1
|
Dutra VDF, Andrade HDD, Nunes VRH, Elia GM, Torres JRD, Bub CB, Yokoyama APH, Kutner JM. Use of convalescent plasma in COVID-19 treatment: is clinical severity more important than the intervention? EINSTEIN-SAO PAULO 2024; 22:eAO0563. [PMID: 39699400 DOI: 10.31744/einstein_journal/2024ao0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/23/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE This study compared the outcomes of two cohorts of patients with coronavirus disease 2019 (COVID-19) who received COVID-19 convalescent plasma transfusions between 2020 and 2021. METHODS This retrospective study was conducted at a tertiary hospital in São Paulo, Brazil. We included a retrospective cohort of patients who received convalescent compassionate plasma, and another group of patients from a previous clinical study. We collected clinical and laboratory data on the day of and 5 days after transfusion. Patients with hematological or immunological conditions were excluded. Statistical significance was set at p<0.05. RESULTS COVID-19 convalescent plasma did not affect the outcomes of patients with severe COVID-19 when comparing the two cohorts transfused with different volumes and titers of neutralizing antibodies. Despite improvements in some laboratory parameters, no effect on clinical outcomes was observed. Dialysis negatively affected the length of intensive care unit stay, hospitalization, and mechanical ventilation use. Each higher point on the day 0 World Health Organization scale reduced the probability of hospital and intensive care unit discharge and the risk of mechanical ventilation discontinuation. CONCLUSION Dialysis and the assessed clinical severity represented by the World Health Organization scale on day 0 influenced the outcomes, whereas COVID-19 convalescent plasma transfusion did not.
Collapse
|
2
|
Shoham S. Convalescent Plasma for Immunocompromised Patients. Curr Top Microbiol Immunol 2024. [PMID: 39117848 DOI: 10.1007/82_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
COVID-19 convalescent plasma (CCP) is an important therapeutic option for immunocompromised patients with COVID-19. Such patients are at increased risk for serious complications of infection and may also develop a unique syndrome of persistent infection. This article reviews the rationale for CCP utilization in immunocompromised patients and the evidence for its value in immunosuppressed patients with both acute and persistent COVID-19. Both historical precedence and understanding of the mechanisms of action of antibody treatment support this use, as do several lines of evidence derived from case series, comparative studies, randomized trials, and systematic reviews of the literature. A summary of recommendations from multiple practice guidelines is also provided.
Collapse
Affiliation(s)
- Shmuel Shoham
- Department of Medicine, Johns Hopkins School of Medicine, 1830 East Monument St., Room 447, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Langi Sasongko P, Vrielink H, de Bruijne M. "Something we must be proud of": An interview and document study of team improvisation in the Dutch convalescent plasma project group. Health Sci Rep 2024; 7:e2171. [PMID: 39011149 PMCID: PMC11247115 DOI: 10.1002/hsr2.2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Background and Aims The COVID-19 pandemic has revealed the importance of organizational resilience, the ability to effectively respond to a disruptive event before, during, and after it occurs. Team improvisation is an important component of organizational resilience as it describes characteristics of team skills and contextual qualities to create order from chaos. In Spring 2020, the Dutch national blood bank, began the convalescent plasma project (CCP). We aimed to study which elements of team improvisation in the CCP group were found and how lessons learned can contribute towards a non-crisis situation for blood establishments. Methods Using Vera and Crossan's framework of improvisation, semi-structured interviews with eight members of the CCP group were conducted. This was simultaneous to performing a document analysis of 21 Intranet posts and seven internal reports. MAXDA 2020 was used to conduct deductive and inductive thematic analyses. Results The CCP group showed strong characteristics of expertise and memory, teamwork quality, experimental culture, and real-time information and communication that enabled them to improvise in all aspects of the donation process. Improvisation examples included comprehensive communication methods to identify and obtain new donors, asking additional intake questions and collecting additional aliquots to store while waiting for an internal antibody test to be developed, and regulatory respondents allowing a flexible change control procedure to meet the pace of the crisis. Training was evident to a lesser degree. Conclusion While improvisation impacted set routines and procedures, the safety and quality of the product were not affected. Regarding organizational resilience, our results showed that the CCP group "coped" well using elements of team improvisation. Blood establishments may consider introducing improvisational training and innovation teams throughout the organization for future preparedness and improving organizational resilience.
Collapse
Affiliation(s)
- Praiseldy Langi Sasongko
- Department of Public and Occupational HealthAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Hans Vrielink
- Department of Unit Transfusion MedicineSanquin Blood Supply FoundationAmsterdamthe Netherlands
| | - Martine de Bruijne
- Department of Public and Occupational HealthAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| |
Collapse
|
4
|
Maličev E, Žiberna K, Jazbec K, Kolenc A, Mali P, Potokar UR, Rožman P. Cytokine, Anti-SARS-CoV-2 Antibody, and Neutralizing Antibody Levels in Conventional Blood Donors Who Have Recovered from COVID-19. Transfus Med Hemother 2024; 51:175-184. [PMID: 38867805 PMCID: PMC11166906 DOI: 10.1159/000531942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/02/2023] [Indexed: 06/14/2024] Open
Abstract
Background At the beginning of the pandemic, COVID-19 convalescent plasma (CCP) containing anti-SARS-CoV-2 antibodies was suggested as a source of therapy. In the last 3 years, many trials have demonstrated the limited usefulness of CCP therapy. This led us to the hypothesis that CCP could contain other elements, along with the desired neutralizing antibodies, which could potentially prevent it from having a therapeutic effect, among them cytokines, chemokines, growth factors, clotting factors, and autoantibodies. Methods In total, 39 cytokines were analyzed in the plasma of 190 blood donors, and further research focused on the levels of 23 different cytokines in CCP (sCD40L, eotaxin, FGF-2, FLT-3L, ractalkine, GRO-α, IFNα2, IL-1β, IL-1RA, IL-5, IL-6, IL-8, IL-12, IL-13, IL-15, IL-17E, IP-10, MCP-1, MIP-1b, PDGF-AA, TGFα, TNFα, and TRAIL). Anti-SARS-CoV-2 antibodies and neutralizing antibodies were detected in CCP. Results We found no significant differences between CCP taken within a maximum of 180 days from the onset of the first COVID-19 symptoms and the controls. We also made a comparison of the cytokine levels between the low neutralizing antibodies (<160) group and the high neutralizing antibodies (≥160) group and found there were no differences between the groups. Our research also showed no correlation either to levels of anti-SARS-CoV-2 IgG Ab or to the levels of neutralizing antibodies. There were also no significant changes in cytokine levels based on the period after the start of COVID-19 symptoms. Conclusions No elements which could potentially be responsible for preventing CCP from having a therapeutic effect were found.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Žiberna
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | - Ana Kolenc
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | - Primož Rožman
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
5
|
Ripoll JG, Tulledge-Scheitel SM, Stephenson AA, Ford S, Pike ML, Gorman EK, Hanson SN, Juskewitch JE, Miller AJ, Zaremba S, Ovrom EA, Razonable RR, Ganesh R, Hurt RT, Fischer EN, Derr AN, Eberle MR, Larsen JJ, Carney CM, Theel ES, Parikh SA, Kay NE, Joyner MJ, Senefeld JW. Outpatient treatment with concomitant vaccine-boosted convalescent plasma for patients with immunosuppression and COVID-19. mBio 2024; 15:e0040024. [PMID: 38602414 PMCID: PMC11078006 DOI: 10.1128/mbio.00400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Although severe coronavirus disease 2019 (COVID-19) and hospitalization associated with COVID-19 are generally preventable among healthy vaccine recipients, patients with immunosuppression have poor immunogenic responses to COVID-19 vaccines and remain at high risk of infection with SARS-CoV-2 and hospitalization. In addition, monoclonal antibody therapy is limited by the emergence of novel SARS-CoV-2 variants that have serially escaped neutralization. In this context, there is interest in understanding the clinical benefit associated with COVID-19 convalescent plasma collected from persons who have been both naturally infected with SARS-CoV-2 and vaccinated against SARS-CoV-2 ("vax-plasma"). Thus, we report the clinical outcome of 386 immunocompromised outpatients who were diagnosed with COVID-19 and who received contemporary COVID-19-specific therapeutics (standard-of-care group) and a subgroup who also received concomitant treatment with very high titer COVID-19 convalescent plasma (vax-plasma group) with a specific focus on hospitalization rates. The overall hospitalization rate was 2.2% (5 of 225 patients) in the vax-plasma group and 6.2% (10 of 161 patients) in the standard-of-care group, which corresponded to a relative risk reduction of 65% (P = 0.046). Evidence of efficacy in nonvaccinated patients cannot be inferred from these data because 94% (361 of 386 patients) of patients were vaccinated. In vaccinated patients with immunosuppression and COVID-19, the addition of vax-plasma or very high titer COVID-19 convalescent plasma to COVID-19-specific therapies reduced the risk of disease progression leading to hospitalization.IMPORTANCEAs SARS-CoV-2 evolves, new variants of concern (VOCs) have emerged that evade available anti-spike monoclonal antibodies, particularly among immunosuppressed patients. However, high-titer COVID-19 convalescent plasma continues to be effective against VOCs because of its broad-spectrum immunomodulatory properties. Thus, we report clinical outcomes of 386 immunocompromised outpatients who were treated with COVID-19-specific therapeutics and a subgroup also treated with vaccine-boosted convalescent plasma. We found that the administration of vaccine-boosted convalescent plasma was associated with a significantly decreased incidence of hospitalization among immunocompromised COVID-19 outpatients. Our data add to the contemporary data providing evidence to support the clinical utility of high-titer convalescent plasma as antibody replacement therapy in immunocompromised patients.
Collapse
Affiliation(s)
- Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Anthony A. Stephenson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shane Ford
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Marsha L. Pike
- Department of Nursing, Mayo Clinic, Rochester, Rochester, Minnesota, USA
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara N. Hanson
- Department of Family Medicine, Mayo Clinic Health Care System, Mankato, Minnesota, USA
| | - Justin E. Juskewitch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Alex J. Miller
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Solomiia Zaremba
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik A. Ovrom
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan T. Hurt
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin N. Fischer
- Department of Nursing, Mayo Clinic, Rochester, Rochester, Minnesota, USA
| | - Amber N. Derr
- Division of Hematology and Infusion Therapy, Rochester, Minnesota, USA
| | - Michele R. Eberle
- Mayo Clinic Health System Northwest Wisconsin, Eau Claire, Wisconsin, USA
| | | | | | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Tan D, Du X, Tang J, Liu H, Li M, Kang J, Li X, Li Y, Luo Y, Wang Q, Gu X, Zhao Z, Fu X, Chen X. Factors associated with the SARS-CoV-2 immunoglobulin-G titer levels in convalescent whole-blood donors: a Chinese cross-sectional study. Sci Rep 2024; 14:6072. [PMID: 38480826 PMCID: PMC10937670 DOI: 10.1038/s41598-024-56462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Blood transfusions from convalescent Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infected patients could be used to treat patients with severe infections or immunocompromised patients. However, it is necessary to select the optimal donors to maximize the utilization of resources. In this study, we investigated the associations among body mass index (BMI), tobacco smoking, exercise frequency and duration, and alcohol consumption with the SARS-CoV-2 immunoglobulin-G (IgG) antibody titer levels with in the Chinese convalescent blood donor population. Here we show that BMI, smoking habits, and exercise frequency appear to be predictive factors for IgG levels in convalescent male blood donors. However, these variables were not observed as predictive of IgG levels in female convalescent blood donors. The findings could be used to optimize the screening for potential blood donors to treat immunocompromised or severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Donglin Tan
- Department of Blood Processing, Chengdu Blood Center, Chengdu, 610041, Sichuan, China
| | - Xinman Du
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Jingyun Tang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Humin Liu
- Department of Blood Testing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Meng Li
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Jianxun Kang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xiaochun Li
- Department of Blood Processing, Chengdu Blood Center, Chengdu, 610041, Sichuan, China
| | - Ying Li
- Department of Blood Testing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Yue Luo
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Qing Wang
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xiaobo Gu
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Zonghan Zhao
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xuemei Fu
- Department of Blood Processing, Chengdu Blood Center, Chengdu, 610041, Sichuan, China.
| | - Xue Chen
- Department of Blood Processing, Chengdu Blood Center, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Habtehyimer F, Zhu X, Redd AD, Gebo KA, Abraham AG, Patel EU, Laeyendecker O, Gniadek TJ, Fernandez RE, Baker OR, Ram M, Cachay ER, Currier JS, Fukuta Y, Gerber JM, Heath SL, Meisenberg B, Huaman MA, Levine AC, Shenoy A, Anjan S, Blair JE, Cruser D, Forthal DN, Hammitt LL, Kassaye S, Mosnaim GS, Patel B, Paxton JH, Raval JS, Sutcliffe CG, Abinante M, Oei KS, Cluzet V, Cordisco ME, Greenblatt B, Rausch W, Shade D, Gawad AL, Klein SL, Pekosz A, Shoham S, Casadevall A, Bloch EM, Hanley D, Tobian AAR, Sullivan DJ. COVID-19 convalescent plasma therapy decreases inflammatory cytokines: a randomized controlled trial. Microbiol Spectr 2024; 12:e0328623. [PMID: 38009954 PMCID: PMC10783116 DOI: 10.1128/spectrum.03286-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study examined the role that cytokines may have played in the beneficial outcomes found when outpatient individuals infected with SARS-CoV-2 were transfused with COVID-19 convalescent plasma (CCP) early in their infection. We found that the pro-inflammatory cytokine IL-6 decreased significantly faster in patients treated early with CCP. Participants with COVID-19 treated with CCP later in the infection did not have the same effect. This decrease in IL-6 levels after early CCP treatment suggests a possible role of inflammation in COVID-19 progression. The evidence of IL-6 involvement brings insight into the possible mechanisms involved in CCP treatment mitigating SARS-CoV-2 severity.
