1
|
Angiari S, Carlucci T, Budui SL, Bach SD, Dusi S, Walter J, Ellmeier E, Schnabl A, Stracke A, Bordag N, Tafrali C, Demjaha R, Khalil M, Angelini G, Terrabuio E, Pietronigro EC, Zenaro E, Laudanna C, Rossi B, Constantin G. Coenzyme A fueling with pantethine limits autoreactive T cell pathogenicity in experimental neuroinflammation. J Neuroinflammation 2024; 21:287. [PMID: 39501296 PMCID: PMC11536535 DOI: 10.1186/s12974-024-03270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/22/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Immune cell metabolism governs the outcome of immune responses and contributes to the development of autoimmunity by controlling lymphocyte pathogenic potential. In this study, we evaluated the metabolic profile of myelin-specific murine encephalitogenic T cells, to identify novel therapeutic targets for autoimmune neuroinflammation. METHODS We performed metabolomics analysis on actively-proliferating encephalitogenic T cells to study their overall metabolic profile in comparison to resting T cells. Metabolomics, phosphoproteomics, in vitro functional assays, and in vivo studies in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), were then implemented to evaluate the effect of metabolic targeting on autoreactive T cell pathogenicity. Finally, we confirmed the translational potential of our targeting approach in human pro-inflammatory T helper cell subsets and in T cells from MS patients. RESULTS We found that autoreactive encephalitogenic T cells display an altered coenzyme A (CoA) synthesis pathway, compared to resting T cells. CoA fueling with the CoA precursor pantethine (PTTH) affected essential immune-related processes of myelin-specific T cells, such as cell proliferation, cytokine production, and cell adhesion, both in vitro and in vivo. Accordingly, pre-clinical treatment with PTTH before disease onset inhibited the development of EAE by limiting T cell pro-inflammatory potential in vivo. Importantly, PTTH also significantly ameliorated the disease course when administered after disease onset in a therapeutic setting. Finally, PTTH reduced pro-inflammatory cytokine production by human T helper 1 (Th1) and Th17 cells and by T cells from MS patients, confirming its translational potential. CONCLUSION Our data demonstrate that CoA fueling with PTTH in pro-inflammatory and autoreactive T cells may represent a novel therapeutic approach for the treatment of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Stefano Angiari
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| | - Tommaso Carlucci
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Simona L Budui
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Simone D Bach
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Silvia Dusi
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Julia Walter
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Elena Ellmeier
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Alyssa Schnabl
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Anika Stracke
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Natalie Bordag
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Cansu Tafrali
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Rina Demjaha
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Eleonora Terrabuio
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Enrica C Pietronigro
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Carlo Laudanna
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
- The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
2
|
Suthya AR, Wong CHY, Bourne JH. Diving head-first into brain intravital microscopy. Front Immunol 2024; 15:1372996. [PMID: 38817606 PMCID: PMC11137164 DOI: 10.3389/fimmu.2024.1372996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Tissue microenvironments during physiology and pathology are highly complex, meaning dynamic cellular activities and their interactions cannot be accurately modelled ex vivo or in vitro. In particular, tissue-specific resident cells which may function and behave differently after isolation and the heterogenous vascular beds in various organs highlight the importance of observing such processes in real-time in vivo. This challenge gave rise to intravital microscopy (IVM), which was discovered over two centuries ago. From the very early techniques of low-optical resolution brightfield microscopy, limited to transparent tissues, IVM techniques have significantly evolved in recent years. Combined with improved animal surgical preparations, modern IVM technologies have achieved significantly higher speed of image acquisition and enhanced image resolution which allow for the visualisation of biological activities within a wider variety of tissue beds. These advancements have dramatically expanded our understanding in cell migration and function, especially in organs which are not easily accessible, such as the brain. In this review, we will discuss the application of rodent IVM in neurobiology in health and disease. In particular, we will outline the capability and limitations of emerging technologies, including photoacoustic, two- and three-photon imaging for brain IVM. In addition, we will discuss the use of these technologies in the context of neuroinflammation.
Collapse
|
3
|
Vitarelli da Silva T, Bernardes D, Oliveira-Lima OC, Fernandes Pinto B, Limborço Filho M, Fraga Faraco CC, Juliano MA, Esteves Arantes RM, A Moreira F, Carvalho-Tavares J. Cannabidiol Attenuates In Vivo Leukocyte Recruitment to the Spinal Cord Microvasculature at Peak Disease of Experimental Autoimmune Encephalomyelitis. Cannabis Cannabinoid Res 2024; 9:537-546. [PMID: 36745386 DOI: 10.1089/can.2022.0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation leading to demyelination. The associated symptoms lead to a devastating decrease in quality of life. The cannabinoids and their derivatives have emerged as an encouraging alternative due to their management of symptom in MS. Objective: The aim of the study was to investigate the mechanism of action of cannabidiol (CBD), a nonpsychoactive cannabinoid, on molecular and cellular events associated with leukocyte recruitment induced by experimental autoimmune encephalomyelitis (EAE). Materials and Methods: C57BL/6 female mice were randomly assigned to the four experimental groups: C (control group), CBD (cannabidiol-treated group, 5 mg/kg i.p.; 14 days), EAE (experimental autoimmune encephalomyelitis-induced group), and EAE+CBD (experimental autoimmune encephalomyelitis-induced plus cannabidiol-treated group). Results: The results indicated that 5 mg/kg of CBD injected intraperitoneally between the 1st and 14th days of EAE could reduce the leukocyte rolling and adhesion into the spinal cord microvasculature as well cellular tissue infiltration. These results were supported by a decreased mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord. Conclusion: Purified CBD reduces in vivo VCAM and ICAM-mediated leukocyte recruitment to the spinal cord microvasculature at EAE peak disease.
Collapse
Affiliation(s)
- Thiago Vitarelli da Silva
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Bernardes
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | - Onésia Cristina Oliveira-Lima
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Neuroquímica e Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bárbara Fernandes Pinto
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Limborço Filho
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cristina Fraga Faraco
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida Juliano
- Enzimas proteolíticas e Síntese de peptídeos, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Esteves Arantes
- Neuroimunopatologia Experimental, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Carvalho-Tavares
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Educação e Comunicação em Ciências da Vida e da Saúde (NEDUCOM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Kallal N, Hugues S, Garnier L. Regulation of autoimmune-mediated neuroinflammation by endothelial cells. Eur J Immunol 2024; 54:e2350482. [PMID: 38335316 DOI: 10.1002/eji.202350482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The CNS has traditionally been considered an immune-privileged organ, but recent studies have identified a plethora of immune cells in the choroid plexus, meninges, perivascular spaces, and cribriform plate. Although those immune cells are crucial for the maintenance of CNS homeostasis and for neural protection against infections, they can lead to neuroinflammation in some circumstances. The blood and the lymphatic vasculatures exhibit distinct structural and molecular features depending on their location in the CNS, greatly influencing the compartmentalization and the nature of CNS immune responses. In this review, we discuss how endothelial cells regulate the migration and the functions of T cells in the CNS both at steady-state and in murine models of neuroinflammation, with a special focus on the anatomical, cellular, and molecular mechanisms implicated in EAE.
Collapse
Affiliation(s)
- Neil Kallal
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Laure Garnier
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
5
|
Min H, O’Neil SM, Xu L, Moseman EA, Kurtzberg J, Filiano AJ. Mural cells interact with macrophages in the dura mater to regulate CNS immune surveillance. J Exp Med 2024; 221:e20230326. [PMID: 38193859 PMCID: PMC10783178 DOI: 10.1084/jem.20230326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
The central nervous system (CNS) tightly regulates access of circulating immune cells. Immunosurveillance is therefore managed in the meninges at the borders of the CNS. Here, we demonstrated that mural cells, which include pericytes and smooth muscle cells, decreased coverage around blood vessels in the dura, the outermost layer of the meninges, and upregulated gene pathways involved in leukocyte migration in presymptomatic experimental autoimmune encephalomyelitis (EAE). Partially depleting mural cells promoted the trafficking of CNS antigen-specific T cells to the dura in a process that depended on resident antigen-presenting cells, thereby increasing susceptibility to passive EAE. Mechanistically, mural cells physically contacted macrophages in the dura and transferred cytoplasmic components, including processing bodies (RNA granules shown to reprogram transcriptomes), which were critical to suppress antigen-dependent T helper (TH) cell activation and TH17 differentiation. Our study revealed a mechanism by which mural cell-macrophage interactions regulate the trafficking of CNS antigen-specific T cells to the dura.
