1
|
Zhang X, Cao A, Dang Q, Zhang W, Zhang Y, Wang M, Guan B, Wu E, Hu Y. Study on the correlation of C-reactive protein/albumin ratio with sudden sensorineural hearing loss complicated by hypertension: a prospective study. Eur Arch Otorhinolaryngol 2024; 281:4677-4687. [PMID: 38700537 DOI: 10.1007/s00405-024-08684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Understanding the pathophysiology of sudden sensorineural hearing loss (SSNHL) and identifying its clinical symptoms and associated risk factors are crucial for doctors in order to create effective prevention and therapeutic methods for this prevalent otolaryngologic emergency. METHODS This study focuses on investigating the correlation between the C-reactive protein/albumin ratio (CAR) and SSNHL complicated by hypertension. In this study, 120 patients diagnosed with SSNHL were divided into groups with and without hypertension, and propensity score matching was used to compare and analyze the severity, type, prognosis, and CAR levels in SSNHL. RESULTS The results showed that the SSNHL group with hypertension had significantly higher CAR levels, age, hearing curve abnormalities, and more severe hearing loss compared to the control group with isolated SSNHL. These differences were statistically significant (p < 0.001). Among different subtypes of SSNHL, CAR levels increased progressively with the advancement of the condition, and these differences were also statistically significant (p < 0.001). CONCLUSION In summary, in patients with SSNHL, those with hypertension had higher CAR levels than those without a history of hypertension, and they experienced more severe hearing loss. Moreover, there was a clear correlation between CAR levels and the extent of SSNHL, indicating that greater CAR levels in patients with SSNHL are connected to more severe hearing loss in various hearing patterns and perhaps indicative of a poorer prognosis.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Dalian Medical University, Dalian, 116000, China
| | - Aijuan Cao
- Department of Otolaryngology, Dongtai Municipal People's Hospital of Nantong University, No. 2 Kangfu West Road, Yancheng, 224200, Jiangsu, China
| | - Qiuling Dang
- Department of Digestive Medicine, Nanbu People's Hospital, Nanchong, 637300, Sichuan, China
| | - Wentao Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yao Zhang
- Department of Otolaryngology, Head and Neck Surgery, Dalian Medical University, Dalian, 116000, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China
| | - Bing Guan
- Department of Otolaryngology, Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Enze Wu
- Department of Talent Work, Nanjing University of Posts and Telecommunications, Nanjing, 210000, China.
| | - Yunlong Hu
- Department of Otolaryngology Head and Neck Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China.
| |
Collapse
|
2
|
Dos Passos RR, Santos CV, Priviero F, Briones AM, Tostes RC, Webb RC, Bomfim GF. Immunomodulatory Activity of Cytokines in Hypertension: A Vascular Perspective. Hypertension 2024; 81:1411-1423. [PMID: 38686582 PMCID: PMC11168883 DOI: 10.1161/hypertensionaha.124.21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cytokines play a crucial role in the structure and function of blood vessels in hypertension. Hypertension damages blood vessels by mechanisms linked to shear forces, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, oxidative stress, and a proinflammatory milieu that lead to the generation of neoantigens and damage-associated molecular patterns, ultimately triggering the release of numerous cytokines. Damage-associated molecular patterns are recognized by PRRs (pattern recognition receptors) and activate inflammatory mechanisms in endothelial cells, smooth muscle cells, perivascular nerves, and perivascular adipose tissue. Activated vascular cells also release cytokines and express factors that attract macrophages, dendritic cells, and lymphocytes to the blood vessels. Activated and differentiated T cells into Th1, Th17, and Th22 in secondary lymphoid organs migrate to the vessels, releasing specific cytokines that further contribute to vascular dysfunction and remodeling. This chronic inflammation alters the profile of endothelial and smooth muscle cells, making them dysfunctional. Here, we provide an overview of how cytokines contribute to hypertension by impacting the vasculature. Furthermore, we explore clinical perspectives about the modulation of cytokines as a potential therapeutic intervention to specifically target hypertension-linked vascular dysfunction.
Collapse
Affiliation(s)
- Rinaldo R Dos Passos
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
| | - Cintia V Santos
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (C.V.S., R.C.T.)
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Biomedical Engineering, College of Engineering and Computing (F.P., R.C.W.), University of South Carolina, Columbia
| | - Ana M Briones
- Department of Pharmacology, Facultad de Medicina, Universidad Autónoma de Madrid, Spain (A.M.B.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.M.B.)
