1
|
Kruglikov IL, Scherer PE. Is the endotoxin-complement cascade the major driver in lipedema? Trends Endocrinol Metab 2024; 35:769-780. [PMID: 38688780 PMCID: PMC11387139 DOI: 10.1016/j.tem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Lipedema is a poorly understood disorder of adipose tissue characterized by abnormal but symmetrical deposition of subcutaneous white adipose tissue (WAT) in proximal extremities. Here, we propose that the underlying cause for lipedema could be triggered by a selective accumulation of bacterial lipopolysaccharides (LPS; also known as endotoxin) in gluteofemoral WAT. Together with a malfunctioning complement system, this induces low-grade inflammation in the depot and raises its uncontrollable expansion. Correspondingly, more attention should be paid in future research to the endotoxemia prevalent in patients with lipedema. We would like to propose that proper management of endotoxemia can reduce the progression and even improve the state of disease in patients with lipedema.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
2
|
Han X, Xue J, Gao S, Li Y, Duo Y, Gao F. Identification of potential diagnostic biomarkers for hypertension via integrated analysis of gene expression and DNA methylation. Blood Press 2024; 33:2387025. [PMID: 39216506 DOI: 10.1080/08037051.2024.2387025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Hypertension refers to the elevated blood pressure (BP) in arteries, with a BP reading of 140/90 mm Hg or higher in adults. Over 40% of >25-year-old population have suffered from hypertension. Thus, this study aimed to find novel diagnostic biomarkers for hypertension. METHODS All hypertension-related mRNA and methylation datasets were downloaded from the GEO database. Liner model method was used to identify differentially expressed genes (DEGs) between hypertension and control groups. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis was employed to obtain functional information. CpG sites and the corresponding genes associated with hypertension were screened using epigenome-wide association study (EWAS) analysis. RESULTS There were 37 DEGs between the hypertension group and control group, which were significantly enriched in 84 Biological Process terms, 31 Cellular Component terms, 18 Molecular Function terms and 9 signalling pathways. EWAS results indicated that 1072 CpG sites were associated with hypertension occurrence, corresponding to 1029 genes. After cross-analysis, complement factor D (CFD) and OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) with methylation modification were identified as diagnostic markers for hypertension. CONCLUSION In conclusion, CFD and OTUB2 were potential biomarkers of hypertension occurrence. Our results will provide more information for hypertension diagnosis and would be more reliable combined with multiple biomarkers.
Collapse
Affiliation(s)
- Xiujiang Han
- Department of Emergency Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Xue
- Department of Endocrinology and Metabolic Diseases, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Sheng Gao
- Department of Endocrinology and Metabolic Diseases, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Yongjian Li
- First Department of Cardiovascular Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuehe Duo
- Department of Neurology, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| | - Feifei Gao
- EICU, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Shen KC, Collins KH, Ferey JL, Fappi A, McCormick JJ, Mittendorfer B, Guilak F, Meyer GA. Excess Intramyocellular Lipid Does Not Affect Muscle Fiber Biophysical Properties in Mice or People With Metabolically Abnormal Obesity. Diabetes 2024; 73:1266-1277. [PMID: 38701374 PMCID: PMC11262043 DOI: 10.2337/db23-0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Observational studies have shown correlations between intramyocellular lipid (IMCL) content and muscle strength and contractile function in people with metabolically abnormal obesity. However, a clear physiologic mechanism for this association is lacking, and causation is debated. We combined immunofluorescent confocal imaging with force measurements on permeabilized muscle fibers from metabolically normal and metabolically abnormal mice and people with metabolically normal (defined as normal fasting plasma glucose and glucose tolerance) and metabolically abnormal (defined as prediabetes and type 2 diabetes) overweight/obesity to evaluate relationships among myocellular lipid droplet characteristics (droplet size and density) and biophysical (active contractile and passive viscoelastic) properties. The fiber type specificity of lipid droplet parameters varied by metabolic status and by species. It was different between mice and people across the board and different between people of different metabolic status. However, despite considerable quantities of IMCL in the metabolically abnormal groups, there were no significant differences in peak active tension or passive viscoelasticity between the metabolically abnormal and control groups in mice or people. Additionally, there were no significant relationships among IMCL parameters and biophysical variables. Thus, we conclude that IMCL accumulation per se does not impact muscle fiber biophysical properties or physically impede contraction. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Karen C. Shen
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Kelsey H. Collins
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO
- Shriners Hospital for Children, St. Louis, MO
| | - Jeremie L.A. Ferey
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Alan Fappi
- Center for Human Nutrition at Washington University School of Medicine, St. Louis, MO
| | - Jeremy J. McCormick
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Bettina Mittendorfer
- Center for Human Nutrition at Washington University School of Medicine, St. Louis, MO
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO
- Shriners Hospital for Children, St. Louis, MO
| | - Gretchen A. Meyer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Shriners Hospital for Children, St. Louis, MO
- Departments of Neurology and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Dare A, Chen SY. Adipsin in the pathogenesis of cardiovascular diseases. Vascul Pharmacol 2024; 154:107270. [PMID: 38114042 PMCID: PMC10939892 DOI: 10.1016/j.vph.2023.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Adipsin is an adipokine predominantly synthesized in adipose tissues and released into circulation. It is also known as complement factor-D (CFD), acting as the rate-limiting factor in the alternative complement pathway and exerting essential functions on the activation of complement system. The deficiency of CFD in humans is a very rare condition. However, complement overactivation has been implicated in the etiology of numerous disorders, including cardiovascular disease (CVD). Increased circulating level of adipsin has been reported to promote vascular derangements, systemic inflammation, and endothelial dysfunction. Prospective and case-control studies showed that this adipokine is directly associated with all-cause death and rehospitalization in patients with coronary artery disease. Adipsin has also been implicated in pulmonary arterial hypertension, abdominal aortic aneurysm, pre-eclampsia, and type-2 diabetes which is a major risk factor for CVD. Importantly, serum adipsin has been recognized as a unique prognostic marker for assessing cardiovascular diseases. At present, there is paucity of experimental evidence about the precise role of adipsin in the etiology of CVD. However, this mini review provides some insight on the contribution of adipsin in the pathogenesis of CVD and highlights its role on endothelial, smooth muscle and immune cells that mediate cardiovascular functions.
Collapse
Affiliation(s)
- Ayobami Dare
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA; The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
5
|
Noris M, Remuzzi G. C3G and Ig-MPGN-treatment standard. Nephrol Dial Transplant 2024; 39:202-214. [PMID: 37604793 PMCID: PMC10828209 DOI: 10.1093/ndt/gfad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/23/2023] Open
Abstract
Among the broad spectrum of membranoproliferative glomerulonephritis (MPGN), immunofluorescence distinguishes C3 glomerulopathy (C3G), with predominant C3 deposits, and immunoglobulin-associated MPGN (Ig-MPGN), with combined C3 and Ig. However, there are several intersections between C3G and Ig-MPGN. Primary C3G and Ig-MPGN share the same prevalence of low serum C3 levels and of abnormalities of the alternative pathway of complement, and patients who present a bioptic pattern of Ig-MPGN at onset may show a C3G pattern in a subsequent biopsy. There is no specific therapy for primary C3G and Ig-MPGN and prognosis is unfavourable. The only recommended indications are inhibitors of the renin-angiotensin system, lipid-lowering agents and other renoprotective agents. The other drugs used currently, such as corticosteroids and mycophenolate mofetil, are often ineffective. The anti-C5 monoclonal antibody eculizumab has been tested in several patients, with mixed results. One reason for the uncertainty is the extremely variable clinical course, most likely reflecting a heterogeneous pathogenesis. An unsupervised clustering analysis that included histologic, biochemical, genetic and clinical data available at onset in patients with primary C3G and Ig-MPGN identified four clusters characterized by specific pathogenic mechanisms. This approach may facilitate accurate diagnosis and development of targeted therapies. Several trials are ongoing with drugs targeting different molecules of the complement cascade, however it is important to consider which component of the cascade may be the most appropriate for each patient. We review the current standards of treatment and discuss novel developments in the pathophysiology, diagnosis, outcome prediction and management of C3G and Ig-MPGN.
Collapse
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò Ranica, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò Ranica, Bergamo, Italy
| |
Collapse
|
6
|
Chu L, Bi C, Wang C, Zhou H. The Relationship between Complements and Age-Related Macular Degeneration and Its Pathogenesis. J Ophthalmol 2024; 2024:6416773. [PMID: 38205100 PMCID: PMC10776198 DOI: 10.1155/2024/6416773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Age-related macular degeneration is a retinal disease that causes permanent loss of central vision in people over the age of 65. Its pathogenesis may be related to mitochondrial dysfunction, inflammation, apoptosis, autophagy, complement, intestinal flora, and lipid disorders. In addition, the patient's genes, age, gender, cardiovascular disease, unhealthy diet, and living habits may also be risk factors for this disease. Complement proteins are widely distributed in serum and tissue fluid. In the early 21st century, a connection was found between the complement cascade and age-related macular degeneration. However, little is known about the effect of complement factors on the pathogenesis of age-related macular degeneration. This article reviews the factors associated with age-related macular degeneration, the relationship between each factor and complement, the related functions, and variants and provides new ideas for the treatment of this disease.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chaoran Bi
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Ely EV, Kapinski AT, Paradi SG, Tang R, Guilak F, Collins KH. Designer Fat Cells: Adipogenic Differentiation of CRISPR-Cas9 Genome-Engineered Induced Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564206. [PMID: 37961399 PMCID: PMC10634849 DOI: 10.1101/2023.10.26.564206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adipose tissue is an active endocrine organ that can signal bidirectionally to many tissues and organ systems in the body. With obesity, adipose tissue is a source of low-level inflammation that contributes to various co-morbidities and damage to downstream effector tissues. The ability to synthesize genetically engineered adipose tissue could have critical applications in studying adipokine signaling and the use of adipose tissue for novel therapeutic strategies. This study aimed to develop a method for non-viral adipogenic differentiation of genome-edited murine induced pluripotent stem cells (iPSCs) and to test the ability of such cells to engraft in mice in vivo . Designer adipocytes were created from iPSCs, which can be readily genetically engineered using CRISPR-Cas9 to knock out or insert individual genes of interest. As a model system for adipocyte-based drug delivery, an existing iPSC cell line that transcribes interleukin 1 receptor antagonist under the endogenous macrophage chemoattractant protein-1 promoter was tested for adipogenic capabilities under these same differentiation conditions. To understand the role of various adipocyte subtypes and their impact on health and disease, an efficient method was devised for inducing browning and whitening of IPSC-derived adipocytes in culture. Finally, to study the downstream effects of designer adipocytes in vivo , we transplanted the designer adipocytes into fat-free lipodystrophic mice as a model system for studying adipose signaling in different models of disease or repair. This novel translational tissue engineering and regenerative medicine platform provides an innovative approach to studying the role of adipose interorgan communication in various conditions.