Collapse
Affiliation(s)
- Hyunjung Min
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Shane M. O’Neil
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Anthony J. Filiano
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
6
|
Lyck R, Nishihara H, Aydin S, Soldati S, Engelhardt B. Modeling Brain Vasculature Immune Interactions In Vitro. Cold Spring Harb Perspect Med 2023; 13:a041185. [PMID: 36617644 PMCID: PMC10513158 DOI: 10.1101/cshperspect.a041185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endothelial blood-brain barrier (BBB) protects central nervous system (CNS) neurons from the changeable milieu of the bloodstream by strictly controlling the movement of molecules and immune cells between the blood and the CNS. Immune cell migration across the vascular wall is a multistep process regulated by the sequential interaction of different signaling and adhesion molecules on the endothelium and the immune cells. Accounting for its unique barrier properties and trafficking molecule expression profile, particular adaptions in immune cell migration across the BBB have been observed. Thus, in vitro models of the BBB are desirable to explore the precise cellular and molecular mechanisms involved in immune cell trafficking across the BBB. The challenge to overcome is that barrier properties of brain microvascular endothelial cells are not intrinsic and readily lost in culture. With a focus on human in vitro BBB models, we here discuss the suitability of available in vitro models for the BBB for exploring the specific mechanisms involved in immune cell trafficking across the BBB.
Collapse
Affiliation(s)
- Ruth Lyck
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| | - Sidar Aydin
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, CH 3012 Bern, Switzerland
| |
Collapse
|
7
|
Modvig S, Jeyakumar J, Marquart HV, Christensen C. Integrins and the Metastasis-like Dissemination of Acute Lymphoblastic Leukemia to the Central Nervous System. Cancers (Basel) 2023; 15:cancers15092504. [PMID: 37173970 PMCID: PMC10177281 DOI: 10.3390/cancers15092504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) disseminates with high prevalence to the central nervous system (CNS) in a process resembling aspects of the CNS surveillance of normal immune cells as well as aspects of brain metastasis from solid cancers. Importantly, inside the CNS, the ALL blasts are typically confined within the cerebrospinal fluid (CSF)-filled cavities of the subarachnoid space, which they use as a sanctuary protected from both chemotherapy and immune cells. At present, high cumulative doses of intrathecal chemotherapy are administered to patients, but this is associated with neurotoxicity and CNS relapse still occurs. Thus, it is imperative to identify markers and novel therapy targets specific to CNS ALL. Integrins represent a family of adhesion molecules involved in cell-cell and cell-matrix interactions, implicated in the adhesion and migration of metastatic cancer cells, normal immune cells, and leukemic blasts. The ability of integrins to also facilitate cell-adhesion mediated drug resistance, combined with recent discoveries of integrin-dependent routes of leukemic cells into the CNS, have sparked a renewed interest in integrins as markers and therapeutic targets in CNS leukemia. Here, we review the roles of integrins in CNS surveillance by normal lymphocytes, dissemination to the CNS by ALL cells, and brain metastasis from solid cancers. Furthermore, we discuss whether ALL dissemination to the CNS abides by known hallmarks of metastasis, and the potential roles of integrins in this context.
Collapse
Affiliation(s)
- Signe Modvig
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jenani Jeyakumar
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Claus Christensen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Tylawsky DE, Kiguchi H, Vaynshteyn J, Gerwin J, Shah J, Islam T, Boyer JA, Boué DR, Snuderl M, Greenblatt MB, Shamay Y, Raju GP, Heller DA. P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis. NATURE MATERIALS 2023; 22:391-399. [PMID: 36864161 PMCID: PMC9981459 DOI: 10.1038/s41563-023-01481-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/18/2023] [Indexed: 05/11/2023]
Abstract
Medulloblastoma is the most common malignant paediatric brain tumour, with ~30% mediated by Sonic hedgehog signalling. Vismodegib-mediated inhibition of the Sonic hedgehog effector Smoothened inhibits tumour growth but causes growth plate fusion at effective doses. Here, we report a nanotherapeutic approach targeting endothelial tumour vasculature to enhance blood-brain barrier crossing. We use fucoidan-based nanocarriers targeting endothelial P-selectin to induce caveolin-1-dependent transcytosis and thus nanocarrier transport into the brain tumour microenvironment in a selective and active manner, the efficiency of which is increased by radiation treatment. In a Sonic hedgehog medulloblastoma animal model, fucoidan-based nanoparticles encapsulating vismodegib exhibit a striking efficacy and marked reduced bone toxicity and drug exposure to healthy brain tissue. Overall, these findings demonstrate a potent strategy for targeted intracranial pharmacodelivery that overcomes the restrictive blood-brain barrier to achieve enhanced tumour-selective penetration and has therapeutic implications for diseases within the central nervous system.
Collapse
Grants
- T32 CA062948 NCI NIH HHS
- P30 CA008748 NCI NIH HHS
- R01 NS116353 NINDS NIH HHS
- R01 CA215719 NCI NIH HHS
- R01 NS122987 NINDS NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- Unravel Pediatric Cancer, Emerson Collective.
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- Cancer Center Support Grant (P30-CA008748), American Cancer Society Research Scholar Grant (GC230452),Unravel Pediatric Cancer, Emerson Collective, the Pershing Square Sohn Cancer Research Alliance, The Hartwell Foundation, the Expect Miracles Foundation - Financial Services Against Cancer, MSK’s Cycle for Survival’s Equinox Innovation Award in Rare Cancers, the Louis and Rachel Rudin Foundation, the Alan and Sandra Gerry Metastasis Research Initiative, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center, the Imaging & Radiation Sciences Program, the Center for Molecular Imaging and Nanotechnology of Memorial Sloan Kettering Cancer Center.
Collapse
Affiliation(s)
- Daniel E Tylawsky
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Hiroto Kiguchi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jake Vaynshteyn
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Gerwin
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janki Shah
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taseen Islam
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob A Boyer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel R Boué
- Departments of Pathology & Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Matija Snuderl
- Division of Neuropathology, Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, & Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - G Praveen Raju
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
9
|
Rossi B, Dusi S, Angelini G, Bani A, Lopez N, Della Bianca V, Pietronigro EC, Zenaro E, Zocco C, Constantin G. Alpha4 beta7 integrin controls Th17 cell trafficking in the spinal cord leptomeninges during experimental autoimmune encephalomyelitis. Front Immunol 2023; 14:1071553. [PMID: 37143680 PMCID: PMC10151683 DOI: 10.3389/fimmu.2023.1071553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Th1 and Th17 cell migration into the central nervous system (CNS) is a fundamental process in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Particularly, leptomeningeal vessels of the subarachnoid space (SAS) constitute a central route for T cell entry into the CNS during EAE. Once migrated into the SAS, T cells show an active motility behavior, which is a prerequisite for cell-cell communication, in situ reactivation and neuroinflammation. However, the molecular mechanisms selectively controlling Th1 and Th17 cell trafficking in the inflamed leptomeninges are not well understood. By using epifluorescence intravital microscopy, we obtained results showing that myelin-specific Th1 and Th17 cells have different intravascular adhesion capacity depending on the disease phase, with Th17 cells being more adhesive at disease peak. Inhibition of αLβ2 integrin selectively blocked Th1 cell adhesion, but had no effect on Th17 rolling and arrest capacity during all disease phases, suggesting that distinct adhesion mechanisms control the migration of key T cell populations involved in EAE induction. Blockade of α4 integrins affected myelin-specific Th1 cell rolling and arrest, but only selectively altered intravascular arrest of Th17 cells. Notably, selective α4β7 integrin blockade inhibited Th17 cell arrest without interfering with intravascular Th1 cell adhesion, suggesting that α4β7 integrin is predominantly involved in Th17 cell migration into the inflamed leptomeninges in EAE mice. Two-photon microscopy experiments showed that blockade of α4 integrin chain or α4β7 integrin selectively inhibited the locomotion of extravasated antigen-specific Th17 cells in the SAS, but had no effect on Th1 cell intratissue dynamics, further pointing to α4β7 integrin as key molecule in Th17 cell trafficking during EAE development. Finally, therapeutic inhibition of α4β7 integrin at disease onset by intrathecal injection of a blocking antibody attenuated clinical severity and reduced neuroinflammation, further demonstrating a crucial role for α4β7 integrin in driving Th17 cell-mediated disease pathogenesis. Altogether, our data suggest that a better knowledge of the molecular mechanisms controlling myelin-specific Th1 and Th17 cell trafficking during EAE delevopment may help to identify new therapeutic strategies for CNS inflammatory and demyelinating diseases.
