1
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Borel P. Characterization of the interindividual variability of lutein and zeaxanthin concentrations in the adipose tissue of healthy male adults and identification of combinations of genetic variants associated with it. Food Funct 2024; 15:9995-10006. [PMID: 39279719 DOI: 10.1039/d4fo03087g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Lutein (L) and zeaxanthin (Z) are involved in visual function and could prevent age-related macular degeneration and chronic diseases and improve cognitive performances. Adipose tissue is the main storage site for these xanthophylls (Xanth). The factors affecting their concentrations in this tissue remain poorly understood but in animal models, genetic variations in apolipoprotein E and β-carotene oxygenase 2 have been associated with adipose tissue L concentration. Therefore, the aims of this study were to better characterize the interindividual variability of adipose tissue Xanth concentration and to identify single nucleotide polymorphisms (SNPs) associated with it. Periumbilical subcutaneous adipose tissue samples were collected on 6 occasions in 42 healthy adult males and L and Z concentrations were measured by HPLC. Participants had their whole genome genotyped and the associations of 3589 SNPs in 49 candidate genes with the concentrations of L and Z were measured. Mean L and Z concentrations were 281 ± 27 and 150 ± 14 nmol g-1 proteins, respectively. There was no significant correlation between plasma and adipose tissue Xanth concentrations, although the correlation for L approached significance (Pearson's r = 0.276, p = 0.077). Following univariate filtering, 109 and 97 SNPs were then entered into a partial least squares regression analysis to identify the combination of SNPs that explained best adipose tissue concentration of L and Z, respectively. A combination of 7 SNPs in ELOVL5, PPARG, ISX and ABCA1, explained 58% of the variability in adipose tissue L concentration while 11 SNPs located in or near PPARG, ABCA1, ELOVL5, CXCL8, IRS1, ISX, MC4R explained 53% of the variance in adipose tissue Z concentration. This suggests that some genetic variations influence the concentrations of these Xanth in adipose tissue and could therefore indirectly influence the health effects of these compounds. Clinical Trial Registry: https://ClinicalTrials.gov registration number NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
- Department of Science and Technology - Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
- Institut Universitaire de France (IUF), France
| | - Beatrice Gleize
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Marion Nowicki
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | - Patrick Borel
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| |
Collapse
|
2
|
Kang H, Song J, Cheng Y. HDL regulates the risk of cardiometabolic and inflammatory-related diseases: Focusing on cholesterol efflux capacity. Int Immunopharmacol 2024; 138:112622. [PMID: 38971111 DOI: 10.1016/j.intimp.2024.112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Dyslipidemia, characterized by higher serum concentrations of low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglyceride (TG), and lower serum concentrations of high-density lipoprotein cholesterol (HDL-C), is confirmed as a hallmark of cardiovascular diseases (CVD), posing serious risks to the future health of humans. Aside from the role of HDL-C concentrations, the capacity of cholesterol efflux to HDL is being identified as an enssential messurement for the dyslipidemic morbidity. Through inducing the progression of reverse cholesterol transport (RCT), the HDL-related cholesterol efflux plays a vital role in atherosclerotic plaque formation. In addition, increasing results demonstrated that the relationships between cholesterol efflux and cardiovascular events might be influenced by multiple factors, such as atherosclerosis, diabetes, and, inflammatory diseases. These risk factors could affect the intracellular composition of HDL, which might subsqently influence the cholesterol efflux process induced by HDL particle. In the present comprehensive article, we summarize the latest findings which described the modulatory roles of HDL in cardiometabolic disorders and inflammatory related diseases, focusing on its capacity in mediating cholesterol efflux. Moreover, the potential mechanisms whereby HDL regulate the risk of cardiometabolic disorders or inflammatory related diseases, at least partly, via cholesterol efflux pathway, are also well-listed.
Collapse
Affiliation(s)
- Huiyuan Kang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jingjin Song
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Ruiz-Ballesteros AI, Betancourt-Núñez A, Meza-Meza MR, Rivera-Escoto M, Mora-García PE, Pesqueda-Cendejas K, Vizmanos B, Parra-Rojas I, Campos-López B, Montoya-Buelna M, Cerpa-Cruz S, De la Cruz-Mosso U. Relationship of serum and dietary vitamin D with high cardiometabolic risk in Mexican systemic lupus erythematosus patients: A cross-sectional study. Lupus 2024; 33:851-863. [PMID: 38709772 DOI: 10.1177/09612033241252060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Objetive: Serum and dietary vitamin D could influence clinical disease activity and cardiometabolic outcomes in systemic lupus erythematosus (SLE). This study aimed to assess the relationship of serum and dietary vitamin D with cardiometabolic risk in Mexican SLE patients and healthy subjects (HS).Methods: 224 SLE patients and 201 HS were included in this cross-sectional study. Serum calcidiol was measured using a competitive enzyme-linked immunosorbent assay (ELISA). Vitamin D dietary intake was assessed by collecting three 24h food records. Dietary patterns (DPs) were identified using principal component analysis (PCA). Cardiometabolic status was analyzed through biochemical measurements and cardiometabolic indexes.Results: Calcidiol deficiency (<20 ng/mL) was associated with 1.66-fold higher risk of excess weight by body mass index (BMI) (≥25 kg/m2) (p = .02), 2.25-fold higher risk to low high-density lipoprotein-cholesterol (HDL-C) (<40 mg/dL) (p < .001), and 1.74-fold higher risk to high triglycerides (TG) ≥150 mg/dL (p = .02). Inadequate vitamin D dietary intake was associated with 1.92-fold higher risk of presenting non-healthy waist circumference (WC) (>80 cm) (p < .01), 2.05-fold higher risk of android waist to hip ratio (WHR ≥85) (p < .01), and 1.72-fold higher risk to excess weight (p = .02). Non-adherence to a DP rich in vitamin D food sources was associated with higher WC, WHR, triglycerides, and lower high-density lipoprotein-cholesterol (HDL-C); furthermore, in HS, non-adherence to the DP rich in vitamin D food sources provided 2.11-fold higher risk to calcidiol deficiency.In Cconclusion: A pattern of Calcidiol deficiency, inadequate vitamin D dietary intake, and non-adherence to a DP rich in vitamin D food sources was related to high cardiometabolic risk in SLE patients and HS.
Collapse
Affiliation(s)
- Adolfo I Ruiz-Ballesteros
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Alejandra Betancourt-Núñez
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Cuerpo Académico UDG-454, Alimentación y Nutrición en el proceso Salud Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Mónica R Meza-Meza
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Melissa Rivera-Escoto
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paulina E Mora-García
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Karen Pesqueda-Cendejas
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Barbara Vizmanos
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Cuerpo Académico UDG-454, Alimentación y Nutrición en el proceso Salud Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Isela Parra-Rojas
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Mexico
| | - Bertha Campos-López
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Margarita Montoya-Buelna
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Sergio Cerpa-Cruz
- Departamento de Reumatología, O.P.D. Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Mexico
| | - Ulises De la Cruz-Mosso
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Neurociencias Traslacionales, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Cuerpo Académico UDG-454, Alimentación y Nutrición en el proceso Salud Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
4
|
Mueller PA, Bergstrom P, Rosario S, Heard M, Pamir N. Fish Oil Supplementation Modifies the Proteome, Lipidome, and Function of High-Density Lipoprotein: Findings from a Trial in Young Healthy Adults. J Nutr 2024; 154:1130-1140. [PMID: 38237669 PMCID: PMC11007744 DOI: 10.1016/j.tjnut.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Fish oil with the ω-3 fatty acids EPA and DHA is an FDA-approved treatment of patients with severe hypertriglyceridemia. Furthermore, EPA is an FDA-approved treatment of patients with high risk of cardiovascular disease (CVD); however, the cardioprotective mechanisms are unclear. OBJECTIVES We aimed to determine if fish oil supplementation is cardioprotective due to beneficial modifications in HDL particles. METHODS Seven fish oil naïve subjects without a history of CVD were recruited to take a regimen of fish oil (1125 mg EPA and 875 mg DHA daily) for 30 d, followed by a 30-d washout period wherein no fish oil supplements were taken. HDL isolated from fasting whole blood at each time point via 2-step ultracentrifugation (ucHDL) was assessed for proteome, lipidome, cholesterol efflux capacity (CEC), and anti-inflammatory capacity. RESULTS Following fish oil supplementation, the HDL-associated proteins immunoglobulin heavy constant γ1, immunoglobulin heavy constant α1, apolipoprotein D, and phospholipid transfer protein decreased compared to baseline (P < 0.05). The HDL-associated phospholipid families sphingomyelins, phosphatidylcholines, and phosphatidylserines increased after fish oil supplementation relative to baseline (P < 0.05). Compared to baseline, fish oil supplementation increased serum HDL's CEC (P = 0.002). Fish oil-induced changes (Post compared with Baseline) in serum HDL's CEC positively correlated with plasma EPA levels (R2 = 0.7256; P = 0.015). Similarly, fish oil-induced changes in ucHDL's CEC positively correlated with ucHDL's ability to reduce interleukin 10 (R2 = 0.7353; P = 0.014) and interleukin 6 mRNA expression (R2 = 0.6322; P =0.033) in a human macrophage cell line. CONCLUSIONS Overall, fish oil supplementation improved HDL's sterol efflux capacity through comprehensive modifications to its proteome and lipidome.
Collapse
Affiliation(s)
- Paul A Mueller
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Paige Bergstrom
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sara Rosario
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Melissa Heard
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Nathalie Pamir
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
Waly HSA, Abdelfattah MG, Abou Khalil NS, Ragab SMM. Role of Eruca sativa L. seeds in boosting the reproductive performance of male Japanese quails (Coturnix c. japonica). J Anim Physiol Anim Nutr (Berl) 2024; 108:527-540. [PMID: 38054786 DOI: 10.1111/jpn.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Herein we attempt to shed light on the potential improving effect of Eruca sativa seeds (ESS) on the reproductive aspects of male Japanese quails. To accomplish this objective, two groups of quails were supplemented with ESS powder at doses of 5 and 10 g/kg feed from 7 days to 140 days of age, in addition to the control group, which did not receive treatment. Forty males were reared singly in cages to evaluate sperm characters and 32 males were raised with 64 females to evaluate fertility and sperm penetrability. Sixty-six phytochemical compounds were found according to gas chromatography-mass spectrometry analysis of ESS. The most plentiful ones are 13-docosenoic acid methyl ester, 9-octadecenoic acid methyl ester, and linoleic acid methyl ester. Both 5 g/kg and 10 g/kg doses of ESS showed similar effectiveness in enhancing various reproductive parameters, including gonadal index, sperm characteristics, fertility, libido, and cloacal gland attributes. However, some aspects like sperm concentration and testosterone levels exhibited a dose-dependent response. There is no significant change in mortality rate of supplemented groups compared to the control one. ESS also caused a reduction in feed intake and an enhancement in feed conversion ratio without affecting final body weight and body weight gain. This suggests potential nutritional benefits beyond reproductive health. The low-dose-fed group showed a significant reduction in total cholesterol and malondialdehyde compared to the high-dose-fed and unfed groups. The higher dose notably increased total antioxidant capacity compared to the lower dose and control group. Despite the positive effects on male reproductive parameters, there wasn't a significant impact on hatchability percentage, indicating that while male fertility improved, it might not have directly affected the viability of the eggs. Overall, the study suggests that ESS could be a safe and promising addition to the diet of male Japanese quails to enhance their reproductive capabilities without adverse effects. The findings could have implications for poultry farming by potentially improving breeding efficiency and health outcomes in quails.