Collapse
|
8
|
Pestel J, Blangero F, Watson J, Pirola L, Eljaafari A. Adipokines in obesity and metabolic-related-diseases. Biochimie 2023; 212:48-59. [PMID: 37068579 DOI: 10.1016/j.biochi.2023.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
The discovery of leptin in the 1990s led to a reconsideration of adipose tissue (AT) as not only a fatty acid storage organ, but also a proper endocrine tissue. AT is indeed capable of secreting bioactive molecules called adipokines for white AT or batokines for brown/beige AT, which allow communication with numerous organs, especially brain, heart, liver, pancreas, and/or the vascular system. Adipokines exert pro or anti-inflammatory activities. An equilibrated balance between these two sets ensures homeostasis of numerous tissues and organs. During the development of obesity, AT remodelling leads to an alteration of its endocrine activity, with increased secretion of pro-inflammatory adipokines relative to the anti-inflammatory ones, as shown in the graphical abstract. Pro-inflammatory adipokines take part in the initiation of local and systemic inflammation during obesity and contribute to comorbidities associated to obesity, as detailed in the present review.
Collapse
Affiliation(s)
- Julien Pestel
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Ferdinand Blangero
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Julia Watson
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Luciano Pirola
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Assia Eljaafari
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France; Hospices Civils de Lyon: 2 quai des Célestins, 69001 Lyon, France.
| |
Collapse
|
9
|
Tzoumas N, Riding G, Williams MA, Steel DH. Complement inhibitors for age-related macular degeneration. Cochrane Database Syst Rev 2023; 6:CD009300. [PMID: 37314061 PMCID: PMC10266126 DOI: 10.1002/14651858.cd009300.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common eye disease and leading cause of sight loss worldwide. Despite its high prevalence and increasing incidence as populations age, AMD remains incurable and there are no treatments for most patients. Mounting genetic and molecular evidence implicates complement system overactivity as a key driver of AMD development and progression. The last decade has seen the development of several novel therapeutics targeting complement in the eye for the treatment of AMD. This review update encompasses the results of the first randomised controlled trials in this field. OBJECTIVES To assess the effects and safety of complement inhibitors in the prevention or treatment of AMD. SEARCH METHODS We searched CENTRAL on the Cochrane Library, MEDLINE, Embase, LILACS, Web of Science, ISRCTN registry, ClinicalTrials.gov, and the WHO ICTRP to 29 June 2022 with no language restrictions. We also contacted companies running clinical trials for unpublished data. SELECTION CRITERIA We included randomised controlled trials (RCTs) with parallel groups and comparator arms that studied complement inhibition for advanced AMD prevention/treatment. DATA COLLECTION AND ANALYSIS Two authors independently assessed search results and resolved discrepancies through discussion. Outcome measures evaluated at one year included change in best-corrected visual acuity (BCVA), untransformed and square root-transformed geographic atrophy (GA) lesion size progression, development of macular neovascularisation (MNV) or exudative AMD, development of endophthalmitis, loss of ≥ 15 letters of BCVA, change in low luminance visual acuity, and change in quality of life. We assessed risk of bias and evidence certainty using Cochrane risk of bias and GRADE tools. MAIN RESULTS Ten RCTs with 4052 participants and eyes with GA were included. Nine evaluated intravitreal (IVT) administrations against sham, and one investigated an intravenous agent against placebo. Seven studies excluded patients with prior MNV in the non-study eye, whereas the three pegcetacoplan studies did not. The risk of bias in the included studies was low overall. We also synthesised results of two intravitreal agents (lampalizumab, pegcetacoplan) at monthly and every-other-month (EOM) dosing intervals. Efficacy and safety of IVT lampalizumab versus sham for GA For 1932 participants in three studies, lampalizumab did not meaningfully change BCVA given monthly (+1.03 letters, 95% confidence interval (CI) -0.19 to 2.25) or EOM (+0.22 letters, 95% CI -1.00 to 1.44) (high-certainty evidence). For 1920 participants, lampalizumab did not meaningfully change GA lesion growth given monthly (+0.07 mm², 95% CI -0.09 to 0.23; moderate-certainty due to imprecision) or EOM (+0.07 mm², 95% CI -0.05 to 0.19; high-certainty). For 2000 participants, lampalizumab may have also increased MNV risk given monthly (RR 1.77, 95% CI 0.73 to 4.30) and EOM (RR 1.70, 95% CI 0.67 to 4.28), based on low-certainty evidence. The incidence of endophthalmitis in patients treated with monthly and EOM lampalizumab was 4 per 1000 (0 to 87) and 3 per 1000 (0 to 62), respectively, based on moderate-certainty evidence. Efficacy and safety of IVT pegcetacoplan versus sham for GA For 242 participants in one study, pegcetacoplan probably did not meaningfully change BCVA given monthly (+1.05 letters, 95% CI -2.71 to 4.81) or EOM (-1.42 letters, 95% CI -5.25 to 2.41), as supported by moderate-certainty evidence. In contrast, for 1208 participants across three studies, pegcetacoplan meaningfully reduced GA lesion growth when given monthly (-0.38 mm², 95% CI -0.57 to -0.19) and EOM (-0.29 mm², 95% CI -0.44 to -0.13), with high certainty. These reductions correspond to 19.2% and 14.8% versus sham, respectively. A post hoc analysis showed possibly greater benefits in 446 participants with extrafoveal GA given monthly (-0.67 mm², 95% CI -0.98 to -0.36) and EOM (-0.60 mm², 95% CI -0.91 to -0.30), representing 26.1% and 23.3% reductions, respectively. However, we did not have data on subfoveal GA growth to undertake a formal subgroup analysis. In 1502 participants, there is low-certainty evidence that pegcetacoplan may have increased MNV risk when given monthly (RR 4.47, 95% CI 0.41 to 48.98) or EOM (RR 2.29, 95% CI 0.46 to 11.35). The incidence of endophthalmitis in patients treated with monthly and EOM pegcetacoplan was 6 per 1000 (1 to 53) and 8 per 1000 (1 to 70) respectively, based on moderate-certainty evidence. Efficacy and safety of IVT avacincaptad pegol versus sham for GA In a study of 260 participants with extrafoveal or juxtafoveal GA, monthly avacincaptad pegol probably did not result in a clinically meaningful change in BCVA at 2 mg (+1.39 letters, 95% CI -5.89 to 8.67) or 4 mg (-0.28 letters, 95% CI -8.74 to 8.18), based on moderate-certainty evidence. Despite this, the drug was still found to have probably reduced GA lesion growth, with estimates of 30.5% reduction at 2 mg (-0.70 mm², 95% CI -1.99 to 0.59) and 25.6% reduction at 4 mg (-0.71 mm², 95% CI -1.92 to 0.51), based on moderate-certainty evidence. Avacincaptad pegol may have also increased the risk of developing MNV (RR 3.13, 95% CI 0.93 to 10.55), although this evidence is of low certainty. There were no cases of endophthalmitis reported in this study. AUTHORS' CONCLUSIONS Despite confirmation of the negative findings of intravitreal lampalizumab across all endpoints, local complement inhibition with intravitreal pegcetacoplan meaningfully reduces GA lesion growth relative to sham at one year. Inhibition of complement C5 with intravitreal avacincaptad pegol is also an emerging therapy with probable benefits on anatomical endpoints in the extrafoveal or juxtafoveal GA population. However, there is currently no evidence that complement inhibition with any agent improves functional endpoints in advanced AMD; further results from the phase 3 studies of pegcetacoplan and avacincaptad pegol are eagerly awaited. Progression to MNV or exudative AMD is a possible emergent adverse event of complement inhibition, requiring careful consideration should these agents be used clinically. Intravitreal administration of complement inhibitors is probably associated with a small risk of endophthalmitis, which may be higher than that of other intravitreal therapies. Further research is likely to have an important impact on our confidence in the estimates of adverse effects and may change these. The optimal dosing regimens, treatment duration, and cost-effectiveness of such therapies are yet to be established.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Sunderland Eye Infirmary, Sunderland, UK
| | - George Riding
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- North Middlesex University Hospital NHS Trust, London, UK
| | - Michael A Williams
- School of Medicine, Dentistry and Biomedical Science, Queen's University of Belfast, Belfast, UK
| | - David Hw Steel
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Sunderland Eye Infirmary, Sunderland, UK
| |
Collapse
|
10
|