Collapse
Affiliation(s)
- Barbara Rossi
- Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Barbara Rossi, ; Gabriela Constantin,
| | - Silvia Dusi
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Nicola Lopez
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Elena Zenaro
- Department of Medicine, University of Verona, Verona, Italy
| | - Carlotta Zocco
- Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Verona, Italy
- The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
- *Correspondence: Barbara Rossi, ; Gabriela Constantin,
| |
Collapse
|
10
|
Angelini G, Bani A, Constantin G, Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci 2023; 17:1101379. [PMID: 36874213 PMCID: PMC9975172 DOI: 10.3389/fncel.2023.1101379] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) represent two complex structures protecting the central nervous system (CNS) against potentially harmful agents and circulating immune cells. The immunosurveillance of the CNS is governed by immune cells that constantly patrol the BCSFB, whereas during neuroinflammatory disorders, both BBB and BCSFB undergo morphological and functional alterations, promoting leukocyte intravascular adhesion and transmigration from the blood circulation into the CNS. Multiple sclerosis (MS) is the prototype of neuroinflammatory disorders in which peripheral T helper (Th) lymphocytes, particularly Th1 and Th17 cells, infiltrate the CNS and contribute to demyelination and neurodegeneration. Th1 and Th17 cells are considered key players in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis. They can actively interact with CNS borders by complex adhesion mechanisms and secretion of a variety of molecules contributing to barrier dysfunction. In this review, we describe the molecular basis involved in the interactions between Th cells and CNS barriers and discuss the emerging roles of dura mater and arachnoid layer as neuroimmune interfaces contributing to the development of CNS inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Alessandro Bani
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Mills WA, Coburn MA, Eyo UB. The emergence of the calvarial hematopoietic niche in health and disease. Immunol Rev 2022; 311:26-38. [PMID: 35880587 PMCID: PMC9489662 DOI: 10.1111/imr.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.
Collapse
Affiliation(s)
- William A. Mills
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Morgan A Coburn
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ukpong B. Eyo
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
12
|
Santos-Lima B, Pietronigro EC, Terrabuio E, Zenaro E, Constantin G. The role of neutrophils in the dysfunction of central nervous system barriers. Front Aging Neurosci 2022; 14:965169. [PMID: 36034148 PMCID: PMC9404376 DOI: 10.3389/fnagi.2022.965169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders.
Collapse
|
13
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Benkhoucha M, Tran NL, Breville G, Senoner I, Bradfield PF, Papayannopoulou T, Merkler D, Korn T, Lalive PH. CD4 +c-Met +Itgα4 + T cell subset promotes murine neuroinflammation. J Neuroinflammation 2022; 19:103. [PMID: 35488271 PMCID: PMC9052663 DOI: 10.1186/s12974-022-02461-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Objective c-Met, a tyrosine kinase receptor, is the unique receptor for hepatocyte growth factor (HGF). The HGF/c-Met axis is reported to modulate cell migration, maturation, cytokine production, and antigen presentation. Here, we report that CD4+c-Met+ T cells are detected at increased levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Methods c-Met expression by CD4+ T cells was analyzed mostly by flow cytometry and by immunohistochemistry from mice and human PBMCs. The in vivo role of CD4+c-Met+ T cells was assessed in EAE. Results CD4+c-Met+ T cells found in the CNS during EAE peak disease are characterized by a pro-inflammatory phenotype skewed towards a Th1 and Th17 polarization, with enhanced adhesion and transmigration capacities correlating with increased expression of integrin α4 (Itgα4). The adoptive transfer of Itgα4-expressing CD4+Vα3.2+c-Met+ T cells induces increased disease severity compared to CD4+Vα3.2+c-Met− T cells. Finally, CD4+c-Met+ T cells are detected in the brain of MS patients, as well as in the blood with a higher level of Itgα4. These results highlight c-Met as an immune marker of highly pathogenic pro-inflammatory and pro-migratory CD4+ T lymphocytes associated with neuroinflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02461-7.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ngoc Lan Tran
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gautier Breville
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul F Bradfield
- MesenFlow Technologies SARL, Chemin des Aulx 14, Geneva, Switzerland
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Krolak T, Chan KY, Kaplan L, Huang Q, Wu J, Zheng Q, Kozareva V, Beddow T, Tobey IG, Pacouret S, Chen AT, Chan YA, Ryvkin D, Gu C, Deverman BE. A High-Efficiency AAV for Endothelial Cell Transduction Throughout the Central Nervous System. NATURE CARDIOVASCULAR RESEARCH 2022; 1:389-400. [PMID: 35571675 PMCID: PMC9103166 DOI: 10.1038/s44161-022-00046-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/08/2022] [Indexed: 01/08/2023]
Abstract
Endothelial cells have a crucial role in nervous system function, and mounting evidence points to endothelial impairment as a major contributor to a wide range of neurological diseases. However, tools to genetically interrogate these cells in vivo remain limited. Here, we describe AAV-BI30, a capsid that specifically and efficiently transduces endothelial cells throughout the central nervous system. At relatively low systemic doses, this vector transduces the majority of arterial, capillary, and venous endothelial cells in the brain, retina, and spinal cord vasculature of adult C57BL/6 mice. Furthermore, we show that AAV-BI30 robustly transduces endothelial cells in multiple mouse strains and rats in vivo and human brain microvascular endothelial cells in vitro. Finally, we demonstrate AAV-BI30's capacity to achieve efficient and endothelial-specific Cre-mediated gene manipulation in the central nervous system. This combination of attributes makes AAV-BI30 uniquely well-suited to address outstanding research questions in neurovascular biology and aid the development of therapeutics to remediate endothelial dysfunction in disease.
Collapse
Affiliation(s)
- Trevor Krolak
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luke Kaplan
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Qin Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jason Wu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qingxia Zheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Velina Kozareva
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas Beddow
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isabelle G. Tobey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simon Pacouret
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Albert T. Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yujia A. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Ryvkin
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Chenghua Gu
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL. Therapeutic Strategies for Immune Transformation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S201-S222. [PMID: 35871362 PMCID: PMC9535567 DOI: 10.3233/jpd-223278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Dysregulation of innate and adaptive immunity can lead to alpha-synuclein (α-syn) misfolding, aggregation, and post-translational modifications in Parkinson's disease (PD). This process is driven by neuroinflammation and oxidative stress, which can contribute to the release of neurotoxic oligomers that facilitate dopaminergic neurodegeneration. Strategies that promote vaccines and antibodies target the clearance of misfolded, modified α-syn, while gene therapy approaches propose to deliver intracellular single chain nanobodies to mitigate α-syn misfolding, or to deliver neurotrophic factors that support neuronal viability in an otherwise neurotoxic environment. Additionally, transformative immune responses provide potential targets for PD therapeutics. Anti-inflammatory drugs represent one strategy that principally affects innate immunity. Considerable research efforts have focused on transforming the balance of pro-inflammatory effector T cells (Teffs) to favor regulatory T cell (Treg) activity, which aims to attenuate neuroinflammation and support reparative and neurotrophic homeostasis. This approach serves to control innate microglial neurotoxic activities and may facilitate clearance of α-syn aggregates accordingly. More recently, changes in the intestinal microbiome have been shown to alter the gut-immune-brain axis leading to suppressed leakage of bacterial products that can promote peripheral inflammation and α-syn misfolding. Together, each of the approaches serves to interdict chronic inflammation associated with disordered immunity and neurodegeneration. Herein, we examine research strategies aimed at improving clinical outcomes in PD.
Collapse
Affiliation(s)
- Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
17
|
Wicha P, Das S, Mahakkanukrauh P. Blood-brain barrier dysfunction in ischemic stroke and diabetes: the underlying link, mechanisms and future possible therapeutic targets. Anat Cell Biol 2021; 54:165-177. [PMID: 33658432 PMCID: PMC8225477 DOI: 10.5115/acb.20.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/27/2020] [Accepted: 01/30/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke caused by occlusion of cerebral artery is responsible for the majority of stroke that increases the morbidity and mortality worldwide. Diabetes mellitus (DM) is a crucial risk factor for ischemic stroke. Prolonged DM causes various microvascular and macrovascular changes, and blood-brain barrier (BBB) permeability that facilitates inflammatory response following stroke. In the acute phase following stroke, BBB disruption has been considered the initial step that induces neurological deficit and functional disabilities. Stroke outcomes are significantly worse among DM. In this article, we review stroke with diabetes-induce BBB damage, as well as underlying mechanism and possible therapeutic targets for stroke with diabetes.