Collapse
Affiliation(s)
- Feben Habtehyimer
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew D. Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Kelly A. Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alison G. Abraham
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eshan U. Patel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Thomas J. Gniadek
- Department of Pathology and Laboratory Medicine, Northshore University Health System, Evanston, Illinois, USA
| | - Reinaldo E. Fernandez
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Owen R. Baker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Edward R. Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, San Diego, California, USA
| | - Judith S. Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, California, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Jonathan M. Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sonya L. Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Barry Meisenberg
- Department of Medicine and Research Institute of Luminis Health, Annapolis, Maryland, USA
| | - Moises A. Huaman
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Adam C. Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Aarthi Shenoy
- Department of Medicine, Division of Hematology and Oncology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Janis E. Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | - Daniel Cruser
- Department of Pathology, Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, New York, USA
| | - Donald N. Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, Irvine, California, USA
| | - Laura L. Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seble Kassaye
- Division of Infectious Diseases, Georgetown University Medical Center, Washington, DC, USA
| | - Giselle S. Mosnaim
- Department of Medicine, Division of Allergy and Immunology, Northshore University Health System, Evanston, Illinois, USA
| | - Bela Patel
- Department of Medicine, Divisions of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - James H. Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jay S. Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Catherine G. Sutcliffe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Valerie Cluzet
- Department of Infectious Disease, Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, New York, USA
| | | | | | - William Rausch
- Nuvance Health Danbury Hospital, Danbury, Connecticut, USA
| | - David Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amy L. Gawad
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Roubinian NH, Greene J, Liu VX, Lee C, Mark DG, Vinson DR, Spencer BR, Bruhn R, Bravo M, Stone M, Custer B, Kleinman S, Busch MP, Norris PJ. Clinical outcomes in hospitalized plasma and platelet transfusion recipients prior to and following widespread blood donor SARS-CoV-2 infection and vaccination. Transfusion 2024; 64:53-67. [PMID: 38054619 PMCID: PMC10842807 DOI: 10.1111/trf.17616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND The safety of transfusion of SARS-CoV-2 antibodies in high plasma volume blood components to recipients without COVID-19 is not established. We assessed whether transfusion of plasma or platelet products during periods of increasing prevalence of blood donor SARS-CoV-2 infection and vaccination was associated with changes in outcomes in hospitalized patients without COVID-19. METHODS We conducted a retrospective cohort study of hospitalized adults who received plasma or platelet transfusions at 21 hospitals during pre-COVID-19 (3/1/2018-2/29/2020), COVID-19 pre-vaccine (3/1/2020-2/28/2021), and COVID-19 post-vaccine (3/1/2021-8/31/2022) study periods. We used multivariable logistic regression with generalized estimating equations to adjust for demographics and comorbidities to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Among 21,750 hospitalizations of 18,584 transfusion recipients without COVID-19, there were 697 post-transfusion thrombotic events, and oxygen requirements were increased in 1751 hospitalizations. Intensive care unit length of stay (n = 11,683) was 3 days (interquartile range 1-5), hospital mortality occurred in 3223 (14.8%), and 30-day rehospitalization in 4144 (23.7%). Comparing the pre-COVID, pre-vaccine and post-vaccine study periods, there were no trends in thromboses (OR 0.9 [95% CI 0.8, 1.1]; p = .22) or oxygen requirements (OR 1.0 [95% CI 0.9, 1.1]; p = .41). In parallel, there were no trends across study periods for ICU length of stay (p = .83), adjusted hospital mortality (OR 1.0 [95% CI 0.9-1.0]; p = .36), or 30-day rehospitalization (p = .29). DISCUSSION Transfusion of plasma and platelet blood components collected during the pre-vaccine and post-vaccine periods of the COVID-19 pandemic was not associated with increased adverse outcomes in transfusion recipients without COVID-19.
Collapse
Affiliation(s)
- Nareg H Roubinian
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - John Greene
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Vincent X Liu
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Catherine Lee
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Dustin G Mark
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - David R Vinson
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Bryan R Spencer
- American Red Cross, Scientific Affairs, Dedham, Massachusetts, USA
| | - Roberta Bruhn
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Steve Kleinman
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
9
|
Romera Martínez I, Avendaño-Solá C, Villegas Da Ros C, Bosch Llobet A, García Erce JA, González Fraile MI, Guerra Domínguez L, Vicuña Andrés I, Anguita Velasco J, González Rodríguez VP, Contreras E, Urcelay Uranga S, Pajares Herraiz ÁL, Jimenez-Marco T, Ojea Pérez AM, Arroyo Rodríguez JL, Pérez-Olmeda M, Ramos-Martínez A, Velasco-Iglesias A, Bueno Cabrera JL, Duarte RF. Factors related to the development of high antibody titres against SARS-CoV-2 in convalescent plasma donors from the ConPlas-19 trial. Vox Sang 2024; 119:27-33. [PMID: 37986640 DOI: 10.1111/vox.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND AND OBJECTIVES The efficacy of COVID-19 convalescent plasma (CP) associates with high titres of antibodies. ConPlas-19 clinical trial showed that CP reduces the risk of progression to severe COVID-19 at 28 days. Here, we aim to study ConPlas-19 donors and characteristics that associate with high anti-SARS-CoV-2 antibody levels. MATERIALS AND METHODS Four-hundred donors were enrolled in ConPlas-19. The presence and titres of anti-SARS-CoV-2 antibodies were evaluated by EUROIMMUN anti-SARS-CoV-2 S1 IgG ELISA. RESULTS A majority of 80.3% of ConPlas-19 donor candidates had positive EUROIMMUN test results (ratio ≥1.1), and of these, 51.4% had high antibody titres (ratio ≥3.5). Antibody levels decline over time, but nevertheless, out of 37 donors tested for an intended second CP donation, over 90% were still EUROIMMUN positive, and nearly 75% of those with high titres maintained high titres in the second sample. Donors with a greater probability of developing high titres of anti-SARS-CoV-2 antibodies include those older than 40 years of age (RR 2.06; 95% CI 1.24-3.42), with more than 7 days of COVID-19 symptoms (RR 1.89; 95% CI 1.05-3.43) and collected within 4 months from infection (RR 2.61; 95% CI 1.16-5.90). Male donors had a trend towards higher titres compared with women (RR 1.67; 95% CI 0.91-3.06). CONCLUSION SARS-CoV-2 CP candidate donors' age, duration of COVID-19 symptoms and time from infection to donation associate with the collection of CP with high antibody levels. Beyond COVID-19, these data are relevant to inform decisions to optimize the CP donor selection process in potential future outbreaks.
Collapse
Affiliation(s)
- Irene Romera Martínez
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Cristina Avendaño-Solá
- Department of Clinical Pharmacology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | | | | | - José Antonio García Erce
- Banco de Sangre y Tejidos de Navarra, Servicio Navarro de Salud, Osasunbidea, Pamplona, Spain
- Grupo Español de Rehabilitación Multimodal (GERM), Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- PBM Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Luisa Guerra Domínguez
- Department of Hematology, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas, Spain
| | | | - Javier Anguita Velasco
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | | - Mayte Pérez-Olmeda
- Laboratorio de Serología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Ramos-Martínez
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ana Velasco-Iglesias
- Spanish Clinical Research Network (ISCIII), Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - José Luis Bueno Cabrera
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Rafael F Duarte
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
10
|
Caturegli P, Laeyendecker O, Tobian AAR, Sullivan DJ. Hundred-fold increase in SARS-CoV-2 spike antibody levels over three years in a hospital clinical laboratory. Microbiol Spectr 2023; 11:e0218323. [PMID: 37811983 PMCID: PMC10715067 DOI: 10.1128/spectrum.02183-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Despite the evolution of SARS-CoV-2 variants of concern and ongoing transmission, COVID-19 hospitalization and mortality rates continue to decline. Both the percent seropositive and antibody levels have risen over the past 3 years. Here, we observe more than 90% seropositivity as well as more than a hundred-fold increase in spike IgG levels in a tertiary hospital clinical immunology laboratory setting. Antibody effector functions (such as neutralization, opsonization, and complement activation) and cell-mediated immunity all contribute to protection from COVID-19 progression to hospitalization, and all correlate to the total SARS-CoV-2 antibody levels. We recommend therapeutic COVID-19 convalescent plasma be restricted to the top 20% of potential donors to maintain activity against ongoing SARS-CoV-2 variant evolution.
Collapse
Affiliation(s)
- Patrizio Caturegli
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Yang X. Passive antibody therapy in emerging infectious diseases. Front Med 2023; 17:1117-1134. [PMID: 38040914 DOI: 10.1007/s11684-023-1021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 12/03/2023]
Abstract
The epidemic of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 and its variants of concern (VOCs) has been ongoing for over 3 years. Antibody therapies encompassing convalescent plasma, hyperimmunoglobulin, and neutralizing monoclonal antibodies (mAbs) applied in passive immunotherapy have yielded positive outcomes and played a crucial role in the early COVID-19 treatment. In this review, the development path, action mechanism, clinical research results, challenges, and safety profile associated with the use of COVID-19 convalescent plasma, hyperimmunoglobulin, and mAbs were summarized. In addition, the prospects of applying antibody therapy against VOCs was assessed, offering insights into the coping strategies for facing new infectious disease outbreaks.
Collapse
Affiliation(s)
- Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China.
- China National Biotec Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
12
|
Wei D, Xie Y, Liu X, Chen R, Zhou M, Zhang X, Qu J. Pathogen evolution, prevention/control strategy and clinical features of COVID-19: experiences from China. Front Med 2023; 17:1030-1046. [PMID: 38157194 DOI: 10.1007/s11684-023-1043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported at the end of 2019 as a worldwide health concern causing a pandemic of unusual viral pneumonia and many other organ damages, which was defined by the World Health Organization as coronavirus disease 2019 (COVID-19). The pandemic is considered a significant threat to global public health till now. In this review, we have summarized the lessons learnt during the emergence and spread of SARS-CoV-2, including its prototype and variants. The overall clinical features of variants of concern (VOC), heterogeneity in the clinical manifestations, radiology and pathology of COVID-19 patients are also discussed, along with advances in therapeutic agents.
Collapse
Affiliation(s)
- Dong Wei
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yusang Xie
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, 200025, China
| | - Xuefei Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, 200025, China
| | - Rong Chen
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, 200025, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, 200025, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, 200025, China.
| |
Collapse
|
13
|
Gebo KA, Heath SL, Fukuta Y, Zhu X, Baksh S, Abraham AG, Habtehyimer F, Shade D, Ruff J, Ram M, Laeyendecker O, Fernandez RE, Patel EU, Baker OR, Shoham S, Cachay ER, Currier JS, Gerber JM, Meisenberg B, Forthal DN, Hammitt LL, Huaman MA, Levine A, Mosnaim GS, Patel B, Paxton JH, Raval JS, Sutcliffe CG, Anjan S, Gniadek T, Kassaye S, Blair JE, Lane K, McBee NA, Gawad AL, Das P, Klein SL, Pekosz A, Bloch EM, Hanley D, Casadevall A, Tobian AAR, Sullivan DJ. Early antibody treatment, inflammation, and risk of post-COVID conditions. mBio 2023; 14:e0061823. [PMID: 37724870 PMCID: PMC10653913 DOI: 10.1128/mbio.00618-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/02/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE Approximately 20% of individuals infected with SARS-CoV-2 experienced long-term health effects, as defined PCC. However, it is unknown if there are any early biomarkers associated with PCC or whether early intervention treatments may decrease the risk of PCC. In a secondary analysis of a randomized clinical trial, this study demonstrates that among outpatients with SARS-CoV-2, increased IL-6 at time of infection is associated with increased odds of PCC. In addition, among individuals treated early, within 5 days of symptom onset, with COVID-19 convalescent plasma, there was a trend for decreased odds of PCC after adjusting for other demographic and clinical characteristics. Future treatment studies should be considered to evaluate the effect of early treatment and anti-IL-6 therapies on PCC development.
