1
|
Ramalho A, Vale A, Carvalho F, Fernandes E, Freitas M. Parabens exposure and its impact on diabesity: A review. Toxicology 2025; 515:154125. [PMID: 40132785 DOI: 10.1016/j.tox.2025.154125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Parabens are a family of alkyl esters of 4-hydroxybenzoic acid. The most commonly used include methylparaben, ethylparaben, propylparaben, and butylparaben. These compounds have been reported to disrupt the endocrine system and are believed to affect the central nervous, immune, and reproductive systems, as well as lipid homeostasis, glucose levels, and thyroid function. Given these effects, parabens pose potential health risks, including their possible link to conditions like diabesity - a term describing the dual condition of type 2 diabetes mellitus and obesity. This review explores current literature on how parabens may influence key mechanisms in diabesity, such as gluconeogenesis, glycogenolysis, adipogenesis, insulin resistance, and inflammation. Understanding their role in these metabolic pathways is critical for assessing their contribution to the diabesity epidemic and guiding future research for minimizing their harmful health impacts.
Collapse
Affiliation(s)
- Ana Ramalho
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Abel Vale
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Félix Carvalho
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050‑313, Portugal; Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
2
|
Burman MD, Bag S, Ghosal S, Bhowmik S. Glycation of Proteins and Its End Products: From Initiation to Natural Product-Based Therapeutic Preventions. ACS Pharmacol Transl Sci 2025; 8:636-653. [PMID: 40109756 PMCID: PMC11915047 DOI: 10.1021/acsptsci.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Diabetes is a chronic metabolic disorder characterized by elevated blood glucose levels, which lead to the glycation of proteins and the formation of advanced glycation end products (AGEs). These AGEs contribute to oxidative stress, inflammation, and the development of complications such as cardiovascular disease, nephropathy, and anemia, significantly increasing mortality rates among diabetic patients. This Review focuses on the role of glycation inhibitors as a potential strategy to prevent AGE-related pathologies. While synthetic glycation inhibitors have shown promise, their adverse effects highlight the need for safer alternatives. We specifically explore a range of natural compounds-flavonoids, curcuminoids, terpenes, stilbenes, lignans, and coumarins-that have demonstrated significant antiglycating properties. The mechanisms through which these natural products inhibit glycation, including antioxidant activity, metal ion chelation, and direct interference with the glycation process, are discussed in detail. This review underscores the potential of natural products as effective and safer glycation inhibitors, offering a promising avenue for the development of therapeutic strategies against diabetes and AGE-related disorders.
Collapse
Affiliation(s)
- Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
3
|
Balakrishnan KR, Selva Raj DR, Ghosh S, Robertson GAJ. Diabetic foot attack: Managing severe sepsis in the diabetic patient. World J Crit Care Med 2025; 14:98419. [DOI: 10.5492/wjccm.v14.i1.98419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Diabetic foot attack (DFA) is the most severe presentation of diabetic foot disease, with the patient commonly displaying severe sepsis, which can be limb or life threatening. DFA can be classified into two main categories: Typical and atypical. A typical DFA is secondary to a severe infection in the foot, often initiated by minor breaches in skin integrity that allow pathogens to enter and proliferate. This form often progresses rapidly due to the underlying diabetic pathophysiology of neuropathy, microvascular disease, and hyperglycemia, which facilitate infection spread and tissue necrosis. This form of DFA can present as one of a number of severe infective pathologies including pyomyositis, necrotizing fasciitis, and myonecrosis, all of which can lead to systemic sepsis and multi-organ failure. An atypical DFA, however, is not primarily infection-driven. It can occur secondary to either ischemia or Charcot arthropathy. Management of the typical DFA involves prompt diagnosis, aggressive infection control, and a multidisciplinary approach. Treatment can be guided by the current International Working Group on the Diabetic Foot/Infectious Diseases Society of America guidelines on diabetic foot infections, and the combined British Orthopaedic Foot and Ankle Society-Vascular Society guidelines. This article highlights the importance of early recognition, comprehensive management strategies, and the need for further research to establish standardized protocols and improve clinical outcomes for patients with DFA.
Collapse
Affiliation(s)
- Kisshan Raj Balakrishnan
- Department of Trauma and Orthopaedics, Wrexham Maelor Hospital, Wrexham LL13 7TD, United Kingdom
| | - Dharshanan Raj Selva Raj
- Department of Trauma and Orthopaedics, Wrexham Maelor Hospital, Wrexham LL13 7TD, United Kingdom
| | - Sabyasachi Ghosh
- Department of Trauma and Orthopaedics, Wrexham Maelor Hospital, Wrexham LL13 7TD, United Kingdom
| | - Gregory AJ Robertson
- Department of Trauma and Orthopaedics, Wrexham Maelor Hospital, Wrexham LL13 7TD, United Kingdom
- Department of Trauma and Orthopaedics, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry SY10 7AG, United Kingdom
| |
Collapse
|
4
|
Kłapcia A, Domalik-Pyzik P. Hydrogel Dressings as Insulin Delivery Systems for Diabetic Wounds. Front Biosci (Elite Ed) 2025; 17:26446. [PMID: 40150982 DOI: 10.31083/fbe26446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 03/29/2025]
Abstract
Diabetic wounds are one of the most common and challenging complications of diabetes. Similar to chronic wounds, diabetic wounds are difficult to treat due to prolonged inflammation, a lack of angiogenesis, abnormal differentiation of new scar tissue, and the occurrence of numerous bacterial infections. Moreover, elevated sugar levels in tissues disrupt the healing process by enhancing inflammatory reactions, disrupting signaling pathways, and leading to the production of abnormal biological structures, which contribute to improper cell differentiation. Traditional dressings, such as bandages, gauze, and semi-occlusive foams, are inadequate for diabetic wounds with high exudation; moreover, frequently changing the dressing can cause secondary irritation. Hence, innovative hydrogel dressings are being developed, which, thanks to their soft polymer matrix, provide an ideal substrate for regenerating tissue. Hydrogels also allow for the introduction and controlled release of growth factors, making them a promising solution for treating diabetic wounds. Recently, researchers have focused on insulin, a hormone secreted by the human body to lower blood sugar levels, due to its interesting characteristics, such as supporting anti-inflammatory and proangiogenic processes and stimulating cell migration and proper proliferation. This review discusses the most important aspects of diabetes and diabetic wounds and traditional and innovative treatment methods, particularly hydrogel dressings used as systems for insulin delivery in response to glucose concentration.
Collapse
Affiliation(s)
- Agnieszka Kłapcia
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland
| | - Patrycja Domalik-Pyzik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland
| |
Collapse
|
5
|
Cao J, Liu J, Yu K, Huang Z, Lv S, Zeng W. Non-linear relationship between arteriosclerosis index and diabetes risk in non-obese east Asian adults. Sci Rep 2025; 15:5649. [PMID: 39955361 PMCID: PMC11830033 DOI: 10.1038/s41598-025-89849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Previous studies have shown a positive association between the arteriosclerosis index (AI) and future diabetes risk. However, evidence in non-obese populations is limited. This study investigates the relationship between AI and future diabetes risk in non-obese East Asian adults. This retrospective cohort study enrolled 95,402 non-obese adults from China and Japan. Participants had a mean age of 42.92 ± 12.24 years, with 51,295 (53.77%) being male. Median follow-up was 3.01 years. Cox proportional hazards models assessed the association between baseline AI and diabetes risk. Non-linear associations were explored using cubic splines and smoothed curves in Cox models. Sensitivity analyses were performed. After adjusting for covariates, a positive association was found between AI and diabetes risk in non-obese adults (HR 1.09, 95% CI 1.03-1.15, P = 0.0017). A non-linear relationship was identified, with an inflection point at 1.47. Below this point, HR was 5.87 (95% CI 1.20-28.63, P = 0.0287); above, it was 1.07 (95% CI 1.02-1.13, P = 0.0115). Sensitivity analyses affirmed the robustness of these results. This study identifies a positive, non-linear association between the AI and diabetes risk in non-obese adults. Interventions targeting AI reduction could significantly lower the risk of future diabetes in this population.
Collapse
Affiliation(s)
- Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, 341000, China
| | - Jitong Liu
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Ke Yu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Second People's Hospital & The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zhenhua Huang
- Department of Emergency Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Shunrong Lv
- Department of Emergency Medicine, Pengpai Memorial Hospital, Shanwei, 516499, China.
| | - Wenfei Zeng
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China.
| |
Collapse
|
6
|
Lopes-Ferreira JV, Matos JEM, Dias FCR, Siervo GEML, Gomes MLM. Protective effects of phenolic phytochemicals on male fertility: a narrative review. BRAZ J BIOL 2025; 85:e288879. [PMID: 39968999 DOI: 10.1590/1519-6984.288879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025] Open
Abstract
Infertility is a global health issue and is closely related to oxidative stress, which occurs when high concentrations of free radicals surpass the protective effects of antioxidant molecules and enzymes. Such imbalance causes damage to DNA, as well as cellular proteins and lipids, ultimately leading to the destruction of the blood-testis barrier. This, in turn, hinders spermatogenesis. Various plants and compounds have been employed in an attempt to reverse these damages, such as phenolic compounds. Therefore, this review aims to identify the main phytochemical phenolic compounds and their respective effects when used in the treatment of male infertility. Related information concerning phenolic phytochemical compounds was gathered from studies selected from PubMed, Scopus, and Web of Science databases. The search was conducted using the combination of six terms: "phenolic compounds", "male infertility", "testis", "spermatozoa", "testosterone" and "male fertility". These compounds can raise testosterone levels, reduce lipid peroxidation, and improve tubular histoarchitecture in cases of subfertility associated with diabetes mellitus. They can also mitigate the damage caused by obesity by increasing serum testosterone, antioxidant activity, and sperm motility. When it comes to fertility problems caused by inorganic and organic pollutants, these compounds effectively restore the structure of the seminiferous tubules, increase testosterone levels, and improve sperm quality. Furthermore, phenolic phytochemical compounds have shown beneficial effects in countering the adverse impacts of certain drugs on testicular physiology by reducing apoptosis in testicular tissue, increasing the number of Leydig cells, and promoting spermatocyte production. However, while these compounds may have protective effects on sperm cryopreservation for in vitro fertilization, caution is needed as certain dosages can cause irreversible damage to sperm quality. Overall, plant extracts containing phenolic phytochemical compounds hold promise as a therapeutic avenue for treating infertility and subfertility caused by metabolic disorders and environmental pollutants.