Collapse
Affiliation(s)
- Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021; 2021:4581909. [PMID: 33953963 PMCID: PMC8064803 DOI: 10.1155/2021/4581909] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of retinal ganglion cell loss in the pathogenesis of glaucoma is yet to be understood. Mitochondrial damage-associated molecular patterns (DAMPs) resulting from mitochondrial dysfunction have been linked to Leber's hereditary optic neuropathy and autosomal dominant optic atrophy, as well as to brain neurodegenerative diseases. Recent evidence shows that, in conditions where mitochondria are damaged, a sustained inflammatory response and downstream pathological inflammation may ensue. Mitochondrial damage has been linked to the accumulation of age-related mitochondrial DNA mutations and mitochondrial dysfunction, possibly through aberrant reactive oxygen species production and defective mitophagy. The present review focuses on how mitochondrial dysfunction may overwhelm the ability of neurons and glial cells to adequately maintain homeostasis and how mitochondria-derived DAMPs trigger the immune system and induce neurodegeneration.
Collapse
Affiliation(s)
- Joao N. Duarte
- Neuroinflammation Unit, Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G. Common Peripheral Immunity Mechanisms in Multiple Sclerosis and Alzheimer's Disease. Front Immunol 2021; 12:639369. [PMID: 33679799 PMCID: PMC7933037 DOI: 10.3389/fimmu.2021.639369] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are closely related to inflammatory and autoimmune events, suggesting that the dysregulation of the immune system is a key pathological factor. Both multiple sclerosis (MS) and Alzheimer's disease (AD) are characterized by infiltrating immune cells, activated microglia, astrocyte proliferation, and neuronal damage. Moreover, MS and AD share a common pro-inflammatory signature, characterized by peripheral leukocyte activation and transmigration to the central nervous system (CNS). MS and AD are both characterized by the accumulation of activated neutrophils in the blood, leading to progressive impairment of the blood–brain barrier. Having migrated to the CNS during the early phases of MS and AD, neutrophils promote local inflammation that contributes to pathogenesis and clinical progression. The role of circulating T cells in MS is well-established, whereas the contribution of adaptive immunity to AD pathogenesis and progression is a more recent discovery. Even so, blocking the transmigration of T cells to the CNS can benefit both MS and AD patients, suggesting that common adaptive immunity mechanisms play a detrimental role in each disease. There is also growing evidence that regulatory T cells are beneficial during the initial stages of MS and AD, supporting the link between the modulatory immune compartments and these neurodegenerative disorders. The number of resting regulatory T cells declines in both diseases, indicating a common pathogenic mechanism involving the dysregulation of these cells, although their precise role in the control of neuroinflammation remains unclear. The modulation of leukocyte functions can benefit MS patients, so more insight into the role of peripheral immune cells may reveal new targets for pharmacological intervention in other neuroinflammatory and neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Bruno Santos-Lima
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Eleonora Terrabuio
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zenaro
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|
20
|
Quaranta L, Bruttini C, Micheletti E, Konstas AGP, Michelessi M, Oddone F, Katsanos A, Sbardella D, De Angelis G, Riva I. Glaucoma and neuroinflammation: An overview. Surv Ophthalmol 2021; 66:693-713. [PMID: 33582161 DOI: 10.1016/j.survophthal.2021.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is an optic neuropathy characterized by well-defined optic disc morphological changes (i.e., cup enlargement, neuroretinal border thinning, and notching, papillary vessel modifications) consequent to retinal ganglion cell loss, axonal degeneration, and lamina cribrosa remodeling. These modifications tend to be progressive and are the main cause of functional damage in glaucoma. Despite the latest findings about the pathophysiology of the disease, the exact trigger mechanisms and the mechanism of degeneration of retinal ganglion cells and their axons have not been completely elucidated. Neuroinflammation may play a role in both the development and the progression of the disease as a result of its effects on retinal environment and retinal ganglion cells. We summarize the latest findings about neuroinflammation in glaucoma and examine the connection between risk factors, neuroinflammation, and retinal ganglion cell degeneration.
Collapse
Affiliation(s)
- Luciano Quaranta
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.
| | - Carlo Bruttini
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Eleonora Micheletti
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anastasios G P Konstas
- 1st and 3rd University Departments of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Andreas Katsanos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | | | - Giovanni De Angelis
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
21
|
Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol 2020; 4:4/37/eaav0492. [PMID: 31300479 DOI: 10.1126/sciimmunol.aav0492] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
Barriers between circulation and the central nervous system (CNS) play a key role in the development and modulation of CNS immune responses. Structural variations in the vasculature traversing different anatomical regions within the CNS strongly influence where and how CNS immune responses first develop. Here, we provide an overview of cerebrovascular anatomy, focusing on the blood-CNS interface and how anatomical variations influence steady-state immunology in the compartment. We then discuss how CNS vasculature is affected by and influences the development of different pathophysiological states, such as CNS autoimmune disease, cerebrovascular injury, cerebral ischemia, and infection.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Lu J, Lu L, Yu Y, Baranowski J, Claud EC. Maternal administration of probiotics promotes brain development and protects offspring's brain from postnatal inflammatory insults in C57/BL6J mice. Sci Rep 2020; 10:8178. [PMID: 32424168 PMCID: PMC7235088 DOI: 10.1038/s41598-020-65180-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Neonatal morbidities are associated with long term neurological deficits in life and have also been associated with dysbiosis. We tested whether optimizing the neonate's microbiome through maternal probiotic supplementation can improve offspring's neurodevelopmental outcomes. Maternal LB supplementation, carried out by giving Lactobacillus acidophilus and Bifidobacterium infantis (LB) to pregnant C57/BL6J mice daily from E16 to weaning, significantly suppressed postnatal peripheral proinflammatory insult-induced systemic inflammation and normalized compromised blood-brain barrier permeability and tight junction protein expression in the offspring at pre-weaned age. Maternal LB exposure also regulated markers associated with leukocyte transendothelial migration, extracellular matrix injury and neuroinflammation. The suppressed neuroinflammation by maternal LB supplementation was associated with reduced astrocyte/microglia activation and downregulation of the transcriptional regulators CEBPD and IκBα. Furthermore, maternal LB supplementation promoted neuronal and oligodendrocyte progenitor cell development. Our study demonstrates the efficacy of maternal LB supplementation in modulating systemic and central nervous system inflammation as well as promoting neural/oligodendrocyte progenitor development in the offspring. This evidence suggests that maternal probiotic supplementation may be a safe and effective strategy to improve neurological outcomes in the offspring.
Collapse
Affiliation(s)
- Jing Lu
- The University of Chicago, Pritzker School of Medicine, Department of Pediatrics, Chicago, IL, 60637, USA
| | - Lei Lu
- The University of Chicago, Pritzker School of Medicine, Department of Pediatrics, Chicago, IL, 60637, USA
| | - Yueyue Yu
- The University of Chicago, Pritzker School of Medicine, Department of Pediatrics, Chicago, IL, 60637, USA
| | - Jillian Baranowski
- The University of Chicago, Pritzker School of Medicine, Chicago, IL, 60637, USA
| | - Erika C Claud
- The University of Chicago, Pritzker School of Medicine, Department of Pediatrics, Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. VASCULAR BIOLOGY 2020; 2:H1-H18. [PMID: 32923970 PMCID: PMC7439848 DOI: 10.1530/vb-19-0033] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
To maintain the homeostatic environment required for proper function of CNS neurons the endothelial cells of CNS microvessels tightly regulate the movement of ions and molecules between the blood and the CNS. The unique properties of these blood vascular endothelial cells are termed blood-brain barrier (BBB) and extend to regulating immune cell trafficking into the immune privileged CNS during health and disease. In general, extravasation of circulating immune cells is a multi-step process regulated by the sequential interaction of adhesion and signalling molecules between the endothelial cells and the immune cells. Accounting for the unique barrier properties of CNS microvessels, immune cell migration across the BBB is distinct and characterized by several adaptations. Here we describe the mechanisms that regulate immune cell trafficking across the BBB during immune surveillance and neuroinflammation, with a focus on the current state-of-the-art in vitro and in vivo imaging observations.