Collapse
Affiliation(s)
- Hanan S A Waly
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Science, Assuit University, Assiut, Egypt
| | | | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt
| | - Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Science, Assuit University, Assiut, Egypt
| |
Collapse
|
6
|
Wang M, Wu S, Ding H, Wang M, Ma J, Xiao J, Wang B, Bao Z, Hu J. Dietary antarctic krill improves antioxidant capacity, immunity and reduces lipid accumulation, insights from physiological and transcriptomic analysis of Plectropomus leopardus. BMC Genomics 2024; 25:210. [PMID: 38408914 PMCID: PMC10895837 DOI: 10.1186/s12864-024-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jiayi Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jie Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| |
Collapse
|
7
|
Chang JPC, Tseng PT, Zeng BS, Chang CH, Su H, Chou PH, Su KP. Safety of Supplementation of Omega-3 Polyunsaturated Fatty Acids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2023; 14:1326-1336. [PMID: 37567449 PMCID: PMC10721469 DOI: 10.1016/j.advnut.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
There is no comprehensive review of the evidence to support omega-3 polyunsaturated fatty acids (PUFAs) as a relatively safe and tolerable intervention. This study aimed to provide a meta-analytic and comprehensive review on the adverse effects of all kinds of ω-3 PUFA supplementation reported in randomized controlled trials (RCTs) in human subjects. A systematic review of RCTs published between 1987 and 2023 was carried out based on searches of 8 electronic databases. All RCTs that compared the adverse effects of ω-3 PUFAs containing eicosapentaenoic acid, docosahexaenoic acid, or both compared with controls (a placebo or a standard treatment) were included. The primary outcome was the adverse effects related to ω-3 PUFA prescription. A total of 90 RCTs showed that the ω-3 PUFA group, when compared with the placebo, had significantly higher odds of occurrence of diarrhea (odds ratio [OR] = 1.257, P = 0.010), dysgeusia (OR = 3.478, P < 0.001), and bleeding tendency (OR = 1.260, P = 0.025) but lower rates of back pain (OR = 0.727, P < 0.001). The subgroup analysis showed that the prescription ω-3 PUFA products (RxOME3FAs) had higher ω-3 PUFA dosages than generic ω-3 PUFAs (OME3FAs) (3056.38 ± 1113.28 mg/d compared with 2315.92 ± 1725.61 mg/d), and studies on RxOME3FAs performed more standard assessments than OME3FAs on adverse effects (63% compared with 36%). There was no report of definite ω-3 PUFA-related serious adverse events. The subjects taking ω-3 PUFAs were at higher odds of experiencing adverse effects; hence, comprehensive assessments of the adverse effects may help to detect minor/subtle adverse effects associated with ω-3 PUFAs. This study was registered at PROSPERO as CRD42023401169.
Collapse
Affiliation(s)
- Jane Pei-Chen Chang
- College of Medicine, China Medical University, Taichung, Taiwan; Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Ping-Tao Tseng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; WinShine Clinics in Specialty of Psychiatry, Kaohsiung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan; Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Bing-Syuan Zeng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Po-Han Chou
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Taichung, Taiwan
| | - Kuan-Pin Su
- College of Medicine, China Medical University, Taichung, Taiwan; Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
8
|
Gora AH, Rehman S, Dias J, Fernandes JMO, Olsvik PA, Sørensen M, Kiron V. Microbial oil, alone or paired with β-glucans, can control hypercholesterolemia in a zebrafish model. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159383. [PMID: 37657755 DOI: 10.1016/j.bbalip.2023.159383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Dyslipidemia is often associated with unhealthy dietary habits, and many mammalian studies have explored the mode of action of certain bioactive compounds such as β-glucans and n-3 PUFAs to understand their potential to normalize the lipid metabolism. There are only a few investigations that adopted omic approaches to unveil their combined effect on hypercholesterolemia. Zebrafish (Danio rerio) was used as a model organism to reveal the efficacy of Schizochytrium oil and β-glucans (from Euglena gracilis and Phaeodactylum tricornutum) against cholesterol-rich diet induced dyslipidemia. One of the folowing four diets was fed to a particular group of fish: a control high-cholesterol diet, a Schizochytrium oil diet or one of the two diets containing the oil and β-glucan. The plasma HDL, expression of hepatic genes linked to, among others, ferric ion binding and plasma phosphatidylcholines were higher and plasma cholesterol esters and triacylglycerols were lower in the microbial oil-fed fish compared to the fish fed high cholesterol diet. While the fish fed a mix of microbial oil and Euglena β-glucan had lower plasma triacylglycerols and expression of hepatic genes linked to PPAR signaling pathway and enriched biosynthesis of plasma unsaturated fatty acids, the fish fed microbial oil-Phaeodactylum β-glucan combination had lower abundance of triacylglycerols rich in saturated and mono-unsaturated fatty acids and cholesterol esters in the plasma.
Collapse
Affiliation(s)
- Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
9
|
Eshaghian N, Heidarzadeh-Esfahani N, Akbari H, Askari G, Sadeghi O. Fish consumption and risk of prostate cancer or its mortality: an updated systematic review and dose-response meta-analysis of prospective cohort studies. Front Nutr 2023; 10:1221029. [PMID: 37593679 PMCID: PMC10427873 DOI: 10.3389/fnut.2023.1221029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023] Open
Abstract
Since the release of the last meta-analysis on the association between fish intake and prostate cancer risk, several cohort studies have been published. Moreover, none of the previous meta-analyzes examined the dose-response association between fish intake and prostate cancer. Therefore, the current dose-response meta-analysis was conducted to summarize available findings on the associations of fish intake with the risk of prostate cancer in men. Online databases of PubMed, Scopus, and Web of Science were systematically searched up to September 2022. We included prospective cohort studies that examined the associations of fish intake with the risk of prostate cancer (total, localized, and advanced prostate cancer), its mortality, and cancer progression. Summary relative risks (RR) and 95% confidence intervals (CI) were calculated for the highest versus lowest categories of fish intake using random-effects models. Also, linear and non-linear dose-response analyzes were conducted. In total, 25 prospective cohort studies, recruiting 1,216,474 men, were included in the systematic review, and 22 studies were included in the meta-analysis. During the follow-up periods, ranging from 6 to 33 years, a total of 44,722 cases of prostate cancer were recorded. The comparison between the highest and lowest intakes of total fish revealed the summary RRs of 0.97 (95% CI: 0.86-1.10) for total, 1.01 (95% CI: 0.91-1.13) for advanced, and 0.90 (95% CI: 0.72-1.12) for localized prostate cancer, indicating no significant association. Moreover, the summary RR was 0.55 (95% CI: 0.33-0.92) for prostate cancer mortality and 0.84 (95% CI: 0.65-1.10) for prostate cancer progression, indicating an inverse association between fish intake and prostate cancer mortality. Also, in the dose-response analyzes, each 20 gram/day increase in total fish intake was associated with a 12% lower risk of prostate cancer mortality. Our findings support the protective association between total fish intake and the risk of prostate cancer mortality.
Collapse
Affiliation(s)
- Niloofar Eshaghian
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Heidarzadeh-Esfahani
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hakimeh Akbari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Sadeghi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Flores-López A, Guevara-Cruz M, Avila-Nava A, González-Garay AG, González-Salazar LE, Reyes-Ramírez AL, Pedraza-Chaverri J, Medina-Campos ON, Medina-Vera I, Reyes-García JG, Tovar AR, Serralde-Zúñiga AE. n-3 Polyunsaturated Fatty Acid Supplementation Affects Oxidative Stress Marker Levels in Patients with Type II Intestinal Failure: A Randomized Double Blind Trial. Antioxidants (Basel) 2023; 12:1493. [PMID: 37627489 PMCID: PMC10451159 DOI: 10.3390/antiox12081493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Type II intestinal failure (IF-II) is a condition in which the gastrointestinal tract is compromised. Liver complications may occur because of the pathology and/or prolonged use of parenteral nutrition (PN); oxidative stress has been implicated as one of the causes. Lipid emulsions containing n-3 polyunsaturated fatty acids (PUFAs) have been proposed for the treatment. We aimed to evaluate the effect of 7-day n-3 PUFA supplementation on oxidative stress in IF-II patients receiving PN. This was a randomized, controlled, double-blinded, pilot trial of adult patients with IF-II, receiving either conventional PN (control) or PN enriched with n-3 PUFAs (intervention). Twenty patients were included (14 men, 49 ± 16.9 years), with the ANCOVA analysis the glucose (p = 0.003), and direct bilirubin (p = 0.001) levels reduced; whereas the high-density lipoprotein cholesterol (HDL-C) increased (p = 0.017). In the random-effect linear regression analysis, a reduction (p < 0.0001) in the malondialdehyde (MDA) level was found in the intervention group when the covariables age, HDL-C level, and alanine aminotransferase activity were considered. After 1 week of PN supplementation with n-3 PUFAs, the marker levels of some oxidative stress, blood lipids, and hepatic biomarkers improved in patients with IF-II.
Collapse
Affiliation(s)
- Adriana Flores-López
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Martha Guevara-Cruz
- Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Azalia Avila-Nava
- Unidad de Investigación, Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida 97130, Mexico
| | | | - Luis E. González-Salazar
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Ana L. Reyes-Ramírez
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Omar N. Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Juan G. Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Armando R. Tovar
- Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Aurora E. Serralde-Zúñiga
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
11
|
Gora AH, Rehman S, Dias J, Fernandes JMO, Olsvik PA, Sørensen M, Kiron V. Protective mechanisms of a microbial oil against hypercholesterolemia: evidence from a zebrafish model. Front Nutr 2023; 10:1161119. [PMID: 37435570 PMCID: PMC10332275 DOI: 10.3389/fnut.2023.1161119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2023] Open
Abstract
A Western diet elevates the circulating lipoprotein and triglyceride levels which are the major risk factors in cardiovascular disease (CVD) development. Consumption of long-chain omega-3 fatty acids can stall the disease progression. Although these fatty acids can significantly impact the intestine under a hypercholesterolemic condition, the associated changes have not been studied in detail. Therefore, we investigated the alterations in the intestinal transcriptome along with the deviations in the plasma lipids and liver histomorphology of zebrafish offered DHA- and EPA-rich oil. Fish were allocated to 4 dietary treatments: a control group, a high cholesterol group and microbial oil groups with low (3.3%) and high (6.6%) inclusion levels. We quantified the total cholesterol, lipoprotein and triglyceride levels in the plasma. In addition, we assessed the liver histology, intestinal transcriptome and plasma lipidomic profiles of the study groups. The results suggested that higher levels of dietary microbial oil could control the CVD risk factor indices in zebrafish plasma. Furthermore, microbial oil-fed fish had fewer liver vacuoles and higher mRNA levels of genes involved in β-oxidation and HDL maturation. Analyses of the intestine transcriptome revealed that microbial oil supplementation could influence the expression of genes altered by a hypercholesterolemic diet. The plasma lipidomic profiles revealed that the higher level of microbial oil tested could elevate the long-chain poly-unsaturated fatty acid content of triglyceride species and lower the concentration of several lysophosphatidylcholine and diacylglycerol molecules. Our study provides insights into the effectiveness of microbial oil against dyslipidemia in zebrafish.