Collapse
Affiliation(s)
- J V Lopes-Ferreira
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - J E M Matos
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - F C R Dias
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - G E M L Siervo
- Universidade Federal do Triângulo Mineiro, Departamento de Patologia, Genética e Evolução, Uberaba, MG, Brasil
| | - M L M Gomes
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| |
Collapse
|
7
|
Özdemir S, Güngördü Solğun D, Giray G, Ağırtaş MS. Synthesis and biological activity, photophysical, photochemical properties of tetra substituted magnesium phthalocyanine. Photochem Photobiol Sci 2025; 24:277-292. [PMID: 39955410 DOI: 10.1007/s43630-025-00686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
The compound 4-(2-((1H-benzo[d]imidazol-2-yl) thio) phenoxy) phthalonitrile was obtained from the reaction of 2-nitrophenol, 4-nitrophthalonitrile and 2-mercaptobenzimidazole. This compound was reacted with magnesium Chloride (MgCl2) to yield tetrakis-[(2-((1H-benzo[d]imidazol-2-yl) thio) phenoxy) phthalocyaninato] magnesium II. New compounds were characterized by UV-vis, 1H NMR, 13C NMR, FTIR and Mass spectra. Electronic spectra aggregation study of magnesium phthalocyanine compound in various concentrations and diverse solvents was performed. Photoluminescence spectra of magnesium phthalocyanine in different solvents were investigated. The biological activities of 3 and 4 compounds were investigated. The results showed that 4 had excellent antioxidant and antidiabetic activities as 75.71% and 81.83%, respectively. 3 and 4 had deoxyribonucleic acid (DNA) cleavage ability and 4 caused a double-strand fracture in plasmid DNA at 100 and 200 mg/L. Both compounds showed antimicrobial activity and also 4 was more effective against pathogenic microorganisms than 3. Photodynamic antimicrobial therapy of test compound was also more effective than without irradiation. The highest biofilm inhibition of 3 and 4 was 78.28% and 98.49% for S. aureus and also 73.95% and 91.13% for P. aeruginosa, respectively. Finally, both compounds demonstrated %100 microbial cell viability inhibition at 100 mg/L. Overall, the study suggests that both 3 and 4 have potential for further development as therapeutic agents.
Collapse
Affiliation(s)
- Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkey
| | - Derya Güngördü Solğun
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yıl University, 65080, Van, Turkey
| | - Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Mehmet Salih Ağırtaş
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yıl University, 65080, Van, Turkey.
| |
Collapse
|
8
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
9
|
Saha P, Yarra SS, Arruri V, Mohan U, Kumar A. Exploring the role of miRNA in diabetic neuropathy: from diagnostics to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1129-1144. [PMID: 39249503 DOI: 10.1007/s00210-024-03422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Diabetic neuropathy (DN) is one of the major microvascular complications of diabetes mellitus affecting 50% of the diabetic population marred by various unmet clinical needs. There is a need to explore newer pathological mechanisms for designing futuristic regimens for the management of DN. There is a need for post-transcriptional regulation of gene expression by non-coding RNAs (ncRNAs) to finetune different cellular mechanisms with significant biological relevance. MicroRNAs (miRNAs) are a class of small ncRNAs (~ 20 to 24 nucleotide length) that are known to regulate the activity of ~ 50% protein-coding genes through repression of their target mRNAs. Differential expression of these miRNAs is associated with the pathophysiology of diabetic neuropathy via regulating various pathways such as neuronal hyperexcitability, inflammation, axonal growth, regeneration, and oxidative stress. Of note, the circulating and extracellular vesicular miRNAs serve as potential biomarkers underscoring their diagnostic potential. Recent pieces of evidence highlight the potential of miRNAs in modulating the initiation and progression of DN and the possibility of developing miRNAs as treatment options for DN. In this review, we have elaborated on the role of different miRNAs as potential biomarkers and emphasized their druggable aspects for promising future therapies for the clinical management of DN.
Collapse
Affiliation(s)
- Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India
| | - Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, USA
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India.
| |
Collapse
|
10
|
Chavhan AB, Kola H, Bobba B, Verma YK, Verma MK. In-silico study and in-vitro validations for an affinity of mangiferin with aldose reductase: Investigating potential in tackling diabetic retinopathy. Comput Biol Chem 2025; 114:108281. [PMID: 39580915 DOI: 10.1016/j.compbiolchem.2024.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Type II Diabetes mellitus (T2DM) and associated complications primarily diabetic retinopathy cases are rising with an alarming rate. Prolong hyperglycemia along with the aldose reductase (AR) activity play a pivotal role in the development of oxidative stress in the aqueous humor and diabetic retinopathy. AR catalyzes conversion of glucose into sorbitol and or fructose get diffuse into lens leading to impaired electrolyte balance and cataract formation. Here in the study, affinity of mangiferin was evaluated first using in silico approaches (Docking studies) and then validated via isothermal titration calorimetry. Here in the present study aim was to check the does mangiferin do have affinity with AR, does mangiferin inhibit the AR and polyol pathway as key pathway involve in the diabetic retinopathy. Both in silico and laboratory investigations were carried out to explore the affinity of mangiferin with the aldose reductase. Swiss target prediction study showed that the AR is prime target of mangiferin in the human proteome. The molecular docking study and affinity searches were performed to seek the bonding pattern and forces involved. Docking (affinity 34.37 kcal/mol) for AR pose 1 was reported superior over the AR pose 2 (affinity -35.46 kcal/mol) against mangiferin. Mangiferin showed significant AR inhibition where IC50 reported 67.711 µg/ml and highest inhibition was reported at 300 µg/ml i.e. 86.44 %. On the contrary, Quercetin showed much higher inhibition of aldose reductase at similar concentration i.e. 94.47 % at 300 µg/ml with IC50 59.6014 µg/ml. Here, AR pose 1 showed higher affinity with the mangiferin and confirmed via Isothermal Titration Calorimetry clearly showed higher binding affinity parameters. Binding affinity of AR pose 1 with the mangiferin was higher as showed with affinity parameter determined via ITC i.e. floating association constant (Ka) reported 6.47×106, binding enthalpy (ΔH) -46.11 kJ/mol and higher binding sites (n) i.e. 1.84. Findings demonstrates that the mangiferin is promising AR inhibitor with the ADME prediction (CLR 1.119 ml/min and t1/2 1.162 h).
Collapse
Affiliation(s)
- Arvind B Chavhan
- Department of Zoology, Digambarrao Bindu ACS College, Bhokar, Nanded, Maharashtra, India
| | - Hemamalini Kola
- Department of Clinical Nutrition, Dietetics and Food Sciences, School of Alied Health Science, Malla Reddy University, Telangana, India.
| | - Babitha Bobba
- Department of Food and Nutritional Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522010, India
| | | | | |
Collapse
|
11
|
Korkor AM, Abbass HS, Ahmed AH, Mansour AM, Ramsis TM, Elkousy RH, Al-Harrasi A, Ibrahim AE, Mohammed AESI. Insulinotropic and anti-obesity properties of ethno-medicinal plants: pharmacology-based and in-silico predictions. Nat Prod Res 2025:1-10. [PMID: 39873418 DOI: 10.1080/14786419.2025.2457603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/31/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
The herbal extracts of four traditional plants; namely Gymnema sylvestre leaves, Garcinia cambogia fruits, Cleome droserifolia leaves, and Nigella sativa seeds, were identified for their main constituents using UHPLC/QTOF-MS/MS. Then, a pharmacology-based analysis and molecular docking verification were established targeting the evaluation of each individual herbal extract for their antidiabetic/anti-obesity potential besides their safety. Streptozotocin-induced diabetic rats were used to evaluate antiobesity and insulinotropic effects against insulin (10 U/Kg, IP) and metformin (100 mg/Kg, per oral) as standard regimens. Levels of insulin and fasting blood glucose as well as body weight were assessed, together with certain histopathological, hematological, and biochemical parameters to establish safety profiles. The four herbal extracts exhibited an increase in insulin secretion in-vivo, which is confirmed by docking studies. The herbal extracts (100 mg/kg per oral, daily) demonstrated a significant weight decrease. Each individual herbal extract markedly improved the streptozotocin-induced indices alterations.
Collapse
Affiliation(s)
- Amany M Korkor
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Hatem S Abbass
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, Egypt
| | - Amal H Ahmed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, Egypt
| | - Triveena M Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, Egypt
| | - Rawah H Elkousy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Abd El-Salam I Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, Egypt
| |
Collapse
|
12
|
Choudhry SS, Mehmood H, Akhtar T, Haroon M, Musa M, Sajid Z. Design, Synthesis, and In Silico Molecular Docking Studies of Adamantanyl Hydrazinylthiazoles as Potential Antidiabetic Agents. Chem Biodivers 2025:e202402409. [PMID: 39856497 DOI: 10.1002/cbdv.202402409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Diabetes mellitus (DM) is a widespread disease that poses a major threat to millions of people. To address this issue, we have synthesized seventeen new 4-(adamantan-1-yl)-(2-(arylidene)hydrazinyl)thiazoles (3a-q) via Hantzsch synthetic approach. The molecular structures of all the compounds were confirmed using FT-IR, 1H- and 13C-NMR spectroscopy, and HR-mass spectrometry. Protein kinase, α-amylase, glycation, and oxidation inhibition potential of all compounds were also investigated, and it was found that compounds 3b, 3c, 3e-3g, and 3i-3q have shown excellent α-amylase inhibition (IC50 = 7.91 ± 0.07 to 28.57 ± 0.1 µM), compounds 3c, 3e, 3i, 3k, and 3p (IC50 = 30.6 ± 0.06 to 37.8 ± 0.005 ppm) were found to be highly potent anti-glycating agents, and compounds 3c, 3g, 3h, 3k, and 3m were found to be more potent protein kinase inhibitors as compared to standards. The compounds 3b, 3c, 3d, 3e, 3f, 3g, 3i, 3k, 3l, 3m, 3n, 3p, and 3q have shown good antioxidant potential (IC50 = 27.5 ± 0.09 to 48.8 ± 0.09 µM) as compared to standard ascorbic acid (IC50 = 51.3 ± 0.1 µM). The biocompatibility of all samples was also tested by employing brine shrimp lethality and in vitro hemolytic assays and was found to be safe to human erythrocytes at tested concentrations. Furthermore, the molecular docking simulation study also revealed that almost all synthesized compounds have potential interactions with target proteins at the molecular level.
Collapse
Affiliation(s)
- Sabah Siddique Choudhry
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Kashmir, Pakistan
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Kashmir, Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Kashmir, Pakistan
| | - Muhammad Haroon
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, Ohio, United States
| | - Mustapha Musa
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Nottingham, UK
| | - Zaroon Sajid
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Kashmir, Pakistan
| |
Collapse
|
13
|
Alharbi HOA, Alshebremi M, Babiker AY, Rahmani AH. The Role of Quercetin, a Flavonoid in the Management of Pathogenesis Through Regulation of Oxidative Stress, Inflammation, and Biological Activities. Biomolecules 2025; 15:151. [PMID: 39858545 PMCID: PMC11763763 DOI: 10.3390/biom15010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Quercetin, a flavonoid found in vegetables and fruits, has been extensively studied for its health benefits and disease management. Its role in the prevention of various pathogenesis has been well-documented, primarily through its ability to inhibit oxidative stress, inflammation, and enhance the endogenous antioxidant defense mechanisms. Electronic databases such as Google Scholar, Scopus, PubMed, Medline, and Web of Science were searched for information regarding quercetin and its role in various pathogeneses. The included literature comprised experimental studies, randomized controlled trials, and epidemiological studies related to quercetin, while editorials, case analyses, theses, and letters were excluded. It has been reported to have a wide range of health benefits including hepatoprotective, antidiabetic, anti-obesity, neuroprotective, cardioprotective, wound healing, antimicrobial, and immunomodulatory effects, achieved through the modulation of various biological activities. Additionally, numerous in vitro and in vivo studies have shown that quercetin's efficacies in cancer management involve inhibiting cell signaling pathways, such as inflammation, cell cycle, and angiogenesis, activating cell signaling pathways including tumor suppressor genes, and inducing apoptosis. This review aims to provide a comprehensive understanding of the health benefits of quercetin in various pathogeneses. Additionally, this review outlines the sources of quercetin, nanoformulations, and its applications in health management, along with key findings from important clinical trial studies. Limited clinical data regarding quercetin's safety and mechanism of action are available. It is important to conduct more clinical trials to gain a deeper understanding of the disease-preventive potential, mechanisms of action, safety, and optimal therapeutic dosages. Furthermore, more research based on nanoformulations should be performed to minimize/overcome the hindrance associated with bioavailability, rapid degradation, and toxicity.