Collapse
Affiliation(s)
- Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
24
|
Pietronigro E, Zenaro E, Bianca VD, Dusi S, Terrabuio E, Iannoto G, Slanzi A, Ghasemi S, Nagarajan R, Piacentino G, Tosadori G, Rossi B, Constantin G. Blockade of α4 integrins reduces leukocyte-endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer's disease. Sci Rep 2019; 9:12055. [PMID: 31427644 PMCID: PMC6700124 DOI: 10.1038/s41598-019-48538-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline associated with the deposition of amyloid-β (Aβ) plaques, hyperphosphorylation of tau protein, and neuronal loss. Vascular inflammation and leukocyte trafficking may contribute to AD pathogenesis, and a better understanding of these inflammation mechanisms could therefore facilitate the development of new AD therapies. Here we show that T cells extravasate in the proximity of cerebral VCAM-1+ vessels in 3xTg-AD transgenic mice, which develop both Aβ and tau pathologies. The counter-ligand of VCAM-1 - α4β1 integrin, also known as very late antigen-4 (VLA-4) - was more abundant on circulating CD4+ T cells and was also expressed by a significant proportion of blood CD8+ T cells and neutrophils in AD mice. Intravital microscopy of the brain microcirculation revealed that α4 integrins control leukocyte-endothelial interactions in AD mice. Therapeutic targeting of VLA-4 using antibodies that specifically block α4 integrins improved the memory of 3xTg-AD mice compared to an isotype control. These antibodies also reduced neuropathological hallmarks of AD, including microgliosis, Aβ load and tau hyperphosphorylation. Our results demonstrate that α4 integrin-dependent leukocyte trafficking promotes cognitive impairment and AD neuropathology, suggesting that the blockade of α4 integrins may offer a new therapeutic strategy in AD.
Collapse
Affiliation(s)
| | - Elena Zenaro
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | | | - Silvia Dusi
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | | | - Giulia Iannoto
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Anna Slanzi
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | | | | | - Gennj Piacentino
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Gabriele Tosadori
- Department of Medicine, University of Verona, 37134, Verona, Italy
- The Center for Biomedical Computing (CBMC), University of Verona, 37134, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, 37134, Verona, Italy.
- The Center for Biomedical Computing (CBMC), University of Verona, 37134, Verona, Italy.
| |
Collapse
|
25
|
Lauranzano E, Campo E, Rasile M, Molteni R, Pizzocri M, Passoni L, Bello L, Pozzi D, Pardi R, Matteoli M, Ruiz-Moreno A. A Microfluidic Human Model of Blood-Brain Barrier Employing Primary Human Astrocytes. ACTA ACUST UNITED AC 2019; 3:e1800335. [PMID: 32648668 DOI: 10.1002/adbi.201800335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Indexed: 12/19/2022]
Abstract
The neurovascular unit (NVU) is the most important biological barrier between vascular districts and central nervous system (CNS) parenchyma, which maintains brain homeostasis, protects the CNS from pathogens penetration, and mediates neuroimmune communication. T lymphocytes migration across the blood-brain barrier is heavily affected in different brain diseases, representing a major target for novel drug development. In vitro models of NVU could represent a primary tool to investigate the molecular events occurring at this interface. To move toward the establishment of personalized therapies, a patient-related NVU-model is set, incorporating human primary astrocytes integrated into a microfluidic platform. The model is morphologically and functionally characterized, proving to be an advantageous tool to investigate human T lymphocytes transmigration and thus the efficacy of potential novel drugs affecting this process.
Collapse
Affiliation(s)
- Eliana Lauranzano
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Elena Campo
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Marco Rasile
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Raffaella Molteni
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Marco Pizzocri
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Lorena Passoni
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Lorenzo Bello
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Oncology and Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ana Ruiz-Moreno
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| |
Collapse
|
26
|
Cuoco JA, Benko MJ, Busch CM, Rogers CM, Prickett JT, Marvin EA. Vaccine-Based Immunotherapeutics for the Treatment of Glioblastoma: Advances, Challenges, and Future Perspectives. World Neurosurg 2018; 120:302-315. [PMID: 30196171 DOI: 10.1016/j.wneu.2018.08.202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Glioblastoma is a highly aggressive neoplasm with an extremely poor prognosis. Despite maximal gross resection and chemoradiotherapy, these grade IV astrocytomas consistently recur. Glioblastoma cells exhibit numerous pathogenic mechanisms to decrease tumor immunogenicity while promoting gliomagenesis, which manifests clinically as a median survival of less than 2 years and few long-term survivors. Recent clinical trials of vaccine-based immunotherapeutics against glioblastoma have demonstrated encouraging results in prolonging progression-free survival and overall survival. Several vaccine-based treatments have been trialed, such as peptide and heat-shock proteins, dendritic cell-based vaccines, and viral-based immunotherapy. In this literature review, we discuss the immunobiology of glioblastoma, significant current and completed vaccine-based immunotherapy clinical trials, and broad clinical challenges and future directions of glioblastoma vaccine-based immunotherapeutics.
Collapse
Affiliation(s)
- Joshua A Cuoco
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, New York, USA.
| | - Michael J Benko
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Christopher M Busch
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Cara M Rogers
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Joshua T Prickett
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Eric A Marvin
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
27
|
Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis. Sci Rep 2018; 8:7473. [PMID: 29748664 PMCID: PMC5945853 DOI: 10.1038/s41598-018-25676-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cell based-therapies represent promising strategies for the treatment of neurological diseases. We have previously shown that adipose stem cells (ASC) ameliorate chronic experimental autoimmune encephalomyelitis (EAE). Recent evidence indicates that most ASC paracrine effects are mediated by extracellular vesicles, i.e. micro- and nanovesicles (MVs and NVs). We show that preventive intravenous administration of NVs isolated from ASC (ASC-NVs) before disease onset significantly reduces the severity of EAE and decreases spinal cord inflammation and demyelination, whereas therapeutic treatment with ASC-NVs does not ameliorate established EAE. This treatment marginally inhibits antigen-specific T cell activation, while reducing microglial activation and demyelination in the spinal cord. Importantly, ASC-NVs inhibited integrin-dependent adhesion of encephalitogenic T cells in vitro, with no effect on adhesion molecule expression. In addition, intravital microscopy showed that encephalitogenic T cells treated with ASC NVs display a significantly reduced rolling and firm adhesion in inflamed spinal cord vessels compared to untreated cells. Our results show that ASC-NVs ameliorate EAE pathogenesis mainly by inhibiting T cell extravasation in the inflamed CNS, suggesting that NVs may represent a novel therapeutic approach in neuro-inflammatory diseases, enabling the safe administration of ASC effector factors.
Collapse
|
28
|
Brain interference: Revisiting the role of IFNγ in the central nervous system. Prog Neurobiol 2017; 156:149-163. [DOI: 10.1016/j.pneurobio.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
|
29
|
Haghayegh Jahromi N, Tardent H, Enzmann G, Deutsch U, Kawakami N, Bittner S, Vestweber D, Zipp F, Stein JV, Engelhardt B. A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T-Cell Interactions with the Cervical Spinal Cord Microvasculature during Experimental Autoimmune Encephalomyelitis. Front Immunol 2017; 8:406. [PMID: 28443093 PMCID: PMC5387098 DOI: 10.3389/fimmu.2017.00406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 11/13/2022] Open
Abstract
T-cell migration across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Two-photon intravital microscopy (2P-IVM) has been established as a powerful tool to study cell-cell interactions in inflammatory EAE lesions in living animals. In EAE, central nervous system inflammation is strongly pronounced in the spinal cord, an organ in which 2P-IVM imaging is technically very challenging and has been limited to the lumbar spinal cord. Here, we describe a novel spinal cord window preparation allowing to use 2P-IVM to image immune cell interactions with the cervical spinal cord microvascular endothelium during EAE. We describe differences in the angioarchitecture of the cervical spinal cord versus the lumbar spinal cord, which will entail different hemodynamic parameters in these different vascular beds. Using T cells as an example, we demonstrate the suitability of this novel methodology in imaging the post-arrest multistep T-cell extravasation across the cervical spinal cord microvessels. The novel methodology includes an outlook to the analysis of the cellular pathway of T-cell diapedesis across the BBB by establishing visualization of endothelial junctions in this vascular bed.