Collapse
Affiliation(s)
- Kelly A. Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sonya L. Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheriza Baksh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allison G. Abraham
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Feben Habtehyimer
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Shade
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jessica Ruff
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malathi Ram
- Departement of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, Maryland, USA
| | - Reinaldo E. Fernandez
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eshan U. Patel
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Owen R. Baker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward R. Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, California, USA
| | - Judith S. Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, California, USA
| | - Jonathan M. Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worchester, Massachusetts, USA
| | | | - Donald N. Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, California, USA
| | - Laura L. Hammitt
- Departement of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Moises A. Huaman
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Adam Levine
- Department of Emergency Medicine, Rhode Island Hospital Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Giselle S. Mosnaim
- Department of Medicine, Division of Allergy and Immunology, Northshore University Health System, Evanston, Illinois, USA
| | - Bela Patel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - James H. Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jay S. Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Catherine G. Sutcliffe
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Departement of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Thomas Gniadek
- Department of Pathology, Northshore University Health System, Evanston, Illinois, USA
| | - Seble Kassaye
- Division of Infectious Diseases, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Janis E. Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | - Karen Lane
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nichol A. McBee
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy L. Gawad
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piyali Das
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - on behalf of the CSSC-004 Consortium
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Departement of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, California, USA
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, California, USA
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worchester, Massachusetts, USA
- Luminis Health, Annapolis, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, California, USA
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Emergency Medicine, Rhode Island Hospital Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Medicine, Division of Allergy and Immunology, Northshore University Health System, Evanston, Illinois, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Pathology, Northshore University Health System, Evanston, Illinois, USA
- Division of Infectious Diseases, Medstar Georgetown University Hospital, Washington, DC, USA
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Lacombe K, Hueso T, Porcher R, Mekinian A, Chiarabini T, Georgin-Lavialle S, Ader F, Saison J, Martin-Blondel G, De Castro N, Bonnet F, Cazanave C, Francois A, Morel P, Hermine O, Pourcher V, Michel M, Lescure X, Soussi N, Brun P, Pommeret F, Sellier P, Rousset S, Piroth L, Michot JM, Baron G, de Lamballerie X, Mariette X, Tharaux PL, Resche-Rigon M, Ravaud P, Simon T, Tiberghien P. Use of covid-19 convalescent plasma to treat patients admitted to hospital for covid-19 with or without underlying immunodeficiency: open label, randomised clinical trial. BMJ MEDICINE 2023; 2:e000427. [PMID: 37920150 PMCID: PMC10619082 DOI: 10.1136/bmjmed-2022-000427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
Objective To evaluate the efficacy of covid-19 convalescent plasma to treat patients admitted to hospital for moderate covid-19 disease with or without underlying immunodeficiency (CORIPLASM trial). Design Open label, randomised clinical trial. Setting CORIMUNO-19 cohort (publicly supported platform of open label, randomised controlled trials of immune modulatory drugs in patients admitted to hospital with moderate or severe covid-19 disease) based on 19 university and general hospitals across France, from 16 April 2020 to 21 April 2021. Participants 120 adults (n=60 in the covid-19 convalescent plasma group, n=60 in the usual care group) admitted to hospital with a positive SARS-CoV2 test result, duration of symptoms <9 days, and World Health Organization score of 4 or 5. 49 patients (n=22, n=27) had underlying immunosuppression. Interventions Open label randomisation to usual care or four units (200-220 mL/unit, 2 units/day over two consecutive days) of covid-19 convalescent plasma with a seroneutralisation titre >40. Main outcome measures Primary outcomes were proportion of patients with a WHO Clinical Progression Scale score of ≥6 on the 10 point scale on day 4 (higher values indicate a worse outcome), and survival without assisted ventilation or additional immunomodulatory treatment by day 14. Secondary outcomes were changes in WHO Clinical Progression Scale scores, overall survival, time to discharge, and time to end of dependence on oxygen supply. Predefined subgroups analyses included immunosuppression status, duration of symptoms before randomisation, and use of steroids. Results 120 patients were recruited and assigned to covid-19 convalescent plasma (n=60) or usual care (n=60), including 22 (covid-19 convalescent plasma) and 27 (usual care) patients who were immunocompromised. 13 (22%) patients who received convalescent plasma had a WHO Clinical Progression Scale score of ≥6 at day 4 versus eight (13%) patients who received usual care (adjusted odds ratio 1.88, 95% credible interval 0.71 to 5.24). By day 14, 19 (31.6%) patients in the convalescent plasma group and 20 (33.3%) patients in the usual care group needed ventilation, additional immunomodulatory treatment, or had died. For cumulative incidence of death, three (5%) patients in the convalescent plasma group and eight (13%) in the usual care group died by day 14 (adjusted hazard ratio 0.40, 95% confidence interval 0.10 to 1.53), and seven (12%) patients in the convalescent plasma group and 12 (20%) in the usual care group by day 28 (adjusted hazard ratio 0.51, 0.20 to 1.32). In a subgroup analysis performed in patients who were immunocompromised, transfusion of covid-19 convalescent plasma was associated with mortality (hazard ratio 0.39, 95% confidence interval 0.14 to 1.10). Conclusions In this study, covid-19 convalescent plasma did not improve early outcomes in patients with moderate covid-19 disease. The efficacy of convalescent plasma in patients who are immunocompromised should be investigated further. Trial registration ClinicalTrials.gov NCT04345991.
Collapse
Affiliation(s)
- Karine Lacombe
- Sorbonne Université, Paris, France
- IPLESP, INSERM, Paris, France
- Infectious Diseases Department, St Antoine Hospital, AP-HP, Paris, France
| | - Thomas Hueso
- Hematology department, Avicenne Hospital, AP-HP, Bobigny, France
- Hôpitaux Universitaires Paris Seine Saint Denis, Bobigny, France
| | - Raphael Porcher
- Centre de Recherche Épidémiologie et Statistique, CRESS-UMR1153, Sorbonne Paris Cité, Paris, France
- Centre d'épidémiologie clinique, Hôpital Hôtel-Dieu, AP-HP, Paris, France
| | - Arsene Mekinian
- Sorbonne Université, Paris, France
- Internal Medicine Department, Saint Antoine Hospital, AP-HP, Paris, France
| | | | - Sophie Georgin-Lavialle
- Sorbonne Université, Paris, France
- Internal Medicine department, Tenon Hospital, AP-HP, Paris, France
| | - Florence Ader
- CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Infectious Diseases Department, Hospices Civils de Lyon, Lyon, France
| | - Julien Saison
- Infectious Diseases Department, Centre Hospitalier de Valence, Valence, France
| | - Guillaume Martin-Blondel
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051, Université Toulouse III, Toulouse, France
- Infectious Diseases department, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Nathalie De Castro
- Infectious Diseases department, Saint Louis Hospital, AP-HP, Paris, France
| | - Fabrice Bonnet
- Bordeaux Population Health, INSERM U1219, Université de Bordeaux, Bordeaux, France
- Internal Medicine Department, Saint-André Hospital, Bordeaux, France
| | - Charles Cazanave
- Infectious Diseases Department, Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Anne Francois
- Etablissement Francais du Sang, La Plaine Saint-Denis, France
| | - Pascal Morel
- Etablissement Francais du Sang, La Plaine Saint-Denis, France
| | - Olivier Hermine
- Université de Paris, Paris, France
- Hematology Department, Hôpital Necker - Enfants Malades, AP-HP, Paris, France
| | - Valerie Pourcher
- Sorbonne Université, Paris, France
- IPLESP, INSERM, Paris, France
- Infectious Diseases Department, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Michel
- Université de Paris Est Créteil, Créteil, France
- Internal Medicine Department, Hôpital henri-Mondor, AP-HP, Créteil, France
| | - Xavier Lescure
- Université de Paris, Paris, France
- Infectious Diseases Department, Hôpital Bichat - Claude Bernard, AP-HP, Paris, France
| | - Nora Soussi
- Clinical Research Platform (URC-CRC-CRB), Saint-Antoine Hospital, AP-HP, Paris, France
| | | | - Fanny Pommeret
- Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Pierre Sellier
- Infectious Diseases Department, Lariboisière Hospital, AP-HP, Paris, France
| | - Stella Rousset
- Infectious Diseases department, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Lionel Piroth
- Infectious Diseases Department, University Hospital Centre Dijon Bourgogne, Dijon, France
| | | | - Gabriel Baron
- Centre de Recherche Épidémiologie et Statistique, CRESS-UMR1153, Sorbonne Paris Cité, Paris, France
- Centre d'épidémiologie clinique, Hôpital Hôtel-Dieu, AP-HP, Paris, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents, IRD 190-Inserm 1207, Aix-Marseille University, Marseille, France
| | - Xavier Mariette
- Inserm UMR1184, Université Paris-Saclay, Le Kremin-Bicêtre, France
- Rhumatology Department, Centre Hospitalier Universitaire Bicêtre, Le Kremlin-Bicêtre, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Centre - PARCC, Inserm, Université Paris-Cité, Paris, France
| | - Matthieu Resche-Rigon
- INSERM U153, Université Paris-Cité, Paris, France
- Service de biostatistique et information médicale, Saint-Louis Hospital, AP-HP, Paris, France
| | - Philippe Ravaud
- INSERM U153, Université Paris-Cité, Paris, France
- Service de biostatistique et information médicale, Saint-Louis Hospital, AP-HP, Paris, France
| | - Tabassome Simon
- Sorbonne Université, Paris, France
- Département de Pharmacologie clinique, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Pierre Tiberghien
- Etablissement Francais du Sang, La Plaine Saint-Denis, France
- UMR1098 RIGHT, Inserm, Université de Franche-Comté, Besançon, France
| |
Collapse
|
15
|
Martinaud C, Bagri A, Tsai CT, de Assis RR, Gatmaitan M, Robinson PV, Seftel D, Khan S, Felgner PL, Corash LM. Characterization of antibodies to SARS-CoV-2 in lyophilized plasma prepared with amotosalen-UVA pathogen reduction. Transfusion 2023; 63:1633-1638. [PMID: 37615329 DOI: 10.1111/trf.17506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected patients exhibit disease ranging from asymptomatic to severe pneumonia, multi-organ failure, and death. convalescent COVID plasma (CCP) from recovered patients with high levels of neutralizing antibodies has demonstrated therapeutic efficacy to reduce the morbidity of coronavirus disease 2019 (COVID-19) in some studies. The development of assays to characterize the activity of CCP to neutralize SARS-CoV-2 infectivity offers the possibility to improve potential therapeutic efficacy. Lyophilization of CCP may increase the availability of this therapy. We hypothesized that SARS-CoV-2 antibody profiles of pooled lyophilized pathogen-reduced CCP from COVID-19-recovered blood donors retains virus-neutralizing efficacy as reported for frozen pathogen-reduced CCP. METHODS Pooled lyophilized pathogen-reduced plasma was prepared from recovered COVID plasma donors. Antibodies to SARS-CoV-2 were characterized in each donor plasma prior to pathogen reduction and lyophilization and after lyophilization of individual CCP, and in the lyophilized CCP pool. Several complimentary assays were used to characterize antibody levels, neutralizing capacity, and the spectrum of antigen reactivity. The mean values for individual plasma samples and the value in the pool were compared. RESULTS The mean ratio for antibody binding to SARS-CoV-2 antigens before and after treatment was 0.95 ± 0.22 mean fluorescent intensity (MFI) units. Antibody activity to an array of influenza virus antigens demonstrated a mean activity ratio of 0.92 ± 0.12 MFI before and after treatment. CONCLUSIONS The antibody activity in pooled pathogen-reduced lyophilized CCPs demonstrated minimal impact due to pathogen reduction treatment and lyophilization.
Collapse
Affiliation(s)
- Christophe Martinaud
- Blood Donation Screening Laboratory, French Military Blood Institute, Clamart, France
| | - Anil Bagri
- Cerus Corporation, Concord, California, USA
| | - Cheng-Ting Tsai
- ENable Biosciences Inc, South San Francisco, California, USA
| | - Rafael R de Assis
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California, USA
| | | | | | - David Seftel
- ENable Biosciences Inc, South San Francisco, California, USA
| | - Saahir Khan
- Division of Infectious Diseases, Department of Medicine, University of California Irvine Health, Orange, California, USA
| | - Philip L Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California, USA
| | | |
Collapse
|
16
|
Metcalf RA, Cohn CS, Bakhtary S, Gniadek T, Gupta G, Harm S, Haspel RL, Hess AS, Jacobson J, Lokhandwala PM, Murphy C, Poston JN, Prochaska MT, Raval JS, Saifee NH, Salazar E, Shan H, Zantek ND, Pagano MB. Current advances in 2022: A critical review of selected topics by the Association for the Advancement of Blood and Biotherapies (AABB) Clinical Transfusion Medicine Committee. Transfusion 2023; 63:1590-1600. [PMID: 37403547 DOI: 10.1111/trf.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND The Association for the Advancement of Blood and Biotherapies Clinical Transfusion Medicine Committee (CTMC) composes a summary of new and important advances in transfusion medicine (TM) on an annual basis. Since 2018, this has been assembled into a manuscript and published in Transfusion. STUDY DESIGN AND METHODS CTMC members selected original manuscripts relevant to TM that were published electronically and/or in print during calendar year 2022. Papers were selected based on perceived importance and/or originality. References for selected papers were made available to CTMC members to provide feedback. Members were also encouraged to identify papers that may have been omitted initially. They then worked in groups of two to three to write a summary for each new publication within their broader topic. Each topic summary was then reviewed and edited by two separate committee members. The final manuscript was assembled by the first and senior authors. While this review is extensive, it is not a systematic review and some publications considered important by readers may have been excluded. RESULTS For calendar year 2022, summaries of key publications were assembled for the following broader topics within TM: blood component therapy; infectious diseases, blood donor testing, and collections; patient blood management; immunohematology and genomics; hemostasis; hemoglobinopathies; apheresis and cell therapy; pediatrics; and health care disparities, diversity, equity, and inclusion. DISCUSSION This Committee Report reviews and summarizes important publications and advances in TM published during calendar year 2022, and maybe a useful educational tool.
