1
|
Zemski Berry KA, Garfield A, Jambal P, Zarini S, Perreault L, Bergman BC. Oxidised phosphatidylcholine induces sarcolemmal ceramide accumulation and insulin resistance in skeletal muscle. Diabetologia 2024:10.1007/s00125-024-06280-8. [PMID: 39347985 DOI: 10.1007/s00125-024-06280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024]
Abstract
AIMS/HYPOTHESIS Intracellular ceramide accumulation in specific cellular compartments is a potential mechanism explaining muscle insulin resistance in the pathogenesis of type 2 diabetes. Muscle sarcolemmal ceramide accumulation negatively impacts insulin sensitivity in humans, but the mechanism explaining this localised accumulation is unknown. Previous reports revealed that circulating oxidised LDL is elevated in serum of individuals with obesity and type 2 diabetes. Oxidised phosphatidylcholine, which is present in oxidised LDL, has previously been linked to ceramide pathway activation, and could contribute to localised ceramide accumulation in skeletal muscle. We hypothesised that oxidised phosphatidylcholine inversely correlates with insulin sensitivity in serum, and induces sarcolemmal ceramide accumulation and decreases insulin sensitivity in muscle. METHODS We used LC-MS/MS to quantify specific oxidised phosphatidylcholine species in serum from a cross-sectional study of 58 well-characterised individuals spanning the physiological range of insulin sensitivity. We also performed in vitro experiments in rat L6 myotubes interrogating the role of specific oxidised phosphatidylcholine species in promoting sarcolemmal ceramide accumulation, inflammation and insulin resistance in skeletal muscle cells. RESULTS Human serum oxidised phosphatidylcholine levels are elevated in individuals with obesity and type 2 diabetes, inversely correlated with insulin sensitivity, and positively correlated with sarcolemmal C18:0 ceramide levels in skeletal muscle. Specific oxidised phosphatidylcholine species, particularly 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), increase total ceramide and dihydroceramide and decrease total sphingomyelin in the sarcolemma of L6 myotubes by de novo ceramide synthesis and sphingomyelinase activation. POVPC also increases inflammatory signalling and causes insulin resistance in L6 myotubes. CONCLUSIONS/INTERPRETATION These data suggest that circulating oxidised phosphatidylcholine species promote ceramide accumulation and decrease insulin sensitivity in muscle, help explain localised sphingolipid accumulation and muscle inflammatory response, and highlight oxidised phosphatidylcholine species as potential targets to combat insulin resistance.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Purevsuren Jambal
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Gyllenhammer LE, Zaegel V, Duensing AM, Lixandrao ME, Dabelea D, Bergman BC, Boyle KE. Lipidomics of infant mesenchymal stem cells associate with the maternal milieu and child adiposity. JCI Insight 2024; 9:e180016. [PMID: 39226911 PMCID: PMC11466181 DOI: 10.1172/jci.insight.180016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Our objective was to interrogate mesenchymal stem cell (MSC) lipid metabolism and gestational exposures beyond maternal body mass that may contribute to child obesity risk. MSCs were cultured from term infants of mothers with obesity (n = 16) or normal weight (n = 15). In MSCs undergoing myogenesis in vitro, we used lipidomics to distinguish phenotypes by unbiased cluster analysis and lipid challenge (24-hour excess fatty acid [24hFA]). We measured MSC AMP-activated protein kinase (AMPK) activity and fatty acid oxidation (FAO), and a composite index of maternal glucose, insulin, triglycerides, free fatty acids, TNF-α, and high-density lipoprotein and total cholesterol in fasting blood from mid and late gestation (~17 and ~27 weeks, respectively). We measured child adiposity at birth (n = 29), 4-6 months (n = 29), and 4-6 years (n = 13). Three MSC clusters were distinguished by triacylglycerol (TAG) stores, with greatest TAGs in Cluster 2. All clusters increased acylcarnitines and TAGs with 24hFA, although Cluster 2 was more pronounced and corresponded to AMPK activation and FAO. Maternal metabolic markers predicted MSC clusters and child adiposity at 4-6 years (both highest in Cluster 3). Our data support the notion that MSC phenotypes are predicted by comprehensive maternal metabolic milieu exposures, independent of maternal BMI, and suggest utility as an at-birth predictor for child adiposity, although validation with larger longitudinal samples is warranted.
Collapse
Affiliation(s)
- Lauren E. Gyllenhammer
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Vincent Zaegel
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison M. Duensing
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Manoel E. Lixandrao
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dana Dabelea
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health
- Department of Pediatrics, and
| | - Bryan C. Bergman
- Department of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristen E. Boyle
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, Colorado, USA
| |
Collapse
|
3
|
Mah MSM, Cao E, Anderson D, Escott A, Tegegne S, Gracia G, Schmitz J, Brodesser S, Zaph C, Creek DJ, Hong J, Windsor JA, Phillips ARJ, Trevaskis NL, Febbraio MA, Turpin-Nolan SM. High-fat feeding drives the intestinal production and assembly of C 16:0 ceramides in chylomicrons. SCIENCE ADVANCES 2024; 10:eadp2254. [PMID: 39178255 PMCID: PMC11343029 DOI: 10.1126/sciadv.adp2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.
Collapse
Affiliation(s)
- Michael SM Mah
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Enyuan Cao
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Alistair Escott
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Surafel Tegegne
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gracia Gracia
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Joel Schmitz
- Max Planck Institute for Metabolism and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging associated Diseases (CECAD), Cologne, Germany
| | - Colby Zaph
- Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jiwon Hong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - John A. Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Anthony RJ Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Natalie L. Trevaskis
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Sarah M. Turpin-Nolan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
McKenna CF, Stierwalt HD, Zemski Berry KA, Ehrlicher SE, Robinson MM, Zarini S, Kahn DE, Snell-Bergeon JK, Perreault L, Bergman BC, Newsom SA. Intramuscular diacylglycerol accumulates with acute hyperinsulinemia in insulin-resistant phenotypes. Am J Physiol Endocrinol Metab 2024; 327:E183-E193. [PMID: 38895980 PMCID: PMC11427097 DOI: 10.1152/ajpendo.00368.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Elevated skeletal muscle diacylglycerols (DAGs) and ceramides can impair insulin signaling, and acylcarnitines (acylCNs) reflect impaired mitochondrial fatty acid oxidation, thus, the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e., postprandial) hyperinsulinemia has been shown to elevate lipid concentrations in healthy muscle and is an independent risk factor for type 2 diabetes (T2D). However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to or exacerbating insulin resistance. We therefore investigated the impact of acute hyperinsulinemia on the skeletal muscle lipid profile to help characterize the physiological basis in which hyperinsulinemia elevates T2D risk. In a cross-sectional comparison, endurance athletes (n = 12), sedentary lean adults (n = 12), and individuals with obesity (n = 13) and T2D (n = 7) underwent a hyperinsulinemic-euglycemic clamp with muscle biopsies. Although there were no significant differences in total 1,2-DAG fluctuations, there was a 2% decrease in athletes versus a 53% increase in T2D during acute hyperinsulinemia (P = 0.087). Moreover, C18 1,2-DAG species increased during the clamp with T2D only, which negatively correlated with insulin sensitivity (P < 0.050). Basal muscle C18:0 total ceramides were elevated with T2D (P = 0.029), but not altered by clamp. Acylcarnitines were universally lowered during hyperinsulinemia, with more robust reductions of 80% in athletes compared with only 46% with T2D (albeit not statistically significant, main effect of group, P = 0.624). Similar fluctuations with acute hyperinsulinemia increasing 1,2 DAGs in insulin-resistant phenotypes and universally lowering acylcarnitines were observed in male mice. In conclusion, acute hyperinsulinemia elevates muscle 1,2-DAG levels with insulin-resistant phenotypes. This suggests a possible dysregulation of intramuscular lipid metabolism in the fed state in individuals with low insulin sensitivity, which may exacerbate insulin resistance.NEW & NOTEWORTHY Postprandial hyperinsulinemia is a risk factor for type 2 diabetes and may increase muscle lipids. However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to insulin resistance. We observed that acute hyperinsulinemia elevates muscle 1,2-DAGs in insulin-resistant phenotypes, whereas ceramides were unaltered. Insulin-mediated acylcarnitine reductions are also hindered with high-fat feeding. The postprandial period may exacerbate insulin resistance in metabolically unhealthy phenotypes.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Harrison D Stierwalt
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sarah E Ehrlicher
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Matthew M Robinson
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Darcy E Kahn
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janet K Snell-Bergeon
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sean A Newsom
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| |
Collapse
|
5
|
Spaggiari R, Angelini S, Di Vincenzo A, Scaglione G, Morrone S, Finello V, Fagioli S, Castaldo F, Sanz JM, Sergi D, Passaro A. Ceramides as Emerging Players in Cardiovascular Disease: Focus on Their Pathogenetic Effects and Regulation by Diet. Adv Nutr 2024; 15:100252. [PMID: 38876397 PMCID: PMC11263787 DOI: 10.1016/j.advnut.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired lipid metabolism is a pivotal driver of cardiovascular disease (CVD). In this regard, the accumulation of ceramides within the circulation as well as in metabolically active tissues and atherosclerotic plaques is a direct consequence of derailed lipid metabolism. Ceramides may be at the nexus between impaired lipid metabolism and CVD. Indeed, although on one hand ceramides have been implicated in the pathogenesis of CVD, on the other specific ceramide subspecies have also been proposed as predictors of major adverse cardiovascular events. This review will provide an updated overview of the role of ceramides in the pathogenesis of CVD, as well as their pathogenetic mechanisms of action. Furthermore, the manuscript will cover the importance of ceramides as biomarkers to predict cardiovascular events and the role of diet, both in terms of nutrients and dietary patterns, in modulating ceramide metabolism and homeostasis.