Collapse
Affiliation(s)
- Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A. Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
12
|
Yang S, Wang X, Li H, Wang X, Song Y, Cong P, Xu J, Xue C. Sea Cucumber Phospholipids Regulate Cholesterol Metabolism in High-Fat Diet-induced ApoE -/- Mice. J Nutr 2023:S0022-3166(23)37560-6. [PMID: 37105382 DOI: 10.1016/j.tjnut.2023.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Sea cucumber phospholipids, marine-derived lipids with high nutritional functions, have been proven to exhibit various biological activities. However, it is unclear how sea cucumber phospholipids regulate cholesterol (Chol) metabolism in atherosclerosis (AS). OBJECTIVE This study aimed to investigate the effects and mechanism of sea cucumber phospholipids on the metabolism of Chol and cholesterol esters (CE) in ApoE-/- mice, including plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O). METHODS Male ApoE-/- mice were fed with chow diet, high-fat diet (HFD), and high-fat diet supplemented with PC-O or PE-P, respectively. We integrated a targeted lipidomics strategy to classify and compare the cholesteryl esters according to their fatty acid types, then analyzed the individual cholesteryl ester molecular species in the liver and serum of mice. Furthermore, the Chol metabolism-related genes and pathways were analyzed in high-fat-induced ApoE-/- mice. RESULTS Biochemical analysis showed that sea cucumber phospholipids significantly inhibit the generation of arterial plaque in ApoE-/- mice. Compared with the HFD group, PE-P significantly reduced the contents of saturated fatty acid-cholesterol esters (SFA-CE) and monounsaturated fatty acid-cholesterol esters (MUFA-CE) in mice liver (P < 0.05), whereas PC-O particularly upregulated CE20:5 and CE22:6 in serum of mice (P < 0.001). Furthermore, PC-O and PE-P inhibited the Chol synthesis pathway (Cyp7A1 and Cyp27A1), as well as promoted the catabolism of Chol by upregulating gene expressions of bile acid synthesis (Abcb11) and lysosomal activity (Lamp1), respectively. CONCLUSIONS Sea cucumber phospholipids could ameliorate the AS symptoms by regulating Chol metabolism.
Collapse
Affiliation(s)
- Shuo Yang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - He Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao, Shandong 266237, China.
| |
Collapse
|
13
|
Ronca A, Pellegrini N, Pagliai G, Dinu M, Manfredini M, Incerti M, Favari E, Sofi F. Effects of a dietary intervention with Mediterranean vs lacto-ovo vegetarian diets on HDL function: Results from the CARDIVEG study. Nutr Metab Cardiovasc Dis 2023; 33:651-658. [PMID: 36642608 DOI: 10.1016/j.numecd.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIM HDL-cholesterol efflux capacity (CEC) has been shown to be a better cardiovascular (CVD) risk marker than serum HDL concentration. Several foods and nutrients have been shown to improve HDL functions, however no effective dietetic nor pharmacological strategy is available to increase CEC. This study aims to evaluate the possible effect of Mediterranean diet (MD) and lacto-ovo-vegetarian diet (VD) on HDL function in a group of clinically healthy subjects at low-to-moderate CVD risk. METHODS AND RESULTS Thirty apparently healthy subjects with a low-to-moderate cardiovascular risk profile (21 F; mean age: 51.3 ± 9.7 years) were randomly assigned to a 3-month MD or VD diet and then crossed. Participants on VD showed a reduction in total HDL CEC by 8.99% (p < 0.001) as well as a reduction in ABCA1 mediated-CEC by 18.62% (p < 0.001) compared to participants on MD. Regarding CEC mediated by aqueous diffusion, no significant changes were observed after treatment with either diet. Finally, a significant positive association between CEC mediated by the ABCA1 transporter and adiponectin was found (r = 0.462; p = 0.010). CONCLUSION The results of this study suggest that HDL activity in promoting cholesterol efflux and thereby reducing the concentration of pro-atherogenic lipoproteins was more effective in participants undergoing MD than VD. Based on these findings, the MD could be considered a better therapeutic strategy for cardiovascular prevention than VD. CLINICAL TRIAL REGISTRATION URL http://www. CLINICALTRIALS gov. Unique identifier: NCT02641834.
Collapse
Affiliation(s)
- Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Manfredini
- Department of Chemistry, Life Science, And Environmental Sustainability, University of Parma, Parma, Italy
| | - Matteo Incerti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Gao YH, Li X. Cholesterol metabolism: Towards a therapeutic approach for multiple sclerosis. Neurochem Int 2023; 164:105501. [PMID: 36803679 DOI: 10.1016/j.neuint.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Growing evidence points to the importance of cholesterol in preserving brain homeostasis. Cholesterol makes up the main component of myelin in the brain, and myelin integrity is vital in demyelinating diseases such as multiple sclerosis. Because of the connection between myelin and cholesterol, the interest in cholesterol in the central nervous system increased during the last decade. In this review, we provide a detailed overview on brain cholesterol metabolism in multiple sclerosis and its role in promoting oligodendrocyte precursor cell differentiation and remyelination.
Collapse
Affiliation(s)
- Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
15
|
Alarcon G, Sierra L, Roco J, Van Nieuwenhove C, Medina A, Medina M, Jerez S. Effects of Cold Pressed Chia Seed Oil Intake on Hematological and Biochemical Biomarkers in Both Normal and Hypercholesterolemic Rabbits. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:179-185. [PMID: 36515802 DOI: 10.1007/s11130-022-01036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Most of the studies on the beneficial effects of chia have been conducted with its seeds. There is less evidence about the effects of cold pressed chia seeds oil on hypercholesterolemia-induced alterations. Thus, this study investigated the effects of cold pressed chia seed oil supplementation on certain hematological and biochemical biomarkers in both normal and hypercholesterolemic rabbits. Thirty two male rabbits were assigned to four different groups and fed on: 1) a regular diet (CD), 2) CD supplemented with 10% chia oil, 3) CD supplemented with 1% cholesterol, 4) CD supplemented with 1% cholesterol and 10% chia oil. After six weeks of dietary interventions, mean arterial blood pressure and visceral fat were measured and blood samples were analyzed for lipid profiles and hematological parameters while erythrocyte membranes and retroperitoneal fat were analyzed for fatty acids composition and biochemical biomarkers. Dietary intervention with chia oil achieved control of the hypercholesterolemia-induced increase of mean arterial blood pressure, neutrophil to lymphocytes ratio, erythrocyte membrane fluidity, and improved erythrocyte morphological alterations. With regard to inflammatory biomarkers, chia oil supplementation reduced omega-6/omega-3 polyunsaturated fatty acids ratios and arachidonic/linolenic fatty acids ratios both in erythrocytes and fat from normal and hypercholesterolemic rabbits. The increase of linolenic fatty acid into the retroperitoneal fat was about 9 times higher than its respective controls. These results provide support for the potential health benefits of chia oil intake on hypercholesterolemia-associated clinical, hematological and biochemical alterations.
Collapse
Affiliation(s)
- Gabriela Alarcon
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, 4000, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
| | - Liliana Sierra
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
| | - Julieta Roco
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Carina Van Nieuwenhove
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
- Centro de Referencia Para Lactobacilos (CERELA-CONICET), Chacabuco 145, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Analia Medina
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
| | - Mirta Medina
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
| | - Susana Jerez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, 4000, San Miguel de Tucumán, Tucumán, Argentina.
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
16
|
Khalid W, Arshad MS, Aziz A, Rahim M, Qaisrani TB, Afzal F, Ali A, Ranjha MMAN, Khalid MZ, Anjum F. Chia seeds ( Salvia hispanica L.): A therapeutic weapon in metabolic disorders. Food Sci Nutr 2023; 11:3-16. [PMID: 36655089 PMCID: PMC9834868 DOI: 10.1002/fsn3.3035] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022] Open
Abstract
The growth of functional components containing agricultural foods is enhancing because these components aid the human body against different chronic diseases. Currently, chia seeds basically belong to the mint family and are edible seeds of Salvia hispanica. These seeds are composed of different functional components including fiber, polyphenols, antioxidants, omega-3 fatty acid vitamins, minerals, and peptides. Besides, these seeds are also a good source of vegetable protein, unsaturated fat, carbohydrates, and ash. Chia seed components are helpful in cardiovascular disease (CVD) by reducing blood pressure, platelet aggregation, cholesterol, and oxidation. In GI-tract-related diseases like diabetes and constipation, chia fiber reduces the blood glucose level and provides bulk to stool. However, antioxidants and polyphenols are protected beta cells of the pancreas from inflammation. These components are protected from the cell damage of the different body parts, which can provide help in different types of cancer including breast, colorectal, liver, and pancreatic. Conclusively, some pervious studies approved that chia seed components are played important role in chronic diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Afifa Aziz
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and TechnologyGhazi UniversityDera Ghazi KhanPakistan
| | - Fareed Afzal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public HealthCentral South UniversityHunanChina
| | | | | | - Faqir Muhammad Anjum
- Islamic Food and Nutrition Council of AmericaIFANCA Halal Apex, Private LimitedFaisalabadPakistan
| |
Collapse
|
17
|
Đidara M, Poljičak-Milas N, Novoselec J, Pavlić M, Đud D, Šperanda M. Effect of dietary supplementation with linseed and organic selenium on plasma metabolic parameters in Holstein dairy cows. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mislav Đidara
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek Osijek, Croatia
| | - Nina Poljičak-Milas
- Department of Pathophysiology, Faculty of Veterinary medicine, University of Zagreb, Zagreb, Croatia
| | - Josip Novoselec
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek Osijek, Croatia
| | - Martina Pavlić
- Croatian Agency for Agriculture and Food, Osijek, Croatia
| | | | - Marcela Šperanda
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek Osijek, Croatia
| |
Collapse
|
18
|
Peng K, Li X, Wang Z, Li M, Yang Y. Association of low-density lipoprotein cholesterol levels with the risk of mortality and cardiovascular events: A meta-analysis of cohort studies with 1,232,694 participants. Medicine (Baltimore) 2022; 101:e32003. [PMID: 36482567 PMCID: PMC9726298 DOI: 10.1097/md.0000000000032003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lowering elevated low-density lipoprotein cholesterol (LDL-C) is an important strategy to prevent cardiovascular disease (CVD), while some studies report low LDL-C increases all-cause mortality. Our study aimed to explore the appropriate low LDL-C level with the lower CVD risk but with no excess risk for all-cause mortality. METHODS PubMed, Embase, Cochrane Library, and Web of Science were searched until April 7, 2021. Twenty cohort studies with 1232,694 adults were obtained. Effect size index was evaluated using pooled relative risk (RR) with 95% confidence interval (CI). Heterogeneity was assessed using the Cochran's Q test and I2 statistic, and heterogeneity sources was investigated using meta-regression. Publication bias was assessed and sensitivity analysis was performed. RESULTS The risks of all-cause mortality (RR: 1.34, 95%CI: 1.00-1.80), CVD death (RR: 1.79, 95%CI: 1.26-2.54), CHD death (RR: 2.03, 95%CI: 1.36-3.03) were higher in LDL-C ≥ 160 mg/dL than LDL-C of 70-129 mg/dL. Both LDL-C of 130-159 mg/dL and ≥ 160 mg/dL were associated with higher CVD risk than LDL-C of 70-129 mg/dL, with RR of 1.26 (95%CI: 1.08-1.47) and 1.70 (95%CI: 1.35-2.14), respectively. Compared to LDL-C of 70-129 mg/dL, no association was found between LDL < 70 mg/dL and all-cause mortality and CVD events. CONCLUSION Our results found LDL-C ≥ 130 mg/dL was associated with the higher risk of all-cause mortality and CVD risk, indicating that adults with high LDL-C should take interventions to regulate the LDL-C level lower than 130 mg/dL.
