1
|
Ha EK, Kim JH, Han B, Shin J, Lee E, Rhie S, Lee WS, Lee S, Han MY. Rotavirus Hospitalization in Early Childhood: Fine Motor Skills and Cognition at 6 Years Old in a Population-Based Cohort Study. J Infect Dis 2024; 230:1167-1176. [PMID: 38679784 DOI: 10.1093/infdis/jiae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Rotavirus is linked to severe childhood gastroenteritis and neurological complications, but its impact on neurodevelopment remains uncertain. We examined data from 1 420 941 Korean children born between 2009 and 2011, using the Korean National Health Insurance System. We assessed neurodevelopmental outcomes at age 6 years using the validated Korean Developmental Test, covering 6 major domains, with propensity score-based inverse probability weighting including consideration of covariates sex, birth weight, changes in body weight from birth to 4-6 months of age, head circumference at 4-6 months of age, residence at birth, economic status, infant feeding types, and birth year. The main analysis that encompassed 5451 children with rotavirus hospitalization and 310 874 unexposed individuals revealed heightened odds of suspected delays in fine motor skills and cognition among exposed children. Our results suggest an association between rotavirus-related hospitalization in infancy and suspected delays in fine motor function and cognition in 6 year olds.
Collapse
Affiliation(s)
- Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Ju Hee Kim
- Department of Pediatrics, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Korea
| | - Boeun Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jeewon Shin
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Seonkyeong Rhie
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Won Seok Lee
- Department of Pediatrics, CHA Ilsan Medical Center, CHA University College of Medicine, Goyang, Korea
| | - Soonchul Lee
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
2
|
Fan L, Xu N, Guo Y, Li L. Enhanced insights into the neutrophil-driven immune mechanisms during Mycoplasma pneumoniae infection. Heliyon 2024; 10:e38950. [PMID: 39524902 PMCID: PMC11550053 DOI: 10.1016/j.heliyon.2024.e38950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Mycoplasma pneumoniae (MP) infections represent a significant component of community-acquired pneumonia, especially in children, invoking a complex neutrophil-mediated immune response, crucial for host defense. This review consolidates current knowledge on the role of neutrophils in MP infection, focusing on their recruitment, migration and activation, as well as the molecular mechanisms underpinning these processes. Significant findings indicate that specific bacterial components, notably CARDS toxin and lipoproteins, intensify neutrophil recruitment via signaling pathways, including the IL-23/IL-17 axis and G-CSF. Furthermore, neutrophils engage in a series of responses, including phagocytosis, degranulation and NETosis, to combat infection effectively. However, dysregulated neutrophil activity can lead to exacerbated lung injury, highlighting the delicate balance required in neutrophil responses. Age and immunodeficiency also emerge as critical factors influencing the severity of MP infections. This review emphasizes the dual role of neutrophils in both defending against and exacerbating MP infections, suggesting that targeted therapeutic strategies could mitigate the adverse effects while enhancing beneficial neutrophil functions.
Collapse
Affiliation(s)
- Lu Fan
- Department of Respiratory Medicine, Affiliated Children's Hospital of Jiangnan University, Wuxi, 214000, China
| | - Nuo Xu
- Department of Respiratory Medicine, Affiliated Children's Hospital of Jiangnan University, Wuxi, 214000, China
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China
| | - Yun Guo
- Department of Respiratory Medicine, Affiliated Children's Hospital of Jiangnan University, Wuxi, 214000, China
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China
| | - Ling Li
- Department of Respiratory Medicine, Affiliated Children's Hospital of Jiangnan University, Wuxi, 214000, China
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China
| |
Collapse
|
3
|
Ana Y, Gerngross D, Serrano L. Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae. Microb Cell Fact 2024; 23:306. [PMID: 39533283 PMCID: PMC11558893 DOI: 10.1186/s12934-024-02574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The non-pathogenic Mycoplasma pneumoniae engineered chassis (Mycochassis) has demonstrated the ability to express therapeutic molecules in vitro and to be effective for treatment of lung infectious diseases in in vivo mouse models. However, the expression of heterologous molecules, whether secreted or exposed on the bacterial membrane has not been optimized to ensure sufficient secretion and/or exposure levels to exert a maximum in vivo biological effect. Here, we have improved the currently used secretion signal from MPN142 protein. We found that mutations at P1' position of the signal peptide cleavage site do not abrogate secretion but affect it. Increasing hydrophobicity and mutations at the C-terminal of the signal peptide increases secretion. We tested different lipoprotein signal peptides as possible N-terminal protein anchoring motifs on the Mpn cell surface. Unexpectedly we found that these peptides exhibit variable retention and secretion rates of the protein, with some sequences behaving as full secretion motifs. This raises the question of the biological role of the lipobox motif traditionally thought to anchor membrane proteins without a helical transmembrane domain. These results altogether represent a step forward in chassis optimization, offering different sequences for secretion or membrane retention, which could be used to improve Mycochassis as a delivery vector, and broadening its therapeutic possibilities.
Collapse
Affiliation(s)
- Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Daniel Gerngross
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Lab Automation Facility, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
4
|
Zhang Z, Shi D, Dou H, Wan R, Yuan Q, Tu P, Xin D. Mycoplasma pneumoniae regulates the expression of GP130 in lung epithelial cells through apoptosis and TLR4/ NF-κB pathway during infection. Microb Pathog 2024; 197:107072. [PMID: 39447660 DOI: 10.1016/j.micpath.2024.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
In previous study, lower levels of serum GP130 were reported in children with MPP. GP130 is an important signal transducer, the down regulation of which may influence host immune responses. In this study, we aimed to analyze the regulatory mechanism of GP130 during MP infection. Firstly, the mRNA and protein levels of GP130 both decrease and then increase with increasing multiplicity of infection (MOI: 1 to 40) of MP. The lowest levels of GP130 were detected at MOI of 5. Then, heat treated MP but not trypsin treated MP or MP extracted proteins show regulatory effect to the expression of GP130. These indicate that the down regulation of GP130 is related to protein mediate adhesion process of MP. Gene expression analysis revealed that MP affected apoptosis and the TLR4 pathway in infected cells, and the mRNA level of IL-6 was correlated with that of GP130. Further, Z-VAD-FMK (pan-caspase inhibitor) can suppress the apoptosis induced by MP infection and restore GP130 at protein level. Further studies revealed that MP infection promoted TLR4 internalization but did not activate the NF-κB pathway. The levels of surface TLR4 showed correlation with the transcription of IL-6 and GP130. TAK242 (TLR4 inhibitor) and PS341 (proteasome inhibitor) can restore the decreased transcription of GP130, both of which were able to promote NF-κB pathway activation in MP-infected cells. These suggested that the regulation of TLR4/NF-κB pathway and induced apoptosis post MP infection are involved in the down-regulation of GP130 at transcription and protein levels, respectively.
Collapse
Affiliation(s)
- Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medicine Southwest Medical University, Xianglin Road 1#, Luzhou, 646000, China
| | - Dawei Shi
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Haiwei Dou
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Ruijie Wan
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Qing Yuan
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Peng Tu
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Deli Xin
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
5
|
Shen X, Jin Z, Chen X, Wang Z, Yi L, Ou Y, Gong L, Zhu C, Xu G, Wang Y. Single-cell transcriptome atlas revealed bronchoalveolar immune features related to disease severity in pediatric Mycoplasma pneumoniae pneumonia. MedComm (Beijing) 2024; 5:e748. [PMID: 39399649 PMCID: PMC11471001 DOI: 10.1002/mco2.748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
The mechanisms underlying protective immunity in mild Mycoplasma pneumoniae pneumonia (MPP) and the pathogenesis of severe MPP, characterized by dysregulated immune responses, remain unclear. Here, we performed single-cell RNA sequencing (scRNA-seq) to profile bronchoalveolar lavage fluid (BALF) samples from 13 healthy donors and 24 hospitalized pediatric patients with MPP, covering both mild and severe cases. Severe MPP patients exhibited high levels of exhausted T cells and M1-like macrophages, with the exhaustion of T cells attributed to persistent type I interferon signaling and inadequate assistance from CD4+ T cells. Significant cell-cell interactions between exhausted T cells and programmed death-ligand 1+ (PD-L1+) macrophages were detected in severe patients, potentially mediated through inhibitor molecules (e.g., PD1) and their receptors (e.g., PD-L1), as well as human leukocyte antigen class I molecules and their receptors (e.g., KLRC1/D2), resulting in the dysfunction of anti-MP immune responses. Mild MPP patients were featured by an increased abundance of neutrophils, coupled with enhanced activation, contributing to protective immunity. Together, our study provides a detailed characterization of the BALF immune landscape in MPP patients, revealing distinct immune characteristics between mild and severe cases, which offers a valuable resource for understanding MPP immunopathogenesis and formulating effective therapeutic strategies.
Collapse
Affiliation(s)
- Xiantao Shen
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment and HealthMinistry of EducationKey Laboratory of Environment and Health (Wuhan)Ministry of Environmental ProtectionSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhengjiang Jin
- Department of Clinical LaboratoryMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaomin Chen
- Department of Disinfection and Pest ControlWuhan Center for Disease Control & PreventionWuhanChina
| | - Zhenhui Wang
- Department of Clinical LaboratoryMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu Yi
- Department of Clinical LaboratoryMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yangwei Ou
- Department of RadiologyMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lin Gong
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment and HealthMinistry of EducationKey Laboratory of Environment and Health (Wuhan)Ministry of Environmental ProtectionSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Disinfection and Pest ControlWuhan Center for Disease Control & PreventionWuhanChina
| | - Chengliang Zhu
- Department of Clinical LaboratoryInstitute of Translational MedicineRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guogang Xu
- Health Management InstituteThe Second Medical Center & National Clinical Research Center for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Yi Wang
- Experimental Research CenterCapital Institute of PediatricsBeijingChina
| |
Collapse
|
6
|
Song Z, Han C, Luo G, Jia G, Wang X, Zhang B. Yinqin Qingfei granules alleviate Mycoplasma pneumoniae pneumonia via inhibiting NLRP3 inflammasome-mediated macrophage pyroptosis. Front Pharmacol 2024; 15:1437475. [PMID: 39257401 PMCID: PMC11383775 DOI: 10.3389/fphar.2024.1437475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
Background Mycoplasma pneumoniae pneumonia (MPP) is a prevalent respiratory infectious disease in children. Given the increasing resistance of M. pneumoniae (MP) to macrolide antibiotics, the identification of new therapeutic agents is critical. Yinqin Qingfei granules (YQQFG), a Chinese patent medicine formulated specifically for pediatric MPP, lacks a clear explanation of its mechanism. Methods The primary components of YQQFG were identified using LC-MS/MS. In vitro, RAW264.7 cells infected with MP underwent morphological examination via scanning electron microscopy. Drug-containing serum was prepared, and its intervention concentration was determined using the CCK-8 assay. The active components of YQQFG were molecularly docked with NLRP3 protein using Autodock Vina software. A RAW264.7 cell line overexpressing NLRP3 was created using lentivirus to pinpoint the target of YQQFG. In vivo, MPP model mice were established via nasal instillation of MP. Lung damage was assessed by lung index and H&E staining. Pyroptosis-associated protein levels in cells and lung tissue were measured by western blot, while interleukin (IL)-1β and IL-18 levels in cell supernatants and mouse serum were quantified using ELISA. Immunofluorescence double staining of lung tissue sections was conducted to assess the correlation between NLRP3 protein expression and macrophages. The expression of the community-acquired respiratory distress syndrome toxin (CARDS TX) was evaluated by qPCR. Results 25 effective components with favorable oral bioavailability were identified in YQQFG. Both in vitro and in vivo studies demonstrated that YQQFG substantially reduced the expression of the NLRP3/Caspase-1/GSDMD pathway, decreasing the release of IL-1β and IL-18, and inhibited MP exotoxin. Molecular docking indicated strong affinity between most YQQFG components and NLRP3 protein. Lentivirus transfection and immunofluorescence double staining confirmed that YQQFG significantly suppressed NLRP3 expression in macrophages, outperforming azithromycin (AZM). The combination of YQQFG and AZM yielded the optimal therapeutic effect for MPP. Conclusion YQQFG mitigates inflammatory responses by suppressing NLRP3 inflammasome-mediated macrophage pyroptosis, thereby ameliorating MP-induced acute lung injury. YQQFG serves as an effective adjunct and alternative medication for pediatric MPP treatment.