Collapse
Affiliation(s)
- Riccardo Spaggiari
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sharon Angelini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Alessandra Di Vincenzo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Gerarda Scaglione
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sara Morrone
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Veronica Finello
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sofia Fagioli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Fabiola Castaldo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Juana M Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy.
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| |
Collapse
|
6
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
7
|
Małkowska P. Positive Effects of Physical Activity on Insulin Signaling. Curr Issues Mol Biol 2024; 46:5467-5487. [PMID: 38920999 PMCID: PMC11202552 DOI: 10.3390/cimb46060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Physical activity is integral to metabolic health, particularly in addressing insulin resistance and related disorders such as type 2 diabetes mellitus (T2DM). Studies consistently demonstrate a strong association between physical activity levels and insulin sensitivity. Regular exercise interventions were shown to significantly improve glycemic control, highlighting exercise as a recommended therapeutic strategy for reducing insulin resistance. Physical inactivity is closely linked to islet cell insufficiency, exacerbating insulin resistance through various pathways including ER stress, mitochondrial dysfunction, oxidative stress, and inflammation. Conversely, physical training and exercise preserve and restore islet function, enhancing peripheral insulin sensitivity. Exercise interventions stimulate β-cell proliferation through increased circulating levels of growth factors, further emphasizing its role in maintaining pancreatic health and glucose metabolism. Furthermore, sedentary lifestyles contribute to elevated oxidative stress levels and ceramide production, impairing insulin signaling and glucose metabolism. Regular exercise induces anti-inflammatory responses, enhances antioxidant defenses, and promotes mitochondrial function, thereby improving insulin sensitivity and metabolic efficiency. Encouraging individuals to adopt active lifestyles and engage in regular exercise is crucial for preventing and managing insulin resistance and related metabolic disorders, ultimately promoting overall health and well-being.
Collapse
Affiliation(s)
- Paulina Małkowska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland
| |
Collapse
|
8
|
Liu M, You Y, Zhu H, Chen Y, Hu Z, Duan J. N-Acetylcysteine Alleviates Impaired Muscular Function Resulting from Sphingosine Phosphate Lyase Functional Deficiency-Induced Sphingoid Base and Ceramide Accumulation in Caenorhabditis elegans. Nutrients 2024; 16:1623. [PMID: 38892556 PMCID: PMC11174433 DOI: 10.3390/nu16111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) resides at the endpoint of the sphingolipid metabolic pathway, catalyzing the irreversible breakdown of sphingosine-1-phosphate. Depletion of SPL precipitates compromised muscle morphology and function; nevertheless, the precise mechanistic underpinnings remain elusive. Here, we elucidate a model of SPL functional deficiency in Caenorhabditis elegans using spl-1 RNA interference. Within these SPL-deficient nematodes, we observed diminished motility and perturbed muscle fiber organization, correlated with the accumulation of sphingoid bases, their phosphorylated forms, and ceramides (collectively referred to as the "sphingolipid rheostat"). The disturbance in mitochondrial morphology was also notable, as SPL functional loss resulted in heightened levels of reactive oxygen species. Remarkably, the administration of the antioxidant N-acetylcysteine (NAC) ameliorates locomotor impairment and rectifies muscle fiber disarray, underscoring its therapeutic promise for ceramide-accumulation-related muscle disorders. Our findings emphasize the pivotal role of SPL in preserving muscle integrity and advocate for exploring antioxidant interventions, such as NAC supplementation, as prospective therapeutic strategies for addressing muscle function decline associated with sphingolipid/ceramide metabolism disruption.
Collapse
Affiliation(s)
| | | | | | | | - Zhenying Hu
- Jiangxi Province Key Laboratory of Aging and Disease, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingjing Duan
- Jiangxi Province Key Laboratory of Aging and Disease, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Mezincescu AM, Rudd A, Cheyne L, Horgan G, Philip S, Cameron D, van Loon L, Whitfield P, Gribbin R, Hu MK, Delibegovic M, Fielding B, Lobley G, Thies F, Newby DE, Gray S, Henning A, Dawson D. Comparison of intramyocellular lipid metabolism in patients with diabetes and male athletes. Nat Commun 2024; 15:3690. [PMID: 38750012 PMCID: PMC11096352 DOI: 10.1038/s41467-024-47843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Despite opposing insulin sensitivity and cardiometabolic risk, both athletes and patients with type 2 diabetes have increased skeletal myocyte fat storage: the so-called "athlete's paradox". In a parallel non-randomised, non-blinded trial (NCT03065140), we characterised and compared the skeletal myocyte lipid signature of 29 male endurance athletes and 30 patients with diabetes after undergoing deconditioning or endurance training respectively. The primary outcomes were to assess intramyocellular lipid storage of the vastus lateralis in both cohorts and the secondary outcomes were to examine saturated and unsaturated intramyocellular lipid pool turnover. We show that athletes have higher intramyocellular fat saturation with very high palmitate kinetics, which is attenuated by deconditioning. In contrast, type 2 diabetes patients have higher unsaturated intramyocellular fat and blunted palmitate and linoleate kinetics but after endurance training, all were realigned with those of deconditioned athletes. Improved basal insulin sensitivity was further associated with better serum cholesterol/triglycerides, glycaemic control, physical performance, enhanced post insulin receptor pathway signalling and metabolic sensing. We conclude that insulin-resistant, maladapted intramyocellular lipid storage and turnover in patients with type 2 diabetes show reversibility after endurance training through increased contributions of the saturated intramyocellular fatty acid pools. Clinical Trial Registration: NCT03065140: Muscle Fat Compartments and Turnover as Determinant of Insulin Sensitivity (MISTY).
Collapse
Affiliation(s)
- Alice M Mezincescu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Amelia Rudd
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Lesley Cheyne
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Sam Philip
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Donnie Cameron
- C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Luc van Loon
- University of Maastricht, Maastricht, The Netherlands
| | | | | | - May Khei Hu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Gerald Lobley
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Frank Thies
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
10
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
11
|
Wohlwend M, Laurila PP, Goeminne LJE, Lima T, Daskalaki I, Li X, von Alvensleben G, Crisol B, Mangione R, Gallart-Ayala H, Lalou A, Burri O, Butler S, Morris J, Turner N, Ivanisevic J, Auwerx J. Inhibition of CERS1 in skeletal muscle exacerbates age-related muscle dysfunction. eLife 2024; 12:RP90522. [PMID: 38506902 PMCID: PMC10954306 DOI: 10.7554/elife.90522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Age-related muscle wasting and dysfunction render the elderly population vulnerable and incapacitated, while underlying mechanisms are poorly understood. Here, we implicate the CERS1 enzyme of the de novo sphingolipid synthesis pathway in the pathogenesis of age-related skeletal muscle impairment. In humans, CERS1 abundance declines with aging in skeletal muscle cells and, correlates with biological pathways involved in muscle function and myogenesis. Furthermore, CERS1 is upregulated during myogenic differentiation. Pharmacological or genetic inhibition of CERS1 in aged mice blunts myogenesis and deteriorates aged skeletal muscle mass and function, which is associated with the occurrence of morphological features typical of inflammation and fibrosis. Ablation of the CERS1 orthologue lagr-1 in Caenorhabditis elegans similarly exacerbates the age-associated decline in muscle function and integrity. We discover genetic variants reducing CERS1 expression in human skeletal muscle and Mendelian randomization analysis in the UK biobank cohort shows that these variants reduce muscle grip strength and overall health. In summary, our findings link age-related impairments in muscle function to a reduction in CERS1, thereby underlining the importance of the sphingolipid biosynthesis pathway in age-related muscle homeostasis.
Collapse
Affiliation(s)
- Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Ludger JE Goeminne
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Tanes Lima
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Ioanna Daskalaki
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Giacomo von Alvensleben
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Renata Mangione
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL)LausanneSwitzerland
| | - Amélia Lalou
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Olivier Burri
- Bioimaging and optics platform, École polytechnique fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Stephen Butler
- School of Chemistry, University of New South Wales SydneySydneyAustralia
| | - Jonathan Morris
- School of Chemistry, University of New South Wales SydneySydneyAustralia
| | - Nigel Turner
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- School of Biomedical Sciences, University of New South Wales SydneySydneyAustralia
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL)LausanneSwitzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
12
|
Caiati C, Jirillo E. Pathogenesis of the Left Ventricular Diastolic Dysfunction: The Immune System Keeps Playing at the Backstage. Endocr Metab Immune Disord Drug Targets 2024; 24:173-177. [PMID: 37694788 DOI: 10.2174/1871530323666230911141418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Carlo Caiati
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
13
|
Greyslak KT, Hetrick B, Bergman BC, Dean TA, Wesolowski SR, Gannon M, Schenk S, Sullivan EL, Aagaard KM, Kievit P, Chicco AJ, Friedman JE, McCurdy CE. A Maternal Western-Style Diet Impairs Skeletal Muscle Lipid Metabolism in Adolescent Japanese Macaques. Diabetes 2023; 72:1766-1780. [PMID: 37725952 PMCID: PMC10658061 DOI: 10.2337/db23-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.
