1
|
Sahu A, Mishra PR, Pragyandipta P, Rath S, Nanda A, Kanhar S, Sahoo DR, Naik E, Naik D, Naik PK. Elucidating the therapeutic efficacy of polyherbal formulation for the management of diabetes through endogenous pancreatic β-cell regeneration. Bioorg Chem 2025; 157:108270. [PMID: 39970755 DOI: 10.1016/j.bioorg.2025.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Diabetes mellitus is characterized by the progressive loss of pancreatic β-cells. Owing to the adverse side effects of conventional antidiabetic, ethnopharmacological agents have emerged as adjunct therapies for their management. The present study aims to validate the antidiabetic activity of an aqueous polyherbal extract (APE) via in silico, in vitro, and in vivo models. UHPLC-Q-TOF-MS and HPLC analysis of APE were performed to identify bioactive secondary plant metabolites. In silico approaches implemented to predict the binding efficacy of the active phytoconstituents. Biochemical estimation, antioxidant activity, and in vitro and in vivo antidiabetic activities of APE were performed. Histomorphological and immunohistological studies of the pancreatic islets were carried out in diabetic animals for microarchitectural study. UHPLC-Q-TOF-MS identified a total of 60 compounds in APE, of which 39 were reported to have antidiabetic activity, and 16 marker compounds were identified via high-performance liquid chromatography (HPLC). An in silico study revealed a strong interaction of verbacoside B with the target proteins. APE is characterized by high flavonoid and phenolic contents with strong antioxidant properties. In an in vitro enzymatic assay, APE significantly inhibited α-amylase and α-glucosidase enzymes, with calculated IC50 values of 54.26 ± 0.14 and 26.47 ± 0.12 μg/ml, respectively. An in vitro glucose uptake assay revealed increased uptake with APE treatment in a dose-dependent manner. APE significantly decreased blood glucose and HbA1c levels and had no side effects on liver or kidney function, as measured from blood parameters. Immunohistological observation revealed 47% regeneration of pancreatic β-cells with APE treatment in diabetic animals.
Collapse
Affiliation(s)
- Abhijit Sahu
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Pravash Ranjan Mishra
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Pratyush Pragyandipta
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Srichandan Rath
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Ashirbad Nanda
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, Khurda, Odisha, India
| | - Satish Kanhar
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, Khurda, Odisha, India
| | - Dibya Ranjan Sahoo
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Eeshara Naik
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Deepali Naik
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | - Pradeep K Naik
- DBT BUILDER, Govt. of India, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India.
| |
Collapse
|
2
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Ma H, Peng G, Hu Y, Lu B, Zheng Y, Wu Y, Feng W, Shi Y, Pan X, Song L, Stützer I, Liu Y, Fei J. Revealing the biological features of the axolotl pancreas as a new research model. Front Cell Dev Biol 2025; 13:1531903. [PMID: 39958891 PMCID: PMC11825805 DOI: 10.3389/fcell.2025.1531903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The pancreas plays a crucial role in digestion and blood glucose regulation. Current animal models, primarily mice and zebrafish, have limited the exploration of pancreatic biology from an evolutionary-developmental perspective. Tetrapod vertebrate axolotl (Ambystoma mexicanum) serves as a valuable model in developmental, regenerative, and evolutionary biology. However, the fundamental biology of the axolotl pancreas remains underexplored. This study aims to characterize the unique developmental, functional, and evolutionary features of the axolotl pancreas to expand the understanding of pancreatic biology. Methods We conducted morphological, histological, and transcriptomic analyses to investigate the axolotl pancreas. Pancreatic development was observed using in situ hybridization and immunostaining for key pancreatic markers. RNA sequencing was performed to profile global gene expression during larva and adult stages. And differential gene expression analysis was used to characterize the conserved and unique gene patterns in the axolotl pancreas. Functional assays, including glucose tolerance tests and insulin tolerance tests, were optimized for individual axolotls. To assess pancreatic gene function, Pdx1 mutants were generated using CRISPR/Cas9-mediated gene editing, and their effects on pancreatic morphology, endocrine cell populations, and glucose homeostasis were analyzed. Results The axolotl pancreas contains all known pancreatic cell types and develops from dorsal and ventral buds. Both of buds contribute to exocrine and endocrine glands. The dorsal bud produces the major endocrine cell types, while the ventral bud generates α and δ cells, but not β cells. Differential gene expression analysis indicated a transition in global gene expression from pancreatic cell fate commitment and the cell cycle to glucose response, hormone synthesis, and secretion, following the development progression. Notably, the adult axolotl pancreas exhibits slower metabolic activity compared to mammals, as evidenced by the results of GTT and ITT. The mutation of Pdx1 resulted in hyperglycemia and a significant reduction in pancreatic cell mass, including a complete loss of endocrine cells, although it did not lead to a lethal phenotype. Discussion This study examines the axolotl pancreas, highlighting the conservation of pancreatic development. Our study highlights the unique features of the axolotl pancreas and broadens the scope of animal models available for pancreatic evolution and disease research.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- BGI Research, Qingdao, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangcong Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yan Hu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Lu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiying Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yingxian Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Weimin Feng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Li Song
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ina Stützer
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Collins J, Farnsworth NL. Active targeting of type 1 diabetes therapies to pancreatic beta cells using nanocarriers. Diabetologia 2025:10.1007/s00125-024-06356-5. [PMID: 39847085 DOI: 10.1007/s00125-024-06356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects. Targeted drug delivery using nanocarriers has demonstrated potential for overcoming these limitations. The critical bottleneck limiting the development of beta cell-targeted therapies is a lack of highly specific beta cell markers. This review provides an overview of the use of nanocarriers for cell-targeted delivery and the current state of the field of beta cell targeting. Technologies such as systematic evolution of ligands by exponential enrichment (SELEX) aptamer selection, phage display screening, and omics datasets from human samples are highlighted as tools to identify novel beta cell-specific targets that can be combined with nanocarriers for targeted delivery of therapeutics. Ultimately, beta cell-targeted therapies using nanocarriers present a unique opportunity to develop tailored treatments for each stage of type 1 diabetes with the goal of providing individuals with treatment options that prevent further progression or reverse the course of the disease.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
5
|
van Bodegraven EA, Lof S, Jones L, Aussilhou B, Yong G, Jishu W, Klotz R, Rocha-Castellanos DM, Matsumato I, de Ponthaud C, Tanaka K, Biesel E, Kauffmann E, Dumitrascu T, Nagakawa Y, Martí-Cruchaga P, Roeyen G, Zerbi A, Goetz M, de Meijer VE, Pessaux P, Ignatavicius P, Demir IE, Giuffrida M, Tingstedt B, Marino MV, Mastoridis S, Brunner M, Mora-Oliver I, Bortolato C, Gulla A, Apers T, Hermand H, Mitsuka Y, Popescu I, Boggi U, Wittel U, Hirano S, Gaujoux S, Kamei K, Fernández-Del Castillo C, Hackert T, Kuirong J, Yi M, Sauvanet A, Besselink M, Abu Hilal M, Dokmak S. Tailoring the Use of Central Pancreatectomy Through Prediction Models for Major Morbidity and Postoperative Diabetes: International Retrospective Multicenter Study. Ann Surg 2024; 280:993-998. [PMID: 38073561 PMCID: PMC11542965 DOI: 10.1097/sla.0000000000006157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To develop a prediction model for major morbidity and endocrine dysfunction after central pancreatectomy (CP) which could help in tailoring the use of this procedure. BACKGROUND CP is a parenchyma-sparing alternative to distal pancreatectomy for symptomatic benign and premalignant tumors in the body and neck of the pancreas CP lowers the risk of new-onset diabetes and exocrine pancreatic insufficiency compared with distal pancreatectomy but it is thought to increase the risk of short-term complications, including postoperative pancreatic fistula (POPF). METHODS International multicenter retrospective cohort study including patients from 51 centers in 19 countries (2010-2021). The primary endpoint was major morbidity. Secondary endpoints included POPF grade B/C, endocrine dysfunction, and the use of pancreatic enzymes. Two risk models were designed for major morbidity and endocrine dysfunction utilizing multivariable logistic regression and internal and external validation. RESULTS A total of 838 patients after CP were included [301 (36%) minimally invasive] and major morbidity occurred in 248 (30%) patients, POPF B/C in 365 (44%), and 30-day mortality in 4 (1%). Endocrine dysfunction in 91 patients (11%) and use of pancreatic enzymes in 108 (12%). The risk model for major morbidity included male sex, age, Body Mass Index, and American Society of Anesthesiologists score ≥3. The model performed acceptably with an area under the curve of 0.72 (CI: 0.68-0.76). The risk model for endocrine dysfunction included higher Body Mass Index and male sex and performed well [area under the curve: 0.83 (CI: 0.77-0.89)]. CONCLUSIONS The proposed risk models help in tailoring the use of CP in patients with symptomatic benign and premalignant lesions in the body and neck of the pancreas (readily available through www.pancreascalculator.com ).