Collapse
Affiliation(s)
- Zhe Song
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengen Han
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangzhi Luo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangyuan Jia
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Wang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baoqing Zhang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Georgakopoulou VE, Lempesis IG, Sklapani P, Trakas N, Spandidos DA. Exploring the pathogenetic mechanisms of Mycoplasmapneumoniae (Review). Exp Ther Med 2024; 28:271. [PMID: 38765654 PMCID: PMC11097136 DOI: 10.3892/etm.2024.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Mycoplasmas, the smallest self-replicating prokaryotes without a cell wall, are the most prevalent and extensively studied species in humans. They significantly contribute to chronic respiratory tract illnesses and pneumonia, with children and adolescents being particularly vulnerable. Mycoplasma pneumoniae (M. pneumoniae) infections typically tend to be self-limiting and mild but can progress to severe or even life-threatening conditions in certain individuals. Extrapulmonary effects often occur without pneumonia, and both intrapulmonary and extrapulmonary complications operate through separate pathological mechanisms. The indirect immune-mediated damage of the immune system, vascular blockages brought on by vasculitis or thrombosis and direct harm from invasion or locally induced inflammatory cytokines are potential causes of extrapulmonary manifestations due to M. pneumoniae. Proteins associated with adhesion serve as the primary factor crucial for the pathogenicity of M. pneumoniae, relying on a specialized polarized terminal attachment organelle. The type and density of these host receptors significantly impact the adhesion and movement of M. pneumoniae, subsequently influencing the pathogenic mechanism and infection outcomes. Adjacent proteins are crucial for the proper assembly of the attachment organelle, with variations in the genetic domains of P1, P40 and P90 surfaces contributing to the variability of clinical symptoms and offering new avenues for developing vaccines against M. pneumoniae infections. M. pneumoniae causes oxidative stress within respiratory tract epithelial cells by adhering to host cells and releasing hydrogen peroxide and superoxide radicals. This oxidative stress enhances the vulnerability of host cells to harm induced by oxygen molecules. The lack of superoxide dismutase and catalase of bacteria allows it to hinder the catalase activity of the host cell, leading to the reduced breakdown of peroxides. Lung macrophages play a significant role in managing M. pneumoniae infection, identifying it via Toll-like receptor 2 and initiating the myeloid differentiation primary response gene 88-nuclear factor κΒ signaling cascade. However, the precise mechanisms enabling M. pneumoniae to evade intracellular host defenses remain unknown, necessitating further exploration of the pathways involved in intracellular survival. The present comprehensive review delves into the pathogenesis of M. pneumoniae infection within the pulmonary system and into extrapulmonary areas, outlining its impact.
Collapse
Affiliation(s)
- Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodisttrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodisttrian University of Athens, 11527 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
8
|
Ding X, Li S, Liu X, Zhan X, Wang Z, Wang M, Wu G. Study on the Correlation Between the Expression of NF-Ƙb in the Alveolar Lavage Fluid of Children with Severe Mycoplasma Pneumoniae Pneumonia, Its Clinical Characteristics, and Cellular Immunity. Infect Drug Resist 2024; 17:2469-2484. [PMID: 38915319 PMCID: PMC11194830 DOI: 10.2147/idr.s411361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2024] Open
Abstract
Objective This study explored the level of nuclear factor-ƙB (NF-ƙB) in the bronchoalveolar lavage fluid (BALF) of children with severe Mycoplasma Pneumoniae pneumonia (SMPP) and the correlation between NF-ƙB, cellular immunity, and clinical characteristics. Methods A total of 41 hospitalized children diagnosed with SMPP were selected and included in the SMPP group, and 13 bronchial foreign bodies (FB) without infection during the same period were included in the FB group. The NF-ƙB in the BALF of participants was detected by enzyme-linked immunosorbent assay. The correlation between NF-ƙB and laboratory findings, cellular immunity, and the clinical features in children with SMPP was analyzed. The differences in chest imaging and bronchoscopy in children with SMPP were observed. Results The levels of NF-ƙB were significantly increased in the SMPP group compared with the FB group (P < 0.001). There were correlations between different NF-ƙB pairs in the SMPP group (P < 0.01). Nuclear factor-ƙB (NF-ƙB) correlated with IL-6, the mycoplasma load in BALF, fever peak, length of hospital stay, and sputum suppository (P < 0.05). The higher the intracellular NF-ƙB level in BALF, the lower the CD3+ CD4+ value in peripheral blood (P < 0.05). Intracellular NF-ƙB and total NF-ƙB correlated with pleural effusion, pericardial effusion, and extrapulmonary complications (P < 0.05). Conclusion NF-ƙB is involved in airway inflammation changes in children with SMPP. The higher the level of NF-ƙB in the airway, the more severe the clinical manifestations, and the longer the length of hospital stay is likely to be.
Collapse
Affiliation(s)
- Xinyao Ding
- Department of Paediatrics, Luohe Yancheng District People’s Hospital, Luohe, Henan, 462300, People’s Republic of China
| | - Shujun Li
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, People’s Republic of China
| | - Xue Liu
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, People’s Republic of China
| | - Xiaowen Zhan
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, People’s Republic of China
| | - Zhiyuan Wang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, People’s Republic of China
| | - Mengzhu Wang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, People’s Republic of China
| | - Guannan Wu
- Department of ICU, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, People’s Republic of China
| |
Collapse
|
9
|
Jiang Y, Dou H, Xu B, Xu B, Zhou W, Wang H, Ge L, Hu Y, Han X, Qin X, Li J, Ye L, Wu L, Zuo H, Zhang Q, Liu L, Hu W, Shao J, Yin Q, Han L, Fu X, Dong X, Dong Y, Fu Y, Zhao M, Sun Q, Huo J, Liu D, Liu W, Li Y, Wang Y, Xin D, Shen K. Macrolide resistance of Mycoplasma pneumoniae in several regions of China from 2013 to 2019. Epidemiol Infect 2024; 152:e75. [PMID: 38634450 PMCID: PMC11094376 DOI: 10.1017/s0950268824000323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 04/19/2024] Open
Abstract
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Collapse
Affiliation(s)
- Yue Jiang
- Beijing Chaoyang Hospital,Capital Medical University, Beijing, China
| | - Haiwei Dou
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Xu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Baoping Xu
- Beijing Children’s Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Wei Zhou
- Peking University Third Hospital, Beijing, China
| | - Hong Wang
- Civil Aviation General Hospital, Beijing, China
| | - Lixia Ge
- China Meitan General Hospital, Beijing, China
| | - Yinghui Hu
- New Century International hospital for Children, Beijing, China
| | - Xiaohua Han
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuanguang Qin
- Beijing Chaoyang Hospital,Capital Medical University, Beijing, China
| | - Jing Li
- Beijing Changping District Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Leping Ye
- Peking University First Hospital, Beijing, China
| | - Liqun Wu
- Dongfang Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Zuo
- The First Hospital of Tsinghua University, Beijing, China
| | - Qi Zhang
- China-Japan Friendship Hospital, Beijing, China
| | - Ling Liu
- Peking University Third Hospital, Beijing, China
| | - Wenjuan Hu
- Civil Aviation General Hospital, Beijing, China
| | - Junyan Shao
- China Meitan General Hospital, Beijing, China
| | - Qiaomian Yin
- New Century International hospital for Children, Beijing, China
| | - Lina Han
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyan Fu
- Beijing Chaoyang Hospital,Capital Medical University, Beijing, China
| | - Xiaopei Dong
- Beijing Chaoyang Hospital,Capital Medical University, Beijing, China
| | - Yan Dong
- Beijing Changping District Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Yulin Fu
- Beijing Changping District Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | | | - Qing Sun
- Peking University First Hospital, Beijing, China
| | - Jingwei Huo
- Dongfang Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Die Liu
- China-Japan Friendship Hospital, Beijing, China
| | - Wenkao Liu
- Beijing Changping District Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Yunjuan Li
- New Century International hospital for Children, Beijing, China
| | - Yang Wang
- New Century International hospital for Children, Beijing, China
| | - Deli Xin
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kunling Shen
- Beijing Children’s Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children’s Health, Beijing, China
- Shenzhen Children′s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
10
|
Zhang T, Zhao X, Zhang X, Liang X, Guan Z, Wang G, Liu G, Wu Z. Research on the metabolic regulation mechanism of Yangyin Qingfei decoction plus in severe pneumonia caused by Mycoplasma pneumoniae in mice. Front Pharmacol 2024; 15:1376812. [PMID: 38694915 PMCID: PMC11061391 DOI: 10.3389/fphar.2024.1376812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: With amazing clinical efficacy, Yangyin Qingfei Decoction Plus (YQDP), a well-known and age-old Chinese compound made of ten Chinese botanical drugs, is utilized in clinical settings to treat a range of respiratory conditions. This study examines the impact of Yangyin Qingfei Decoction (YQDP) on lung tissue metabolic products in severe Mycoplasma pneumoniae pneumonia (SMPP) model mice and examines the mechanism of YQDP in treating MP infection using UPLC-MS/MS technology. Methods: YQDP's chemical composition was ascertained by the use of Agilent 1260 Ⅱ high-performance liquid chromatography. By using a nasal drip of 1010 CCU/mL MP bacterial solution, an SMPP mouse model was created. The lung index, pathology and ultrastructural observation of lung tissue were utilized to assess the therapeutic effect of YQDP in SMPP mice. Lung tissue metabolites were found in the normal group, model group, and YQDP group using UPLC-MS/MS technology. Using an enzyme-linked immunosorbent test (ELISA), the amount of serum inflammatory factors, such as interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α), was found. Additionally, the protein expression of PI3K, P-PI3K, AKT, P-AKT, NF-κB, and P-NF-κB was found using Western blot. Results: The contents of chlorogenic acid, paeoniflorin, forsythrin A, forsythrin, and paeonol in YQDP were 3.480 ± 0.051, 3.255 ± 0.040, 3.612 ± 0.017, 1.757 ± 0.031, and 1.080 ± 0.007 mg/g respectively. YQDP can considerably lower the SMPP mice's lung index (p < 0.05). In the lung tissue of YQDP groups, there has been a decrease (p < 0.05) in the infiltration of inflammatory cells at varying concentrations in the alveoli compared with the model group. A total of 47 distinct metabolites, including choline phosphate, glutamyl lysine, L-tyrosine, 6-thioinosine, Glu Trp, 5-hydroxydecanoate, etc., were linked to the regulation of YQDP, according to metabolomics study. By controlling the metabolism of porphyrins, pyrimidines, cholines, fatty acids, sphingolipids, glycerophospholipids, ferroptosis, steroid hormone biosynthesis, and unsaturated fatty acid biosynthesis, enrichment analysis suggested that YQDP may be used to treat SMPP. YQDP can lower the amount of TNF-α and IL-6 in model group mice as well as downregulate P-PI3K, P-AKT, and P-NF-κB expression (p < 0.05). Conclusion: A specific intervention effect of YQDP is observed in SMPP model mice. Through the PI3K/Akt/NF-κB signaling pathways, YQDP may have therapeutic benefits by regulating the body's metabolism of α-Linoleic acid, sphingolipids, glycerophospholipids, arachidonic acid, and the production of unsaturated fatty acids.