Collapse
Affiliation(s)
- Ke Peng
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, P.R. China
| | - Xingyue Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, P.R. China
| | - Zhen Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, P.R. China
| | - Meiling Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, P.R. China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, P.R. China
- * Correspondence: Yongjian Yang, Department of Cardiology, The General Hospital of Western Theater Command, No.270 Rongdu Road, Jinniu District, Chengdu 610083, P.R. China (e-mail: )
| |
Collapse
|
19
|
do Nascimento Silva NRR, Cavalcante RBM, da Silva FA. Nutritional Properties of Buriti (Mauritia flexuosa) and Helth Benefits. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Sun J, Wang Z, Lin C, Xia H, Yang L, Wang S, Sun G. The hypolipidemic mechanism of chrysanthemum flavonoids and its main components, luteolin and luteoloside, based on the gene expression profile. Front Nutr 2022; 9:952588. [PMID: 36147301 PMCID: PMC9487889 DOI: 10.3389/fnut.2022.952588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the following four groups of mice with hyperlipidemia were involved: the model control group (MC), the Chrysanthemum flavonoids group (CF), the luteolin group, and the luteoloside group. The whole gene expression profile was detected in the liver tissues of each group. Differential genes significantly enriched in the biological process of gene ontology (GO) items and Kyoto Encyclopedia of Genes and Genomes (KEGG) were selected, and 4 differential genes related to lipid metabolism were selected for further real-time quantitative PCR verification. Compared with the MC, 41 differential genes such as Sqle, Gck, and Idi1 were screened in the CF intervention group; 68 differential genes such as Acsl3, Cyp7a1, and Lpin1 were screened in the luteolin intervention group (CF); and 51 differential genes such as Acaca, Cyp7a1, and Lpin1 were screened in the luteoloside group. The mechanism of CF to improve hyperlipidemia is very complex, mainly involving biological processes such as cholesterol and fatty acid metabolism and glycolysis, luteolin mainly involves the synthesis and transport of cholesterol, and luteoloside mainly involves fatty acid metabolism. The functional pathways of CF may not be completely the same as luteolin and luteoloside, and further study is needed on the mechanism of action of other components.
Collapse
Affiliation(s)
- Jihan Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Zhaodan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing, China
| | - Chen Lin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- *Correspondence: Guiju Sun,
| |
Collapse
|
21
|
Zheng L, Lin G, Li R, Gan H, Huang X, Yao N, Cai D, Zhao Z, Hu Z, Li M, Xu H, Li L, Peng S, Zhao X, Lai Y, Chen Y, Huang D. Isochlorogenic Acid C Alleviates High-Fat Diet-Induced Hyperlipemia by Promoting Cholesterol Reverse Transport. Front Pharmacol 2022; 13:881078. [PMID: 35959429 PMCID: PMC9358028 DOI: 10.3389/fphar.2022.881078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Promoting cholesterol reverse transport (RCT) has been proven to be a promising hyperlipidemia therapy since it is more effective for the treatment of atherosclerosis (AS) caused by hyperlipidemia. Liver X receptor (LXR) agonists can accelerate RCT, but most of them trigger undesirable liver steatosis due to the activation of liver LXRα. Aim: We aim to figure out whether isochlorogenic acid C (ICAC) facilitates RCT without causing hepatic steatosis. Methods:In vitro study, we established foam macrophages and macrophages with loaded NBD-cholesterol models to investigate the competence of RCT promoting ICAC. RT-qPCR and Western blot were used to verify ICAC’s regulation of RCT and NF-κB inflammatory pathways. In this in vivo study, male 6-week-old C57BL/6 mice were fed a high-fat diet (HFD) to investigate ICAC’s anti-hyperlipidemic effect and its functions in regulating RCT. The anti-hyperlipidemic effect of ICAC was evaluated by blood and liver lipid levels, liver hematoxylin, oil red o staining, and liver coefficient. Finally, mRNA levels of genes involved in RCT and inflammation pathways in the liver and intestine were detected by RT-qPCR. Results: ICAC prevented macrophages from foaming by up-regulating the LXRα mediated RCT pathway and down-regulating expression of the cholesterol absorption genes LDLR and CD36, as well as suppressing iNOS, COX2, and IL-1β inflammatory factors. In HFD-fed mice, ICAC significantly lowered the lipid level both in the serum and the liver. Mechanistic studies showed that ICAC strengthened the RCT pathway in the liver and intestine but didn’t affect liver LXRα. Furthermore, ICAC impeded both adipogenesis and the inflammatory response in the liver. Conclusion: ICAC accelerated RCT without affecting liver LXRα, thus resulting in a lipid-lowering effect without increasing liver adipogenesis. Our results indicated that ICAC could be a new RCT promoter for hyperlipidemia treatment without causing liver steatosis.
Collapse
Affiliation(s)
- Liuyi Zheng
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Guangyao Lin
- School of Marxism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruyue Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- Department of Pharmacy, Zhengzhou People’s Hospital, Zhengzhou, China
| | - Haining Gan
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Xuejun Huang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Nan Yao
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Dake Cai
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Ziming Zhao
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Zixuan Hu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Minyi Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Huazhen Xu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Leyi Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Sha Peng
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Xinxin Zhao
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Yijing Lai
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Yuxing Chen
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- *Correspondence: Yuxing Chen, ; Dane Huang,
| | - Dane Huang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- *Correspondence: Yuxing Chen, ; Dane Huang,
| |
Collapse
|
22
|
Santos-Sánchez G, Cruz-Chamorro I, Bollati C, Bartolomei M, Pedroche J, Millán F, Millán-Linares MDC, Capriotti AL, Cerrato A, Laganà A, Arnoldi A, Carrillo-Vico A, Lammi C. A Lupinus angustifolius protein hydrolysate exerts hypocholesterolemic effects in Western diet-fed ApoE -/- mice through the modulation of LDLR and PCSK9 pathways. Food Funct 2022; 13:4158-4170. [PMID: 35316320 DOI: 10.1039/d1fo03847h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Antonio Carrillo-Vico
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
23
|
Arabi SM, Bahrami LS, Milkarizi N, Nematy M, Kalmykov V, Sahebkar A. Impact of walnut consumption on cardio metabolic and anthropometric parameters in metabolic syndrome patients: GRADE-assessed systematic review and dose-response meta-analysis of data from randomized controlled trials. Pharmacol Res 2022; 178:106190. [PMID: 35338001 DOI: 10.1016/j.phrs.2022.106190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND In recent years, the effect of walnut consumption on various components of metabolic syndrome (Mets) in different populations has been investigated. However, the findings on the alterations of cardiometabolic and anthropometric indices following walnut consumption in adults with Mets have not been fully conclusive. METHODS The current study of eight randomized controlled trials (RCTs) examined the effects of walnut consumption on glucose homeostasis factors (fasting plasma glucose (FPG), insulin, hemoglobin A1C (HbA1c)), lipid profile (triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c)), high sensitivity C-reactive protein (hs-CRP) concentrations and anthropometric indices (body weight (BW), body mass index (BMI), and waist circumference (WC)) in trials of 549 participants. A systematic search was conducted in online databases including MEDLINE, Scopus, and Clarivate Analytics Web of Science uses related keywords to detect eligible studies until December 2021. To calculate the weighted mean difference (WMD) and 95% confidence intervals (CIs), a random-effects model was used. RESULTS Results from the pooled analysis showed that serum TG concentration was significantly reduced (WMD, - 0.1 mmol/L; 95%CI (- 0.3 to - 0.02); p = 0.02; I2 = 38.6%; p = 0.10), although other lipid profile components (TC, LDL-c, and HDL-c), glucose homeostasis markers (FPG, insulin, and HbA1c), hs-CRP levels, anthropometric indices (BW, BMI, and WC) and blood pressure (SBP and DBP) were not influenced by walnut consumption. A significant dose-response association was detected between the dose of walnut intake and serum concentrations of FPG (Pnon-linearity < 0.03, Pdose-response < 0.001) and HDL-c (Pnon-linearity = 0.01, Pdose-response = 0.006). CONCLUSIONS Walnut consumption reduces serum TG levels in individuals with metabolic syndrome, but it cannot affect other cardiometabolic indices. Future well-designed and large RCTs are required to clarify further beneficial effects of walnut consumption on the cardiometabolic profile.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Department of Basic Sciences, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran; Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Sadat Bahrami
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Milkarizi
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Nematy
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vladislav Kalmykov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russian Federation; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russian Federation
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI JOURNAL 2022; 21:47-76. [PMID: 35221836 PMCID: PMC8859648 DOI: 10.17179/excli2021-4453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| |
Collapse
|
25
|
Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J Clin Med 2021; 10:jcm10245897. [PMID: 34945193 PMCID: PMC8707678 DOI: 10.3390/jcm10245897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
High-density lipoprotein (HDL) functional traits have emerged as relevant elements that may explain HDL antiatherogenic capacity better than HDL cholesterol levels. These properties have been improved in several lifestyle intervention trials. The aim of this systematic review is to summarize the results of such trials of the most commonly used dietary modifications (fatty acids, cholesterol, antioxidants, alcohol, and calorie restriction) and physical activity. Articles were screened from the Medline database until March 2021, and 118 randomized controlled trials were selected. Results from HDL functions and associated functional components were extracted, including cholesterol efflux capacity, cholesteryl ester transfer protein, lecithin-cholesterol acyltransferase, HDL antioxidant capacity, HDL oxidation status, paraoxonase-1 activity, HDL anti-inflammatory and endothelial protection capacity, HDL-associated phospholipase A2, HDL-associated serum amyloid A, and HDL-alpha-1-antitrypsin. In mainly short-term clinical trials, the consumption of monounsaturated and polyunsaturated fatty acids (particularly omega-3 in fish), and dietary antioxidants showed benefits to HDL functionality, especially in subjects with cardiovascular risk factors. In this regard, antioxidant-rich dietary patterns were able to improve HDL function in both healthy individuals and subjects at high cardiovascular risk. In addition, in randomized trial assays performed mainly in healthy individuals, reverse cholesterol transport with ethanol in moderate quantities enhanced HDL function. Nevertheless, the evidence summarized was of unclear quality and short-term nature and presented heterogeneity in lifestyle modifications, trial designs, and biochemical techniques for the assessment of HDL functions. Such findings should therefore be interpreted with caution. Large-scale, long-term, randomized, controlled trials in different populations and individuals with diverse pathologies are warranted.
Collapse
|
26
|
Thakkar H, Vincent V, Roy A, Gautam AK, Kutum R, Ramakrishnan L, Singh S, Singh A. Determinants of high-density lipoprotein (HDL) functions beyond proteome in Asian Indians: exploring the fatty acid profile of HDL phospholipids. Mol Cell Biochem 2021; 477:559-570. [PMID: 34843015 DOI: 10.1007/s11010-021-04304-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023]
Abstract
Impaired high-density lipoprotein (HDL) functions are associated with development of coronary artery disease. In this study, we explored the quantitative differences in HDL (i.e. HDL proteome and fatty acid profile of HDL phospholipids) underlying the functional deficits associated with acute coronary syndrome (ACS). The relationship between HDL function and composition was assessed in 65 consecutive ACS patients and 40 healthy controls. Cholesterol efflux capacity (CEC) of HDL and lecithin cholesterol acyl transferase (LCAT) activity were significantly lower in patients with ACS compared to controls. In HDL proteome analysis, HDL isolated from ACS individuals was enriched in apolipoprotein C2 (inhibitor of LCAT), apolipoprotein C4 and serum amyloid A proteins and was deficient in apolipoprotein A-I and A-II. The fatty acid profile of HDL phospholipids analyzed using gas chromatography showed significantly lower percentages of stearic acid (17.4 ± 2.4 vs 15.8 ± 2.8, p = 0.004) and omega-3 fatty acids [eicosapentaenoic acid (1.0 (0.6-1.4) vs 0.7 (0.4-1.0), p = 0.009) and docosahexaenoic acid (1.5 ± 0.7 vs 1.3 ± 0.5, p = 0.03)] in ACS patients compared to controls. Lower percentages of these fatty acids in HDL were associated with higher odds of developing ACS. Our results suggest that distinct phospholipid fatty acid profiles found in HDL from ACS patients could be one of the contributing factors to the deranged HDL functions in these patients apart from the protein content and the inflammatory conditions.