Dani R, Oroszlán G, Martinusz R, Farkas B, Dobos B, Vadas E, Závodszky P, Gál P, Dobó J. Quantification of the zymogenicity and the substrate-induced activity enhancement of complement factor D. Front Immunol 2023; 14:1197023. [PMID: 37283768 PMCID: PMC10239819 DOI: 10.3389/fimmu.2023.1197023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Complement factor D (FD) is a serine protease present predominantly in the active form in circulation. It is synthesized as a zymogen (pro-FD), but it is continuously converted to FD by circulating active MASP-3. FD is a unique, self-inhibited protease. It has an extremely low activity toward free factor B (FB), while it is a highly efficient enzyme toward FB complexed with C3b (C3bB). The structural basis of this phenomenon is known; however, the rate enhancement was not yet quantified. It has also been unknown whether pro-FD has any enzymatic activity. In this study, we aimed to measure the activity of human FD and pro-FD toward uncomplexed FB and C3bB in order to quantitatively characterize the substrate-induced activity enhancement and zymogenicity of FD. Pro-FD was stabilized in the proenzyme form by replacing Arg25 (precursor numbering) with Gln (pro-FD-R/Q). Activated MASP-1 and MASP-3 catalytic fragments were also included in the study for comparison. We found that the complex formation with C3b enhanced the cleavage rate of FB by FD approximately 20 million-fold. C3bB was also a better substrate for MASP-1, approximately 100-fold, than free FB, showing that binding to C3b renders the scissile Arg-Lys bond in FB to become more accessible for proteolysis. Though easily measurable, this cleavage by MASP-1 is not relevant physiologically. Our approach provides quantitative data for the two-step mechanism characterized by the enhanced susceptibility of FB for cleavage upon complex formation with C3b and the substrate-induced activity enhancement of FD upon its binding to C3bB. Earlier MASP-3 was also implicated as a potential FB activator; however, MASP-3 does not cleave C3bB (or FB) at an appreciable rate. Finally, pro-FD cleaves C3bB at a rate that could be physiologically significant. The zymogenicity of FD is approximately 800, i.e., the cleavage rate of C3bB by pro-FD-R/Q was found to be approximately 800-fold lower than that by FD. Moreover, pro-FD-R/Q at approximately 50-fold of the physiological FD concentration could restore half-maximal AP activity of FD-depleted human serum on zymosan. The observed zymogen activity of pro-FD might be relevant in MASP-3 deficiency cases or during therapeutic MASP-3 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
11
|
Noris M, Daina E, Remuzzi G. Membranoproliferative glomerulonephritis: no longer the same disease and may need very different treatment. Nephrol Dial Transplant 2023; 38:283-290. [PMID: 34596686 DOI: 10.1093/ndt/gfab281] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Membranoproliferative glomerulonephritis (MPGN) is a pattern of glomerular injury that may be primary or secondary to infections, autoimmune diseases and haematological disorders. Primary C3G and IC-MPGN are rare and the prognosis is unfavourable. Based on immunofluorescence findings, MPGN has been classified into complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated MPGN (IC-MPGN). However, this classification leaves a number of issues unresolved. The finding of genetic and acquired complement abnormalities in both C3G and IC-MPGN indicates that they represent a heterogeneous spectrum rather than distinct diseases. An unsupervised hierarchical clustering in a cohort of patients with primary C3G and IC-MPGN identified four distinct pathogenetic patterns, characterized by specific histologic and clinical features, and genetic and acquired complement abnormalities. These results provide the groundwork for a more accurate diagnosis and the development of targeted therapies. The drugs that are currently used, such as corticosteroids and immunosuppressants, are frequently ineffective in primary C3G and IC-MPGN. Eculizumab, an anti-C5 monoclonal antibody, has been used occasionally in single cases or small series. However, only a few patients have achieved remission. This heterogeneous response could be related to the extent of terminal complement activation, which may vary substantially from patient to patient. Several drugs that target the complement system at different levels are under investigation for C3G and IC-MPGN. However, clinical trials to test new therapeutics will be challenging and heavily influenced by the heterogeneity of these diseases. This creates the need to characterize each patient to match the specific complement abnormality with the type of intervention.
Collapse
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
12
|
Sahu SK, Ozantürk AN, Kulkarni DH, Ma L, Barve RA, Dannull L, Lu A, Starick M, McPhatter J, Garnica L, Sanfillipo-Burchman M, Kunen J, Wu X, Gelman AE, Brody SL, Atkinson JP, Kulkarni HS. Lung epithelial cell-derived C3 protects against pneumonia-induced lung injury. Sci Immunol 2023; 8:eabp9547. [PMID: 36735773 PMCID: PMC10023170 DOI: 10.1126/sciimmunol.abp9547] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The complement component C3 is a fundamental plasma protein for host defense, produced largely by the liver. However, recent work has demonstrated the critical importance of tissue-specific C3 expression in cell survival. Here, we analyzed the effects of local versus peripheral sources of C3 expression in a model of acute bacterial pneumonia induced by Pseudomonas aeruginosa. Whereas mice with global C3 deficiency had severe pneumonia-induced lung injury, those deficient only in liver-derived C3 remained protected, comparable to wild-type mice. Human lung transcriptome analysis showed that secretory epithelial cells, such as club cells, express high levels of C3 mRNA. Mice with tamoxifen-induced C3 gene ablation from club cells in the lung had worse pulmonary injury compared with similarly treated controls, despite maintaining normal circulating C3 levels. Last, in both the mouse pneumonia model and cultured primary human airway epithelial cells, we showed that stress-induced death associated with C3 deficiency parallels that seen in Factor B deficiency rather than C3a receptor deficiency. Moreover, C3-mediated reduction in epithelial cell death requires alternative pathway component Factor B. Thus, our findings suggest that a pathway reliant on locally derived C3 and Factor B protects the lung mucosal barrier.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ayşe N. Ozantürk
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Devesha H. Kulkarni
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine; St. Louis, USA
| | - Linus Dannull
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Angel Lu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ja’Nia McPhatter
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lorena Garnica
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Maxwell Sanfillipo-Burchman
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine; St. Louis, USA
| | - Jeremy Kunen
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Xiaobo Wu
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine; St. Louis, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - John P. Atkinson
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| |
Collapse
|
13
|
Thurman JM, Harrison RA. The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 2023; 313:327-338. [PMID: 36369971 DOI: 10.1111/imr.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
14
|
Schubart A, Flohr S, Junt T, Eder J. Low-molecular weight inhibitors of the alternative complement pathway. Immunol Rev 2023; 313:339-357. [PMID: 36217774 PMCID: PMC10092480 DOI: 10.1111/imr.13143] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of the alternative complement pathway predisposes individuals to a number of diseases. It can either be evoked by genetic alterations in or by stabilizing antibodies to important pathway components and typically leads to severe diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. In addition, the alternative pathway may also be involved in many other diseases where its amplifying function for all complement pathways might play a role. To identify specific alternative pathway inhibitors that qualify as therapeutics for these diseases, drug discovery efforts have focused on the two central proteases of the pathway, factor B and factor D. Although drug discovery has been challenging for a number of reasons, potent and selective low-molecular weight (LMW) oral inhibitors have now been discovered for both proteases and several molecules are in clinical development for multiple complement-mediated diseases. While the clinical development of these inhibitors initially focuses on diseases with systemic and/or peripheral tissue complement activation, the availability of LMW inhibitors may also open up the prospect of inhibiting complement in the central nervous system where its activation may also play an important role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Schubart
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefanie Flohr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
15
|
Schmidt CQ, Smith RJH. Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multi-protein cascade of the complement system. Immunol Rev 2023; 313:376-401. [PMID: 36398537 PMCID: PMC9852015 DOI: 10.1111/imr.13164] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.
Collapse
Affiliation(s)
- Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J. H. Smith
- Departments of Internal Medicine and Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Abstract
Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.