Collapse
Affiliation(s)
| | | | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
14
|
Kim JE, Lee JW, Cha GD, Yoon JK. The Potential of Mesenchymal Stem Cell-Derived Exosomes to Treat Diabetes Mellitus. Biomimetics (Basel) 2025; 10:49. [PMID: 39851765 PMCID: PMC11760843 DOI: 10.3390/biomimetics10010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Diabetes mellitus (DM) is a fatal metabolic disease characterized by persistent hyperglycemia. In recent studies, mesenchymal stem cell (MSC)-derived exosomes, which are being investigated clinically as a cell-free therapy for various diseases, have gained attention due to their biomimetic properties that closely resemble natural cellular communication systems. These MSC-derived exosomes inherit the regenerative and protective effects from MSCs, inducing pancreatic β-cell proliferation and inhibiting apoptosis, as well as ameliorating insulin resistance by suppressing the release of various inflammatory cytokines. Consequently, MSC-derived exosomes have attracted attention as a novel treatment for DM as an alternative to stem cell therapy. In this review, we will introduce the potential of MSC-derived exosomes for the treatment of DM by discussing the studies that have used MSC-derived exosomes to treat DM, which have shown therapeutic effects in both type 1 and type 2 DM.
Collapse
Affiliation(s)
| | | | | | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea (G.D.C.)
| |
Collapse
|
15
|
Moharram BA, Alburyhi MM, Al-Maqtari T, Faisal A. Evaluating the Antidiabetic Activity of Aloe niebuhriana Latex in Alloxan-Induced Diabetic Rats and the Development of a Novel Effervescent Granule-Based Delivery System. ScientificWorldJournal 2025; 2025:5648662. [PMID: 39822908 PMCID: PMC11737904 DOI: 10.1155/tswj/5648662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Background: Ethnomedicine exhibits potential in developing affordable effective antidiabetic agents. Aim: This work aimed to explore the antidiabetic properties of Aloe niebuhriana latex extract both in vivo, utilizing alloxan-induced diabetic rats, and in vitro, through α-amylase enzyme testing. Additionally, it sought to formulate optimal effervescent granules derived from the extract. Methods: The α-amylase inhibition assay was performed using the α-amylase kit using biochemical analyzers. Experimental diabetes was induced in animals with alloxan. On Day 14 postdiabetes induction, body weight, fasting blood glucose, and lipid profile parameters were determined. Also, six effervescent granule preparations of the extract were formulated using wet granulation. Based on its physical and organoleptic properties, a formulation was selected and optimized. Results: The extract displayed modest α-amylase inhibition, with an IC50 value of 439.2 μg/mL. Both doses of A. niebuhriana extract (200 and 400 mg/kg) significantly reduced blood glucose level compared to their respective Day 1 levels (p < 0.001). Moreover, the extract at a dose of 400 mg/kg significantly normalized lipid profile compared to the diabetic control groups (p < 0.05 - 0.001). Six formulations containing the extract were prepared (F1-F6), and F6 containing 200 mg of the extract was selected for optimization due to its favorable odor, taste, foaming, and effervescent properties, high solubility, and absence of turbidity and adhesion. The formulated F6 granules successfully met the quality parameters assessed including flow time, pH effervescent time, angle of repose, bulk density, tapped density, Carr's index, and Hausner's ratio. Conclusion: This study highlights the antidiabetic potential of A. niebuhriana latex extract, potentially attributed to its hypolipidemic, hypoglycemic, and α-amylase inhibitory effects. The successful formulation and evaluation of the extract as effervescent granules suggest its potential as an antidiabetic drug.
Collapse
Affiliation(s)
| | - Mahmoud Mahyoob Alburyhi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen
| | - Tareq Al-Maqtari
- Department of Pharmacology, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen
- Department of Microbiology, Immunology and Pharmacology, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education, Fort Smith, Arkansas, USA
| | - Abdu Faisal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen
- Department of Research and Development Center, Modern Pharma Company and Global Pharmaceutical Industries, Sana'a, Yemen
| |
Collapse
|
16
|
Jain U, Srivastava P, Sharma A, Sinha S, Johari S. Impaired Fibroblast Growth Factor 21 (FGF21) Associated with Visceral Adiposity Leads to Insulin Resistance: The Core Defect in Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e260424229342. [PMID: 38676505 DOI: 10.2174/0115733998265915231116043813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 04/29/2024]
Abstract
The Central nervous system (CNS) is the prime regulator of signaling pathways whose function includes regulation of food intake (consumption), energy expenditure, and other metabolic responses like glycolysis, gluconeogenesis, fatty acid oxidation, and thermogenesis that have been implicated in chronic inflammatory disorders. Type 2 diabetes mellitus (T2DM) and obesity are two metabolic disorders that are linked together and have become an epidemic worldwide, thus raising significant public health concerns. Fibroblast growth factor 21 (FGF21) is an endocrine hormone with pleiotropic metabolic effects that increase insulin sensitivity and energy expenditure by elevating thermogenesis in brown or beige adipocytes, thus reducing body weight and sugar intake. In contrast, during starvation conditions, FGF21 induces its expression in the liver to initiate glucose homeostasis. Insulin resistance is one of the main anomalies caused by impaired FGF21 signaling, which also causes abnormal regulation of other signaling pathways. Tumor necrosis factor alpha (TNF-α), the cytokine released by adipocytes and inflammatory cells in response to chronic inflammation, is regarded major factor that reduces the expression of FGF21 and modulates underlying insulin resistance that causes imbalanced glucose homeostasis. This review aims to shed light on the mechanisms underlying the development of insulin resistance in obese individuals as well as the fundamental flaw in type 2 diabetes, which is malfunctioning obese adipose tissue.
Collapse
Affiliation(s)
- Unnati Jain
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Ashwani Sharma
- Insight BioSolutions, Rue Joseph Colin, 35000 Rennes, France
| | - Subrata Sinha
- Centre of Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Surabhi Johari
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
17
|
Faizi M, La ZT, Puteri HA, Waladhiyaputri V, Amalia G, Tjahjono HA, Rochmah N, Fadiana G, Hisbiyah Y, Perwitasari RK, Mutaqin F, Khairunnisa, Salim IA, Heryana AY, Pulungan AB. Understanding the burden faced by families of children living with Type 1 diabetes mellitus in Indonesia: A multidimensional study on the financial, social, and psychosocial aspects. Clin Pediatr Endocrinol 2025; 34:45-53. [PMID: 39777135 PMCID: PMC11701017 DOI: 10.1297/cpe.2024-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/01/2024] [Indexed: 01/11/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a lifelong disorder that affects all aspects of the lives of children and their families. A Health Needs Assessment (HNA) survey was conducted at two diabetes camps in Batu, East Java, and Parung, West Java, to evaluate the challenges and burdens faced by families of children living with T1DM in Indonesia. A total of forty-one respondents, comprising parents/caregivers, participated in the HNA. Most respondents had to pay for diabetes-related expenses, such as insulin (31.7%), self-monitoring blood glucose (31.7%), needles and syringes (63.4%), travel expenses (97.6%), and additional laboratory examinations (24.4%). The majority of the children in this study attended school (97.6%) and most liked going to school (95%). Diabetes camps were reported to be very helpful (95.1%) for gaining more knowledge and social support within the community. A family-centered approach focusing on community support and individualized solutions is required to strengthen support, share resources, increase knowledge, and ultimately improve the quality of life of children and families living with T1DM.
Collapse
Affiliation(s)
- Muhammad Faizi
- Department of Child Health, Universitas Airlangga, Surabaya, Indonesia
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Indonesian Pediatric Society, Jakarta, Indonesia
| | - Zi T La
- Caring & Living as Neighbours, Toronto, Australia
| | - Helena A Puteri
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Gassani Amalia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Harjoedi A Tjahjono
- Indonesian Pediatric Society, Jakarta, Indonesia
- Department of Child Health, Universitas Brawijaya-Dr. Saiful Anwar General Hospital Malang, Indonesia
| | - Nur Rochmah
- Department of Child Health, Universitas Airlangga, Surabaya, Indonesia
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Indonesian Pediatric Society, Jakarta, Indonesia
| | - Ghaisani Fadiana
- Indonesian Pediatric Society, Jakarta, Indonesia
- Changing Diabetes in Children Indonesia, Jakarta, Indonesia
- Department of Child Health, Universitas Indonesia, Jakarta, Indonesia
| | - Yuni Hisbiyah
- Department of Child Health, Universitas Airlangga, Surabaya, Indonesia
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Indonesian Pediatric Society, Jakarta, Indonesia
| | - Rayi K Perwitasari
- Department of Child Health, Universitas Airlangga, Surabaya, Indonesia
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Indonesian Pediatric Society, Jakarta, Indonesia
| | - Fadilah Mutaqin
- Indonesian Pediatric Society, Jakarta, Indonesia
- Department of Child Health, Universitas Brawijaya-Dr. Saiful Anwar General Hospital Malang, Indonesia
| | - Khairunnisa
- Indonesian Pediatric Society, Jakarta, Indonesia
- Department of Child Health, Andalas University, Padang, Indonesia
| | - Irfan A Salim
- Indonesian Pediatric Society, Jakarta, Indonesia
- Department of Child Health, Universitas Brawijaya-Dr. Saiful Anwar General Hospital Malang, Indonesia
| | - Achmad Y Heryana
- Department of Child Health, Universitas Airlangga, Surabaya, Indonesia
- Indonesian Pediatric Society, Jakarta, Indonesia
- Airlangga University Hospital, Surabaya, Indonesia
| | - Aman B Pulungan
- Indonesian Pediatric Society, Jakarta, Indonesia
- Changing Diabetes in Children Indonesia, Jakarta, Indonesia
- Department of Child Health, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
18
|
Gomes JR, de Moraes MV, Silva FSD, da Silva ILG, de Araújo Júnior RF, de Paula Medeiros KP, Abreu BJ, da Silva Farias NS. Hyperbaric oxygen therapy prevents epithelial atrophy in distal tubules and TGF-β1 overexpression in diabetic rat kidneys. J Mol Histol 2024; 56:46. [PMID: 39695030 DOI: 10.1007/s10735-024-10330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
Diabetic nephropathy (DN) is one of the most relevant and prevalent microvascular complications associated with Diabetes Mellitus. In recent years, hyperbaric oxygen therapy (HBO) has been used to mitigate tissue damage caused by hypoxia, thereby attenuating inflammatory processes. This study aimed to explore morphological aspects associated with DN in rats subjected to HBO. Forty-eight Wistar rats were divided into the following groups: C (normoglycemic animals), n = 12; C + HBO (normoglycemic animals submitted to HBO), n = 12; D (diabetic animals) n = 12; D + HBO (diabetic animals submitted to HBO), n = 12. The C + HBO and D + HBO groups were daily treated with HBO at 2.5 atmospheres absolute pressure (ATA) for 60 min, 5 days a week, for 5 weeks. Kidneys were collected for assessment of structural changes in the tissue parenchyma, assessment of renal fibrosis and renal protein expression of tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1). Our results showed that group D had hyperglycemia and weight loss, and that there was also an increase in the renal corpuscle, Bowman's space, and distal tubular epithelium, as well as accumulation of collagen. HBO administration effectively prevented glomerular hypertrophy and attenuated the expression of TNF-α and TGF-β1. It also positively affected renal tubules, inhibiting the development of tubular atrophy. These findings suggest that HBO was effective in attenuating the initial alterations observed in DN.
