Netherlands
| | - Pardeep Pabla
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Janneau M X van Kranenburg
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Paramalingam N, Keating BL, Chetty T, Fournier PA, Soon WHK, O’Dea JM, Roberts AG, Horowitz M, Jones TW, Davis EA. Protein Ingestion in Reducing the Risk of Late-Onset Post-Exercise Hypoglycemia: A Pilot Study in Adolescents and Youth with Type 1 Diabetes. Nutrients 2023; 15:nu15030543. [PMID: 36771250 PMCID: PMC9920079 DOI: 10.3390/nu15030543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Dietary protein causes dose-dependent hyperglycemia in individuals with type 1 diabetes (T1D). This study investigated the effect of consuming 50 g of protein on overnight blood glucose levels (BGLs) following late-afternoon moderate-intensity exercise. Six participants (3M:3F) with T1D, HbA1c 7.5 ± 0.8% (58.0 ± 8.7 mmol/mol) and aged 20.2 ± 3.1 years exercised for 45 min at 1600 h and consumed a protein drink or water alone at 2000 h, on two separate days. A basal insulin euglycemic clamp was employed to measure the mean glucose infusion rates (m-GIR) required to maintain euglycemia on both nights. The m-GIR on the protein and water nights during the hypoglycemia risk period and overnight were 0.27 ± 043 vs. 1.60 ± 0.66 mg/kg/min (p = 0.028, r = 0.63) and 0.51 ± 0.16 vs. 1.34 ± 0.71 mg/kg/min (p = 0.028, r = 0.63), respectively. Despite ceasing intravenous glucose infusion on the protein night, the BGLs peaked at 9.6 ± 1.6 mmol/L, with a hypoglycemia risk period mean of 7.8 ± 1.5 mmol/L compared to 5.9 ± 0.4 mmol/L (p = 0.028) on the water night. The mean plasma glucagon levels were 51.5 ± 14.1 and 27.2 ± 10.1 ng/L (p = 0.028) on the protein and water night, respectively. This suggests that an intake of protein is effective at reducing the post-exercise hypoglycemia risk, potentially via a glucagon-mediated stimulation of glucose production. However, 50 g of protein may be excessive for maintaining euglycemia.
Collapse
Affiliation(s)
- Nirubasini Paramalingam
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Perth, WA 6009, Australia
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-64564611
| | - Barbara L. Keating
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Perth, WA 6009, Australia
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Tarini Chetty
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Paul A. Fournier
- Department of Sport Science, Exercise and Health, School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Wayne H. K. Soon
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Joanne M. O’Dea
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Alison G. Roberts
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Perth, WA 6009, Australia
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Michael Horowitz
- CRE in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Timothy W. Jones
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Perth, WA 6009, Australia
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
- Division of Paediatrics, within the Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Elizabeth A. Davis
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Perth, WA 6009, Australia
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
- Division of Paediatrics, within the Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Kiefer AW, Martin DT. Phenomics in sport: Can emerging methodology drive advanced insights? FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:1060858. [PMID: 36926080 PMCID: PMC10012997 DOI: 10.3389/fnetp.2022.1060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Methodologies in applied sport science have predominantly driven a reductionist grounding to component-specific mechanisms to drive athlete training and care. While linear mechanistic approaches provide useful insights, they have impeded progress in the development of more complex network physiology models that consider the temporal and spatial interactions of multiple factors within and across systems and subsystems. For this, a more sophisticated approach is needed and the development of such a methodological framework can be considered a Sport Grand Challenge. Specifically, a transdisciplinary phenomics-based scientific and modeling framework has merit. Phenomics is a relatively new area in human precision medicine, but it is also a developed area of research in the plant and evolutionary biology sciences. The convergence of innovative precision medicine, portable non-destructive measurement technologies, and advancements in modeling complex human behavior are central for the integration of phenomics into sport science. The approach enables application of concepts such as phenotypic fitness, plasticity, dose-response dynamics, critical windows, and multi-dimensional network models of behavior. In addition, profiles are grounded in indices of change, and models consider the athlete's performance or recovery trajectory as a function of their dynamic environment. This new framework is introduced across several example sport science domains for potential integration. Specific factors of emphasis are provided as potential candidate fitness variables and example profiles provide a generalizable modeling approach for precision training and care. Finally, considerations for the future are discussed, including scaling from individual athletes to teams and additional factors necessary for the successful implementation of phenomics.
Collapse
Affiliation(s)
- Adam W. Kiefer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David T. Martin
- Apeiron Life, Menlo Park, CA, United States
- School of Behavioral and Health Sciences, Australia Catholic University, Melbourne, NSW, Australia
| |
Collapse
|
14
|
Muscle-Related Effect of Whey Protein and Vitamin D 3 Supplementation Provided before or after Bedtime in Males Undergoing Resistance Training. Nutrients 2022; 14:nu14112289. [PMID: 35684089 PMCID: PMC9183069 DOI: 10.3390/nu14112289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
There is increasing evidence that dietary protein intake with leucine and vitamin D is an important factor in muscle protein synthesis. This study investigated the combined effects of consuming whey protein and vitamin D3 in the evening before bedtime or in the morning after sleeping on muscle mass and strength. Healthy, untrained males (N = 42; Age = 18-24 year) were randomly assigned into three groups: before bedtime, after sleeping, and control. Subjects underwent a 6-week resistance training program in combination with supplements that provided 25 g whey protein and 4000 IU vitamin D3 for the before bedtime and after sleeping groups and a 5 g maltodextrin placebo for the control group. A significant increase in serum vitamin D was observed in both before bedtime and after sleeping groups. All groups experienced a significant gain in leg press. However, the control group did not experience significant improvements in muscle mass and associated blood hormones that were experienced by the before bedtime and after sleeping groups. No significant differences in assessed values were observed between the before bedtime and after sleeping groups. These findings suggest that the combination of whey protein and vitamin D supplements provided either before or after sleep resulted in beneficial increases in muscle mass in young males undergoing resistance training that exceeded the changes observed without these supplements.
Collapse
|
15
|
Sejbuk M, Mirończuk-Chodakowska I, Witkowska AM. Sleep Quality: A Narrative Review on Nutrition, Stimulants, and Physical Activity as Important Factors. Nutrients 2022; 14:nu14091912. [PMID: 35565879 PMCID: PMC9103473 DOI: 10.3390/nu14091912] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Sleep is a cyclically occurring, transient, and functional state that is controlled primarily by neurobiological processes. Sleep disorders and insomnia are increasingly being diagnosed at all ages. These are risk factors for depression, mental disorders, coronary heart disease, metabolic syndrome, and/or high blood pressure. A number of factors can negatively affect sleep quality, including the use of stimulants, stress, anxiety, and the use of electronic devices before sleep. A growing body of evidence suggests that nutrition, physical activity, and sleep hygiene can significantly affect the quality of sleep. The aim of this review was to discuss the factors that can affect sleep quality, such as nutrition, stimulants, and physical activity.
Collapse
Affiliation(s)
- Monika Sejbuk
- Correspondence: ; Tel.: +48-85-686-5088; Fax: +48-85-686-5089
| | | | | |
Collapse
|
16
|
Hao Y, Li X, Zhu Z, Cao ZB. Pre-sleep Protein Supplementation Affects Energy Metabolism and Appetite in Sedentary Healthy Adults. Front Nutr 2022; 9:873236. [PMID: 35571934 PMCID: PMC9105224 DOI: 10.3389/fnut.2022.873236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To assess the acute effect of pre-sleep protein supplementation combined with resistance exercise on energy metabolism (including 24-h total energy expenditure (TEE), sleep energy expenditure (SEE), basal energy expenditure (BEE), glycolipid oxidation, and appetite of sedentary adults. Methods A total of thirty-one sedentary participants completed this randomized, double-blind, crossover study. Participants completed the following 24-h experimental conditions in random order in the Human Calorimeter chamber: (1) 40-g protein supplementation with dinner before a nighttime resistance exercise, and followed by pre-sleep placebo intake (PRO-PLA); (2) placebo intake with dinner before a nighttime resistance exercise, and followed by pre-sleep 40-g protein supplementation (PLA-PRO); and (3) placebo supplementation both with dinner and pre-sleep combined with a nighttime resistance exercise (PLA). Subjective appetite score before breakfast the next day was evaluated using the visual analog scale. Results The SEE values were significantly higher by a mean of 21.7 kcal and 33.3 kcal in PRO-PLA (318.3 ± 44.3 kcal) and PLA-PRO (329.9 ± 45.2 kcal), respectively, than in PLA (296.6 ± 46.6 kcal). In addition, the SEE values for PLA-PRO was also significantly higher by 11.6 kcal than that for PRO-PLA. Further, the fullness the next morning was significantly higher by 30.8% in PLA-PRO (43.9 ± 23.5 mm) than in PLA (33.5 ± 26.6 mm). These effects remained after adjustment for 24-h energy intake. Conclusion Pre-sleep protein supplementation combined with resistance exercise can significantly increase the SEE and fullness in the next morning, indicating a possible strategy to improve sleep energy metabolism in the sedentary population.