Collapse
Affiliation(s)
- Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
17
|
Harrison RA, Harris CL, Thurman JM. The complement alternative pathway in health and disease-activation or amplification? Immunol Rev 2023; 313:6-14. [PMID: 36424888 DOI: 10.1111/imr.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Joshua M Thurman
- University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
18
|
Collins KH, Gui C, Ely EV, Lenz KL, Harris CA, Guilak F, Meyer GA. Leptin mediates the regulation of muscle mass and strength by adipose tissue. J Physiol 2022; 600:3795-3817. [PMID: 35844058 PMCID: PMC9378542 DOI: 10.1113/jp283034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Adipose tissue secretes numerous cytokines (termed 'adipokines') that have known or hypothesized actions on skeletal muscle. The majority of adipokines have been implicated in the pathological link between excess adipose and muscle insulin resistance, but approximately half also have documented in vitro effects on myogenesis and/or hypertrophy. This complexity suggests a potential dual role for adipokines in the regulation of muscle mass in homeostasis and the development of pathology. In this study, we used lipodystrophic 'fat-free' mice to demonstrate that adipose tissue is indeed necessary for the development of normal muscle mass and strength. Fat-free mice had significantly reduced mass (∼15%) and peak contractile tension (∼20%) of fast-twitch muscles, a slowing of contractile dynamics and decreased cross-sectional area of fast twitch fibres compared to wild-type littermates. These deficits in mass and contractile tension were fully rescued by reconstitution of ∼10% of normal adipose mass, indicating that this phenotype is the direct consequence of absent adipose. We then showed that the rescue is solely mediated by the adipokine leptin, as similar reconstitution of adipose from leptin-knockout mice fails to rescue mass or strength. Together, these data indicate that the development of muscle mass and strength in wild-type mice is dependent on adipose-secreted leptin. This finding extends our current understanding of the multiple roles of adipokines in physiology as well as disease pathophysiology to include a critical role for the adipokine leptin in muscle homeostasis. KEY POINTS: Adipose-derived cytokines (adipokines) have long been implicated in the pathogenesis of insulin resistance in obesity but likely have other under-appreciated roles in muscle physiology. Here we use a fat-free mouse to show that adipose tissue is necessary for the normal development of muscle mass and strength. Through add-back of genetically modified adipose tissue we show that leptin is the key adipokine mediating this regulation. This expands our understanding of leptin's role in adipose-muscle signalling to include development and homeostasis and adds the surprising finding that leptin is the sole mediator of the maintenance of muscle mass and strength by adipose tissue.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Shriners Hospitals for ChildrenSt LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA
| | - Chang Gui
- Department of Biomedical EngineeringWashington University in St. LouisMOUSA,Program in Physical TherapyWashington UniversitySt LouisMOUSA
| | - Erica V. Ely
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Shriners Hospitals for ChildrenSt LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA,Department of Biomedical EngineeringWashington University in St. LouisMOUSA
| | - Kristin L. Lenz
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Shriners Hospitals for ChildrenSt LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA
| | - Charles A. Harris
- Division of EndocrinologyMetabolism & Lipid ResearchWashington UniversitySt LouisMissouriUSA
| | - Farshid Guilak
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Shriners Hospitals for ChildrenSt LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA,Department of Biomedical EngineeringWashington University in St. LouisMOUSA
| | - Gretchen A. Meyer
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA,Department of Biomedical EngineeringWashington University in St. LouisMOUSA,Program in Physical TherapyWashington UniversitySt LouisMOUSA,Department of NeurologyWashington University in St. LouisSt LouisMOUSA
| |
Collapse
|
19
|
Milek M, Moulla Y, Kern M, Stroh C, Dietrich A, Schön MR, Gärtner D, Lohmann T, Dressler M, Kovacs P, Stumvoll M, Blüher M, Guiu-Jurado E. Adipsin Serum Concentrations and Adipose Tissue Expression in People with Obesity and Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23042222. [PMID: 35216336 PMCID: PMC8878597 DOI: 10.3390/ijms23042222] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Adipsin is an adipokine that may link increased fat mass and adipose tissue dysfunction to obesity-related cardiometabolic diseases. Here, we investigated whether adipsin serum concentrations and adipose tissue (AT) adipsin mRNA expression are related to parameters of AT function, obesity and type 2 diabetes (T2D). (2) Methods: A cohort of 637 individuals with a wide range of age and body weight (Age: 18–85 years; BMI: 19–70 kg/m2) with (n = 237) or without (n = 400) T2D was analyzed for serum adipsin concentrations by ELISA and visceral (VAT) and subcutaneous (SAT) adipsin mRNA expression by RT-PCR. (3) Results: Adipsin serum concentrations were significantly higher in patients with T2D compared to normoglycemic individuals. We found significant positive univariate relationships of adipsin serum concentrations with age (r = 0.282, p < 0.001), body weight (r = 0.264, p < 0.001), fasting plasma glucose (r = 0.136, p = 0.006) and leptin serum concentrations (r = 0.362, p < 0.001). Neither VAT nor SAT adipsin mRNA expression correlated with adipsin serum concentrations after adjusting for age, sex and BMI. Independent of T2D status, we found significantly higher adipsin expression in SAT compared to VAT (4) Conclusions: Our data suggest that adipsin serum concentrations are strongly related to obesity and age. However, neither circulating adipsin nor adipsin AT expression reflects parameters of impaired glucose or lipid metabolism in patients with obesity with or without T2D.
Collapse
Affiliation(s)
- Margarete Milek
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; (M.M.); (P.K.); (M.S.)
| | - Yusef Moulla
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (Y.M.); (A.D.)
| | - Matthias Kern
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Christine Stroh
- Department of General, Abdominal and Pediatric Surgery, Municipal Hospital, 07548 Gera, Germany;
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (Y.M.); (A.D.)
| | - Michael R Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, 76133 Karlsruhe, Germany; (M.R.S.); (D.G.)
| | - Daniel Gärtner
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, 76133 Karlsruhe, Germany; (M.R.S.); (D.G.)
| | - Tobias Lohmann
- Municipal Clinic Dresden-Neustadt, 01129 Dresden, Germany; (T.L.); (M.D.)
| | - Miriam Dressler
- Municipal Clinic Dresden-Neustadt, 01129 Dresden, Germany; (T.L.); (M.D.)
| | - Peter Kovacs
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; (M.M.); (P.K.); (M.S.)
| | - Michael Stumvoll
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; (M.M.); (P.K.); (M.S.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Matthias Blüher
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; (M.M.); (P.K.); (M.S.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Correspondence: (M.B.); (E.G.-J.); Tel.: +49-341-972-2901 (M.B.); +49-341-971-5895 (E.G.-J.)
| | - Esther Guiu-Jurado
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; (M.M.); (P.K.); (M.S.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Deutsches Zentrum für Diabetesforschung e.V., 85764 Oberschleißheim, Germany
- Correspondence: (M.B.); (E.G.-J.); Tel.: +49-341-972-2901 (M.B.); +49-341-971-5895 (E.G.-J.)
| |
Collapse
|
20
|
Poppelaars F, Faria B, Schwaeble W, Daha MR. The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases? J Clin Med 2021; 10:4715. [PMID: 34682837 PMCID: PMC8539100 DOI: 10.3390/jcm10204715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
Primary IgA nephropathy (IgAN) is a leading cause of chronic kidney disease and kidney failure for which there is no disease-specific treatment. However, this could change, since novel therapeutic approaches are currently being assessed in clinical trials, including complement-targeting therapies. An improved understanding of the role of the lectin and the alternative pathway of complement in the pathophysiology of IgAN has led to the development of these treatment strategies. Recently, in a phase 2 trial, treatment with a blocking antibody against mannose-binding protein-associated serine protease 2 (MASP-2, a crucial enzyme of the lectin pathway) was suggested to have a potential benefit for IgAN. Now in a phase 3 study, this MASP-2 inhibitor for the treatment of IgAN could mark the start of a new era of complement therapeutics where common diseases can be treated with these drugs. The clinical development of complement inhibitors requires a better understanding by physicians of the biology of complement, the pathogenic role of complement in IgAN, and complement-targeted therapies. The purpose of this review is to provide an overview of the role of complement in IgAN, including the recent discovery of new mechanisms of complement activation and opportunities for complement inhibitors as the treatment of IgAN.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
| | - Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Mohamed R. Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Department of Nephrology, Leiden University Medical Center, University of Leiden, 2300 RC Leiden, The Netherlands
| |
Collapse
|
21
|
Barratt J, Weitz I. Complement Factor D as a Strategic Target for Regulating the Alternative Complement Pathway. Front Immunol 2021; 12:712572. [PMID: 34566967 PMCID: PMC8458797 DOI: 10.3389/fimmu.2021.712572] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Ilene Weitz
- Jane Anne Nohl Division of Hematology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
22
|
Mizuno M, Khaledian B, Maeda M, Hayashi T, Mizuno S, Munetsuna E, Watanabe T, Kono S, Okada S, Suzuki M, Takao S, Minami H, Asai N, Sugiyama F, Takahashi S, Shimono Y. Adipsin-Dependent Secretion of Hepatocyte Growth Factor Regulates the Adipocyte-Cancer Stem Cell Interaction. Cancers (Basel) 2021; 13:cancers13164238. [PMID: 34439392 PMCID: PMC8393397 DOI: 10.3390/cancers13164238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Obesity, which is characterized by the excess of adipose tissue, is associated with an increased risk of multiple cancers. We have previously reported that adipsin, a secreted factor from adipocytes, enhances cancer cell proliferation and stem cell properties. In this study, we found that adipsin affected adipocytes themselves and enhanced their secretion of hepatocyte growth factor (HGF). We found that HGF enhanced the adipocyte-cancer cell interactions as a downstream effector of adipsin. Understanding the adipocyte-cancer cell interaction will provide a novel strategy to treat cancers whose initiation, invasion, and metastatic progression are associated with adipose tissues. Abstract Adipose tissue is a component of the tumor microenvironment and is involved in tumor progression. We have previously shown that adipokine adipsin (CFD) functions as an enhancer of tumor proliferation and cancer stem cell (CSC) properties in breast cancers. We established the Cfd-knockout (KO) mice and the mammary adipose tissue-derived stem cells (mADSCs) from them. Cfd-KO in mADSCs significantly reduced their ability to enhance tumorsphere formation of breast cancer patient-derived xenograft (PDX) cells, which was restored by the addition of Cfd in the culture medium. Hepatocyte growth factor (HGF) was expressed and secreted from mADSCs in a Cfd-dependent manner. HGF rescued the reduced ability of Cfd-KO mADSCs to promote tumorsphere formation in vitro and tumor formation in vivo by breast cancer PDX cells. These results suggest that HGF is a downstream effector of Cfd in mADSCs that enhances the CSC properties in breast cancers.
Collapse
Affiliation(s)
- Masahiro Mizuno
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Behnoush Khaledian
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Masao Maeda
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
- Department of Pathology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Takanori Hayashi
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Takashi Watanabe
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
| | - Seishi Kono
- Division of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (S.K.); (S.T.)
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan;
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Shintaro Takao
- Division of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (S.K.); (S.T.)
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 6500017, Japan;
| | - Naoya Asai
- Department of Pathology, Fujita Health University School of Medicine, Toyoake 4701192, Japan;
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 3058575, Japan; (S.M.); (F.S.); (S.T.)
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 4701192, Japan or (M.M.); (B.K.); (M.M.); (T.H.); (E.M.); (T.W.)