Collapse
Affiliation(s)
| | | | - Flávio Santos da Silva
- Department of Health Sciences, Federal Rural University of the Semi-Arid, Mossoró, Brazil
| | | | | | | | - Bento João Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | |
Collapse
|
19
|
de Torre MP, Vizmanos JL, Cavero RY, Calvo MI. A Novel In Vivo Method Using Caenorhabditis elegans to Evaluate α-Glucosidase Inhibition by Natural Products for Type 2 Diabetes Treatment. Pharmaceuticals (Basel) 2024; 17:1685. [PMID: 39770527 PMCID: PMC11677774 DOI: 10.3390/ph17121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Non-insulin-dependent diabetes mellitus, or type 2 diabetes, is one of the diseases of greatest concern worldwide, and research into natural compounds that are capable of regulating glycemia and insulin resistance is therefore gaining importance. In the preclinical stages, Caenorhabditis elegans is considered a promising in vivo model for research into this disease. Most studies have been carried out using daf-2 mutant strains and observing changes in their phenotype rather than directly measuring the effects within the worms. METHODS We evaluated the in vitro α-glucosidase inhibition of two oral formulations of Origanum vulgare before and after a simulated gastrointestinal digestion process. After confirming this activity, we developed a method to measure α-glucosidase inhibition in vivo in the C. elegans wild-type strain. RESULTS The crude extract showed a similar IC50 value to that of acarbose (positive control), before and after gastrointestinal digestion. Formulation 1 also showed no differences with the positive control after digestion (111.86 ± 1.26 vs. 110.10 ± 1.00 µL/mL; p = 0.282). However, formulation 2 showed a higher hypoglycemic activity (59.55 ± 0.85 µL/mL; p < 0.05). The IC50 values obtained in the in vivo assays showed results that correlated well with the in vitro results, so the proposed new method of direct quantification of the in vivo activity seems suitable for directly quantifying the effects of this inhibition without the need to measure changes in the phenotype. CONCLUSION A novel, simple and reliable method has been developed to directly determine pharmacological activities in an in vivo model of wild-type C. elegans. This allows the hypoglycemic activity to be directly attributed to in vivo treatment without quantifying phenotypic changes in mutant strains that may arise from other effects, opening the door to a simple analysis of in vivo pharmacological activities.
Collapse
Affiliation(s)
- María Pilar de Torre
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - José Luis Vizmanos
- Department of Biochemistry & Genetics, School of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Rita Yolanda Cavero
- Department of Environmental Biology, School of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IDISNA—Instituto de Investigación Biosanitaria de Navarra, 31008 Pamplona, Spain
| | - María Isabel Calvo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IDISNA—Instituto de Investigación Biosanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
20
|
Odugbemi AI, Nyirenda C, Christoffels A, Egieyeh SA. Artificial intelligence in antidiabetic drug discovery: The advances in QSAR and the prediction of α-glucosidase inhibitors. Comput Struct Biotechnol J 2024; 23:2964-2977. [PMID: 39148608 PMCID: PMC11326494 DOI: 10.1016/j.csbj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Artificial Intelligence is transforming drug discovery, particularly in the hit identification phase of therapeutic compounds. One tool that has been instrumental in this transformation is Quantitative Structure-Activity Relationship (QSAR) analysis. This computer-aided drug design tool uses machine learning to predict the biological activity of new compounds based on the numerical representation of chemical structures against various biological targets. With diabetes mellitus becoming a significant health challenge in recent times, there is intense research interest in modulating antidiabetic drug targets. α-Glucosidase is an antidiabetic target that has gained attention due to its ability to suppress postprandial hyperglycaemia, a key contributor to diabetic complications. This review explored a detailed approach to developing QSAR models, focusing on strategies for generating input variables (molecular descriptors) and computational approaches ranging from classical machine learning algorithms to modern deep learning algorithms. We also highlighted studies that have used these approaches to develop predictive models for α-glucosidase inhibitors to modulate this critical antidiabetic drug target.
Collapse
Affiliation(s)
- Adeshina I Odugbemi
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| | - Clement Nyirenda
- Department of Computer Science, University of the Western Cape, Cape Town 7535, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- Africa Centres for Disease Control and Prevention, African Union, Addis Ababa, Ethiopia
| | - Samuel A Egieyeh
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| |
Collapse
|
21
|
Alver CG, Dominguez-Bendala J, Agarwal A. Engineered tools to study endocrine dysfunction of pancreas. BIOPHYSICS REVIEWS 2024; 5:041303. [PMID: 39449867 PMCID: PMC11498943 DOI: 10.1063/5.0220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Pancreas, a vital organ with intricate endocrine and exocrine functions, is central to the regulation of the body's glucose levels and digestive processes. Disruptions in its endocrine functions, primarily regulated by islets of Langerhans, can lead to debilitating diseases such as diabetes mellitus. Murine models of pancreatic dysfunction have contributed significantly to the understanding of insulitis, islet-relevant immunological responses, and the optimization of cell therapies. However, genetic differences between mice and humans have severely limited their clinical translational relevance. Recent advancements in tissue engineering and microfabrication have ushered in a new era of in vitro models that offer a promising solution. This paper reviews the state-of-the-art engineered tools designed to study endocrine dysfunction of the pancreas. Islet on a chip devices that allow precise control of various culture conditions and noninvasive readouts of functional outcomes have led to the generation of physiomimetic niches for primary and stem cell derived islets. Live pancreatic slices are a new experimental tool that could more comprehensively recapitulate the complex cellular interplay between the endocrine and exocrine parts of the pancreas. Although a powerful tool, live pancreatic slices require more complex control over their culture parameters such as local oxygenation and continuous removal of digestive enzymes and cellular waste products for maintaining experimental functionality over long term. The combination of islet-immune and slice on chip strategies can guide the path toward the next generation of pancreatic tissue modeling for better understanding and treatment of endocrine pancreatic dysfunctions.
Collapse
Affiliation(s)
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ashutosh Agarwal
- Author to whom correspondence should be addressed:. Tel.: +1 305 243-8925
| |
Collapse
|
22
|
Chau GC, Lim JE, Moon K, Kim IS, Um SH. The stimulatory effect of HI 129, a novel indole derivative, on glucose-induced insulin secretion. Biochem Pharmacol 2024; 230:116558. [PMID: 39326678 DOI: 10.1016/j.bcp.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Indole derivatives exhibit a broad spectrum of beneficial effects, encompassing anti-inflammatory, antiviral, antimalarial, anti-diabetic, antioxidant, anti-hepatitis, and antidepressant properties. Here, we describe the potentiation of insulin secretion in pancreatic islets and INS-1 cells through methyl 2-(2-ethoxy-1-hydroxy-2-oxoethyl)-1-(pyrimidine-2-yl)-1H-indole-3-carboxylate (HI 129), a novel indole derivative. Treatment with HI 129 led to notably decreased ADP/ATP ratios in pancreatic islets and INS-1 cells compared to those in the vehicle-treated controls, indicating a shift in cellular ATP production. Moreover, the augmentation of insulin secretion by HI 129 was closely correlated with its ability to enhance the mitochondrial membrane potential and respiration, partly by reducing the phosphorylation levels of AMP-activated protein kinase (AMPK). Mechanistically, HI 129 enhanced the association between AMPK and β-arrestin-1, critical molecules for glucose-induced insulin secretion. Furthermore, β-arrestin-1 depletion attenuated the effect of HI 129 on glucose-induced insulin secretion, suggesting that HI 129 potentiates insulin secretion via β-arrestin-1/AMPK signaling. These results collectively underscore the potential of HI 129 in enhancing insulin secretion as a novel candidate for improving glucose homeostasis in type 2 diabetes.
Collapse
Affiliation(s)
- Gia Cac Chau
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Ji Eun Lim
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Sung Hee Um
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea; Biomedical Institute Convergence at Sungkyunkwan University, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Korea.
| |
Collapse
|
23
|
Zhu M, Huang Q, Li H, Zhao Y, Guo H, Wang T, Liu X, Huang Y, Hu J, Fang C, Huang J. The impact of site-specific DNA methylation in KCNJ11 promoter on type 2 diabetes. Heliyon 2024; 10:e39934. [PMID: 39584094 PMCID: PMC11585805 DOI: 10.1016/j.heliyon.2024.e39934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Aims This study explores the correlation between site-specific methylation levels of the KCNJ11 promoter and type 2 diabetes mellitus (T2DM), analyzing potential molecular mechanisms. Methods Thirty patients newly diagnosed with T2DM and 30 healthy controls were selected to determine the CpG methylation levels in the promoter region of the KCNJ11 gene using the bisulfite assay. The online software JASPAR was used to predict transcription factors binding to differentially methylated sites. Key transcription factors were further validated through quantitative PCR (q-PCR) and chromatin immunoprecipitation followed by PCR (ChIP-PCR). Results Methylation at multiple CpG sites within the KCNJ11 gene promoter was generally reduced in newly diagnosed T2DM patients compared with healthy individuals. The methylation status of CpG-471, a site crucial for the binding of the transcription factor TCF12, emerged as potentially influential in T2DM pathogenesis. This reduction in methylation at CpG-471 may enhance TCF12 binding, thereby altering KCNJ11 expression. Conclusion Hypomethylation of specific CpG sites in the promoter region of the KCNJ11 gene in patients with incipient T2DM potentially contributes to the disease's pathogenesis. This hypomethylation may influence TCF12 binding, with potential regulatory effects on KCNJ11 expression and pancreatic beta-cell function, though further studies are needed to confirm the exact mechanisms involved.
Collapse
Affiliation(s)
- Mengmeng Zhu
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Qiaoliang Huang
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu, 215000, China
| | - Heng Li
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yujie Zhao
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Tao Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xiaodan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jian Huang
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
24
|
Adjei A, Brightson KTC, Mensah MM, Osei J, Drah M, Narh CT, Asare K, Anto F. Determinants of glycemic control among persons living with type 2 diabetes mellitus attending a district hospital in Ghana. PLoS One 2024; 19:e0308046. [PMID: 39585873 PMCID: PMC11588282 DOI: 10.1371/journal.pone.0308046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Diabetes mellitus is a growing public health emergency with prevalence in sub-Sahara Africa expected to experience the highest increase by 2045. Glycemic control is central to diabetes management, but it is influenced by various factors. This study determines the level of glycemic control and the associated individual factors among type 2 diabetes mellitus (T2DM) patients. METHODS A cross-sectional descriptive study was conducted at the Shai-Osudoku District Hospital from 9th November to 15th December 2022. A structured questionnaire was used to collect data on socio-demographic characteristics, lifestyle modifications, co-morbidities, adherence to medication and diet regimens and duration of diabetes. Anthropometric and glycated hemoglobin (HbA1c) measurements were taken. Chi-squared and multivariate logistic regression analyses were carried out to determine factors associated with glycemic control at 95% confidence levels. RESULTS A total of 227 patients participated in this study. The majority of the participants were females (77.97%) and the mean (+SD) age was 60.76 + 12.12 years. Good glycemic control (HbA1c < 7%) among the participants was 38.77% (n = 88) and the median HbA1c was 7.5% (IQR: 6.5% to 9.4%). Significant factors associated with good glycemic control were eating healthy meals (AOR: 4.78, 95% CI: 1.65, 13.88: p = 0.004), oral hypoglycemic agents alone (AOR: 15.71, 95% CI: 1.90, 129.44: p = 0.010) and those with previously good glycemic control (AOR: 4.27, 95% CI: 2.16, 8.43: <0.001). CONCLUSION This study showed low levels of good glycemic control among T2DM patients at the primary care level in Ghana. Healthy eating, oral hypoglycemic agents and those with previously normal HbA1c were associated with glycemic control.