Collapse
Affiliation(s)
| | - Heidi Tardent
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Naoto Kawakami
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians University of Munich, Martinsried, Germany
| | - Stefan Bittner
- Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Frauke Zipp
- Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
30
|
DePaula-Silva AB, Hanak TJ, Libbey JE, Fujinami RS. Theiler's murine encephalomyelitis virus infection of SJL/J and C57BL/6J mice: Models for multiple sclerosis and epilepsy. J Neuroimmunol 2017; 308:30-42. [PMID: 28237622 DOI: 10.1016/j.jneuroim.2017.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
Mouse models are great tools to study the mechanisms of disease development. Theiler's murine encephalomyelitis virus is used in two distinct viral infection mouse models to study the human diseases multiple sclerosis (MS) and epilepsy. Intracerebral (i.c.) infection of the SJL/J mouse strain results in persistent viral infection of the central nervous system and a MS-like disease, while i.c. infection of the C57BL/6J mouse strain results in acute seizures and epilepsy. Our understanding of how the immune system contributes to the development of two disparate diseases caused by the same virus is presented.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|
31
|
Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 2016; 132:317-38. [PMID: 27522506 PMCID: PMC4992028 DOI: 10.1007/s00401-016-1606-5] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022]
Abstract
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood–brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer’s disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012, Bern, Switzerland
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Alexander Flügel
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen (UMCG), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Roy O Weller
- Faculty of Medicine, University of Southampton, Southampton, UK.
- Neuropathology, Mailpoint 813, Level E, South Block, Southampton University Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
32
|
Şimşek Ş, Çetin İ, Çim A, Kaya S. Elevated levels of tissue plasminogen activator and E-selectin in male children with autism spectrum disorder. Autism Res 2016; 9:1241-1247. [DOI: 10.1002/aur.1638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Şeref Şimşek
- Department of Child Psychiatry; Dicle University, Medical School; Diyarbakır Turkey
| | - İhsan Çetin
- Department of Nutrition and Dietetics; Batman University, School of Health Sciences; Batman Turkey
| | - Abdullah Çim
- Department of Medical Genetics; Dicle University, Medical School; Diyarbakır Turkey
| | - Savaş Kaya
- Department of Immunology; Dicle University, Medical School; Diyarbakır Turkey
| |
Collapse
|
33
|
Salou M, Nicol B, Garcia A, Baron D, Michel L, Elong-Ngono A, Hulin P, Nedellec S, Jacq-Foucher M, Le Frère F, Jousset N, Bourreille A, Wiertlewski S, Soulillou JP, Brouard S, Nicot AB, Degauque N, Laplaud DA. Neuropathologic, phenotypic and functional analyses of Mucosal Associated Invariant T cells in Multiple Sclerosis. Clin Immunol 2016; 166-167:1-11. [PMID: 27050759 DOI: 10.1016/j.clim.2016.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/07/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND The involvement of Mucosal Associated Invariant T (MAIT) cells, which are anti-microbial semi-invariant T cells, remains elusive in Multiple Sclerosis (MS). OBJECTIVE Deciphering the potential involvement of MAIT cells in the MS inflammatory process. METHODS By flow cytometry, blood MAIT cells from similar cohorts of MS patients and healthy volunteers (HV) were compared for frequency, phenotype, activation potential after in vitro TCR engagement by bacterial ligands and transmigration abilities through an in vitro model of blood-brain barrier. MS CNS samples were also studied by immunofluorescent staining and quantitative PCR. RESULTS AND CONCLUSION Blood MAIT cells from relapsing-remitting MS patients and HV presented similar frequency, ex vivo effector phenotype and activation abilities. MAIT cells represented 0.5% of the total infiltrating T cells on 39 MS CNS lesions. This is low as compared to blood frequency (p<0.001), but consistent with their low transmigration rate. Finally, transcriptional over-expression of MR1 - which presents cognate antigens to MAIT cells - and of the activating cytokines IL-18 and IL-23 was evidenced in MS lesions, suggesting that the CNS microenvironment is suited to activate the few infiltrating MAIT cells. Taken together, these data place MAIT cells from MS patients as minor components of the inflammatory pathological process.
Collapse
Affiliation(s)
- Marion Salou
- INSERM, UMR 1064, Nantes F-44093, France; Nantes University, Medicine Department, Nantes F-44035, France
| | - Bryan Nicol
- INSERM, UMR 1064, Nantes F-44093, France; Nantes University, Medicine Department, Nantes F-44035, France
| | - Alexandra Garcia
- INSERM, UMR 1064, Nantes F-44093, France; Nantes Hospital, ITUN, Nantes F-44093, France
| | - Daniel Baron
- INSERM, UMR 1064, Nantes F-44093, France; Nantes University, Medicine Department, Nantes F-44035, France; Nantes Hospital, ITUN, Nantes F-44093, France
| | - Laure Michel
- INSERM, UMR 1064, Nantes F-44093, France; Nantes Hospital, Department of Neurology, Nantes, France
| | - Annie Elong-Ngono
- INSERM, UMR 1064, Nantes F-44093, France; Nantes University, Medicine Department, Nantes F-44035, France
| | - Philippe Hulin
- SFR François Bonamy, Cellular and Tissue Imaging Core Facility (MicroPICell), Nantes, France
| | - Steven Nedellec
- SFR François Bonamy, Cellular and Tissue Imaging Core Facility (MicroPICell), Nantes, France
| | | | | | | | - Arnaud Bourreille
- Nantes Hospital, Institut des Maladies de l'Appareil Digestif, CIC-04 Inserm, Nantes, France
| | - Sandrine Wiertlewski
- Nantes Hospital, Department of Neurology, Nantes, France; INSERM 015, Centre d'Investigation Clinique, Nantes, France
| | | | - Sophie Brouard
- INSERM, UMR 1064, Nantes F-44093, France; Nantes Hospital, ITUN, Nantes F-44093, France
| | - Arnaud B Nicot
- INSERM, UMR 1064, Nantes F-44093, France; Nantes University, Medicine Department, Nantes F-44035, France; Nantes Hospital, ITUN, Nantes F-44093, France
| | - Nicolas Degauque
- INSERM, UMR 1064, Nantes F-44093, France; Nantes Hospital, ITUN, Nantes F-44093, France
| | - David-Axel Laplaud
- INSERM, UMR 1064, Nantes F-44093, France; Nantes Hospital, Department of Neurology, Nantes, France; INSERM 015, Centre d'Investigation Clinique, Nantes, France.
| |
Collapse
|
34
|
T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium. PLoS One 2016; 11:e0150945. [PMID: 26942913 PMCID: PMC4778949 DOI: 10.1371/journal.pone.0150945] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/22/2016] [Indexed: 11/25/2022] Open
Abstract
An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an “inverse” configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF.
Collapse
|
35
|
Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta Mol Basis Dis 2016; 1862:461-71. [DOI: 10.1016/j.bbadis.2015.10.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022]
|
36
|
Greathouse KM, Palladino SP, Dong C, Helton ES, Ubogu EE. Modeling leukocyte trafficking at the human blood-nerve barrier in vitro and in vivo geared towards targeted molecular therapies for peripheral neuroinflammation. J Neuroinflammation 2016; 13:3. [PMID: 26732309 PMCID: PMC4702318 DOI: 10.1186/s12974-015-0469-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/24/2015] [Indexed: 12/19/2022] Open
Abstract
Peripheral neuroinflammation is characterized by hematogenous mononuclear leukocyte infiltration into peripheral nerves. Despite significant clinical knowledge, advancements in molecular biology and progress in developing specific drugs for inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis, there are currently no specific therapies that modulate pathogenic peripheral nerve inflammation. Modeling leukocyte trafficking at the blood-nerve barrier using a reliable human in vitro model and potential intravital microscopy techniques in representative animal models guided by human observational data should facilitate the targeted modulation of the complex inflammatory cascade needed to develop safe and efficacious therapeutics for immune-mediated neuropathies and chronic neuropathic pain.
Collapse
Affiliation(s)
- Kelsey M Greathouse
- Department of Neurology, Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, The University of Alabama at Birmingham, 1825 University Boulevard, Room 1131, Birmingham, AL, 35294-0017, USA.
| | - Steven P Palladino
- Department of Neurology, Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, The University of Alabama at Birmingham, 1825 University Boulevard, Room 1131, Birmingham, AL, 35294-0017, USA.
| | - Chaoling Dong
- Department of Neurology, Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, The University of Alabama at Birmingham, 1825 University Boulevard, Room 1131, Birmingham, AL, 35294-0017, USA.
| | - Eric S Helton
- Department of Neurology, Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, The University of Alabama at Birmingham, 1825 University Boulevard, Room 1131, Birmingham, AL, 35294-0017, USA.
| | - Eroboghene E Ubogu
- Department of Neurology, Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, The University of Alabama at Birmingham, 1825 University Boulevard, Room 1131, Birmingham, AL, 35294-0017, USA.
| |
Collapse
|
37
|
Abstract
In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB.