Collapse
Affiliation(s)
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Bryan C. Bergman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tyler A. Dean
- Division of Cardiometabolic Health, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
| | | | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
- Department of Psychiatry, Oregon Health & Science University, Portland, OR
- Department of Behavioral Sciences, Oregon Health & Science University, Portland, OR
| | - Kjersti M. Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | |
Collapse
|
14
|
Mesinovic J, Fyfe JJ, Talevski J, Wheeler MJ, Leung GK, George ES, Hunegnaw MT, Glavas C, Jansons P, Daly RM, Scott D. Type 2 Diabetes Mellitus and Sarcopenia as Comorbid Chronic Diseases in Older Adults: Established and Emerging Treatments and Therapies. Diabetes Metab J 2023; 47:719-742. [PMID: 37709502 PMCID: PMC10695715 DOI: 10.4093/dmj.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and sarcopenia (low skeletal muscle mass and function) share a bidirectional relationship. The prevalence of these diseases increases with age and they share common risk factors. Skeletal muscle fat infiltration, commonly referred to as myosteatosis, may be a major contributor to both T2DM and sarcopenia in older adults via independent effects on insulin resistance and muscle health. Many strategies to manage T2DM result in energy restriction and subsequent weight loss, and this can lead to significant declines in muscle mass in the absence of resistance exercise, which is also a first-line treatment for sarcopenia. In this review, we highlight recent evidence on established treatments and emerging therapies targeting weight loss and muscle mass and function improvements in older adults with, or at risk of, T2DM and/or sarcopenia. This includes dietary, physical activity and exercise interventions, new generation incretin-based agonists and myostatin-based antagonists, and endoscopic bariatric therapies. We also highlight how digital health technologies and health literacy interventions can increase uptake of, and adherence to, established and emerging treatments and therapies in older adults with T2DM and/or sarcopenia.
Collapse
Affiliation(s)
- Jakub Mesinovic
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Jackson J. Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jason Talevski
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Australia
- School of Rural Health, Monash University, Warragul, Australia
| | - Michael J. Wheeler
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Gloria K.W. Leung
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
| | - Elena S. George
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Melkamu T. Hunegnaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Costas Glavas
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Paul Jansons
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Robin M. Daly
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - David Scott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| |
Collapse
|
15
|
Mustaniemi S, Keikkala E, Kajantie E, Nurhonen M, Jylhä A, Morin-Papunen L, Öhman H, Männistö T, Laivuori H, Eriksson JG, Laaksonen R, Vääräsmäki M. Serum ceramides in early pregnancy as predictors of gestational diabetes. Sci Rep 2023; 13:13274. [PMID: 37582815 PMCID: PMC10427660 DOI: 10.1038/s41598-023-40224-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Ceramides contribute to the development of type 2 diabetes but it is uncertain whether they predict gestational diabetes (GDM). In this multicentre case-control study including 1040 women with GDM and 958 non-diabetic controls, early pregnancy (mean 10.7 gestational weeks) concentrations of four ceramides-Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1)-were determined by a validated mass-spectrometric method from biobanked serum samples. Traditional lipids including total cholesterol, LDL, HDL and triglycerides were measured. Logistic and linear regression and the LASSO logistic regression were used to analyse lipids and clinical risk factors in the prediction of GDM. The concentrations of four targeted ceramides and total cholesterol, LDL and triglycerides were higher and HDL was lower among women with subsequent GDM than among controls. After adjustments, Cer(d18:1/24:0), triglycerides and LDL were independent predictors of GDM, women in their highest quartile had 1.44-fold (95% CI 1.07-1.95), 2.17-fold (95% CI 1.57-3.00) and 1.63-fold (95% CI 1.19-2.24) odds for GDM when compared to their lowest quartiles, respectively. In the LASSO regression modelling ceramides did not appear to markedly improve the predictive performance for GDM alongside with clinical risk factors and triglycerides. However, their adverse alterations highlight the extent of metabolic disturbances involved in GDM.
Collapse
Affiliation(s)
- Sanna Mustaniemi
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PL 23, 90029, Oulu, Finland.
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Oulu, Finland.
| | - Elina Keikkala
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PL 23, 90029, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Oulu, Finland
| | - Eero Kajantie
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PL 23, 90029, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Oulu, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markku Nurhonen
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Oulu, Finland
| | | | - Laure Morin-Papunen
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PL 23, 90029, Oulu, Finland
| | - Hanna Öhman
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Hannele Laivuori
- Department of Obstetrics and Gynecology, Center for Child, Adolescence and Maternal Health, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Obstetrics and Gynecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research, Singapore, Singapore
| | | | - Marja Vääräsmäki
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PL 23, 90029, Oulu, Finland
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Oulu, Finland
| |
Collapse
|
16
|
Zarini S, Zemski Berry KA, Kahn DE, Garfield A, Perreault L, Kerege A, Bergman BC. Deoxysphingolipids: Atypical Skeletal Muscle Lipids Related to Insulin Resistance in Humans That Decrease Insulin Sensitivity In Vitro. Diabetes 2023; 72:884-897. [PMID: 37186949 PMCID: PMC10281238 DOI: 10.2337/db22-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Sphingolipids are thought to promote skeletal muscle insulin resistance. Deoxysphingolipids (dSLs) are atypical sphingolipids that are increased in the plasma of individuals with type 2 diabetes and cause β-cell dysfunction in vitro. However, their role in human skeletal muscle is unknown. We found that dSL species are significantly elevated in muscle of individuals with obesity and type 2 diabetes compared with athletes and lean individuals and are inversely related to insulin sensitivity. Furthermore, we observed a significant reduction in muscle dSL content in individuals with obesity who completed a combined weight loss and exercise intervention. Increased dSL content in primary human myotubes caused a decrease in insulin sensitivity associated with increased inflammation, decreased AMPK phosphorylation, and altered insulin signaling. Our findings reveal a central role for dSL in human muscle insulin resistance and suggest dSLs as therapeutic targets for the treatment and prevention of type 2 diabetes. ARTICLE HIGHLIGHTS Deoxysphingolipids (dSLs) are atypical sphingolipids elevated in the plasma of individuals with type 2 diabetes, and their role in muscle insulin resistance has not been investigated. We evaluated dSL in vivo in skeletal muscle from cross-sectional and longitudinal insulin-sensitizing intervention studies and in vitro in myotubes manipulated to synthesize higher dSLs. dSLs were increased in the muscle of people with insulin resistance, inversely correlated to insulin sensitivity, and significantly decreased after an insulin-sensitizing intervention; increased intracellular dSL concentrations cause myotubes to become more insulin resistant. Reduction of muscle dSL levels is a potential novel therapeutic target to prevent/treat skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Karin A. Zemski Berry
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Darcy E. Kahn
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Amanda Garfield
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bryan C. Bergman
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
17
|
Pierucci F, Chirco A, Meacci E. Irisin Is Target of Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor-Mediated Signaling in Skeletal Muscle Cells. Int J Mol Sci 2023; 24:10548. [PMID: 37445724 DOI: 10.3390/ijms241310548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Irisin is a hormone-like myokine produced in abundance by skeletal muscle (SkM) in response to exercise. This myokine, identical in humans and mice, is involved in many signaling pathways related to metabolic processes. Despite much evidence on the regulators of irisin and the relevance of sphingolipids for SkM cell biology, the contribution of these latter bioactive lipids to the modulation of the myokine in SkM is missing. In particular, we have examined the potential involvement in irisin formation/release of sphingosine-1-phosphate (S1P), an interesting bioactive molecule able to act as an intracellular lipid mediator as well as a ligand of specific G-protein-coupled receptors (S1PR). We demonstrate the existence of distinct intracellular pools of S1P able to affect the expression of the irisin precursor FNDC. In addition, we establish the crucial role of the S1P/S1PR axis in irisin formation/release as well as the autocrine/paracrine effects of irisin on myoblast proliferation and myogenic differentiation. Altogether, these findings provide the first evidence for a functional crosstalk between the S1P/S1PR axis and irisin signaling, which may open new windows for potential therapeutic treatment of SkM dysfunctions.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| |
Collapse
|
18
|
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides. Cells 2023; 12:1700. [PMID: 37443733 PMCID: PMC10340183 DOI: 10.3390/cells12131700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.
Collapse
Affiliation(s)
- Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary;
- TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| |
Collapse
|
19
|
Bandet CL, Tan-Chen S, Ali-Berrada S, Campana M, Poirier M, Blachnio-Zabielska A, Pais-de-Barros JP, Rouch C, Ferré P, Foufelle F, Le Stunff H, Hajduch E. Ceramide analogue C2-cer induces a loss in insulin sensitivity in muscle cells through the salvage/recycling pathway. J Biol Chem 2023:104815. [PMID: 37178918 DOI: 10.1016/j.jbc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes (T2D). However, many of the studies involved in the discovery of deleterious ceramide actions used a non-physiological cell-permeable short-chain ceramide analogue, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes de-acylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous mono-unsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1 (DGAT1)-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and T2D.