Collapse
Affiliation(s)
- Alexander Adjei
- Shai-Osudoku District Hospital, Dodowa, Ghana
- Department of Epidemiology, Dodowa Health Research Centre, Dodowa, Ghana
| | | | | | - Jemima Osei
- Shai-Osudoku District Hospital, Dodowa, Ghana
| | - Moses Drah
- Shai-Osudoku District Hospital, Dodowa, Ghana
| | - Clement Tetteh Narh
- Department of Epidemiology and Biostatistics, Fred N. Binka School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Kwabena Asare
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francis Anto
- Department of Epidemiology and Disease Control, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
25
|
Pereira-Payo D, Denche-Zamorano Á, Mendoza-Muñoz M, Pastor-Cisneros R. Diabetes Eye Disease Sufferers and Non-Sufferers Are Differentiated by Sleep Hours, Physical Activity, Diet, and Demographic Variables: A CRT Analysis. Healthcare (Basel) 2024; 12:2345. [PMID: 39684967 DOI: 10.3390/healthcare12232345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Diabetic eye disease is the most common microvascular complication of diabetes mellitus. This complication has some direct impact on an individual's well-being and health. Some lifestyle habits have been associated with the incidence of these co-morbidities. OBJECTIVE To classify the diabetic population into sufferers or non-sufferers of diabetes eye disease according to lifestyle and demographic variables, and to identify which of these variables are significant for this classification. METHODS The present cross-sectional study based on the NHANES 2011-2020 used the Classification and Regression Tree (CRT) analysis for classifying the diabetic population into sufferers and non-sufferers of diabetes eye disease. The odds ratio (OR) and relative risks (RR) of suffering this diabetes complication of the subgroups formed by the model were studied. The final sample formed 2657 individuals (1537 males and 1120 females). RESULTS A 79.4% accuracy was found for the CRT model. The independent variables of sleep hours (100.0%), physical activity (PA) group (92.8%), gender (76.2%), age (46.4%), education level (38.4%), sedentary time (38.1%), and diet (10.0%) were found to be significant for the classification of cases. The variable high alcohol consumption was not found significant. The analysis of the OR and RR of the subgroups formed by the model evidenced greater odds of suffering diabetes eye disease for diabetes sufferers from the inactive and walk/bicycle PA group compared to those from the Low, Moderate, and High PA groups (OR: 1.48 and RR: 1.36), for males compared to females (OR: 1.77 and RR: 1.61), for those sleeping less than 6 h or more than 9 compared to those who sleep between 6 and 8 h (OR: 1.61 and RR: 1.43), and for diabetes sufferers aged over 62 compared to younger ones (OR: 1.53 and RR: 1.40). CONCLUSIONS sleep hours, PA group, gender, age, education level, sedentary time, and diet are significant variables for classifying the diabetic population into sufferers and non-sufferers of diabetes eye disease. Additionally, being in the inactive or walk/bicycle PA group, being a male, sleeping less than 6 or more than 9 h, and being aged over 62 were identified as risk factors for suffering this diabetes complication.
Collapse
Affiliation(s)
- Damián Pereira-Payo
- Health, Economy, Motricity and Education (HEME) Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| | - Ángel Denche-Zamorano
- Promoting a Healthy Society Research Group (PHeSO), Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| | - María Mendoza-Muñoz
- Physical and Health Literacy and Health-Related Quality of Life (PHYQoL), Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain
| | - Raquel Pastor-Cisneros
- Promoting a Healthy Society Research Group (PHeSO), Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
26
|
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS, Vinagre AS. Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism. Biochem Pharmacol 2024; 230:116623. [PMID: 39542180 DOI: 10.1016/j.bcp.2024.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Collapse
Affiliation(s)
- Jorge F A Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafaella S Normann
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton L Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maiza Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rui Xu
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Poli Mara Spritzer
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Anapaula S Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Umar AH, Widuri SA, Caecilia Sulistyaningsih Y, Ratnadewi D. Integrating Metabolomic Analysis, Network Pharmacology, and Molecular Docking to Underlying Pharmacological Mechanism and Ethnobotanical Rationalization for Diabetes Mellitus: Study on Medicinal Plant Fibraurea tinctoria Lour. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39539006 DOI: 10.1002/pca.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Fibraurea tinctoria Lour. has long been used in traditional medicine to treat diabetes mellitus (DM). However, a comprehensive scientific understanding of its potential active compounds and underlying pharmacological mechanisms still needs to be unveiled. OBJECTIVE This study, therefore, presents a novel approach by integrating metabolomic profiling, pharmacological network, and molecular docking analysis to investigate the potential of F. tinctoria as antidiabetes mellitus. METHODS Active compounds were obtained through analysis using ultrahigh-performance liquid chromatography-quadrupole-orbital ion trap-high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) and screening of active compounds using Lipinski rule of five and ADMET parameters. Potential targets of F. tinctoria compounds and DM-related targets were retrieved from public databases, such as DisGeNET, GeneCards, OMIM, PharmaGKB, and TTD. The targets' gene ontology (GO) was created using DAVID and protein-protein interactions using STRING. The plant-organ-compound-target-disease network was constructed using Cytoscape. Then, molecular docking analysis predicted and verified the interactions of essential bioactive compounds of F. tinctoria and DM core targets. RESULTS The network pharmacology approach identified 35 active compounds, 565 compound-related targets, and 17,289 DM-related targets. EGFR, HSP90AA1, ESR1, HSP90AB1, and GSK3B were the core targets, whereas isolariciresinol, cubebin, corypalmine, (-)-8-oxocanadine, and (+)-N-methylcoclaurine were the most active compounds of F. tinctoria with DM potential. GO functional enrichment analysis revealed 483 biological processes, 485 cellular components, and 463 molecular functions. REACTOME pathway enrichment analysis yielded 463 significantly enriched signaling pathways. Of these pathways, the cytokine signaling in the immune system pathway may play a key role in treating DM. The results of molecular docking analysis showed that the core targets of DM, such as 5gnk, 3o0i, 6psj, 5ucj, and 1q5k, bind stably to the analyzed bioactive compounds of F. tinctoria. CONCLUSIONS This study provides significant insights into the potential mechanism of F. tinctoria in treating DM. The main active compounds of F. tinctoria were found to interact with the core targets (EGFR, HSP90AA1, ESR1, HSP90AB1, and GSK3B) through the cytokine signaling pathway in the immune system, suggesting a potential therapeutic pathway for DM. However, it is essential to note that these findings are preliminary, and further research is necessary to validate them. Those research studies could involve in vitro and in vivo studies to confirm the bioactivity of the identified compounds and their interactions with the core targets. When the findings are confirmed, they could have significant clinical implications, potentially leading to developing new therapeutic strategies for DM.
Collapse
Affiliation(s)
- Abdul Halim Umar
- Division of Pharmaceutical Biology, Faculty of Health Sciences, Almarisah Madani University, Makassar, South Sulawesi, Indonesia
| | - Septina Asih Widuri
- Center for Implementation of Environmental and Forestry Instrument Standards, Indonesia Ministry of Environment and Forestry, Kutai Kartanegara, East Kalimantan, Indonesia
| | | | - Diah Ratnadewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java, Indonesia
| |
Collapse
|
28
|
Wang B, Jiang T, Qi Y, Luo S, Xia Y, Lang B, Zhang B, Zheng S. AGE-RAGE Axis and Cardiovascular Diseases: Pathophysiologic Mechanisms and Prospects for Clinical Applications. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07639-0. [PMID: 39499399 DOI: 10.1007/s10557-024-07639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Advanced glycation end products (AGE), a diverse array of molecules generated through non-enzymatic glycosylation, in conjunction with the receptor of advanced glycation end products (RAGE), play a crucial role in the pathogenesis of diabetes and its associated complications. Recent studies have revealed that the AGE-RAGE axis potentially accelerated the progression of cardiovascular diseases, including heart failure, atherosclerosis, myocarditis, pulmonary hypertension, hypertension, arrhythmia, and other related conditions. The AGE-RAGE axis is intricately involved in the initiation and progression of cardiovascular diseases, independently of its engagement in diabetes. The mechanisms include oxidative stress, inflammation, alterations in autophagy flux, and mitochondrial dysfunction. Conversely, inhibition of AGE production, disruption of the binding between RAGE and its ligands, or silencing of RAGE expression could effectively impair the function of AGE-RAGE axis, thereby delaying or ameliorating the aforementioned diseases. AGE and the soluble receptor for advanced glycation end products (sRAGE) have the potential to be novel predictors of cardiovascular diseases. In this review, we provide an in-depth overview towards the biosynthetic pathway of AGE and elucidate the pathophysiological implications in various cardiovascular diseases. Furthermore, we delve into the profound role of RAGE in cardiovascular diseases, offering novel insights for further exploration of the AGE-RAGE axis and potential strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Bijian Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Taidou Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Yaoyu Qi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Sha Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Ying Xia
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Binyan Lang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Bolan Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Shuzhan Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
29
|
Suliburska J, Cholik RS. Risks and benefits of salicylates in food: a narrative review. Nutr Rev 2024; 82:1594-1604. [PMID: 37897072 DOI: 10.1093/nutrit/nuad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Salicylates are generally present in plants as part of their defense system against pathogens and environmental stress. Major dietary sources of salicylates were found in spices and herbs, such as curry and paprika (hot powder). Several studies suggest that these natural salicylates offer health benefits in the human body, such as antidiabetic, anticancer, antiviral, and anti-inflammatory properties. However, despite their advantages, salicylates can be harmful to people with allergies, and high doses of salicylates may cause respiratory alkalosis and gastrointestinal bleeding. Additionally, salicylates can interact with certain drugs, such as nonsteroidal anti-inflammatory drugs and warfarin. This narrative review aimed to consolidate recent information on the content of salicylates in food based on the literature, while also highlighting the benefits and risks associated with salicylate consumption in humans. Based on the literature review and analysis of results, it can be concluded that the dietary intake of salicylates in vegetarians can be relatively high, resulting in concentrations of salicylic acid in the blood and urine that are comparable to those observed in patients taking a low dose of aspirin (75 mg). This suggests that a diet rich in salicylates may have potential benefits in preventing and treating some diseases that require low doses of aspirin.