Collapse
Affiliation(s)
- Yingying Hao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xingchen Li
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zheng Zhu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhen-Bo Cao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Zhen-Bo Cao,
| |
Collapse
|
17
|
Ormsbee MJ, Saracino PG, Morrissey MC, Donaldson J, Rentería LI, McKune AJ. Pre-sleep protein supplementation after an acute bout of evening resistance exercise does not improve next day performance or recovery in resistance trained men. J Int Soc Sports Nutr 2022; 19:164-178. [PMID: 35599912 PMCID: PMC9116400 DOI: 10.1080/15502783.2022.2036451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background To evaluate the effect of pre-sleep protein supplementation after an acute bout of evening resistance training on next day performance and recovery the following day in physically active men. Methods Eighteen resistance trained men performed a single bout of resistance exercise then received either a pre-sleep protein (PRO) supplement containing 40 g of casein protein (PRO; n = 10; mean ± SD; age = 24 ± 4 yrs; height = 1.81 ± 0.08 m; weight = 84.9 ± 9.5 kg) or a non-caloric, flavor matched placebo (PLA; n = 8; age = 28 ± 10 yrs; height = 1.81 ± 0.07 m; weight = 86.7 ± 11.0 kg) 30 min before sleep (1 h after a standard recovery drink). Blood samples were obtained pre-exercise and the following morning (+12-h) to measure creatine kinase and C-reactive protein. Visual analog scales were utilized to assess perceived pain, hunger, and recovery. One-repetition maximum (1RM) tests for barbell bench press and squat were performed pre-exercise and the following morning (+12-h). Statistical analysis was performed using SPSS (V.23) and p ≤ 0.05 was considered statistically significant. Results There were no significant differences between the groups in next morning performance or muscle damage biomarkers. However, pre-sleep PRO resulted in a lower perception of hunger that approached significance the following morning when compared to PLA (PRO:43.6 ± 31.2, PLA: 69.4 ± 2.22; 95% C.I. = −53.6, 2.0; p = 0.07; d = 0.95). Conclusions Following an evening bout of exercise, pre-sleep PRO did not further improve next morning muscle damage biomarkers or maximal strength performance in resistance trained men compared to a non-caloric PLA. However, there may be implications for lower perceived hunger the next morning with pre-sleep PRO consumption compared to PLA.
Collapse
Affiliation(s)
- Michael J. Ormsbee
- Institute of Sports Science and Medicine, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, USA
- School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Patrick G. Saracino
- Institute of Sports Science and Medicine, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, USA
| | | | - Jaymie Donaldson
- School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Liliana I. Rentería
- Institute of Sports Science and Medicine, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, USA
| | - Andrew J. McKune
- Institute of Sports Science and Medicine, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, USA
- School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
- Research Institute for Sport and Exercise Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
18
|
“Food First but Not Always Food Only”: Recommendations for Using Dietary Supplements in Sport. Int J Sport Nutr Exerc Metab 2022; 32:371-386. [DOI: 10.1123/ijsnem.2021-0335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
Abstract
The term “food first” has been widely accepted as the preferred strategy within sport nutrition, although there is no agreed definition of this and often limited consideration of the implications. We propose that food first should mean “where practically possible, nutrient provision should come from whole foods and drinks rather than from isolated food components or dietary supplements.” There are many reasons to commend a food first strategy, including the risk of supplement contamination resulting in anti-doping violations. However, a few supplements can enhance health and/or performance, and therefore a food only approach could be inappropriate. We propose six reasons why a food only approach may not always be optimal for athletes: (a) some nutrients are difficult to obtain in sufficient quantities in the diet, or may require excessive energy intake and/or consumption of other nutrients; (b) some nutrients are abundant only in foods athletes do not eat/like; (c) the nutrient content of some foods with established ergogenic benefits is highly variable; (d) concentrated doses of some nutrients are required to correct deficiencies and/or promote immune tolerance; (e) some foods may be difficult to consume immediately before, during or immediately after exercise; and (f) tested supplements could help where there are concerns about food hygiene or contamination. In these situations, it is acceptable for the athlete to consider sports supplements providing that a comprehensive risk minimization strategy is implemented. As a consequence, it is important to stress that the correct terminology should be “food first but not always food only.”
Collapse
|
19
|
Mathewson SL, Gordon AL, Smith K, Atherton PJ, Greig CA, Phillips BE. Determining the Influence of Habitual Dietary Protein Intake on Physiological Muscle Parameters in Youth and Older Age. Nutrients 2021; 13:nu13103560. [PMID: 34684561 PMCID: PMC8539198 DOI: 10.3390/nu13103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Protein ingestion is a potent stimulator of skeletal muscle protein synthesis (MPS). However, older adults demonstrate resistance to anabolic stimuli. Some evidence has demonstrated that a larger acute protein dose is required in older compared to younger adults to elicit the same synthetic response, suggesting that older adults should be consuming higher habitual dietary protein to optimise muscle mass. However, limited research has explored dietary habits in different age groups or the relationship between habitual dietary intake and mechanistic physiological parameters associated with muscle mass and function. This work investigated the effect of habitual dietary intake in young (n = 10, 25.9 (3.2y)) and older (n = 16, 70.2 (3.2y)) community-dwelling adults (16:10 male: female) on physiological muscle parameters. Dietary intake was assessed using four-day diet diaries. Post-absorptive MPS and MPS responses to feeding (4.25x basal metabolic rate; 16% protein) were determined in muscle biopsies of the m. vastus lateralis via stable isotope tracer ([1, 2-13C2]-leucine) infusions with mass-spectrometric analyses. Body composition was measured by dual-energy x-ray absorptiometry. Whole body strength was assessed via 1-repetition maximum assessments. No significant differences in habitual dietary intake (protein, fat, carbohydrate and leucine as g.kgWBLM-1.day-1) were observed between age groups. Whole-body lean mass (61.8 ± 9.9 vs. 49.8 ± 11.9 kg, p = 0.01) and knee-extensor strength (87.7 ± 28.3 vs. 56.8 ± 16.4 kg, p = 0.002) were significantly higher in young adults. Habitual protein intake (g.kg-1.day-1) was not associated with whole-body lean mass, upper-leg lean mass, whole-body strength, knee-extensor strength, basal MPS or fed-state MPS across both age groups. These findings suggest that differences in muscle mass and strength parameters between youth and older age are not explained by differences in habitual dietary protein intake. Further research with a larger sample size is needed to fully explore these relationships and inform on interventions to mitigate sarcopenia development.
Collapse
Affiliation(s)
- Sophie L. Mathewson
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK; (S.L.M.); (C.A.G.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Adam L. Gordon
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Derby DE22 3DT, UK; (A.L.G.); (K.S.); (P.J.A.)
- Department of Medicine for the Elderly, University Hospitals of Derby and Burton NHS Foundation Trust, Derby DE22 3NE, UK
| | - Kenneth Smith
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Derby DE22 3DT, UK; (A.L.G.); (K.S.); (P.J.A.)
| | - Philip J. Atherton
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Derby DE22 3DT, UK; (A.L.G.); (K.S.); (P.J.A.)
| | - Carolyn A. Greig
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK; (S.L.M.); (C.A.G.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Edgbaston B15 2TT, UK
| | - Bethan E. Phillips
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Derby DE22 3DT, UK; (A.L.G.); (K.S.); (P.J.A.)
- Correspondence:
| |
Collapse
|
20
|
Sheridan HC, Parker LJF, Hammond KM. DIETARY SUPPLEMENTS FOR CONSIDERATION IN ELITE FEMALE FOOTBALLERS. Eur J Sport Sci 2021; 22:733-744. [PMID: 34623938 DOI: 10.1080/17461391.2021.1988149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The physical demands of professional female football have intensified in recent years. Supplements are only advised in addition to a healthy, balanced diet, but may warrant a greater prevalence in the professional game to support well-being, recovery, and performance. Supplements used by players should be safe, legal, and scientifically proven to be effective. An individual approach should be taken to using supplements dependant on the needs and goals of the player. Female players should aim to improve the frequency of protein intake throughout the day, whilst tailoring doses to individual body mass. Vitamin D supplementation is vital throughout the winter months in countries with limited sun exposure, however doses should be administered based on individual blood test results. Iron is likely to be important to the well-being of female athletes throughout the season, in particular during the menses. Omega-3 and collagen may be of greater benefit to female than male athletes during recovery from soft tissue injury, whilst probiotics and creatine are beneficial throughout the season for reducing risk of illness and optimising recovery, respectively. Ergogenic supplements for football include beta-alanine, nitrate and caffeine. Caution should be taken with caffeine use due to the varying tolerance of difference athletes and sleep impairments that can follow.