Collapse
Affiliation(s)
- Cécile L Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Mélanie Campana
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Maxime Poirier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | | | - Jean-Paul Pais-de-Barros
- Lipidomics Core Facility, INSERM UMR1231 - Université Bourgogne Franche Comté, 15 Boulevard Mal de Lattre de Tassigny, F-21000 Dijon, France
| | - Claude Rouch
- Université de Paris Cité, Functional and Adaptive Biology Unit, UMR 8251, CNRS, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France.
| |
Collapse
|
20
|
Di Pietro P, Izzo C, Abate AC, Iesu P, Rusciano MR, Venturini E, Visco V, Sommella E, Ciccarelli M, Carrizzo A, Vecchione C. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules 2023; 13:168. [PMID: 36671552 PMCID: PMC9855992 DOI: 10.3390/biom13010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Paola Iesu
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | | | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
21
|
Li C, Qin D, Hu J, Yang Y, Hu D, Yu B. Inflamed adipose tissue: A culprit underlying obesity and heart failure with preserved ejection fraction. Front Immunol 2022; 13:947147. [PMID: 36483560 PMCID: PMC9723346 DOI: 10.3389/fimmu.2022.947147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The incidence of heart failure with preserved ejection fraction is increasing in patients with obesity, diabetes, hypertension, and in the aging population. However, there is a lack of adequate clinical treatment. Patients with obesity-related heart failure with preserved ejection fraction display unique pathophysiological and phenotypic characteristics, suggesting that obesity could be one of its specific phenotypes. There has been an increasing recognition that overnutrition in obesity causes adipose tissue expansion and local and systemic inflammation, which consequently exacerbates cardiac remodeling and leads to the development of obese heart failure with preserved ejection fraction. Furthermore, overnutrition leads to cellular metabolic reprogramming and activates inflammatory signaling cascades in various cardiac cells, thereby promoting maladaptive cardiac remodeling. Growing evidence indicates that the innate immune response pathway from the NLRP3 inflammasome, to interleukin-1 to interleukin-6, is involved in the generation of obesity-related systemic inflammation and heart failure with preserved ejection fraction. This review established the existence of obese heart failure with preserved ejection fraction based on structural and functional changes, elaborated the inflammation mechanisms of obese heart failure with preserved ejection fraction, proposed that NLRP3 inflammasome activation may play an important role in adiposity-induced inflammation, and summarized the potential therapeutic approaches.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Donglu Qin
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China,*Correspondence: Bilian Yu,
| |
Collapse
|
22
|
Rosiglitazone Reverses Inflammation in Epididymal White Adipose Tissue in Hormone-Sensitive Lipase-Knockout Mice. J Lipid Res 2022; 64:100305. [PMID: 36273647 PMCID: PMC9760656 DOI: 10.1016/j.jlr.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/05/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice. Furthermore, we were interested in how impaired PPARγ signaling affects the development of inflammation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT) of Hsl knockout mice and if DAG and ceramide accumulation contribute to adipose tissue inflammation and ER stress. Ultrastructural analysis showed a markedly dilated ER in both eWAT and iWAT upon loss of HSL. In addition, Hsl knockout mice exhibited macrophage infiltration and increased F4/80 mRNA expression, a marker of macrophage activation, in eWAT, but not in iWAT. We show that treatment with rosiglitazone, a PPARγ agonist, attenuated macrophage infiltration and ameliorated inflammation of eWAT, but expression of ER stress markers remained unchanged, as did DAG and ceramide levels in eWAT. Taken together, we show that HSL loss promoted ER stress in both eWAT and iWAT of Hsl knockout mice, but inflammation and macrophage infiltration occurred mainly in eWAT. Also, PPARγ activation reversed inflammation but not ER stress and DAG accumulation. These data indicate that neither reduction of DAG levels nor ER stress contribute to the reversal of eWAT inflammation in Hsl knockout mice.
Collapse
|
23
|
Zarini S, Brozinick JT, Zemski Berry KA, Garfield A, Perreault L, Kerege A, Bui HH, Sanders P, Siddall P, Kuo MS, Bergman BC. Serum dihydroceramides correlate with insulin sensitivity in humans and decrease insulin sensitivity in vitro. J Lipid Res 2022; 63:100270. [PMID: 36030929 PMCID: PMC9508341 DOI: 10.1016/j.jlr.2022.100270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Serum ceramides, especially C16:0 and C18:0 species, are linked to CVD risk and insulin resistance, but details of this association are not well understood. We performed this study to quantify a broad range of serum sphingolipids in individuals spanning the physiologic range of insulin sensitivity and to determine if dihydroceramides cause insulin resistance in vitro. As expected, we found that serum triglycerides were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals. Serum ceramides were not significantly different within groups but, using all ceramide data relative to insulin sensitivity as a continuous variable, we observed significant inverse relationships between C18:0, C20:0, and C22:0 species and insulin sensitivity. Interestingly, we found that total serum dihydroceramides and individual species were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals, with C18:0 species showing the strongest inverse relationship to insulin sensitivity. Finally, we administered a physiological mix of dihydroceramides to primary myotubes and found decreased insulin sensitivity in vitro without changing the overall intracellular sphingolipid content, suggesting a direct effect on insulin resistance. These data extend what is known regarding serum sphingolipids and insulin resistance and show the importance of serum dihydroceramides to predict and promote insulin resistance in humans.
Collapse
Affiliation(s)
- Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joseph T Brozinick
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hai Hoang Bui
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Phil Sanders
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Parker Siddall
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Ming Shang Kuo
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
24
|
Pileggi CA, Blondin DP, Hooks BG, Parmar G, Alecu I, Patten DA, Cuillerier A, O'Dwyer C, Thrush AB, Fullerton MD, Bennett SA, Doucet É, Haman F, Cuperlovic-Culf M, McPherson R, Dent RRM, Harper ME. Exercise training enhances muscle mitochondrial metabolism in diet-resistant obesity. EBioMedicine 2022; 83:104192. [PMID: 35965199 PMCID: PMC9482931 DOI: 10.1016/j.ebiom.2022.104192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background Current paradigms for predicting weight loss in response to energy restriction have general validity but a subset of individuals fail to respond adequately despite documented diet adherence. Patients in the bottom 20% for rate of weight loss following a hypocaloric diet (diet-resistant) have been found to have less type I muscle fibres and lower skeletal muscle mitochondrial function, leading to the hypothesis that physical exercise may be an effective treatment when diet alone is inadequate. In this study, we aimed to assess the efficacy of exercise training on mitochondrial function in women with obesity with a documented history of minimal diet-induced weight loss. Methods From over 5000 patient records, 228 files were reviewed to identify baseline characteristics of weight loss response from women with obesity who were previously classified in the top or bottom 20% quintiles based on rate of weight loss in the first 6 weeks during which a 900 kcal/day meal replacement was consumed. A subset of 20 women with obesity were identified based on diet-resistance (n=10) and diet sensitivity (n=10) to undergo a 6-week supervised, progressive, combined aerobic and resistance exercise intervention. Findings Diet-sensitive women had lower baseline adiposity, higher fasting insulin and triglycerides, and a greater number of ATP-III criteria for metabolic syndrome. Conversely in diet-resistant women, the exercise intervention improved body composition, skeletal muscle mitochondrial content and metabolism, with minimal effects in diet-sensitive women. In-depth analyses of muscle metabolomes revealed distinct group- and intervention- differences, including lower serine-associated sphingolipid synthesis in diet-resistant women following exercise training. Interpretation Exercise preferentially enhances skeletal muscle metabolism and improves body composition in women with a history of minimal diet-induced weight loss. These clinical and metabolic mechanism insights move the field towards better personalised approaches for the treatment of distinct obesity phenotypes. Funding Canadian Institutes of Health Research (CIHR-INMD and FDN-143278; CAN-163902; CIHR PJT-148634).
Collapse
Affiliation(s)
- Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada
| | - Denis P Blondin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Breana G Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alexanne Cuillerier
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - A Brianne Thrush
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Steffany Al Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - François Haman
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Robert R M Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.
| |
Collapse
|
25
|
Mir FA, Ullah E, Mall R, Iskandarani A, Samra TA, Cyprian F, Parray A, Alkasem M, Abdalhakam I, Farooq F, Abou-Samra AB. Dysregulated Metabolic Pathways in Subjects with Obesity and Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23179821. [PMID: 36077214 PMCID: PMC9456113 DOI: 10.3390/ijms23179821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Obesity coexists with variable features of metabolic syndrome, which is associated with dysregulated metabolic pathways. We assessed potential associations between serum metabolites and features of metabolic syndrome in Arabic subjects with obesity. Methods: We analyzed a dataset of 39 subjects with obesity only (OBO, n = 18) age-matched to subjects with obesity and metabolic syndrome (OBM, n = 21). We measured 1069 serum metabolites and correlated them to clinical features. Results: A total of 83 metabolites, mostly lipids, were significantly different (p < 0.05) between the two groups. Among lipids, 22 sphingomyelins were decreased in OBM compared to OBO. Among non-lipids, quinolinate, kynurenine, and tryptophan were also decreased in OBM compared to OBO. Sphingomyelin is negatively correlated with glucose, HbA1C, insulin, and triglycerides but positively correlated with HDL, LDL, and cholesterol. Differentially enriched pathways include lysine degradation, amino sugar and nucleotide sugar metabolism, arginine and proline metabolism, fructose and mannose metabolism, and galactose metabolism. Conclusions: Metabolites and pathways associated with chronic inflammation are differentially expressed in subjects with obesity and metabolic syndrome compared to subjects with obesity but without the clinical features of metabolic syndrome.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Correspondence: (F.A.M.); (E.U.)
| | - Ehsan Ullah
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
- Correspondence: (F.A.M.); (E.U.)