Collapse
Affiliation(s)
- Eduard Antonie van Bodegraven
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Department of Surgery, The Netherlands
| | - Sanne Lof
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Department of Surgery, The Netherlands
| | - Leia Jones
- Department of General Surgery, Istituto Ospedaliero Fondazione Poliambulanza, Brescia, Italy
| | - Béatrice Aussilhou
- Department of HPB surgery and liver transplantation, Hospital of Beaujon, Clichy, France
| | - Gao Yong
- The Pancreas Center of Nanjing Medical University, Department of Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Jishu
- The Pancreas Center of Nanjing Medical University, Department of Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Rosa Klotz
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ippei Matsumato
- Department of Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Charles de Ponthaud
- Department of Digestive, Hepato-biliary-pancreatic and Liver Transplantation, Pitie-Salpetriere Hospital, AP-HP, Sorbonne University, Paris, France
| | - Kimitaka Tanaka
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Esther Biesel
- Medical Center-University of Freiburg, Department of General and Visceral Surgery, Freiburg, Germany
| | - Emmanuele Kauffmann
- Division of General and Transplant Surgery, Department of Surgery, University of Pisa, Pisa
| | - Traian Dumitrascu
- Center of General Surgery and Liver Transplant, Department of Surgery, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery Tokyo Medical University, Tokyo, Japan
| | - Pablo Martí-Cruchaga
- Department of Surgery, Clínica Universitaria de Navarra, Pamplona, Navarra, Spain
| | - Geert Roeyen
- Department of HPB, Endocrine and Transplantation Surgery, Antwerp University Hospital, Belgium
| | - Alessandro Zerbi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, Department of Surgery, Rozzano, Milan, Italy
| | - Mara Goetz
- Department of General, Visceral and Thoracic Surgery, University Medical Center, Hamburg, Germany
| | - Vincent E. de Meijer
- Department of Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick Pessaux
- Department of Visceral and Digestive surgery, Nouvel Hopital Civil, University Hospital, Strasbourg Institut Hospitalo-Universitaire de Strasbourg, Strasbourg, France
| | - Povilas Ignatavicius
- Department of Surgery, Lithuanian University of Health Sciences, Vilnius, Lithuania
| | | | - Mario Giuffrida
- Parma University Hospital-General Surgery Unit, Department of Surgery, Parma, Italy
| | - Bobby Tingstedt
- Department of Surgery, University Hospital of Skane Lund, Lund, Sweden
| | - Marco Vito Marino
- Department of Emergency and General Surgery, P. Giaccone, Hospital, University of Palermo, Italy
| | - Sotiris Mastoridis
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS, Oxford, United Kingdom
| | - Maximilian Brunner
- Department of General and Visceral Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Germany
| | - Isabel Mora-Oliver
- Biochemical Research Institute, Department of Surgery, INCLICA, Hospital Clinico Universitario Valencia, Spain
| | | | - Aisté Gulla
- Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Department of Surgery, Vilnius, Lithuania
| | - Thomas Apers
- Department of General and Hepatopancreatobiliary Surgery and Liver Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Hélène Hermand
- Department of HPB surgery and liver transplantation, Hospital of Beaujon, Clichy, France
| | - Yusuke Mitsuka
- Department of Gastrointestinal and Pediatric Surgery Tokyo Medical University, Tokyo, Japan
| | - Irinel Popescu
- Center of General Surgery and Liver Transplant, Department of Surgery, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ugo Boggi
- Division of General and Transplant Surgery, Department of Surgery, University of Pisa, Pisa
| | - Uwe Wittel
- Medical Center-University of Freiburg, Department of General and Visceral Surgery, Freiburg, Germany
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Sébastien Gaujoux
- Department of Digestive, Hepato-biliary-pancreatic and Liver Transplantation, Pitie-Salpetriere Hospital, AP-HP, Sorbonne University, Paris, France
| | - Keiko Kamei
- Department of Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | | | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
| | - Jiang Kuirong
- The Pancreas Center of Nanjing Medical University, Department of Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Miao Yi
- The Pancreas Center of Nanjing Medical University, Department of Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Alain Sauvanet
- Department of HPB surgery and liver transplantation, Hospital of Beaujon, Clichy, France
| | - Marc Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Department of Surgery, The Netherlands
| | - Mohammad Abu Hilal
- Department of General Surgery, Istituto Ospedaliero Fondazione Poliambulanza, Brescia, Italy
| | - Safi Dokmak
- Department of HPB surgery and liver transplantation, Hospital of Beaujon, Clichy, France
| |
Collapse
|
6
|
Haq N, Toczyska KW, Wilson ME, Jacobs M, Zhao M, Lei Y, Shen Z, Pearson JA, Persaud SJ, Pullen TJ, Bewick GA. Reformed islets: a long-term primary cell platform for exploring mouse and human islet biology. Cell Death Discov 2024; 10:480. [PMID: 39580467 PMCID: PMC11585622 DOI: 10.1038/s41420-024-02234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024] Open
Abstract
Pancreatic islets are 3D micro-organs that maintain β-cell functionality through cell-cell and cell-matrix communication. While primary islets, the gold standard for in vitro models, have a short culture life of approximately 1-2 weeks, we developed a novel protocol that employs reformed islets following dispersion coupled with a fine-tuned culture environment. Reformed islets exhibit physiological characteristics similar to primary islets, enabling high-resolution imaging and repeated functional assessment. Unlike other in vitro platforms, reformed islets retain an immune population, allowing the study of interactions between β cells and resident and infiltrating immune cells. Analyses showed that reformed islets have a similar composition and cytoarchitecture to primary islets, including macrophages and T cells, and can secrete insulin in response to glucose. Reformed islets exhibited partial dedifferentiation compared to native islets but were otherwise transcriptionally similar. The reformed islets offer a useful platform for studying diabetes pathology and can recapitulate both T1DM and T2DM disease milieus, providing an advantage over other models, such as mouse and human β-cell lines, which lack the input of non-β-endocrine cells and immune cell crosstalk.
Collapse
Affiliation(s)
- N Haq
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - K W Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - M E Wilson
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - M Jacobs
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - Min Zhao
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - Y Lei
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - Z Shen
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - J A Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - S J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - T J Pullen
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - G A Bewick
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK.
| |
Collapse
|
7
|
Carroll J, Chen J, Mittal R, Lemos JRN, Mittal M, Juneja S, Assayed A, Hirani K. Decoding the Significance of Alpha Cell Function in the Pathophysiology of Type 1 Diabetes. Cells 2024; 13:1914. [PMID: 39594662 PMCID: PMC11593172 DOI: 10.3390/cells13221914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha cells in the pancreas, traditionally known for their role in secreting glucagon to regulate blood glucose levels, are gaining recognition for their involvement in the pathophysiology of type 1 diabetes (T1D). In T1D, autoimmune destruction of beta cells results in insulin deficiency, which in turn may dysregulate alpha cell function, leading to elevated glucagon levels and impaired glucose homeostasis. This dysfunction is characterized by inappropriate glucagon secretion, augmenting the risk of life-threatening hypoglycemia. Moreover, insulin deficiency and autoimmunity alter alpha cell physiological responses, further exacerbating T1D pathophysiology. Recent studies suggest that alpha cells undergo transdifferentiation and interact with beta cells through mechanisms involving gamma-aminobutyric acid (GABA) signaling. Despite these advances, the exact pathways and interactions remain poorly understood and are often debated. Understanding the precise role of alpha cells in T1D is crucial, as it opens up avenues for developing new therapeutic strategies for T1D. Potential strategies include targeting alpha cells to normalize glucagon secretion, utilizing glucagon receptor antagonists, enhancing GABA signaling, and employing glucagon-like peptide-1 (GLP-1) receptor agonists. These approaches aim to improve glycemic control and reduce the risk of hypoglycemic events in individuals with T1D. This review provides an overview of alpha cell function in T1D, highlighting the emerging focus on alpha cell dysfunction in the context of historically well-developed beta cell research.
Collapse
Affiliation(s)
| | | | - Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| | | | | | | | | | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| |
Collapse
|
8
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
9
|
Sandoval C, Canobbi L, Orrego Á, Reyes C, Venegas F, Vera Á, Torrens F, Vásquez B, Godoy K, Zamorano M, Caamaño J, Farías J. Application of Integrated Optical Density in Evaluating Insulin Expression in the Endocrine Pancreas During Chronic Ethanol Exposure and β-Carotene Supplementation: A Novel Approach Utilizing Artificial Intelligence. Pharmaceuticals (Basel) 2024; 17:1478. [PMID: 39598390 PMCID: PMC11597364 DOI: 10.3390/ph17111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND β-carotene is an essential antioxidant, providing protection against type 2 diabetes mellitus, cardiovascular illnesses, obesity, and metabolic syndrome. This study investigates the impact of β-carotene on biochemical parameters and pancreatic insulin expression in mice exposed to ethanol. METHODS Thirty-six C57BL/6 mice (Mus musculus) were divided into six groups: 1. C (control), 2. LA (3% alcohol dose), 3. MA (7% alcohol dose), 4. B (0.52 mg/kg body weight/day β-carotene), 5. LA+B (3% alcohol dose + 0.52 mg/kg body weight/day β-carotene), and 6. MA+B (7% alcohol dose plus 0.52 mg/kg body weight/day β-carotene). After 28 days, the animals were euthanized for serum and pancreatic tissue collection. Biochemical analysis and pancreatic insulin expression were performed. One-way ANOVA was used. RESULTS The B, LA+B, and MA+B groups improved insulin levels and decreased HOMA-β versus the C group, with the LA+B and MA+B groups also showing lower ADH and ALDH levels than their nonsupplemented counterparts (p < 0.05). The B, LA+B, and MA+B groups showed a greater β-cell mass area compared to the unsupplemented groups. Additionally, the LA+B and MA+B groups demonstrated significantly increased β-cell area and integrated optical density compared to the LA and MA groups, respectively (p < 0.001). CONCLUSIONS In mice, β-cell loss led to increased glucose release due to decreased insulin levels. β-carotene appeared to mitigate ethanol's impact on these cells, resulting in reduced insulin degradation when integrated optical density was used. These findings suggest that antioxidant supplementation may be beneficial in treating ethanol-induced type 2 diabetes in animal models.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile;
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Luciano Canobbi
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile; (L.C.); (Á.O.); (C.R.); (F.V.); (Á.V.)
| | - Álvaro Orrego
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile; (L.C.); (Á.O.); (C.R.); (F.V.); (Á.V.)
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile; (L.C.); (Á.O.); (C.R.); (F.V.); (Á.V.)
| | - Felipe Venegas
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile; (L.C.); (Á.O.); (C.R.); (F.V.); (Á.V.)
| | - Ángeles Vera
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile; (L.C.); (Á.O.); (C.R.); (F.V.); (Á.V.)