Collapse
Affiliation(s)
| | - Ajay Verma
- Biomarkers and Experimental Medicine, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
38
|
Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials 2015; 77:87-97. [PMID: 26584349 DOI: 10.1016/j.biomaterials.2015.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) affords the potential to ameliorate the symptoms of Multiple Sclerosis (MS) in both preclinical and clinical studies. However, the efficacy of MSC-based therapy for MS likely depends on the number of cells that home to inflamed tissues and on the controlled production of paracrine and immunomodulatory factors. Previously, we reported that engineered MSCs expressing P-selectin glycoprotein ligand-1 (PSGL-1) and Sialyl-Lewis(x) (SLeX) via mRNA transfection facilitated the targeted delivery of anti-inflammatory cytokine interleukin-10 (IL-10) to inflamed ear. Here, we evaluated whether targeted delivery of MSCs with triple PSGL1/SLeX/IL-10 engineering improves therapeutic outcomes in mouse experimental autoimmune encephalomyelitis (EAE), a murine model for human MS. We found PSGL-1/SLeX mRNA transfection significantly enhanced MSC homing to the inflamed spinal cord. This is consistent with results from in vitro flow chamber assays in which PSGL-1/SleX mRNA transfection significantly increased the percentage of rolling and adherent cells on activated brain microvascular endothelial cells, which mimic the inflamed endothelium of blood brain/spinal cord barrier in EAE. In addition, IL-10-transfected MSCs show significant inhibitory activity on the proliferation of CD4(+) T lymphocytes from EAE mice. In vivo treatment with MSCs engineered with PSGL-1/SLeX/IL-10 in EAE mice exhibited a superior therapeutic function over native (unmodified) MSCs, evidenced by significantly improved myelination and decreased lymphocytes infiltration into the white matter of the spinal cord. Our strategy of targeted delivery of performance-enhanced MSCs could potentially be utilized to increase the effectiveness of MSC-based therapy for MS and other central nervous system (CNS) disorders.
Collapse
|
39
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
40
|
Merzaban JS, Imitola J, Starossom SC, Zhu B, Wang Y, Lee J, Ali AJ, Olah M, Abuelela AF, Khoury SJ, Sackstein R. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis. Glycobiology 2015; 25:1392-409. [PMID: 26153105 DOI: 10.1093/glycob/cwv046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 07/02/2015] [Indexed: 02/07/2023] Open
Abstract
Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.
Collapse
Affiliation(s)
- Jasmeen S Merzaban
- Department of Dermatology Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jaime Imitola
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah C Starossom
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Zhu
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yue Wang
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Amal J Ali
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Marta Olah
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ayman F Abuelela
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Samia J Khoury
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Sackstein
- Department of Dermatology Department of Medicine, Harvard Skin Disease Research Center
| |
Collapse
|
41
|
Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. Proc Natl Acad Sci U S A 2015; 112:E2201-6. [PMID: 25870279 DOI: 10.1073/pnas.1505410112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In previous in vitro studies, we showed that Transient Receptor Potential Canonical 3 (TRPC3), a calcium-permeable, nonselective cation channel endowed with high constitutive function, is an obligatory component of the inflammatory signaling that controls expression of the vascular cell adhesion molecule-1 (VCAM-1) and monocyte adhesion to coronary artery endothelial cells. Also, TRPC3 expression in these cells was found to be up-regulated by proatherogenic factors, which enhanced inflammation and VCAM-1 expression. However, it remained to be determined whether these in vitro findings were of relevance to atherosclerotic lesion development in vivo. To answer this important question in the present work, we generated mice with endothelial-specific overexpression of human TRPC3 in an Apoe knockout background (TgEST3ApoeKO) and examined lesions in the aortic sinus following 10 and 16 wk on a high-fat diet. No significant differences were found in size or complexity of early stage lesions (10 wk). However, advanced plaques (16 wk) from TgEST3ApoeKO mice exhibited a significant increase in size and macrophage content compared with nontransgenic littermate controls. Remarkably, this change was correlated with increased VCAM-1 and phospho-IkBα immunoreactivity along the endothelial lining of lesions from transgenic animals compared with controls. These findings validate the in vivo relevance of previous in vitro findings and represent, to our knowledge, the first in vivo evidence for a proatherogenic role of endothelial TRPC3.
Collapse
|
42
|
Kleine TO. Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: Revealed with the New Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 2015; 87:227-43. [DOI: 10.1002/cyto.a.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Tilmann O. Kleine
- Department of Laboratory Medicine and Molecular Diagnostics of the University Hospital Marburg. Dependance: Cerebrospinal-Fluid References Labor, Baldingerstraße; 35043 Marburg Germany
| |
Collapse
|
43
|
Schneider-Hohendorf T, Rossaint J, Mohan H, Böning D, Breuer J, Kuhlmann T, Gross CC, Flanagan K, Sorokin L, Vestweber D, Zarbock A, Schwab N, Wiendl H. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. ACTA ACUST UNITED AC 2014; 211:1833-46. [PMID: 25135296 PMCID: PMC4144733 DOI: 10.1084/jem.20140540] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Schneider-Hohendorf describe expression of adhesion molecules MCAM and PSGL-1 on human CD4+ T cells and Th17 T cells in multiple sclerosis patients under long-term natalizumab treatment. The authors identify that despite blockade of VLA-4, MCAM+ T cells can migrate through the blood–brain barrier to access the CNS through PSGL-1 and MCAM. The focus of this study is the characterization of human T cell blood–brain barrier migration and corresponding molecular trafficking signatures. We examined peripheral blood and cerebrospinal fluid immune cells from patients under long-term anti–very late antigen-4 (VLA-4)/natalizumab therapy (LTNT) and from CNS specimens. LTNT patients’ cerebrospinal fluid T cells exhibited healthy central-/effector-memory ratios, but lacked CD49d and showed enhanced myeloma cell adhesion molecule (MCAM) expression. LTNT led to an increase of PSGL-1 expression on peripheral T cells. Although vascular cell adhesion molecule-1 (VLA-4 receptor) was expressed at all CNS barriers, P-selectin (PSGL-1-receptor) was mainly detected at the choroid plexus. Accordingly, in vitro experiments under physiological flow conditions using primary human endothelial cells and LTNT patients’ T cells showed increased PSGL-1–mediated rolling and residual adhesion, even under VLA-4 blockade. Adhesion of MCAM+/TH17 cells was not affected by VLA-4 blocking alone, but was abrogated when both VLA-4 and MCAM were inhibited. Consistent with these data, MCAM+ cells were detected in white matter lesions, and in gray matter of multiple sclerosis patients. Our data indicate that lymphocyte trafficking into the CNS under VLA-4 blockade can occur by using the alternative adhesion molecules, PSGL-1 and MCAM, the latter representing an exclusive pathway for TH17 cells to migrate over the blood–brain barrier.
Collapse
Affiliation(s)
- Tilman Schneider-Hohendorf
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Jan Rossaint
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Hema Mohan
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Daniel Böning
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Johanna Breuer
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Tanja Kuhlmann
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Catharina C Gross
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Ken Flanagan
- Prothena Corporation plc, South San Francisco, CA 94080
| | - Lydia Sorokin
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Alexander Zarbock
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Nicholas Schwab
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Heinz Wiendl
- Department of Neurology; Department of Anaesthesiology, Intensive Care and Pain Medicine; Institute for Medical Physics and Biophysics; Institute of Neuropathology; and Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
44
|
Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a017269. [PMID: 24993677 DOI: 10.1101/cshperspect.a017269] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glaucoma is a multifactorial neurodegenerative disorder affecting 80 million people worldwide. Loss of retinal ganglion cells and degeneration of their axons in the optic nerve are the major pathological hallmarks. Neuroinflammatory processes, inflammatory processes in the central nervous system, have been identified in human glaucoma and in experimental models of the disease. Furthermore, neuroinflammatory responses occur at early stages of experimental glaucoma, and inhibition of certain proinflammatory pathways appears neuroprotective. Here, we summarize the current understanding of neuroinflammation in the central nervous system, with emphasis on events at the optic nerve head during early stages of glaucoma.