Collapse
Affiliation(s)
- Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sara Bakhtary
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Gaurav Gupta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sarah Harm
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Richard L Haspel
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron S Hess
- Departments of Anesthesiology and Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jessica Jacobson
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Parvez M Lokhandwala
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Colin Murphy
- TriCore Reference Laboratories, Albuquerque, New Mexico, USA
| | - Jacqueline N Poston
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Micah T Prochaska
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Eric Salazar
- Department of Pathology, UT Health San Antonio, San Antonio, Texas, USA
| | - Hua Shan
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Nicole D Zantek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Monica B Pagano
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Bloch EM, Goel R, Zhu X, Patel EU, Shoham S, Sullivan DJ, Gebo KA, Casadevall A, Tobian AAR. Coronavirus Disease 2019 Convalescent Plasma Utilization in the United States: Data From the National Inpatient Sample. Clin Infect Dis 2023; 77:237-241. [PMID: 36987595 PMCID: PMC10371309 DOI: 10.1093/cid/ciad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) use between October and December 2020 was characterized using the National Inpatient Sample database. CCP was administered in 18.0% of COVID-19-associated hospitalizations and was strongly associated with older age and increased disease severity. There were disparities in the receipt of CCP by race and ethnicity, geography, and insurance.
Collapse
Affiliation(s)
- Evan M Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruchika Goel
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
- Simmons Cancer Institute at Southern Illinois University, Springfield, Illinois, USA
| | - Xianming Zhu
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eshan U Patel
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Lee CYS, Suzuki JB. COVID-19: Variants, Immunity, and Therapeutics for Non-Hospitalized Patients. Biomedicines 2023; 11:2055. [PMID: 37509694 PMCID: PMC10377623 DOI: 10.3390/biomedicines11072055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The continuing transmission of coronavirus disease 2019 (COVID-19) remains a world-wide 21st-century public health emergency of concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused greater than 600 million cases of COVID-19 and over 6 million deaths globally. COVID-19 continues to be a highly transmissible disease despite efforts by public health officials and healthcare providers to manage and control the disease. Variants identified in selected worldwide epicenters add to the complexity of vaccine efficacy, overage, and antibody titer maintenance and bioactivity. The identification of the SARS-CoV-2 variants is described with respect to evading protective efficacy of COVID-19 vaccines and breakthrough infections. Vaccines and other therapeutics have prevented millions of SARS-CoV-2 infections and thousands of deaths in the United States. We explore aspects of the immune response in a condensed discussion to understand B and T cell lymphocyte regulatory mechanisms and antibody effectiveness and senescence. Finally, COVID-19 therapies including Paxlovid, Remdisivir, Molnupiravir and convalescent plasma in non-hospitalized patients are presented with limitations for identification, collection, and distribution to infected patients.
Collapse
Affiliation(s)
- Cameron Y S Lee
- Private Practice in Oral, Maxillofacial and Reconstructive Surgery, Aiea, HI 96701, USA
- Department of Periodontology and Oral Implantology, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| | - Jon B Suzuki
- Department of Periodontology and Oral Implantology, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
- Department of Graduate Periodontics, University of Maryland, Baltimore, MD 20742, USA
- Department of Graduate Prosthodontics, University of Washington, Seattle, WA 98195, USA
- Department of Graduate Periodontics, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
19
|
McConnell SA, Sachithanandham J, Mudrak NJ, Zhu X, Farhang PA, Cordero RJB, Wear MP, Shapiro JR, Park HS, Klein SL, Tobian AAR, Bloch EM, Sullivan DJ, Pekosz A, Casadevall A. Spike-protein proteolytic antibodies in COVID-19 convalescent plasma contribute to SARS-CoV-2 neutralization. Cell Chem Biol 2023; 30:726-738.e4. [PMID: 37354908 PMCID: PMC10288624 DOI: 10.1016/j.chembiol.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Understanding the mechanisms of antibody-mediated neutralization of SARS-CoV-2 is critical in combating the COVID-19 pandemic. Based on previous reports of antibody catalysis, we investigated the proteolysis of spike (S) by antibodies in COVID-19 convalescent plasma (CCP) and its contribution to viral neutralization. Quenched fluorescent peptides were designed based on S epitopes to sensitively detect antibody-mediated proteolysis. We observed epitope cleavage by CCP from different donors which persisted when plasma was heat-treated or when IgG was isolated from plasma. Further, purified CCP antibodies proteolyzed recombinant S domains, as well as authentic viral S. Cleavage of S variants suggests CCP antibody-mediated proteolysis is a durable phenomenon despite antigenic drift. We differentiated viral neutralization occurring via direct interference with receptor binding from that occurring by antibody-mediated proteolysis, demonstrating that antibody catalysis enhanced neutralization. These results suggest that antibody-catalyzed damage of S is an immunologically relevant function of neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Scott A McConnell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan J Mudrak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Parsa Alba Farhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Radames J B Cordero
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Maggie P Wear
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Janna R Shapiro
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Van Denakker TA, Al-Riyami AZ, Feghali R, Gammon R, So-Osman C, Crowe EP, Goel R, Rai H, Tobian AAR, Bloch EM. Managing blood supplies during natural disasters, humanitarian emergencies, and pandemics: lessons learned from COVID-19. Expert Rev Hematol 2023; 16:501-514. [PMID: 37129864 PMCID: PMC10330287 DOI: 10.1080/17474086.2023.2209716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The COVID-19 pandemic has resulted in a historic public health crisis with widespread social and economic ramifications. The pandemic has also affected the blood supply, resulting in unprecedented and sustained blood shortages. AREAS COVERED This review describes the challenges of maintaining a safe and sufficient blood supply in the wake of natural disasters, humanitarian emergencies, and pandemics. The challenges, which are accentuated in low- and high-income countries, span the impact on human capacity (affecting blood donors and blood collections personnel alike), disruption to supply chains, and economic sustainability. COVID-19 imparted lessons on how to offset these challenges, which may be applied to future pandemics and public health crises. EXPERT OPINION Pandemic emergency preparedness plans should be implemented or revised by blood centers and hospitals to lessen the impact to the blood supply. Comprehensive planning should address the timely assessment of risk to the blood supply, rapid donor recruitment, and communication of need, measures to preserve safety for donors and operational staff, careful blood management, and resource sharing.
Collapse
Affiliation(s)
- Tayler A Van Denakker
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital Sultan Qaboos University, Muscat, Oman
| | | | - Richard Gammon
- OneBlood, Scientific, Medical, Technical Direction, Orlando, FL, USA
| | - Cynthia So-Osman
- Sanquin Blood Supply Foundation, Department of Transfusion medicine, Amsterdam, The Netherlands
| | - Elizabeth P Crowe
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruchika Goel
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Simmons Cancer Institute, Department of Internal Medicine, Springfield, IL, USA
| | - Herleen Rai
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan M Bloch
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Tang J, Liu H, Wang Q, Gu X, Wang J, Li W, Luo Y, Li Y, Deng L, Luo Y, Du X, Tan D, Fu X, Chen X. Predictors of high SARS-CoV-2 immunoglobulin G titers in COVID-19 convalescent whole-blood donors: a cross-sectional study in China. Front Immunol 2023; 14:1191479. [PMID: 37388736 PMCID: PMC10303911 DOI: 10.3389/fimmu.2023.1191479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Background Demographic information has been shown to help predict high antibody titers of COVID-19 convalescent plasma (CCP) in CCP donors. However, there is no research on the Chinese population and little evidence on whole-blood donors. Therefore, we aimed to investigate these associations among Chinese blood donors after SARS-CoV-2 infection. Methods In this cross-sectional study, 5,064 qualified blood donors with confirmed or suspected SARS-CoV-2 infection completed a self-reported questionnaire and underwent tests of SARS-CoV-2 Immunoglobulin G (IgG) antibody and ABO blood type. Logistic regression models were used to calculate odds ratios (ORs) for high SARS-CoV-2 IgG titers according to each factor. Results Totally, 1,799 participants (with SARS-CoV-2 IgG titers≥1:160) had high-titer CCPs. Multivariable analysis showed that a 10-year increment in age and earlier donation were associated with higher odds of high-titer CCP, while medical personnel was associated with lower odds. The ORs (95% CIs) of high-titer CCP were 1.17 (1.10-1.23, p< 0.001) and 1.41 (1.25-1.58, p< 0.001) for each 10-year increment in age and earlier donation, respectively. The OR of high-titer CCP was 0.75 (0.60-0.95, p = 0.02) for medical personnel. Female early donors were associated with increased odds of high-titer CCP, but this association was insignificant for later donors. Donating after 8 weeks from the onset was associated with decreased odds of having high-titer CCP compared to donating within 8 weeks from the onset, and the HR was 0.38 (95% CI: 0.22-0.64, p <0.001). There was no significant association between ABO blood type or race and the odds of high-titer CCP. Discussion Older age, earlier donation, female early donors, and non-medical-related occupations are promising predictors of high-titer CCP in Chinese blood donors. Our findings highlight the importance of CCP screening at the early stage of the pandemic.
Collapse
Affiliation(s)
- Jingyun Tang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Humin Liu
- Department of Blood Testing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Qing Wang
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xiaobo Gu
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Jia Wang
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Wenjun Li
- Department of Blood Testing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Yinglan Luo
- Department of Blood Testing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Yan Li
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Lan Deng
- Department of Blood Collection, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Yue Luo
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xinman Du
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Donglin Tan
- Department of Blood Processing, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xuemei Fu
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| | - Xue Chen
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Uzun G, Müller R, Althaus K, Becker M, Marsall P, Junker D, Nowak-Harnau S, Schneiderhan-Marra N, Klüter H, Schrezenmeier H, Bugert P, Bakchoul T. Correlation between Clinical Characteristics and Antibody Levels in COVID-19 Convalescent Plasma Donor Candidates. Viruses 2023; 15:1357. [PMID: 37376656 DOI: 10.3390/v15061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) with high neutralizing antibodies has been suggested in preventing disease progression in COVID-19. In this study, we investigated the relationship between clinical donor characteristics and neutralizing anti-SARS-CoV-2 antibodies in CCP donors. COVID-19 convalescent plasma donors were included into the study. Clinical parameters were recorded and anti-SARS-CoV-2 antibody levels (Spike Trimer, Receptor Binding Domain (RBD), S1, S2 and nucleocapsid protein) as well as ACE2 binding inhibition were measured. An ACE2 binding inhibition < 20% was defined as an inadequate neutralization capacity. Univariate and multivariable logistic regression analysis was used to detect the predictors of inadequate neutralization capacity. Ninety-one CCP donors (56 female; 61%) were analyzed. A robust correlation between all SARS-CoV-2 IgG antibodies and ACE2 binding inhibition, as well as a positive correlation between donor age, body mass index, and a negative correlation between time since symptom onset and antibody levels were found. We identified time since symptom onset, normal body mass index (BMI), and the absence of high fever as independent predictors of inadequate neutralization capacity. Gender, duration of symptoms, and number of symptoms were not associated with SARS-CoV-2 IgG antibody levels or neutralization. Neutralizing capacity was correlated with SARS-CoV-2 IgG antibodies and associated with time since symptom onset, BMI, and fever. These clinical parameters can be easily incorporated into the preselection of CCP donors.
Collapse
Affiliation(s)
- Günalp Uzun
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Patrick Marsall
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Stefanie Nowak-Harnau
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
- Institute for Transfusion Medicine and University Hospital Ulm, University of Ulm, 89081 Ulm, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| |
Collapse
|
24
|
Bloch EM, Focosi D, Shoham S, Senefeld J, Tobian AAR, Baden LR, Tiberghien P, Sullivan DJ, Cohn C, Dioverti V, Henderson JP, So-Osman C, Juskewitch JE, Razonable RR, Franchini M, Goel R, Grossman BJ, Casadevall A, Joyner MJ, Avery RK, Pirofski LA, Gebo KA. Guidance on the Use of Convalescent Plasma to Treat Immunocompromised Patients With Coronavirus Disease 2019. Clin Infect Dis 2023; 76:2018-2024. [PMID: 36740590 PMCID: PMC10249987 DOI: 10.1093/cid/ciad066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.