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain;
| | - Bélgica Vásquez
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ), Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Mauricio Zamorano
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile;
| | - José Caamaño
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile;
| |
Collapse
|
10
|
Rutter GA, Gresch A, Delgadillo Silva L, Benninger RKP. Exploring pancreatic beta-cell subgroups and their connectivity. Nat Metab 2024; 6:2039-2053. [PMID: 39117960 DOI: 10.1038/s42255-024-01097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Functional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential "controlling" beta-cell populations. We focus on methodologies, including comparisons of different cell preparations as well as in vitro and in vivo approaches to imaging and controlling the activity of human and rodent islet preparations. We also discuss the analytical approaches that can be applied to live-cell data to identify and study critical subgroups of cells with a disproportionate role in control Ca2+ dynamics and thus insulin secretion (such as "first responders", "leaders" and "hubs", as defined by Ca2+ responses to glucose stimulation). Possible mechanisms by which this hierarchy is achieved, its physiological relevance and how its loss may contribute to islet failure in diabetes mellitus are also considered. A glossary of terms and links to computational resources are provided.
Collapse
Affiliation(s)
- Guy A Rutter
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Anne Gresch
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luis Delgadillo Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Frans P, Mkabayi L, Pletschke BI, Frost CL. The effects of Cannabis sativa and cannabinoids on the inhibition of pancreatic lipase - An enzyme involved in obesity. Biomed Pharmacother 2024; 179:117357. [PMID: 39232382 DOI: 10.1016/j.biopha.2024.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Obesity is a chronic noncommunicable disease characterized by excessive body fat that can have negative health consequences. Obesity is a complex disease caused by a combination of genetic, environmental, and lifestyle factors. It is characterized by a discrepancy between caloric intake and expenditure. Obesity increases the risk of acquiring major chronic diseases, including heart disease, stroke, cancer, and Type 2 diabetes mellitus (T2DM). Currently, the inhibition of pancreatic lipases (PL) is a promising pharmacological therapy for obesity and weight management. In this study, the inhibition of pancreatic lipase by Cannabis sativa (C. sativa) plant extract and cannabinoids was investigated. METHODS The inhibitory effect was assessed using p-nitrophenyl butyrate (pNPB), and the results were obtained by calculating the percentage relative activity and assessed using one-way analysis of variance (ANOVA). Kinetic studies and spectroscopy techniques were used to evaluate the mode of inhibition. Diet-induced; and diabetic rat models were studied to evaluate the direct effects of C. sativa extract on PL activity. RESULTS Kinetic analyses showed that the plant extracts inhibited pancreatic lipase, with tetrahydrocannabinol (THC) and cannabinol (CBN) being the potential cause of the inhibition noted for the C. sativa plant extract. CBN and THC inhibited the pancreatic lipase activity in a competitive manner, with the lowest residual enzyme activity of 52 % observed at a 10 μg/mL concentration of CBN and 39 % inhibition at a 25 μg/mL concentration of THC. Circular dichroism (CD) spectroscopy revealed that the inhibitors caused a change in the enzyme's secondary structure. At low concentrations, THC showed potential for synergistic inhibition with orlistat. C.sativa treatment in an in vivo rat model confirmed its inhibitory effects on pancreatic lipase activity. CONCLUSION The findings in this study provided insight into the use of cannabinoids as pancreatic lipase inhibitors and the possibility of using these compounds to develop new pharmacological treatments for obesity.
Collapse
Affiliation(s)
- Phelokazi Frans
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Lithalethu Mkabayi
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Carminita L Frost
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| |
Collapse
|
12
|
Holst-Hansen T, Nielsen PY, Jensen MH, Mandrup-Poulsen T, Trusina A. Tipping-point transition from transient to persistent inflammation in pancreatic islets. NPJ Syst Biol Appl 2024; 10:102. [PMID: 39266581 PMCID: PMC11393080 DOI: 10.1038/s41540-024-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with a systemic increase in the pro-inflammatory cytokine IL-1β. While transient exposure to low IL-1β concentrations improves insulin secretion and β-cell proliferation in pancreatic islets, prolonged exposure leads to impaired insulin secretion and collective β-cell death. IL-1 is secreted locally by islet-resident macrophages and β-cells; however, it is unknown if and how the two opposing modes may emerge at single islet level. We investigated the duality of IL-1β with a quantitative in silico model of the IL-1 regulatory network in pancreatic islets. We find that the network can produce either transient or persistent IL-1 responses when induced by pro-inflammatory and metabolic cues. This suggests that the duality of IL-1 may be regulated at the single islet level. We use two core feedbacks in the IL-1 regulation to explain both modes: First, a fast positive feedback in which IL-1 induces its own production through the IL-1R/IKK/NF-κB pathway. Second, a slow negative feedback where NF-κB upregulates inhibitors acting at different levels along the IL-1R/IKK/NF-κB pathway-IL-1 receptor antagonist and A20, among others. A transient response ensues when the two feedbacks are balanced. When the positive feedback dominates over the negative, islets transit into the persistent inflammation mode. Consistent with several observations, where the size of islets was implicated in its inflammatory state, we find that large islets and islets with high density of IL-1β amplifying cells are more prone to transit into persistent IL-1β mode. Our results are likely not limited to IL-1β but are general for the combined effect of multiple pro-inflammatory cytokines and chemokines. Generalizing complex regulations in terms of two feedback mechanisms of opposing nature and acting on different time scales provides a number of testable predictions. Taking islet architecture and cellular heterogeneity into consideration, further dynamic monitoring and experimental validation in actual islet samples will be crucial to verify the model predictions and enhance its utility in clinical applications.
Collapse
Affiliation(s)
| | - Pernille Yde Nielsen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Collins J, Piscopio RA, Reyland ME, Johansen CG, Benninger RKP, Farnsworth NL. Cleavage of protein kinase c δ by caspase-3 mediates proinflammatory cytokine-induced apoptosis in pancreatic islets. J Biol Chem 2024; 300:107611. [PMID: 39074637 PMCID: PMC11381875 DOI: 10.1016/j.jbc.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet β-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced β-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible β-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced β-cell death and have shown that inhibiting PKCδ protects pancreatic β-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic β-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay β-cell death and preserve β-cell function in T1D.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Robert A Piscopio
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chelsea G Johansen
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Richard K P Benninger
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
14
|
Perez-Frances M, Bru-Tari E, Cohrs C, Abate MV, van Gurp L, Furuyama K, Speier S, Thorel F, Herrera PL. Regulated and adaptive in vivo insulin secretion from islets only containing β-cells. Nat Metab 2024; 6:1791-1806. [PMID: 39169271 PMCID: PMC11422169 DOI: 10.1038/s42255-024-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Insulin-producing β-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-β-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-β-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of β-cells and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was comparable to that in intact islets. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. These results support efforts aimed at developing diabetes treatments by generating β-like clusters devoid of non-β-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-β-cells into insulin producers in situ.
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eva Bru-Tari
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maria Valentina Abate
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. FASEB J 2024; 38:e23885. [PMID: 39139039 PMCID: PMC11378476 DOI: 10.1096/fj.202401078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell-selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors (TFs) important for β-cell identity, such as FOXA, MAFA or RFX6, and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Nevena Cvetesic
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Dorka Nagy
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lorea Blazquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
- Lee Kong Chian Medical School, Nanyang Technological University, Singapore, Singapore
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Pereye OB, Nakagawa Y, Sato T, Fukunaka A, Aoyama S, Nishida Y, Mizutani W, Kobayashi N, Morishita Y, Oyama T, Kawabata-Iwakawa R, Watada H, Mizukami H, Fukuda A, Fujitani Y. Identification of Ppy-lineage cells as a novel origin of pancreatic ductal adenocarcinoma. J Pathol 2024; 263:429-441. [PMID: 38837231 DOI: 10.1002/path.6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
The Ppy gene encodes pancreatic polypeptide (PP) secreted by PP- or γ-cells, which are a subtype of endocrine cells localised mainly in the islet periphery. For a detailed characterisation of PP cells, we aimed to establish PP cell lines. To this end, we generated a mouse model harbouring the SV40 large T antigen (TAg) in the Rosa26 locus, which is expressed upon Ppy-promoter-mediated Cre-loxP recombination. Whereas Insulin1-CreERT-mediated TAg expression in beta cells resulted in insulinoma, surprisingly, Ppy-Cre-mediated TAg expression resulted in the malignant transformation of Ppy-lineage cells. These mice showed distorted islet structural integrity at 5 days of age compared with normal islets. CK19+ duct-like lesions contiguous with the islets were observed at 2 weeks of age, and mice developed aggressive pancreatic ductal adenocarcinoma (PDAC) at 4 weeks of age, suggesting that PDAC can originate from the islet/endocrine pancreas. This was unexpected as PDAC is believed to originate from the exocrine pancreas. RNA-sequencing analysis of Ppy-lineage islet cells from 7-day-old TAg+ mice showed a downregulation and an upregulation of endocrine and exocrine genes, respectively, in addition to the upregulation of genes and pathways associated with PDAC. These results suggest that the expression of an oncogene in Ppy-lineage cells induces a switch from endocrine cell fate to PDAC. Our findings demonstrate that Ppy-lineage cells may be an origin of PDAC and may provide novel insights into the pathogenesis of pancreatic cancer, as well as possible therapeutic strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Cell Lineage
- Mice
- Mice, Transgenic
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/metabolism
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
Collapse
Affiliation(s)
- Ofejiro Blessing Pereye
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Takashi Sato
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Shuhei Aoyama
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wakana Mizutani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Nanami Kobayashi
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Yohei Morishita