- CIBER Cardiovascular, Madrid, Spain (A.M.B.)
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (C.V.S., R.C.T.)
| | - R Clinton Webb
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Biomedical Engineering, College of Engineering and Computing (F.P., R.C.W.), University of South Carolina, Columbia
| | - Gisele F Bomfim
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- NUPADS - Health Education and Research Center, Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil (G.F.B.)
| |
Collapse
|
3
|
Plante TB, Juraschek SP, Howard G, Howard VJ, Tracy RP, Olson NC, Judd SE, Kamin Mukaz D, Zakai NA, Long DL, Cushman M. Cytokines, C-Reactive Protein, and Risk of Incident Hypertension in the REGARDS Study. Hypertension 2024; 81:1244-1253. [PMID: 38487890 PMCID: PMC11095906 DOI: 10.1161/hypertensionaha.123.22714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Hypertension is a highly prevalent cardiovascular disease risk factor that may be related to inflammation. Whether adverse levels of specific inflammatory cytokines relate to hypertension is unknown. The present study sought to determine whether higher levels of IL (interleukin)-1β, IL-6, TNF (tumor necrosis factor)-α, IFN (interferon)-γ, IL-17A, and CRP (C-reactive protein) are associated with a greater risk of incident hypertension. METHODS The REGARDS study (Reasons for Geographic and Racial Difference in Stroke) is a prospective cohort study that recruited 30 239 community-dwelling Black and White adults from the contiguous United States in 2003 to 2007 (visit 1), with follow-up 9 years later in 2013 to 2016 (visit 2). We included participants without prevalent hypertension who attended follow-up 9 years later and had available laboratory measures and covariates of interest. Poisson regression estimated the risk ratio of incident hypertension by level of inflammatory biomarkers. RESULTS Among 1866 included participants (mean [SD] aged of 62 [8] years, 25% Black participants, 55% women), 36% developed hypertension. In fully adjusted models comparing the third to first tertile of each biomarker, there was a greater risk of incident hypertension for higher IL-1β among White (1.24 [95% CI, 1.01-1.53]) but not Black participants (1.01 [95% CI, 0.83-1.23]) and higher TNF-α (1.20 [95% CI, 1.02-1.41]) and IFN-γ (1.22 [95% CI, 1.04-1.42]) among all participants. There was no increased risk with IL-6, IL-17A, or CRP. CONCLUSIONS Higher levels of IL-1β, TNF-α, and IFN-γ, representing distinct inflammatory pathways, are elevated in advance of hypertension development. Whether modifying these cytokines will reduce incident hypertension is unknown.
Collapse
Affiliation(s)
- Timothy B. Plante
- Departments of Medicine (T.B.P., D.K.M., N.A.Z., M.C.), Larner College of Medicine at the University of Vermont, Burlington, VT
| | - Stephen P. Juraschek
- Department of Medicine, Beth Israel Lahey Clinic/Harvard Medical School, Boston, MA (S.P.J)
| | - George Howard
- Departments of Biostatistics (G.H., S.E.J.), School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Virginia J. Howard
- Epidemiology (V.J.H.), School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Russell P. Tracy
- Pathology and Laboratory Medicine (R.P.T., N.C.O., N.A.Z., M.C.), Larner College of Medicine at the University of Vermont, Burlington, VT
| | - Nels C. Olson
- Pathology and Laboratory Medicine (R.P.T., N.C.O., N.A.Z., M.C.), Larner College of Medicine at the University of Vermont, Burlington, VT
| | - Suzanne E. Judd
- Departments of Biostatistics (G.H., S.E.J.), School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Debora Kamin Mukaz
- Departments of Medicine (T.B.P., D.K.M., N.A.Z., M.C.), Larner College of Medicine at the University of Vermont, Burlington, VT
| | - Neil A. Zakai
- Departments of Medicine (T.B.P., D.K.M., N.A.Z., M.C.), Larner College of Medicine at the University of Vermont, Burlington, VT
- Pathology and Laboratory Medicine (R.P.T., N.C.O., N.A.Z., M.C.), Larner College of Medicine at the University of Vermont, Burlington, VT
| | - D. Leann Long
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC (D.L.L.)