Collapse
Affiliation(s)
- Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathon Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lindsey R Baden
- Department of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine-St-Denis and Université de Franche-Comté, Besançon, France
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Claudia Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Veronica Dioverti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey P Henderson
- Departments of Internal Medicine (Division of Infectious Diseases) and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia So-Osman
- Department Transfusion Medicine, Division Blood Bank, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
- Department Haematology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Justin E Juskewitch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester campus, Minnesota, USA
| | - Raymund R Razonable
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ruchika Goel
- Division of Hematology/Oncology, Simmons Cancer Institute at SIU School of Medicine and Mississippi Valley Regional Blood Center, Springfield, Illinois, USA
| | - Brenda J Grossman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin K Avery
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liise-anne Pirofski
- Department of Medicine, Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Tomisti L, Angelotti F, Lenzi M, Amadori F, Sarteschi G, Porcu A, Capria AL, Bertacca G, Lombardi S, Bianchini G, Vincenti A, Cesta N. Efficacy of Convalescent Plasma to Treat Long-Standing COVID-19 in Patients with B-Cell Depletion. Life (Basel) 2023; 13:1266. [PMID: 37374049 DOI: 10.3390/life13061266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The use of antivirals, corticosteroids, and IL-6 inhibitors has been recommended by the WHO to treat COVID-19. CP has also been considered for severe and critical cases. Clinical trials on CP have shown contradictory results, but an increasing number of patients, including immunocompromised ones, have shown benefits from this treatment. We reported two clinical cases of patients with prolonged COVID-19 infection and B-cell depletion who showed rapid clinical and virological recovery after the administration of CP. The first patient in this study was a 73-year-old female with a history of follicular non-Hodgkin lymphoma previously treated with bendamustine followed by maintenance therapy with rituximab. The second patient was a 68-year-old male with chronic obstructive pulmonary disease, bipolar disorder, alcoholic liver disease, and a history of mantellar non-Hodgkin lymphoma treated with rituximab and radiotherapy. After the administration of CP, both patients showed a resolution of symptoms, improvement of their clinical conditions, and a negative result of the nasopharyngeal swab test. The administration of CP might be effective in resolving symptoms and improving clinical and virological outcomes in patients with B-cell depletion and prolonged SARS-CoV2 infections.
Collapse
Affiliation(s)
- Luca Tomisti
- ASL Toscana Nord-Ovest, Internal Medicine Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Francesca Angelotti
- ASL Toscana Nord-Ovest, Internal Medicine Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Mirco Lenzi
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Francesco Amadori
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Giovanni Sarteschi
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Anna Porcu
- ASL Toscana Nord-Ovest, Pneumology Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Anna-Lisa Capria
- UOC Virologia, Dipartimento di Medicina di Laboratorio, AOUP Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
| | - Gloria Bertacca
- ASL Toscana Nord-Ovest, SSD Clinical Chemistry Analyses and Molecular Biology, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Stefania Lombardi
- ASL Toscana Nord-Ovest, SSD Clinical Chemistry Analyses and Molecular Biology, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Guido Bianchini
- ASL Toscana Nord-Ovest, Internal Medicine Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Antonella Vincenti
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Novella Cesta
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| |
Collapse
|
26
|
Garraud O, Watier H. Is there any revival of the use of plasma therapy or neutralizing convalescent antibody therapy to treat SARS-CoV-2 variants and are we rethinking preparedness plans? Transfus Apher Sci 2023:103726. [PMID: 37169698 PMCID: PMC10164650 DOI: 10.1016/j.transci.2023.103726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Olivier Garraud
- SAINBIOSE INSERM U1049, Université de Saint-Etienne, Saint-Etienne, France.
| | - Hervé Watier
- CPER INSERM U1100 and Université de Tours, and CHRU de Tours, Tours, France
| |
Collapse
|
27
|
Casadevall A, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan D, Paneth N, Focosi D. Convalescent plasma therapy in COVID-19: Unravelling the data using the principles of antibody therapy. Expert Rev Respir Med 2023:1-15. [PMID: 37129285 DOI: 10.1080/17476348.2023.2208349] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION When the COVID-19 pandemic struck no specific therapies were available and many turned to COVID-19 convalescent plasma (CCP), a form of antibody therapy. The literature provides mixed evidence for CCP efficacy. AREAS COVERED PubMed was searched using the words COVID-19 and convalescent plasma and individual study designs were evaluated for adherence to the three principles of antibody therapy, i.e. that plasma 1) contain specific antibody; 2) have enough specific antibody to mediate a biological effect; and 3) be administered early in the course of disease. Using this approach, a diverse and seemingly contradictory collection of clinical findings was distilled into a consistent picture whereby CCP was effective when used according to the above principles of antibody therapy. In addition, CCP therapy in immunocompromised patients is useful at any time in the course of disease. EXPERT OPINION CCP is safe and effective when used appropriately. Today, most of humanity has some immunity to SARS-CoV-2 from vaccines and infection, which has lessened the need for CCP in the general population. However, COVID-19 in immunocompromised patients is a major therapeutic challenge, and with the deauthorization of all SARS-CoV-2-spike protein-directed monoclonal antibodies, CCP is the only antibody therapy available for this population.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
28
|
Shoham S, Batista C, Ben Amor Y, Ergonul O, Hassanain M, Hotez P, Kang G, Kim JH, Lall B, Larson HJ, Naniche D, Sheahan T, Strub-Wourgaft N, Sow SO, Wilder-Smith A, Yadav P, Bottazzi ME. Vaccines and therapeutics for immunocompromised patients with COVID-19. EClinicalMedicine 2023; 59:101965. [PMID: 37070102 PMCID: PMC10091856 DOI: 10.1016/j.eclinm.2023.101965] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
The COVID-19 pandemic has disproportionately impacted immunocompromised patients. This diverse group is at increased risk for impaired vaccine responses, progression to severe disease, prolonged hospitalizations and deaths. At particular risk are people with deficiencies in lymphocyte number or function such as transplant recipients and those with hematologic malignancies. Such patients' immune responses to vaccination and infection are frequently impaired leaving them more vulnerable to prolonged high viral loads and severe complications of COVID-19. Those in turn, have implications for disease progression and persistence, development of immune escape variants and transmission of infection. Data to guide vaccination and treatment approaches in immunocompromised people are generally lacking and extrapolated from other populations. The large clinical trials leading to authorisation and approval of SARS-CoV-2 vaccines and therapeutics included very few immunocompromised participants. While experience is accumulating, studies focused on the special circumstances of immunocompromised patients are needed to inform prevention and treatment approaches.
Collapse
Affiliation(s)
- Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolina Batista
- Médecins Sans Frontières, Rio de Janeiro, Brazil
- Baraka Impact Finance, Geneva, Switzerland
| | - Yanis Ben Amor
- Center for Sustainable Development, Columbia University, New York, NY, USA
| | - Onder Ergonul
- Koc University Research Center for Infectious Diseases, Istanbul, Turkey
| | - Mazen Hassanain
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Peter Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Bhavna Lall
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
| | | | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
| | - Timothy Sheahan
- University of North Carolina, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Nathalie Strub-Wourgaft
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Samba O. Sow
- Center for Vaccine Development, Bamako, Mali
- University of Maryland, MD, USA
| | - Annelies Wilder-Smith
- London School of Hygiene & Tropical Medicine, London, UK
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Prashant Yadav
- Center for Global Development, Washington, DC, USA
- Harvard Medical School, Boston, MA, USA
- Technology and Operations Management, INSEAD, Fontainebleau, France
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Médecins Sans Frontières, Rio de Janeiro, Brazil
- Baraka Impact Finance, Geneva, Switzerland
- Center for Sustainable Development, Columbia University, New York, NY, USA
- Koc University Research Center for Infectious Diseases, Istanbul, Turkey
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
- Christian Medical College, Vellore, India
- International Vaccine Institute, Seoul, South Korea
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
- London School of Hygiene & Tropical Medicine, London, UK
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
- University of North Carolina, Gillings School of Global Public Health, Chapel Hill, NC, USA
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- Center for Vaccine Development, Bamako, Mali
- University of Maryland, MD, USA
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Center for Global Development, Washington, DC, USA
- Harvard Medical School, Boston, MA, USA
- Technology and Operations Management, INSEAD, Fontainebleau, France
| |
Collapse
|
29
|
Jacquot C, Gordon O, Noland D, Donowitz JR, Levy E, Jain S, Willis Z, Rimland C, Loi M, Arrieta A, Annen K, Drapeau N, Osborne S, Ardura MI, Arora S, Zivick E, Delaney M. Multi-institutional experience with COVID-19 convalescent plasma in children. Transfusion 2023; 63:918-924. [PMID: 36965173 PMCID: PMC10175190 DOI: 10.1111/trf.17318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Convalescent COVID-19 plasma (CCP) was developed and used worldwide as a treatment option by supplying passive immunity. Adult studies suggest administering high-titer CCP early in the disease course of patients who are expected to be antibody-negative; however, pediatric experience is limited. We created a multi-institutional registry to characterize pediatric patients (<18 years) who received CCP and to assess the safety of this intervention. METHODS A REDCap survey was distributed. The registry collected de-identified data including demographic information (age, gender, and underlying conditions), COVID-19 disease features and concurrent treatments, CCP transfusion and safety events, and therapy response. RESULTS Ninety-five children received CCP: 90 inpatients and 5 outpatients, with a median age of 10.2 years (range 0-17.9). They were predominantly Latino/Hispanic and White. The most frequent underlying medical conditions were chronic respiratory disease, immunosuppression, obesity, and genetic syndromes. CCP was primarily given as a treatment (95%) rather than prophylaxis (5%). Median total plasma dose administered and transfusion rates were 5.0 ml/kg and 2.6 ml/kg/h, respectively. The transfusions were well-tolerated, with 3 in 115 transfusions reporting mild reactions. No serious adverse events were reported. Severity scores decreased significantly 7 days after CCP transfusion or at discharge. Eighty-five patients (94.4%) survived to hospital discharge. All five outpatients survived to 60 days. CONCLUSIONS CCP was found to be safe and well-tolerated in children. CCP was frequently given concurrently with other COVID-19-directed treatments with improvement in clinical severity scores ≥7 days after CCP, but efficacy could not be evaluated in this study.
Collapse
Affiliation(s)
- Cyril Jacquot
- Department of Laboratory Medicine, Children's National Hospital, District of Columbia, Washington, USA
- Departments of Pathology and Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Oren Gordon
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jeffrey R Donowitz
- Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Sanjay Jain
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Michele Loi
- Children's Hospital Colorado, Aurora, Colorado, USA
- University of Colorado-Anschutz School of Medicine Dept. of Pathology, Aurora, Colorado, USA
| | - Antonio Arrieta
- Division of Infectious Diseases, Children's Hospital of Orange County, Orange, California, USA
- Department of Pediatrics, University of California at Irvine, Irvine, California, USA
| | - Kyle Annen
- Children's Hospital Colorado, Aurora, Colorado, USA
- University of Colorado-Anschutz School of Medicine Dept. of Pathology, Aurora, Colorado, USA
| | | | - Stephanie Osborne
- Division of Infectious Diseases, Children's Hospital of Orange County, Orange, California, USA
| | - Monica I Ardura
- Pediatric Infectious Diseases & Host Defense Program, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Satyam Arora
- Postgraduate Institute of Child Health, Delhi, India
| | - Elise Zivick
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Meghan Delaney
- Department of Laboratory Medicine, Children's National Hospital, District of Columbia, Washington, USA
- Departments of Pathology and Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
30
|
Desmarets M, Hoffmann S, Vauchy C, Rijnders BJA, Toussirot E, Durrbach A, Körper S, Schrezenmeier E, van der Schoot CE, Harvala H, Brunotte G, Appl T, Seifried E, Tiberghien P, Bradshaw D, Roberts DJ, Estcourt LJ, Schrezenmeier H. Early, very high-titre convalescent plasma therapy in clinically vulnerable individuals with mild COVID-19 (COVIC-19): protocol for a randomised, open-label trial. BMJ Open 2023; 13:e071277. [PMID: 37105693 PMCID: PMC10151238 DOI: 10.1136/bmjopen-2022-071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION COVID-19 convalescent plasma (CCP) is a possible treatment option for COVID-19. A comprehensive number of clinical trials on CCP efficacy have already been conducted. However, many aspects of CCP treatment still require investigations: in particular (1) Optimisation of the CCP product, (2) Identification of the patient population in need and most likely to benefit from this treatment approach, (3) Timing of administration and (4) CCP efficacy across viral variants in vivo. We aimed to test whether high-titre CCP, administered early, is efficacious in preventing hospitalisation or death in high-risk patients. METHODS AND ANALYSIS COVIC-19 is a multicentre, randomised, open-label, adaptive superiority phase III trial comparing CCP with very high neutralising antibody titre administered within 7 days of symptom onset plus standard of care versus standard of care alone. We will enrol patients in two cohorts of vulnerable patients [(1) elderly 70+ years, or younger with comorbidities; (2) immunocompromised patients]. Up to 1020 participants will be enrolled in each cohort (at least 340 with a sample size re-estimation after reaching 102 patients). The primary endpoint is the proportion of participants with (1) Hospitalisation due to progressive COVID-19, or (2) Who died by day 28 after randomisation. Principal analysis will follow the intention-to-treat principle. ETHICS AND DISSEMINATION Ethical approval has been granted by the University of Ulm ethics committee (#41/22) (lead ethics committee for Germany), Comité de protection des personnes Sud-Est I (CPP Sud-Est I) (#2022-A01307-36) (ethics committee for France), and ErasmusMC ethics committee (#MEC-2022-0365) (ethics committee for the Netherlands). Signed informed consent will be obtained from all included patients. The findings will be published in peer-reviewed journals and presented at relevant stakeholder conferences and meetings. TRIAL REGISTRATION Clinical Trials.gov (NCT05271929), EudraCT (2021-006621-22).