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38104, USA
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tareq A. Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Aijaz Parray
- Qatar Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahem Abdalhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal Farooq
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
26
|
An Untargeted Lipidomics Study of Acute Ischemic Stroke with Hyperglycemia Based on Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8332278. [PMID: 36060656 PMCID: PMC9439902 DOI: 10.1155/2022/8332278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
Patients with type 2 diabetes have twice as much of the risk of acute ischemic stroke (AIS) occurrence as healthy individuals, and the AIS patients with type 2 diabetes have a higher risk of death and a poorer prognosis. This study was to investigate the interrelationship between hyperglycemia and AIS and provided a reference for blood glucose management of AIS patients. The blood glucose level of AIS patients of the present study was controlled by insulin below 180 mg/dL (standard group) and between 80 and 130 mg/dL (management group). And the fasting venous blood samples were collected for determination of blood glucose level, homeostasis model assessment of insulin resistance (HOMA-IR), peptide C, and basal insulin level. Furthermore, lipids of the blood samples were detected using metabolomics, so as to clarify the similarities and differences in metabolic patterns in AIS patients with diabetes after the intervention of different glycemic strategies. The results revealed that compared to the standard group, the blood glucose level and HOMA-IR in the management group were significantly decreased, and levels of peptide C and basal insulin level were greatly increased. Through lipidomics detection, 83, 50, and 44 types of significantly upregulated differential lipids were detected in the standard vs. normal groups, the standard vs. management groups, and the management vs. normal groups, respectively, with triacylglycerol dominated. This study preliminarily revealed metabolic differences among AIS patients with hyperglycemia after different blood glucose intervention methods, hoping to provide a theoretical basis for clinical prevention and treatment of this disease.
Collapse
|
27
|
Shannon CE, Merovci A, Fourcaudot M, Tripathy D, Abdul-Ghani M, Wang H, Han X, Norton L, DeFronzo RA. Effects of Sustained Hyperglycemia on Skeletal Muscle Lipids in Healthy Subjects. J Clin Endocrinol Metab 2022; 107:e3177-e3185. [PMID: 35552423 PMCID: PMC9282260 DOI: 10.1210/clinem/dgac306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Sustained increases in plasma glucose promote skeletal muscle insulin resistance independent from obesity and dyslipidemia (ie, glucotoxicity). Skeletal muscle lipids are key molecular determinants of insulin action, yet their involvement in the development of glucotoxicity is unclear. OBJECTIVE To explore the impact of mild physiologic hyperglycemia on skeletal muscle lipids. DESIGN Single group pretest-posttest. PARTICIPANTS Healthy males and females with normal glucose tolerance. INTERVENTIONS 72-hour glucose infusion raising plasma glucose by ~50 mg/dL. MAIN OUTCOME MEASURES Skeletal muscle lipids, insulin sensitivity, lipid oxidation. RESULTS Despite impairing insulin-mediated glucose disposal and suppressing fasting lipid oxidation, hyperglycemia did not alter either the content or composition of skeletal muscle triglycerides, diacylglycerides, or phospholipids. Skeletal muscle ceramides decreased after glucose infusion, likely in response to a reduction in free fatty acid concentrations. CONCLUSIONS Our results demonstrate that the major lipid pools in skeletal muscle are unperturbed by sustained increases in glucose availability and suggest that glucotoxicity and lipotoxicity drive insulin resistance through distinct mechanistic pathways.
Collapse
Affiliation(s)
- Christopher E Shannon
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurora Merovci
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Marcel Fourcaudot
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Audie L Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Muhammad Abdul-Ghani
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Xianlin Han
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Luke Norton
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Ralph A DeFronzo
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
28
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
29
|
Spampinato SF, Sortino MA, Salomone S. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:95-139. [PMID: 35659378 DOI: 10.1016/bs.apha.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that binds and activates five distinct receptor subtypes, S1P1, S1P2, S1P3, S1P4, S1P5, widely expressed in different cells, tissues and organs. In the cardiovascular system these receptors have been extensively studied, but no drug acting on them has been approved so far for treating cardiovascular diseases. In contrast, a number of S1P receptor agonists are approved as immunomodulators, mainly for multiple sclerosis, because of their action on lymphocyte trafficking. This chapter summarizes the available information on S1P receptors in the cardiovascular system and discusses their potential for treating cardiovascular conditions and/or their role on the clinical pharmacology of drugs so far approved for non-cardiovascular conditions. Basic research has recently produced data useful to understand the molecular pharmacology of S1P and S1P receptors, regarding biased agonism, S1P storage, release and vehiculation and chaperoning by lipoproteins, paracrine actions, intracellular non-receptorial S1P actions. On the other hand, the approval of fingolimod and newer generation S1P receptor ligands as immunomodulators, provides information on a number of clinical observations on the impact of these drugs on cardiovascular system which need to be integrated with preclinical data. S1P receptors are potential targets for prevention and treatment of major cardiovascular conditions, including hypertension, myocardial infarction, heart failure and stroke.
Collapse
Affiliation(s)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.
| |
Collapse
|
30
|
Circadian rhythm of lipid metabolism. Biochem Soc Trans 2022; 50:1191-1204. [PMID: 35604112 DOI: 10.1042/bst20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Lipids comprise a diverse group of metabolites that are indispensable as energy storage molecules, cellular membrane components and mediators of inter- and intra-cellular signaling processes. Lipid homeostasis plays a crucial role in maintaining metabolic health in mammals including human beings. A growing body of evidence suggests that the circadian clock system ensures temporal orchestration of lipid homeostasis, and that perturbation of such diurnal regulation leads to the development of metabolic disorders comprising obesity and type 2 diabetes. In view of the emerging role of circadian regulation in maintaining lipid homeostasis, in this review, we summarize the current knowledge on lipid metabolic pathways controlled by the mammalian circadian system. Furthermore, we review the emerging connection between the development of human metabolic diseases and changes in lipid metabolites that belong to major classes of lipids. Finally, we highlight the mechanisms underlying circadian organization of lipid metabolic rhythms upon the physiological situation, and the consequences of circadian clock dysfunction for dysregulation of lipid metabolism.
Collapse
|
31
|
Lind L, Salihovic S, Sundström J, Elmståhl S, Hammar U, Dekkers K, Ärnlöv J, Smith JG, Engström G, Fall T. Metabolic Profiling of Obesity With and Without the Metabolic Syndrome: A Multisample Evaluation. J Clin Endocrinol Metab 2022; 107:1337-1345. [PMID: 34984454 DOI: 10.1210/clinem/dgab922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/31/2022]
Abstract
CONTEXT There is a dispute whether obesity without major metabolic derangements may represent a benign condition or not. OBJECTIVE We aimed to compare the plasma metabolome in obese subjects without metabolic syndrome (MetS) with normal-weight subjects without MetS and with obese subjects with MetS. METHODS This was a cross-sectional study at 2 academic centers in Sweden. Individuals from 3 population-based samples (EpiHealth, n = 2342, SCAPIS-Uppsala, n = 4985, and SCAPIS-Malmö, n = 3978) were divided into groups according to their body mass index (BMI) and presence/absence of MetS (National Cholesterol Education Program [NCEP]/consensus criteria). In total, 791 annotated endogenous metabolites were measured by ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS We observed major differences in metabolite profiles (427 metabolites) between obese (BMI ≥ 30 kg/m2) and normal-weight (BMI < 25 kg/m2) subjects without MetS after adjustment for major lifestyle factors. Pathway enrichment analysis highlighted branch-chained and aromatic amino acid synthesis/metabolism, aminoacyl-tRNA biosynthesis, and sphingolipid metabolism. The same pathways, and similar metabolites, were also highlighted when obese subjects with and without MetS were compared despite adjustment for BMI and waist circumference, or when the metabolites were related to BMI and number of MetS components in a continuous fashion. Similar metabolites and pathways were also related to insulin sensitivity (Matsuda index) in a separate study (POEM, n = 501). CONCLUSION Our data suggest a graded derangement of the circulating metabolite profile from lean to obese to MetS, in particular for metabolites involved in amino acid synthesis/metabolism and sphingolipid metabolism. Insulin resistance is a plausible mediator of this gradual metabolic deterioration.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden
| | - Samira Salihovic
- Inflammatory Response and Infection Susceptibility Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - Sölve Elmståhl
- Department of Clinical Sciences, Division of Geriatric Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Ulf Hammar
- Department of Medical Sciences, Uppsala University, Sweden
| | - Koen Dekkers
- Department of Medical Sciences, Uppsala University, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Huddinge, Sweden
- School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital , Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Tove Fall
- Department of Medical Sciences, Uppsala University, Sweden
| |
Collapse
|
32
|
Hulett NA, Scalzo RL, Reusch JEB. Glucose Uptake by Skeletal Muscle within the Contexts of Type 2 Diabetes and Exercise: An Integrated Approach. Nutrients 2022; 14:647. [PMID: 35277006 PMCID: PMC8839578 DOI: 10.3390/nu14030647] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Type 2 diabetes continues to negatively impact the health of millions. The inability to respond to insulin to clear blood glucose (insulin resistance) is a key pathogenic driver of the disease. Skeletal muscle is the primary tissue for maintaining glucose homeostasis through glucose uptake via insulin-dependent and -independent mechanisms. Skeletal muscle is also responsive to exercise-meditated glucose transport, and as such, exercise is a cornerstone for glucose management in people with type 2 diabetes. Skeletal muscle glucose uptake requires a concert of events. First, the glucose-rich blood must be transported to the skeletal muscle. Next, the glucose must traverse the endothelium, extracellular matrix, and skeletal muscle membrane. Lastly, intracellular metabolic processes must be activated to maintain the diffusion gradient to facilitate glucose transport into the cell. This review aims to examine the physiology at each of these steps in healthy individuals, analyze the dysregulation affecting these pathways associated with type 2 diabetes, and describe the mechanisms by which exercise acts to increase glucose uptake.