| | - Mary Cushman
- Departments of Medicine (T.B.P., D.K.M., N.A.Z., M.C.), Larner College of Medicine at the University of Vermont, Burlington, VT
- Pathology and Laboratory Medicine (R.P.T., N.C.O., N.A.Z., M.C.), Larner College of Medicine at the University of Vermont, Burlington, VT
| |
Collapse
|
4
|
Jiang K, Xu Y, Wang Y, Yin N, Huang F, Chen M. Unveiling the role of IL-17: Therapeutic insights and cardiovascular implications. Cytokine Growth Factor Rev 2024; 77:91-103. [PMID: 38735805 DOI: 10.1016/j.cytogfr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Interleukin-17 (IL-17), a pivotal cytokine in immune regulation, has attracted significant attention in recent years due to its roles in various physiological and pathological processes. This review explores IL-17 in immunological context, emphasizing its structure, production, and signaling pathways. Specifically, we explore its involvement in inflammatory diseases and autoimmune diseases, with a notable focus on its emerging implications in cardiovascular system. Through an array of research insights, IL-17 displays multifaceted functions yet awaiting comprehensive discovery. Highlighting therapeutic avenues, we scrutinize the efficacy and clinical application of four marketed IL-17 mAbs along other targeted therapies, emphasizing their potential in immune-mediated disease management. Additionally, we discussed the novel IL-17D-CD93 axis, elucidating recent breakthroughs in their biological function and clinical implications, inviting prospects for transformative advancements in immunology and beyond.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiani Xu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
6
|
Diego L, Jazmin F, Diana R, German‐Isauro G, Salvador F, Maria‐Elena H. Modulation of TNF-α, interleukin-6, and interleukin-10 by nebivolol-valsartan and nebivolol-lisinopril polytherapy in SHR rats. Pharmacol Res Perspect 2024; 12:e1189. [PMID: 38504425 PMCID: PMC10951418 DOI: 10.1002/prp2.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Antihypertensive drug therapies have demonstrated their capacity to modulate the inflammatory processes associated with hypertension, leading to improvements in disease progression. Given the prevalent use of polytherapy in treating most hypertensive patients, comprehending the time-dependent effects of combination treatments on inflammation becomes imperative. In this study, spontaneously hypertensive rats (SHR) were divided into seven groups (n = 6): (i) SHR + vehicle, (ii) SHR + nebivolol, (iii) SHR + valsartan, (iv) SHR + lisinopril, (v) SHR + nebivolol-valsartan, (vi) SHR + nebivolol-lisinopril, and (vii) WKY + vehicle. Blood pressure was measured using the tail-cuff method. Temporal alterations in inflammatory cytokines TNF-α, IL-6, and IL-10 were assessed in serum through ELISA and mRNA expression in aortic tissue via qPCR after 1, 2, and 4 weeks of treatment with nebivolol, lisinopril, valsartan, and their respective combinations. Histological alterations in the aorta were assessed. The findings indicated that combined treatments reduced systolic and diastolic blood pressure in SHR. The nebivolol and lisinopril combination demonstrated a significant decrease in IL-6 serum and mRNA expression at both 1 week and 4 weeks into the treatment. Additionally, TNF-α mRNA expression also showed a reduction with this combination at the same time points. Particularly, nebivolol-valsartan significantly decreased TNF-α serum and mRNA expression after one and four weeks of treatment. Furthermore, an elevation in serum IL-10 levels was observed with both combination treatments starting from the second week onwards. This study provides compelling evidence that concurrent administration of nebivolol with lisinopril or valsartan exerts time-dependent effects, reducing proinflammatory cytokines TNF-α and IL-6 while modifying IL-10 levels in an experimental hypertensive model.