Collapse
Affiliation(s)
- Maxime Desmarets
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Simone Hoffmann
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Charline Vauchy
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Bart J A Rijnders
- University Medical Center, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands
| | - Eric Toussirot
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Antoine Durrbach
- Department of Nephrology, AP-HP Hôpital Henri Mondor, Créteil, Île-de-France, France
| | - Sixten Körper
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Baden-Württemberg, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Noord-Holland, Netherlands
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, Colindale, London, UK
| | - Gaëlle Brunotte
- Centre d'investigation clinique Inserm CIC1431, CHU Besançon, Besançon, France
| | - Thomas Appl
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Erhard Seifried
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Pierre Tiberghien
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
- Etablissement Francais du Sang, La Plaine Saint-Denis, Île-de-France, France
| | - Daniel Bradshaw
- Virus Reference Department, UK Health Security Agency, London, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford, Oxfordshire, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Lise J Estcourt
- NHS Blood and Transplant, Oxford, Oxfordshire, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Hubert Schrezenmeier
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
31
|
Seidel A, Hoffmann S, Jahrsdörfer B, Körper S, Ludwig C, Vieweg C, Albers D, von Maltitz P, Müller R, Lotfi R, Wuchter P, Klüter H, Kirchhoff F, Schmidt M, Münch J, Schrezenmeier H. SARS-CoV-2 vaccination of convalescents boosts neutralization capacity against Omicron subvariants BA.1, BA.2 and BA.5 and can be predicted by anti-S antibody concentrations in serological assays. Front Immunol 2023; 14:1170759. [PMID: 37180152 PMCID: PMC10166809 DOI: 10.3389/fimmu.2023.1170759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Background Recent data on immune evasion of new SARS-CoV-2 variants raise concerns about the efficacy of antibody-based COVID-19 therapies. Therefore, in this study the in-vitro neutralization capacity against SARS-CoV-2 variant B.1 and the Omicron subvariants BA.1, BA.2 and BA.5 of sera from convalescent individuals with and without boost by vaccination was assessed. Methods and findings The study included 313 serum samples from 155 individuals with a history of SARS-CoV-2 infection, divided into subgroups without (n=25) and with SARS-CoV-2 vaccination (n=130). We measured anti-SARS-CoV-2 antibody concentrations by serological assays (anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S) and neutralizing titers against B.1, BA.1, BA.2 and BA.5 in a pseudovirus neutralization assay. Sera of the majority of unvaccinated convalescents did not effectively neutralize Omicron sublineages BA.1, BA.2 and BA.5 (51.7%, 24.1% and 51.7%, resp.). In contrast, 99.3% of the sera of superimmunized individuals (vaccinated convalescents) neutralized the Omicron subvariants BA.1 and BA.5 and 99.6% neutralized BA.2. Neutralizing titers against B.1, BA.1, BA.2 and BA.5 were significantly higher in vaccinated compared to unvaccinated convalescents (p<0.0001) with 52.7-, 210.7-, 141.3- and 105.4-fold higher geometric mean of 50% neutralizing titers (NT50) in vaccinated compared to unvaccinated convalescents. 91.4% of the superimmunized individuals showed neutralization of BA.1, 97.2% of BA.2 and 91.5% of BA.5 with a titer ≥ 640. The increase in neutralizing titers was already achieved by one vaccination dose. Neutralizing titers were highest in the first 3 months after the last immunization event. Concentrations of anti-S antibodies in the anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S assays predicted neutralization capacity against B.1 and Omicron subvariants BA.1, BA.2 and BA.5. Conclusions These findings confirm substantial immune evasion of the Omicron sublineages, which can be overcome by vaccination of convalescents. This informs strategies for choosing of plasma donors in COVID-19 convalescent plasma programs that shall select specifically vaccinated convalescents with very high titers of anti-S antibodies.
Collapse
Affiliation(s)
- Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Simone Hoffmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Carolin Ludwig
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christiane Vieweg
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
32
|
Murakami N, Hayden R, Hills T, Al-Samkari H, Casey J, Del Sorbo L, Lawler PR, Sise M, Leaf DE. Reply to 'Use of convalescent plasma in the treatment of COVID-19'. Nat Rev Nephrol 2023; 19:272. [PMID: 36806371 PMCID: PMC9937737 DOI: 10.1038/s41581-023-00691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Naoka Murakami
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert Hayden
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Thomas Hills
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Auckland District Health Board, Auckland, New Zealand
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, MA, USA
- Division of Hematology, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Casey
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Del Sorbo
- Department of Medicine, University Health Network, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Patrick R Lawler
- Department of Medicine, University Health Network, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Meghan Sise
- Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Jazbec K, Jež M, Žiberna K, Mali P, Ramšak Ž, Potokar UR, Kvrzić Z, Černilec M, Gracar M, Šprohar M, Jovanovič P, Vuletić S, Rožman P. Simple prediction of COVID-19 convalescent plasma units with high levels of neutralization antibodies. Virol J 2023; 20:53. [PMID: 36973781 PMCID: PMC10042109 DOI: 10.1186/s12985-023-02007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Hyperimmune convalescent COVID-19 plasma (CCP) containing anti-SARS-CoV-2 neutralizing antibodies (NAbs) was proposed as a therapeutic option for patients early in the new coronavirus disease pandemic. The efficacy of this therapy depends on the quantity of neutralizing antibodies (NAbs) in the CCP units, with titers ≥ 1:160 being recommended. The standard neutralizing tests (NTs) used for determining appropriate CCP donors are technically demanding and expensive and take several days. We explored whether they could be replaced by high-throughput serology tests and a set of available clinical data. METHODS Our study included 1302 CCP donors after PCR-confirmed COVID-19 infection. To predict donors with high NAb titers, we built four (4) multiple logistic regression models evaluating the relationships of demographic data, COVID-19 symptoms, results of various serological testing, the period between disease and donation, and COVID-19 vaccination status. RESULTS The analysis of the four models showed that the chemiluminescent microparticle assay (CMIA) for the quantitative determination of IgG Abs to the RBD of the S1 subunit of the SARS-CoV-2 spike protein was enough to predict the CCP units with a high NAb titer. CCP donors with respective results > 850 BAU/ml SARS-CoV-2 IgG had a high probability of attaining sufficient NAb titers. Including additional variables such as donor demographics, clinical symptoms, or time of donation into a particular predictive model did not significantly increase its sensitivity and specificity. CONCLUSION A simple quantitative serological determination of anti-SARS-CoV-2 antibodies alone is satisfactory for recruiting CCP donors with high titer NAbs.
Collapse
Affiliation(s)
- Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia.
| | - Mojca Jež
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Klemen Žiberna
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Živa Ramšak
- NIB-National Institute of Biology, Ljubljana, Slovenia
| | - Urška Rahne Potokar
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Zdravko Kvrzić
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Maja Černilec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Melita Gracar
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Marjana Šprohar
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Petra Jovanovič
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Sonja Vuletić
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| | - Primož Rožman
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, Ljubljana, 1000, Slovenia
| |
Collapse
|
34
|
Gupta A, Konnova A, Smet M, Berkell M, Savoldi A, Morra M, Van Averbeke V, De Winter FH, Peserico D, Danese E, Hotterbeekx A, Righi E, De Nardo P, Tacconelli E, Malhotra-Kumar S, Kumar-Singh S. Host immunological responses facilitate development of SARS-CoV-2 mutations in patients receiving monoclonal antibody treatments. J Clin Invest 2023; 133:166032. [PMID: 36727404 PMCID: PMC10014108 DOI: 10.1172/jci166032] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023] Open
Abstract
BackgroundThe role of host immunity in emergence of evasive SARS-CoV-2 Spike mutations under therapeutic monoclonal antibody (mAb) pressure remains to be explored.MethodsIn a prospective, observational, monocentric ORCHESTRA cohort study, conducted between March 2021 and November 2022, mild-to-moderately ill COVID-19 patients (n = 204) receiving bamlanivimab, bamlanivimab/etesevimab, casirivimab/imdevimab, or sotrovimab were longitudinally studied over 28 days for viral loads, de novo Spike mutations, mAb kinetics, seroneutralization against infecting variants of concern, and T cell immunity. Additionally, a machine learning-based circulating immune-related biomarker (CIB) profile predictive of evasive Spike mutations was constructed and confirmed in an independent data set (n = 19) that included patients receiving sotrovimab or tixagevimab/cilgavimab.ResultsPatients treated with various mAbs developed evasive Spike mutations with remarkable speed and high specificity to the targeted mAb-binding sites. Immunocompromised patients receiving mAb therapy not only continued to display significantly higher viral loads, but also showed higher likelihood of developing de novo Spike mutations. Development of escape mutants also strongly correlated with neutralizing capacity of the therapeutic mAbs and T cell immunity, suggesting immune pressure as an important driver of escape mutations. Lastly, we showed that an antiinflammatory and healing-promoting host milieu facilitates Spike mutations, where 4 CIBs identified patients at high risk of developing escape mutations against therapeutic mAbs with high accuracy.ConclusionsOur data demonstrate that host-driven immune and nonimmune responses are essential for development of mutant SARS-CoV-2. These data also support point-of-care decision making in reducing the risk of mAb treatment failure and improving mitigation strategies for possible dissemination of escape SARS-CoV-2 mutants.FundingThe ORCHESTRA project/European Union's Horizon 2020 research and innovation program.
Collapse
Affiliation(s)
- Akshita Gupta
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences and.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Angelina Konnova
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences and.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Mathias Smet
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences and.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Matilda Berkell
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences and.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Alessia Savoldi
- Division of Infectious Diseases, Department of Diagnostics and Public Health and
| | - Matteo Morra
- Division of Infectious Diseases, Department of Diagnostics and Public Health and
| | - Vincent Van Averbeke
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences and
| | - Fien Hr De Winter
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences and
| | - Denise Peserico
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - An Hotterbeekx
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences and
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostics and Public Health and
| | | | - Pasquale De Nardo
- Division of Infectious Diseases, Department of Diagnostics and Public Health and
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health and
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences and.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Gundlapalli AV, Beekmann SE, Jones JM, Thornburg NJ, Clarke KEN, Uyeki TM, Satheshkumar PS, Carroll DS, Plumb ID, Briggs-Hagen M, Santibañez S, David-Ferdon C, Polgreen PM, McDonald LC. Use of Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Tests by US Infectious Disease Physicians: Results of an Emerging Infections Network Survey, March 2022. Open Forum Infect Dis 2023; 10:ofad091. [PMID: 36949879 PMCID: PMC10026543 DOI: 10.1093/ofid/ofad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 02/20/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests have had limited recommended clinical application during the coronavirus disease 2019 (COVID-19) pandemic. To inform clinical practice, an understanding is needed of current perspectives of United States-based infectious disease (ID) physicians on the use, interpretation, and need for SARS-CoV-2 antibody tests. Methods In March 2022, members of the Emerging Infections Network (EIN), a national network of practicing ID physicians, were surveyed on types of SARS-CoV-2 antibody assays ordered, interpretation of test results, and clinical scenarios for which antibody tests were considered. Results Of 1867 active EIN members, 747 (40%) responded. Among the 583 who managed or consulted on COVID-19 patients, a majority (434/583 [75%]) had ordered SARS-CoV-2 antibody tests and were comfortable interpreting positive (452/578 [78%]) and negative (405/562 [72%]) results. Antibody tests were used for diagnosing post-COVID-19 conditions (61%), identifying prior SARS-CoV-2 infection (60%), and differentiating prior infection and response to COVID-19 vaccination (37%). Less than a third of respondents had used antibody tests to assess need for additional vaccines or risk stratification. Lack of sufficient evidence for use and nonstandardized assays were among the most common barriers for ordering tests. Respondents indicated that statements from professional societies and government agencies would influence their decision to order SARS-CoV-2 antibody tests for clinical decision making. Conclusions Practicing ID physicians are using SARS-CoV-2 antibody tests, and there is an unmet need for clarifying the appropriate use of these tests in clinical practice. Professional societies and US government agencies can support clinicians in the community through the creation of appropriate guidance.
Collapse
Affiliation(s)
- Adi V Gundlapalli
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan E Beekmann
- Infectious Diseases Society of America–Emerging Infections Network and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jefferson M Jones
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie J Thornburg
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristie E N Clarke
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy M Uyeki
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Darin S Carroll
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ian D Plumb
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa Briggs-Hagen
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott Santibañez
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Corinne David-Ferdon
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Philip M Polgreen
- Infectious Diseases Society of America–Emerging Infections Network and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - L Clifford McDonald
- COVID-19 Emergency Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Körper S, Seifried E, Schrezenmeier H. [Value of convalescent plasma in the therapy of COVID-19]. Dtsch Med Wochenschr 2023; 148:423-426. [PMID: 36940693 DOI: 10.1055/a-2013-8775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Convalescent plasma was discussed as a therapeutic option early in the course of the COVID-19 pandemic. However, until the onset of the pandemic, only the results of mostly small single-arm studies in other infectious diseases were available, which did not prove efficacy. In the meantime, the results of more than 30 randomized trials of COVID-19 convalescent plasma (CCP) for treatment of COVID-19 are available 1. Despite the heterogeneity of the results, conclusions for an optimal use are possible.