Collapse
Affiliation(s)
- Nicholas A. Hulett
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.A.H.); (R.L.S.)
| | - Rebecca L. Scalzo
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.A.H.); (R.L.S.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Center for Women’s Health Research, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Jane E. B. Reusch
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.A.H.); (R.L.S.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Center for Women’s Health Research, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
33
|
Błachnio-Zabielska AU, Roszczyc-Owsiejczuk K, Imierska M, Pogodzińska K, Rogalski P, Daniluk J, Zabielski P. CerS1 but Not CerS5 Gene Silencing, Improves Insulin Sensitivity and Glucose Uptake in Skeletal Muscle. Cells 2022; 11:206. [PMID: 35053322 PMCID: PMC8773817 DOI: 10.3390/cells11020206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is perceived as a major tissue in glucose and lipid metabolism. High fat diet (HFD) lead to the accumulation of intramuscular lipids, including: long chain acyl-CoA, diacylglycerols, and ceramides. Ceramides are considered to be one of the most important lipid groups in the generation of skeletal muscle insulin resistance. So far, it has not been clearly established whether all ceramides adversely affect the functioning of the insulin pathway, or whether there are certain ceramide species that play a pivotal role in the induction of insulin resistance. Therefore, we designed a study in which the expression of CerS1 and CerS5 genes responsible for the synthesis of C18:0-Cer and C16:0-Cer, respectively, was locally silenced in the gastrocnemius muscle of HFD-fed mice through in vivo electroporation-mediated shRNA plasmids. Our study indicates that HFD feeding induced both, the systemic and skeletal muscle insulin resistance, which was accompanied by an increase in the intramuscular lipid levels, decreased activation of the insulin pathway and, consequently, a decrease in the skeletal muscle glucose uptake. CerS1 silencing leads to a reduction in C18:0-Cer content, with a subsequent increase in the activity of the insulin pathway, and an improvement in skeletal muscle glucose uptake. Such effects were not visible in case of CerS5 silencing, which indicates that the accumulation of C18:0-Cer plays a decisive role in the induction of skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Agnieszka U. Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland; (K.R.-O.); (M.I.); (K.P.)
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland; (K.R.-O.); (M.I.); (K.P.)
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland; (K.R.-O.); (M.I.); (K.P.)
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland; (K.R.-O.); (M.I.); (K.P.)
| | - Paweł Rogalski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.R.); (J.D.)
| | - Jarosław Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.R.); (J.D.)
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
34
|
Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pathophysiology of Physical Inactivity-Dependent Insulin Resistance: A Theoretical Mechanistic Review Emphasizing Clinical Evidence. J Diabetes Res 2021; 2021:7796727. [PMID: 34660812 PMCID: PMC8516544 DOI: 10.1155/2021/7796727] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
The modern lifestyle has a negative impact on health. It is usually accompanied by increased stress levels and lower physical activity, which interferes with body homeostasis. Diabetes mellitus is a relatively common metabolic disorder with increasing prevalence globally, associated with various risk factors, including lower physical activity and a sedentary lifestyle. It has been shown that sedentary behavior increases the risk of insulin resistance, but the intermediate molecular mechanisms are not fully understood. In this mechanistic review, we explore the possible interactions between physical inactivity and insulin resistance to help better understand the pathophysiology of physical inactivity-dependent insulin resistance and finding novel interventions against these deleterious pathways.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Carrard J, Gallart-Ayala H, Weber N, Colledge F, Streese L, Hanssen H, Schmied C, Ivanisevic J, Schmidt-Trucksäss A. How Ceramides Orchestrate Cardiometabolic Health-An Ode to Physically Active Living. Metabolites 2021; 11:metabo11100675. [PMID: 34677390 PMCID: PMC8538837 DOI: 10.3390/metabo11100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Cardiometabolic diseases (CMD) represent a growing socioeconomic burden and concern for healthcare systems worldwide. Improving patients’ metabolic phenotyping in clinical practice will enable clinicians to better tailor prevention and treatment strategy to individual needs. Recently, elevated levels of specific lipid species, known as ceramides, were shown to predict cardiometabolic outcomes beyond traditional biomarkers such as cholesterol. Preliminary data showed that physical activity, a potent, low-cost, and patient-empowering means to reduce CMD-related burden, influences ceramide levels. While a single bout of physical exercise increases circulating and muscular ceramide levels, regular exercise reduces ceramide content. Additionally, several ceramide species have been reported to be negatively associated with cardiorespiratory fitness, which is a potent health marker reflecting training level. Thus, regular exercise could optimize cardiometabolic health, partly by reversing altered ceramide profiles. This short review provides an overview of ceramide metabolism and its role in cardiometabolic health and diseases, before presenting the effects of exercise on ceramides in humans.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
- Correspondence:
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Nadia Weber
- Medical School, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Universitätstrasse 2, 8092 Zurich, Switzerland;
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| | - Christian Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| |
Collapse
|
36
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
The Importance of Lipidomic Approach for Mapping and Exploring the Molecular Networks Underlying Physical Exercise: A Systematic Review. Int J Mol Sci 2021; 22:ijms22168734. [PMID: 34445440 PMCID: PMC8395903 DOI: 10.3390/ijms22168734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Maintaining appropriate levels of physical exercise is an optimal way for keeping a good state of health. At the same time, optimal exercise performance necessitates an integrated organ system response. In this respect, physical exercise has numerous repercussions on metabolism and function of different organs and tissues by enhancing whole-body metabolic homeostasis in response to different exercise-related adaptations. Specifically, both prolonged and intensive physical exercise produce vast changes in multiple and different lipid-related metabolites. Lipidomic technologies allow these changes and adaptations to be clarified, by using a biological system approach they provide scientific understanding of the effect of physical exercise on lipid trajectories. Therefore, this systematic review aims to indicate and clarify the identifying biology of the individual response to different exercise workloads, as well as provide direction for future studies focused on the body’s metabolome exercise-related adaptations. It was performed using five databases (Medline (PubMed), Google Scholar, Embase, Web of Science, and Cochrane Library). Two author teams reviewed 105 abstracts for inclusion and at the end of the screening process 50 full texts were analyzed. Lastly, 14 research articles specifically focusing on metabolic responses to exercise in healthy subjects were included. The Oxford quality scoring system scale was used as a quality measure of the reviews. Information was extracted using the participants, intervention, comparison, outcomes (PICOS) format. Despite that fact that it is well-known that lipids are involved in different sport-related changes, it is unclear what types of lipids are involved. Therefore, we analyzed the characteristic lipid species in blood and skeletal muscle, as well as their alterations in response to chronic and acute exercise. Lipidomics analyses of the studies examined revealed medium- and long-chain fatty acids, fatty acid oxidation products, and phospholipids qualitative changes. The main cumulative evidence indicates that both chronic and acute bouts of exercise determine significant changes in lipidomic profiles, but they manifested in very different ways depending on the type of tissue examined. Therefore, this systematic review may offer the possibility to fully understand the individual lipidomics exercise-related response and could be especially important to improve athletic performance and human health.
Collapse
|
38
|
Abstract
The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.
Collapse
|
39
|
Vieira-Lara MA, Dommerholt MB, Zhang W, Blankestijn M, Wolters JC, Abegaz F, Gerding A, van der Veen YT, Thomas R, van Os RP, Reijngoud DJ, Jonker JW, Kruit JK, Bakker BM. Age-related susceptibility to insulin resistance arises from a combination of CPT1B decline and lipid overload. BMC Biol 2021; 19:154. [PMID: 34330275 PMCID: PMC8323306 DOI: 10.1186/s12915-021-01082-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The skeletal muscle plays a central role in glucose homeostasis through the uptake of glucose from the extracellular medium in response to insulin. A number of factors are known to disrupt the normal response to insulin leading to the emergence of insulin resistance (IR). Advanced age and a high-fat diet are factors that increase the susceptibility to IR, with lipid accumulation in the skeletal muscle being a key driver of this phenomenon. It is debated, however, whether lipid accumulation arises due to dietary lipid overload or from a decline of mitochondrial function. To gain insights into the interplay of diet and age in the flexibility of muscle lipid and glucose handling, we combined lipidomics, proteomics, mitochondrial function analysis and computational modelling to investigate young and aged mice on a low- or high-fat diet (HFD). RESULTS As expected, aged mice were more susceptible to IR when given a HFD than young mice. The HFD induced intramuscular lipid accumulation specifically in aged mice, including C18:0-containing ceramides and diacylglycerols. This was reflected by the mitochondrial β-oxidation capacity, which was upregulated by the HFD in young, but not in old mice. Conspicuously, most β-oxidation proteins were upregulated by the HFD in both groups, but carnitine palmitoyltransferase 1B (CPT1B) declined in aged animals. Computational modelling traced the flux control mostly to CPT1B, suggesting a CPT1B-driven loss of flexibility to the HFD with age. Finally, in old animals, glycolytic protein levels were reduced and less flexible to the diet. CONCLUSION We conclude that intramuscular lipid accumulation and decreased insulin sensitivity are not due to age-related mitochondrial dysfunction or nutritional overload alone, but rather to their combined effects. Moreover, we identify CPT1B as a potential target to counteract age-dependent intramuscular lipid accumulation and thereby IR.