Collapse
Affiliation(s)
| | - Lloyd J F Parker
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kelly M Hammond
- School of Health & Society, University of Salford, Manchester, M54WT
| |
Collapse
|
21
|
Latimer MN, Sonkar R, Mia S, Frayne IR, Carter KJ, Johnson CA, Rana S, Xie M, Rowe GC, Wende AR, Prabhu SD, Frank SJ, Rosiers CD, Chatham JC, Young ME. Branched chain amino acids selectively promote cardiac growth at the end of the awake period. J Mol Cell Cardiol 2021; 157:31-44. [PMID: 33894212 PMCID: PMC8319101 DOI: 10.1016/j.yjmcc.2021.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Essentially all biological processes fluctuate over the course of the day, manifesting as time-of-day-dependent variations with regards to the way in which organ systems respond to normal behaviors. For example, basic, translational, and epidemiologic studies indicate that temporal partitioning of metabolic processes governs the fate of dietary nutrients, in a manner in which concentrating caloric intake towards the end of the day is detrimental to both cardiometabolic and cardiovascular parameters. Despite appreciation that branched chain amino acids impact risk for obesity, diabetes mellitus, and heart failure, it is currently unknown whether the time-of-day at which dietary BCAAs are consumed influence cardiometabolic/cardiovascular outcomes. Here, we report that feeding mice a BCAA-enriched meal at the end of the active period (i.e., last 4 h of the dark phase) rapidly increases cardiac protein synthesis and mass, as well as cardiomyocyte size; consumption of the same meal at the beginning of the active period (i.e., first 4 h of the dark phase) is without effect. This was associated with a greater BCAA-induced activation of mTOR signaling in the heart at the end of the active period; pharmacological inhibition of mTOR (through rapamycin) blocked BCAA-induced augmentation of cardiac mass and cardiomyocyte size. Moreover, genetic disruption of the cardiomyocyte circadian clock abolished time-of-day-dependent fluctuations in BCAA-responsiveness. Finally, we report that repetitive consumption of BCAA-enriched meals at the end of the active period accelerated adverse cardiac remodeling and contractile dysfunction in mice subjected to transverse aortic constriction. Thus, our data demonstrate that the timing of BCAA consumption has significant implications for cardiac health and disease.
Collapse
Affiliation(s)
- Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ravi Sonkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Isabelle Robillard Frayne
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada
| | - Karen J Carter
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher A Johnson
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samir Rana
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Glenn C Rowe
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada
| | - John C Chatham
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
22
|
Wageh M, Fortino SA, McGlory C, Kumbhare D, Phillips SM, Parise G. The Effect of a Multi-ingredient Supplement on Resistance Training-induced Adaptations. Med Sci Sports Exerc 2021; 53:1699-1707. [PMID: 33756525 DOI: 10.1249/mss.0000000000002641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Resistance exercise training (RET) induces muscle hypertrophy that, when combined with co-temporal protein ingestion, is enhanced. However, fewer studies have been conducted when RET is combined with multi-ingredient supplements. PURPOSE We aimed to determine the effect of a high-quality multi-ingredient nutritional supplement (SUPP) versus an isonitrogenous (lower protein quality), isoenergetic placebo (PL) on RET-induced gains in lean body mass (LBM), muscle thickness, and muscle cross-sectional area (CSA). We hypothesized that RET-induced gains in LBM and muscle CSA would be greater in SUPP versus PL. METHODS In a double-blind randomized controlled trial, 26 (13 male, 13 female) healthy young adults (mean ± SD, 22 ± 2 yr) were randomized to either the SUPP group (n = 13; 20 g whey protein, 2 g leucine, 2.5 g creatine monohydrate, 300 mg calcium citrate, 1000 IU vitamin D) or the PL group (n = 13; 20 g collagen peptides, 1.4 g alanine, 0.6 g glycine) groups, ingesting their respective supplements twice daily. Measurements were obtained before and after a 10-wk linear progressive RET program. RESULTS Greater increases in LBM were observed for SUPP versus PL (SUPP: +4.1 ± 1.3 kg, PL: +2.8 ± 1.7 kg, P < 0.05). No additive effect of the supplement could be detected on vastus lateralis muscle CSA, but SUPP did result in increased biceps brachii muscle CSA and thickness (P < 0.05). CONCLUSIONS We conclude that when combined with RET, the consumption of SUPP increased LBM and upper-body CSA and thickness to a greater extent than to that observed in the PL group of healthy young adults.
Collapse
Affiliation(s)
- Mai Wageh
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Stephen A Fortino
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, CANADA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
23
|
Chapman S, Chung HC, Rawcliffe AJ, Izard R, Smith L, Roberts JD. Does Protein Supplementation Support Adaptations to Arduous Concurrent Exercise Training? A Systematic Review and Meta-Analysis with Military Based Applications. Nutrients 2021; 13:1416. [PMID: 33922458 PMCID: PMC8145048 DOI: 10.3390/nu13051416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
We evaluated the impact of protein supplementation on adaptations to arduous concurrent training in healthy adults with potential applications to individuals undergoing military training. Peer-reviewed papers published in English meeting the population, intervention, comparison and outcome criteria were included. Database searches were completed in PubMed, Web of science and SPORTDiscus. Study quality was evaluated using the COnsensus based standards for the selection of health status measurement instruments checklist. Of 11 studies included, nine focused on performance, six on body composition and four on muscle recovery. Cohen's d effect sizes showed that protein supplementation improved performance outcomes in response to concurrent training (ES = 0.89, 95% CI = 0.08-1.70). When analysed separately, improvements in muscle strength (SMD = +4.92 kg, 95% CI = -2.70-12.54 kg) were found, but not in aerobic endurance. Gains in fat-free mass (SMD = +0.75 kg, 95% CI = 0.44-1.06 kg) and reductions in fat-mass (SMD = -0.99, 95% CI = -1.43-0.23 kg) were greater with protein supplementation. Most studies did not report protein turnover, nitrogen balance and/or total daily protein intake. Therefore, further research is warranted. However, our findings infer that protein supplementation may support lean-mass accretion and strength gains during arduous concurrent training in physical active populations, including military recruits.
Collapse
Affiliation(s)
- Shaun Chapman
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, Wiltshire SN9 6BE, UK;
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Henry C. Chung
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Alex J. Rawcliffe
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, Wiltshire SN9 6BE, UK;
| | - Rachel Izard
- Defence Science and Technology, Porton Down, UK Ministry of Defence, Salisbury, Wiltshire SP4 0JQ, UK;
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| |
Collapse
|
24
|
Strasser B, Pesta D, Rittweger J, Burtscher J, Burtscher M. Nutrition for Older Athletes: Focus on Sex-Differences. Nutrients 2021; 13:nu13051409. [PMID: 33922108 PMCID: PMC8143537 DOI: 10.3390/nu13051409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Regular physical exercise and a healthy diet are major determinants of a healthy lifespan. Although aging is associated with declining endurance performance and muscle function, these components can favorably be modified by regular physical activity and especially by exercise training at all ages in both sexes. In addition, age-related changes in body composition and metabolism, which affect even highly trained masters athletes, can in part be compensated for by higher exercise metabolic efficiency in active individuals. Accordingly, masters athletes are often considered as a role model for healthy aging and their physical capacities are an impressive example of what is possible in aging individuals. In the present review, we first discuss physiological changes, performance and trainability of older athletes with a focus on sex differences. Second, we describe the most important hormonal alterations occurring during aging pertaining regulation of appetite, glucose homeostasis and energy expenditure and the modulatory role of exercise training. The third part highlights nutritional aspects that may support health and physical performance for older athletes. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low bone and muscle mass and a higher demand for specific nutrients (e.g., vitamin D and probiotics) that may reduce the infection burden in masters athletes. Fourth, we present important research findings on the association between exercise, nutrition and the microbiota, which represents a rapidly developing field in sports nutrition.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria
- Correspondence: ; Tel.: +43-(0)1-798-40-98
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), D-85764 Neuherberg, Germany
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
25
|
Morgan PT, Breen L. The role of protein hydrolysates for exercise-induced skeletal muscle recovery and adaptation: a current perspective. Nutr Metab (Lond) 2021; 18:44. [PMID: 33882976 PMCID: PMC8061049 DOI: 10.1186/s12986-021-00574-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
The protein supplement industry is expanding rapidly and estimated to have a multi-billion market worth. Recent research has centred on understanding how the manufacturing processes of protein supplements may impact muscle recovery and remodeling. The hydrolysed forms of protein undergo a further heating extraction process during production which may contribute to amino acids (AA) appearing in circulation at a slightly quicker rate, or greater amplitude, than the intact form. Whilst the relative significance of the rate of aminoacidemia to muscle protein synthesis is debated, it has been suggested that protein hydrolysates, potentially through the more rapid delivery and higher proportion of di-, tri- and smaller oligo-peptides into circulation, are superior to intact non-hydrolysed proteins and free AAs in promoting skeletal muscle protein remodeling and recovery. However, despite these claims, there is currently insufficient evidence to support superior muscle anabolic properties compared with intact non-hydrolysed proteins and/or free AA controls. Further research is warranted with appropriate protein controls, particularly in populations consuming insufficient amounts of protein, to support and/or refute an important muscle anabolic role of protein hydrolysates. The primary purpose of this review is to provide the reader with a current perspective on the potential anabolic effects of protein hydrolysates in individuals wishing to optimise recovery from, and maximise adaptation to, exercise training.
Collapse
Affiliation(s)
- Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
26
|
IJmker-Hemink V, Moolhuijzen N, Wanten G, van den Berg M. High Frequency Protein-Rich Meal Service to Promote Protein Distribution to Stimulate Muscle Function in Preoperative Patients. Nutrients 2021; 13:nu13041232. [PMID: 33917987 PMCID: PMC8068324 DOI: 10.3390/nu13041232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/02/2022] Open
Abstract
Apart from meeting daily protein requirements, an even distribution of protein consumption is proposed instrumental to optimizing protein muscle synthesis and preserving muscle mass. We assessed whether a high frequency protein-rich meal service for three weeks contributes to an even daily protein distribution and a higher muscle function in pre-operative patients. This study was a post-hoc analysis of a randomized controlled trial (RCT) in 102 patients. The intervention comprised six protein-rich dishes per day. Daily protein distribution was evaluated by a three-day food diary and muscle function by handgrip strength before and after the intervention. Protein intake was significantly higher in the intervention group at the in-between meals in the morning (7 ± 2 grams (g) vs. 2 ± 3 g, p < 0.05) and afternoon (8 ± 3 g vs. 2 ± 3 g, p < 0.05). Participants who consumed 20 g protein for at least two meals had a significantly higher handgrip strength compared to participants who did not. A high frequency protein-rich meal service is an effective strategy to optimize an even protein distribution across meals throughout the day. Home-delivered meal services can be optimized by offering more protein-rich options such as dairy or protein supplementation at breakfast, lunch and prior to sleep for a better protein distribution.