- Laboratory for Analytical Instruments, Education and Research Support Centre, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Centre, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| |
Collapse
|
17
|
Caspi I, Tremmel DM, Pulecio J, Yang D, Liu D, Yan J, Odorico JS, Huangfu D. Glucose Transporters Are Key Components of the Human Glucostat. Diabetes 2024; 73:1336-1351. [PMID: 38775784 PMCID: PMC11262048 DOI: 10.2337/db23-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/16/2024] [Indexed: 07/21/2024]
Abstract
Mouse models are extensively used in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human β-cells. In comparison, GLUT2 is detected in a small yet significant subpopulation of adult β-cells and is expressed to a greater extent in fetal β-cells. Notably, GLUT1/2 expression in INS+ cells from human stem cell-derived islet-like clusters (SC-islets) exhibited a closer resemblance to that observed in fetal islets. Transplantation of primary human islets or SC-islets, but not murine islets, lowered murine blood glucose to the human glycemic range, emphasizing the critical role of β-cells in establishing species-specific glycemia. We further demonstrate the functional requirements of GLUT1 and GLUT2 in glucose uptake and insulin secretion through chemically inhibiting GLUT1 in primary islets and SC-islets and genetically disrupting GLUT2 in SC-islets. Finally, we developed a mathematical model to predict changes in glucose uptake and insulin secretion as a function of GLUT1/2 expression. Collectively, our findings illustrate the crucial roles of GLUTs in human β-cells, and identify them as key components in establishing species-specific glycemic set points. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Inbal Caspi
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Daniel M. Tremmel
- Transplantation Division, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jon S. Odorico
- Transplantation Division, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
18
|
Zhao J, Liang S, Cen HH, Li Y, Baker RK, Ruprai B, Gao G, Zhang C, Ren H, Tang C, Chen L, Liu Y, Lynn FC, Johnson JD, Kieffer TJ. PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system. Nat Commun 2024; 15:5894. [PMID: 39003281 PMCID: PMC11246529 DOI: 10.1038/s41467-024-50109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - Shenghui Liang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Li
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
| | - Robert K Baker
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Balwinder Ruprai
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Guang Gao
- Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chloe Zhang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Huixia Ren
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Ampofo E, Pack M, Wrublewsky S, Boewe AS, Spigelman AF, Koch H, MacDonald PE, Laschke MW, Montenarh M, Götz C. CK2 activity is crucial for proper glucagon expression. Diabetologia 2024; 67:1368-1385. [PMID: 38503901 PMCID: PMC11153270 DOI: 10.1007/s00125-024-06128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
AIMS/HYPOTHESIS Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Anne S Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Hanna Koch
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
20
|
Buemi A, Mourad NI, Bouzin C, Devresse A, Hoton D, Daumerie A, Zech F, Darius T, Kanaan N, Gianello P, Mourad M. Exploring Preservation Modalities in a Split Human Pancreas Model to Investigate the Effect on the Islet Isolation Outcomes. Transplant Direct 2024; 10:e1654. [PMID: 38881744 PMCID: PMC11177812 DOI: 10.1097/txd.0000000000001654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background In islet transplantation, the use of dynamic hypothermic preservation techniques is a current challenge. This study compares the efficacy of 3 pancreas preservation methods: static cold storage, hypothermic machine perfusion (HMP), and oxygenated HMP. Methods A standardized human pancreas split model was employed using discarded organs from both donation after brain death (n = 15) and donation after circulatory death (DCD) (n = 9) donors. The pancreas head was preserved using static cold storage (control group), whereas the tail was preserved using the 3 different methods (study group). Data on donor characteristics, pancreas histology, isolation outcomes, and functional tests of isolated islets were collected. Results Insulin secretory function evaluated by calculating stimulation indices and total amount of secreted insulin during high glucose stimulation (area under the curve) through dynamic perifusion experiments was similar across all paired groups from both DCD and donation after brain death donors. In our hands, islet yield (IEQ/g) from the pancreas tails used as study groups was higher than that of the pancreas heads as expected although this difference did not always reach statistical significance because of great variability probably due to suboptimal quality of organs released for research purposes. Moreover, islets from DCD organs had greater purity than controls (P ≤ 0.01) in the HMP study group. Furthermore, our investigation revealed no significant differences in pancreas histology, oxidative stress markers, and apoptosis indicators. Conclusions For the first time, a comparative analysis was conducted, using a split model, to assess the effects of various preservation methods on islets derived from pancreas donors. Nevertheless, no discernible variances were observed in terms of islet functionality, histological attributes, or isolation efficacy. Further investigations are needed to validate these findings for clinical application.
Collapse
Affiliation(s)
- Antoine Buemi
- Surgery and Abdominal Transplantation Division, Department of Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nizar I Mourad
- Pôle de Chirurgie Expérimentale et Transplantation, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP, RRID:SCR_023378), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Arnaud Devresse
- Nephrology Division, Department of Internal Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Delphine Hoton
- Department of Anatomical Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aurelie Daumerie
- IREC Imaging Platform (2IP, RRID:SCR_023378), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Francis Zech
- Pôle de Chirurgie Expérimentale et Transplantation, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Tom Darius
- Surgery and Abdominal Transplantation Division, Department of Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nada Kanaan
- Nephrology Division, Department of Internal Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Gianello
- Pôle de Chirurgie Expérimentale et Transplantation, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Michel Mourad
- Surgery and Abdominal Transplantation Division, Department of Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
21
|
Halloran KM, Saadat N, Pallas B, Vyas AK, Sargis R, Padmanabhan V. Developmental programming: Testosterone excess masculinizes female pancreatic transcriptome and function in sheep. Mol Cell Endocrinol 2024; 588:112234. [PMID: 38588858 PMCID: PMC11231987 DOI: 10.1016/j.mce.2024.112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Hyperandrogenic disorders, such as polycystic ovary syndrome, are often associated with metabolic disruptions such as insulin resistance and hyperinsulinemia. Studies in sheep, a precocial model of translational relevance, provide evidence that in utero exposure to excess testosterone during days 30-90 of gestation (the sexually dimorphic window where males naturally experience elevated androgens) programs insulin resistance and hyperinsulinemia in female offspring. Extending earlier findings that adverse effects of testosterone excess are evident in fetal day 90 pancreas, the end of testosterone treatment, the present study provides evidence that transcriptomic and phenotypic effects of in utero testosterone excess on female pancreas persist after cessation of treatment, suggesting lasting organizational changes, and induce a male-like phenotype in female pancreas. These findings demonstrate that the female pancreas is susceptible to programmed masculinization during the sexually dimorphic window of fetal development and shed light on underlying connections between hyperandrogenism and metabolic homeostasis.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Brooke Pallas
- Unit Lab Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arpita K Vyas
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Robert Sargis
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
22
|
Adamson SE, Hughes JW. Paracrine Signaling by Pancreatic Islet Cilia. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 35:100505. [PMID: 38524256 PMCID: PMC10956557 DOI: 10.1016/j.coemr.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The primary cilium is a sensory and signaling organelle present on most pancreatic islet endocrine cells, where it receives and interprets a wide range of intra-islet chemical cues including hormones, peptides, and neurotransmitters. The ciliary membrane possesses a molecular composition distinct from the plasma membrane, with enrichment of signaling mediators including G protein-coupled receptors (GPCRs), tyrosine kinase family receptors, membrane transporters and others. When activated, these membrane proteins interact with ion channels and adenylyl cyclases to trigger local Ca2+ and cAMP activity and transmit signals to the cell body. Here we review evidence supporting the emerging model in which primary cilia on pancreatic islet cells play a central role in the intra-islet communication network and discuss how changes in cilia-mediated paracrine function in islet cells might lead to diabetes.
Collapse
Affiliation(s)
- Samantha E Adamson
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing W Hughes
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Deshmukh A, Chang K, Cuala J, Vanslembrouck B, Georgia S, Loconte V, White KL. Subcellular Feature-Based Classification of α and β Cells Using Soft X-ray Tomography. Cells 2024; 13:869. [PMID: 38786091 PMCID: PMC11119489 DOI: 10.3390/cells13100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The dysfunction of α and β cells in pancreatic islets can lead to diabetes. Many questions remain on the subcellular organization of islet cells during the progression of disease. Existing three-dimensional cellular mapping approaches face challenges such as time-intensive sample sectioning and subjective cellular identification. To address these challenges, we have developed a subcellular feature-based classification approach, which allows us to identify α and β cells and quantify their subcellular structural characteristics using soft X-ray tomography (SXT). We observed significant differences in whole-cell morphological and organelle statistics between the two cell types. Additionally, we characterize subtle biophysical differences between individual insulin and glucagon vesicles by analyzing vesicle size and molecular density distributions, which were not previously possible using other methods. These sub-vesicular parameters enable us to predict cell types systematically using supervised machine learning. We also visualize distinct vesicle and cell subtypes using Uniform Manifold Approximation and Projection (UMAP) embeddings, which provides us with an innovative approach to explore structural heterogeneity in islet cells. This methodology presents an innovative approach for tracking biologically meaningful heterogeneity in cells that can be applied to any cellular system.
Collapse
Affiliation(s)
- Aneesh Deshmukh
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (A.D.); (K.C.)
| | - Kevin Chang
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (A.D.); (K.C.)
| | - Janielle Cuala
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (A.D.); (K.C.)
- Medical Biophysics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bieke Vanslembrouck
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Senta Georgia
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Valentina Loconte
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L. White
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (A.D.); (K.C.)