Collapse
Affiliation(s)
- Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Kumar Gautam
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rintu Kutum
- Informatics and Big Data Unit, Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Singh
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
27
|
Impact of combined consumption of fish oil and probiotics on the serum metabolome in pregnant women with overweight or obesity. EBioMedicine 2021; 73:103655. [PMID: 34740110 PMCID: PMC8577343 DOI: 10.1016/j.ebiom.2021.103655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND If a pregnant woman is overweight, this can evoke metabolic alterations that may have health consequences for both mother and child. METHODS Pregnant women with overweight/obesity (n = 358) received fish oil+placebo, probiotics+placebo, fish oil+probiotics or placebo+placebo from early pregnancy onwards. The serum metabolome was analysed from fasting samples with a targeted NMR-approach in early and late pregnancy. GDM was diagnosed by OGTT. FINDINGS The intervention changed the metabolic profile of the women, but the effect was influenced by their GDM status. In women without GDM, the changes in nine lipids (FDR<0.05) in the fish oil+placebo-group differed when compared to the placebo+placebo-group. The combination of fish oil and probiotics induced changes in more metabolites, 46 of the lipid metabolites differed in women without GDM when compared to placebo+placebo-group; these included reduced increases in the concentrations and lipid constituents of VLDL-particles and less pronounced alterations in the ratios of various lipids in several lipoproteins. In women with GDM, no differences were detected in the changes of any metabolites due to any of the interventions when compared to the placebo+placebo-group (FDR<0.05). INTERPRETATION Fish oil and particularly the combination of fish oil and probiotics modified serum lipids in pregnant women with overweight or obesity, while no such effects were seen with probiotics alone. The effects were most evident in the lipid contents of VLDL and LDL only in women without GDM. FUNDING State Research Funding for university-level health research in the Turku University Hospital Expert Responsibility Area, Academy of Finland, the Diabetes Research Foundation, the Juho Vainio Foundation, Janssen Research & Development, LLC.
Collapse
|
28
|
Zanotti I, Potì F, Cuchel M. HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159065. [PMID: 34637925 DOI: 10.1016/j.bbalip.2021.159065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches.
Collapse
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Potì
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Effect of omega-3 fatty acid supplementation on gene expression of inflammation, oxidative stress and cardiometabolic parameters: Systematic review and meta-analysis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Zhang H, Zhu W, Niu T, Wang Z, An K, Cao W, Shi J, Wang S. Inverted U-shaped correlation between serum low-density lipoprotein cholesterol levels and cognitive functions of patients with type 2 diabetes mellitus. Lipids Health Dis 2021; 20:103. [PMID: 34511118 PMCID: PMC8436464 DOI: 10.1186/s12944-021-01534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL-C) metabolic disorder is common in individuals with diabetes. The role of LDL-C in mild cognitive impairment (MCI) remains to be explored. We aim to investigate the associations between LDL-C at different levels and details of cognition decline in patients with type 2 diabetes mellitus (T2DM). METHODS Patients with T2DM (n = 497) were recruited. Clinical parameters and neuropsychological tests were compared between patients with MCI and controls. Goodness of fit was assessed to determine the linear or U-shaped relationship between LDL-C and cognitive function. The cut-off point of LDL-C was calculated. Correlation and regression were carried out to explore the relationship between cognitive dysfunction and LDL-C levels above and below the cut-off point. RESULTS Although no significant difference in LDL-C levels was detected in 235 patients with MCI, compared with 262 patients without MCI, inverted-U-shaped association was determined between LDL-C and Montreal Cognitive Assessment (MoCA). The cut-off point of LDL-C is 2.686 mmol/l. LDL-C (>2.686 mmol/l) is positively related to Trail Making Test B (TMTB) indicating executive function. LDL-C (<2.686 mmol/l) is positively associated with Clock Drawing Test (CDT) reflecting visual space function in patients with T2DM. CONCLUSION Inverted U-shaped correlation was found between serum LDL-C and cognitive function in patients with T2DM. Despite that the mechanisms of different LDL-C levels involved in special cognitive dysfunctions remain incompletely clarified, excessive LDL-C damages executive function, while the deficient LDL-C impairs visual space function. TRIAL REGISTRATION ChiCTR-OCC-15006060 .
Collapse
Affiliation(s)
- Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Tong Niu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Zheng Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Wuyou Cao
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Jijing Shi
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China. .,School of Medicine, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
31
|
Ferreira RDS, Mendonça LABM, dos Santos C, Hiane PA, Matias R, Franco OL, de Oliveira AKM, do Nascimento VA, Pott A, Carvalho CME, Guimarães RDCA. Do Bioactive Food Compound with Avena sativa L., Linum usitatissimum L. and Glycine max L. Supplementation with Moringa oleifera Lam. Have a Role against Nutritional Disorders? An Overview of the In Vitro and In Vivo Evidence. Nutrients 2021; 13:2294. [PMID: 34371804 PMCID: PMC8308451 DOI: 10.3390/nu13072294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Functional clinical nutrition is an integrative science; it uses dietary strategies, functional foods and medicinal plants, as well as combinations thereof. Both functional foods and medicinal plants, whether associated or not, form nutraceuticals, which can bring benefits to health, in addition to being included in the prevention and treatment of diseases. Some functional food effects from Avena sativa L. (oats), Linum usitatissimum L. (brown flaxseed), Glycine max L. (soya) and Moringa oleifera have been proposed for nutritional disorders through in vitro and in vivo tests. A formulation called a bioactive food compound (BFC) showed efficiency in the association of oats, flaxseed and soy for dyslipidemia and obesity. In this review, we discuss the effects of BFC in other nutritional disorders, as well as the beneficial effects of M. oleifera in obesity, cardiovascular disease, diabetes mellitus type 2, metabolic syndrome, intestinal inflammatory diseases/colorectal carcinogenesis and malnutrition. In addition, we hypothesized that a BFC enriched with M. oleifera could present a synergistic effect and play a potential benefit in nutritional disorders. The traditional consumption of M. oleifera preparations can allow associations with other formulations, such as BFC. These nutraceutical formulations can be easily accepted and can be used in sweet preparations (fruit and/or vegetable juices, fruit and/or vegetable vitamins, porridges, yogurt, cream, mousses or fruit salads, cakes and cookies) or savory (vegetable purees, soups, broths and various sauces), cooked or not. These formulations can be low-cost and easy-to-use. The association of bioactive food substances in dietary formulations can facilitate adherence to consumption and, thus, contribute to the planning of future nutritional interventions for the prevention and adjuvant treatment of the clinical conditions presented in this study. This can be extended to the general population. However, an investigation through clinical studies is needed to prove applicability in humans.
Collapse
Affiliation(s)
- Rosângela dos Santos Ferreira
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Lígia Aurélio Bezerra Maranhão Mendonça
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Cristiane dos Santos
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| | - Rosemary Matias
- Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande 79035-470, MS, Brazil; (R.M.); (A.K.M.d.O.)
| | - Octávio Luiz Franco
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
- Graduate Program in Genomic Sciences and Biotechnology, Center of Proteomic and Biochemical Analysis, Catholic University of Brazilia, Brasília 70790-160, DF, Brazil
| | - Ademir Kleber Morbeck de Oliveira
- Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande 79035-470, MS, Brazil; (R.M.); (A.K.M.d.O.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| | - Arnildo Pott
- Institute of Biosciences, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| |
Collapse
|
32
|
Isaac AR, de Velasco PC, Fraga KYD, Tavares-do-Carmo MDG, Campos RMP, Iannotti FA, Verde R, Martins DBG, Santos TA, Ferreira BK, de Mello FG, Di Marzo V, Andrade-da-Costa BLDS, de Melo Reis RA. Maternal omega-3 intake differentially affects the endocannabinoid system in the progeny`s neocortex and hippocampus: Impact on synaptic markers. J Nutr Biochem 2021; 96:108782. [PMID: 34038760 DOI: 10.1016/j.jnutbio.2021.108782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and the endocannabinoid system (ECS) modulate several functions through neurodevelopment including synaptic plasticity mechanisms. The interplay between n-3PUFA and the ECS during the early stages of development, however, is not fully understood. This study investigated the effects of maternal n-3PUFA supplementation (n-3Sup) or deficiency (n-3Def) on ECS and synaptic markers in postnatal offspring. Female rats were fed with a control, n-3Def, or n-3Sup diet from 15 days before mating and during pregnancy. The cerebral cortex and hippocampus of mothers and postnatal 1-2 days offspring were analyzed. In the mothers, a n-3 deficiency reduced CB1 receptor (CB1R) protein levels in the cortex and increased CB2 receptor (CB2R) in both cortex and hippocampus. In neonates, a maternal n-3 deficiency reduced the hippocampal CB1R amount while it increased CB2R. Additionally, total GFAP isoform expression was increased in both cortex and hippocampus in neonates of the n-3Def group. Otherwise, maternal n-3 supplementation increased the levels of n-3-derived endocannabinoids, DHEA and EPEA, in the cortex and hippocampus and reduced 2-arachidonoyl-glycerol (2-AG) concentrations in the cortex of the offspring. Furthermore, maternal n-3 supplementation also increased PKA phosphorylation in the cortex and ERK phosphorylation in the hippocampus. Synaptophysin immunocontent in both regions was also increased. In vitro assays showed that the increase of synaptophysin in the n-3Sup group was independent of CB1R activation. The findings show that variations in maternal dietary omega-3 PUFA levels may impact differently on the ECS and molecular markers in the cerebral cortex and hippocampus of the progeny.
Collapse
Affiliation(s)
- Alinny Rosendo Isaac
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Karla Yasmin Dias Fraga
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Tavares-do-Carmo
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Danyelly Bruneska Gondim Martins
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thaysa Aragão Santos
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Bruna Klippel Ferreira
- Departamento de Bioquímica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Garcia de Mello
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy; Canada Exellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and NUTRISS-INAF Universitè Laval, Quebec City, Canada
| | | | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Barker G, Leeuwenburgh C, Brusko T, Moldawer L, Reddy ST, Guirgis FW. Lipid and Lipoprotein Dysregulation in Sepsis: Clinical and Mechanistic Insights into Chronic Critical Illness. J Clin Med 2021; 10:1693. [PMID: 33920038 PMCID: PMC8071007 DOI: 10.3390/jcm10081693] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to their well-characterized roles in metabolism, lipids and lipoproteins have pleiotropic effects on the innate immune system. These undergo clinically relevant alterations during sepsis and acute inflammatory responses. High-density lipoprotein (HDL) plays an important role in regulating the immune response by clearing bacterial toxins, supporting corticosteroid release, decreasing platelet aggregation, inhibiting endothelial cell apoptosis, reducing the monocyte inflammatory response, and inhibiting expression of endothelial cell adhesion molecules. It undergoes quantitative as well as qualitative changes which can be measured using the HDL inflammatory index (HII). Pro-inflammatory, or dysfunctional HDL (dysHDL) lacks the ability to perform these functions, and we have also found it to independently predict adverse outcomes and organ failure in sepsis. Another important class of lipids known as specialized pro-resolving mediators (SPMs) positively affect the escalation and resolution of inflammation in a temporal fashion. These undergo phenotypic changes in sepsis and differ significantly between survivors and non-survivors. Certain subsets of sepsis survivors go on to have perilous post-hospitalization courses where this inflammation continues in a low grade fashion. This is associated with immunosuppression in a syndrome of persistent inflammation, immunosuppression, and catabolism syndrome (PICS). The continuous release of tissue damage-related patterns and viral reactivation secondary to immunosuppression feed this chronic cycle of inflammation. Animal data indicate that dysregulation of endogenous lipids and SPMs play important roles in this process. Lipids and their associated pathways have been the target of many clinical trials in recent years which have not shown mortality benefit. These results are limited by patient heterogeneity and poor animal models. Considerations of sepsis phenotypes and novel biomarkers in future trials are important factors to be considered in future research. Further characterization of lipid dysregulation and chronic inflammation during sepsis will aid mortality risk stratification, detection of sepsis, and inform individualized pharmacologic therapies.