- Correspondence: ; Tel.: +81-562-932-450
| |
Collapse
|
23
|
Zhang X, Robles H, Magee L K, Lorenz R M, Wang Z, Harris A C, Craft S C, Scheller L E. A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. eLife 2021; 10:66275. [PMID: 34378533 PMCID: PMC8412938 DOI: 10.7554/elife.66275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Bone marrow adipocytes accumulate with age and in diverse disease states. However, their origins and adaptations in these conditions remain unclear, impairing our understanding of their context-specific endocrine functions and relationship with surrounding tissues. In this study, by analyzing bone and adipose tissues in the lipodystrophic ‘fat-free’ mouse, we define a novel, secondary adipogenesis pathway that relies on the recruitment of adiponectin-negative stromal progenitors. This pathway is unique to the bone marrow and is activated with age and in states of metabolic stress in the fat-free mouse model, resulting in the expansion of bone marrow adipocytes specialized for lipid storage with compromised lipid mobilization and cytokine expression within regions traditionally devoted to hematopoiesis. This finding further distinguishes bone marrow from peripheral adipocytes and contributes to our understanding of bone marrow adipocyte origins, adaptations, and relationships with surrounding tissues with age and disease.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States.,Department of Biomedical Engineering, Washington University, Saint Louis, United States
| | - Hero Robles
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States
| | - Kristann Magee L
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States
| | - Madelyn Lorenz R
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States
| | - Zhaohua Wang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States.,Department of Orthopaedic Surgery, Washington University, Saint Louis, United States
| | - Charles Harris A
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, Saint Louis, United States
| | - Clarissa Craft S
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States
| | - Erica Scheller L
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, United States.,Department of Biomedical Engineering, Washington University, Saint Louis, United States
| |
Collapse
|
24
|
Collins KH, Schwartz DJ, Lenz KL, Harris CA, Guilak F. Taxonomic changes in the gut microbiota are associated with cartilage damage independent of adiposity, high fat diet, and joint injury. Sci Rep 2021; 11:14560. [PMID: 34267289 PMCID: PMC8282619 DOI: 10.1038/s41598-021-94125-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Drew J Schwartz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO, USA
- Early Clinical Development & Experimental Sciences, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA.
- Shriners Hospitals for Children, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.
| |
Collapse
|
25
|
Kim BJ, Mastellos DC, Li Y, Dunaief JL, Lambris JD. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog Retin Eye Res 2021; 83:100936. [PMID: 33321207 PMCID: PMC8197769 DOI: 10.1016/j.preteyeres.2020.100936] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) remains a major cause of legal blindness, and treatment for the geographic atrophy form of AMD is a significant unmet need. Dysregulation of the complement cascade is thought to be instrumental for AMD pathophysiology. In particular, C3 and C5 are pivotal components of the complement cascade and have become leading therapeutic targets for AMD. In this article, we discuss C3 and C5 in detail, including their roles in AMD, biochemical and structural aspects, locations of expression, and the functions of C3 and C5 fragments. Further, the article critically reviews developing therapeutics aimed at C3 and C5, underscoring the potential effects of broad inhibition of complement at the level of C3 versus more specific inhibition at C5. The relationships of complement biology to the inflammasome and microglia/macrophage activity are highlighted. Concepts of C3 and C5 biology will be emphasized, while we point out questions that need to be settled and directions for future investigations.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Yafeng Li
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
King BC, Blom AM. Complement in metabolic disease: metaflammation and a two-edged sword. Semin Immunopathol 2021; 43:829-841. [PMID: 34159399 PMCID: PMC8613079 DOI: 10.1007/s00281-021-00873-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023]
Abstract
We are currently experiencing an enduring global epidemic of obesity and diabetes. It is now understood that chronic low-grade tissue inflammation plays an important role in metabolic disease, brought upon by increased uptake of a so-called Western diet, and a more sedentary lifestyle. Many evolutionarily conserved links exist between metabolism and the immune system, and an imbalance in this system induced by chronic over-nutrition has been termed 'metaflammation'. The complement system is an important and evolutionarily ancient part of innate immunity, but recent work has revealed that complement not only is involved in the recognition of pathogens and induction of inflammation, but also plays important roles in cellular and tissue homeostasis. Complement can therefore contribute both positively and negatively to metabolic control, depending on the nature and anatomical site of its activity. This review will therefore focus on the interactions of complement with mechanisms and tissues relevant for metabolic control, obesity and diabetes.
Collapse
Affiliation(s)
- B C King
- Department of Translational Medicine, Lund University, Lund, Sweden.
| | - A M Blom
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Corvillo F, González-Sánchez L, López-Lera A, Arjona E, Ceccarini G, Santini F, Araújo-Vilar D, Brown RJ, Villarroya J, Villarroya F, Rodríguez de Córdoba S, Caballero T, Nozal P, López-Trascasa M. Complement Factor D (adipsin) Levels Are Elevated in Acquired Partial Lipodystrophy (Barraquer-Simons syndrome). Int J Mol Sci 2021; 22:ijms22126608. [PMID: 34205507 PMCID: PMC8234012 DOI: 10.3390/ijms22126608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
Complement overactivation has been reported in most patients with Barraquer-Simons syndrome (BSS), a rare form of acquired partial lipodystrophy. Complement Factor D (FD) is a serine protease with a crucial role in the activation of the alternative pathway of the complement system, which is mainly synthesized by adipose tissue. However, its role in the pathogenesis of BSS has not been addressed. In this study, plasma FD concentration was measured in 13 patients with BSS, 20 patients with acquired generalized lipodystrophy, 22 patients with C3 glomerulopathy (C3G), and 50 healthy controls. Gene expression and immunohistochemistry studies were assayed using atrophied adipose tissue from a patient with BSS. We found significantly elevated FD levels in BSS cases compared with the remaining cohorts (p < 0.001). There were no significant differences in FD levels between sexes but FD was strongly and directly associated with age in BSS (r = 0.7593, p = 0.0036). A positive correlation between FD and C3 was seen in patients with C3G, characterized by decreased FD levels due to chronic C3 consumption, but no correlation was detected for BSS. Following mRNA quantification in the patient's adipose tissue, we observed decreased CFD and C3 but elevated C5 transcript levels. In contrast, the increased FD staining detected in the atrophied areas reflects the effects of persistent tissue damage on the adipose tissue, thus providing information on the ongoing pathogenic process. Our results suggest that FD could be a reliable diagnostic biomarker involved in the pathophysiology of BSS by promoting unrestrained local complement system activation in the adipose tissue environment.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Correspondence: Correspondence: ; Tel.: +34-912-072-297
| | - Laura González-Sánchez
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
| | - Alberto López-Lera
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
| | - Emilia Arjona
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Department of Molecular Biomedicine, Margarita Salas Center for Biological Research, 28040 Madrid, Spain
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center at the Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56126 Pisa, Italy; (G.C.); (F.S.)
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center at the Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56126 Pisa, Italy; (G.C.); (F.S.)
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15703 Santiago de Compostela, Spain;
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Joan Villarroya
- Departament de Bioquimica I Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain; (J.V.); (F.V.)
- CIBER Fisiopatología de La Obesidad Y Nutrición, 28029 Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquimica I Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain; (J.V.); (F.V.)
- CIBER Fisiopatología de La Obesidad Y Nutrición, 28029 Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Department of Molecular Biomedicine, Margarita Salas Center for Biological Research, 28040 Madrid, Spain
| | - Teresa Caballero
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Department of Allergy, La Paz University Hospital, 28046 Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Immunology Unit, La Paz University Hospital, 28046 Madrid, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
28
|
Langereis JD, van der Molen RG, de Kat Angelino C, Henriet SS, de Jonge MI, Joosten I, Simons A, Schuurs-Hoeijmakers JH, van Deuren M, van Aerde K, van der Flier M. Complement factor D haplodeficiency is associated with a reduced complement activation speed and diminished bacterial killing. Clin Transl Immunology 2021; 10:e1256. [PMID: 33841879 PMCID: PMC8019133 DOI: 10.1002/cti2.1256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
Objectives Complete deficiency of alternative pathway (AP) complement factors, explained by homozygous mutations, is a well‐known risk factor for invasive bacterial infections; however, this is less obvious for heterozygous mutations. We describe two siblings with a heterozygous NM_001928.3(CFD):c.125C>A p.(Ser42*) mutation in the complement factor D (fD) gene having a history of recurrent bacterial infections. We determined the effect of heterozygous fD deficiency on AP complement activity. Methods We determined the effect of fD levels on complement activation as measured by AP activity, complement C3 binding to the bacterial surface of Neisseria meningitidis (Nm), Streptococcus pneumoniae (Sp) and non‐typeable Haemophilus influenzae (NTHi), and complement‐mediated killing of Nm and NTHi. In addition, we measured the effect of vaccination of complement C3 binding to the bacterial surface and killing of Nm. Results Reconstitution of fD‐deficient serum with fD increased AP activity in a dose‐ and time‐dependent way. Reconstitution of patient serum with fD to normal levels increased complement C3 binding to Sp, Nm and NTHi, as well as complement‐mediated killing of Nm and NTHi. Vaccination increased complement C3 binding and resulted in complete killing of Nm without fD reconstitution. Conclusion We conclude that low fD serum levels (< 0.5 μg mL−1) lead to a reduced speed of complement activation, which results in diminished bacterial killing, consistent with recurrent bacterial infections observed in our index patients. Specific antibodies induced by vaccination are able to overcome the diminished bacterial killing capacity in patients with low fD levels.