Collapse
Affiliation(s)
- Marcel A Vieira-Lara
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Marleen B Dommerholt
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Wenxuan Zhang
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Maaike Blankestijn
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Fentaw Abegaz
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ydwine T van der Veen
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rachel Thomas
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ronald P van Os
- Central Animal Facility, Mouse Clinic for Cancer and Aging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Johan W Jonker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Janine K Kruit
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Postbus 196, 9700, AD, Groningen, The Netherlands.
| |
Collapse
|
40
|
Green CD, Maceyka M, Cowart LA, Spiegel S. Sphingolipids in metabolic disease: The good, the bad, and the unknown. Cell Metab 2021; 33:1293-1306. [PMID: 34233172 PMCID: PMC8269961 DOI: 10.1016/j.cmet.2021.06.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
The bioactive sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) are a recent addition to the lipids accumulated in obesity and have emerged as important molecular players in metabolic diseases. Here we summarize evidence that dysregulation of sphingolipid metabolism correlates with pathogenesis of metabolic diseases in humans. This review discusses the current understanding of how ceramide regulates signaling and metabolic pathways to exacerbate metabolic diseases and the Janus faces for its further metabolite S1P, the kinases that produce it, and the multifaceted and at times opposing actions of S1P receptors in various tissues. Gaps and limitations in current knowledge are highlighted together with the need to further decipher the full array of their actions in tissue dysfunction underlying metabolic pathologies, pointing out prospects to move this young field of research toward the development of effective therapeutics.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, VCU School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, VCU School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, VCU School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA; Hunter Holmes McGuire VA Medical Center, Richmond, VA 23298, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA.
| |
Collapse
|
41
|
Quan M, Xun P, Wu H, Wang J, Cheng W, Cao M, Zhou T, Huang T, Gao Z, Chen P. Effects of interrupting prolonged sitting on postprandial glycemia and insulin responses: A network meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:419-429. [PMID: 33359636 PMCID: PMC8343076 DOI: 10.1016/j.jshs.2020.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 06/07/2023]
Abstract
PURPOSE This study aimed to evaluate the effectiveness of physical activity (PA) interrupting prolonged sitting (PS) on postprandial glycemia and insulin responses among adults. METHODS PubMed, EMBASE, Cochrane Library, Web of Science, CINAHL, PsycINFO, and the China National Knowledge Infrastructure databases were searched through September 30, 2020. Randomized controlled trials (RCTs) that examined the effect of all forms of PA interrupting PS on postprandial glycemia and/or insulin responses among adults without chronic diseases were included in this study. The risk of bias of included studies was evaluated based on the Cochrane tool. A network meta-analysis was performed to estimate the summary standardized mean differences (SMDs) with 95% confidence intervals (95%CIs) with random effects. RESULTS Thirty crossover RCTs were included in our review. These RCTs included 9 types of interventions that interrupted PS. When compared to PS by itself, light-intensity PA intermittent interrupting (LPA-INT) PS and moderate-intensity PA intermittent interrupting (MPA-INT) PS significantly lowered postprandial glycemia (SMD = -0.46, 95%CI: -0.70 to -0.21; SMD = -0.69, 95%CI: -1.00 to -0.37, respectively) and significantly reduced postprandial insulin response (SMD = -0.46, 95%CI: -0.66 to -0.26; SMD = -0.47, 95%CI: -0.77 to -0.17, respectively). Results of the clustered ranking plot indicated that MPA-INT was the most effective intervention in lowering postprandial glycemia and insulin responses. CONCLUSION Replacing PS with MPA-INT or LPA-INT has a positive effect in reducing postprandial glycemia and insulin responses, with MPA-INT being the optimal intervention strategy.
Collapse
Affiliation(s)
- Minghui Quan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Hua Wu
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Jing Wang
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Cheng
- Department of Endocrinology, Yangpu Hospital Affiliated to Tongji University, Shanghai 200090, China
| | - Meng Cao
- Institute of Physical Education, Normal College, Shenzhen University, Shenzhen 518061, China
| | - Tang Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Tao Huang
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Gao
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
42
|
Muralidharan S, Shimobayashi M, Ji S, Burla B, Hall MN, Wenk MR, Torta F. A reference map of sphingolipids in murine tissues. Cell Rep 2021; 35:109250. [PMID: 34133933 DOI: 10.1016/j.celrep.2021.109250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids (SPs) have both a structural role in the cell membranes and a signaling function that regulates many cellular processes. The enormous structural diversity and low abundance of many SPs pose a challenge for their identification and quantification. Recent advances in lipidomics, in particular liquid chromatography (LC) coupled with mass spectrometry (MS), provide methods to detect and quantify many low-abundant SP species reliably. Here we use LC-MS to compile a "murine sphingolipid atlas," containing the qualitative and quantitative distribution of 114 SPs in 21 tissues of a widely utilized wild-type laboratory mouse strain (C57BL/6). We report tissue-specific SP fingerprints, as well as sex-specific differences in the same tissue. This is a comprehensive, quantitative sphingolipidomic map of mammalian tissues collected in a systematic fashion. It will complement other tissue compendia for interrogation into the role of SP in mammalian health and disease.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Mitsugu Shimobayashi
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Michael N Hall
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
43
|
Azizov S, Sharipov M, Lim JM, Tawfik SM, Kattaev N, Lee YI. Solvent-resistant microfluidic paper-based analytical device/spray mass spectrometry for quantitative analysis of C 18 -ceramide biomarker. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4611. [PMID: 32789982 DOI: 10.1002/jms.4611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
We developed a highly efficient and low-cost organic solvents-resistant microfluidic paper-based analytical device (μPAD) coupled with paper spray mass spectrometry (PS-MS) for quantitative determination of C18 -ceramide as a prognostic biomarker for several diseases. Several models of μPAD patterns have been examined to select the most resistant and efficient microchannel barriers, which can provide continuous spray at ionization zone and prevent "coffee ring" effect. Moreover, the developed μPAD has enabled the analysis of low concentration of C18 -ceramide because of the maximum supply of deposited analyte through microchannel. The MS results confirmed the formation of doubly and singly charged metal ion complexes between ceramide and different metal ions. Notably, the complexation that occurs between lithium ions and C18 -ceramide showed a high relative abundance compared with other formed complexes. Taking into account the relative abundance of complex [Cer + Li]+ at 572.8 m/z, it can be considered as a stable ion and therefore be used for the analysis of C18 -ceramide at low concentrations. Complexation of C18 -ceramide and lithium confirmed with quantum chemical calculations. The proposed method represents good linearity with a regression coefficient of 0.9956 for the analysis of C18 -ceramide and reaches a limit of detection to 0.84 nM. It has been adapted successfully for practical application in human serum samples with high recovery values in range of 92%-105%. The developed μPAD-MS technique provides clear advantages by reducing the experimental steps and simplifying the operation process and enables to identify subnanomolar concentration of C18 -ceramide in human serum samples.
Collapse
Affiliation(s)
- Shavkatjon Azizov
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Mirkomil Sharipov
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Jae-Min Lim
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Salah M Tawfik
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Nuritdin Kattaev
- Department of Chemistry, National University of Uzbekistan, Tashkent, 100174, Uzbekistan
| | - Yong-Ill Lee
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| |
Collapse
|
44
|
Kahn D, Perreault L, Macias E, Zarini S, Newsom SA, Strauss A, Kerege A, Harrison K, Snell-Bergeon J, Bergman BC. Subcellular localisation and composition of intramuscular triacylglycerol influence insulin sensitivity in humans. Diabetologia 2021; 64:168-180. [PMID: 33128577 PMCID: PMC7718332 DOI: 10.1007/s00125-020-05315-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Subcellular localisation is an important factor in the known impact of bioactive lipids, such as diacylglycerol and sphingolipids, on insulin sensitivity in skeletal muscle; yet, the role of localised intramuscular triacylglycerol (IMTG) is yet to be described. Excess accumulation of IMTG in skeletal muscle is associated with insulin resistance, and we hypothesised that differences in subcellular localisation and composition of IMTG would relate to metabolic health status in humans. METHODS We evaluated subcellular localisation of IMTG in lean participants, endurance-trained athletes, individuals with obesity and individuals with type 2 diabetes using LC-MS/MS of fractionated muscle biopsies and insulin clamps. RESULTS Insulin sensitivity was significantly different between each group (athletes>lean>obese>type 2 diabetes; p < 0.001). Sarcolemmal IMTG was significantly greater in individuals with obesity and type 2 diabetes compared with lean control participants and athletes, but individuals with type 2 diabetes were the only group with significantly increased saturated IMTG. Sarcolemmal IMTG was inversely related to insulin sensitivity. Nuclear IMTG was significantly greater in individuals with type 2 diabetes compared with lean control participants and athletes, and total and saturated IMTG localised in the nucleus had a significant inverse relationship with insulin sensitivity. Total cytosolic IMTG was not different between groups, but saturated cytosolic IMTG species were significantly increased in individuals with type 2 diabetes compared with all other groups. There were no significant differences between groups for IMTG concentration in the mitochondria/endoplasmic reticulum. CONCLUSIONS/INTERPRETATION These data reveal previously unknown differences in subcellular IMTG localisation based on metabolic health status and indicate the influence of sarcolemmal and nuclear IMTG on insulin sensitivity. Additionally, these studies suggest saturated IMTG may be uniquely deleterious for muscle insulin sensitivity. Graphical abstract.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Macias
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Allison Strauss
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen Harrison
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janet Snell-Bergeon
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
45
|
Roszczyc-Owsiejczuk K, Zabielski P. Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:635175. [PMID: 33815291 PMCID: PMC8013882 DOI: 10.3389/fendo.2021.635175] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Piotr Zabielski,
| |
Collapse
|
46
|
Hodun K, Chabowski A, Baranowski M. Sphingosine-1-phosphate in acute exercise and training. Scand J Med Sci Sports 2020; 31:945-955. [PMID: 33345415 DOI: 10.1111/sms.13907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid found in all eukaryotic cells. Although it may function as an intracellular second messenger, most of its effects are induced extracellularly via activation of a family of five specific membrane receptors. Sphingosine-1-phosphate is enriched in plasma, where it is transported by high-density lipoprotein and albumin, as well as in erythrocytes and platelets which store and release large amounts of this sphingolipid. Sphingosine-1-phosphate regulates a host of cellular processes such as growth, proliferation, differentiation, migration, and apoptosis suppression. It was also shown to play an important role in skeletal muscle physiology and pathophysiology. In recent years, S1P metabolism in both muscle and blood was found to be modulated by exercise. In this review, we summarize the current knowledge on the effect of acute exercise and training on S1P metabolism, highlighting the role of this sphingolipid in skeletal muscle adaptation to physical effort.