Collapse
Affiliation(s)
- Tianyu Zhang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiyu Zhao
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xining Zhang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiangyu Liang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhenglong Guan
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guanghan Wang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guanghua Liu
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhenqi Wu
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
11
|
Zhang W, Jin Y. Human immunoglobulin in combination with antimicrobial agents enhances the treatment efficacy and reduces inflammatory response in children with severe pneumonia. Am J Transl Res 2024; 16:889-896. [PMID: 38586114 PMCID: PMC10994785 DOI: 10.62347/kquw5330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/22/2023] [Indexed: 04/09/2024]
Abstract
OBJECTIVE To investigate the efficacy of human immunoglobulin combined with antibiotics in treating severe pediatric pneumonia. METHODS A retrospective analysis was performed on 210 pediatric patients with severe pneumonia admitted to the Department of Neonatology of Cangzhou Central Hospital from April 2019 to October 2022. Patients were divided into two groups (the observation group and the control group) based on the administration of human immunoglobulin. Clinical indexes of both groups before and after treatment were analyzed to determine the therapeutic effect of different treatment methods on pediatric severe pneumonia. RESULTS The durations of cough, fever, pulmonary rales, and lung shadow, and hospitalization time in the observation group were significantly shorter than those in the control group (all P<0.05). The total clinical effective rate in the observation group was significantly higher than that in the control group (P<0.05). Levels of inflammatory factors (IL-6, IL-8 and hsCRP) were decreased in both groups after treatment (all P<0.05), and were lower in the observation group compared with the control group after treatment (all P<0.05). The serum levels of IgA, IgG and IgM after five days of intervention were obviously higher than those before intervention in the observation group (all P<0.05), but the serum levels of IL-4, INF-γ and INF-γ/IL-4 were obviously lower (all P<0.05). The total incidence of adverse reactions between two groups after intervention was not statistically different (P<0.05). CONCLUSION The combination of human immunoglobulin and antibiotics for the treatment of pediatric severe pneumonia is beneficial, because it improves efficacy, boosts the immune system, and reduces inflammation.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Children's Emergency Medicine, Cangzhou Central Hospital Cangzhou 061000, Hebei, China
| | - Yue Jin
- Department of Neonatology, Cangzhou Central Hospital Cangzhou 061000, Hebei, China
| |
Collapse
|
12
|
Shen T, Li Y, Liu T, Lian Y, Kong L. Association between Mycoplasma pneumoniae infection, high‑density lipoprotein metabolism and cardiovascular health (Review). Biomed Rep 2024; 20:39. [PMID: 38357242 PMCID: PMC10865299 DOI: 10.3892/br.2024.1729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The association between Mycoplasma pneumoniae (M. pneumoniae) infection, high-density lipoprotein metabolism and cardiovascular disease is an emerging research area. The present review summarizes the basic characteristics of M. pneumoniae infection and its association with high-density lipoprotein and cardiovascular health. M. pneumoniae primarily invades the respiratory tract and damages the cardiovascular system through various mechanisms including adhesion, invasion, secretion of metabolites, production of autoantibodies and stimulation of cytokine production. Additionally, the present review highlights the potential role of high-density lipoprotein for the development of prevention and intervention of M. pneumoniae infection and cardiovascular disease, and provides suggestions for future research directions and clinical practice. It is urgent to explore the specific mechanisms underlying the association between M. pneumoniae infection, high-density lipoprotein metabolism, and cardiovascular disease and analyze the roles of the immune system and inflammatory response.
Collapse
Affiliation(s)
- Tao Shen
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Yanfang Li
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Tingting Liu
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Yunzhi Lian
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Luke Kong
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| |
Collapse
|
13
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
14
|
Lu G, Li X, Tang J, Jin Y, Wang Y, Zhou K, Li Y. Mycoplasma infection aggravates cardiac involvements in Kawasaki diseases: a retrospective study. Front Immunol 2024; 14:1310134. [PMID: 38304251 PMCID: PMC10832023 DOI: 10.3389/fimmu.2023.1310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Background Mycoplasma pneumoniae (MP) infection serves as a substantial cofactor in Kawasaki disease (KD) among patients. Although the dominant issue triggering KD has recently focused on MP infection, the complete demonstration of the relationship between MP infection and KD remains elusive. This study endeavors to scrutinize and compare the clinical manifestations and cardiac involvement between MP-triggered KD and non-infection-associated KD. Method This retrospective study (2023-039, approved by the Institutional Review Board of West China Second University Hospital of Sichuan University) encompassed 247 consecutive patients diagnosed with KD between June 2017 and December 2022. Patients were categorized into two groups: the MP group (n = 38) and the non-MP group (n = 209). Univariable analysis was utilized to discern differences in clinical features, severity of inflammation, and initial or persistent cardiac complications between the two groups. Results The MP group exhibited a more intricate clinical profile compared with the non-MP group, characterized by prolonged hospital stays, a higher incidence of incomplete KD, and elevated comorbidities. In addition, MP infection correlated with severe hematological disorders, coagulation dysfunction, and myocardial injuries. Our findings revealed that MP infection led to prolonged inflammation after initial treatment with intravenous immunoglobulin. Although initial cardiac assessments failed to discern disparities between the two groups, MP infection notably exacerbated coronary artery aneurysms (CAAs), resulting in sustained dilation. Conclusions Recognizing MP infection as a significant infectious factor associated with KD is imperative. In patients with KD, MP infection significantly prolongs inflammation and causes hematological disturbances during the initial treatment phase. Moreover, the presence of MP infection exacerbates the progression of CAAs and myocardial injuries during the subacute phase of KD, consequently contributing to the persistence of CAAs.
Collapse
Affiliation(s)
| | | | | | | | - Yang Wang
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Mei X, Zhang Y, Wang S, Wang H, Chen R, Ma K, Yang Y, Jiang P, Feng Z, Zhang C, Zhang Z. Necroptosis in Pneumonia: Therapeutic Strategies and Future Perspectives. Viruses 2024; 16:94. [PMID: 38257794 PMCID: PMC10818625 DOI: 10.3390/v16010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pneumonia remains a major global health challenge, necessitating the development of effective therapeutic approaches. Recently, necroptosis, a regulated form of cell death, has garnered attention in the fields of pharmacology and immunology for its role in the pathogenesis of pneumonia. Characterized by cell death and inflammatory responses, necroptosis is a key mechanism contributing to tissue damage and immune dysregulation in various diseases, including pneumonia. This review comprehensively analyzes the role of necroptosis in pneumonia and explores potential pharmacological interventions targeting this cell death pathway. Moreover, we highlight the intricate interplay between necroptosis and immune responses in pneumonia, revealing a bidirectional relationship between necrotic cell death and inflammatory signaling. Importantly, we assess current therapeutic strategies modulating necroptosis, encompassing synthetic inhibitors, natural products, and other drugs targeting key components of the programmed necrosis pathway. The article also discusses challenges and future directions in targeting programmed necrosis for pneumonia treatment, proposing novel therapeutic strategies that combine antibiotics with necroptosis inhibitors. This review underscores the importance of understanding necroptosis in pneumonia and highlights the potential of pharmacological interventions to mitigate tissue damage and restore immune homeostasis in this devastating respiratory infection.
Collapse
Affiliation(s)
- Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yuchen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Shu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Hui Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Ke Ma
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|
16
|
Ha EK, Kim JH, Cha HR, Han BE, Shin YH, Baek HS, Choi SH, Han MY. Investigating the occurrence of autoimmune diseases among children and adolescents hospitalized for Mycoplasma pneumoniae infections. Front Immunol 2023; 14:1165586. [PMID: 38124736 PMCID: PMC10732509 DOI: 10.3389/fimmu.2023.1165586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Background Mycoplasma pneumoniae infection is common in the general population and may be followed by immune dysfunction, but links with subsequent autoimmune disease remain inconclusive. Objective To estimate the association of M. pneumoniae infection with the risk of subsequent autoimmune disease. Methods This retrospective cohort study examined the medical records of South Korean children from 01/01/2002 to 31/12/2017. The exposed cohort was identified as patients hospitalized for M. pneumoniae infection. Each exposed patient was matched with unexposed controls based on birth year and sex at a 1:10 ratio using incidence density sampling calculations. The outcome was subsequent diagnosis of autoimmune disease, and hazard ratios (HRs) were estimated with control for confounders. Further estimation was performed using hospital-based databases which were converted to a common data model (CDM) to allow comparisons of the different databases. Results The exposed cohort consisted of 49,937 children and the matched unexposed of 499,370 children. The median age at diagnosis of M. pneumoniae infection was 4 years (interquartile range, 2.5-6.5 years). During a mean follow-up time of 9.0 ± 3.8 years, the incidence rate of autoimmune diseases was 66.5 per 10,000 person-years (95% CI: 64.3-68.8) in the exposed cohort and 52.3 per 10,000 person-years (95% CI: 51.7-52.9) in the unexposed cohort, corresponding to an absolute rate of difference of 14.3 per 10,000 person-years (95% CI: 11.9-16.6). Children in the exposed cohort had an increased risk of autoimmune disease (HR: 1.26; 95% CI: 1.21-1.31), and this association was similar in the separate analysis of hospital databases (HR: 1.25; 95% CI 1.06-1.49). Conclusion M. pneumoniae infection requiring hospitalization may be associated with an increase in subsequent diagnoses of autoimmune diseases.
Collapse
Affiliation(s)
- Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Hye Ryeong Cha
- Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo Eun Han
- Department of Software, Sejong University, Seoul, Republic of Korea
| | - Youn Ho Shin
- Department of Pediatrics, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hey-Sung Baek
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sun Hee Choi
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Man Yong Han
- Department of Pediatrics, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
17
|
Kumar S, Kumar S. Mycoplasma pneumoniae: Among the smallest bacterial pathogens with great clinical significance in children. Indian J Med Microbiol 2023; 46:100480. [PMID: 37741157 DOI: 10.1016/j.ijmmb.2023.100480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Mycoplasmas are the smallest prokaryotic microorganisms found in nature. Mycoplasma pneumoniae (M. pneumoniae) is the most commonly studied among human mycoplasmas. OBJECTIVES In this review, we briefly focus on the recent developments that have enhanced our understanding of M. pneumoniae, one of the smallest pathogenic bacteria of great clinical importance in children. CONTENT M. pneumoniae infections may involve either upper or lower respiratory tract or both of them. Extrapulmonary manifestations have been reported in almost every organ, including the skin and the hematologic, cardiovascular, musculoskeletal, and nervous system due to direct local effects, after dissemination of bacteria or indirect effects. The correct identification of M. pneumoniae infections is vital for prescription of the appropriate therapy.There are scarce specific findings of clinical laboratory results for the diagnosis of M. pneumoniae infection. Detection of M. pneumoniae infections can be achieved using culture, serology, or molecular-based methods. Culture is time-consuming, laborious, and expensive. The major types of serological tests for M. pneumoniae include the microtiter plate enzyme immunoassay (EIA), the membrane EIA, indirect immunofluorescence, and particle agglutination. Nucleic acid amplification tests (NAATs) include traditional PCR, nested PCR, real-time quantitative PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) technology, and RNA simultaneous amplification and testing (SAT). Macrolides have been the drug of choice for treating M. pneumoniae infection in past years. Clinically significant acquired macrolide-resistant M. pneumoniae (MRMP)has emerged worldwide which may be associated with more extrapulmonary complications, and severe clinical and radiological features. Since molecular-based assays can detect M. pnueumoniae in clinical specimens, there is a need for real point of care testing for fast detection of M. pneumoniae or its DNA and mutations in macrolide resistance gene. It is necessary to develop safe vaccines that provide protective immunity against M.pneumoniae infection.
Collapse
Affiliation(s)
- Surinder Kumar
- Department of Microbiology, Maulana Azad Medical College, New Delhi, 110002, India.
| | - Sourabh Kumar
- Department of Pathology, Government Medical College & Hospital, Sector 32, Chandigarh, 160030, India
| |
Collapse
|
18
|
Lei H, Wang Q, Xiong X, Hu S, Shao Y, Shao R. Primary symptoms of severe mycoplasma pneumoniae pneumonia with acute abdomen, scrotal swelling and pain, and fever: A case report. Immun Inflamm Dis 2023; 11:e955. [PMID: 37904684 PMCID: PMC10546959 DOI: 10.1002/iid3.955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/07/2023] [Accepted: 07/08/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND INTRODUCTION In recent years, there has been an increase in the number of patients diagnosed with pediatric diseases who have severe Mycoplasma pneumoniae (MP) pneumonia, and there has also been an increased attention to serious extrapulmonary complications. However, cases with abdominal pain, acute abdomen, scrotal swelling and pain, and fever as the primary symptoms have been rarely reported. CASE DESCRIPTION A 3-years-and-8-months-old male patient diagnosed with pediatric disease was reported with abdominal pain, scrotal swelling and pain, and fever as the primary symptoms in the present study. No respiratory symptoms were observed throughout the disease. Through computed tomography (CT) scanning, the patient was diagnosed with severe MP pneumonia based on the symptoms of abdominal pain and fever, as well as pulmonary infection, pleural effusion, and retroperitoneal exudation. Laboratory tests supported the diagnosis of MP infection, and the diagnosis was confirmed by severe MP pneumonia. The therapeutic effects of azithromycin were poor, and the symptoms were quickly alleviated with the addition of gamma globulin and methylprednisolone. After discharge, azithromycin sequential therapy was administered. The chest CT was normal at the follow-up 1-month later. CONCLUSION Severe MP pneumonia in patients with pediatric diseases may include abdominal pain, scrotal swelling and pain, and fever as the primary symptoms. Care should be taken to avoid missed diagnoses and misdiagnoses in clinical practice.