Collapse
Affiliation(s)
- Grant Barker
- Department of Emergency Medicine, College of Medicine-Jacksonville, University of Florida, 655 West 8th Street, Jacksonville, FL 32209, USA;
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL 32603, USA;
| | - Todd Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA;
| | - Lyle Moldawer
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Faheem W. Guirgis
- Department of Emergency Medicine, College of Medicine-Jacksonville, University of Florida, 655 West 8th Street, Jacksonville, FL 32209, USA;
| |
Collapse
|
34
|
Lorensia A, Budiono R, Suryadinata RV, Tiarasari N. Quantitative determination of EPA and DHA in fish oil capsules for cardiovascular disease therapy in Indonesia by GC-MS. J Public Health Res 2021; 10:2159. [PMID: 33855393 PMCID: PMC8129766 DOI: 10.4081/jphr.2021.2159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The consumption of EPA (Eicosapentaenoic acid), and DHA (docosahexaenoic acid), from fish oil, in the long run, has been observed to have a positive impact on patients with coronary heart disease. Fish oil products, with so much EPA and DHA content are available, and have very variable prices. Therefore, as a therapy to be used for long-term treatment, the cost factor is to be considered. DESIGN AND METHODS This study analyzed the content of EPA and DHA, using GC-MS. The sample to be analyzed was the fish oil that has the lowest price (Product A1), and that of the highest (Product A2). Furthermore, the macroscopic analysis was performed, by observing the physical form including organoleptic and qualitative tests, by reading the fragments identified by EPA and DHA. RESULTS Clinical trials were conducted on patients (about 46 people), with risk factors and dyslipidemia. Product A1 showed EPA at tR= 15.574 min (relative%= 88.49%, similarity= 95%), and DHA at tR= 21.714 min (relative%= 88.92%, similarity= 93%). Product A2 showed EPA at tR= 28.719 min (relative%= 22.58%, similarity= 89%), and DHA at tR= 32.327 min (relative%= 22.87%, similarity= 90%), which meant that both had EPA and DHA contents, in accordance with their labels. Both products were confirmed to reduce total cholesterol in 4weeks (p=0.000, p= 0.000), with no significant difference in their effectiveness (p=0.652). CONCLUSION The results showed that both the A1 and A2 products, had the EPA and DHA contents in accordance with their respective labels. However, with the A2 product having a percentage relatively higher than that of the A1 brand, both are equally very effective.
Collapse
Affiliation(s)
- Amelia Lorensia
- Department of Clinical Pharmacy-Community, Faculty of Pharmacy, Universitas Surabaya, Jl. Raya Kalirungkut, Surabaya.
| | - Ryanto Budiono
- Department of Clinical Pharmacy-Community, Faculty of Pharmacy, Universitas Surabaya, Jl. Raya Kalirungkut, Surabaya.
| | | | - Navy Tiarasari
- Undergraduate Student, Faculty of Pharmacy, Universitas Surabaya, Jl. Raya Kalirungkut, Surabaya.
| |
Collapse
|
35
|
Grytten E, Laupsa-Borge J, Bohov P, Bjørndal B, Strand E, Skorve J, Nordrehaug JE, Berge RK, Rostrup E, Mellgren G, Dankel SN, Nygård OK. Changes in lipoprotein particle subclasses, standard lipids, and apolipoproteins after supplementation with n-3 or n-6 PUFAs in abdominal obesity: A randomized double-blind crossover study. Clin Nutr 2021; 40:2556-2575. [PMID: 33933722 DOI: 10.1016/j.clnu.2021.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower circulating levels of triacylglycerols (TAGs), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) may reduce cholesterol levels. Clinical studies on effects of these dietary or supplemental PUFAs on other blood fat fractions are few and have shown conflicting results. This study aimed to determine effects of high-dose supplemental n-3 (EPA + DHA) and n-6 (LA) PUFAs from high-quality oils on circulating lipoprotein subfractions and standard lipids (primary outcomes), as well as apolipoproteins, fatty acids, and glycemic control (secondary outcomes), in females and males with abdominal obesity. METHODS This was a randomized double-blind crossover study with two 7-wk intervention periods separated by a 9-wk washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (TAG fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we investigated lipoprotein particle subclasses by nuclear magnetic resonance spectroscopy, as well as standard lipids, apolipoproteins, fatty acid profiles, and glucose and insulin. Data were analyzed by linear mixed-effects modeling with 'subjects' as the random factor. RESULTS The difference between interventions in relative change scores was among the lipoprotein subfractions significant for total very-low-density lipoproteins (VLDLs) (n-3 vs. n-6: -38%∗ vs. +16%, p < 0.001; ∗: significant within-treatment change score), large VLDLs (-58%∗ vs. -0.91%, p < 0.001), small VLDLs (-57%∗ vs. +41%∗, p < 0.001), total low-density lipoproteins (LDLs) (+5.8%∗ vs. -4.3%∗, p = 0.002), large LDLs (+23%∗ vs. -2.1%, p = 0.004), total high-density lipoproteins (HDLs) (-6.0%∗ vs. +3.7%, p < 0.001), large HDLs (+11%∗ vs. -5.3%, p = 0.001), medium HDLs (-24%∗ vs. +6.2%, p = 0.030), and small HDLs (-9.9%∗ vs. +9.6%∗, p = 0.002), and among standard lipids for TAGs (-16%∗ vs. -2.6%, p = 0.014), non-esterified fatty acids (-19%∗ vs. +5.5%, p = 0.033), and total cholesterol (-0.28% vs. -4.4%∗, p = 0.042). A differential response in relative change scores was also found for apolipoprotein (apo)B (+0.40% vs. -6.0%∗, p = 0.008), apoA-II (-6.0%∗ vs. +1.5%, p = 0.001), apoC-II (-11%∗ vs. -1.7%, p = 0.025), and apoE (+3.3% vs. -3.8%, p = 0.028). CONCLUSIONS High-dose supplementation of high-quality oils with n-3 (EPA + DHA) or n-6 (LA) PUFAs was followed by reductions in primarily TAG- or cholesterol-related markers, respectively. The responses after both interventions point to changes in the lipoprotein-lipid-apolipoprotein profile that have been associated with reduced cardiometabolic risk, also among people with TAG or LDL-C levels within the normal range. REGISTRATION Registered under ClinicalTrials.gov Identifier: NCT02647333. CLINICAL TRIAL REGISTRATION Registered at https://clinicaltrials.gov/ct2/show/NCT02647333.
Collapse
Affiliation(s)
- Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elin Strand
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Jan Erik Nordrehaug
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Simon N Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Ottar K Nygård
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
36
|
Hou Y, Guo W, Fan T, Li B, Ge W, Gao R, Wang J. Advanced Research of Abdominal Aortic Aneurysms on Metabolism. Front Cardiovasc Med 2021; 8:630269. [PMID: 33614752 PMCID: PMC7892590 DOI: 10.3389/fcvm.2021.630269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/05/2021] [Indexed: 01/16/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a cardiovascular disease with a high risk of death, seriously threatening the life and health of people. The specific pathogenesis of AAA is still not fully understood. In recent years, researchers have found that amino acid, lipid, and carbohydrate metabolism disorders play important roles in the occurrence and development of AAA. This review is aimed to summarize the latest research progress of the relationship between AAA progression and body metabolism. The body metabolism is closely related to the occurrence and development of AAA. It is necessary to further investigate the pathogenesis of AAA from the perspective of metabolism to provide theoretical basis for AAA diagnosis and drug development.
Collapse
Affiliation(s)
- Yangfeng Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tianfei Fan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Delpino FM, Figueiredo LM, da Silva BGC, da Silva TG, Mintem GC, Bielemann RM, Gigante DP. Omega-3 supplementation and diabetes: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 62:4435-4448. [PMID: 33480268 DOI: 10.1080/10408398.2021.1875977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study aimed to review the literature on studies that evaluated the effects of omega-3 supplementation on parameters of diabetes in humans. An online search was conducted in the following databases: Pubmed, LILACS, Scielo, Scopus, and Web of Science. It included experimental studies that investigated the effects of omega-3 supplementation for diabetes treatment or prevention and its relationship with fasting blood glucose, insulin resistance, and glycated hemoglobin. Observational, non-human studies and non-randomized clinical trials were excluded. The Cochrane scale assessed the quality of the studies. A meta-analysis was carried out to evaluate the effect of omega-3 on fasting blood glucose, insulin resistance, and glycated hemoglobin. Thirty studies were included in the review. Almost 70% (n = 20) demonstrated at least one significant effect of the omega-3 supplementation related to diabetes. In the meta-analysis, there was a significant effect on the reduction of fasting blood glucose [SMD: -0.48; CI95%: -0.76, -0.19; p = 0.01; I2 = 88%] and insulin resistance [SMD: -0.61; CI95%: -0.98, -0.24; p = 0.01; I2 = 90%]. For glycated hemoglobin, there was no significant effect in the meta-analysis. This systematic review with meta-analysis demonstrated that supplementation with omega-3 has protective effects on diabetes parameters.
Collapse
Affiliation(s)
- Felipe Mendes Delpino
- Postgraduate Program in Nursing, Federal University of Pelotas, Rio Grande do Sul, Brazil.,Faculty of Nursing, Federal University of Pelotas, Pelotas, Brazil
| | | | | | - Taiciane Gonçalves da Silva
- Postgraduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Gicele Costa Mintem
- Postgraduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Renata Moraes Bielemann
- Postgraduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Denise Petrucci Gigante
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil.,Postgraduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
38
|
Buoli M, Caldiroli L, Guenzani D, Carnevali GS, Cesari M, Turolo S, Barkin JL, Messa P, Agostoni C, Vettoretti S. Associations Between Cholesterol and Fatty Acid Profile on the Severity of Depression in Older Persons With Nondialysis Chronic Kidney Disease. J Ren Nutr 2020; 31:537-540. [PMID: 33386204 DOI: 10.1053/j.jrn.2020.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 11/11/2022] Open
Abstract
Depressive symptoms worsen the outcomes of patients affected by chronic kidney disease (CKD). The purpose of the present article is to study the association between serum lipid profile and the severity of depression in patients with CKD. We evaluated 132 older subjects with advanced CKD (stage 3-5, not receiving dialysis) in regular follow-up in a nephrology clinic. Blood samples were collected after an overnight fast. All patients were evaluated with the Geriatric Depression Scale which is comprised of 30 items that assess the severity of depressive symptoms. A backward multivariate regression analysis was performed to study the association between lipid profile and severity of depression. Low-density lipoprotein levels (β = 2.77, P = .008) and arachidonic acid/linoleic acid ratio (β = 2.51, P = .015) were found to be significantly associated with severity of depressive symptoms. Change in dietary habits or the use of hypocholesterolemic drugs could potentially prevent depressive symptoms and ameliorate outcome of patients affected by CKD. Data from prospective studies are needed to confirm these preliminary results.