Collapse
Affiliation(s)
- Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznań, Poland
| | - Rafsan Syabani Cholik
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznań, Poland
| |
Collapse
|
30
|
Zhang X, Yao W, Wang D, Hu W, Zhang G, Zhang Y. Development and Validation of Machine Learning Models for Identifying Prediabetes and Diabetes in Normoglycemia. Diabetes Metab Res Rev 2024; 40:e70003. [PMID: 39497474 PMCID: PMC11601146 DOI: 10.1002/dmrr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Prediabetes and diabetes are both abnormal states of glucose metabolism (AGM) that can lead to severe complications. Early detection of AGM is crucial for timely intervention and treatment. However, fasting blood glucose (FBG) as a mass population screening method may fail to identify some individuals who are actually AGM but with normoglycemia. This study aimed to develop and validate machine learning (ML) models to identify AGM among individuals with normoglycemia using routine health check-up indicators. METHODS According to the American Diabetes Association (ADA) criteria, participants with normoglycemia (FBG ≤ 5.6 mmol/L) were collected from 2019 to 2023, and then divided into AGM and Normal groups using glycosylated haemoglobin (HbA1c) 5.7% as the threshold. Data from 2019 to 2022 were divided into training and internal validation sets at a 7:3 ratio, while data from 2023 were used as the external validation set. Seven ML algorithms-including logistic regression (LR), random forest (RF), support vector machine (SVM), extreme gradient boosting machine, multilayer perceptron (MLP), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost)-were used to build models for identifying AGM in normoglycemia population. Model performance was evaluated using the area under the receiver operating characteristic curve (auROC) and the precision-recall curve (auPR). The feature contributions to the optimal model was visualised using the SHapley Additive exPlanations (SHAP). Finally, an intuitive and user-friendly interactive interface was developed. RESULTS A total of 59,259 participants were finally enroled in this study, and then divided into the training set of 32,810, the internal validation set of 14,060, and the external validation set of 12,389. The Catboost model outperformed the others with auROC of 0.806 and 0.794 for the internal and external validation set, respectively. Age was the most important feature influencing the performance of the CatBoost model, followed by fasting blood glucose, red blood cells, haemoglobin, body mass index, and triglyceride-glucose. CONCLUSION A well-performed ML model to identify AGM in the normoglycemia population was built, offering significant potential for early intervention and treatment of AGM that would otherwise have been missed.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Postgraduate DepartmentShandong First Medical University (Shandong Academy of Medical Sciences)JinanChina
| | - Weidong Yao
- Department of AnesthesiologySecond Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Dawei Wang
- Department of Radiologythe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Wenqi Hu
- Department of Health ManagementShandong Engineering Research Center of Health ManagementShandong Institute of Health Managementthe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Guang Zhang
- Department of Health ManagementShandong Engineering Research Center of Health ManagementShandong Institute of Health Managementthe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Yongsheng Zhang
- Department of Health ManagementShandong Engineering Research Center of Health ManagementShandong Institute of Health Managementthe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| |
Collapse
|
31
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
32
|
Weatherall T, Avsar P, Nugent L, Moore Z, McDermott JH, Sreenan S, Wilson H, McEvoy NL, Derwin R, Chadwick P, Patton D. The impact of machine learning on the prediction of diabetic foot ulcers - A systematic review. J Tissue Viability 2024; 33:853-863. [PMID: 39019690 DOI: 10.1016/j.jtv.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
INTRODUCTION Globally, diabetes mellitus poses a significant health challenge as well as the associated complications of diabetes, such as diabetic foot ulcers (DFUs). The early detection of DFUs is important in the healing process and machine learning may be able to help inform clinical staff during the treatment process. METHODS A PRISMA-informed search of the literature was completed via the Cochrane Library and MEDLINE (OVID), EMBASE, CINAHL Plus and Scopus databases for reports published in English and in the last ten years. The primary outcome of interest was the impact of machine learning on the prediction of DFUs. The secondary outcome was the statistical performance measures reported. Data were extracted using a predesigned data extraction tool. Quality appraisal was undertaken using the evidence-based librarianship critical appraisal tool. RESULTS A total of 18 reports met the inclusion criteria. Nine reports proposed models to identify two classes, either healthy skin or a DFU. Nine reports proposed models to predict the progress of DFUs, for example, classing infection versus non-infection, or using wound characteristics to predict healing. A variety of machine learning techniques were proposed. Where reported, sensitivity = 74.53-98 %, accuracy = 64.6-99.32 %, precision = 62.9-99 %, and the F-measure = 52.05-99.0 %. CONCLUSIONS A variety of machine learning models were suggested to successfully classify DFUs from healthy skin, or to inform the prediction of DFUs. The proposed machine learning models may have the potential to inform the clinical practice of managing DFUs and may help to improve outcomes for individuals with DFUs. Future research may benefit from the development of a standard device and algorithm that detects, diagnoses and predicts the progress of DFUs.
Collapse
Affiliation(s)
- Teagan Weatherall
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Pinar Avsar
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Linda Nugent
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia.
| | - Zena Moore
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia; School of Nursing and Midwifery, Griffith University, Southport, Queensland, Australia; Lida Institute, Shanghai, China; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia; Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; University of Wales, Cardiff, UK; National Health and Medical Research Council Centre of Research Excellence in Wiser Wound Care, Menzies Health Institute Queensland, Southport, Queensland, Australia.
| | - John H McDermott
- Department of Endocrinology, Royal College of Surgeons in Ireland, Connolly Hospital Blanchardstown, Dublin, Ireland.
| | - Seamus Sreenan
- Department of Endocrinology, Royal College of Surgeons in Ireland, Connolly Hospital Blanchardstown, Dublin, Ireland.
| | - Hannah Wilson
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Natalie L McEvoy
- School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Rosemarie Derwin
- School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Paul Chadwick
- Birmingham City University, Birmingham, UK; Spectral MD, London, UK.
| | - Declan Patton
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia; School of Nursing and Midwifery, Griffith University, Southport, Queensland, Australia; Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
| |
Collapse
|
33
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
34
|
Alhaji JH, Pathak D, Ashfaq F, Alsayegh AA, Khatoon F, Almutairi BJ, Khan MI, Beg MMA. Role of NQO1 Gene Involvement and Susceptibility of T2DM Among Saudi Arabia Population. Rejuvenation Res 2024; 27:145-153. [PMID: 38959119 DOI: 10.1089/rej.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
NQO1 disruption enhances susceptibility to oxidative stress during hyperglycemia and is a significant contributor to the development and progression of diabetes. Oxidative stress has been linked to several symptoms, including hyperglycemia, reactive oxygen species buildup, high blood pressure, and the expression of inflammatory markers. Therefore, the present research aimed to evaluate the genetic abnormality of NQO1 (rs1800566, C609T) gene polymorphism, expression, and vitamin-D level assessment among Type 2 diabetes mellitus (T2DM) patients. The study included 100 newly diagnosed T2DM cases and 100 healthy individuals as healthy controls. Total RNA was extracted from the whole blood using the TRIzol method, and further cDNA was synthesized, and expression was evaluated. There is a significant difference in NQO1 (rs1800566, C609T) genotype distribution among the T2DM patients and healthy controls (p = 0.04). Compared with the NQO1 CC wild-type genotype, the NQO1 CT heterozygous genotype had an odds ratio of 1.96 (1.08-3.55), and the NQO1 TT mutant type genotype had an odds ratio of 3.31 (0.61-17.77). Significantly decreased expression of NQO1 mRNA was observed with heterozygous CT (p < 0.0001) and homozygous mutant TT genotype (p = 0.0004), compared with homozygous wild-type CC genotype. NQO1 mRNA expression level was also compared with vitamin D levels among the T2DM patients. T2DM patients with vitamin D deficiency had 1.83-fold NQO1 mRNA expression, while vitamin D insufficient and sufficient T2DM cases had 3.31-fold (p < 0.0001) and 3.70-fold (p < 0.0001) NQO1 mRNA expression. It was concluded that NQO1 (rs1800566, C609T) CT and TT genotypes played a significant role in the worseness of type II diabetes mellitus, and decreased expression of NQO1 mRNA expression could be an essential factor for disease worseness as well as hypermethylation could be a factor for reduced expression leading to disease severity. The decreased NQO1 mRNA expression with heterozygous CT and mutant TT genotype associated with vitamin D deficiency may contribute to disease progression.
Collapse
Affiliation(s)
- Jwaher Haji Alhaji
- Department of Health Sciences, College of Applied Studies and Community Service, King Saud University, Riyadh, Saudi Arabia
| | - Divya Pathak
- Central Drugs Standard Control Organisation, New Delhi, India
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | | | - Mohammad Idreesh Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Faculty of Medicine, Alatoo International University, Bishkek, Kyrgyzstan
- Center for Promotion of Medical Research, Alatoo International University, Bishkek, Kyrgyzstan
| |
Collapse
|
35
|
Garg Y, Marthandam Manickandan AP, Ghori HK, Rameshbabu S, Mohammed I, Mohamed S, Mustafa Chiniwala H, Mohamed S, Doshi B, Pascal S. Analysis of Angiographic Patterns in Acute Coronary Syndrome Patients With Diabetes Mellitus: Correlation With HbA1c Levels. Cureus 2024; 16:e72028. [PMID: 39463905 PMCID: PMC11502981 DOI: 10.7759/cureus.72028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024] Open
Abstract
Background The relation of diabetes mellitus with cardiovascular diseases is well-known, even acute coronary syndrome (ACS). High levels of glycated haemoglobin (HbA1c) are used is a sign of long-term glycemic control and may be associated with severity in coronary artery disease (CAD). In this particular setting, the aim of this investigation was to examine the relationship between the HbA1c values and the angiographic patterns of patients who were admitted with an ACS diagnosis. Methodology A cross-sectional study included 120 patients diagnosed with ACS. The criteria for eligibility included patients with ST-elevation myocardial infarction, unstable angina, and non-ST elevation myocardial infarction with history of documented diabetes mellitus. Every patient had a suitable clinical examination, had their HbA1c checked, and had coronary angiography to determine the severity of their CAD. Descriptive statistics and ANOVA were performed for statistical analyses to determine the connection between angiographic patterns and HbA1c. Results Patients with elevated HbA1c levels demonstrated a strong association with severe coronary artery disease. Notably, those with HbA1c exceeding 10.5% exhibited significant triple vessel disease and Type C lesions, indicative of advanced coronary artery disease. Statistical analyses revealed a marked difference in angiographic patterns across various HbA1c categories (p < 0.05). Conclusion The findings of this study suggest that maintaining optimal HbA1c levels is essential for mitigating the severity of coronary artery disease in patients with ACS. Moreover, effective glycemic control may be protective against advanced coronary atherosclerosis and subsequent cardiovascular complications in both diabetic and non-diabetic individuals.
Collapse
Affiliation(s)
- Yug Garg
- Endocrinology Diabetes Medicine, Samatvam Diabetes Endocrinology and Medical Center, Bangalore, IND
| | | | | | | | | | - Saeed Mohamed
- Internal Medicine, Mysore Medical College, Mysore, IND
| | | | - Saad Mohamed
- Psychiatry, Kanachur Institute of Medical Sciences, Mangalore, IND
| | - Bhavya Doshi
- Community and Family Medicine, Swaminarayan Institute of Medical Science and PSM Hospital, Kalol, IND
| | - Shoraf Pascal
- Community Medicine, Madha Medical College and Research Institute, Chennai, IND
| |
Collapse
|
36
|
Yang X, Feng J, Li Y, Zhu W, Pan Y, Han Y, Li Z, Xie H, Wang J, Ping J, Tang W. PdMoPtCoNi High Entropy Nanoalloy with d Electron Self-Complementation-Induced Multisite Synergistic Effect for Efficient Nanozyme Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406149. [PMID: 39120124 PMCID: PMC11481210 DOI: 10.1002/advs.202406149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Engineering multimetallic nanocatalysts with the entropy-mediated strategy to reduce reaction activation energy is regarded as an innovative and effective approach to facilitate efficient heterogeneous catalysis. Accordingly, conformational entropy-driven high-entropy alloys (HEAs) are emerging as a promising candidate to settle the catalytic efficiency limitations of nanozymes, attributed to their versatile active site compositions and synergistic effects. As proof of the high-entropy nanozymes (HEzymes) concept, elaborate PdMoPtCoNi HEA nanowires (NWs) with abundant active sites and tuned electronic structures, exhibiting peroxidase-mimicking activity comparable to that of natural horseradish peroxidase are reported. Density functional theory calculations demonstrate that the enhanced electron abundance of HEA NWs near the Fermi level (EF) is facilitated via the self-complementation effect among the diverse transition metal sites, thereby boosting the electron transfer efficiency at the catalytic interface through the cocktail effect. Subsequently, the HEzymes are integrated with a portable electronic device that utilizes Internet of Things-driven signal conversion and wireless transmission functions for point-of-care diagnosis to validate their applicability in digital biosensing of urinary biomarkers. The proposed HEzymes underscore significant potential in enhancing nanozymes catalysis through tunable electronic structures and synergistic effects, paving the way for reformative advancements in nano-bio analysis.