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593867. [PMID: 38798508 PMCID: PMC11118353 DOI: 10.1101/2024.05.13.593867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell- selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors important for β-cell identity, such as FOXA, MAFA or RFX6 and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
|
25
|
Salg GA, Steinle V, Labode J, Wagner W, Studier-Fischer A, Reiser J, Farjallah E, Guettlein M, Albers J, Hilgenfeld T, Giese NA, Stiller W, Nickel F, Loos M, Michalski CW, Kauczor HU, Hackert T, Dullin C, Mayer P, Kenngott HG. Multiscale and multimodal imaging for three-dimensional vascular and histomorphological organ structure analysis of the pancreas. Sci Rep 2024; 14:10136. [PMID: 38698049 PMCID: PMC11065985 DOI: 10.1038/s41598-024-60254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Verena Steinle
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jonas Labode
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Willi Wagner
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Alexander Studier-Fischer
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Johanna Reiser
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Elyes Farjallah
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Michelle Guettlein
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Jonas Albers
- Hamburg Unit, European Molecular Biology Laboratory, c/o Deutsches Elektronen-Synchrotron DESY Hamburg, Notkestr. 85, 22607, Hamburg, Germany
| | - Tim Hilgenfeld
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nathalia A Giese
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Wolfram Stiller
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Felix Nickel
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Loos
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Christoph W Michalski
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Thilo Hackert
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Dullin
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, Goettingen, Germany
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, Göttingen, Germany
| | - Philipp Mayer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hannes Goetz Kenngott
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| |
Collapse
|
26
|
Azad A, Altunbas HA, Manguoglu AE. From islet transplantation to beta-cell regeneration: an update on beta-cell-based therapeutic approaches in type 1 diabetes. Expert Rev Endocrinol Metab 2024; 19:217-227. [PMID: 38693782 DOI: 10.1080/17446651.2024.2347263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Type 1 diabetes (T1D) mellitus is an autoimmune disease in which immune cells, predominantly effector T cells, destroy insulin-secreting beta-cells. Beta-cell destruction led to various consequences ranging from retinopathy and nephropathy to neuropathy. Different strategies have been developed to achieve normoglycemia, including exogenous glucose compensation, whole pancreas transplantation, islet transplantation, and beta-cell replacement. AREAS COVERED The last two decades of experience have shown that indigenous glucose compensation through beta-cell regeneration and protection is a peerless method for T1D therapy. Tremendous studies have tried to find an unlimited source for beta-cell regeneration, on the one hand, and beta-cell protection against immune attack, on the other hand. Recent advances in stem cell technology, gene editing methods, and immune modulation approaches provide a unique opportunity for both beta-cell regeneration and protection. EXPERT OPINION Pluripotent stem cell differentiation into the beta-cell is considered an unlimited source for beta-cell regeneration. Devising engineered pancreas-specific regulatory T cells using Chimeric Antigen Receptor (CAR) technology potentiates an effective immune tolerance induction for beta-cell protection. Beta-cell regeneration using pluripotent stem cells and beta-cell protection using pancreas-specific engineered regulatory T cells promises to develop a curative protocol in T1D.
Collapse
Affiliation(s)
- Asef Azad
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hasan Ali Altunbas
- Department of Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayse Esra Manguoglu
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
27
|
Porter LT, Adin CA, Crews CD, Mott J, Gilor C. Isolation of feline islets of Langerhans by selective osmotic shock produces glucose responsive islets. Front Vet Sci 2024; 11:1365611. [PMID: 38515535 PMCID: PMC10954776 DOI: 10.3389/fvets.2024.1365611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Pancreatic islet isolation is essential for studying islet physiology, pathology, and transplantation, and feline islets could be an important model for human type II diabetes mellitus (T2D). Traditional isolation methods utilizing collagenases inflict damage and, in cats, may contribute to the difficulty in generating functional islets, as demonstrated by glucose-stimulated insulin secretion (GSIS). GLUT2 expression in β cells may allow for adaptation to hyperosmolar glucose solutions while exocrine tissue is selectively disrupted. Methods Here we developed a protocol for selective osmotic shock (SOS) for feline islet isolation and evaluated the effect of different hyperosmolar glucose concentrations (300 mmol/L and 600 mmol/L) and incubation times (20 min and 40 min) on purity, morphology, yield, and GSIS. Results Across protocol treatments, islet yield was moderate and morphology excellent. The treatment of 600 mmol/L glucose solution with 20 min incubation resulted in the highest stimulation index by GSIS. Discussion Glucose responsiveness was demonstrated, permitting future in vitro studies. This research opens avenues for understanding feline islet function and transplantation possibilities and enables an additional islet model for T2D.
Collapse
Affiliation(s)
- Lauren T. Porter
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Christopher A. Adin
- College of Veterinary Medicine Dean’s Office, University of Florida, Gainesville, FL, United States
| | - Chiquitha D. Crews
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Jocelyn Mott
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Chen Gilor
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Maranesi M, Palmioli E, Dall'Aglio C, Marini D, Anipchenko P, De Felice E, Scocco P, Mercati F. Resistin in endocrine pancreas of sheep: Presence and expression related to different diets. Gen Comp Endocrinol 2024; 348:114452. [PMID: 38246291 DOI: 10.1016/j.ygcen.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Philosophy, Social Sciences, and Education, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, IT, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| |
Collapse
|
29
|
Goodarzi N, Bashiri A. Histology and immunofluorescent study of the pancreas in lovebird (Agapornis personatus). Vet Med Sci 2024; 10:e1394. [PMID: 38459816 PMCID: PMC10924273 DOI: 10.1002/vms3.1394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Lovebird (Agapornis personatus) is a monotypic species of bird of the lovebird genus in the parrot family Psittaculidae and order Psittaciformes. OBJECTIVES The present study was designed to investigate the histology and immunohistochemistry of the pancreas in the lovebird. METHODS Totally, three adult birds were used. The pancreas was assessed using histological and immunofluorescent staining to detect insulin, glucagon, somatostatin, pancreatic polypeptide (PP) and neuropeptide Y (NY). RESULTS The exocrine pancreas was composed of pyramidal acinar cells with zymogen granules at the apical cytoplasm. The endocrine pancreas was identified as large alpha, small beta and mixed islets of Langerhans. No intercalated duct was observed. Alpha cells with a density of 28.55% were the most numerous cell type, which were populated throughout the large islets, especially at the periphery. The beta cells with a density of 15.78% were accumulated mostly at the periphery of islets. The delta cells exhibited 17.81% intensity. Despite their lower density, the distribution of delta cells was like that of A cells throughout the islets. PP and NY cells were distinguished with densities of 14.69% and 20.63%, respectively. CONCLUSIONS Although the arrangement of acinar cells, ductal systems and endocrine islets reflects patterns observed in various avian species, the absence of intercalated duct, the presence of three types of Langerhans islets as alpha, beta and mixed islets and the high expression of NY in the islets were some unique features observed in the current study. These findings contribute to the broader understanding of avian pancreas histology.
Collapse
Affiliation(s)
- Nader Goodarzi
- Department of Basic Sciences and Pathobiology, Faculty of Veterinary MedicineRazi UniversityKermanshahIran
| | - Ayda Bashiri
- Faculty of Veterinary Medicine, Islamic Azad UniversitySanandaj BranchSanandajIran
| |
Collapse
|
30
|
Rochowski MT, Jayathilake K, Balcerak JM, Selvan MT, Gunasekara S, Miller C, Rudd JM, Lacombe VA. Impact of Delta SARS-CoV-2 Infection on Glucose Metabolism: Insights on Host Metabolism and Virus Crosstalk in a Feline Model. Viruses 2024; 16:295. [PMID: 38400070 PMCID: PMC10893195 DOI: 10.3390/v16020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes enhanced mortality in people with metabolic and cardiovascular diseases. Other highly infectious RNA viruses have demonstrated dependence on glucose transport and utilization, so we hypothesized that SARS-CoV-2 infection could lead to alterations in cellular and whole-body glucose metabolism. Twenty-four healthy domestic cats were intratracheally inoculated with B.1.617.2 (delta) SARS-CoV-2 and samples were collected at 4- and 12-days post-inoculation (dpi). Blood glucose and circulating cortisol concentrations were elevated at 4 and 12 dpi. Serum insulin concentration was statistically significantly decreased, while angiotensin 2 concentration was elevated at 12 dpi. SARS-CoV-2 RNA was detected in the pancreas and skeletal muscle at low levels; however, no change in the number of insulin-producing cells or proinflammatory cytokines was observed in the pancreas of infected cats through 12 dpi. SARS-CoV-2 infection statistically significantly increased GLUT protein expression in both the heart and lungs, correlating with increased AMPK expression. In brief, SARS-CoV-2 increased blood glucose concentration and cardio-pulmonary GLUT expression through an AMPK-dependent mechanism, without affecting the pancreas, suggesting that SARS-CoV-2 induces the reprogramming of host glucose metabolism. A better understanding of host cell metabolism and virus crosstalk could lead to the discovery of novel metabolic therapeutic targets for patients affected by COVID-19.
Collapse
Affiliation(s)
- Matthew T. Rochowski
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.R.)
- Harold Hamm Diabetes Center, Oklahoma City, OK 73104, USA
| | - Kaushalya Jayathilake
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.R.)
| | - John-Michael Balcerak
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.R.)
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.S.); (S.G.); (C.M.); (J.M.R.)
| | - Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.S.); (S.G.); (C.M.); (J.M.R.)
| | - Craig Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.S.); (S.G.); (C.M.); (J.M.R.)
| | - Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.S.); (S.G.); (C.M.); (J.M.R.)
| | - Véronique A. Lacombe
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (M.T.R.)
- Harold Hamm Diabetes Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
31
|
Xia S, Xi F, Ou K, Zhang Y, Ni H, Wang C, Wang Q. The effects of EGCG supplementation on pancreatic islet α and β cells distribution in adult male mice. J Nutr Biochem 2024; 124:109529. [PMID: 37951555 DOI: 10.1016/j.jnutbio.2023.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Tea and tea products are widely used as the most popular beverage in the world. EGCG is the most abundant bioactive tea polyphenol in green tea, which has positive effects on the prevention and treatment of diabetes. However, the impact of EGCG exposure on glucose homeostasis and islets in adult mice have not been reported. In this study, we studied glucose homeostasis and the morphological and molecular changes of pancreatic islet α and β cells in adult male mice after 60 d of exposure to 1 and 10 mg/kg/day EGCG by drinking water. Glucose homeostasis was not affected in both EGCG groups. The expression of pancreatic duodenal homebox1 (Pdx1) in β cells was upregulated, which might be related to increased insulin level, β cell mass and β cell proliferation in 10 mg/kg/day EGCG group. The expression of aristaless-related homeobox (Arx) in α cells did not change significantly, which corresponded with the unchanged α-cell mass. The significant reduction of musculoaponeurotic fibrosarcoma oncogene homolog B (MafB) positive α-cells might be associated with decreased glucagon level in both EGCG groups. These results suggest that EGCG supplementation dose-dependent increases β cell mass of adult mice and affects the levels of serum insulin and glucagon. Our results show that regular tea drinking in healthy people may have the possibility of preventing diabetes.