Collapse
Affiliation(s)
- Vera IJmker-Hemink
- Department of Gastroenterology and Hepatology, Dietetics and Intestinal Failure, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands;
- Correspondence: ; Tel.: +31-243-614-760
| | - Nicky Moolhuijzen
- Department of Gastroenterology and Hepatology, Dietetics and Intestinal Failure, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands;
| | - Geert Wanten
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (G.W.); (M.v.d.B.)
| | - Manon van den Berg
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (G.W.); (M.v.d.B.)
| |
Collapse
|
27
|
Costa JV, Michel JM, Madzima TA. The Acute Effects of a Relative Dose of Pre-Sleep Protein on Recovery Following Evening Resistance Exercise in Active Young Men. Sports (Basel) 2021; 9:sports9040044. [PMID: 33810526 PMCID: PMC8066358 DOI: 10.3390/sports9040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study was to assess the acute effects of pre-sleep consumption of isocaloric casein protein (CP), CP and whey protein (BLEND), or non-caloric control (CTRL) at a dose relative to lean body mass (LBM) on recovery following an evening lower-body resistance exercise (RE) bout. Fifteen active and previously resistance-trained males (age: 21 ± 1 years, body fat: 14.2 ± 2.7%) participated in this randomized, single-blind, crossover study. Participants performed an evening lower-body RE bout and were provided with 0.4 g/kg/LBM of whey protein (WP) supplement post-RE. A single dose of 0.6 g/kg/LBM of CP, 0.4 g/kg/LBM of CP and 0.2 g/kg/LBM WP (BLEND), or CTRL was consumed 30 min prior to sleep. Measurements of perceived recovery (visual analogue scales (VAS) for recovery, soreness, and fatigue), appetite (VAS for hunger, satiety, and desire to eat), as well as pressure-pain threshold (dolorimeter), average power, and peak torque (isokinetic dynamometry) of the right thigh muscles were assessed the following morning. Main effects of time were seen for all recovery variables (perceived recovery: F2,28 = 96.753, p < 0.001, hp2 = 0.874; perceived fatigue: F2,28 = 76.775, p < 0.001; hp2 = 0.846; perceived soreness: F2,28 = 111.967, p < 0.001; hp2 = 0.889). A main effect of supplement was only seen for perceived recovery (F2,28 = 4.869; p = 0.015; hp2 = 0.258), with recovery being 6.10 ± 2.58 mm greater in CP vs. BLEND (p = 0.033) and 7.51 ± 2.28 mm greater in CP than CTRL (p = 0.005). No main effects of supplement were seen in measures of perceived soreness, or fatigue (F2,28 ≤ 2.291; p > 0.120; hp2 ≤ 0.141). No differences between supplements were found in perceived next-morning hunger (p = 0.06), satiety (p ≥ 0.227), or desire to eat (p = 0.528). Main effects of supplement were seen between BLEND and CP vs. CTRL for measures of pain-pressure threshold at the rectus femoris (F2,28 = 9.377; p = 0.001; hp2 = 0.401), the vastus lateralis (F2,28 = 10.887; p < 0.001; hp2 = 0.437), and the vastus medialis (F2,28 = 12.113, p < 0.001; hp2 = 0.464). Values of peak torque and average power were similar between all supplement groups at 60°/sec (F1.309,18.327 ≤ 1.994; p ≥ 0.173; hp2 ≤ 0.125), 180°/s (F2,28 ≤ 1.221; p ≥ 0.310; hp2 ≤ 0.080), and 300°/sec (F2,28 ≤ 2.854; p ≥ 0.074; hp2 ≤ 0.169). Pre-sleep consumption of CP and BLEND at a dose relative to LBM may enhance perceived overnight recovery to a greater extent than CTRL as a result of less muscle soreness the following morning after an acute evening RE bout.
Collapse
Affiliation(s)
- Juliana V. Costa
- Energy Metabolism and Body Composition Laboratory, Department of Exercise Science, Elon University, 100 Campus Drive, Elon, NC 27244, USA;
- Department of Health and Exercise Science, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27101, USA;
| | - J. Max Michel
- Department of Health and Exercise Science, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27101, USA;
| | - Takudzwa A. Madzima
- Energy Metabolism and Body Composition Laboratory, Department of Exercise Science, Elon University, 100 Campus Drive, Elon, NC 27244, USA;
- Correspondence: ; Tel.: +1-336-278-6791
| |
Collapse
|
28
|
The Effect of Protein Supplementation versus Carbohydrate Supplementation on Muscle Damage Markers and Soreness Following a 15-km Road Race: A Double-Blind Randomized Controlled Trial. Nutrients 2021; 13:nu13030858. [PMID: 33807745 PMCID: PMC7999032 DOI: 10.3390/nu13030858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
We assessed whether a protein supplementation protocol could attenuate running-induced muscle soreness and other muscle damage markers compared to iso-caloric placebo supplementation. A double-blind randomized controlled trial was performed among 323 recreational runners (age 44 ± 11 years, 56% men) participating in a 15-km road race. Participants received milk protein or carbohydrate supplementation, for three consecutive days post-race. Habitual protein intake was assessed using 24 h recalls. Race characteristics were determined and muscle soreness was assessed with the Brief Pain Inventory at baseline and 1-3 days post-race. In a subgroup (n = 149) muscle soreness was measured with a strain gauge algometer and creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations were measured. At baseline, no group-differences were observed for habitual protein intake (protein group: 79.9 ± 26.5 g/d versus placebo group: 82.0 ± 26.8 g/d, p = 0.49) and muscle soreness (protein: 0.45 ± 1.08 versus placebo: 0.44 ± 1.14, p = 0.96). Subjects completed the race with a running speed of 12 ± 2 km/h. With the Intention-to-Treat analysis no between-group differences were observed in reported muscle soreness. With the per-protocol analysis, however, the protein group reported higher muscle soreness 24 h post-race compared to the placebo group (2.96 ± 2.27 versus 2.46 ± 2.38, p = 0.039) and a lower pressure muscle pain threshold in the protein group compared to the placebo group (71.8 ± 30.0 N versus 83.9 ± 27.9 N, p = 0.019). No differences were found in concentrations of CK and LDH post-race between groups. Post-exercise protein supplementation is not more preferable than carbohydrate supplementation to reduce muscle soreness or other damage markers in recreational athletes with mostly a sufficient baseline protein intake running a 15-km road race.
Collapse
|
29
|
de Hart NM, Mahmassani ZS, Reidy PT, Kelley JJ, McKenzie AI, Petrocelli JJ, Bridge MJ, Baird LM, Bastian ED, Ward LS, Howard MT, Drummond MJ. Acute Effects of Cheddar Cheese Consumption on Circulating Amino Acids and Human Skeletal Muscle. Nutrients 2021; 13:614. [PMID: 33668674 PMCID: PMC7917914 DOI: 10.3390/nu13020614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cheddar cheese is a protein-dense whole food and high in leucine content. However, no information is known about the acute blood amino acid kinetics and protein anabolic effects in skeletal muscle in healthy adults. Therefore, we conducted a crossover study in which men and women (n = 24; ~27 years, ~23 kg/m2) consumed cheese (20 g protein) or an isonitrogenous amount of milk. Blood and skeletal muscle biopsies were taken before and during the post absorptive period following ingestion. We evaluated circulating essential and non-essential amino acids, insulin, and free fatty acids and examined skeletal muscle anabolism by mTORC1 cellular localization, intracellular signaling, and ribosomal profiling. We found that cheese ingestion had a slower yet more sustained branched-chain amino acid circulation appearance over the postprandial period peaking at ~120 min. Cheese also modestly stimulated mTORC1 signaling and increased membrane localization. Using ribosomal profiling we found that, though both milk and cheese stimulated a muscle anabolic program associated with mTORC1 signaling that was more evident with milk, mTORC1 signaling persisted with cheese while also inducing a lower insulinogenic response. We conclude that Cheddar cheese induced a sustained blood amino acid and moderate muscle mTORC1 response yet had a lower glycemic profile compared to milk.