Collapse
Affiliation(s)
- Hui Lei
- Department of pediatricsEzhou Central HospitalEzhouHubeiChina
| | - Qiong Wang
- Department of pediatricsEzhou Central HospitalEzhouHubeiChina
| | - Xue‐min Xiong
- Department of pediatricsEzhou Central HospitalEzhouHubeiChina
| | - Shengjuan Hu
- Department of pediatricsEzhou Central HospitalEzhouHubeiChina
| | - Yu Shao
- Department of pediatricsEzhou Central HospitalEzhouHubeiChina
| | - Rongchang Shao
- Department of pediatricsEzhou Central HospitalEzhouHubeiChina
| |
Collapse
|
19
|
Iannuzo N, Dy ABC, Guerra S, Langlais PR, Ledford JG. The Impact of CC16 on Pulmonary Epithelial-Driven Host Responses during Mycoplasma pneumoniae Infection in Mouse Tracheal Epithelial Cells. Cells 2023; 12:1984. [PMID: 37566063 PMCID: PMC10416898 DOI: 10.3390/cells12151984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Club Cell Secretory Protein (CC16) plays many protective roles within the lung; however, the complete biological functions, especially regarding the pulmonary epithelium during infection, remain undefined. We have previously shown that CC16-deficient (CC16-/-) mouse tracheal epithelial cells (MTECs) have enhanced Mp burden compared to CC16-sufficient (WT) MTECs; therefore, in this study, we wanted to further define how the pulmonary epithelium responds to infection in the context of CC16 deficiency. Using mass spectrometry and quantitative proteomics to analyze proteins secreted apically from MTECs grown at an air-liquid interface, we investigated the protective effects that CC16 elicits within the pulmonary epithelium during Mycoplasma pneumoniae (Mp) infection. When challenged with Mp, WT MTECs have an overall reduction in apical protein secretion, whereas CC16-/- MTECs have increased apical protein secretion compared to their unchallenged controls. Following Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) assessment, many of the proteins upregulated from CC16-/- MTECS (unchallenged and during Mp infection) were related to airway remodeling, which were not observed by WT MTECs. These findings suggest that CC16 may be important in providing protection within the pulmonary epithelium during respiratory infection with Mp, which is the major causative agent of community-acquired pneumoniae.
Collapse
Affiliation(s)
- Natalie Iannuzo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | | | - Stefano Guerra
- Asthma and Airway Disease Research Center, Tucson, AZ 85724, USA
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
- Asthma and Airway Disease Research Center, Tucson, AZ 85724, USA
| |
Collapse
|
20
|
Lee HY, Chen CC, Pi CC, Chen CJ. Aspergillus oryzae Fermentation Extract Alleviates Inflammation in Mycoplasma pneumoniae Pneumonia. Molecules 2023; 28:molecules28031127. [PMID: 36770796 PMCID: PMC9920650 DOI: 10.3390/molecules28031127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The filamentous fungus Aspergillus oryzae, also known as koji mold, has been used for centuries in the production of fermented foods in East Asia. A. oryzae fermentation can produce enzymes and metabolites with various bioactivities. In this study, we investigated whether A. oryzae fermentation extract (AOFE) has any effect on Mycoplasma pneumoniae (Mp) pneumonia. We performed solid-state fermentation of A. oryzae and obtained the ethanol extract. AOFE was analyzed by HPLC, and the major component was identified to be kojic acid. In vitro, AOFE suppressed Mp growth and invasion into A549 lung epithelial cells as determined by the gentamicin protection assay. AOFE treatment also suppressed Mp-stimulated production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 at mRNA and protein levels in murine MH-S alveolar macrophages. In a mouse model of Mp pneumonia, Mp infection induced a marked pulmonary infiltration of neutrophils, which was significantly reduced in mice pre-treated orally with AOFE. AOFE administration also suppressed the production of proinflammatory cytokines and chemokines in the lungs. Collectively, our results show that AOFE has the potential to be developed into a preventive/therapeutic agent for Mp pneumonia.
Collapse
Affiliation(s)
- Hui-Yu Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pintung 91252, Taiwan
| | - Chun-Jen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence:
| |
Collapse
|
21
|
Mei X, Wang J, Zhang C, Zhu J, Liu B, Xie Q, Yuan T, Wu Y, Chen R, Xie X, Wei Y, Wang L, Shao G, Xiong Q, Xu Y, Feng Z, Zhang Z. Apigenin suppresses mycoplasma-induced alveolar macrophages necroptosis via enhancing the methylation of TNF-α promoter by PPARγ-Uhrf1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154504. [PMID: 36332388 DOI: 10.1016/j.phymed.2022.154504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mycoplasma-associated pneumonia is characterized by severe lung inflammation and immunological dysfunction. However, current anti-mycoplasma agents used in clinical practice do not prevent dysfunction of alveolar macrophages caused by the high level of the cytokine tumor necrosis factor-α (TNF-α) after mycoplasma infection. Apigenin inhibits the production of TNF-α in variet inflammation associated disease. PURPOSE This study aimed to investigate apigenin's effect on mycoplasma-induced alveolar immune cell injury and the mechanism by which it inhibits TNF-α transcription. METHODS In this study, we performed a mouse model of Mycoplasma hyopneumoniae infection to evaluate the effect of apigenin on reducing mycoplasma-induced alveolar immune cell injury. Furthermore, we carried out transcriptome analysis, RNA interference assay, methylated DNA bisulfite sequencing assay, and chromatin immunoprecipitation assay to explore the mechanism of action for apigenin in reducing TNF-α. RESULTS We discovered that M. hyopneumoniae infection-induced necroptosis in alveolar macrophages MH-S cells and primary mouse alveolar macrophages, which was activated by TNF-α autocrine. Apigenin inhibited M. hyopneumoniae-induced elevation of TNF-α and necroptosis in alveolar macrophages. Apigenin inhibited TNF-a mRNA production via increasing ubiquitin-like with PHD and RING finger domains 1 (Uhrf1)-dependent DNA methylation of the TNF-a promotor. Finally, we demonstrated that apigenin regulated Uhrf1 transcription via peroxisome proliferator activated receptor gamma (PPARγ) activation, which acts as a transcription factor binding to the Uhrf1 promoter and protected infected mice's lungs, and promoted alveolar macrophage survival. CONCLUTSION This study identified a novel mechanism of action for apigenin in reducing alveolar macrophage necroptosis via the PPARγ/ Uhrf1/TNF-α pathway, which may have implications for the treatment of Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiale Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingyun Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yefen Xu
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China.
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China.
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
22
|
Insight into the Pathogenic Mechanism of Mycoplasma pneumoniae. Curr Microbiol 2023; 80:14. [PMID: 36459213 PMCID: PMC9716528 DOI: 10.1007/s00284-022-03103-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022]
Abstract
Mycoplasma pneumoniae, an obligate parasitic pathogen without cell wall, can cause severe upper and lower respiratory tract symptoms. It is the pathogen of human bronchitis and walking pneumonia, and named community-acquired pneumonia. In addition to severe respiratory symptoms, there are clinical extrapulmonary manifestations in the skin, brain, kidney, musculoskeletal, digestive system, and even blood system after M. pneumoniae infection. Hereby, we comprehensively summarized and reviewed the intrapulmonary and extrapulmonary pathogenesis of M. pneumoniae infection. The pathogenesis of related respiratory symptoms caused by M. pneumoniae is mainly adhesion damage, direct damage including nutrient predation, invasion and toxin, cytokine induced inflammation damage and immune evasion effect. The pathogenesis of extrapulmonary manifestations includes direct damage mediated by invasion and inflammatory factors, indirect damage caused by host immune response, and vascular occlusion. The intrapulmonary and extrapulmonary pathogenic mechanisms of M. pneumoniae infection are independent and interrelated, and have certain commonalities. In fact, the pathogenic mechanisms of M. pneumoniae are complicated, and the specific content is still not completely clear, further researches are necessary for determining the detailed pathogenesis of M. pneumoniae. This review can provide certain guidance for the effective prevention and treatment of M. pneumoniae infection.
Collapse
|
23
|
Zhang Z, Dou H, Tu P, Shi D, Wei R, Wan R, Jia C, Ning L, Wang D, Li J, Dong Y, Xin D, Xu B. Serum cytokine profiling reveals different immune response patterns during general and severe Mycoplasma pneumoniae pneumonia. Front Immunol 2022; 13:1088725. [PMID: 36618370 PMCID: PMC9813340 DOI: 10.3389/fimmu.2022.1088725] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Mycoplasma pneumoniae (MP) is an important human pathogen that mainly affects children causing general and severe Mycoplasma pneumoniae pneumonia (G/SMPP). In the present study, a comprehensive immune response data (33 cytokines) was obtained in school-age children (3-9 years old) during MPP, aiming to analyze the immune response patterns during MPP. At acute phase, changes of cytokines were both detected in GMPP (24/33) and SMPP (23/33) groups compared to the healthy group (p < 0.05), with 20 identical cytokines. Between MPP groups, the levels of 13 cytokines (IL-2, IL-10, IL-11, IL-12, IL-20, IL-28A, IL-32, IL-35, IFN-α2, IFN-γ, IFN-β, BAFF, and TSLP) were higher and three cytokines (LIGHT, OPN and CHI3L1) were lower in the SMPP group than in the GMPP group (p < 0.05). Function analysis reveals that macrophage function (sCD163, CHI3L1) are not activated in both MPP groups; difference in regulatory patterns of T cells (IL26, IL27, OPN, LIGHT) and defective activation of B cells (BAFF) were detected in the SMPP group compared to the GMPP group. Besides, the level of osteocalcin; sIL-6Rβ and MMP-2 are both decreased in MPP groups at acute and convalescent phases compared to the healthy group, among which the levels of sIL-6Rβ and MMP-2 showed negative correlations (p < 0.1) to the application of bronchial lavage in SMPP group, indicating their roles in the development of MPP. At the convalescent phase, more cytokines recovered in GMPP (18) than SMPP (11), revealing better controlled immune response during GMPP. These results reveal different immune response patterns during GMPP and SMPP. In addition, the differentiated cytokines may serve as potential indicators of SMPP; early intervention on immune response regulations may be helpful in reducing the severity of SMPP.
Collapse
Affiliation(s)
- Zhikun Zhang
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haiwei Dou
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Tu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Shi
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ran Wei
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Pediatric, Baotou Fourth Hospital, Baotou, Inner Mongolia, China
| | - Ruijie Wan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunmei Jia
- Department of Pediatric, Baotou Fourth Hospital, Baotou, Inner Mongolia, China
| | - Lihua Ning
- Department of Pediatric, Baotou Fourth Hospital, Baotou, Inner Mongolia, China
| | - Dongmei Wang
- Department of Pediatric, Baotou Fourth Hospital, Baotou, Inner Mongolia, China
| | - Jing Li
- Department of Pediatric, Beijing Chang Ping District Hospital of Traditional Chinese Medicine and Western Medicine, Beijing, China
| | - Yan Dong
- Department of Pediatric, Beijing Chang Ping District Hospital of Traditional Chinese Medicine and Western Medicine, Beijing, China
| | - Deli Xin
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Baoping Xu
- Department of Respiratory, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Zhao G, Lu D, Wang S, Zhang H, Zhu X, Hao Z, Dawood A, Chen Y, Schieck E, Hu C, Chen X, Yang L, Guo A. Novel mycoplasma nucleomodulin MbovP475 decreased cell viability by regulating expression of CRYAB and MCF2L2. Virulence 2022; 13:1590-1613. [PMID: 36121023 PMCID: PMC9487752 DOI: 10.1080/21505594.2022.2117762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleomodulins are secreted bacterial proteins whose molecular targets are located in host cell nuclei. They are gaining attention as critical virulence factors that either modify the epigenetics of host cells or directly regulate host gene expression. Mycoplasma bovis is a major veterinary pathogen that secretes several potential virulence factors. The aim of this study was to determine whether any of their secreted proteins might function as nucleomodulins. After an initial in silico screening, the nuclear localization of the secreted putative lipoprotein MbovP475 of M. bovis was demonstrated in bovine macrophage cell line (BoMac) experimentally infected with M. bovis. Through combined application of ChIP-seq, Electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR) analysis, MbovP475 was determined to bind the promoter regions of the cell cycle central regulatory genes CRYAB and MCF2L2. MbovP475 has similar secondary structures with the transcription activator-like effectors (TALEs). Screening of various mutants affecting the potential DNA binding sites indicated that the residues 242NI243 within MbovP475 loop region of the helix-loop-helix domain were essential to its DNA binding activity, thereby contributing to decrease in BoMac cell viability. In conclusion, this is the first report to confirm M. bovis secretes a conserved TALE-like nucleomodulin that binds the promoters of CRYAB and MCF2L2 genes, and subsequently down-regulates their expression and decreases BoMac cell viability. Therefore, this study offers a new understanding of mycoplasma pathogenesis.