Collapse
Affiliation(s)
- Lezama‐Martinez Diego
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Flores‐Monroy Jazmin
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Ramirez‐Hernandez Diana
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | | | - Fonseca‐Coronado Salvador
- Laboratory of Pharmacology, FES CuautitlanUniversidad Nacional Autonoma de MexicoCuautitlan IzcalliMexicoMexico
| | - Hernandez‐Campos Maria‐Elena
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de MedicinaInstituto Politecnico NacionalFederal DistrictMexicoMexico
| |
Collapse
|
7
|
Moll-Bernardes R, Ferreira JR, Sousa AS, Tortelly MB, Pimentel AL, Figueiredo ACBS, Schaustz EB, Secco JCP, Sales ARK, Terzi FVO, Xavier de Brito A, Sarmento RO, Noya-Rabelo MM, Fortier S, Matos E Silva FA, Vera N, Conde L, Cabral-Castro MJ, Albuquerque DC, Rosado de-Castro P, Camargo GC, Pinheiro MVT, Souza OF, Bozza FA, Luiz RR, Medei E. Impact of the immune profiles of hypertensive patients with and without obesity on COVID-19 severity. Int J Obes (Lond) 2024; 48:254-262. [PMID: 37932408 DOI: 10.1038/s41366-023-01407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Comorbidities such as obesity, hypertension, and diabetes are associated with COVID-19 development and severity, probably due to immune dysregulation; however, the mechanisms underlying these associations are not clear. The immune signatures of hypertensive patients with obesity with COVID-19 may provide new insight into the mechanisms of immune dysregulation and progression to severe disease in these patients. METHODS Hypertensive patients were selected prospectively from a multicenter registry of adults hospitalized with COVID-19 and stratified according to obesity (BMI ≥ 30 kg/m²). Clinical data including baseline characteristics, complications, treatment, and 46 immune markers were compared between groups. Logistic regression was performed to identify variables associated with the risk of COVID-19 progression in each group. RESULTS The sample comprised 213 patients (89 with and 124 without obesity). The clinical profiles of patients with and without obesity differed, suggesting potential interactions with COVID-19 severity. Relative to patients without obesity, patients with obesity were younger and fewer had cardiac disease and myocardial injury. Patients with obesity had higher EGF, GCSF, GMCSF, interleukin (IL)-1ra, IL-5, IL-7, IL-8, IL-15, IL-1β, MCP 1, and VEGF levels, total lymphocyte counts, and CD8+ CD38+ mean fluorescence intensity (MFI), and lower NK-NKG2A MFI and percentage of CD8+ CD38+ T cells. Significant correlations between cytokine and immune cell expression were observed in both groups. Five variables best predicted progression to severe COVID-19 in patients with obesity: diabetes, the EGF, IL-10, and IL-13 levels, and the percentage of CD8+ HLA-DR+ CD38+ cells. Three variables were predictive for patients without obesity: myocardial injury and the percentages of B lymphocytes and HLA-DR+ CD38+ cells. CONCLUSION Our findings suggest that clinical and immune variables and obesity interact synergistically to increase the COVID-19 progression risk. The immune signatures of hypertensive patients with and without obesity severe COVID-19 highlight differences in immune dysregulation mechanisms, with potential therapeutic applications.
Collapse
Affiliation(s)
| | - Juliana R Ferreira
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Andréa Silvestre Sousa
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana B Tortelly
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Adriana L Pimentel
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Ana Cristina B S Figueiredo
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | | | | | | | - Flavia V O Terzi
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | | | - Renée O Sarmento
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Internal Medicine Department, Rio de Janeiro Federal State University, Rio de Janeiro, Brazil
| | - Marcia M Noya-Rabelo
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
- Bahia School of Medicine and Public Health, Bahia, Brazil
| | - Sergio Fortier
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | | | - Narendra Vera
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Conde
- Bahia School of Medicine and Public Health, Bahia, Brazil
| | - Mauro Jorge Cabral-Castro
- Institute of Microbiology Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
- Department of Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Denilson C Albuquerque
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology Department, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | | | - Olga F Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Fernando A Bozza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ronir R Luiz
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute for Studies in Public Health-IESC, UFRJ, Rio de Janeiro, Brazil
| | - Emiliano Medei
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil.
- National Center for Structural Biology and Bioimaging, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
S Y, Nallathambi N, K GR, Seshadri H, R G, Naidu SP, S N, Ezhilarasu P, Ja A, Srinivasan SP. Assessing the Effect of the Anti-tuberculosis Drug Rifampicin on Known Hypertensive Patients With Tuberculosis in a Tertiary Care Center. Cureus 2023; 15:e49701. [PMID: 38161870 PMCID: PMC10757316 DOI: 10.7759/cureus.49701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background Epidemiological evidence suggests an indirect link between hypertension and tuberculosis, and several studies have reported that rifampicin has potentially diminished the hypotensive effects of many anti-hypertensive agents by inducing cytochrome P450. This study investigates rifampicin's effect on the target blood pressure in known hypertensive patients whose blood pressure had been previously controlled with anti-hypertensive drugs. Methodology This prospective observational study was conducted at the Institute of Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, from June 2021 to December 2022. A total of 160 patients with known hypertension on anti-hypertensive drugs were recruited for this study. All these patients had been recently diagnosed with tuberculosis and had been treated with rifampicin-based anti-tuberculosis therapy (ATT). Results The maximum number of patients were under 50 years of age and predominantly male (67%). A total of 91 (57%) patients were hypertensive for less than five years, and the remaining patients were hypertensive within 6-10 years or more than 10 years. However, these patients had other comorbidities such as diabetes mellitus (32%) and coronary artery disease (27%). Before ATT, the mean systolic blood pressure (SBP)/diastolic blood pressure (DBP) was recorded to be 130/80 mmHg. The last six months' course of ATT showed mean values around 154/96 mmHg even after adding additional/multiple anti-hypertensive drugs. After discontinuation of ATT, the mean SBP/DBP was effectively 130/80 mmHg at four weeks. Conclusions Rifampicin significantly diminishes the hypotensive effects of many well-established anti-hypertensives such as calcium channel blockers, beta-blockers, and diuretics to maintain blood pressure.