Collapse
Affiliation(s)
- Ileana Soto
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine 04609 School of Medicine, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
45
|
Mendez-Huergo SP, Maller SM, Farez MF, Mariño K, Correale J, Rabinovich GA. Integration of lectin–glycan recognition systems and immune cell networks in CNS inflammation. Cytokine Growth Factor Rev 2014; 25:247-55. [DOI: 10.1016/j.cytogfr.2014.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
|
46
|
Sathiyanadan K, Coisne C, Enzmann G, Deutsch U, Engelhardt B. PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol 2014; 44:2287-94. [PMID: 24740164 DOI: 10.1002/eji.201344214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/11/2014] [Indexed: 01/25/2023]
Abstract
T-cell migration across the blood-brain barrier is a crucial step in the pathogenesis of EAE, an animal model for MS. Live cell imaging studies demonstrated that P-selectin glycoprotein ligand-1 (PSGL-1) and its endothelial ligands E- and P-selectin mediate the initial rolling of T cells in brain vessels during EAE. As functional absence of PSGL-1 or E/P-selectins does not result in ameliorated EAE, we speculated that T-cell entry into the spinal cord is independent of PSGL-1 and E/P-selectin. Performing intravital microscopy, we observed the interaction of WT or PSGL-1(-/-) proteolipid protein-specific T cells in inflamed spinal cord microvessels of WT or E/P-selectin(-/-) SJL/J mice during EAE. T-cell rolling but not T-cell capture was completely abrogated in the absence of either PSGL-1 or E- and P-selectin, resulting in a significantly reduced number of T cells able to firmly adhere in the inflamed spinal cord microvessels, but did not lead to reduced T-cell invasion into the CNS parenchyma. Thus, PSGL-1 interaction with E/P-selectin is essential for T-cell rolling in inflamed spinal cord microvessels during EAE. Taken together with previous observations, our findings show that T-cell rolling is not required for successful T-cell entry into the CNS and initiation of EAE.
Collapse
|
47
|
Minten C, Alt C, Gentner M, Frei E, Deutsch U, Lyck R, Schaeren-Wiemers N, Rot A, Engelhardt B. DARC shuttles inflammatory chemokines across the blood-brain barrier during autoimmune central nervous system inflammation. Brain 2014; 137:1454-69. [PMID: 24625696 PMCID: PMC3999718 DOI: 10.1093/brain/awu045] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/30/2013] [Accepted: 01/14/2014] [Indexed: 12/14/2022] Open
Abstract
The Duffy antigen/receptor for chemokines, DARC, belongs to the family of atypical heptahelical chemokine receptors that do not couple to G proteins and therefore fail to transmit conventional intracellular signals. Here we show that during experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, the expression of DARC is upregulated at the blood-brain barrier. These findings are corroborated by the presence of a significantly increased number of subcortical white matter microvessels staining positive for DARC in human multiple sclerosis brains as compared to control tissue. Using an in vitro blood-brain barrier model we demonstrated that endothelial DARC mediates the abluminal to luminal transport of inflammatory chemokines across the blood-brain barrier. An involvement of DARC in experimental autoimmune encephalomyelitis pathogenesis was confirmed by the observed ameliorated experimental autoimmune encephalomyelitis in Darc(-/-) C57BL/6 and SJL mice, as compared to wild-type control littermates. Experimental autoimmune encephalomyelitis studies in bone marrow chimeric Darc(-/-) and wild-type mice revealed that increased plasma levels of inflammatory chemokines in experimental autoimmune encephalomyelitis depended on the presence of erythrocyte DARC. However, fully developed experimental autoimmune encephalomyelitis required the expression of endothelial DARC. Taken together, our data show a role for erythrocyte DARC as a chemokine reservoir and that endothelial DARC contributes to the pathogenesis of experimental autoimmune encephalomyelitis by shuttling chemokines across the blood-brain barrier.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Antigens, CD/metabolism
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/physiopathology
- Capillary Permeability/genetics
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Cerebellum/metabolism
- Chemokines/genetics
- Chemokines/metabolism
- Disease Models, Animal
- Duffy Blood-Group System/metabolism
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- In Vitro Techniques
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/pathology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Carsten Minten
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Carsten Alt
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Melanie Gentner
- 2 Neurobiology, Department of Biomedicine, University Hospital Basel, University Basel, Switzerland
| | - Elisabeth Frei
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Urban Deutsch
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Ruth Lyck
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Nicole Schaeren-Wiemers
- 2 Neurobiology, Department of Biomedicine, University Hospital Basel, University Basel, Switzerland
| | - Antal Rot
- 3 MRC Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, UK
| | - Britta Engelhardt
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
48
|
Angiari S, Donnarumma T, Rossi B, Dusi S, Pietronigro E, Zenaro E, Della Bianca V, Toffali L, Piacentino G, Budui S, Rennert P, Xiao S, Laudanna C, Casasnovas JM, Kuchroo VK, Constantin G. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity. Immunity 2014; 40:542-53. [PMID: 24703780 DOI: 10.1016/j.immuni.2014.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/12/2014] [Indexed: 12/24/2022]
Abstract
Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper 1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but it reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 immunoglobulin variable domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease.
Collapse
Affiliation(s)
- Stefano Angiari
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Tiziano Donnarumma
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Barbara Rossi
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Silvia Dusi
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Enrica Pietronigro
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Elena Zenaro
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Vittorina Della Bianca
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Lara Toffali
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Gennj Piacentino
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Simona Budui
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Paul Rennert
- Department of Molecular Discovery and Immunobiology, Biogen Idec Inc., 12 Cambridge Center, Cambridge, MA 02146, USA
| | - Sheng Xiao
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, HIM 785, Boston, MA 02115-5817, USA
| | - Carlo Laudanna
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Jose M Casasnovas
- Centro Nacional de Biotecnología, CNB-CSIC, Campus UAM, C/ Darwin, 3, Campus of Cantoblanco, E-28049 Madrid, Spain
| | - Vijay K Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, HIM 785, Boston, MA 02115-5817, USA
| | - Gabriela Constantin
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
49
|
Bosticardo M, Musio S, Fontana E, Angiari S, Draghici E, Constantin G, Poliani PL, Pedotti R, Villa A. Development of central nervous system autoimmunity is impaired in the absence of Wiskott-Aldrich syndrome protein. PLoS One 2014; 9:e86942. [PMID: 24466296 PMCID: PMC3900702 DOI: 10.1371/journal.pone.0086942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASP) is a key regulator of the actin cytoskeleton in hematopoietic cells. Defective expression of WASP leads to multiple abnormalities in different hematopoietic cells. Despite severe impairment of T cell function, WAS patients exhibit a high prevalence of autoimmune disorders. We attempted to induce EAE, an animal model of organ-specific autoimmunity affecting the CNS that mimics human MS, in Was−/− mice. We describe here that Was−/− mice are markedly resistant against EAE, showing lower incidence and milder score, reduced CNS inflammation and demyelination as compared to WT mice. Microglia was only poorly activated in Was−/− mice. Antigen-induced T-cell proliferation, Th-1 and -17 cytokine production and integrin-dependent adhesion were increased in Was−/− mice. However, adoptive transfer of MOG-activated T cells from Was−/− mice in WT mice failed to induce EAE. Was−/− mice were resistant against EAE also when induced by adoptive transfer of MOG-activated T cells from WT mice. Was+/− heterozygous mice developed an intermediate clinical phenotype between WT and Was−/− mice, and they displayed a mixed population of WASP-positive and -negative T cells in the periphery but not in their CNS parenchyma, where the large majority of inflammatory cells expressed WASP. In conclusion, in absence of WASP, T-cell responses against a CNS autoantigen are increased, but the ability of autoreactive T cells to induce CNS autoimmunity is impaired, most probably because of an inefficient T-cell transmigration into the CNS and defective CNS resident microglial function.
Collapse
MESH Headings
- Animals
- Autoimmunity/immunology
- Blotting, Western
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Immunoenzyme Techniques
- Integrins/metabolism
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia
- Myelin Sheath
- Wiskott-Aldrich Syndrome Protein/physiology
Collapse
Affiliation(s)
| | - Silvia Musio
- Foundation IRCCS Neurological Institute “C.Besta”, Neuroimmunology and Neuromuscular Disorders Unit, Milan, Italy
| | - Elena Fontana
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Stefano Angiari
- Department of Pathology and Diagnosis, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Gabriela Constantin
- Department of Pathology and Diagnosis, Section of General Pathology, University of Verona, Verona, Italy
| | - Pietro L. Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Rosetta Pedotti
- Foundation IRCCS Neurological Institute “C.Besta”, Neuroimmunology and Neuromuscular Disorders Unit, Milan, Italy
- * E-mail: (AV); (RP)
| | - Anna Villa
- TIGET, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (AV); (RP)
| |
Collapse
|
50
|
Glabinski A, Jalosinski M, Ransohoff RM. Chemokines and chemokine receptors in inflammation of the CNS. Expert Rev Clin Immunol 2014; 1:293-301. [DOI: 10.1586/1744666x.1.2.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|