Collapse
Affiliation(s)
- Siyu Xia
- School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Feifei Xi
- School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Kunlin Ou
- School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Huizhen Ni
- School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
32
|
Vaitaitis G, Webb T, Webb C, Sharkey C, Sharkey S, Waid D, Wagner DH. Canine diabetes mellitus demonstrates multiple markers of chronic inflammation including Th40 cell increases and elevated systemic-immune inflammation index, consistent with autoimmune dysregulation. Front Immunol 2024; 14:1319947. [PMID: 38318506 PMCID: PMC10839093 DOI: 10.3389/fimmu.2023.1319947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Canine diabetes mellitus (CDM) is a relatively common endocrine disease in dogs. Many CDM clinical features resemble human type 1 diabetes mellitus (T1DM), but lack of autoimmune biomarkers makes calling the disease autoimmune controversial. Autoimmune biomarkers linking CDM and T1DM would create an alternative model for drug development impacting both human and canine disease. Methods We examined peripheral blood of diagnosed CDM dog patients comparing it to healthy control (HC) dogs. Dogs were recruited to a study at the Colorado State University Veterinary Teaching Hospital and blood samples collected for blood chemistry panels, complete blood counts (CBC), and immunologic analysis. Markers of disease progression such as glycated albumin (fructosamine, the canine equivalent of human HbA1c) and c-peptide were addressed. Results Significant differences in adaptive immune lymphocytes, innate immune macrophages/monocytes and neutrophils and differences in platelets were detected between CDM and HC based on CBC. Significant differences in serum glucose, cholesterol and the liver function enzyme alkaline phosphatase were also detected. A systemic immune inflammation index (SII) and chronic inflammation index (CII) as measures of dynamic changes in adaptive and innate cells between inflammatory and non-inflammatory conditions were created with highly significant differences between CDM and HC. Th40 cells (CD4+CD40+ T cells) that are demonstrably pathogenic in mouse T1DM and able to differentiate diabetic from non-diabetic subjects in human T1DM were significantly expanded in peripheral blood mononuclear cells. Conclusions Based on each clinical finding, CDM can be categorized as an autoimmune condition. The association of significantly elevated Th40 cells in CDM when compared to HC or to osteoarthritis, a chronic but non-autoimmune disease, suggests peripheral blood Th40 cell numbers as a biomarker that reflects CDM chronic inflammation. The differences in SII and CII further underscore those findings.
Collapse
Affiliation(s)
- Gisela Vaitaitis
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tracy Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Craig Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Christina Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Steve Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Dan Waid
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| | - David H. Wagner
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| |
Collapse
|
33
|
Röthe J, Kraft R, Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D. The adhesion GPCR GPR116/ADGRF5 has a dual function in pancreatic islets regulating somatostatin release and islet development. Commun Biol 2024; 7:104. [PMID: 38228886 PMCID: PMC10791652 DOI: 10.1038/s42003-024-05783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Glucose homeostasis is maintained by hormones secreted from different cell types of the pancreatic islets and controlled by manifold input including signals mediated through G protein-coupled receptors (GPCRs). RNA-seq analyses revealed expression of numerous GPCRs in mouse and human pancreatic islets, among them Gpr116/Adgrf5. GPR116 is an adhesion GPCR mainly found in lung and required for surfactant secretion. Here, we demonstrate that GPR116 is involved in the somatostatin release from pancreatic delta cells using a whole-body as well as a cell-specific knock-out mouse model. Interestingly, the whole-body GPR116 deficiency causes further changes such as decreased beta-cell mass, lower number of small islets, and reduced pancreatic insulin content. Glucose homeostasis in global GPR116-deficient mice is maintained by counter-acting mechanisms modulating insulin degradation. Our data highlight an important function of GPR116 in controlling glucose homeostasis.
Collapse
Affiliation(s)
- Juliane Röthe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Robert Kraft
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Madlen Matz-Soja
- Medical Department II - Gastroenterology, Hepatology, Infectious Diseases, Pneumology, University Medical Center, Leipzig, Germany
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, Infectious Diseases, and Pneumology, University Hospital, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Buchold
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
34
|
Huang JL, Pourhosseinzadeh MS, Lee S, Krämer N, Guillen JV, Cinque NH, Aniceto P, Momen AT, Koike S, Huising MO. Paracrine signalling by pancreatic δ cells determines the glycaemic set point in mice. Nat Metab 2024; 6:61-77. [PMID: 38195859 PMCID: PMC10919447 DOI: 10.1038/s42255-023-00944-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2023] [Indexed: 01/11/2024]
Abstract
While pancreatic β and α cells are considered the main drivers of blood glucose homeostasis through insulin and glucagon secretion, the contribution of δ cells and somatostatin (SST) secretion to glucose homeostasis remains unresolved. Here we provide a quantitative assessment of the physiological contribution of δ cells to the glycaemic set point in mice. Employing three orthogonal mouse models to remove SST signalling within the pancreas or transplanted islets, we demonstrate that ablating δ cells or SST leads to a sustained decrease in the glycaemic set point. This reduction coincides with a decreased glucose threshold for insulin response from β cells, leading to increased insulin secretion to the same glucose challenge. Our data demonstrate that β cells are sufficient to maintain stable glycaemia and reveal that the physiological role of δ cells is to provide tonic feedback inhibition that reduces the β cell glucose threshold and consequently lowers the glycaemic set point in vivo.
Collapse
Affiliation(s)
- Jessica L Huang
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Mohammad S Pourhosseinzadeh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Sharon Lee
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Niels Krämer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jaresley V Guillen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Naomi H Cinque
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Paola Aniceto
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Ariana T Momen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Shinichiro Koike
- Department of Nutrition, University of California, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA.
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
35
|
Waters BJ, Birman ZR, Wagner MR, Lemanski J, Blum B. Islet architecture in adult mice is actively maintained by Robo2 expression in β cells. Dev Biol 2024; 505:122-129. [PMID: 37972678 PMCID: PMC10841604 DOI: 10.1016/j.ydbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
A fundamental question in developmental biology is whether tissue architectures formed during development are set for life, or require continuous maintenance signals, and if so, what are those signals. The islets of Langerhans in the pancreas can serve as an elegant model tissue to answer these questions. Islets have a non-random spatial architecture, which is important to proper glucose homeostasis. Islet architecture forms during embryonic development, in a morphogenesis process partially involving expression of Roundabout (Robo) receptors in β cells, and their ligand, Slit, in the surrounding mesenchyme. Whether islet architecture is set during development and remains passive in adulthood, or whether it requires active maintenance throughout life, has not been determined. Here we conditionally deleted Robo2 in β cells of adult mice and observed their islet architecture following a two-month chase. We show that deleting Robo2 in adult β cells causes significant loss of islet architecture without affecting β cell identity, maturation, or stress, indicating that Robo2 plays a role in actively maintaining adult islet architecture. Understanding the factors required to maintain islet architecture, and thus optimize islet function, is important for developing future diabetes therapies.