Collapse
Affiliation(s)
- Gang Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Animal Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shujuan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xifang Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ali Dawood
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China.,International Livestock Research Institute, Nairobi, Kenya
| | - Elise Schieck
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- College of Animal Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Guo Q, Li L, Wang C, Huang Y, Ma F, Cong S, Tan J, Yao L, Chen A, Zheng L. Comprehensive virome analysis of the viral spectrum in paediatric patients diagnosed with Mycoplasma pneumoniae pneumonia. Virol J 2022; 19:181. [PMID: 36352436 PMCID: PMC9644017 DOI: 10.1186/s12985-022-01914-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Background Among hospitalized children suffering from community-acquired pneumonia, Mycoplasma pneumoniae (MP) is one of the most common pathogens. MP often exists as a co-infection with bacteria or viruses, which can exacerbate the clinical symptoms. We investigated the pathogen spectrum in MP-positive and MP-negative samples from hospitalized children with respiratory tract infections in Beijing, China. Method This study included 1038 samples of nasopharyngeal aspirates obtained between April, 2017 and March, 2018 from hospitalized children under 6 years of age with respiratory tract infections. To explore the impact of MP infection on the composition of the pathogen spectrum, 185 nasopharyngeal aspirates (83 MP-positive/102 MP-negative) were randomly selected for next-generation sequencing and comprehensive metagenomics analysis. Real-time PCR was used to detect and verify common respiratory viruses. Results Of the 1038 samples, 454 (43.7%) were infected with MP. In children < 6 years of age, the MP infection rate gradually increased with age, with the highest rate of 74.2% in 5–6-year-olds. The results of metagenomics analysis revealed 11 human, animal and plant virus families, and bacteriophages, including common respiratory viruses, enteroviruses and anelloviruses. The virus family with the highest number of reads in both MP-positive and MP-negative samples was the Pneumoviridae, and the number of reads for human respiratory syncytial virus (HRSV) in MP-positive samples was higher than that in MP-negative samples. Among the 83 MP-positive samples, 47 (56.63%) were co-infected with viruses, the most common of which was influenza virus (IFV). The durations of hospitalization and fever were higher in patients with MP co-infection than MP single infection, but the difference was not statistically significant. Conclusion The viral family with the highest number of reads in both groups was Pneumoviridae, and the number of reads matched to HRSV in MP-positive samples was much higher than MP-negative samples. Co-infection of MP and IFV infection were the most cases. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01914-y.
Collapse
|
26
|
Risk Factors for the Development of Post-Infectious Bronchiolitis Obliterans in Children: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11111268. [PMID: 36365019 PMCID: PMC9696236 DOI: 10.3390/pathogens11111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Post-infectious bronchiolitis obliterans (PIBO), one of the major complications of respiratory tract infection, is commonly underdiagnosed. To identify the risk groups that may develop PIBO and avoid misdiagnoses, we investigated the risk factors associated with the development of PIBO. We searched PubMed, Embase, and MEDLINE databases for studies that included risk factors for the development of PIBO published from inception to 13 June 2022. We limited our search to studies that reported the estimates of odds ratio (OR), hazard ratio (HR), or relative risks for developing PIBO. A fixed-effect and a random-effect model were used. We included seven studies reporting data on the risk factors for PIBO in 344 children with PIBO and 1310 control children. Twenty-two variables, including sex, age, respiratory pathogens, symptoms, laboratory and radiologic findings, and mechanical ventilation, were mentioned in at least one study. The significant risk factors mentioned in two or more studies included elevated lactate dehydrogenase levels, pleural effusion, hypoxemia, sex, and mechanical ventilation. The significance of the duration of hospitalization and fever as risk factors for PIBO differed when the studies were classified according to the statistical method. In addition, the risk factors differed according to respiratory infection pathogens. This meta-analysis identified potential risk factors associated with the development of PIBO. The results of this study highlight the importance of avoiding misdiagnosis and help establish management strategies for patients at a high risk of developing PIBO.
Collapse
|
27
|
Lv YT, Sun XJ, Chen Y, Ruan T, Xu GP, Huang JA. Epidemic characteristics of Mycoplasma pneumoniae infection: a retrospective analysis of a single center in Suzhou from 2014 to 2020. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1123. [PMID: 36388772 PMCID: PMC9652570 DOI: 10.21037/atm-22-4304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/09/2022] [Indexed: 07/23/2023]
Abstract
BACKGROUND Mycoplasma pneumoniae (M. Pneumoniae) is a common pathogen of respiratory tract infections, but there is still a lack of detailed investigation on the large sample of M. Pneumoniae infection in the all age population. And patients with severe M. Pneumoniae pneumonia (SMPP) still have a certain risk of death. How to identify the clinical characteristics and population of patients with SMPP as soon as possible is still an urgent problem in clinical practice. METHODS Demographic characteristics, patient clinical information, and laboratory data of 81,131 patients with respiratory tract infections (RTIs) in the Affiliated Suzhou Hospital of Nanjing Medical University from 2014 to 2020 were retrospectively collected from all patient records. The serum particle agglutination (PA) test was used to determine M. Pneumoniae infection by detecting specific antibodies. The white blood cell count, the proportion of neutrophils and lymphocytes, C-reactive protein (CRP) and lactate dehydrogenase (LDH) levels between children and adults with SMPP were compared by Student's t-test; other clinical features were analyzed by χ2 test or Fisher's exact test. RESULTS A total of 81,131 patients with RTIs were included, and 21,582 (26.60%) M. Pneumoniae immunoglobulin M (IgM)-positive patients were detected. From 2014 to 2020, the annual proportions of M. Pneumoniae RTIs were 23.60%, 28.18%, 38.08%, 27.05%, 23.44%, 25.26%, and 18.33%, respectively. In terms of seasonal distribution, April-June and September-November were the peak seasons of M. Pneumoniae infection each year. Children and women have a high proportion of M. Pneumoniae infection. The peak age of M. Pneumoniae infection was between 4 and 14 years old. There were 301 cases of SMPP, including 281 children and 20 adults (8 cases of pregnant women). Children and pregnant women accounted for a high proportion of SMPP. Children with SMPP had more extrapulmonary symptoms, multilobar infiltrates, and increased CRP and LDH levels compared with adults. CONCLUSIONS M. Pneumoniae infection has seasonal, sex, and age distribution trends. Children and pregnant women accounted for a high proportion of SMPP. Extrapulmonary symptoms, multilobar infiltrates, and increased CRP and LDH levels may be helpful to identify SMPP in children than in adults.
Collapse
Affiliation(s)
- Yan-Tian Lv
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Respiratory and Critical Medicine, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiao-Jing Sun
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Chen
- Department of Respiratory and Critical Medicine, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Ruan
- Department of Respiratory and Critical Medicine, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Guo-Peng Xu
- Department of Respiratory and Critical Medicine, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jian-An Huang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Liu Z, Dong WT, Wei WF, Huo JH, Wang WM. Exploring the mechanism of Qinbaiqingfei-concentrate pills in the treatment of Mycoplasma pneumoniae pneumonia from the perspective of intestinal microbiota and mucosal immunity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115308. [PMID: 35460847 DOI: 10.1016/j.jep.2022.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine categorizes Mycoplasma pneumoniae pneumonia as "lung heat", and treatment with heat clear and detoxify. Traditional Chinese medicine believes that the lungs and intestines come from the same source, and the intestine is related to pneumonia. This is the same as the gut-lung axis theory. Qinbaiqingfei concentrate pills (QBs) were modified based on Cough San in the ancient medical book Medical Awareness. It clears lung heat, moisturizes the lungs and dredges collaterals, and has a good ability to treat Mycoplasma pneumoniae. AIM OF THE STUDY A rat model of Mycoplasma pneumoniae was established. From the aspect of intestinal flora and mucosal immunity, the potential mechanism of the QBs was researched. MATERIALS AND METHODS First, the content of Mycoplasma pneumoniae in lung tissue and the levels of the inflammatory factors IL-4, IL-10, TNF-α and INF-γ were detected. To determine the expression of NF-kB related proteins in lung tissue, which can understand the ability in treating disease. Next, metagenomic sequencing was performed to detect changes in short-chain fatty acids, proving the ability of the drug to regulate intestinal microecology. Finally, HDAC, LPS, SIgA, etc. were detected to facilitate the correlation of the overall experimental indicators. RESULTS QBs reduces the levels of IL-4, IL-10, TNF-α and INF-γ in the serum by inhibiting the expression of MyD88, IKKα, IκBα, and NF-κB p65 in lung tissue. In addition, QBs restores the ratio of gram-negative bacteria to gram-positive bacteria in the intestine, restores the secretion of acetic acid, propionic acid, butyric acid, isobutyric acid and isovaleric acid, and promotes the secretion of NF-κB p65 and SIgA by HDAC1/3. The result is that the lung tissue is repaired and the proliferation of Mycoplasma pneumoniae is inhibited. CONCLUSIONS From the "gut-lung axis", a new research perspective was discovered. QBs intervened in the intestines and lungs to treat Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- Zheng Liu
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China
| | - Wen-Ting Dong
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China
| | - Wen-Feng Wei
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China
| | - Jin-Hai Huo
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China.
| | - Wei-Ming Wang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China.
| |
Collapse
|
29
|
Zhang Z, Wan R, Yuan Q, Dou H, Tu P, Shi D, Fu X, Xin D. Cell damage and neutrophils promote the infection of Mycoplasma pneumoniae and inflammatory response. Microb Pathog 2022; 169:105647. [PMID: 35724831 DOI: 10.1016/j.micpath.2022.105647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Mycoplasma pneumoniae (MP) is an important respiratory pathogen of human. The infection of MP can cause direct damage and immune damage in lung, resulting in Mycoplasma pneumoniae pneumonia (MPP). In this study, we aim to investigate the pathogenesis of MPP by detecting the proliferation of MP under conditions of cell damages and neutrophils in vitro. Firstly, we found the supplements of intracellular fluid, protein and RNA derived from intracellular fluid of A549 cells contribute to the survival of MP, thereby promoting the infection of MP. Cell damage can also significantly contribute to the survival of MP without supplements. At the same time, the additions of supplements contribute to apoptosis and the expression of IL-8 and IL-1β. Further, we found live neutrophils show bactericidal activity to MP, and the phagocytosis of MP promotes apoptosis of neutrophils. When co-incubated with MP and A549 cells, the proliferation of MP in the high neutrophils proportion groups were accelerated with functional decline of neutrophils, and the level of extracellular IL-1β showed a time and dose dependent manner to neutrophils. These results suggest that the release of intracellular nutrients by damaged cells and functional decline of neutrophils can promote the infection of MP and play roles in the activation of inflammatory response. Therefore, lung damage and infiltration of neutrophils would be important factors affecting the development of MPP.