Collapse
Affiliation(s)
- Jeroen D Langereis
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Corrie de Kat Angelino
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Stefanie S Henriet
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Annet Simons
- Department of Human Genetics Radboudumc Nijmegen The Netherlands
| | | | - Marcel van Deuren
- Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands.,Department of Internal Medicine Division of Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Koen van Aerde
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands
| | - Michiel van der Flier
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands.,Present address: Pediatric Infectious Diseases and Immunology Wilhelmina Children's Hospital UMC Utrecht Utrecht The Netherlands
| |
Collapse
|
29
|
Sun R, Qiao Y, Yan G, Wang D, Zuo W, Ji Z, Zhang X, Yao Y, Ma G, Tang C. Association between serum adipsin and plaque vulnerability determined by optical coherence tomography in patients with coronary artery disease. J Thorac Dis 2021; 13:2414-2425. [PMID: 34012589 PMCID: PMC8107545 DOI: 10.21037/jtd-21-259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Early identification of vulnerable plaques is important for patients with coronary artery disease (CAD) to reduce acute coronary events and improve their prognosis. We sought to examine the relationship between adipsin, an adipokine secreted from adipocytes, and plaque vulnerability in CAD patients. Methods A total of 103 plaques from 99 consecutive patients who underwent coronary angiography were assessed by optical coherence tomography. The serum level of adipsin was measured using enzyme-linked immunosorbent assay (ELISA). The accuracy of adipsin for detecting thin-cap fibroatheroma (TCFA) was determined by the area under the receiver operating characteristic curve (AUC). Results Of the 99 patients, 49 were classified into the low adipsin group and 50 into the high adipsin group according to the median level of serum adipsin (2.43 µg/mL). The plaques from the high adipsin group exhibited a greater lipid index (2,700.0 vs. 1,975.9° × mm, P=0.015) and an increased proportion of TCFAs (41.2% vs. 21.2%, P=0.028) compared with the low adipsin group. Serum adipsin was found to be negatively correlated with fibrous cap thickness (ρ=−0.322, P=0.002), while it was positively correlated with average lipid arc (ρ=0.253, P=0.015), maximum lipid arc (ρ=0.211, P=0.044), lipid core length (ρ=0.241, P=0.021), lipid index (ρ=0.335, P=0.001), and vulnerability score (ρ=0.254, P=0.014). Furthermore, adipsin had a significant association with TCFAs (OR: 1.290, 95% CI: 1.048–1.589, P=0.016) in the multivariate analysis, while having a moderate diagnostic accuracy for TCFAs (AUC: 0.710, 95% CI: 0.602–0.817, P<0.001). Conclusions Our findings suggest that serum adipsin is significantly and positively correlated with the incidence of TCFAs. The application of adipsin as a biomarker may offer improvement in the diagnosis of vulnerable plaques and clinical benefits for CAD patients.
Collapse
Affiliation(s)
- Renhua Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Department of Cardiology, Yancheng No.1 People's Hospital, Yancheng, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoguo Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Collins KH, Lenz KL, Pollitt EN, Ferguson D, Hutson I, Springer LE, Oestreich AK, Tang R, Choi YR, Meyer GA, Teitelbaum SL, Pham CTN, Harris CA, Guilak F. Adipose tissue is a critical regulator of osteoarthritis. Proc Natl Acad Sci U S A 2021; 118:e2021096118. [PMID: 33443201 PMCID: PMC7817130 DOI: 10.1073/pnas.2021096118] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Eleanor N Pollitt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Daniel Ferguson
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Irina Hutson
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Luke E Springer
- Division of Rheumatology, Washington University, St. Louis, MO 63110
| | - Arin K Oestreich
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Yun-Rak Choi
- Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Gretchen A Meyer
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Program in Physical Therapy, Washington University, St. Louis, MO 63110
| | - Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110
| | | | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110;
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| |
Collapse
|
31
|
|
32
|
Caruso A, Vollmer J, Machacek M, Kortvely E. Modeling the activation of the alternative complement pathway and its effects on hemolysis in health and disease. PLoS Comput Biol 2020; 16:e1008139. [PMID: 33006965 PMCID: PMC7531836 DOI: 10.1371/journal.pcbi.1008139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a powerful mechanism of innate immunity poised to eliminate foreign cells and pathogens. It is an intricate network of >35 proteins, which, once activated, leads to the tagging of the surface to be eliminated, produces potent chemoattractants to recruit immune cells, and inserts cytotoxic pores into nearby lipid surfaces. Although it can be triggered via different pathways, its net output is largely based on the direct or indirect activation of the alternative pathway. Complement dysregulation or deficiencies may cause severe pathologies, such as paroxysmal nocturnal hemoglobinuria (PNH), where a lack of complement control proteins leads to hemolysis and life-threatening anemia. The complexity of the system poses a challenge for the interpretation of experimental data and the design of effective pharmacological therapies. To address this issue, we developed a mathematical model of the alternative complement pathway building on previous modelling efforts. The model links complement activation to the hemolytic activity of the terminal alternative pathway, providing an accurate description of pathway activity as observed in vitro and in vivo, in health and disease. Through adjustment of the parameters describing experimental conditions, the model was capable of reproducing the results of an array of standard assays used in complement research. To demonstrate its clinical applicability, we compared model predictions with clinical observations of the recovery of hematological biomarkers in PNH patients treated with the complement inhibiting anti-C5 antibody eculizumab. In conclusion, the model can enhance the understanding of complement biology and its role in disease pathogenesis, help identifying promising targets for pharmacological intervention, and predict the outcome of complement-targeting pharmacological interventions.
Collapse
Affiliation(s)
- Antonello Caruso
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Elod Kortvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
33
|
Li Y, Zou W, Brestoff JR, Rohatgi N, Wu X, Atkinson JP, Harris CA, Teitelbaum SL. Fat-Produced Adipsin Regulates Inflammatory Arthritis. Cell Rep 2020; 27:2809-2816.e3. [PMID: 31167128 DOI: 10.1016/j.celrep.2019.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
We explored the relationship of obesity and inflammatory arthritis (IA) by selectively expressing diphtheria toxin in adipose tissue yielding "fat-free" (FF) mice completely lacking white and brown fat. FF mice exhibit systemic neutrophilia and elevated serum acute phase proteins suggesting a predisposition to severe IA. Surprisingly, FF mice are resistant to K/BxN serum-induced IA and attendant bone destruction. Despite robust systemic basal neutrophilia, neutrophil infiltration into joints of FF mice does not occur when challenged with K/BxN serum. Absence of adiponectin, leptin, or both has no effect on joint disease, but deletion of the adipokine adipsin (complement factor D) completely prevents serum-induced IA. Confirming that fat-expressed adipsin modulates the disorder, transplantation of wild-type (WT) adipose tissue into FF mice restores susceptibility to IA, whereas recipients of adipsin-deficient fat remain resistant. Thus, adipose tissue regulates development of IA through a pathway in which adipocytes modify neutrophil responses in distant tissues by producing adipsin.
Collapse
Affiliation(s)
- Yongjia Li
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles A Harris
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA.
| |
Collapse
|
34
|
Biltz NK, Collins KH, Shen KC, Schwartz K, Harris CA, Meyer GA. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J Physiol 2020; 598:2669-2683. [PMID: 32358797 PMCID: PMC8767374 DOI: 10.1113/jp279595] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Muscle infiltration with adipose tissue (IMAT) is common and associated with loss of skeletal muscle strength and physical function across a diverse set of pathologies. Whether the association between IMAT and muscle weakness is causative or simply correlative remains an open question that needs to be addressed to effectively guide muscle strengthening interventions in people with increased IMAT. In the present studies, we demonstrate that IMAT deposition causes decreased muscle strength using mouse models. These findings indicate IMAT is a novel therapeutic target for muscle dysfunction. ABSTRACT Intramuscular adipose tissue (IMAT) is associated with deficits in strength and physical function across a wide array of conditions, from injury to ageing to metabolic disease. Due to the diverse aetiologies of the primary disorders involving IMAT and the strength of the associations, it has long been proposed that IMAT directly contributes to this muscle dysfunction. However, infiltration of IMAT and reduced strength could both be driven by muscle disuse, injury and systemic disease, making IMAT simply an 'innocent bystander.' Here, we utilize novel mouse models to evaluate the direct effect of IMAT on muscle contraction. First, we utilize intramuscular glycerol injection in wild-type mice to evaluate IMAT in the absence of systemic disease. In this model we find that, in isolation from the neuromuscular and circulatory systems, there remains a muscle-intrinsic association between increased IMAT volume and decreased contractile tension (r2 > 0.5, P < 0.01) that cannot be explained by reduction in contractile material. Second, we utilize a lipodystrophic mouse model which cannot generate adipocytes to 'rescue' the deficits. We demonstrate that without IMAT infiltration, glycerol treatment does not reduce contractile force (P > 0.8). Taken together, this indicates that IMAT is not an inert feature of muscle pathology but rather has a direct impact on muscle contraction. This finding suggests that novel strategies targeting IMAT may improve muscle strength and function in a number of populations.
Collapse
Affiliation(s)
- Nicole K Biltz
- Program in Physical Therapy, Washington University, St. Louis, MO
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO
- Shriners Hospitals for Children, St. Louis, MO
| | - Karen C Shen
- Program in Physical Therapy, Washington University, St. Louis, MO
| | | | - Charles A Harris
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University, St. Louis, MO
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University, St. Louis, MO
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO
- Departments of Neurology and Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
35
|
Brenot A, Hutson I, Harris C. Epithelial-adipocyte interactions are required for mammary gland development, but not for milk production or fertility. Dev Biol 2020; 458:153-163. [PMID: 31697938 PMCID: PMC6995771 DOI: 10.1016/j.ydbio.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
To investigate the role of adipose tissue in reproductive function and mammary gland development and function, we have examined lipodystrophic (LD) mice. LD mice of both sexes are sterile, but fertility can be restored with leptin injections. Mammary glands from lipodystrophic mice were rudimentary and lacked terminal end buds. Leptin-injected LD mice were able to become pregnant, showed normal pregnancy-associated glandular proliferation despite a smaller glandular area, were able to produce a small amount of milk that had grossly normal content of milk proteins and neutral lipids, but could not sustain pups to weaning. In order to separate the individual requirements for 1) adipokines such as leptin, 2) estradiol, and 3) physical epithelial-adipocyte interactions, we performed a series of experiments with both lipodystrophic mice and ob (obese mice with a mutation in the lep gene encoding the adipokine leptin) mice that received either estradiol treatment or preadipocyte transplant. The resulting fat pad did not rescue the defect in mammary gland development in lipodystrophic mice. The defect also could not be rescued with estradiol pellets. Ob/ob mice, like LD mice, lack leptin and estradiol, but retain adipose tissue. Ob mice have defective mammary gland development. However, in striking contrast to what was observed in lipodystrophic mice, reconstitution of a WT fat pad in ob mice rescued the defect in mammary gland development. Estradiol treatment did not rescue mammary gland development in ob mice. Therefore direct interaction between mammary gland epithelia and adipocytes is a requirement for full invasion and expansion of the gland, but is not required for glandular proliferation during pregnancy and milk production.