Collapse
Affiliation(s)
- Naomi M.M.P. de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA;
| | - Ziad S. Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Paul T. Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, 420 S Oak St., Oxford, OH 45056, USA;
| | - Joshua J. Kelley
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Alec I. McKenzie
- Geoge E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, 500 Foothill Dr., Salt Lake City, UT 84148, USA;
| | - Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Michael J. Bridge
- Cell Imaging Facility, University of Utah, 30 N 2030 E, Salt Lake City, UT 84112, USA;
| | - Lisa M. Baird
- Department of Human Genetics, 15 N 2030 E, Salt Lake City, UT 84112, USA; (L.M.B.); (M.T.H.)
| | - Eric D. Bastian
- Dairy West Innovation Partnerships, 195 River Vista Place #306, Twin Falls, ID 83301, USA;
| | - Loren S. Ward
- Glanbia Nutritionals Research, 450 Falls Avenue #255, Twin Falls, ID 83301, USA;
| | - Michael T. Howard
- Department of Human Genetics, 15 N 2030 E, Salt Lake City, UT 84112, USA; (L.M.B.); (M.T.H.)
| | - Micah J. Drummond
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA;
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| |
Collapse
|
30
|
Nutritional Practice and Nitrogen Balance in Elite Japanese Swimmers during a Training Camp. Sports (Basel) 2021; 9:sports9020017. [PMID: 33494249 PMCID: PMC7909811 DOI: 10.3390/sports9020017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
The protein requirement in athletes increases as a result of exercise-induced changes in protein metabolism. In addition, the frequency, quantity, and quality (i.e., leucine content) of the protein intake modulates the protein metabolism. Thus, this study aimed to investigate whether nutritional practice (particularly, protein and amino acid intake at each eating occasion) meets the protein needs required to achieve zero nitrogen balance in elite swimmers during a training camp. Eight elite swimmers (age 21.9 ± 2.3 years, body weight 64.2 ± 7.1 kg, sex M:2 F:6) participated in a four-day study. The nitrogen balance was calculated from the dietary nitrogen intake and urinary nitrogen excretion. The amino acid intake was divided over six eating occasions. The nitrogen balance was found to be positive (6.7 ± 3.1 g N/day, p < 0.05) with protein intake of 2.96 ± 0.74 g/kg/day. The frequency and quantity of leucine and the protein intake were met within the recommended range established by the International Society of Sports Nutrition. Thus, a protein intake of 2.96 g/kg/day with a well-designated pattern (i.e., frequency throughout the day, as well as quantity and quality) of protein and amino acid intake may satisfy the increased need for protein in an elite swimmer.
Collapse
|
31
|
Collins J, Maughan RJ, Gleeson M, Bilsborough J, Jeukendrup A, Morton JP, Phillips SM, Armstrong L, Burke LM, Close GL, Duffield R, Larson-Meyer E, Louis J, Medina D, Meyer F, Rollo I, Sundgot-Borgen J, Wall BT, Boullosa B, Dupont G, Lizarraga A, Res P, Bizzini M, Castagna C, Cowie CM, D'Hooghe M, Geyer H, Meyer T, Papadimitriou N, Vouillamoz M, McCall A. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br J Sports Med 2020; 55:416. [PMID: 33097528 DOI: 10.1136/bjsports-2019-101961] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Football is a global game which is constantly evolving, showing substantial increases in physical and technical demands. Nutrition plays a valuable integrated role in optimising performance of elite players during training and match-play, and maintaining their overall health throughout the season. An evidence-based approach to nutrition emphasising, a 'food first' philosophy (ie, food over supplements), is fundamental to ensure effective player support. This requires relevant scientific evidence to be applied according to the constraints of what is practical and feasible in the football setting. The science underpinning sports nutrition is evolving fast, and practitioners must be alert to new developments. In response to these developments, the Union of European Football Associations (UEFA) has gathered experts in applied sports nutrition research as well as practitioners working with elite football clubs and national associations/federations to issue an expert statement on a range of topics relevant to elite football nutrition: (1) match day nutrition, (2) training day nutrition, (3) body composition, (4) stressful environments and travel, (5) cultural diversity and dietary considerations, (6) dietary supplements, (7) rehabilitation, (8) referees and (9) junior high-level players. The expert group provide a narrative synthesis of the scientific background relating to these topics based on their knowledge and experience of the scientific research literature, as well as practical experience of applying knowledge within an elite sports setting. Our intention is to provide readers with content to help drive their own practical recommendations. In addition, to provide guidance to applied researchers where to focus future efforts.
Collapse
Affiliation(s)
- James Collins
- Intra Performance Group, London, UK.,Performance and Research Team, Arsenal Football Club, London, UK
| | | | - Michael Gleeson
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Johann Bilsborough
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia.,New England Patriots, Foxboro, MA, USA
| | - Asker Jeukendrup
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.,MySport Science, Birmingham, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S M Phillips
- Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence Armstrong
- Human Performance Laboratory, University of Connecticut, Storrs, CT, USA
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rob Duffield
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia.,Medical Department, Football Federation Australia, Sydney, New South Wales, Australia
| | - Enette Larson-Meyer
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel Medina
- Athlete Care and Performance, Monumental Sports & Entertainment, Washington, DC, USA
| | - Flavia Meyer
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ian Rollo
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.,PepsiCo Life Sciences, Global R&D, Gatorade Sports Science Institute, Birmingham, UK
| | | | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gregory Dupont
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Peter Res
- Dutch Olympic Team, Amsterdam, Netherlands
| | - Mario Bizzini
- Research and Human Performance Lab, Schulthess Clinic, Zurich, Switzerland
| | - Carlo Castagna
- University of Rome Tor Vergata, Rome, Italy.,Technical Department, Italian Football Federation (FIGC), Florence, Italy.,Italian Football Referees Association, Bologna, Italy
| | - Charlotte M Cowie
- Technical Directorate, Football Association, Burton upon Trent, UK.,Medical Committee, UEFA, Nyon, Switzerland
| | - Michel D'Hooghe
- Medical Committee, UEFA, Nyon, Switzerland.,Medical Centre of Excelence, Schulthess Clinic, Zurich, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Tim Meyer
- Medical Committee, UEFA, Nyon, Switzerland.,Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | | | | | - Alan McCall
- Performance and Research Team, Arsenal Football Club, London, UK .,Medical Department, Football Federation Australia, Sydney, New South Wales, Australia.,Sport, Exercise and Health Sciences, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
32
|
Hilkens L, De Bock J, Kretzers J, Kardinaal AFM, Floris-Vollenbroek EG, Scholtens PAMJ, Horstman AMH, van Loon LJC, van Dijk JW. Whey protein supplementation does not accelerate recovery from a single bout of eccentric exercise. J Sports Sci 2020; 39:322-331. [PMID: 33012216 DOI: 10.1080/02640414.2020.1820184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The current double blind, randomized, placebo-controlled trial with two parallel groups aimed to assess the impact of whey protein supplementation on recovery of muscle function and muscle soreness following eccentric exercise. During a 9-day period, forty recreationally active males received twice daily supplementation with either whey protein (PRO; 60 g/day) or an iso-energetic amount of carbohydrate (CON). Muscle function and soreness were assessed before, and 0, 3, 24, 48, and 72 h after performing 100 drop jumps. Recovery of isometric maximal voluntary contraction (MVC) did not significantly differ between groups (timextreatment, P = 0.56). In contrast, the recovery of isokinetic MVC at 90°·s-1 was faster in CON as opposed to PRO (timextreatment interaction, P = 0.044). Recovery of isokinetic MVC at 180°·s-1 was also faster in CON as opposed to PRO (timextreatment interaction, P = 0.011). Recovery of countermovement jump performance did not differ between groups (timextreatment interaction, P = 0.52). Muscle soreness, CK and CRP showed a transient increase over time (P < 0.001), with no differences between groups. In conclusion, whey protein supplementation does not accelerate recovery of muscle function or attenuate muscle soreness and inflammation during 3 days of recovery from a single bout of eccentric exercise.
Collapse
Affiliation(s)
- Luuk Hilkens
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | - Jolien De Bock
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | - Joris Kretzers
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | | | | | | | | | - Luc J C van Loon
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands.,Department of Human Biology, NUTRIM, Maastricht University Medical Centre+ , Maastricht, The Netherlands
| | - Jan-Willem van Dijk
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| |
Collapse
|
33
|
Arakaki FH, Xerfan EMS, Tufik S, Andersen ML. Acne in men due to protein supplementation: how sleep could be related? Sleep Med 2020; 75:7. [PMID: 32841913 DOI: 10.1016/j.sleep.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Felipe H Arakaki
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo (UNIFESP), Brazil
| | - Ellen M S Xerfan
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de Sao Paulo (UNIFESP), Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo (UNIFESP), Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo (UNIFESP), Brazil.
| |
Collapse
|
34
|
Rehabilitation Nutrition for Injury Recovery of Athletes: The Role of Macronutrient Intake. Nutrients 2020; 12:nu12082449. [PMID: 32824034 PMCID: PMC7468744 DOI: 10.3390/nu12082449] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
An adequate and balanced diet is of utmost importance in recovery and rehabilitation. "Rehabilitation nutrition" for injury recovery of athletes is similar to sports nutrition, except for the differences that concern the prevention of the risk or presence of sarcopenia, malnutrition, or dysphagia. Rehabilitation nutrition also aims, combined with training, to an adequate long-term nutritional status of the athlete and also in physical condition improvement, in terms of endurance and resistance. The aim of this paper is to define the proper nutrition for athletes in order to hasten their return to the sports after surgery or injury. Energy intake should be higher than the energy target in order to fight sarcopenia-that is 25-30 kcal/kg of body weight. Macro- and micro-nutrients play an important role in metabolism, energy production, hemoglobin synthesis, lean mass and bone mass maintenance, immunity, health, and protection against oxidative damage. Nutritional strategies, such as supplementation of suboptimal protein intake with leucine are feasible and effective in offsetting anabolic resistance. Thus, maintaining muscle mass, without gaining fat, becomes challenging for the injured athlete. A dietary strategy should be tailored to the athlete's needs, considering amounts, frequency, type and, most of all, protein quality. During rehabilitation, simultaneous carbohydrates and protein intake can inhibit muscle breakdown and muscle atrophy. The long-term intake of omega-3 fatty acids enhances anabolic sensitivity to amino acids; thus, it may be beneficial to the injured athlete. Adequate intakes of macronutrients can play a major role supporting athletes' anabolism.