Collapse
Affiliation(s)
- Xuewei Yang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianxing Feng
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuechun Li
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Wenxin Zhu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yifan Pan
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yaru Han
- Department of Chemical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zhonghong Li
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., LtdHangzhouZhejiang310000China
| | - Jianlong Wang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| | - Wenzhi Tang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
37
|
Yoo J, Hwang J, Choi J, Ramalingam M, Jeong H, Jang S, Jeong HS, Kim D. The effects of resistance training on cardiovascular factors and anti-inflammation in diabetic rats. Heliyon 2024; 10:e37081. [PMID: 39295999 PMCID: PMC11407942 DOI: 10.1016/j.heliyon.2024.e37081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes. The study subjected Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which have genetically induced diabetes mellitus, to a resistance exercise program for 12 weeks and assessed the levels of cardiovascular factors and inflammatory markers using western blotting analysis, ELISA, and immunohistochemistry. During the training period, OLETF + exercise (EX) group exhibited lower body weight and reduced glucose levels when compared with OLETF group. Western blotting analysis, ELISA, and immunohistochemistry revealed that the levels of PAI-1, VACM-1, ICAM-1, E-selectin, TGF-β, CRP, IL-6, and TNF-α were decreased in OLETF + EX group when compared with the OLETF group. Moreover, the anti-inflammatory markers, IL-4 and IL-10, were highly expressed after exercise. Therefore, these results indicate that exercise may influence the regulation of cardiovascular factors and inflammatory markers, as well as help patients with metabolic syndromes regulate inflammation and cardiovascular function.
Collapse
Affiliation(s)
- Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Haewon Jeong
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Daeyeol Kim
- Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
38
|
Shteinfer-Kuzmine A, Santhanam M, Shoshan-Barmatz V. VDAC1-Based Peptides as Potential Modulators of VDAC1 Interactions with Its Partners and as a Therapeutic for Cancer, NASH, and Diabetes. Biomolecules 2024; 14:1139. [PMID: 39334905 PMCID: PMC11430116 DOI: 10.3390/biom14091139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
This review presents current knowledge related to the voltage-dependent anion channel-1 (VDAC1) as a multi-functional mitochondrial protein that acts in regulating both cell life and death. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows control of metabolic cross-talk between the mitochondria and the rest of the cell, and also enables its interaction with proteins that are involved in metabolic, cell death, and survival pathways. VDAC1's interactions with over 150 proteins can mediate and regulate the integration of mitochondrial functions with cellular activities. To target these protein-protein interactions, VDAC1-derived peptides have been developed. This review focuses specifically on cell-penetrating VDAC1-based peptides that were developed and used as a "decoy" to compete with VDAC1 for its VDAC1-interacting proteins. These peptides interfere with VDAC1 interactions, for example, with metabolism-associated proteins such as hexokinase (HK), or with anti-apoptotic proteins such as Bcl-2 and Bcl-xL. These and other VDAC1-interacting proteins are highly expressed in many cancers. The VDAC1-based peptides in cells in culture selectively affect cancerous, but not non-cancerous cells, inducing cell death in a variety of cancers, regardless of the cancer origin or genetics. They inhibit cell energy production, eliminate cancer stem cells, and act very rapidly and at low micro-molar concentrations. The activity of these peptides has been validated in several mouse cancer models of glioblastoma, lung, and breast cancers. Their anti-cancer activity involves a multi-pronged attack targeting the hallmarks of cancer. They were also found to be effective in treating non-alcoholic fatty liver disease and diabetes mellitus. Thus, VDAC1-based peptides, by targeting VDAC1-interacting proteins, offer an affordable and innovative new conceptual therapeutic paradigm that can potentially overcome heterogeneity, chemoresistance, and invasive metastatic formation.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| |
Collapse
|
39
|
Khan I, Kamal A, Akhtar S. Diabetes Driven Oncogenesis and Anticancer Potential of Repurposed Antidiabetic Drug: A Systemic Review. Cell Biochem Biophys 2024; 82:1907-1929. [PMID: 38954353 DOI: 10.1007/s12013-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.
Collapse
Affiliation(s)
- Iqra Khan
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Aisha Kamal
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India.
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| |
Collapse
|
40
|
Arivarasan VK, Diwakar D, Kamarudheen N, Loganathan K. Current approaches in CRISPR-Cas systems for diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:95-125. [PMID: 39824586 DOI: 10.1016/bs.pmbts.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes. We highlight the importance of how improved genetic screening and the identification of susceptibility genes are aiding in early diagnosis and risk stratification. The spotlight then shifts to CRISPR-Cas9, a robust genome editing tool capable of various applications including correcting mutations in type 1 diabetes, enhancing insulin production in T2D, modulating genes associated with metabolism of glucose and insulin sensitivity. Delivery methods for CRISPR to targeted tissues and cells are explored, including viral and non-viral vectors, alongside the exciting possibilities offered by nanocarriers. We conclude by discussing the challenges and ethical considerations surrounding CRISPR-based therapies for DM. These include potential off-target effects, ensuring long-term efficacy and safety, and navigating the ethical implications of human genome modification. This chapter offers a comprehensive perspective on how genetic and molecular insights, coupled with the transformative power of CRISPR, are paving the way for potential cures and novel therapeutic approaches for DM.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Diksha Diwakar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neethu Kamarudheen
- The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
41
|
Ahmed N, Razzaq F, Arfan M, Gatasheh MK, Nasir H, Ali JS, Hafeez H. A Convenient Synthesis of Short α-/β-Mixed Peptides as Potential α-Amylase Inhibitors. Molecules 2024; 29:4028. [PMID: 39274877 PMCID: PMC11396456 DOI: 10.3390/molecules29174028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Over the last decades, the increased incidence of metabolic disorders, such as type two diabetes and obesity, has motivated researchers to investigate new enzyme inhibitors. Inhibition of the α-amylase enzyme is one therapeutic approach in lowering glucose levels in the blood to manage diabetes mellitus. The objective of this study was to synthesize short α-/β-mixed peptides in the solution phase. The Boc-protected α-L-leucine was converted to β-analogue by using Arndt-Eistert synthesis with the advantage of no racemization and retention of configuration. Three novel short peptides were successfully synthesized: N(Boc)-Gly-β-Leu-OCH3(14), N(Boc)-O(Bz)α-Ser-β-Leu-OCH3(16), and N(Boc)-O(Bz)-α-Tyr-α-Gly-β-Leu-OCH3(17), characterized by FTIR and 1H NMR analysis. The synthesized peptide 16 showed highest inhibitory activity (45.22%) followed by peptide 14 (18.51%) and peptide 17 (17.05%), respectively. Intriguingly, peptide 16 showed higher inhibition on α-amylase compared with other α-/β-mixed peptides.
Collapse
Affiliation(s)
- Naeem Ahmed
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Fakhira Razzaq
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA
| | - Muhammad Arfan
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hammad Nasir
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Joham Sarfraz Ali
- The Department of Biological Sciences (DBS), National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Hamna Hafeez
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
42
|
Arora Y, Priya, Kumar M, Kumar D. Current approaches in CRISPR-Cas system for metabolic disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:1-19. [PMID: 39824577 DOI: 10.1016/bs.pmbts.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A new era in genomic medicine has been brought by the development of CRISPR-Cas technology, which presents hitherto unheard-of possibilities for the treatment of metabolic illnesses. The treatment approaches used in CRISPR/Cas9-mediated gene therapy, emphasize distribution techniques such as viral vectors and their use in preclinical models of metabolic diseases like hypercholesterolemia, glycogen storage diseases, and phenylketonuria. The relevance of high-throughput CRISPR screens for target identification in discovering new genes and pathways associated with metabolic dysfunctions is an important aspect of the discovery of new approaches. With cutting-edge options for genetic correction and cellular regeneration, the combination of CRISPR-Cas technology with stem cell therapy has opened new avenues for the treatment of metabolic illnesses. The integration of stem cell therapy and CRISPR-Cas technology is an important advance in the treatment of metabolic diseases, which are difficult to treat because of their intricate genetic foundations. This chapter addresses the most recent developments in the application of stem cell therapy and CRISPR-Cas systems to treat a variety of metabolic disorders, providing fresh hope for effective and maybe curative therapies. This chapter examines techniques and developments that have been made recently to address a variety of metabolic disorders using CRISPR-Cas systems. Our chapter focuses on the foundational workings of CRISPR-Cas technology and its potential uses in gene editing, gene knockout, and activation/repression-based gene modification.
Collapse
Affiliation(s)
- Yajushii Arora
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Priya
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Manishankar Kumar
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India.
| |
Collapse
|
43
|
Alenzi S, Alzahrani A, Aljaloud A, Alanazi K, Alarfaj SJ. The effectiveness of 0.5 mg and 1mg of semaglutide in patients with type two diabetes and predictors of response: a retrospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1395651. [PMID: 39205685 PMCID: PMC11349510 DOI: 10.3389/fendo.2024.1395651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background Semaglutide is a glucagon-like peptide-1 receptor agonists (GLP-1-RAs) approved for the treatment of type 2 diabetes mellitus (T2DM) at doses up to 1 mg. The results from randomized control trials and real-world studies revealed that weekly semaglutide was associated with significant improvements in HbA1c and body weight. To our knowledge, no study assessed the effectiveness of using semaglutide for patients with T2DM in the Saudi population. We aim to assess the effectiveness of once weekly SC 0.5 and 1 mg of semaglutide on HbA1c and weight reduction in patients with T2DM in the Saudi population within 12 months of use, evaluate the predictors of response, and compare the effect of the two doses. Method This is a retrospective cohort study conducted at Security Force Hospital in Riyadh, Saudi Arabia. Using electronic medical records of patients with type two diabetes who received semaglutide 0.5 or 1 mg for a total duration of at least 12 months of use. Results Within the study period of semaglutide use, HbA1c significantly decreased from baseline by -2.1% (-2.3 to -1.91, 95% CI) (P <0.001). While the mean change in weight was -6.19 kg (-6.66 to -5.72, 95% CI) (P<0.001). Moreover, BMI, FBG, total cholesterol, LDL, and TG all decreased significantly from baseline (p<0.001). When comparing the sub-groups of 0.5 and 1 mg doses, although results were numerically favorable of 1 mg, there were no statistically significant differences in HbA1c % (-2.1 ± 1.8 vs. -2.1 ± 1.9, p-value= 0.934, respectively), and weight (-6.1 ± 5 vs. -6.2 ± 4.4 kg, p-value=0.837, respectively). Significant predictors of HbA1c reduction were the duration of DM, baseline HbA1c, and insulin therapy. While the significant predictor for weight reduction was insulin therapy. Conclusion This study is document the effectiveness of once-weekly SC semaglutide on glycemic control and weight loss in real-world practice. We recommend a starting goal dose of 0.5 mg and gradual increase of dose based individual patient response. further studies are needed to assess the effectiveness and tolerability of various semagltude doses.