Collapse
Affiliation(s)
- Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Lara Caldiroli
- Unit of Nephrology Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dalila Guenzani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Turolo
- Pediatric Department of Nephrology Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Piergiorgio Messa
- Unit of Nephrology Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | |
Collapse
|
39
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
40
|
Herring Milt and Herring Milt Protein Hydrolysate Are Equally Effective in Improving Insulin Sensitivity and Pancreatic Beta-Cell Function in Diet-Induced Obese- and Insulin-Resistant Mice. Mar Drugs 2020; 18:md18120635. [PMID: 33322303 PMCID: PMC7763884 DOI: 10.3390/md18120635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Although genetic predisposition influences the onset and progression of insulin resistance and diabetes, dietary nutrients are critical. In general, protein is beneficial relative to carbohydrate and fat but dependent on protein source. Our recent study demonstrated that 70% replacement of dietary casein protein with the equivalent quantity of protein derived from herring milt protein hydrolysate (HMPH; herring milt with proteins being enzymatically hydrolyzed) significantly improved insulin resistance and glucose homeostasis in high-fat diet-induced obese mice. As production of protein hydrolysate increases the cost of the product, it is important to determine whether a simply dried and ground herring milt product possesses similar benefits. Therefore, the current study was conducted to investigate the effect of herring milt dry powder (HMDP) on glucose control and the associated metabolic phenotypes and further to compare its efficacy with HMPH. Male C57BL/6J mice on a high-fat diet for 7 weeks were randomized based on body weight and blood glucose into three groups. One group continued on the high-fat diet and was used as the insulin-resistant/diabetic control and the other two groups were given the high-fat diet modified to have 70% of casein protein being replaced with the same amount of protein from HMDP or HMPH. A group of mice on a low-fat diet all the time was used as the normal control. The results demonstrated that mice on the high-fat diet increased weight gain and showed higher blood concentrations of glucose, insulin, and leptin, as well as impaired glucose tolerance and pancreatic β-cell function relative to those on the normal control diet. In comparison with the high-fat diet, the replacement of 70% dietary casein protein with the same amount of HMDP or HMPH protein decreased weight gain and significantly improved the aforementioned biomarkers, insulin sensitivity or resistance, and β-cell function. The HMDP and HMPH showed similar effects on every parameter except blood lipids where HMDP decreased total cholesterol and non-HDL-cholesterol levels while the effect of HMPH was not significant. The results demonstrate that substituting 70% of dietary casein protein with the equivalent amount of HMDP or HMPH protein protects against obesity and diabetes, and HMDP is also beneficial to cholesterol homeostasis.
Collapse
|
41
|
Guirgis FW, Black LP, DeVos E, Henson M, Ferreira J, Miller T, Rosenthal M, Leeuwenburgh C, Kalynych C, Moldawer L, Jones L, Crandall M, Reddy ST, Gao H, Wu S, Moore F. Lipid intensive drug therapy for sepsis pilot: A Bayesian phase I clinical trial. J Am Coll Emerg Physicians Open 2020; 1:1332-1340. [PMID: 33392541 PMCID: PMC7771745 DOI: 10.1002/emp2.12237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Cholesterol may be protective in sepsis. Patients with early sepsis may have critically low cholesterol levels that are associated with poor outcomes. The study objective was to test the safety of a fish oil-containing lipid injectable emulsion for stabilizing early cholesterol levels in sepsis. METHODS Phase I Bayesian optimal interval design trial of adult patients with septic shock (Sequential Organ Failure Assessment score ≥4 or vasopressor dependence). Using sequential dose escalation, participants received 2 doses of 1.0 to 1.6 g/kg of lipid emulsion (Smoflipid 20% lipid emulsion) within 48 hours of enrollment. Cholesterol levels, function, and organ failure were assessed serially during the first 7 days of hospital admission. MEASUREMENTS AND MAIN RESULTS A total of 10 patients with septic shock were enrolled. One patient withdrew for social reasons. Another patient had an unrelated medical complication and received 1 drug dose. Of 9 patients, mean age was 58 years (SD 16), median Sequential Organ Failure Assessment was 8, and 28-day mortality was 30%. No serious adverse events related to lipid infusion occurred. The six occurrences of non-serious adverse events possibly related to lipid infusion included hyperglycemia (1), elevated triglycerides (3), anemia (1), and vascular access redness/pain (1) for all doses. The mean change in total cholesterol levels from enrollment was -7 (SD 16.6) at 48 hours and 14 (SD 25.2) at 7 days. CONCLUSIONS Fish oil-containing lipid emulsion administration during early septic shock was safe. Further studies are needed to assess effects on cholesterol levels, function, and organ failure. CLINICAL TRIAL REGISTRATION NCT03405870.
Collapse
Affiliation(s)
- Faheem W. Guirgis
- Department of Emergency MedicineUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | - Lauren Page Black
- Department of Emergency MedicineUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | - Elizabeth DeVos
- Department of Emergency MedicineUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | - Morgan Henson
- Department of Emergency MedicineUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | - Jason Ferreira
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | - Taylor Miller
- Department of Emergency MedicineUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | - Martin Rosenthal
- Department of SurgeryUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric ResearchUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Colleen Kalynych
- Department of Emergency MedicineUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | - Lyle Moldawer
- Department of SurgeryUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Lisa Jones
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | - Marie Crandall
- Department of SurgeryUniversity of Florida College of Medicine–JacksonvilleJacksonvilleFloridaUSA
| | | | - Hanzhi Gao
- Department of BiostatisticsCollege of Public Health & Health Professions College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Sam Wu
- Department of BiostatisticsCollege of Public Health & Health Professions College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Frederick Moore
- Department of SurgeryUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
42
|
Haubold S, Kröger-Koch C, Tuchscherer A, Kanitz E, Weitzel JM, Hoeflich A, Starke A, Tröscher A, Sauerwein H, Hammon HM. Effects of a combined essential fatty acid and conjugated linoleic acid abomasal infusion on metabolic and endocrine traits, including the somatotropic axis, in dairy cows. J Dairy Sci 2020; 103:12069-12082. [PMID: 32981718 DOI: 10.3168/jds.2020-18569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023]
Abstract
The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid (ALA), and conjugated linoleic acid (CLA) supplementation on metabolic and endocrine traits related to energy metabolism, including the somatotropic axis, in mid-lactation dairy cows. Four cows (126 ± 4 d in milk) were used in a dose-escalation study design and were abomasally infused with coconut oil (CTRL; 38.3 g/d; providing saturated fatty acids), linseed and safflower oils (EFA; 39.1 and 1.6 g/d; n-6:n-3 FA ratio = 1:3), Lutalin (CLA; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d of each), or EFA and CLA (EFA+CLA) for 6 wk. The initial dosage was doubled twice after 2 wk, resulting in 3 dosages (dosages 1, 2, and 3). Each cow received each fat treatment at different times. Cows were fed with a corn silage-based total mixed ration providing a low-fat content and a high n-6:n-3 fatty acid ratio. Plasma concentrations of metabolites and hormones (insulin-like growth factor-binding proteins only on wk 0 and 6) were analyzed at wk 0, 2, 4, and 6 of each treatment period. Liver biopsies were taken before starting the trial and at wk 6 of each treatment period to measure hepatic mRNA abundance of genes linked to glucose, cholesterol and lipid metabolism, and the somatotropic axis. The changes in the milk and blood fatty acid patterns and lactation performance of these cows have already been published in a companion paper. The plasma concentration of total cholesterol increased with dosage in all groups, except CLA, reaching the highest levels in EFA+CLA and CTRL compared with CLA. The high-density lipoprotein cholesterol plasma concentration increased in CTRL and was higher than that in EFA and CLA, whereas the concentration of low-density lipoprotein cholesterol increased in a dose-dependent manner in EFA and EFA+CLA, and was higher than that in CLA. Hepatic mRNA expression of 3-hydroxy-3-methyl-glutaryl-CoA synthase 1 was upregulated in all groups but was highest in EFA+CLA. Expression of sterol regulatory element-binding factor 1 tended to be lowest due to EFA treatment, whereas expression of long chain acyl-CoA-synthetase was lower in EFA than in CTRL. Hepatic mRNA expression of GHR1A tended to be higher in EFA+CLA than in CTRL. The plasma concentration of insulin-like growth factor I increased in CLA, and the plasma IGFBP-2 concentration was lower in EFA+CLA than in CTRL at wk 6. The plasma concentration of adiponectin decreased in EFA+CLA up to dosage 2. Plasma concentrations of albumin and urea were lower in CLA than in CTRL throughout the experimental period. Supplementation with EFA and CLA affected cholesterol and lipid metabolism and their regulation differently, indicating distinct stimulation after the combined EFA and CLA treatment. The decreased IGFBP-2 plasma concentration and upregulated hepatic mRNA abundance of GHR1A in EFA+CLA-supplemented cows indicated the beneficial effect of the combined EFA and CLA treatment on the somatotropic axis in mid-lactation dairy cows. Moreover, supplementation with CLA might affect protein metabolism in dairy cows.
Collapse
Affiliation(s)
- S Haubold
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - E Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Hoeflich
- Institute of Genome Biology of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
43
|
Laura AP, Múzquiz de la Garza AR, Elena PM, Gutiérrez-Uribe JA, Armando TC, Cruz-Suárez LE, Serna-Saldívar SO. Effects of Ecklonia arborea or Silvetia compressa algae intake on serum lipids and hepatic fat accumulation in Wistar rats fed hyperlipidic diets. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Tani S, Yagi T, Matsuo R, Kawauchi K, Atsumi W, Matsumoto N, Okumura Y. Administration of eicosapentaenoic acid may alter lipoprotein particle heterogeneity in statin-treated patients with stable coronary artery disease: A pilot 6-month randomized study. J Cardiol 2020; 76:487-498. [PMID: 32636128 DOI: 10.1016/j.jjcc.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND We hypothesized that the addition of eicosapentaenoic acid (EPA) to ongoing statin therapy could change the particle heterogeneity of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles, even in stable coronary artery disease (CAD) patients. METHODS We assigned CAD patients already receiving statin therapy to one of two groups: an EPA group (1800 mg/day; n = 30) and a control group (n = 30). A gel permeation high-performance liquid chromatography method was used to measure the particle concentration and number of lipoprotein subclasses. RESULTS In the EPA group, significant decreases of both the concentration and number of medium LDL (p = 0.0002 and 0.0001), small LDL (p = 0.0004 and 0.0005) and very small LDL (p = 0.0005 and 0.002) particles were observed. Conversely, the concentration and number of large HDL particles increased significantly (p = 0.024 and 0.048). The concentration of very large HDL particles also increased significantly (p = 0.028). Furthermore, significant correlations between the variables that showed significant changes in the LDL and HDL particle subclasses, and the EPA/arachidonic acid (AA) ratio were found. No other significant associations of lipoprotein particle heterogeneity with the serum EPA/AA ratio were noted in either the control group or the EPA group. Interestingly, univariate and multivariate regression analyses revealed that increased serum lecithin-cholesterol acyltransferase activity, a key enzyme of HDL cholesterol efflux, was a predictor for increased above-mentioned HDL particles subclasses. CONCLUSIONS Administration of EPA might alter both LDL and HDL particle heterogeneity, causing decreased concentration and number of smaller LDL particles and increased concentration and number of larger HDL particles. Furthermore, addition of EPA to ongoing statin therapy appears to be capable of increasing the EPA/AA ratio, which might have an anti-atherosclerotic effect on lipoprotein particle heterogeneity, even in stable CAD patients with well-controlled serum lipid levels. CLINICAL TRIAL REGISTRATION UMIN (http://www.umin.ac.jp/) Study ID: UMIN000010452.