Collapse
Affiliation(s)
- Zhikun Zhang
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China; Department of Pathogenic Biology, School of Basic Medicine Southwest Medical University, Xianglin Road 1#, Luzhou, 646000, China
| | - Ruijie Wan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Qing Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Haiwei Dou
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Peng Tu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Dawei Shi
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Xiaoyan Fu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Deli Xin
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
30
|
Fang C, Mao Y, Jiang M, Yin W. Pediatric Critical Illness Score, Clinical Characteristics and Comprehensive Treatment of Children with Severe Mycoplasma Pneumoniae Pneumonia. Front Surg 2022; 9:897550. [PMID: 35693303 PMCID: PMC9174934 DOI: 10.3389/fsurg.2022.897550] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Objective To investigate the clinical characteristics of children with severe Mycoplasma pneumoniae pneumonia (SMPP) and the correlation with pediatric critical illness score (PICS), and to explore the effect of combined treatment with antibiotics and glucocorticoids. Methods The medical records of 120 children with SMPP admitted to our hospital from January 2020 to June 2021 were retrospectively analyzed. Children with a PICS score greater than 80 within 24 h of admission were included in the non-critical group, those with a score of 71–80 were included in the critical group, and those with a score of ≤70 were included in the extremely critical group. The relevant clinical data and examination indicators of the three groups of children were intercepted and compared. Univariate and multifactorial logistic regression analyses were performed to analyze the correlation between clinical characteristics of children with SMPP and PICS. According to the different treatment methods, the children were subdivided into the control group (n = 54) who received antibiotics alone and the comprehensive group (n = 66) who received antibiotics combined with glucocorticoid therapy. The erythrocyte sedimentation rate (ESR), inflammation and immune indexes, symptom relief or disappearance time, hospitalization days, and clinical efficacy were compared between the two groups before and after treatment. Result Within 24 h of admission, among the 120 children with SMPP, 79 had PICS >80, 32 had PICS 71–80, and 9 had PICS ≤70. Before discharge, among the 120 children with SMPP, 99 had PICS >80, 17 had PICS 71–80, and 4 had PICS ≤70. Univariate analysis showed that there were no significant differences in gender ratio, ratio of fever duration >10 days, age and WBC among the three groups (p > 0.05), the differences in the ratio of abnormal ECG, the ratio of ≥2 pathogenic infections, the ratio of ≥2 systemic damages, CRP levels, and D-dimer levels were statistically significant when compared among the three groups (p < 0.05). Multivariate Logistic regression analysis showed that the number of Co-systemic damages and the level of D-dimer were negatively correlated with PICS classification (p < 0.05). After medication, ESR, CRP, IL-6, and CD8+ levels decreased and CD4+ and CD4+/CD8+ levels increased in both the control and comprehensive groups, and all changes were significant in the comprehensive group compared with the control group (p < 0.05). The antipyretic time, cough relief time, disappearance time of lung rales and hospitalization days in the comprehensive group were shorter than those in the control group (p < 0.05). The total effective rate of the comprehensive group (95.45%) was better than that of the control group (83.33%) (p < 0.05). Conclusion PICS can effectively reflect the clinical characteristics of children with SMPP. The comprehensive treatment effect of azithromycin combined with glucocorticoid is significantly better than that of azithromycin alone. It can effectively reduce the level of inflammation in children with SMPP, improve the immune function of children, and accelerate clinical recovery. It has promotion value.
Collapse
Affiliation(s)
- Chengchao Fang
- Department of Pediatrics, The First People’s Hospital of Linping District, Hangzhou, China
- Correspondence: Chengchao Fang
| | - Yueyan Mao
- Department of Pediatrics, The First People’s Hospital of Linping District, Hangzhou, China
| | - Mingfen Jiang
- Hemodialysis center, The First People’s Hospital of Linping District, Hangzhou, China
| | - Wei Yin
- Department of Pediatrics, The First People’s Hospital of Linping District, Hangzhou, China
| |
Collapse
|
31
|
Charlotte Hsiung JC, Ma HY, Lu CY, Yen TY, Chi H, Liau YJ, Lai MJ, Chang LY, Huang LM. Children with Mycoplasma pneumoniae infection in Taiwan: Changes in molecular characteristics and clinical outcomes. J Formos Med Assoc 2022; 121:2273-2280. [DOI: 10.1016/j.jfma.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 10/31/2022] Open
|
32
|
Rangroo R, Young M, Davis A, Pack S, Thakore S, Schepcoff A, Oyesanmi O. The Severity of the Co-infection of Mycoplasma pneumoniae in COVID-19 Patients. Cureus 2022; 14:e24563. [PMID: 35664402 PMCID: PMC9148197 DOI: 10.7759/cureus.24563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background and objective The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that causes coronavirus disease 2019 (COVID-19) infection, with symptoms ranging from mild upper respiratory illness to multisystem organ failure, and even death. Since its discovery in December 2019, the SARS-CoV-2 virus has led to a global pandemic, rapidly spreading to countries around the world, with millions of reported deaths to date. As researchers around the world continue to analyze and interpret the data gathered regarding the novel virus, it is evident that its co-infection with various bacterial pathogens is associated with a worse overall prognosis. One such bacterial pathogen, Mycoplasma pneumoniae (M. pneumoniae), has been associated with an increase in inpatient mortality, length of hospital stay, and need for mechanical ventilation. The aim of this study was to evaluate the characteristics and outcomes of patients co-infected with SARS-CoV-2 and M. pneumoniae. We sought to determine if this co-infection led to increased incidence of ventilatory support, intensive care unit (ICU) stay, and mortality. Materials and Methods A multi-center retrospective study was conducted involving patients aged 18 years and older. We compared the incidence of in-hospital mortality, ICU stay, and mechanical ventilation support between COVID-19-positive patients with and without M. pneumoniae co-infection. Based on the collected data, a binary logistic regression model was implemented to assess the correlation between mortality and ventilatory support, while linear regression was used to study the length of stay (LOS) independent variable. Results A total of 1,208 patients with a positive SARS-CoV-2 test were identified. Among them, 604 (50%) had an M. pneumoniae co-infection. LOS (95% CI for the coefficient estimate [0.86, 1.05], p<0.001), need for mechanical ventilation (95% CI for the odds ratio [2.60, 6.02], p<0.001), and inpatient mortality (95% CI for the odds ratio [1.43, 2.97], p<0.001) among those co-infected were significantly higher compared to COVID-19 patients without concomitant M. pneumoniae infection. Conclusion COVID-19 with a concomitant M. pneumoniae infection was found to have worse outcomes and overall prognosis when compared to individuals with independent disease states. Based on retrospective data gathered from a large multicenter database, the rates of mortality, ventilatory support, and length of hospital stay were significantly worse in patients with a co-infection of SARS-CoV-2 and M. pneumoniae.
Collapse
|
33
|
Yang J, Liu Y, Lin C, Yan R, Li Z, Chen Q, Zhang H, Xu H, Chen X, Chen Y, Guo A, Hu C. Regularity of Toll-Like Receptors in Bovine Mammary Epithelial Cells Induced by Mycoplasma bovis. Front Vet Sci 2022; 9:846700. [PMID: 35464378 PMCID: PMC9021453 DOI: 10.3389/fvets.2022.846700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mastitis is one of the most common and significant infectious diseases in dairy cattle and is responsible for significant financial losses for the dairy industry globally. An important pathogen of bovine mastitis, Mycoplasma bovis (M. bovis) has a high infection rate, requires a long course of treatment, and is difficult to cure. Bovine mammary epithelial cells (BMECs) are the first line of defense of the mammary gland, and their natural immune system plays a critical role in resisting M. bovis infection. This study aimed to explore and demonstrate the regularity of Toll-like receptors (TLRs) activation during M. bovis infection and their function during M. bovis mastitis. An in vitro model of M. bovis-induced mastitis showed that the expression of IL-6, IL-8, and TNF-α increased significantly following infection. M. bovis infection also upregulated the expression of TLR1/2/6 on the cell membrane and TLR3/9 in the cytoplasm. There is a crosstalk effect between TLR1–TLR2 and TLR2–TLR6. Furthermore, M. bovis infection was found to activate the TLR1/2/6/9/MyD88/NF-κB and TLR3/TRIF/IRF signal transduction pathways, which in turn activate inflammatory factors. These findings lay the theoretical foundation for understanding the pathogenesis of M. bovis, permitting the development of effective measures for preventing and controlling M. bovis mastitis.
Collapse
Affiliation(s)
- Jinghan Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuhui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changjie Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengzhi Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiuhui Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haojun Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Changmin Hu
| |
Collapse
|
34
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
35
|
Kim CH, Lee J. Mycoplasma pneumoniae Pleural Effusion in Adults. J Clin Med 2022; 11:jcm11051281. [PMID: 35268372 PMCID: PMC8911427 DOI: 10.3390/jcm11051281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Parapneumonic effusions often complicate Mycoplasma pneumoniae (MP) pneumonia, contrary to the notion that they are a rare feature of MP infection. Increased research and evidence on MP parapneumonic effusions (MPPE) can help elucidate its clinical significance as one of the variable manifestations of MP infection. This article aims to summarize the existing literature about the clinical characteristics of MPPE in adults and discuss its diagnostic implications from the perspective of pleural fluid analysis. Approximately 20–25% of adult patients with MP pneumonia develop MPPE, and its frequency in children and adults seems to be similar. Although the pathogenesis of MPPE remains to be elucidated, MP-induced cell-mediated immune mechanisms might be partially associated with the development of MPPE. MPPE usually shows mononuclear leukocyte predominance with elevated adenosine deaminase (ADA) activity, similar to tuberculous pleural effusion (TPE). The degree of increase in pleural fluid ADA levels and serum inflammatory biomarkers may help differentiate between MPPE and TPE. During the acute phase, a single positive IgM and positive polymerase chain reaction results allow for a precise and reliable MP infection diagnosis. The mainstay of treatment is the selection of adequate anti-mycoplasma antibiotics with or without corticosteroid, based on the local epidemiologic data on macrolide resistance.
Collapse
Affiliation(s)
| | - Jaehee Lee
- Correspondence: ; Tel.: +82-53-200-5536; Fax: +82-53-426-2046
| |
Collapse
|
36
|
Lei W, Fei-Zhou Z, Jing C, Shu-Xian L, Xi-Ling W, Lan-Fang T. Pseudomembranous necrotizing laryngotracheobronchitis due to Mycoplasma pneumoniae: a case report and literature review. BMC Infect Dis 2022; 22:183. [PMID: 35197010 PMCID: PMC8867838 DOI: 10.1186/s12879-022-07160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pseudomembranous necrotizing laryngotracheobronchitis refers to an acute diffuse necrotizing inflammation in the mucosa of the larynx, trachea, and bronchus. It often occurs in infants and children having viral infections secondary to bacterial infections. Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen that causes pneumonia in children. In recent years, serious complications due to M. pneumoniae infection, including necrotizing pneumonia, pulmonary embolism, and pleural effusion, have been increasingly reported. Case presentation An 11-year-old girl was admitted to our unit with cough, fever, and hoarseness persistent for a week. The results of the M. pneumoniae serological test, PCR examination with bronchial aspirate and bronchoalveolar lavage fluid (BALF), next-generation sequencing (mNGS) for BALF, all suggested the presence of M. pneumoniae infection. High-resolution CT scanning of the chest showed inflammation of the middle and lower lobes of the right lung. By bronchoscopy, the necrosis of the vocal cords, trachea, and bronchial mucosa was observed; each bronchial lumen contained a large amount of white viscous sputum. Pathological findings for bronchial mucosa suggested inflammatory necrosis. After administration of azithromycin and glucocorticoids, the symptoms of the patients were ameliorated. After 2 weeks post-discharge, the X-ray scan of her chest indicated the pneumonia resolution in the right lung. Conclusions In patients with pneumonia due to M. pneumoniae infection, which causes obvious hoarseness, bronchoscopy is necessary even if the lung lesions are not massively consolidated. When necrotizing lesions of the larynx, trachea, and bronchi are detected by bronchoscopy, the necrotic tissues in the corresponding parts should be conducted tissue biopsy for pathological examination. Apart from macrolide antibiotics, the administration of small doses of glucocorticoids is necessary.
Collapse
Affiliation(s)
- Wu Lei
- Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou, 310052, Zhejiang, China
| | - Zhang Fei-Zhou
- Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou, 310052, Zhejiang, China
| | - Chen Jing
- Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou, 310052, Zhejiang, China
| | - Li Shu-Xian
- Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou, 310052, Zhejiang, China
| | - Wu Xi-Ling
- Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou, 310052, Zhejiang, China
| | - Tang Lan-Fang
- Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
37
|
Li J, Luu LDW, Wang X, Cui X, Huang X, Fu J, Zhu X, Li Z, Wang Y, Tai J. Metabolomic Analysis Reveals Potential Biomarkers and the Underlying Pathogenesis Involved in Mycoplasma Pneumoniae Pneumonia. Emerg Microbes Infect 2022; 11:593-605. [PMID: 35094669 PMCID: PMC8865114 DOI: 10.1080/22221751.2022.2036582] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although previous studies have reported the use of metabolomics for infectious diseases, little is known about the potential function of plasma metabolites in children infected with Mycoplasma pneumoniae (MP). Here, a combination of liquid chromatography-quadrupole time-of-flight mass spectrometry and random forest-based classification model was used to provide a broader range of applications in MP diagnosis. In the training cohort, plasma from 63 MP pneumonia children (MPPs), 37 healthy controls (HC) and 29 infectious disease controls (IDC) was collected. After multivariate analyses, 357 metabolites were identified to be differentially expressed among MPP, HC and IDC groups, and 3 metabolites (568.5661, 459.3493 and 411.3208) had high diagnostic values. In an independent cohort with 57 blinded subjects, samples were successfully classified into different groups, demonstrating the reliability of these biomarkers for distinguishing MPPs from controls. A metabolomic signature analysis identified major classes of glycerophospholipids, sphingolipids and fatty acyls were increased in MPPs. These markedly altered metabolites are mainly involved in glycerophospholipid and sphingolipid metabolism. As the ubiquitous building blocks of eukaryotic cell membranes, dysregulated lipid metabolism indicates damage of the cellular membrane and the activation of immunity in MPPs. Moreover, lipid metabolites, differentially expressed between severe and mild MPPs, were correlated with the markers of extrapulmonary complications, suggesting that they may be involved in MPP disease severity. These findings may offer new insights into biomarker selection and the pathogenesis of MPP in children.