Collapse
Affiliation(s)
- Audrey Brenot
- Department of Medicine, Divisions of Hematology and Oncology, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Irina Hutson
- Department of Medicine, Divisions of Endocrinology, Metabolism and Lipid Research, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Charles Harris
- Department of Medicine, Divisions of Endocrinology, Metabolism and Lipid Research, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO, 63110, United States; Medicine Service, Division of Endocrinology, St. Louis VA Medical Center, 915 N Grand Avenue, St. Louis, MO, 63106, United States.
| |
Collapse
|
36
|
Corvillo F, Ceccarini G, Nozal P, Magno S, Pelosini C, Garrido S, López-Lera A, Moraru M, Vilches C, Fornaciari S, Gabbriellini S, Santini F, Araújo-Vilar D, López-Trascasa M. Immunological features of patients affected by Barraquer-Simons syndrome. Orphanet J Rare Dis 2020; 15:9. [PMID: 31924231 PMCID: PMC6954565 DOI: 10.1186/s13023-019-1292-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023] Open
Abstract
Background C3 hypocomplementemia and the presence of C3 nephritic factor (C3NeF), an autoantibody causing complement system over-activation, are common features among most patients affected by Barraquer-Simons syndrome (BSS), an acquired form of partial lipodystrophy. Moreover, BSS is frequently associated with autoimmune diseases. However, the relationship between complement system dysregulation and BSS remains to be fully elucidated. The aim of this study was to provide a comprehensive immunological analysis of the complement system status, autoantibody signatures and HLA profile in BSS. Thirteen subjects with BSS were recruited for the study. The circulating levels of complement components, C3, C4, Factor B (FB) and Properdin (P), as well as an extended autoantibody profile including autoantibodies targeting complement components and regulators were assessed in serum. Additionally, HLA genotyping was carried out using DNA extracted from peripheral blood mononuclear cells. Results C3, C4 and FB levels were significantly reduced in patients with BSS as compared with healthy subjects. C3NeF was the most frequently found autoantibody (69.2% of cases), followed by anti-C3 (38.5%), and anti-P and anti-FB (30.8% each). Clinical data showed high prevalence of autoimmune diseases (38.5%), the majority of patients (61.5%) being positive for at least one of the autoantibodies tested. The HLA allele DRB1*11 was present in 54% of BSS patients, and the majority of them (31%) were positive for *11:03 (vs 1.3% allelic frequency in the general population). Conclusions Our results confirmed the association between BSS, autoimmunity and C3 hypocomplementemia. Moreover, the finding of autoantibodies targeting complement system proteins points to complement dysregulation as a central pathological event in the development of BSS.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Unit of Immunology, La Paz University Hospital, Madrid, Spain
| | - Silvia Magno
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Sofía Garrido
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Unit of Immunology, La Paz University Hospital, Madrid, Spain
| | - Alberto López-Lera
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Manuela Moraru
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | | | | | - Ferruccio Santini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - David Araújo-Vilar
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS-IDIS), School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
38
|
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 2019; 15:507-524. [PMID: 31296970 DOI: 10.1038/s41574-019-0230-6] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
In addition to their role in glucose and lipid metabolism, adipocytes respond differentially to physiological cues or metabolic stress by releasing endocrine factors that regulate diverse processes, such as energy expenditure, appetite control, glucose homeostasis, insulin sensitivity, inflammation and tissue repair. Both energy-storing white adipocytes and thermogenic brown and beige adipocytes secrete hormones, which can be peptides (adipokines), lipids (lipokines) and exosomal microRNAs. Some of these factors have defined targets; for example, adiponectin and leptin signal through their respective receptors that are expressed in multiple organs. For other adipocyte hormones, receptors are more promiscuous or remain to be identified. Furthermore, many of these hormones are also produced by other organs and tissues, which makes defining the endocrine contribution of adipose tissues a challenge. In this Review, we discuss the functional role of adipose tissue-derived endocrine hormones for metabolic adaptations to the environment and we highlight how these factors contribute to the development of cardiometabolic diseases. We also cover how this knowledge can be translated into human therapies. In addition, we discuss recent findings that emphasize the endocrine role of white versus thermogenic adipocytes in conditions of health and disease.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
39
|
Proteomic analysis reveals greater abundance of complement and inflammatory proteins in subcutaneous adipose tissue from postpartum cows treated with sodium salicylate. J Proteomics 2019; 204:103399. [DOI: 10.1016/j.jprot.2019.103399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
|
40
|
Zou W, Rohatgi N, Brestoff JR, Zhang Y, Scheller EL, Craft CS, Brodt MD, Migotsky N, Silva MJ, Harris CA, Teitelbaum SL. Congenital lipodystrophy induces severe osteosclerosis. PLoS Genet 2019; 15:e1008244. [PMID: 31233501 PMCID: PMC6611650 DOI: 10.1371/journal.pgen.1008244] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/05/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
Berardinelli-Seip congenital generalized lipodystrophy is associated with increased bone mass suggesting that fat tissue regulates the skeleton. Because there is little mechanistic information regarding this issue, we generated "fat-free" (FF) mice completely lacking visible visceral, subcutaneous and brown fat. Due to robust osteoblastic activity, trabecular and cortical bone volume is markedly enhanced in these animals. FF mice, like Berardinelli-Seip patients, are diabetic but normalization of glucose tolerance and significant reduction in circulating insulin fails to alter their skeletal phenotype. Importantly, the skeletal phenotype of FF mice is completely rescued by transplantation of adipocyte precursors or white or brown fat depots, indicating that adipocyte derived products regulate bone mass. Confirming such is the case, transplantation of fat derived from adiponectin and leptin double knockout mice, unlike that obtained from their WT counterparts, fails to normalize FF bone. These observations suggest a paucity of leptin and adiponectin may contribute to the increased bone mass of Berardinelli-Seip patients.
Collapse
Affiliation(s)
- Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jonathan R. Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Yan Zhang
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, People’s Republic of China
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Clarissa S. Craft
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Michael D. Brodt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Nicole Migotsky
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Matthew J. Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles A. Harris
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven L. Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
41
|
Buechler MB, Kim KW, Onufer EJ, Williams JW, Little CC, Dominguez CX, Li Q, Sandoval W, Cooper JE, Harris CA, Junttila MR, Randolph GJ, Turley SJ. A Stromal Niche Defined by Expression of the Transcription Factor WT1 Mediates Programming and Homeostasis of Cavity-Resident Macrophages. Immunity 2019; 51:119-130.e5. [PMID: 31231034 DOI: 10.1016/j.immuni.2019.05.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/20/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022]
Abstract
Tissue-resident macrophages require specific milieus for the maintenance of defining gene-expression programs. Expression of the transcription factor GATA6 is required for the homeostasis, function and localization of peritoneal cavity-resident macrophages. Gata6 expression is maintained in a non-cell autonomous manner and is elicited by the vitamin A metabolite, retinoic acid. Here, we found that the GATA6 transcriptional program is a common feature of macrophages residing in all visceral body cavities. Retinoic acid-dependent and -independent hallmark genes of GATA6+ macrophages were induced by mesothelial and fibroblastic stromal cells that express the transcription factor Wilms' Tumor 1 (WT1), which drives the expression of two rate-limiting enzymes in retinol metabolism. Depletion of Wt1+ stromal cells reduced the frequency of GATA6+ macrophages in the peritoneal, pleural and pericardial cavities. Thus, Wt1+ mesothelial and fibroblastic stromal cells constitute essential niche components supporting the tissue-specifying transcriptional landscape and homeostasis of cavity-resident macrophages.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily J Onufer
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine C Little
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Claudia X Dominguez
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Qingling Li
- Microchemistry and Proteomics, Genentech, South San Francisco, CA 94080, USA
| | - Wendy Sandoval
- Microchemistry and Proteomics, Genentech, South San Francisco, CA 94080, USA
| | - Jonathan E Cooper
- Translational Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Charles A Harris
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
42
|
Corvillo F, Akinci B. An overview of lipodystrophy and the role of the complement system. Mol Immunol 2019; 112:223-232. [PMID: 31177059 DOI: 10.1016/j.molimm.2019.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
The complement system is a major component of innate immunity playing essential roles in the destruction of pathogens, the clearance of apoptotic cells and immune complexes, the enhancement of phagocytosis, inflammation, and the modulation of adaptive immune responses. During the last decades, numerous studies have shown that the complement system has key functions in the biology of certain tissues. For example, complement contributes to normal brain and embryonic development and to the homeostasis of lipid metabolism. However, the complement system is subjected to the effective balance between activation-inactivation to maintain complement homeostasis and to prevent self-injury to cells or tissues. When this control is disrupted, serious pathologies eventually develop, such as C3 glomerulopathy, autoimmune conditions and infections. Another heterogeneous group of ultra-rare diseases in which complement abnormalities have been described are the lipodystrophy syndromes. These diseases are characterized by the loss of adipose tissue throughout the entire body or partially. Complement over-activation has been reported in most of the patients with acquired partial lipodystrophy (also called Barraquer-Simons Syndrome) and in some cases of the generalized variety of the disease (Lawrence Syndrome). Even so, the mechanism through which the complement system induces adipose tissue abnormalities remains unclear. This review focuses on describing the link between the complement system and certain forms of lipodystrophy. In addition, we present an overview regarding the clinical presentation, differential diagnosis, classification, and management of patients with lipodystrophy associated with complement abnormalities.