Collapse
Affiliation(s)
- Shigemasa Tani
- Department of Health Planning Center, Nihon University Hospital, Tokyo Japan; Department of Cardiology, Nihon University Hospital, Tokyo Japan; Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo Japan.
| | - Tsukasa Yagi
- Department of Cardiology, Nihon University Hospital, Tokyo Japan; Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo Japan
| | - Rei Matsuo
- Department of Cardiology, Nihon University Hospital, Tokyo Japan; Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo Japan
| | - Kenji Kawauchi
- Department of Cardiology, Nihon University Hospital, Tokyo Japan; Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo Japan
| | - Wataru Atsumi
- Department of Cardiology, Nihon University Hospital, Tokyo Japan; Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo Japan
| | - Naoya Matsumoto
- Department of Cardiology, Nihon University Hospital, Tokyo Japan; Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo Japan
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo Japan
| |
Collapse
|
45
|
FADS1 and FADS2 polymorphism are associated with changes in fatty acid concentrations after calorie-restricted Central European and Mediterranean diets. Menopause 2020; 26:1415-1424. [PMID: 31567872 DOI: 10.1097/gme.0000000000001409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In the present study, we tested whether calorie-restricted diets differing in their percentage of energy derived from monounsaturated fatty acids and carbohydrates can affect the metabolism of fatty acids (FAs) in postmenopausal women. Moreover, we examined whether polymorphisms of FADS1 and FADS2 are associated with these changes. METHODS Postmenopausal women (the mean age: 60.5 ± 5.0 y) were randomized for 16 weeks to two different calorie-restricted diets: a Central European diet (CED) or a Mediterranean diet (MED). RESULTS After the intervention, levels of most FAs in red blood cells decreased in both groups. The delta values for the 20:1n-9 and the 20:2n-6 levels differed between the CED and the MED (-1.55 ± 4.02 μg/mL vs 0.39 ± 4.11 μg/mL and -0.62 ± 10.93 μg/mL vs 3.06 ± 8.75 μg/mL; P < 0.05). Women in the CED group with at least one minor allele of FADS genes had greater decreases of α-linolenic acid, dihomo-γ-linolenic acid, total n-6, and total PUFA (by approximately 70%, 40%, 35%, and 35%, respectively) than did women with the major alleles. After the intervention, the change in the lipid accumulation product index was -28.28 ± 27.84 and -32.00 ± 78.55 in the CED and the MED group, respectively. CONCLUSIONS The effect of the dietary intervention on FA metabolism seems to depend mostly on calorie restriction, but not on type of diet. FADS1 and FADS2 gene polymorphisms can modify the response to the CED.
Collapse
|
46
|
Cyclodextrin Ameliorates the Progression of Atherosclerosis via Increasing High-Density Lipoprotein Cholesterol Plasma Levels and Anti-inflammatory Effects in Rabbits. J Cardiovasc Pharmacol 2020; 73:334-342. [PMID: 30855405 DOI: 10.1097/fjc.0000000000000660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To investigate the therapeutic effects of cyclodextrin on the development of atherosclerosis in rabbits, we evaluated the effects of (2-hydroxypropyl)-β-cyclodextrin (HPβCD) therapy on the organ coefficient, lipid profiles, inflammatory cytokines, and atherosclerotic plaques in rabbits fed a high-fat diet. Our results demonstrated that HPβCD therapy reduced plasma triglyceride levels and inflammatory cytokine levels but increased plasma high-density lipoprotein cholesterol levels. HPβCD therapy produced a significant decrease in the atherosclerotic lesion area and reduced macrophage and collagen content in the lesions. The expression levels of inflammatory genes in aortic plaques were significantly reduced by HPβCD treatment, but the expression of ATP-binding cassette (ABC) transporters A1 (ABCA1) and G1 (ABCG1) in aortic plaques and livers increased significantly. HPβCD therapy may produce additional antiatherosclerotic benefits likely via increasing high-density lipoprotein cholesterol levels.
Collapse
|
47
|
Naturally Occurring PCSK9 Inhibitors. Nutrients 2020; 12:nu12051440. [PMID: 32429343 PMCID: PMC7284437 DOI: 10.3390/nu12051440] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic, epidemiological and pharmacological data have led to the conclusion that antagonizing or inhibiting Proprotein convertase subtilisin/kexin type 9 (PCSK9) reduces cardiovascular events. This clinical outcome is mainly related to the pivotal role of PCSK9 in controlling low-density lipoprotein (LDL) cholesterol levels. The absence of oral and affordable anti-PCSK9 medications has limited the beneficial effects of this new therapeutic option. A possible breakthrough in this field may come from the discovery of new naturally occurring PCSK9 inhibitors as a starting point for the development of oral, small molecules, to be used in combination with statins in order to increase the percentage of patients reaching their LDL-cholesterol target levels. In the present review, we have summarized the current knowledge on natural compounds or extracts that have shown an inhibitory effect on PCSK9, either in experimental or clinical settings. When available, the pharmacodynamic and pharmacokinetic profiles of the listed compounds are described.
Collapse
|
48
|
Lin J, Tabassum R, Ripatti S, Pirinen M. MetaPhat: Detecting and Decomposing Multivariate Associations From Univariate Genome-Wide Association Statistics. Front Genet 2020; 11:431. [PMID: 32499813 PMCID: PMC7242752 DOI: 10.3389/fgene.2020.00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Background Multivariate testing tools that integrate multiple genome-wide association studies (GWAS) have become important as the number of phenotypes gathered from study cohorts and biobanks has increased. While these tools have been shown to boost statistical power considerably over univariate tests, an important remaining challenge is to interpret which traits are driving the multivariate association and which traits are just passengers with minor contributions to the genotype-phenotypes association statistic. Results We introduce MetaPhat, a novel bioinformatics tool to conduct GWAS of multiple correlated traits using univariate GWAS results and to decompose multivariate associations into sets of central traits based on intuitive trace plots that visualize Bayesian Information Criterion (BIC) and P-value statistics of multivariate association models. We validate MetaPhat with Global Lipids Genetics Consortium GWAS results, and we apply MetaPhat to univariate GWAS results for 21 heritable and correlated polyunsaturated lipid species from 2,045 Finnish samples, detecting seven independent loci associated with a cluster of lipid species. In most cases, we are able to decompose these multivariate associations to only three to five central traits out of all 21 traits included in the analyses. We release MetaPhat as an open source tool written in Python with built-in support for multi-processing, quality control, clumping and intuitive visualizations using the R software. Conclusion MetaPhat efficiently decomposes associations between multivariate phenotypes and genetic variants into smaller sets of central traits and improves the interpretation and specificity of genome-phenome associations. MetaPhat is freely available under the MIT license at: https://sourceforge.net/projects/meta-pheno-association-tracer.
Collapse
Affiliation(s)
- Jake Lin
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rubina Tabassum
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.,Public Health, University of Helsinki, Helsinki, Finland.,Broad Institute, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, United States
| | - Matti Pirinen
- Institute for Molecular Medicine Finland FIMM, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.,Public Health, University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Gao C, Liu Y, Gan Y, Bao W, Peng X, Xing Q, Gao H, Lai J, Liu L, Wang Z, Yang Y. Effects of fish oil supplementation on glucose control and lipid levels among patients with type 2 diabetes mellitus: a Meta-analysis of randomized controlled trials. Lipids Health Dis 2020; 19:87. [PMID: 32384902 PMCID: PMC7206824 DOI: 10.1186/s12944-020-01214-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous studies have yielded inconsistent findings on the role of fish oil in type 2 diabetes mellitus (T2DM). We systematically summarized the available evidence from randomized controlled trials (RCT) and aimed to investigate the effects of fish oil supplementation on glucose control and lipid levels among patients with T2DM. METHODS A comprehensive literature search was performed in electronic databases (PubMed, ProQuest, Cochrane Library, CNKI, VIP, and Wanfang) to identify all relevant RCTs which were published up to May 31st, 2019. We used Modified Jadad Score system to evaluate the quality of each included RCT. The pooled effects were estimated using random-effects model and presented as standardized mean differences with 95% confidence intervals. RESULTS A total of 12 RCTs were included in this meta-analysis. There was no significant difference in glucose control outcomes comparing fish oil supplementation to placebo. The effect size of fasting plasma glucose (FPG) was 0.13 (95% CI: - 0.03 to 0.28, p > 0.05). No marked change was observed in fasting insulin (FINS), glycosylated hemoglobin (HbA1c), and HOMA of insulin resistance (HOMA-IR) levels. Fish oil supplementation was associated with a decrease of triglyceride (TG) level by - 0.40 (95%CI: - 0.53 to - 0.28, p < 0.05), and an increase of high density lipoprotein (HDL) cholesterol level by 0.21 (95%CI: 0.05 to 0.37, p < 0.05). In subgroup analysis, HDL cholesterol level was higher among Asian and low-dose(< 2 g/d n-3 PUFA) subgroups compared to their counterparts (p < 0.05). TG level was lower in mid and long duration groups, along with an inconspicuous difference in short duration group. CONCLUSIONS This meta-analysis shows that among patients with T2DM, fish oil supplementation leads to a favorable blood lipids profile but does not improve glucose control.
Collapse
Affiliation(s)
- Chao Gao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No 29 Nanwei Road, Beijing, 100050, China
| | - Yang Liu
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No 29 Nanwei Road, Beijing, 100050, China
| | - Yong Gan
- School of Public Health, Tongji Medical College, Ministry of Education Key Laboratory of Environment, Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, 52242, USA
| | - Xiaolin Peng
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Qingbin Xing
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No 29 Nanwei Road, Beijing, 100050, China
| | - Huiyu Gao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No 29 Nanwei Road, Beijing, 100050, China
| | - Jianqiang Lai
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No 29 Nanwei Road, Beijing, 100050, China
| | - Liegang Liu
- School of Public Health, Tongji Medical College, Ministry of Education Key Laboratory of Environment, Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhu Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No 29 Nanwei Road, Beijing, 100050, China
| | - Yuexin Yang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No 29 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
50
|
Xyda SE, Vuckovic I, Petterson XM, Dasari S, Lalia AZ, Parvizi M, Macura SI, Lanza IR. Distinct Influence of Omega-3 Fatty Acids on the Plasma Metabolome of Healthy Older Adults. J Gerontol A Biol Sci Med Sci 2020; 75:875-884. [PMID: 31168623 PMCID: PMC7164537 DOI: 10.1093/gerona/glz141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Indexed: 11/13/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n3-PUFA) are well recognized for their potent triglyceride-lowering effects, but the potential influence of these bioactive lipids on other biological processes, particularly in the context of healthy aging, remains unknown. With the goal of gaining new insight into some less well-characterized biological effects of n3-PUFAs in healthy older adults, we performed metabolomics of fasting peripheral blood plasma collected from 12 young adults and 12 older adults before and after an open-label intervention of n3-PUFA (3.9 g/day, 2.7 g eicosapentaenoic [EPA], 1.2 g docosahexaenoic [DHA]). Proton nuclear magnetic resonance (1H-NMR) based lipoprotein subclass analysis revealed the expected reduction in total triglyceride (TG), but also demonstrated that n3-PUFA supplementation reduced very low-density lipoprotein (VLDL) particle number, modestly increased high-density lipoprotein (HDL) cholesterol, and shifted the composition of HDL subclasses. Further metabolite profiling by 1H-NMR and mass spectrometry revealed pronounced changes in phospholipids, cholesterol esters, diglycerides, and triglycerides following n3-PUFA supplementation. Furthermore, significant changes in hydroxyproline, kynurenine, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF) following n3-PUFA supplementation provide further insight into some less well-recognized biological effects of n3-PUFA supplementation, including possible effects on protein metabolism, the kynurenine pathway, and glucose metabolism.
Collapse
Affiliation(s)
- Souzana-Eirini Xyda
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Rochester, Minnesota
| | - Antigoni Z Lalia
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Mojtaba Parvizi
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Slobodan I Macura
- Metabolomics Core Laboratory, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
- Metabolomics Core Laboratory, Rochester, Minnesota
| |
Collapse
|