Collapse
|
35
|
Effects of pre-sleep protein consumption on muscle-related outcomes - A systematic review. J Sci Med Sport 2020; 24:177-182. [PMID: 32811763 DOI: 10.1016/j.jsams.2020.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The timing of protein intake over the day on muscle mass and strength gains have received interest in the literature. Thus, the aim of this systematic review is to analyze clinical studies that evaluated the acute effects of pre-sleep protein consumption on overnight muscle protein synthesis and the chronic effects on muscle mass and strength. DESIGNS Systematic review. METHODS A literature search was conducted up to June 2020 according to PRISMA statement and nine articles were included to analyze. RESULTS The consumption of 20-40 g of casein approximately 30 min before sleep stimulates whole-body protein synthesis rates over a subsequent overnight period in young and elderly men (preceded or not by resistance exercise, respectively). In addition, pre-sleep protein consumption can augment the muscle adaptive response (muscle fiber cross-sectional area, strength and muscle mass) during 10-12 weeks of resistance exercise in young, but not in elderly men. CONCLUSIONS Based on current evidence, the consumption of 20-40 g of casein approximately 30 min before sleep improves protein synthetic response during an overnight recovery period in healthy young adult men, with possible positive effects on muscle mass and strength following prolonged resistance exercise. In elderly, despite the initial evidence regarding the pre-sleep protein enhances overnight muscle protein synthesis rates, the current available evidence is limited precluding to conclude about the chronic effects on skeletal muscle mass or strength. These conclusions need to be taken with caution due to uneven protein intakes between experimental groups. Therefore, more data are needed before further considering pre-sleep protein as an effective nutritional intervention.
Collapse
|
36
|
Huecker M, Sarav M, Pearlman M, Laster J. Protein Supplementation in Sport: Source, Timing, and Intended Benefits. Curr Nutr Rep 2020; 8:382-396. [PMID: 31713177 DOI: 10.1007/s13668-019-00293-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide background on the present literature regarding the utility and effectiveness of protein supplements, including protein source and nutrient timing. RECENT FINDINGS In the setting of adequate dietary protein consumption, research suggests some benefit particularly in sport or exercise activities. Protein supplements command a multi-billion-dollar market with prevalent use in sports. Many individuals, including athletes, do not consume optimal dietary protein on a daily basis. High-protein diets are remarkably safe in healthy subjects, especially in the short term. Some objective outcomes are physiologic and may not translate to clinically relevant outcomes. Athletes should, however, consider long-term implications when consuming high quantities of protein in dietary or supplement form.
Collapse
Affiliation(s)
- Martin Huecker
- Dept of Emergency Medicine, University of Louisville School of Medicine, 530 S Jackson St C1H17, Louisville, KY, 40202, USA.
| | - Menaka Sarav
- Division of Nephrology and Hypertension, NorthShore University HealthSystem-University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Michelle Pearlman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Miami Health Systems, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
37
|
Saracino PG, Saylor HE, Hanna BR, Hickner RC, Kim JS, Ormsbee MJ. Effects of Pre-Sleep Whey vs. Plant-Based Protein Consumption on Muscle Recovery Following Damaging Morning Exercise. Nutrients 2020; 12:nu12072049. [PMID: 32664290 PMCID: PMC7400837 DOI: 10.3390/nu12072049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Pre-sleep whey protein intake has been shown to improve overnight muscle protein synthesis, muscle size and strength, and muscle recovery. Despite a growing interest in alternative protein sources, such as plant-based protein, there is no evidence regarding the efficacy of plant-based proteins consumed pre-sleep. Therefore, we aimed to compare whey vs. plant-based pre-sleep protein dietary supplementation on muscle recovery in middle-aged men. Twenty-seven recreationally active, middle-aged men performed 5 sets of 15 repetitions of maximal eccentric voluntary contractions (ECC) for the knee extensors (ext) and flexors (flex), respectively, in the morning. Participants consumed 40 g of either whey hydrolysate (WH, n = 9), whey isolate (WI, n = 6), rice and pea combination (RP, n = 6), or placebo (PL, n = 6) 30 min pre-sleep on the day of ECC and the following two nights. Catered meals (15% PRO, 55% CHO, 30% Fat) were provided to participants for 5 days to standardize nutrition. Plasma creatine kinase (CK), interleukin-6 (IL-6), and interleukin-10 (IL-10) were measured at pre, immediately post (+0), +4, +6, +24, +48, and +72 h post-ECC. Isometric (ISOM) and isokinetic (ISOK) maximal voluntary contraction force were measured at pre, immediately post (+0), +24, +48, and +72 h post-ECC. Muscle soreness, thigh circumference, and HOMA-IR were measured at pre, +24, +48, and +72 h post-ECC. CK was increased at +4 h post-ECC, remained elevated at all time points compared to baseline (p < 0.001), and was significantly greater at +72 h compared to all other time points (p < 0.001). IL-6 was increased at +6 h (p = 0.002) with no other time differing from baseline. ISOMext was reduced after ECC (p = 0.001) and remained reduced until returning to baseline at +72 h. ISOMflex, ISOKext, and ISOKflex were reduced after ECC and remained reduced at +72 h (p < 0.001). Muscle soreness increased post-ECC (p < 0.001) and did not return to baseline. Thigh circumference (p = 0.456) and HOMA-IR (p = 0.396) did not change post-ECC. There were no significant differences between groups for any outcome measure. These data suggest that middle-aged men consuming 1.08 ± 0.02 g/kg/day PRO did not recover from damaging eccentric exercise at +72 h and that pre-sleep protein ingestion, regardless of protein source, did not aid in muscle recovery when damaging eccentric exercise was performed in the morning.
Collapse
Affiliation(s)
- Patrick G. Saracino
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
| | - Hannah E. Saylor
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
| | - Brett R. Hanna
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
| | - Robert C. Hickner
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
| | - Michael J. Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence:
| |
Collapse
|
38
|
Arent SM, Cintineo HP, McFadden BA, Chandler AJ, Arent MA. Nutrient Timing: A Garage Door of Opportunity? Nutrients 2020; 12:nu12071948. [PMID: 32629950 PMCID: PMC7400240 DOI: 10.3390/nu12071948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Nutrient timing involves manipulation of nutrient consumption at specific times in and around exercise bouts in an effort to improve performance, recovery, and adaptation. Its historical perspective centered on ingestion during exercise and grew to include pre- and post-training periods. As research continued, translational focus remained primarily on the impact and outcomes related to nutrient consumption during one specific time period to the exclusion of all others. Additionally, there seemed to be increasing emphasis on outcomes related to hypertrophy and strength at the expense of other potentially more impactful performance measures. As consumption of nutrients does not occur at only one time point in the day, the effect and impact of energy and macronutrient availability becomes an important consideration in determining timing of additional nutrients in and around training and competition. This further complicates the confining of the definition of “nutrient timing” to one very specific moment in time at the exclusion of all other time points. As such, this review suggests a new perspective built on evidence of the interconnectedness of nutrient impact and provides a pragmatic approach to help frame nutrient timing more inclusively. Using this approach, it is argued that the concept of nutrient timing is constrained by reliance on interpretation of an “anabolic window” and may be better viewed as a “garage door of opportunity” to positively impact performance, recovery, and athlete availability.
Collapse
Affiliation(s)
- Shawn M. Arent
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
- Correspondence: ; Tel.: +1-803-576-8394
| | - Harry P. Cintineo
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Bridget A. McFadden
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Alexa J. Chandler
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Michelle A. Arent
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
39
|
The Effects of Timing of a Leucine-Enriched Amino Acid Supplement on Body Composition and Physical Function in Stroke Patients: A Randomized Controlled Trial. Nutrients 2020; 12:nu12071928. [PMID: 32610608 PMCID: PMC7400340 DOI: 10.3390/nu12071928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 01/07/2023] Open
Abstract
The combination of exercise and nutritional intervention is widely used for stroke patients, as well as frail or sarcopenic older persons. As previously shown, supplemental branched chain amino acids (BCAAs) or protein to gain muscle mass has usually been given just after exercise. This study investigated the effect of the timing of supplemental BCAAs with exercise intervention on physical function in stroke patients. The participants were randomly assigned to two groups based on the timing of supplementation: breakfast (n = 23) and post-exercise (n = 23). The supplement in the breakfast group was provided at 08:00 with breakfast, and in the post-exercise group it was provided just after the exercise session in the afternoon at 14:00-18:00. In both groups, the exercise intervention was performed with two sessions a day for two months. The main effects were observed in body fat mass (p = 0.02, confidence interval (CI): 13.2-17.7), leg press strength (p = 0.04, CI: 94.5-124.5), and Berg balance scale (p = 0.03, CI: 41.6-52.6), but no interaction with intake timing was observed. Although the effect of the timing of supplementation on skeletal muscle mass was similar in both groups, BCAA intake with breakfast was effective for improving physical performance and decreasing body fat mass. The results suggest that a combination of BCAA intake with breakfast and an exercise program was effective for promoting rehabilitation of post-stroke patients.