Collapse
Affiliation(s)
- Jieqiong Li
- Department of Respiratory Disease, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 10045, P. R. China
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Xiaoxia Wang
- Central & Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan 572000, P. R. China
| | - XiaoDai Cui
- Experimental Research Center, Capital Institute of Pediatrics, Beijing 100020, P. R. China
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing 100020, P. R. China
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing 100020, P. R. China
| | - Xiong Zhu
- Central & Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan 572000, P. R. China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, P.R. China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing 100020, P. R. China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, P. R. China
| |
Collapse
|
38
|
Mycoplasma pneumoniae and Chlamydia pneumoniae Coinfection with Acute Respiratory Distress Syndrome: A Case Report. Diagnostics (Basel) 2021; 12:diagnostics12010048. [PMID: 35054214 PMCID: PMC8775183 DOI: 10.3390/diagnostics12010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Community-acquired pneumonia caused by Mycoplasma pneumoniae or Chlamydia pneumoniae is usually mild. Mycoplasma pneumoniae-related and C. pneumoniae-related acute respiratory distress syndromes (ARDSs) are rare. Moreover, to our knowledge, there are no published reports on ARDS caused by M. pneumoniae and C. pneumoniae coinfection. Here, we report a case of an immunocompetent young woman who was co-infected with M. pneumoniae and C. pneumoniae and was started on treatment with piperacillin and clarithromycin. Two days later, she developed ARDS. She recovered rapidly following a change of antibiotic treatment to levofloxacin and was discharged on day 12. We conducted exome sequencing followed by alternative filtering to search for candidate ARDS-related genes. We identified an intronic variant of unknown significance within leucine-rich repeat-containing 16A (LRRC16A), a gene previously identified as a significant locus for platelet count with a possible role in ARDS. This is a rare case of ARDS in a young adult caused by M. pneumoniae and C. pneumoniae coinfection. This case suggests that ARDS in young adults may be correlated with variants in LRRC16A. This requires confirmation by further case reports.
Collapse
|
39
|
Su X, You X, Luo H, Liang K, Chen L, Tian W, Ye Z, He J. Community-Acquired Respiratory Distress Syndrome Toxin: Unique Exotoxin for M. pneumoniae. Front Microbiol 2021; 12:766591. [PMID: 34867898 PMCID: PMC8640204 DOI: 10.3389/fmicb.2021.766591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae infection often causes respiratory diseases in humans, particularly in children and adults with atypical pneumonia and community-acquired pneumonia (CAP), and is often exacerbated by co-infection with other lung diseases, such as asthma, bronchitis, and chronic obstructive pulmonary disorder. Community-acquired respiratory distress syndrome toxin (CARDS TX) is the only exotoxin produced by M. pneumoniae and has been extensively studied for its ADP-ribosyltransferase (ADPRT) activity and cellular vacuolization properties. Additionally, CARDS TX induces inflammatory responses, resulting in cell swelling, nuclear lysis, mucus proliferation, and cell vacuolization. CARDS TX enters host cells by binding to the host receptor and is then reverse transported to the endoplasmic reticulum to exert its pathogenic effects. In this review, we focus on the structural characteristics, functional activity, distribution and receptors, mechanism of cell entry, and inflammatory response of CARDS TX was examined. Overall, the findings of this review provide a theoretical basis for further investigation of the mechanism of M. pneumoniae infection and the development of clinical diagnosis and vaccines.
Collapse
Affiliation(s)
- Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
40
|
Ferreira G, Santander A, Savio F, Guirado M, Sobrevia L, Nicolson GL. SARS-CoV-2, Zika viruses and mycoplasma: Structure, pathogenesis and some treatment options in these emerging viral and bacterial infectious diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166264. [PMID: 34481867 PMCID: PMC8413106 DOI: 10.1016/j.bbadis.2021.166264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/28/2023]
Abstract
The molecular evolution of life on earth along with changing environmental, conditions has rendered mankind susceptible to endemic and pandemic emerging infectious diseases. The effects of certain systemic viral and bacterial infections on morbidity and mortality are considered as examples of recent emerging infections. Here we will focus on three examples of infections that are important in pregnancy and early childhood: SARS-CoV-2 virus, Zika virus, and Mycoplasma species. The basic structural characteristics of these infectious agents will be examined, along with their general pathogenic mechanisms. Coronavirus infections, such as caused by the SARS-CoV-2 virus, likely evolved from zoonotic bat viruses to infect humans and cause a pandemic that has been the biggest challenge for humanity since the Spanish Flu pandemic of the early 20th century. In contrast, Zika Virus infections represent an expanding infectious threat in the context of global climate change. The relationship of these infections to pregnancy, the vertical transmission and neurological sequels make these viruses highly relevant to the topics of this special issue. Finally, mycoplasmal infections have been present before mankind evolved, but they were rarely identified as human pathogens until recently, and they are now recognized as important coinfections that are able to modify the course and prognosis of various infectious diseases and other chronic illnesses. The infectious processes caused by these intracellular microorganisms are examined as well as some general aspects of their pathogeneses, clinical presentations, and diagnoses. We will finally consider examples of treatments that have been used to reduce morbidity and mortality of these infections and discuss briefly the current status of vaccines, in particular, against the SARS-CoV-2 virus. It is important to understand some of the basic features of these emerging infectious diseases and the pathogens involved in order to better appreciate the contributions of this special issue on how infectious diseases can affect human pregnancy, fetuses and neonates.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Florencia Savio
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Guirado
- Department of Infectious Diseases, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaeology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
41
|
Wan R, Jia M, Dou H, Tu P, Shi D, Yuan Q, Xin D. Mechanism of Infantile Feire Kechuan Oral Solution against Mycoplasma pneumoniae infection of A549 cells. Biomed Pharmacother 2021; 145:112366. [PMID: 34776306 DOI: 10.1016/j.biopha.2021.112366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mycoplasma pneumoniae is a leading cause of community-acquired respiratory infections. Infantile Feire Kechuan Oral Solution (IFKOS) is effective for treatment of M. pneumoniae infection. The aim of this study was to explore the potential mechanism of IFKOS against M. pneumoniae infection in basal epithelial human lung adenocarcinoma A549 cells. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effects of IFKOS on the viability of A549 cells infected with M. pneumoniae. Optical microscopy was used to observe cell morphology and a Muse cell analyzer was used to assess apoptosis and the cell cycle phase. Enzyme-linked immunosorbent assays were employed to assess the expression levels of interleukin (IL)-4, IL-6, IL-8, IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-α, and IFN-γ. RESULTS Under certain conditions, M. pneumoniae infection reduced the viability and inhibited the proliferation of A549 cells, promoted early apoptosis, and arrested cells in the G0/G1 phase, thus shortening the S and G2/M phases (all p < 0.05). M. pneumoniae also upregulated expression of IL-8 and TNF-α and downregulated that of IL-6 (p < 0.05), which switched the immune balance of Th1/Th2 to Th1 cells. IFKOS (5.531 mg/mL) improved the viability and proliferation of M. pneumoniae-infected A549 cells, mitigated early apoptosis, and reversed cell cycle arrest in the G0/G1 phase, thereby extending the S and G2/M phases (all, p < 0.05). IFKOS downregulated expression of IL-8 and TNF-α and upregulated that of IL-6 (p < 0.01), thereby reversing the immune imbalance of Th1/Th2. Secretion of IL-4, IL-17, IFN-α, and IFN-γ was not observed. CONCLUSION IFKOS played a protective role in the regulation of cell viability, apoptosis, the cell cycle, and Th1/Th2 immune imbalance induced by M. pneumoniae infection and conveyed an anti-inflammatory effect in A549 cells.
Collapse
Affiliation(s)
- Ruijie Wan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Minyi Jia
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Haiwei Dou
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Peng Tu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Dawei Shi
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Qing Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| | - Deli Xin
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Disease, No. 95 Yong-an Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
42
|
Garrido V, Piñero‐Lambea C, Rodriguez‐Arce I, Paetzold B, Ferrar T, Weber M, Garcia‐Ramallo E, Gallo C, Collantes M, Peñuelas I, Serrano L, Grilló M, Lluch‐Senar M. Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Mol Syst Biol 2021; 17:e10145. [PMID: 34612607 PMCID: PMC8493563 DOI: 10.15252/msb.202010145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome-reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm-associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome-reduced bacterium that can fight against clinically relevant biofilm-associated bacterial infections.
Collapse
Affiliation(s)
- Victoria Garrido
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
| | - Irene Rodriguez‐Arce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - Bernhard Paetzold
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- S‐Biomedic N.V.BeerseBelgium
| | - Tony Ferrar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Garcia‐Ramallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - María Collantes
- RADIOMIN Research GroupClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Iván Peñuelas
- RADIOMIN Research GroupClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| | - María‐Jesús Grilló
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - María Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del VallèsSpain
| |
Collapse
|
43
|
An AI-based auxiliary empirical antibiotic therapy model for children with bacterial pneumonia using low-dose chest CT images. Jpn J Radiol 2021; 39:973-983. [PMID: 34101118 PMCID: PMC8490241 DOI: 10.1007/s11604-021-01136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
Purpose To construct an auxiliary empirical antibiotic therapy (EAT) multi-class classification model for children with bacterial pneumonia using radiomics features based on artificial intelligence and low-dose chest CT images. Materials and methods Data were retrospectively collected from children with pathogen-confirmed bacterial pneumonia including Gram-positive bacterial pneumonia (122/389, 31%), Gram-negative bacterial pneumonia (159/389, 41%) and atypical bacterial pneumonia (108/389, 28%) from January 1 to June 30, 2019. Nine machine-learning models were separately evaluated based on radiomics features extracted from CT images; three optimal submodels were constructed and integrated to form a multi-class classification model. Results We selected five features to develop three radiomics submodels: a Gram-positive model, a Gram-negative model and an atypical model. The comprehensive radiomics model using support vector machine method yielded an average area under the curve (AUC) of 0.75 [95% confidence interval (CI), 0.65–0.83] and accuracy (ACC) of 0.58 [sensitivity (SEN), 0.57; specificity (SPE), 0.78] in the training set, and an average AUC of 0.73 (95% CI 0.61–0.79) and ACC of 0.54 (SEN, 0.52; SPE, 0.75) in the test set. Conclusion This auxiliary EAT radiomics multi-class classification model was deserved to be researched in differential diagnosing bacterial pneumonias in children.