Collapse
Affiliation(s)
- F Corvillo
- Complement Research Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.
| | - B Akinci
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey; Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
| |
Collapse
|
43
|
Akinci B, Meral R, Oral EA. Phenotypic and Genetic Characteristics of Lipodystrophy: Pathophysiology, Metabolic Abnormalities, and Comorbidities. Curr Diab Rep 2018; 18:143. [PMID: 30406415 DOI: 10.1007/s11892-018-1099-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article focuses on recent progress in understanding the genetics of lipodystrophy syndromes, the pathophysiology of severe metabolic abnormalities caused by these syndromes, and causes of severe morbidity and a possible signal of increased mortality associated with lipodystrophy. An updated classification scheme is also presented. RECENT FINDINGS Lipodystrophy encompasses a group of heterogeneous rare diseases characterized by generalized or partial lack of adipose tissue and associated metabolic abnormalities including altered lipid metabolism and insulin resistance. Recent advances in the field have led to the discovery of new genes associated with lipodystrophy and have also improved our understanding of adipose biology, including differentiation, lipid droplet assembly, and metabolism. Several registries have documented the natural history of the disease and the serious comorbidities that patients with lipodystrophy face. There is also evolving evidence for increased mortality rates associated with lipodystrophy. Lipodystrophy syndromes represent a challenging cluster of diseases that lead to severe insulin resistance, a myriad of metabolic abnormalities, and serious morbidity. The understanding of these syndromes is evolving in parallel with the identification of novel disease-causing mechanisms.
Collapse
Affiliation(s)
- Baris Akinci
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Rasimcan Meral
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
| | - Elif Arioglu Oral
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
44
|
The utility of complement assays in clinical immunology: A comprehensive review. J Autoimmun 2018; 95:191-200. [PMID: 30391025 DOI: 10.1016/j.jaut.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
The multi-tasking organ liver, which is the major synthesis site of most serum proteins, supplies humoral components of the innate, - including proteins of the complement system; and, less intensely, also of the acquired immune system. In addition to hepatocyte origins, C1q, factor D, C3, C7 and other protein components of the complement system are produced at various body locations by monocytes/macrophages, lymphocytes, adipocytes, endometrium, enterocytes, keratinocytes and epithelial cells; but the contribution of these alternate sites to the total serum concentrations is slight. The two major exceptions are factor D, which cleaves factor B of the alternative pathway derived largely from adipocytes, and C7, derived largely from polymorphonuclear leukocytes and monocytes/macrophages. Whereas the functional meaning of the extrahepatic synthesis of factor D remains to be elucidated, the local contribution of C7 may up- or downregulate the complement attack. The liver, however, is not classified as part of the immune system but is rather seen as victim of autoimmune diseases, a point that needs apology. Recent histological and cell marker technologies now turn the hands to also conceive the liver as proactive autoimmune disease catalyst. Hosting non-hepatocytic cells, e.g. NK cells, macrophages, dendritic cells as well as T and B lymphocytes, the liver outreaches multiple sites of the immune system. Immunopharmacological follow up of liver transplant recipients teaches us on liver-based presence of ABH-glycan HLA phenotypes and complement mediated ischemia/regeneration processes. In clinical context, the adverse reactions of the complement system can now be curbed by specific drug therapy. This review extends on the involvement of the complement system in liver autoimmune diseases and should allow to direct therapeutic opportunities.
Collapse
|
45
|
Banda NK, Desai D, Scheinman RI, Pihl R, Sekine H, Fujita T, Sharma V, Hansen AG, Garred P, Thiel S, Borodovsky A, Holers VM. Targeting of Liver Mannan-Binding Lectin-Associated Serine Protease-3 with RNA Interference Ameliorates Disease in a Mouse Model of Rheumatoid Arthritis. Immunohorizons 2018; 2:274-295. [PMID: 30417171 PMCID: PMC6220895 DOI: 10.4049/immunohorizons.1800053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mannan-binding lectin–associated serine protease 3 (MASP-3) regulates the alternative pathway of complement and is predominantly synthesized in the liver. The role of liver-derived MASP-3 in the pathogenesis of rheumatoid arthritis (RA) is unknown. We hypothesized that liver-derived MASP-3 is essential for the development of joint damage and that targeted inhibition of MASP-3 in the liver can attenuate arthritis. We used MASP-3–specific small interfering RNAs (siRNAs) conjugated to N-acetylgalactosamine (GalNAc) to specifically target the liver via asialoglycoprotein receptors. Active GalNAc–MASP3–siRNA conjugates were identified, and in vivo silencing of liver MASP-3 mRNA was demonstrated in healthy mice. The s.c. treatment with GalNAc–MASP-3–siRNAs specifically decreased the expression of MASP-3 in the liver and the level of MASP-3 protein in circulation of mice without affecting the levels of the other spliced products. In mice with collagen Ab–induced arthritis, s.c. administration of GalNAc–MASP-3–siRNA decreased the clinical disease activity score to 50% of controls, with decrease in histopathology scores and MASP-3 deposition. To confirm the ability to perform MASP-3 gene silencing in human cells, we generated a lentivirus expressing a short hairpin RNA specific for human MASP-3 mRNA. This procedure not only eliminated the short-term (at day 15) expression of MASP-3 in HepG2 and T98G cell lines but also diminished the long-term (at day 60) synthesis of MASP-3 protein in T98G cells. Our study demonstrates that isoform-specific silencing of MASP-3 in vivo modifies disease activity in a mouse model of RA and suggests that liver-directed MASP3 silencing may be a therapeutic approach in human RA.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dhruv Desai
- Alnylam Pharmaceuticals Inc., Boston, MA 02142
| | - Robert I Scheinman
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rasmus Pihl
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Vibha Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Annette G Hansen
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, University Hospital of Copenhagen, 2200 Copenhagen, Denmark
| | - Steffen Thiel
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
46
|
Ferguson D, Blenden M, Hutson I, Du Y, Harris CA. Mouse Embryonic Fibroblasts Protect ob/ob Mice From Obesity and Metabolic Complications. Endocrinology 2018; 159:3275-3286. [PMID: 30085057 PMCID: PMC6109302 DOI: 10.1210/en.2018-00561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
The global obesity epidemic is fueling alarming rates of diabetes, associated with increased risk of cardiovascular disease and cancer. Leptin is a hormone secreted by adipose tissue that is a key regulator of body weight (BW) and energy expenditure. Leptin-deficient humans and mice are obese, diabetic, and infertile and have hepatic steatosis. Although leptin replacement therapy can alleviate the pathologies seen in leptin-deficient patients and mouse models, treatment is costly and requires daily injections. Because adipocytes are the source of leptin secretion, we investigated whether mouse embryonic fibroblasts (MEFs), capable of forming adipocytes, could be injected into ob/ob mice and prevent the metabolic phenotype seen in these leptin-deficient mice. We performed a single subcutaneous injection of MEFs into leptin-deficient ob/ob mice. The MEF injection formed a single fat pad that is histologically similar to white adipose tissue. The ob/ob mice receiving MEFs (obRs) had significantly lower BW compared with nontreated ob/ob mice, primarily because of decreased adipose tissue mass. Additionally, obR mice had significantly less liver steatosis and greater glucose tolerance and insulin sensitivity. obR mice also manifested lower food intake and greater energy expenditure than ob/ob mice, providing a mechanism underlying their metabolic improvement. Furthermore, obRs have sustained metabolic protection and restoration of fertility. Collectively, our studies show the importance of functional adipocytes in preventing metabolic abnormalities seen in leptin deficiency and point to the possibility of cell-based therapies for the treatment of leptin-deficient states.
Collapse
Affiliation(s)
- Daniel Ferguson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Mitchell Blenden
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, Florida
| | - Irina Hutson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Yingqiu Du
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Charles A Harris
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Veterans Affairs St. Louis Healthcare System, John Cochran Division, St. Louis, Missouri
| |
Collapse
|
47
|
Dobó J, Kocsis A, Gál P. Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement-Mediated Diseases. Front Immunol 2018; 9:1851. [PMID: 30135690 PMCID: PMC6092519 DOI: 10.3389/fimmu.2018.01851] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system has moved into the focus of drug development efforts in the last decade, since its inappropriate or uncontrolled activation has been recognized in many diseases. Some of them are primarily complement-mediated rare diseases, such as paroxysmal nocturnal hemoglobinuria, C3 glomerulonephritis, and atypical hemolytic uremic syndrome. Complement also plays a role in various multifactorial diseases that affect millions of people worldwide, such as ischemia reperfusion injury (myocardial infarction, stroke), age-related macular degeneration, and several neurodegenerative disorders. In this review, we summarize the potential advantages of targeting various complement proteins with special emphasis on the components of the lectin (LP) and the alternative pathways (AP). The serine proteases (MASP-1/2/3, factor D, factor B), which are responsible for the activation of the cascade, are straightforward targets of inhibition, but the pattern recognition molecules (mannose-binding lectin, other collectins, and ficolins), the regulatory components (factor H, factor I, properdin), and C3 are also subjects of drug development. Recent discoveries about cross-talks between the LP and AP offer new approaches for clinical intervention. Mannan-binding lectin-associated serine proteases (MASPs) are not just responsible for LP activation, but they are also indispensable for efficient AP activation. Activated MASP-3 has recently been shown to be the enzyme that continuously supplies factor D (FD) for the AP by cleaving pro-factor D (pro-FD). In this aspect, MASP-3 emerges as a novel feasible target for the regulation of AP activity. MASP-1 was shown to be required for AP activity on various surfaces, first of all on LPS of Gram-negative bacteria.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Kocsis
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|