Collapse
|
40
|
Antonio J, Candow DG, Forbes SC, Ormsbee MJ, Saracino PG, Roberts J. Effects of Dietary Protein on Body Composition in Exercising Individuals. Nutrients 2020; 12:E1890. [PMID: 32630466 PMCID: PMC7353221 DOI: 10.3390/nu12061890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Protein is an important component of a healthy diet and appears to be integral to enhancing training adaptations in exercising individuals. The purpose of this narrative review is to provide an evidence-based assessment of the current literature examining increases in dietary protein intake above the recommended dietary allowance (RDA: 0.8 g/kg/d) in conjunction with chronic exercise on body composition (i.e., muscle, fat and bone). We also highlight acute and chronic pre-sleep protein studies as well as the influence of exercise timing on body composition. Overall, a high-protein diet appears to increase muscle accretion and fat loss and may have beneficial effects on bone when combined with exercise. Pre-sleep protein is a viable strategy to help achieve total daily protein goals. Importantly, there appears to be no deleterious effects from a high-protein diet on muscle, fat or bone in exercising individuals.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33314, USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S0A2, Canada;
| | - Scott C. Forbes
- Faculty of Education, Department of Physical Education, Brandon University, Brandon, MB R7A6A9, Canada;
| | - Michael J. Ormsbee
- Department of Nutrition, Food & Exercise Sciences, Institute of Sports Sciences & Medicine, Florida State University, Tallahassee, FL 32313, USA; (M.J.O.); (P.G.S.)
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Patrick G. Saracino
- Department of Nutrition, Food & Exercise Sciences, Institute of Sports Sciences & Medicine, Florida State University, Tallahassee, FL 32313, USA; (M.J.O.); (P.G.S.)
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge CB11PT, UK;
| |
Collapse
|
41
|
Nutritional Strategies to Optimize Performanceand Recovery in Rowing Athletes. Nutrients 2020; 12:nu12061685. [PMID: 32516908 PMCID: PMC7352678 DOI: 10.3390/nu12061685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Rowing is a high-intensity sport requiring a high level of aerobic and anaerobic capacity. Although good nutrition is essential for successful performance in a rowing competition, its significance is not sufficiently established. This review aimed to provide nutritional strategies to optimize performance and recovery in rowing athletes based on a literature review. Following the guidelines given in the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), we performed web searches using online databases (Pubmed, Web of Science, Wiley Online Library, ACS Publications, and SciFinder). Typically, a rowing competition involves a 6–8-min high-intensity exercise on a 2000-m course. The energy required for the exercise is supplied by muscle-stored glycogens, which are derived from carbohydrates. Therefore, rowing athletes can plan their carbohydrate consumption based on the intensity, duration, and type of training they undergo. For effective and safe performance enhancement, rowing athletes can take supplements such as β-alanine, caffeine, β-hydroxy-β-methylbutyric acid (HMB), and beetroot juice (nitrate). An athlete may consume carbohydrate-rich foods or use a carbohydrate mouth rinse. Recovery nutrition is also very important to minimize the risk of injury or unexplained underperformance syndrome (UUPS) from overuse. It must take into account refueling (carbohydrate), rehydration (fluid), and repair (protein). As lightweight rowing athletes often attempt acute weight loss by limiting food and fluid intake to qualify for a competition, they require personalized nutritional strategies and plans based on factors such as their goals and environment. Training and competition performance can be maximized by including nutritional strategies in training plans.
Collapse
|
42
|
Suzuki H, Ueno Y, Takanouchi T, Kato H. Nitrogen Balance in Female Japanese National Handball Players During Training Camp. Front Nutr 2020; 7:59. [PMID: 32478088 PMCID: PMC7236612 DOI: 10.3389/fnut.2020.00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Protein requirements for athletes are affected by various factors, including distribution and quality (i. e., amino acid composition) of protein ingestion throughout the day. However, little is known about the protein requirements of elite female athletes engaging in team sports. This study aimed to determine the nitrogen balance and distribution of protein and amino acid intake in elite female handball athletes during training camp. In observational study design, 11 female Japanese national handball players (age 26.9 ± 4.9 years) participated in a 5-days experiment. Nitrogen balance was calculated from the daily protein intake assessed by dietary records and urinary nitrogen excretion. Amino acid intake amounts were organized based on six eating occasions. The average and population-safe protein intake for zero nitrogen balance were estimated as 1.57 and 1.93 g/kg/day, respectively. The protein intake at breakfast, lunch, and dinner and the leucine intake in the three main meals and the morning snack were higher than is recommended by current guidelines for maximizing muscle protein synthesis. The population-safe protein intake in elite female handball athletes was within the range of the current recommendations for athletes (1.2-2.0 g/kg/day). Our results show that it may be possible to improve the distribution and quality of protein ingestion after exercise and before sleep.
Collapse
Affiliation(s)
- Haruka Suzuki
- Olympic & Paralympic Promotional Office, Corporate Service Division, Ajinomoto Co., Inc., Tokyo, Japan
| | - Yuki Ueno
- Olympic & Paralympic Promotional Office, Corporate Service Division, Ajinomoto Co., Inc., Tokyo, Japan
| | | | - Hiroyuki Kato
- Olympic & Paralympic Promotional Office, Corporate Service Division, Ajinomoto Co., Inc., Tokyo, Japan
| |
Collapse
|
43
|
Master PBZ, Macedo RCO. Effects of dietary supplementation in sport and exercise: a review of evidence on milk proteins and amino acids. Crit Rev Food Sci Nutr 2020; 61:1225-1239. [PMID: 32363897 DOI: 10.1080/10408398.2020.1756216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary supplements, especially protein, are used by athletes to achieve the exercise and training daily demands, and have been receiving research focus on their role regarding recovery and performance. Protein supplements are preferred over traditional protein sources because of their ease of availability and use. In addition to consuming a complete protein supplement, such as whey protein, the ingestion of a supplement containing only amino acids has been of interest for promoting skeletal muscle anabolism and high-quality weight loss. The aim of this study was to review the existing evidence on the effects of protein and amino acid supplementation on exercise. The preponderance of evidence suggests that protein supplementation, especially milk proteins, potentiate muscle protein synthesis, lean mass and exercise recovery. Unlike proteins, amino acids supplementation (branched-chain amino acids, glutamine or leucine) results from research are equivocal and are not warranted.
Collapse
|
44
|
Pre-Sleep Casein Protein Ingestion Does Not Impact Next-Day Appetite, Energy Intake and Metabolism in Older Individuals. Nutrients 2019; 12:nu12010090. [PMID: 31905607 PMCID: PMC7019576 DOI: 10.3390/nu12010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 01/01/2023] Open
Abstract
Maintaining adequate daily protein intake is important to maintain muscle mass throughout the lifespan. In this regard, the overnight period has been identified as a window of opportunity to increase protein intake in the elderly. However, it is unknown whether pre-sleep protein intake affects next-morning appetite and, consequently, protein intake. Therefore, the purpose of the current study was to investigate the effects of a pre-sleep protein drink on next-morning appetite, energy intake and metabolism. Twelve older individuals (eight males, four females; age: 71.3 ± 4.2 years) took part in a single-blind randomised cross-over study. After a standardised dinner, participants consumed either a 40-g protein drink, isocaloric maltodextrin drink, or placebo water control before bedtime. Next-morning appetite, energy intake, resting metabolic rate (RMR), respiratory exchange rate (RER), and plasma acylated ghrelin, leptin, glucose, and insulin concentrations were assessed. No between-group differences were observed for appetite and energy intake at breakfast. Furthermore, RMR, RER, and assessed blood markers were not significantly different between any of the treatment groups. Pre-sleep protein intake does not affect next-morning appetite and energy intake and is therefore a viable strategy to increase daily protein intake in an older population.
Collapse
|
45
|
Karagounis LG, Beaumont M, Donato-Capel L, Godin JP, Kapp AF, Draganidis D, Pinaud S, Vuichoud J, Shevlyakova M, Rade-Kukic K, Breuillé D. Ingestion of a Pre-bedtime Protein Containing Beverage Prevents Overnight Induced Negative Whole Body Protein Balance in Healthy Middle-Aged Men: A Randomized Trial. Front Nutr 2019; 6:181. [PMID: 31850360 PMCID: PMC6896828 DOI: 10.3389/fnut.2019.00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Age related muscle wasting leads to overall reductions of lean body mass, reduced muscle strength, and muscle function resulting in compromised quality of life. Utilizing novel nutritional strategies to attenuate such losses is of great importance in elderly individuals. We aimed to test if a complete dietary supplement containing 25 g of milk proteins and ingested in the evening before bed would improve protein metabolism in terms of whole body protein balance over a 10 h overnight period following ingestion of the test drink in healthy middle-aged male subjects. In addition we also assessed the rates of muscle protein synthesis during the second half of the night in order to see if previously reported extended amino acidemia during sleep results in increased rates of muscle protein synthesis. Seventeen healthy middle-aged male subjects (59.4 ± 3.2 year) consumed a dietary supplement drink at 21:00 containing either 25 g milk protein concentrate, 25 g maltodextrin, 7.75 g canola oil (treatment group), or an isocaloric protein void drink (placebo group). Muscle protein synthesis was assessed from a muscle biopsy following the continuous intravenous infusion of 13C-phenylalanine for 5 h (from 03:00 to 08:00). Whole body protein balance was greater in the treatment group (−0.13 ± 11.30 g prot/10 h) compared to placebo (−12.22 ± 6.91 g prot/10 h) (P ≤ 0.01). In contrast, no changes were observed on rates of muscle protein synthesis during the second half of the night. Ingestion of a dietary supplement containing 25 g of milk proteins significantly reduced the negative protein balance observed during the night. Therefore, pre-bedtime protein ingestion may attenuate overnight losses of lean tissue in healthy elderly men. Despite increases in aminoacidemia during the second part of the night, no changes were observed in the rates of muscle protein synthesis during this time. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT02041143.