Collapse
|
44
|
Wang J, Li Y, Pan L, Li J, Yu Y, Liu B, Zubair M, Wei Y, Pillay B, Olaniran AO, Chiliza TE, Shao G, Feng Z, Xiong Q. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) moonlights as an adhesin in Mycoplasma hyorhinis adhesion to epithelial cells as well as a plasminogen receptor mediating extracellular matrix degradation. Vet Res 2021; 52:80. [PMID: 34082810 PMCID: PMC8173509 DOI: 10.1186/s13567-021-00952-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma hyorhinis infects pigs causing polyserositis and polyarthritis, and has also been reported in a variety of human tumor tissues. The occurrence of disease is often linked with the systemic invasion of the pathogen. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), one of the key enzymes of glycolysis, was reported as a surface multifunctional molecule in several bacteria. Here, we investigated whether GAPDH could manifest binary functions; as an adhesin to promote colonization as well as a plasminogen receptor functioning in extracellular matrix (ECM) degradation to promote systemic invasion. The surface localization of GAPDH was observed in M. hyorhinis with flow cytometry and colony blot analysis. Recombinant GAPDH (rGAPDH) was found to be able to bind porcine-derived PK-15 and human-derived NCI-H292 cells. The incubation with anti-GAPDH antibody significantly decreased the adherence of M. hyorhinis to both cell lines. To investigate its function in recruiting plasminogen, firstly, the interaction between rGAPDH and plasminogen was demonstrated by ELISA and Far-Western blot assay. The activation of the rGAPDH-bound plasminogen into plasmin was proved by using a chromogenic substrate, and furtherly confirmed to degrade extracellular matrix by using a reconstituted ECM. Finally, the ability of rGAPDH to bind different ECM components was demonstrated, including fibronectin, laminin, collagen type IV and vitronectin. Collectively, our data imply GAPDH as an important adhesion factor of M. hyrohinis and a receptor for hijacking host plasminogen to degrade ECM. The multifunction of GAPDH to bind both plasminogen and ECM components is believed to increase the targeting of proteolysis and facilitate the dissemination of M. hyorhinis.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yao Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Longji Pan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Muhammad Zubair
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bala Pillay
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | | | - Thamsanqa E Chiliza
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Guoqing Shao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China. .,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa. .,School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
45
|
Gómez Rufo D, García Sánchez E, García Sánchez JE, García Moro M. [Clinical implications of the genus Mycoplasma]. REVISTA ESPANOLA DE QUIMIOTERAPIA 2021; 34:169-184. [PMID: 33735544 PMCID: PMC8179937 DOI: 10.37201/req/014.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dentro del género Mycoplasma, las especies que tradicionalmente se han relacionado con cuadros infecciosos han sido principalmente M. pneumoniae, M. genitalium, M. hominis o U. urealyticum. Sin embargo, existen otras muchas que están implicadas y, que muchas veces, son desconocidas para los profesionales sanitarios. El objetivo de esta revisión es identificar todas las especies del género Mycoplasma que se han aislado en el hombre y determinar su participación en la patología infecciosa humana.
Collapse
Affiliation(s)
| | - E García Sánchez
- Enrique García Sánchez, Departamento de Ciencias Biomédicas. Facultad de Medicina. Universidad de Salamanca. Spain.
| | | | | |
Collapse
|
46
|
Meng F, Chen P, Guo X, Li X, Wu Y, Liu W, Jiang F, Liu H, Wang L. Correlations between Serum P2X7, Vitamin A, 25-hydroxy Vitamin D, and Mycoplasma Pneumoniae Pneumonia. J Clin Lab Anal 2021; 35:e23760. [PMID: 33724522 PMCID: PMC8128307 DOI: 10.1002/jcla.23760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Identifying new molecular diagnostic markers for Mycoplasma Pneumoniae Pneumonia (MPP) has always been an essential topic since MPP cases have increased every year, especially among children. Here, we examined the correlation between serum level of Purinergic receptor P2X7, vitamin A, and 25‐hydroxy vitamin D (25(OH)D) and the severity of MPP, aiming to identify molecules that have the potential to become diagnostic markers. Methods This study was conducted on 186 cases aged 1–14 (136 MPP and 50 non‐MPP patients). Serum levels of Purinergic receptor P2X7, vitamin A, 25(OH)D, and multiple inflammatory and immune factors were measured, compared, and tested for statistical significance. Results Serum P2X7, tumor necrosis factor‐α (TNF‐α), and interleukin‐1β (IL‐1β) levels were significantly increased in severe MPP patients, while serum vitamin A, 25(OH)D, IgA, and IgG levels were significantly decreased. Conclusion Our results demonstrated a positive correlation between serum P2X7 level and the severity of MPP, and negative correlations between serum levels of vitamin A and 25(OH)D and the severity of MPP, suggesting that high serum levels of P2X7 and low serum levels of vitamin A and 25(OH)D may indicate relatively severer MPP.
Collapse
Affiliation(s)
- Fanjun Meng
- Medical Laboratory, Hospital of Cardiovascular and Cerebrovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Chen
- Medical Experiment Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaolong Guo
- Medical Experiment Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoru Li
- Department of Laboratory Medicine, Shizuishan Second People's Hospital, Shizuishan, China
| | - Yuexuan Wu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenen Liu
- Xiangya Hospital of Central South University, Hunan, China
| | - Feng Jiang
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Huan Liu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lixin Wang
- Medical Experiment Center, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
47
|
Liu F, Liu T, Sun M, Zhou J, Xue F, Chen S, Chen J, Zhang L. Maxing Shigan Decoction Mitigates Mycoplasma pneumonia-Induced Pyroptosis in A549 Cells via the NLRP3 Inflammasome. Infect Drug Resist 2021; 14:859-867. [PMID: 33688221 PMCID: PMC7937399 DOI: 10.2147/idr.s292413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mycoplasma pneumoniae is a predominant cause of community-acquired respiratory infections. We recently discovered the clinical efficacy of Maxing shigan decoction (MXSG) in M. pneumoniae infection and designed a study to explore the mechanism of action. Methods Serum IL-1β, IL-18, and TNF-α, and transcript expression of the NLR Family, Pyrin Domain Containing Protein 3 (NLRP3) were measured in the peripheral blood mononuclear cells (PBMCs) of 30 children with M. pneumoniae infection and 30 healthy donors. An in vitro model of M. pneumoniae infection in A549 cell culture was used to explore the curative effects and mechanisms of MXSG. Pyroptosis was measured by flow cytometry with activated caspase-1 and propidium iodide staining. IL-1β, IL-18, and TNF-α, and NLRP3 transcript expression were measured by qRT-PCR. Protein expression of NLRP3, Caspase-1, pro-caspase-1, IL-1β, pro-IL-1β, and GSDMD-N was determined by Western blotting. Experimental confirmation was performed in NLRP3-overexpressing A549 cells and in the presence of an NLRP3 inhibitor, INF39. Results M. pneumoniae infection-induced IL-1β, IL-18, TNF-α, and mRNA expression of NLRP3 in PBMCs and promoted pyroptosis in A549 cells. It also induced IL-1β, IL-18, TNF-α, and up-regulated NLRP3, ro-IL-1β, Caspase-1, Pro-Caspase-1, and GSDMD-N in culture. Similar to the NLRP3 inhibitor INF39, MXSG (0.1, 0.2, and 0.4 mg/mL) suppressed pyroptosis induced by M. pneumoniae infection and decreased IL-1β (P < 0.001), IL-18, TNF-α in culture. MXSG down-regulated NLRP3, pro-IL-1β, Caspase-1, pro-Caspase-1, and GSDMD-N in infected cultures and mitigated NLRP3 overexpression-induced pyroptosis. Conclusion MXSG mitigates M. pneumoniae-induced pyroptosis in A549 cells via the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, Pudong New Area People's Hospital, Shanghai, 201200, People's Republic of China.,Department of Pediatrics, East Hospital Affiliated to Tongji University, Shanghai, 200123, People's Republic of China
| | - TianTian Liu
- Department of Pediatrics, East Hospital Affiliated to Tongji University, Shanghai, 200123, People's Republic of China
| | - Min Sun
- Department of Pediatrics, East Hospital Affiliated to Tongji University, Shanghai, 200123, People's Republic of China
| | - JingMin Zhou
- Department of Pediatrics, East Hospital Affiliated to Tongji University, Shanghai, 200123, People's Republic of China
| | - Feng Xue
- Department of Pediatrics, East Hospital Affiliated to Tongji University, Shanghai, 200123, People's Republic of China
| | - ShuangHui Chen
- Department of Pediatrics, East Hospital Affiliated to Tongji University, Shanghai, 200123, People's Republic of China
| | - Jia Chen
- Department of Traditional Chinese Medicine, Shanghai Children's Medical Center, Shanghai, 200127, People's Republic of China
| | - Lei Zhang
- Department of Pediatrics, Pudong New Area People's Hospital, Shanghai, 201200, People's Republic of China
| |
Collapse
|
48
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|
49
|
Li J, Liu L, He L, Meng F, Zhang J, Zhao F. First report of macrolide-resistant and -susceptible Mycoplasma pneumoniae clinical strains isolated from a single case. J Glob Antimicrob Resist 2021; 24:228-232. [PMID: 33460841 DOI: 10.1016/j.jgar.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/28/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the biological characteristics and effect of antibiotic treatment for different Mycoplasma pneumoniae isolates co-infecting the same patient. METHODS Two throat swab specimens from a single patient, on the day of admission (Sp01) and discharge (Sp13), were liquid cultured and subcultured on agar medium to obtain M. pneumoniae monoclones. The 23S rRNA gene of 50 monoclones from specimens Sp01 and Sp13 were analysed. Real-time PCR assay was used for detection of mutations and genotyping. Two typical monoclones were isolated for antimicrobial susceptibility testing. RESULTS Genotype 1 monoclones accounted for 70.8% (34/48) in Sp01 and 95.7% (44/46) in Sp13. All genotype 1 monoclones were of the 4-5-7-2 multilocus variable-number tandem-repeat analysis (MLVA) type, while all genotype 2 monoclones were 3-5-6-2 MLVA type. The genotype 1 monoclone, which harboured the A2063G mutation in 23S rRNA gene, was resistant to erythromycin and azithromycin in vitro, whilst genotype 2, which did not carry the mutation, was susceptible to macrolides. The proportion of macrolide-resistant M. pneumoniae monoclones in the specimen cultures collected rose from 70.8% to 95.7% at the time of discharge. CONCLUSION This is the first report on the isolation of macrolide-resistant and -susceptible strains of M. pneumoniae from the same patient. After treatment, the proportion of macrolide-resistant M. pneumoniae increased, but the patient still carried viable macrolide-susceptible strains, meaning that the macrolide-susceptible strains did not disappear completely.
Collapse
Affiliation(s)
- Jing Li
- Office of Laboratory Management, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Liyong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Lihua He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Fanliang Meng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China.
| |
Collapse
|
50
|
Kong K, Ding Y, Wu B, Lu M, Gu H. Clinical Predictors of Wheezing Among Children Infected With Mycoplasma Pneumoniae. Front Pediatr 2021; 9:693658. [PMID: 34631611 PMCID: PMC8492963 DOI: 10.3389/fped.2021.693658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mycoplasma pneumoniae (MP) not only was a common pathogen of respiratory tract infections, but also could trigger the exacerbation of asthmatic symptoms in children with or without asthma. Objective: This study aimed to identify possible risk factors associated with wheezing among children diagnosed with MP infection. Methods: A retrospective analysis of medical records of children aged 28 days to 18 years old who visited the Shanghai Children's Hospital between January 2019 and January 2020 was carried out, and all children were then classified into three groups: two wheezing groups (with or without MP infection) and a non-wheezing group with MP infection. Information including patient's demographics, clinical features, laboratory data, and radiography findings was extracted from the electronic medical record system. Chest radiographs were reviewed independently by two board-certified, blinded pediatric radiologists. Results: A total of 1,512 patients were included in our study, and 21.9% of them belonged to the wheezing group without MP infection. Among 1,181 patients with MP infection, 295 people (25.0%) suffered from wheezing, and males accounted for 61%. Through the multivariable logistic regression analyses, we found that six variables were positively associated with wheezing attacks in children with MP infection: male gender (likelihood ratio [LR] = 2.124, 95% confidence interval [CI]: 1.478-3.053), history of allergy (LR= 3.301, 95% CI: 2.206-4.941), history of wheezing (LR = 7.808, 95% CI: 5.276-11.557), autumn in reference to summer (LR = 2.414, 95% CI: 1.500-3.885), non-end-point infiltration in reference to consolidation or pleural effusion (LR = 1.982, 95% CI: 1.348-2.914), and infiltration scope (LR = 1.773, 95% CI: 1.293-2.432). However, the model showed that the probability of wheezing after MP infection decreased as age increased (LR = 0.257, 95% CI: 0.196-0.337). Moreover, the area under the curve (AUC) of the regression model was as high as 0.901 (0.847-0.955). Conclusion: The model integrated with factors including gender, age, season, radiological patterns, infiltration scope, and history of allergy performed well in predicting wheezing attack after MP infection in children.
Collapse
Affiliation(s)
- Kaimeng Kong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Beirong Wu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Lu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haoxiang Gu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|