Collapse
Affiliation(s)
- Sara Alenzi
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah Alzahrani
- Department of Pharmaceutical Services, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Afnan Aljaloud
- Department of Pharmaceutical Services, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Kamayel Alanazi
- Department of Pharmaceutical Services, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Sumaiah J. Alarfaj
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Han J, Dai W, Chen L, Huang Z, Li C, Wang K. Elevated triglyceride-glucose index associated with increased risk of diabetes in non-obese young adults: a longitudinal retrospective cohort study from multiple Asian countries. Front Endocrinol (Lausanne) 2024; 15:1427207. [PMID: 39175577 PMCID: PMC11338785 DOI: 10.3389/fendo.2024.1427207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Objective Previous studies have confirmed a positive correlation between the Triglyceride-Glucose (TyG) index and future risk of diabetes. However, evidence of this association in non-obese young populations remains limited. This study aims to investigate the relationship between the TyG index and the future risk of diabetes among non-obese young adults. Methods This retrospective cohort study included 113,509 non-obese young adults from China and 9,549 from Japan. The mean age was 35.73 ± 6.38 years, and 56,469 participants (45.89%) were male. The median follow-up duration was 3.38 years. The association between baseline TyG index and risk of diabetes was examined using Cox proportional hazards regression models. Non-linear relationships between the TyG index and risk of diabetes were identified using cubic splines and smoothed curve fitting in the Cox models. Sensitivity and subgroup analyses were also conducted. Results After adjusting for covariates, the results indicated a positive correlation between the TyG index and risk of diabetes in non-obese young adults (HR=3.57, 95% CI: 2.92-4.36, P<0.0001). A non-linear relationship was observed with an inflection point at 7.3. The HR to the right of this inflection point was 3.70 (95% CI: 3.02-4.52, P<0.0001), while to the left, it was 0.34 (95% CI: 0.06-1.88, P=0.2161). The robustness of our findings was confirmed through a series of sensitivity analyses and subgroup analyses. Conclusion This study reveals a positive and non-linear association between the TyG index and risk of diabetes among non-obese young adults. Interventions aimed at reducing the TyG index by lowering triglycerides or fasting glucose levels could substantially decrease the future likelihood of developing diabetes in this population.
Collapse
Affiliation(s)
- Jian Han
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weifeng Dai
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Lixia Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhenhua Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Keke Wang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yet-sen University, Guangzhou, China
| |
Collapse
|
45
|
Ahwin P, Martinez D. The relationship between SGLT2 and systemic blood pressure regulation. Hypertens Res 2024; 47:2094-2103. [PMID: 38783146 PMCID: PMC11298408 DOI: 10.1038/s41440-024-01723-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The sodium-glucose cotransporter 2 (SGLT2) is a glucose transporter that is located within the proximal tubule of the kidney's nephrons. While it is typically associated with the kidney, it was later identified in various areas of the central nervous system, including areas modulating cardiorespiratory regulation like blood pressure. In the kidney, SGLT2 functions by reabsorbing glucose from the nephron's tubule into the bloodstream. SGLT2 inhibitors are medications that hinder the function of SGLT2, thus preventing the absorption of glucose and allowing for its excretion through the urine. While SGLT2 inhibitors are not the first-line choice, they are given in conjunction with other pharmaceutical interventions to manage hyperglycemia in individuals with diabetes mellitus. SGLT2 inhibitors also have a surprising secondary effect of decreasing blood pressure independent of blood glucose levels. The implication of SGLT2 inhibitors in lowering blood pressure and its presence in the central nervous system brings to question the role of SGLT2 in the brain. Here, we evaluate and review the function of SGLT2, SGLT2 inhibitors, their role in blood pressure control, the future of SGLT2 inhibitors as antihypertensive agents, and the possible mechanisms of SGLT2 blood pressure control in the central nervous system.
Collapse
Affiliation(s)
- Priscilla Ahwin
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA
| | - Diana Martinez
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
46
|
Arshad F, Ahmed S, Amjad A, Kabir M. An explainable stacking-based approach for accelerating the prediction of antidiabetic peptides. Anal Biochem 2024; 691:115546. [PMID: 38670418 DOI: 10.1016/j.ab.2024.115546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Diabetes is a chronic disease that is characterized by high blood sugar levels and can have several harmful outcomes. Hyperglycemia, which is defined by persistently elevated blood sugar, is one of the primary concerns. People can improve their overall well-being and get optimal health outcomes by prioritizing diabetes control. Although the use of experimental approaches in diabetes treatment is cost-effective, it necessitates the development of many strategies for evaluating the efficacy of therapies. Researchers can quickly create new strategies for managing diabetes and get vital insights by enabling virtual screening with computational tools and procedures. In this study, we suggest a predictor named STADIP (STacking-based predictor for AntiDiabetic Peptides), a new method to predict antidiabetic peptides (ADPs) utilizing a stacked-based ensemble approach. It uses 12 different feature encodings and seven machine-learning techniques to construct 84 baseline models. The impacts of various baseline models on ADP prediction were then thoroughly examined. A two-step feature selection method, eXtreme Gradient Boosting with Sequential Forward Selection (XGB-SFS), was employed to determine the optimal number, out of 84 PFs to enhance predictive performance. Subsequently, utilizing the meta-predictor approach, 45 selected PFs were integrated into an XGB classifier to formulate the final hybrid model. The proposed method demonstrated superior predictive capabilities compared to constituent baseline models, as evidenced by evaluations on both cross-validation and independent tests. During extensive independent testing, STADIP achieved promising performance with accuracy and mathew's correlation coefficient of 0.954 and 0.877, respectively. It is anticipated that it will be useful tool in helping the scientific community to identify new antidiabetic proteins.
Collapse
Affiliation(s)
- Farwa Arshad
- School of Systems and Technology, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Saeed Ahmed
- School of Systems and Technology, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Aqsa Amjad
- School of Systems and Technology, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Muhammad Kabir
- School of Systems and Technology, University of Management and Technology, Lahore, 54770, Pakistan.
| |
Collapse
|
47
|
Cortesi PA, Antonazzo IC, Palladino P, Gnesi M, Mele S, D'Amelio M, Zanzottera Ferrari E, Mazzaglia G, Mantovani LG. Health and economic impact of dapagliflozin for type 2 diabetes patients who had or were at risk for atherosclerotic cardiovascular disease in the Italian general practitioners setting: a budget impact analysis. Acta Diabetol 2024; 61:1017-1028. [PMID: 38634912 PMCID: PMC11329540 DOI: 10.1007/s00592-024-02276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
AIM In 2022, in Italy, general practitioners (GPs) have been allowed to prescribe SGLT2i in Type 2 Diabetes (T2D) under National Health Service (NHS) reimbursement. In the pivotal clinical trial named DECLARE-TIMI 58, dapagliflozin reduced the risk of hospitalization for heart failure, CV death and kidney disease progression compared to placebo in a population of T2D patients. This study evaluated the health and economic impact of dapagliflozin for T2D patients who had or were at risk for atherosclerotic cardiovascular disease in the Italian GPs setting. METHODS A budget impact model was developed to assess the health and economic impact of introducing dapagliflozin in GPs setting. The analysis was conducted by adopting the Italian NHS perspective and a 3-year time horizon. The model estimated and compared the health outcomes and direct medical costs associated with a scenario with dapagliflozin and other antidiabetic therapies available for GPs prescription (scenario B) and a scenario where only other antidiabetic therapies are available (scenario A). Rates of occurrence of cardiovascular and renal complications as well as adverse events were captured from DECLARE-TIMI 58 trial and the literature, while cost data were retrieved from the Italian tariff and the literature. One-way sensitivity analyses were conducted to test the impact of model parameters on the budget impact. RESULTS The model estimated around 442.000 patients eligible for the treatment with dapagliflozin in the GPs setting for each simulated year. The scenario B compared to scenario A was associated with a reduction in the occurrence of cardiovascular and renal complication (-1.83%) over the 3 years simulated. Furthermore, the scenario A allowed for an overall cost saving of 102,692,305€: 14,521,464€ in the first year, 33,007,064€ in the second and 55,163,777€ in the third. The cost of cost of drug acquisition, the probability of cardiovascular events and the percentage of patients potentially eligible to the treatment were the factor with largest impact on the results. CONCLUSIONS The use of dapagliflozin in GPs setting reduce the number of CVD events, kidney disease progression and healthcare costs in Italy. These data should be considered to optimize the value produced for the T2D patients who had or were at risk for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Paolo Angelo Cortesi
- Research Centre on Public Health (CESP), University of Milano-Bicocca, Via Pergolesi 33, Monza, MB, Italy
- Istituto Auxologico Italiano-IRCCS, Milan, Italy
| | - Ippazio Cosimo Antonazzo
- Research Centre on Public Health (CESP), University of Milano-Bicocca, Via Pergolesi 33, Monza, MB, Italy.
- Istituto Auxologico Italiano-IRCCS, Milan, Italy.
| | | | - Marco Gnesi
- Medical Evidence, Biopharmaceuticals Medical, AstraZeneca, Milan, Italy
| | | | | | | | - Giampiero Mazzaglia
- Research Centre on Public Health (CESP), University of Milano-Bicocca, Via Pergolesi 33, Monza, MB, Italy
| | - Lorenzo Giovanni Mantovani
- Research Centre on Public Health (CESP), University of Milano-Bicocca, Via Pergolesi 33, Monza, MB, Italy
- Istituto Auxologico Italiano-IRCCS, Milan, Italy
| |
Collapse
|
48
|
Leung W, Vo K, Clough M, Frias R. The use of wearable devices on physical activity levels among individuals living with diabetes: 2017 BRFSS. Prim Care Diabetes 2024; 18:466-469. [PMID: 38825422 DOI: 10.1016/j.pcd.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
AIM This study aims to examine the association between wearing wearable devices and physical activity levels among people living with diabetes. METHODS 1298 wearable device users and nonusers living with diabetes from eight states of the 2017 Behavioral Risk Factors Surveillance System were included in the analysis. Unadjusted and adjusted linear regression was performed to determine the association between self-reported physical activity per week (min) and wearable device usage (users and nonusers) among people living with diabetes using survey analysis. RESULTS 84.97 % (95 % CI [80.39, 88.89]) of participants were nonusers of wearable devices, while 15.03 % (95 % CI [11.11, 19.61]) were users. Across the sample, the average weekly physical activity was 427.39 mins (95 % Cl [356.43, 498.35]). Nonusers had a higher physical activity per week with 433.83 mins (95 % CI [353.59, 514.07]), while users only had 392.59 mins (95 % CI [253.48, 531.69]) of physical activity per week. However, the differences between the two groups were non-statistically significant (p=.61). In both adjusted and unadjusted linear regressions between physical activity per week and wearable device usage, statistically significant associations were not found (unadjusted: β=-41.24, p=.62; adjusted: β=-56.41, p=.59). CONCLUSION Further research is needed to determine the effectiveness of wearable devices in promoting physical activity among people with diabetes. Additionally, there is a need to determine how people with diabetes use wearable devices that could promote physical activity levels.
Collapse
Affiliation(s)
- Willie Leung
- Department of Health Sciences and Human Performance Department, College of Natural and Health Sciences, The University of Tampa, Tamp, FL, USA.
| | - Kim Vo
- Department of Health Sciences and Human Performance Department, College of Natural and Health Sciences, The University of Tampa, Tamp, FL, USA
| | - McKenzie Clough
- Department of Health Sciences and Human Performance Department, College of Natural and Health Sciences, The University of Tampa, Tamp, FL, USA
| | - Rachel Frias
- Department of Health Sciences and Human Performance Department, College of Natural and Health Sciences, The University of Tampa, Tamp, FL, USA
| |
Collapse
|
49
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
50
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|