Collapse
Affiliation(s)
- Leonidas G Karagounis
- Nestlé Research, Lausanne, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Translation Research, Nestlé Health Science, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hendriks FK, Smeets JSJ, van der Sande FM, Kooman JP, van Loon LJC. Dietary Protein and Physical Activity Interventions to Support Muscle Maintenance in End-Stage Renal Disease Patients on Hemodialysis. Nutrients 2019; 11:E2972. [PMID: 31817402 PMCID: PMC6950262 DOI: 10.3390/nu11122972] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 01/10/2023] Open
Abstract
End-stage renal disease patients have insufficient renal clearance capacity left to adequately excrete metabolic waste products. Hemodialysis (HD) is often employed to partially replace renal clearance in these patients. However, skeletal muscle mass and strength start to decline at an accelerated rate after initiation of chronic HD therapy. An essential anabolic stimulus to allow muscle maintenance is dietary protein ingestion. Chronic HD patients generally fail to achieve recommended protein intake levels, in particular on dialysis days. Besides a low protein intake on dialysis days, the protein equivalent of a meal is extracted from the circulation during HD. Apart from protein ingestion, physical activity is essential to allow muscle maintenance. Unfortunately, most chronic HD patients have a sedentary lifestyle. Yet, physical activity and nutritional interventions to support muscle maintenance are generally not implemented in routine patient care. To support muscle maintenance in chronic HD patients, quantity and timing of protein intake should be optimized, in particular throughout dialysis days. Furthermore, implementing physical activity either during or between HD sessions may improve the muscle protein synthetic response to protein ingestion. A well-orchestrated combination of physical activity and nutritional interventions will be instrumental to preserve muscle mass in chronic HD patients.
Collapse
Affiliation(s)
- Floris K. Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (F.K.H.)
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD Maastricht, The Netherlands;
| | - Joey S. J. Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (F.K.H.)
| | - Frank M. van der Sande
- Division of Nephrology, Department of Internal Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Jeroen P. Kooman
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD Maastricht, The Netherlands;
- Division of Nephrology, Department of Internal Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Luc J. C. van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (F.K.H.)
| |
Collapse
|
47
|
Riis S, Møller AB, Dollerup O, Høffner L, Jessen N, Madsen K. Acute and sustained effects of a periodized carbohydrate intake using the sleep-low model in endurance-trained males. Scand J Med Sci Sports 2019; 29:1866-1880. [PMID: 31430404 DOI: 10.1111/sms.13541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Repeated periodization of carbohydrate (CHO) intake using a diet-exercise strategy called the sleep-low model can potentially induce mitochondrial biogenesis and improve endurance performance in endurance-trained individuals. However, more studies are needed to confirm the performance-related effects and to investigate the sustained effects on maximal fat oxidation (MFO) rate and proteins involved in intramuscular lipid metabolism. Thirteen endurance-trained males (age 23-44 years; V ˙ O2 -max, 63.9 ± 4.6 mL·kg-1 ·min-1 ) were randomized into two groups: sleep-low (LOW-CHO) or high CHO availability (HIGH-CHO) in three weekly training blocks over 4 weeks. The acute metabolic response was investigated during 60 minutes of exercise within the last 3 weeks of the intervention. Pre- and post-intervention, 30-minute time-trial performance was investigated after a 90-minute pre-load, which as a novel approach included nine intense intervals (and estimation of MFO). Additionally, muscle biopsies (v. lateralis) were obtained to investigate expression of proteins involved in intramuscular lipid metabolism using Western blotting. During acute exercise, average fat oxidation rate was ~36% higher in LOW-CHO compared to HIGH-CHO (P = .03). This did not translate into sustained effects on MFO. Time-trial performance increased equally in both groups (overall time effect: P = .005). We observed no effect on intramuscular proteins involved in lipolysis (ATGL, G0S2, CGI-58, HSL) or fatty acid transport and β-oxidation (CD-36 and HAD, respectively). In conclusion, the sleep-low model did not induce sustained effects on MFO, endurance performance, or proteins involved in intramuscular lipid metabolism when compared to HIGH-CHO. Our study therefore questions the transferability of acute effects of the sleep-low model to superior sustained adaptations.
Collapse
Affiliation(s)
- Simon Riis
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Buch Møller
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Dollerup
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Line Høffner
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Klavs Madsen
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
48
|
Jakobsson J. Commentary: Greek Yogurt and 12 Weeks of Exercise Training on Strength, Muscle Thickness and Body Composition in Lean, Untrained, University-Aged Males. Front Nutr 2019; 6:137. [PMID: 31552258 PMCID: PMC6746973 DOI: 10.3389/fnut.2019.00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
- Johan Jakobsson
- Sports Medicine Unit, Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| |
Collapse
|
49
|
Dashti HS, Scheer FAJL, Saxena R, Garaulet M. Timing of Food Intake: Identifying Contributing Factors to Design Effective Interventions. Adv Nutr 2019; 10:606-620. [PMID: 31046092 PMCID: PMC6628856 DOI: 10.1093/advances/nmy131] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 12/27/2022] Open
Abstract
Observations that mistimed food intake may have adverse metabolic health effects have generated interest in personalizing food timing recommendations in interventional studies and public health strategies for the purpose of disease prevention and improving overall health. Small, controlled, and short-termed intervention studies suggest that food timing may be modified as it is presumed to be primarily regulated by choice. Identifying and evaluating social and biological factors that explain variability in food timing may determine whether changes in food timing in uncontrolled, free-living environments are sustainable in the long term, and may facilitate design of successful food timing-based interventions. Based on a comprehensive literature search, we summarize 1) cultural and environmental factors; 2) behavioral and personal preference factors; and 3) physiological factors that influence the time when people consume foods. Furthermore, we 1) highlight vulnerable populations who have been identified in experimental and epidemiological studies to be at risk of mistimed food intake and thus necessitating intervention; 2) identify currently used food timing assessment tools and their limitations; and 3) indicate other important considerations for the design of food timing interventions based on successful strategies that address timing of other lifestyle behaviors. Conclusions drawn from this overview may help design practical food timing interventions, develop feasible public health programs, and establish guidelines for effective lifestyle recommendations for prevention and treatment of adverse health outcomes attributed to mistimed food intake.
Collapse
Affiliation(s)
- Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Frank A J L Scheer
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Marta Garaulet
- Department of Physiology, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
50
|
Bridge A, Brown J, Snider H, Nasato M, Ward WE, Roy BD, Josse AR. Greek Yogurt and 12 Weeks of Exercise Training on Strength, Muscle Thickness and Body Composition in Lean, Untrained, University-Aged Males. Front Nutr 2019; 6:55. [PMID: 31114790 PMCID: PMC6503736 DOI: 10.3389/fnut.2019.00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Milk and/or whey protein plus resistance exercise (RT) increase strength and muscle size, and optimize body composition in adult males and females. Greek yogurt (GY) contains similar muscle-supporting nutrients as milk yet it is different in several ways including being a semi-solid food, containing bacterial cultures and having a higher protein content (mostly casein) per serving. GY has yet to be investigated in the context of a RT program. The purpose of this study was to assess the effects of GY consumption plus RT on strength, muscle thickness and body composition in lean, untrained, university-aged males. Thirty untrained, university-aged (20.6 ± 2.2 years) males were randomized to 2 groups (n = 15/group): fat-free, plain GY or a Placebo Pudding (PP; isoenergetic carbohydrate-based pudding) and underwent a combined RT/plyometric training program 3 days/week for 12 weeks. They consumed either GY (20 g protein/dose) or PP (0 g protein/dose) daily, 3 times on training days and 2 times on non-training days. After 12 weeks, both groups significantly increased strength, muscle thickness and fat-free mass (FFM) (p < 0.05). The GY group gained more total strength (GY; 98 ± 37 kg, PP; 57 ± 15 kg), more biceps brachii muscular thickness (GY; 0.46 ± 0.3 cm, PP; 0.12 ± 0.2 cm), more FFM (GY; 2.4 ± 1.5 kg, PP; 1.3 ± 1.3 kg), and reduced % body fat (GY; −1.1 ± 2.2%, PP; 0.1 ± 2.6%) than PP group (p < 0.05 expressed as absolute change). Thus, consumption of GY during a training program resulted in improved strength, muscle thickness and body composition over a carbohydrate-based placebo. Given the results of our study, the general benefits of consuming GY and its distinctiveness from milk, GY can be a plausible, post-exercise, nutrient-rich alternative for positive strength, muscle, and body composition adaptations.
Collapse
Affiliation(s)
- Aaron Bridge
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Joseph Brown
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Hayden Snider
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Matthew Nasato
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Brian D Roy
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Andrea R Josse
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|