Collapse
Affiliation(s)
- Bayley J Waters
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zoe R Birman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew R Wagner
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Julia Lemanski
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
36
|
Kumar PP, Rao GV, Shetty M, Pradeep R, PremaVani C, Sasikala M, Reddy DN. Understanding the Structural Arrangement of Islets in Chronic Pancreatitis. J Histochem Cytochem 2024; 72:25-40. [PMID: 38063163 PMCID: PMC10795563 DOI: 10.1369/00221554231217552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/20/2023] [Indexed: 12/31/2023] Open
Abstract
Islet transplantation has become an established method for the treatment of insulin-deficient diabetes such as type 1 and type 3C (pancreatogenic). An effective transplantation necessitates a thorough understanding of the islet architecture and related functions to improve engraftment outcomes. However, in chronic pancreatitis (CP), the structural and related functional information is inadequate. Hence, the present study is aimed to understand the cytoarchitecture of endocrine cells and their functional implications in CP with and without diabetes. Herein, a set of human pancreatic tissue specimens (normal, n=5 and CP, n=20) was collected and processed for islet isolation. Furthermore, immunohistochemistry was used to assess the vascular densities, cell mass, organization, and cell-cell interactions. The glucose-stimulated insulin release results revealed that in chronic pancreatitis without diabetes mellitus altered (CPNDA), at basal glucose concentration the insulin secretion was increased by 24.2%, whereas at high glucose concentration the insulin levels were reduced by 77.4%. The impaired insulin secretion may be caused by alterations in the cellular architecture of islets during CP progression, particularly in chronic pancreatitis with diabetes mellitus and CPNDA conditions. Based on the results, a deeper comprehension of islet architecture would be needed to enhance successful transplantation in CP patients: (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Pondugala Pavan Kumar
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| | | | | | | | | | - Mitnala Sasikala
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
| | - Duvvur Nageshwar Reddy
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| |
Collapse
|
37
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
38
|
Rademakers T, Sthijns MMJPE, Paulino da Silva Filho O, Joris V, Oosterveer J, Lam TW, van Doornmalen E, van Helden S, LaPointe VLS. Identification of Compounds Protecting Pancreatic Islets against Oxidative Stress using a 3D Pseudoislet Screening Platform. Adv Biol (Weinh) 2023; 7:e2300264. [PMID: 37566766 DOI: 10.1002/adbi.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Oxidative stress leads to a lower success rate of clinical islet transplantation. Here, FDA-approved compounds are screened for their potential to decrease oxidative stress and to protect or enhance pancreatic islet viability and function. Studies are performed on in vitro "pseudoislet" spheroids, which are pre-incubated with 1280 different compounds and subjected to oxidative stress. Cell viability and oxidative stress levels are determined using a high-throughput fluorescence microscopy pipeline. Initial screening on cell viability results in 59 candidates. The top ten candidates are subsequently screened for their potential to decrease induced oxidative stress, and eight compounds efficient reduction of induced oxidative stress in both alpha and beta cells by 25-50%. After further characterization, the compound sulfisoxazole is found to be the most capable of reducing oxidative stress, also at short pre-incubation times, which is validated in primary human islets, where low oxidative stress levels and islet function are maintained. This study shows an effective screening strategy with 3D cell aggregates based on cell viability and oxidative stress, which leads to the discovery of several compounds with antioxidant capacity. The top candidate, sulfisoxazole is effective after a 30 min pre-incubation, maintains baseline islet function, and may help alleviate oxidative stress in pancreatic islets.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Mireille M J P E Sthijns
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
- Food Innovation and Health, Department of Human Biology, Maastricht University, Venlo, 5911 BV, the Netherlands
| | - Omar Paulino da Silva Filho
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Virginie Joris
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Jolien Oosterveer
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Tsang Wai Lam
- Pivot Park Screening Centre (PPSC), Oss, 5349 AB, the Netherlands
| | | | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| |
Collapse
|
39
|
Caicedo A, Huising MO, Wess J. An Intraislet Paracrine Signaling Pathway That Enables Glucagon to Stimulate Pancreatic β-Cells. Diabetes 2023; 72:1748-1750. [PMID: 37983525 PMCID: PMC10658067 DOI: 10.2337/dbi23-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
40
|
Briggs JK, Gresch A, Marinelli I, Dwulet JM, Albers DJ, Kravets V, Benninger RKP. β-cell intrinsic dynamics rather than gap junction structure dictates subpopulations in the islet functional network. eLife 2023; 12:e83147. [PMID: 38018905 PMCID: PMC10803032 DOI: 10.7554/elife.83147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Diabetes is caused by the inability of electrically coupled, functionally heterogeneous β-cells within the pancreatic islet to provide adequate insulin secretion. Functional networks have been used to represent synchronized oscillatory [Ca2+] dynamics and to study β-cell subpopulations, which play an important role in driving islet function. The mechanism by which highly synchronized β-cell subpopulations drive islet function is unclear. We used experimental and computational techniques to investigate the relationship between functional networks, structural (gap junction) networks, and intrinsic β-cell dynamics in slow and fast oscillating islets. Highly synchronized subpopulations in the functional network were differentiated by intrinsic dynamics, including metabolic activity and KATP channel conductance, more than structural coupling. Consistent with this, intrinsic dynamics were more predictive of high synchronization in the islet functional network as compared to high levels of structural coupling. Finally, dysfunction of gap junctions, which can occur in diabetes, caused decreases in the efficiency and clustering of the functional network. These results indicate that intrinsic dynamics rather than structure drive connections in the functional network and highly synchronized subpopulations, but gap junctions are still essential for overall network efficiency. These findings deepen our interpretation of functional networks and the formation of functional subpopulations in dynamic tissues such as the islet.
Collapse
Affiliation(s)
- Jennifer K Briggs
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Anne Gresch
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Isabella Marinelli
- Centre for Systems Modelling and Quantitative Biomedicine, University of BirminghamBirminghamUnited Kingdom
| | - JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - David J Albers
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Richard KP Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
41
|
Pandey S, Chmelir T, Chottova Dvorakova M. Animal Models in Diabetic Research-History, Presence, and Future Perspectives. Biomedicines 2023; 11:2852. [PMID: 37893225 PMCID: PMC10603837 DOI: 10.3390/biomedicines11102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus (DM) is a very serious disease, the incidence of which has been increasing worldwide. The beginning of diabetic research can be traced back to the 17th century. Since then, animals have been experimented on for diabetic research. However, the greatest development of diabetes research occurred in the second half of the last century, along with the development of laboratory techniques. Information obtained by monitoring patients and animal models led to the finding that there are several types of DM that differ significantly from each other in the causes of the onset and course of the disease. Through different types of animal models, researchers have studied the pathophysiology of all types of diabetic conditions and discovered suitable methods for therapy. Interestingly, despite the unquestionable success in understanding DM through animal models, we did not fully succeed in transferring the data obtained from animal models to human clinical research. On the contrary, we have observed that the chances of drug failure in human clinical trials are very high. In this review, we will summarize the history and presence of animal models in the research of DM over the last hundred years. Furthermore, we have summarized the new methodological approaches, such as "organ-on-chip," that have the potential to screen the newly discovered drugs for human clinical trials and advance the level of knowledge about diabetes, as well as its therapy, towards a personalized approach.
Collapse
Affiliation(s)
- Shashank Pandey
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Tomas Chmelir
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| | - Magdalena Chottova Dvorakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| |
Collapse
|
42
|
McCarty SM, Clasby MC, Sexton JZ. Automated high-throughput, high-content 3D imaging of intact pancreatic islets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:316-324. [PMID: 37527729 DOI: 10.1016/j.slasd.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Diabetes poses a global health crisis affecting individuals across age groups and backgrounds, with a prevalence estimate of 700 million people worldwide by 2045. Current therapeutic strategies primarily rely on insulin therapy or hypoglycemic agents, which fail to address the root cause of the disease - the loss of pancreatic insulin-producing beta-cells. Therefore, bioassays that recapitulate intact islets are needed to enable drug discovery for beta-cell replenishment, protection from beta-cell loss, and islet-cell interactions. Standard cancer insulinoma beta-cell lines MIN6 and INS-1 have been used to interrogate beta-cell metabolic pathways and function but are not suitable for studying proliferative effects. Screening using primary human/rodent intact islets offers a higher level of physiological relevance to enhance diabetes drug discovery and development. However, the 3-dimensionality of intact islets have presented challenges in developing robust, high-throughput assays to detect beta-cell proliferative effects. Established methods rely on either dissociated islet cells plated in 2D monolayer cultures for imaging or reconstituted pseudo-islets formed in round bottom plates to achieve homogeneity. These approaches have significant limitations due to the islet cell dispersion process. To address these limitations, we have developed a robust, intact ex vivo pancreatic islet bioassay in 384-well format that is capable of detecting diabetes-relevant endpoints including beta-cell proliferation, chemoprotection, and islet spatial morphometrics.
Collapse
Affiliation(s)
- Sean M McCarty
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin C Clasby
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA; University of Michigan Center for Drug Repurposing, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Toren E, Kepple JD, Coutinho KV, Poole SO, Deeba IM, Pierre TH, Liu Y, Bethea MM, Hunter CS. The SSBP3 co-regulator is required for glucose homeostasis, pancreatic islet architecture, and beta-cell identity. Mol Metab 2023; 76:101785. [PMID: 37536498 PMCID: PMC10448474 DOI: 10.1016/j.molmet.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE Transcriptional complex activity drives the development and function of pancreatic islet cells to allow for proper glucose regulation. Prior studies from our lab and others highlighted that the LIM-homeodomain transcription factor (TF), Islet-1 (Isl1), and its interacting co-regulator, Ldb1, are vital effectors of developing and adult β-cells. We further found that a member of the Single Stranded DNA-Binding Protein (SSBP) co-regulator family, SSBP3, interacts with Isl1 and Ldb1 in β-cells and primary islets (mouse and human) to impact β-cell target genes MafA and Glp1R in vitro. Members of the SSBP family stabilize TF complexes by binding directly to Ldb1 and protecting the complex from ubiquitin-mediated turnover. In this study, we hypothesized that SSBP3 has critical roles in pancreatic islet cell function in vivo, similar to the Isl1::Ldb1 complex. METHODS We first developed a novel SSBP3 LoxP allele mouse line, where Cre-mediated recombination imparts a predicted early protein termination. We bred this mouse with constitutive Cre lines (Pdx1- and Pax6-driven) to recombine SSBP3 in the developing pancreas and islet (SSBP3ΔPanc and SSBP3ΔIslet), respectively. We assessed glucose tolerance and used immunofluorescence to detect changes in islet cell abundance and markers of β-cell identity and function. Using an inducible Cre system, we also deleted SSBP3 in the adult β-cell, a model termed SSBP3Δβ-cell. We measured glucose tolerance as well as glucose-stimulated insulin secretion (GSIS), both in vivo and in isolated islets in vitro. Using islets from control and SSBP3Δβ-cell we conducted RNA-Seq and compared our results to published datasets for similar β-cell specific Ldb1 and Isl1 knockouts to identify commonly regulated target genes. RESULTS SSBP3ΔPanc and SSBP3ΔIslet neonates present with hyperglycemia. SSBP3ΔIslet mice are glucose intolerant by P21 and exhibit a reduction of β-cell maturity markers MafA, Pdx1, and UCN3. We observe disruptions in islet cell architecture with an increase in glucagon+ α-cells and ghrelin+ ε-cells at P10. Inducible loss of β-cell SSBP3 in SSBP3Δβ-cell causes hyperglycemia, glucose intolerance, and reduced GSIS. Transcriptomic analysis of 14-week-old SSBP3Δβ-cell islets revealed a decrease in β-cell function gene expression (Ins, MafA, Ucn3), increased stress and dedifferentiation markers (Neurogenin-3, Aldh1a3, Gastrin), and shared differentially expressed genes between SSBP3, Ldb1, and Isl1 in adult β-cells. CONCLUSIONS SSBP3 drives proper islet identity and function, where its loss causes altered islet-cell abundance and glucose homeostasis. β-Cell SSBP3 is required for GSIS and glucose homeostasis, at least partially through shared regulation of Ldb1 and Isl1 target genes.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica D Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristen V Coutinho
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samuel O Poole
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Iztiba M Deeba
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tanya H Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maigen M Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
44
|
Lau HH, Krentz NAJ, Abaitua F, Perez-Alcantara M, Chan JW, Ajeian J, Ghosh S, Lee Y, Yang J, Thaman S, Champon B, Sun H, Jha A, Hoon S, Tan NS, Gardner DSL, Kao SL, Tai ES, Gloyn AL, Teo AKK. PAX4 loss of function increases diabetes risk by altering human pancreatic endocrine cell development. Nat Commun 2023; 14:6119. [PMID: 37777536 PMCID: PMC10542369 DOI: 10.1038/s41467-023-41860-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
The coding variant (p.Arg192His) in the transcription factor PAX4 is associated with an altered risk for type 2 diabetes (T2D) in East Asian populations. In mice, Pax4 is essential for beta cell formation but its role on human beta cell development and/or function is unknown. Participants carrying the PAX4 p.His192 allele exhibited decreased pancreatic beta cell function compared to homozygotes for the p.192Arg allele in a cross-sectional study in which we carried out an intravenous glucose tolerance test and an oral glucose tolerance test. In a pedigree of a patient with young onset diabetes, several members carry a newly identified p.Tyr186X allele. In the human beta cell model, EndoC-βH1, PAX4 knockdown led to impaired insulin secretion, reduced total insulin content, and altered hormone gene expression. Deletion of PAX4 in human induced pluripotent stem cell (hiPSC)-derived islet-like cells resulted in derepression of alpha cell gene expression. In vitro differentiation of hiPSCs carrying PAX4 p.His192 and p.X186 risk alleles exhibited increased polyhormonal endocrine cell formation and reduced insulin content that can be reversed with gene correction. Together, we demonstrate the role of PAX4 in human endocrine cell development, beta cell function, and its contribution to T2D-risk.