Collapse
Affiliation(s)
- Katarzyna Hodun
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
47
|
The Influence of Physical Activity on the Bioactive Lipids Metabolism in Obesity-Induced Muscle Insulin Resistance. Biomolecules 2020; 10:biom10121665. [PMID: 33322719 PMCID: PMC7764345 DOI: 10.3390/biom10121665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
High-fat diet consumption and lack of physical activity are important risk factors for metabolic disorders such as insulin resistance and cardiovascular diseases. Insulin resistance is a state of a weakened response of tissues such as skeletal muscle, adipose tissue, and liver to insulin, which causes an increase in blood glucose levels. This condition is the result of inhibition of the intracellular insulin signaling pathway. Skeletal muscle is an important insulin-sensitive tissue that accounts for about 80% of insulin-dependent glucose uptake. Although the exact mechanism by which insulin resistance is induced has not been thoroughly understood, it is known that insulin resistance is most commonly associated with obesity. Therefore, it is believed that lipids may play an important role in inducing insulin resistance. Among lipids, researchers’ attention is mainly focused on biologically active lipids: diacylglycerols (DAG) and ceramides. These lipids are able to regulate the activity of intracellular enzymes, including those involved in insulin signaling. Available data indicate that physical activity affects lipid metabolism and has a positive effect on insulin sensitivity in skeletal muscles. In this review, we have presented the current state of knowledge about the impact of physical activity on insulin resistance and metabolism of biologically active lipids.
Collapse
|
48
|
Simper TN, Morris C, Lynn A, O'Hagan C, Kilner K. Responses to oral glucose challenge differ by physical activity volume and intensity: A pilot study. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:645-650. [PMID: 33308815 PMCID: PMC7749213 DOI: 10.1016/j.jshs.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/12/2016] [Accepted: 03/03/2017] [Indexed: 06/12/2023]
Abstract
BACKGROUND One-hour postprandial hyperglycemia is associated with increased risk of type 2 diabetes and cardiovascular disease. Physical activity (PA) has short-term beneficial effects on post-meal glucose response. This study compared the oral glucose tolerance test results of 3 groups of people with habitually different levels of PA. METHODS Thirty-one adults without diabetes (age 25.9 ± 6.6 years; body mass index 23.8 ± 3.8 kg/m2; mean ± SD) were recruited and divided into 3 groups based on self-reported PA volume and intensity: low activity < 30 min/day of moderate-intensity activity (n = 11), moderately active ≥ 30 min/day of moderate-intensity PA (n = 10), and very active ≥ 60 min/day of PA at high intensity (n = 10). Participants completed an oral glucose tolerance test (50 g glucose) with capillary blood samples obtained at baseline, 15 min, 30 min, 45 min, 60 min, 90 min, and 120 min post-ingestion. RESULTS There were no significant differences between groups for age or body fat percentage or glycated hemoglobin (p > 0.05). The groups were significantly different in terms of baseline glucose level (p = 0.003) and, marginally, for gender (p = 0.053) and BMI (p = 0.050). There was a statistically significant effect of PA on the 1-h postprandial glucose results (p = 0.029), with differences between very active and low activity groups (p = 0.008) but not between the moderately active and low activity groups (p = 0.360), even when baseline glucose level and gender differences were accounted for. For incremental area under the curve there was no significant effect of activity group once gender and body fat percentage had been accounted for (p = 0.401). Those in the low activity group took 15 min longer to reach peak glucose level than those in the very active group (p = 0.012). CONCLUSION The results suggest that high levels of PA have a beneficial effect on postprandial blood glucose profiles when compared to low and moderate levels of activity.
Collapse
Affiliation(s)
- Trevor N Simper
- Food Group Sheffield Business School, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Cecile Morris
- Food Group Sheffield Business School, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Anthony Lynn
- Food Group Sheffield Business School, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Ciara O'Hagan
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
| | - Karen Kilner
- Department for Health and Social Care Research, Sheffield Hallam University, Sheffield S10 2BP, UK
| |
Collapse
|
49
|
Choi Y, Kim M, Kim SJ, Yoo H, Kim S, Park H. Metabolic shift favoring C18:0 ceramide accumulation in obese asthma. Allergy 2020; 75:2858-2866. [PMID: 32416622 DOI: 10.1111/all.14366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity associated with various complications has increased worldwide. Body weight gain alters lipid metabolites (especially sphingolipids) contributing to obesity-induced inflammation. However, the significance of the metabolites in the development of obese asthma is not yet clear. METHODS The serum levels of sphingolipids were measured using liquid chromatography-tandem mass spectrometry in obese controls (n = 7) and patients with asthma: the obese group (BMI > 25 kg/m2 , n = 13) vs the nonobese (n = 28) group. To examine the relationship between metabolic changes in sphingolipids and macrophage polarization, public microarray data were analyzed. In addition, the alteration in sphingolipid metabolism was investigated in wild-type BALB/c mice fed a high-fat diet. RESULTS The obese asthma had higher levels of serum C18:0 and C20:0 ceramides than the nonobese asthma group (P = .028 and P = .040, respectively). The value of the serum C18:0 ceramide (184.3 ng/mL) for discriminating the obese asthma from the nonobese asthma group showed 53.9% sensitivity and 85.7% specificity (AUC = 0.721, P = .024). The microarray data showed significantly increased ceramide synthesis and metabolic shift to ceramide accumulation during M1 macrophage polarization in humans. Increased airway hyperresponsiveness, M1 macrophage polarization, and C18:0 ceramide levels were noted in obese mice, but not in nonobese mice. Increased expression of ceramide synthase (CerS) 1 and CerS6 (not CerS2) was noted in lung tissues of obese mice. CONCLUSION Alteration in sphingolipid metabolism favoring ceramide accumulation (especially long-chain ceramides) may contribute to developing obese asthma.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Minji Kim
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hyun‐Ju Yoo
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Seung‐Hyun Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| |
Collapse
|
50
|
The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem J 2020; 477:1089-1107. [PMID: 32202638 DOI: 10.1042/bcj20190472] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Adipose tissue regulates metabolic homeostasis by participating in endocrine and immune responses in addition to storing and releasing lipids from adipocytes. Obesity skews adipose tissue adipokine responses and degrades the coordination of adipocyte lipogenesis and lipolysis. These defects in adipose tissue metabolism can promote ectopic lipid deposition and inflammation in insulin-sensitive tissues such as skeletal muscle and liver. Sustained caloric excess can expand white adipose tissue to a point of maladaptation exacerbating both local and systemic inflammation. Multiple sources, instigators and propagators of adipose tissue inflammation occur during obesity. Cross-talk between professional immune cells (i.e. macrophages) and metabolic cells (i.e. adipocytes) promote adipose tissue inflammation during metabolic stress (i.e. metaflammation). Metabolic stress and endogenous danger signals can engage pathogen recognition receptors (PRRs) of the innate immune system thereby activating pro-inflammatory and stress pathways in adipose tissue. The Nod-like receptor protein 3 (NLRP3) inflammasome can act as a metabolic danger sensor to a wide range of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs). Activation of the NLRP3 inflammasome facilitates caspase-1 dependent production of the pro-inflammatory cytokines IL-1β and IL-18. Activation of the NLRP3 inflammasome can promote inflammation and pyroptotic cell death, but caspase-1 is also involved in adipogenesis. This review discusses the role of the NLRP3 inflammasome in adipose tissue immunometabolism responses relevant to metabolic disease. Understanding the potential sources of NLRP3 activation and consequences of NLRP3 effectors may reveal therapeutic opportunities to break or fine-tune the connection between metabolism and inflammation in adipose tissue during obesity.
Collapse
|