Collapse
Affiliation(s)
- Sixten Körper
- Institut für Klinische Tranfusionsmedizin und Immungenetik Ulm, Ulm, GERMANY
| | - Erhard Seifried
- Institut für Transfusionsmedizin und Immunhämatologie, DRK-Blutspendedienst Baden-Württemberg-Hessen, Frankfurt
| | - Hubert Schrezenmeier
- 1Institut für klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen, Institut für klinische Transfusionsmedizin, Universitätsklinik Ulm
| |
Collapse
|
37
|
Gebo KA, Heath SL, Fukuta Y, Zhu X, Baksh S, Abraham AG, Habtehyimer F, Shade D, Ruff J, Ram M, Laeyendecker O, Fernandez RE, Patel EU, Baker OR, Shoham S, Cachay ER, Currier JS, Gerber JM, Meisenberg B, Forthal DN, Hammitt LL, Huaman MA, Levine A, Mosnaim GS, Patel B, Paxton JH, Raval JS, Sutcliffe CG, Anjan S, Gniadek T, Kassaye S, Blair JE, Lane K, McBee NA, Gawad AL, Das P, Klein SL, Pekosz A, Casadevall A, Bloch EM, Hanley D, Tobian AAR, Sullivan DJ. Early Treatment, Inflammation and Post-COVID Conditions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.13.23285855. [PMID: 36824860 PMCID: PMC9949202 DOI: 10.1101/2023.02.13.23285855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Background Post-COVID conditions (PCC) are common and have significant morbidity. Risk factors for PCC include advancing age, female sex, obesity, and diabetes mellitus. Little is known about early treatment, inflammation, and PCC. Methods Among 883 individuals with confirmed SARS-CoV-2 infection participating in a randomized trial of CCP vs. control plasma with available biospecimens and symptom data, the association between early COVID treatment, cytokine levels and PCC was evaluated. Cytokine and chemokine levels were assessed at baseline, day 14 and day 90 using a multiplexed sandwich immuosassay (Mesoscale Discovery). Presence of any self-reported PCC symptoms was assessed at day 90. Associations between COVID treatment, cytokine levels and PCC were examined using multivariate logistic regression models. Results One-third of the 882 participants had day 90 PCC symptoms, with fatigue (14.5%) and loss of smell (14.5%) being most common. Cytokine levels decreased from baseline to day 90. In a multivariable analysis including diabetes, body mass index, race, and vaccine status, female sex (adjusted odds ratio[AOR]=2.70[1.93-3.81]), older age (AOR=1.32[1.17-1.50]), and elevated baseline levels of IL-6 (AOR=1.59[1.02-2.47]) were associated with development of PCC.There was a trend for decreased PCC in those with early CCP treatment (≤5 days after symptom onset) compared to late CCP treatment. Conclusion Increased IL-6 levels were associated with the development of PCC and there was a trend for decreased PCC with early CCP treatment in this predominately unvaccinated population. Future treatment studies should evaluate the effect of early treatment and anti-IL-6 therapies on PCC development.
Collapse
Affiliation(s)
- Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Sonya L Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Sheriza Baksh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Alison G Abraham
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora CO
| | - Feben Habtehyimer
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - David Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Jessica Ruff
- Department of Pathology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Malathi Ram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH
| | - Reinaldo E Fernandez
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Eshan U Patel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Owen R Baker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Edward R Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, San Diego, CA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA
| | - Jonathan M Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts, Worchester, MA
| | | | - Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, Irvine, CA
| | - Laura L Hammitt
- International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Moises A Huaman
- Department of Medicine, Division of Infectious Diseases University of Cincinnati, Cincinnati, OH
| | - Adam Levine
- Department of Emergency Medicine, Rhode Island Hospital Warren Alpert Medical School of Brown University, Providence, RI
| | - Giselle S Mosnaim
- Division of Allergy and Immunology, Department of Medicine, Northshore University Health System, Evanston, IL
| | - Bela Patel
- Department of Medicine, Divisions of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, TX
| | - James H Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, MI
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - Catherine G Sutcliffe
- International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Shweta Anjan
- Department of Medicine, Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, FL
| | - Thomas Gniadek
- Department of Pathology, Northshore University Health System, Evanston, IL
| | - Seble Kassaye
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Janis E Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ
| | - Karen Lane
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Nichol A McBee
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Amy L Gawad
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Piyali Das
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Sabra L Klein
- Division of Infectious Diseases, Medstar Georgetown University Hospital, Washington, D.C
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Daniel Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
38
|
Romera Martínez I, Bueno Cabrera JL, Domingo-Morera JM, López Aguilar JC, Villegas Da Ros C, García Erce JA, Sáez Serrano I, Flores Ballester E, Maglio LA, Arbona Castaño C, Sola Lapeña C, Guerra Domínguez L, Berberana Fernández M, Madrigal Sánchez ME, Rubio Batllés M, Pérez-Olmeda M, Ramos-Martínez A, Velasco-Iglesias A, Avendaño-Solá C, Duarte RF. Pathogen reduction with methylene blue does not have an impact on the clinical effectiveness of COVID-19 convalescent plasma. Vox Sang 2023; 118:296-300. [PMID: 36734378 DOI: 10.1111/vox.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES There is a concern about a possible deleterious effect of pathogen reduction (PR) with methylene blue (MB) on the function of immunoglobulins of COVID-19 convalescent plasma (CCP). We have evaluated whether MB-treated CCP is associated with a poorer clinical response compared to other inactivation systems at the ConPlas-19 clinical trial. MATERIALS AND METHODS This was an ad hoc sub-study of the ConPlas-19 clinical trial comparing the proportion of patients transfused with MB-treated CCP who had a worsening of respiration versus those treated with amotosalen (AM) or riboflavin (RB). RESULTS One-hundred and seventy-five inpatients with SARS-CoV-2 pneumonia were transfused with a single CCP unit. The inactivation system of the CCP units transfused was MB in 90 patients (51.4%), RB in 60 (34.3%) and AM in 25 (14.3%). Five out of 90 patients (5.6%) transfused with MB-treated CCP had worsening respiration compared to 9 out of 85 patients (10.6%) treated with alternative PR methods (p = 0.220). Of note, MB showed a trend towards a lower rate of respiratory progressions at 28 days (risk ratio, 0.52; 95% confidence interval, 0.18-1.50). CONCLUSION Our data suggest that MB-treated CCP does not provide a worse clinical outcome compared to the other PR methods for the treatment of COVID-19.
Collapse
Affiliation(s)
- Irene Romera Martínez
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - José Luis Bueno Cabrera
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | | | | | | | - José Antonio García Erce
- Banco de Sangre y Tejidos de Navarra, Servicio Navarro de Salud, Osasunbidea, Pamplona, Spain.,Grupo Español de Rehabilitación Multimodal (GERM), Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.,PBM Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Isabel Sáez Serrano
- Department of Hematology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | | | | | | | | - Luisa Guerra Domínguez
- Department of Hematology, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas, Spain
| | | | | | | | - Mayte Pérez-Olmeda
- Laboratorio de Serología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antonio Ramos-Martínez
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ana Velasco-Iglesias
- Spanish Clinical Research Network (ISCIII), IIS -Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Cristina Avendaño-Solá
- Clinical Pharmacology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, SCReN Clinical Trials Platform, Madrid, Spain
| | - Rafael F Duarte
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
39
|
Schrezenmeier H, Hoffmann S, Hofmann H, Appl T, Jahrsdörfer B, Seifried E, Körper S. Immune Plasma for the Treatment of COVID-19: Lessons Learned so far. Hamostaseologie 2023; 43:67-74. [PMID: 36807822 DOI: 10.1055/a-1987-3682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) has been explored as one of the treatment options for COVID-19. Results of many cohort studies and clinical trials have been recently published. At first glance, the results of the CCP studies appear to be inconsistent. However, it became clear that CCP is not beneficial if CCP with low anti-SARS-CoV-2 antibody concentrations is used, if it is administered late in advanced disease stages, and to patients who already mounted an antibody response against SARS-CoV-2 at the time of CCP transfusion. On the other hand, CCP may prevent progression to severe COVID-19 when very high-titer CCP is given early in vulnerable patients. Immune escape of new variants is a challenge for passive immunotherapy. While new variants of concern developed resistance to most clinically used monoclonal antibodies very rapidly, immune plasma from individuals immunized by both a natural SARS-CoV-2 infection and SARS-CoV-2 vaccination retained neutralizing activity against variants. This review briefly summarizes the evidence on CCP treatment to date and identifies further research needs. Ongoing research on passive immunotherapy is not only relevant for improving care for vulnerable patients in the ongoing SARS-CoV-2 pandemic, but even more as a model for passive immunotherapy in case of future pandemics with a newly evolving pathogen. Compared to other drugs, which must be newly developed in a pandemic (e.g., monoclonal antibodies, antiviral drugs), convalescent plasma is rapidly available, inexpensive to produce, and can be adaptive to viral evolution by selection of contemporary convalescent donors.
Collapse
Affiliation(s)
- Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Simone Hoffmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Henrike Hofmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen, Frankfurt, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
40
|
Roberts DJ. Blood services, COVID-19 and lessons being learnt: the past pandemic is not over, it's not even past. Transfus Med 2023; 33:3-5. [PMID: 36815536 DOI: 10.1111/tme.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Affiliation(s)
- David J Roberts
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Studien-Kommentar. TRANSFUSIONSMEDIZIN 2023. [DOI: 10.1055/a-1977-2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Mittlerweile liegen die Ergebnisse von über 30 randomisierten Studien mit
insgesamt über 21000 behandelten Patienten zur Anwendung von
COVID-19-Rekonvaleszentenplasma (CCP) vor 1. Die
Ergebnisse sind weiterhin uneinheitlich und viele Fragen zum Einsatz von CCP sind
auch im dritten Jahr der Pandemie offen. Die heterogenen Ergebnisse lassen sich
teilweise auf Unterschiede der eingeschlossenen Patientenpopulationen und der
untersuchten Therapieschemata zurückführen. Studien mit negativem
Ausgang haben meist schwer kranke hospitalisierte Patienten eingeschlossen und die
Behandlung oft spät nach Diagnosestellung begonnen 1
2. Studien
mit positiven Ergebnis haben die Behandlung meist früh begonnen und
schlossen ambulante Patienten ein 1
2. Ein entscheidender Faktor für die
Wirksamkeit von CCP ist die Qualität der Plasmaprodukte, die in den Studien
ebenfalls sehr heterogen war. Eine große Bedeutung für die
Qualität hat die Höhe der anti-SARS-CoV-2-Antikörper 2.
Collapse
|
42
|
Gatto NM, Freund D, Ogata P, Diaz L, Ibarrola A, Desai M, Aspelund T, Gluckstein D. Correlates of Coronavirus Disease 2019 Inpatient Mortality at a Southern California Community Hospital With a Predominantly Hispanic/Latino Adult Population. Open Forum Infect Dis 2023; 10:ofad011. [PMID: 36726553 PMCID: PMC9887269 DOI: 10.1093/ofid/ofad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/06/2023] [Indexed: 01/11/2023] Open
Abstract
Background Studies of inpatient coronavirus disease 2019 (COVID-19) mortality risk factors have mainly used data from academic medical centers or large multihospital databases and have not examined populations with large proportions of Hispanic/Latino patients. In a retrospective cohort study of 4881 consecutive adult COVID-19 hospitalizations at a single community hospital in Los Angeles County with a majority Hispanic/Latino population, we evaluated factors associated with mortality. Methods Data on demographic characteristics, comorbidities, laboratory and clinical results, and COVID-19 therapeutics were abstracted from the electronic medical record. Cox proportional hazards regression modeled statistically significant, independently associated predictors of hospital mortality. Results Age ≥65 years (hazard ratio [HR] = 2.66; 95% confidence interval [CI] = 1.90-3.72), male sex (HR = 1.31; 95% CI = 1.07-1.60), renal disease (HR = 1.52; 95% CI = 1.18-1.95), cardiovascular disease (HR = 1.45; 95% CI = 1.18-1.78), neurological disease (HR = 1.84; 95% CI = 1.41-2.39), D-dimer ≥500 ng/mL (HR = 2.07; 95% CI = 1.43-3.0), and pulse oxygen level <88% (HR = 1.39; 95% CI = 1.13-1.71) were independently associated with increased mortality. Patient household with (1) multiple COVID-19 cases and (2) Asian, Black, or Hispanic compared with White non-Hispanic race/ethnicity were associated with reduced mortality. In hypoxic COVID-19 inpatients, remdesivir, tocilizumab, and convalescent plasma were associated with reduced mortality, and corticosteroid use was associated with increased mortality. Conclusions We corroborate several previously identified mortality risk factors and find evidence that the combination of factors associated with mortality differ between populations.
Collapse
Affiliation(s)
- Nicole M Gatto
- Correspondence: Nicole M. Gatto, MPH, PhD, Adjunct Research Assistant Professor Department of Population and Public Health Sciences Keck School of Medicine University of Southern California 1845 N Soto St, Los Angeles, CA 90032, USA ()
| | - Debbie Freund
- School of Community and Global Health, Claremont Graduate University, Claremont, California, USA,Department of Economic Sciences, Claremont Graduate University, Claremont, California, USA,Department of Health Policy and Management, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
| | - Pamela Ogata
- School of Community and Global Health, Claremont Graduate University, Claremont, California, USA
| | - Lisa Diaz
- Pomona Valley Hospital and Medical Center, Pomona, California, USA
| | - Ace Ibarrola
- Pomona Valley Hospital and Medical Center, Pomona, California, USA
| | - Mamta Desai
- Pomona Valley Hospital and Medical Center, Pomona, California, USA
| | - Thor Aspelund
- Center for Public Health Sciences, University of Iceland, Reykjavik, Iceland
| | | |
Collapse
|
43
|
Franchini M, Casadevall A, Joyner MJ, Focosi D. WHO Is Recommending against the Use of COVID-19 Convalescent Plasma in Immunocompromised Patients? Life (Basel) 2023; 13:134. [PMID: 36676084 PMCID: PMC9867306 DOI: 10.3390/life13010134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Since December 2019, SARS-CoV-2 is ravaging the globe, currently accounting for over 660 million infected people and more than 6 [...].