Collapse
Affiliation(s)
- Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nicole A J Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Jun-Wei Chan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jila Ajeian
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Soumita Ghosh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yunkyeong Lee
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Yang
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoite Champon
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alokkumar Jha
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shawn Hoon
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Shih Ling Kao
- Department of Medicine, National University Hospital and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, National University Hospital and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
45
|
Luchetti N, Filippi S, Loppini A. Multilevel synchronization of human β-cells networks. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1264395. [PMID: 37808419 PMCID: PMC10557430 DOI: 10.3389/fnetp.2023.1264395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
β-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in β-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce β-cell dynamics and study networks mimicking arrangements of β-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.
Collapse
Affiliation(s)
- Nicole Luchetti
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
- National Institute of Optics, National Research Council, Florence, Italy
- International Center for Relativistic Astrophysics Network, Pescara, Italy
| | - Alessandro Loppini
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
46
|
Asuaje Pfeifer M, Langehein H, Grupe K, Müller S, Seyda J, Liebmann M, Rustenbeck I, Scherneck S. PyCreas: a tool for quantification of localization and distribution of endocrine cell types in the islets of Langerhans. Front Endocrinol (Lausanne) 2023; 14:1250023. [PMID: 37772078 PMCID: PMC10523144 DOI: 10.3389/fendo.2023.1250023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Manifest diabetes, but also conditions of increased insulin resistance such as pregnancy or obesity can lead to islet architecture remodeling. The contributing mechanisms are as poorly understood as the consequences of altered cell arrangement. For the quantification of the different cell types but also the frequency of different cell-cell contacts within the islets, different approaches exist. However, few methods are available to characterize islet cell distribution in a statistically valid manner. Here we describe PyCreas, an open-source tool written in Python that allows semi-automated analysis of islet cell distribution based on images of pancreatic sections stained by immunohistochemistry or immunofluorescence. To ensure that the PyCreas tool is suitable for quantitative analysis of cell distribution in the islets at different metabolic states, we studied the localization and distribution of alpha, beta, and delta cells during gestation and prediabetes. We compared the islet cell distribution of pancreatic islets from metabolically healthy NMRI mice with that of New Zealand obese (NZO) mice, which exhibit impaired glucose tolerance (IGT) both preconceptionally and during gestation, and from C57BL/6 N (B6) mice, which acquire this IGT only during gestation. Since substrain(s) of the NZO mice are known to show a variant in the Abcc8 gene, we additionally examined preconceptional SUR1 knock-out (SUR1-KO) mice. PyCreas provided quantitative evidence that alterations in the Abcc8 gene are associated with an altered distribution pattern of islet cells. Moreover, our data indicate that this cannot be a consequence of prolonged hyperglycemia, as islet architecture is already altered in the prediabetic state. Furthermore, the quantitative analysis suggests that states of transient IGT, such as during common gestational diabetes mellitus (GDM), are not associated with changes in islet architecture as observed during long-term IGT. PyCreas provides the ability to systematically analyze the localization and distribution of islet cells at different stages of metabolic disease to better understand the underlying pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
47
|
Brooks EP, Sussel L. Not the second fiddle: α cell development, identity, and function in health and diabetes. J Endocrinol 2023; 258:e220297. [PMID: 37171828 PMCID: PMC10524258 DOI: 10.1530/joe-22-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Historic and emerging studies provide evidence for the deterioration of pancreatic α cell function and identity in diabetes mellitus. Increased access to human tissue and the availability of more sophisticated molecular technologies have identified key insights into how α cell function and identity are preserved in healthy conditions and how they become dysfunctional in response to stress. These studies have revealed evidence of impaired glucagon secretion, shifts in α cell electrophysiology, changes in α cell mass, dysregulation of α cell transcription, and α-to-β cell conversion prior to and during diabetes. In this review, we outline the current state of research on α cell identity in health and disease. Evidence in model organisms and humans suggests that in addition to β cell dysfunction, diabetes is associated with a fundamental dysregulation of α cell identity. Importantly, epigenetic studies have revealed that α cells retain more poised and open chromatin at key cell-specific and diabetes-dysregulated genes, supporting the model that the inherent epigenetic plasticity of α cells makes them susceptible to the transcriptional changes that potentiate the loss of identity and function seen in diabetes. Thus, additional research into the maintenance of α cell identity and function is critical to fully understanding diabetes. Furthermore, these studies suggest α cells could represent an alternative source of new β cells for diabetes treatment.
Collapse
Affiliation(s)
- Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
48
|
Voznesenskaya A, Berggren PO, Ilegems E. Sustained heterologous gene expression in pancreatic islet organoids using adeno-associated virus serotype 8. Front Bioeng Biotechnol 2023; 11:1147244. [PMID: 37545890 PMCID: PMC10400289 DOI: 10.3389/fbioe.2023.1147244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Genetic modification of pancreatic islet organoids, assembled in vitro prior to transplantation is an emerging alternative to direct in vivo genetic manipulations for a number of clinical and research applications. We have previously shown that dispersion of islet cells followed by re-aggregation into islet organoids, or pseudoislets, allows for efficient transduction with viral vectors, while maintaining physiological functions of native islets. Among viruses currently used for genetic manipulations, adeno-associated viruses (AAVs) have the most attractive safety profile making them suitable for gene therapy applications. Studies reporting on pseudoislet transduction with AAVs are, however, lacking. Here, we have characterized in detail the performance of AAV serotype 8 in transduction of islet cells during pseudoislet formation in comparison with human adenovirus type 5 (AdV5). We have assessed such parameters as transduction efficiency, expression kinetics, and endocrine cell tropism of AAV8 alone or in combination with AdV5. Data provided within our study may serve as a reference point for future functional studies using AAVs for gene transfer to islet cell organoids and will facilitate further development of engineered pseudoislets of superior quality suitable for clinical transplantation.
Collapse
|
49
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
50
|
Klak M, Wszoła M, Berman A, Filip A, Kosowska A, Olkowska-Truchanowicz J, Rachalewski M, Tymicki G, Bryniarski T, Kołodziejska M, Dobrzański T, Ujazdowska D, Wejman J, Uhrynowska-Tyszkiewicz I, Kamiński A. Bioprinted 3D Bionic Scaffolds with Pancreatic Islets as a New Therapy for Type 1 Diabetes-Analysis of the Results of Preclinical Studies on a Mouse Model. J Funct Biomater 2023; 14:371. [PMID: 37504866 PMCID: PMC10381593 DOI: 10.3390/jfb14070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Recently, tissue engineering, including 3D bioprinting of the pancreas, has acquired clinical significance and has become an outstanding potential method of customized treatment for type 1 diabetes mellitus. The study aimed to evaluate the function of 3D-bioprinted pancreatic petals with pancreatic islets in the murine model. A total of 60 NOD-SCID (Nonobese diabetic/severe combined immunodeficiency) mice were used in the study and divided into three groups: control group; IsletTx (porcine islets transplanted under the renal capsule); and 3D bioprint (3D-bioprinted pancreatic petals with islets transplanted under the skin, on dorsal muscles). Glucose, C-peptide concentrations, and histological analyses were performed. In the obtained results, significantly lower mean fasting glucose levels (mg/dL) were observed both in a 3D-bioprint group and in a group with islets transplanted under the renal capsule when compared with untreated animals. Differences were observed in all control points: 7th, 14th, and 28th days post-transplantation (129, 119, 118 vs. 140, 139, 140; p < 0.001). Glucose levels were lower on the 14th and 28th days in a group with bioprinted petals compared to the group with islets transplanted under the renal capsule. Immunohistochemical staining indicated the presence of secreted insulin-living pancreatic islets and neovascularization within 3D-bioprinted pancreatic petals after transplantation. In conclusion, bioprinted bionic petals significantly lowered plasma glucose concentration in studied model species.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Andrzej Berman
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Anna Filip
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | - Anna Kosowska
- Chair and Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | | | | | - Grzegorz Tymicki
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | - Tomasz Bryniarski
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | | | | | | | - Jarosław Wejman
- Center for Pathomorphological Diagnostics Sp. z o.o., 01-496 Warsaw, Poland
| | | | - Artur Kamiński
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|