Collapse
Affiliation(s)
- Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
44
|
Senefeld JW, Franchini M, Mengoli C, Cruciani M, Zani M, Gorman EK, Focosi D, Casadevall A, Joyner MJ. COVID-19 Convalescent Plasma for the Treatment of Immunocompromised Patients: A Systematic Review and Meta-analysis. JAMA Netw Open 2023; 6:e2250647. [PMID: 36633846 PMCID: PMC9857047 DOI: 10.1001/jamanetworkopen.2022.50647] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023] Open
Abstract
Importance Patients who are immunocompromised have increased risk for morbidity and mortality associated with coronavirus disease 2019 (COVID-19) because they less frequently mount antibody responses to vaccines. Although neutralizing anti-spike monoclonal-antibody treatment has been widely used to treat COVID-19, evolutions of SARS-CoV-2 have been associated with monoclonal antibody-resistant SARS-CoV-2 variants and greater virulence and transmissibility of SARS-CoV-2. Thus, the therapeutic use of COVID-19 convalescent plasma has increased on the presumption that such plasma contains potentially therapeutic antibodies to SARS-CoV-2 that can be passively transferred to the plasma recipient. Objective To assess the growing number of reports of clinical experiences of patients with COVID-19 who are immunocompromised and treated with specific neutralizing antibodies via COVID-19 convalescent plasma transfusion. Data Sources On August 12, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma use in patients who are immunocompromised. Study Selection Randomized clinical trials, matched cohort studies, and case report or series on COVID-19 convalescent plasma use in patients who are immunocompromised were included. The electronic search yielded 462 unique records, of which 199 were considered for full-text screening. Data Extraction and Synthesis The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 3 independent reviewers in duplicate and pooled. Main Outcomes and Meaures The prespecified end point was all-cause mortality after COVID-19 convalescent plasma transfusion; exploratory subgroup analyses were performed based on putative factors associated with the potential mortality benefit of convalescent plasma. Results This systematic review and meta-analysis included 3 randomized clinical trials enrolling 1487 participants and 5 controlled studies. Additionally, 125 case series or reports enrolling 265 participants and 13 uncontrolled large case series enrolling 358 participants were included. Separate meta-analyses, using models both stratified and pooled by study type (ie, randomized clinical trials and matched cohort studies), demonstrated that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for the amalgam of both randomized clinical trials and matched cohort studies (risk ratio [RR], 0.63 [95% CI, 0.50-0.79]). Conclusions and Relevance These findings suggest that transfusion of COVID-19 convalescent plasma is associated with mortality benefit for patients who are immunocompromised and have COVID-19.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Carlo Mengoli
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Mario Cruciani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Matteo Zani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
45
|
Kandathil AJ, Benner SE, Bloch EM, Shrestha R, Ajayi O, Zhu X, Caturegli PP, Shoham S, Sullivan D, Gebo K, Quinn TC, Casadevall A, Hanley D, Pekosz A, Redd AD, Balagopal A, Tobian AAR. Absence of pathogenic viruses in COVID-19 convalescent plasma. Transfusion 2023; 63:23-29. [PMID: 36268708 PMCID: PMC9840666 DOI: 10.1111/trf.17168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND It is important to maintain the safety of blood products by avoiding the transfusion of units with known and novel viral pathogens. It is unknown whether COVID-19 convalescent plasma (CCP) may contain pathogenic viruses (either newly acquired or reactivated) that are not routinely screened for by blood centers. METHODS The DNA virome was characterized in potential CCP donors (n = 30) using viral genome specific PCR primers to identify DNA plasma virome members of the Herpesviridae [Epstein Barr Virus (EBV), cytomegalovirus (CMV), human herpesvirus 6A/B, human herpesvirus 7] and Anelloviridae [Torque teno viruses (TTV), Torque teno mini viruses (TTMV), and Torque teno midi viruses (TTMDV)] families. In addition, the RNA plasma virome was characterized using unbiased metagenomic sequencing. Sequencing was done on a HiSeq2500 using high output mode with a read length of 2X100 bp. The sequencing reads were taxonomically classified using Kraken2. CMV and EBV seroprevalence were evaluated using a chemiluminescent immunoassay. RESULTS TTV and TTMDV were detected in 12 (40%) and 4 (13%) of the 30 study participants, respectively; TTMDV was always associated with infection with TTV. We did not observe TTMV DNAemia. Despite CMV and EBV seroprevalences of 33.3% and 93.3%, respectively, we did not detect Herpesviridae DNA among the study participants. Metagenomic sequencing did not reveal any human RNA viruses in CCP, including no evidence of circulating SARS-CoV-2. DISCUSSION There was no evidence of pathogenic viruses, whether newly acquired or reactivated, in CCP despite the presence of non-pathogenic Anelloviridae. These results confirm the growing safety data supporting CCP.
Collapse
Affiliation(s)
- Abraham J Kandathil
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah E Benner
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruchee Shrestha
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Olivia Ajayi
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patrizio P Caturegli
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shmuel Shoham
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Sullivan
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly Gebo
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas C Quinn
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel Hanley
- Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew D Redd
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashwin Balagopal
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Abstract
Monkeypox, a zoonosis caused by the orthopox monkeypox virus (MPXV) that is endemic to Central and West Africa, was previously linked to sporadic outbreaks and rare, travel-associated cases. An outbreak of monkeypox in 2022 has spurred a public health emergency of international concern, and this outbreak is unprecedented in terms of its scale and epidemiology. The outbreak has been focused overwhelmingly in men who have sex with men; however, the trajectory of the outbreak remains uncertain, with spread now being reported in women and children. The mortality has been low (<1%), yet the morbidity is high. Vaccines and oral antiviral agents that have been developed to protect against smallpox are available for use against monkeypox. However, the supply has been unable to match the demand during the outbreak. Passive antibody-based therapies, such as hyperimmune globulin (HIG), monoclonal antibodies, and convalescent plasma (CP), have been used against a diverse array of infectious diseases, culminating in their extensive use during the COVID-19 pandemic. Passive antibody-based therapies could play a role in the treatment of monkeypox, either as a temporizing role amid a shortfall in vaccines and antivirals or a complementary role to direct-acting antivirals. Drawing on the collective experience to date, there are regulatory, administrative, and logistical challenges to the implementation of antibody-based therapies. Their efficacy is contingent upon early administration and the presence of high-titer antibodies against the targeted pathogen. Research is needed to address questions pertaining to how to qualify HIG and CP and to determine their relative efficacy against MPXV, compared to antecedent therapies and preventative strategies. IMPORTANCE Monkeypox is an infection caused by the monkeypox virus (MPXV). The clinical findings in monkeypox include fever and rash. Historically, most cases of human monkeypox were reported in Africa. This changed in 2022, with a massive escalation in the number of cases across multiple countries, mainly affecting men who have sex with men. Although vaccines and oral antiviral medications are available for the treatment of monkeypox, their supply has been overwhelmed by the unprecedented number of cases. Antibody-based therapies (ABTs) have long been used to treat infectious diseases. They are produced in a laboratory or from plasma that has been collected from individuals who have recovered from an infection or have been vaccinated against that infection (in this case, monkeypox). ABTs could play a role in the treatment of monkeypox, either while awaiting oral medications or as a complementary treatment for patients that are at risk of severe disease.
Collapse
|
47
|
Ripoll JG, Gorman EK, Juskewitch JE, Razonable RR, Ganesh R, Hurt RT, Theel ES, Stubbs JR, Winters JL, Parikh SA, Kay NE, Joyner MJ, Senefeld JW. Vaccine-boosted convalescent plasma therapy for patients with immunosuppression and COVID-19. Blood Adv 2022; 6:5951-5955. [PMID: 36156121 PMCID: PMC9519378 DOI: 10.1182/bloodadvances.2022008932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Neil E. Kay
- Division of Hematology
- Department of Immunology
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
48
|
Kiss-Dala N, Szabo BG, Lakatos B, Reti M, Szlavik J, Valyi-Nagy I. Use of convalescent plasma therapy in hospitalised adult patients with non-critical COVID-19: a focus on the elderly from Hungary. GeroScience 2022; 44:2427-2445. [PMID: 36367599 PMCID: PMC9650173 DOI: 10.1007/s11357-022-00683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Convalescent plasma therapy might be a feasible option for treatment of novel infections. During the early phases of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, several promising results were published with convalescent plasma therapy, followed by more disappointing findings of randomised controlled trials. In our single-centre, open-label, prospective, cohort study, we assessed the findings of 180 patients treated with convalescent plasma during the first four waves of the pandemic in Hungary. The primary outcome was all-cause mortality; secondary outcomes were clinical improvement and need for intensive care unit admission by day 28. Subgroup analysis comparing elderly and non-elderly (less than 65 years of age) was performed. Twenty (11.4%) patients died by day 28, at significantly higher rates in the elderly subgroup (3 vs. 17, p < 0.01). One hundred twenty-eight (72.7%) patients showed clinical improvement, and 15 (8.5%) were transferred to the intensive care unit until day 28. Non-elderly patients showed clinical improvement by day 28 in significantly higher rates (improvement 74 vs. 54, no improvement 15 vs. 11, worsening or death 4 vs. 18 patients, p < 0.01). In conclusion, we found similar clinical outcome results as randomised controlled trials, and the impact of risk factors for unfavourable clinical outcomes among patients in the elderly population.
Collapse
Affiliation(s)
- Noemi Kiss-Dala
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary.
| | - Balint Gergely Szabo
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Marienn Reti
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Janos Szlavik
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Istvan Valyi-Nagy
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| |
Collapse
|
49
|
Grubovic Rastvorceva RM, Useini S, Stevanovic M, Demiri I, Petkovic E, Franchini M, Focosi D. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients-An Open-Label Phase II Clinical Trial. Life (Basel) 2022; 12:1565. [PMID: 36295001 PMCID: PMC9605182 DOI: 10.3390/life12101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Background: COVID-19 convalescent plasma (CCP) is an important antiviral option for selected patients with COVID-19. Materials and Methods: In this open-label, phase 2, clinical trial conducted from 30 April 2020 till 10 May 2021 in the Republic of North Macedonia, we evaluated the efficacy and safety of CCP in hospitalized patients. Treatment was with a single unit of CCP having an anti-RBD IgG concentration higher than 5 AU/mL. Results: There were 189 patients that completed the study, of which 65 (34.4%) had WHO 8-point clinical progression scale score of 3 (requiring hospital care but not oxygen support), 65 (34.4%) had a score of 4 (hospitalized and requiring supplemental oxygen by mask or nasal prongs), and 59 (31.2%) had a score of 5 (hospitalized and requiring supplemental oxygen by non-invasive ventilation or high-flow oxygen). Mean age was 57 years (range 22−94), 78.5% were males, 80.4% had elevated body mass index, and 70.9% had comorbidity. Following CCP transfusion, we observed clinical improvement with increase rates in oxygenation-free days of 32.3% and 58.5% at 24 h and seven days after CCP transfusion, a decline in WHO scores, and reduced progression to severe disease (only one patient was admitted to ICU after CCP transfusion). Mortality in the entire cohort was 11.6% (22/189). We recorded 0% mortality in WHO score 3 (0/65) and in patients that received CCP transfusion in the first seven days of disease, 4.6% mortality in WHO score 4 (3/65), and 30.5% mortality in WHO score 5 (18/59). Mortality correlated with WHO score (Chi-square 19.3, p < 0.001) and with stay in the ICU (Chi-square 55.526, p ≤ 0.001). No severe adverse events were reported. Conclusions: This study showed that early administration of CCP to patients with moderate disease was a safe and potentially effective treatment for hospitalized COVID-19 patients. The trial was registered at clinicaltrials.gov (NCT04397523).
Collapse
Affiliation(s)
- Rada M. Grubovic Rastvorceva
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
- Faculty of Medical Sciences, University Goce Delcev, 2000 Stip, North Macedonia
| | - Sedula Useini
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | - Milena Stevanovic
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Ilir Demiri
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Elena Petkovic
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | | | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
50
|
Baker JV, Lane HC. The Fast and the Furious: Chasing a Clinical Niche for COVID-19 Convalescent Plasma. Ann Intern Med 2022; 175:1332-1334. [PMID: 35969864 PMCID: PMC9384270 DOI: 10.7326/m22-2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Association for the Advancement of Blood and Biotherapies reported a thorough analysis of existing data and guidelines for the use of COVID-19 convalescent plasma (CCP) for treatment and prophylaxis of COVID-19. The editorialists discuss the recommendations, how they compare with recommendations from other entities, and the lessons the experience with CCP provides for the use of passive immunotherapy for future emerging infectious diseases.
Collapse
Affiliation(s)
- Jason V Baker
- Hennepin Healthcare and Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - H Clifford Lane
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|