Collapse
Affiliation(s)
- Yogesh S
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Naveenkumar Nallathambi
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Ganapathy Raja K
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Hariharan Seshadri
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Gautham R
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Shriganesh P Naidu
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Navvin S
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Preetham Ezhilarasu
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Ahimth Ja
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| | - Suriya Prakash Srinivasan
- Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, IND
| |
Collapse
|
9
|
Wang X, Hu J, Liu L, Zhang Y, Dang K, Cheng L, Zhang J, Xu X, Li Y. Association of Dietary Inflammatory Index and Dietary Oxidative Balance Score with All-Cause and Disease-Specific Mortality: Findings of 2003-2014 National Health and Nutrition Examination Survey. Nutrients 2023; 15:3148. [PMID: 37513566 PMCID: PMC10383761 DOI: 10.3390/nu15143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
To clarify the effects of dietary inflammatory and pro-oxidative potential, we investigated the impact of the Dietary Inflammation Index (DII) and the Dietary Oxidative Balance Score (DOBS) on all-cause and disease-specific mortality. For DII and DOBS, 17,550 and 24,527 participants were included. Twenty-six and seventeen dietary factors were selected for scoring. Cox proportional hazards regression models were used. DII and DOBS were significantly associated with all-cause, CVD, and cancer mortality in this nationally representative sample of American adults. Compared with the lowest DII, the multivariable-adjusted hazard ratios (95% CI) of all-cause, CVD, and cancer mortality for the highest were 1.49 (1.23-1.80), 1.58 (1.08-2.33), and 1.56 (1.07-2.25). The highest quartile of DOBS was associated with the risk of all-cause death (HR 0.71, 95% CI 0.59-0.86). Pro-inflammatory and pro-oxidative diets were associated with increased risk for all-cause (HR 1.59, 95% CI 1.28-1.97), and CVD (HR 2.29, 95% CI 1.33-3.94) death compared to anti-inflammatory and antioxidant diets. Similar results were observed among the stratification analyses. Inflammation-reducing and oxidative-balancing diets are linked to lower all-cause and CVD mortality. Diets impact health by regulating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Xuanyang Wang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Jinxia Hu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Lin Liu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Yuntao Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Keke Dang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Licheng Cheng
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
10
|
Wang Y, Gao J, Zhang L, Yang R, Zhang Y, Shan L, Li X, Ma K. Bioinformatics analysis of lncRNA-related ceRNA networks in the peripheral blood lymphocytes of Kazakh patients with essential hypertension in Xinjiang. Front Cardiovasc Med 2023; 10:1155767. [PMID: 37396592 PMCID: PMC10311024 DOI: 10.3389/fcvm.2023.1155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Objective Here, we aimed to investigate long non-coding RNA (lncRNA) expression characteristics in the peripheral blood lymphocytes of Xinjiang Kazakh people with essential hypertension and the underlying regulatory mechanisms of competing endogenous RNAs (ceRNA). Methods From April 2016 to May 2019, six Kazakh patients with essential hypertension and six Kazakh healthy participants were randomly selected from the inpatient and outpatient cardiology departments of the First Affiliated Hospital of Shihezi University Medical College, Xinjiang. After detecting the expression levels of lncRNA and mRNA in the peripheral blood lymphocytes using gene chip technology, their levels in the hypertensive group were compared with those in the control group. Six differentially expressed lncRNAs were randomly selected for real-time PCR to verify the accuracy and reliability of the gene chip results. GO functional clustering and KEGG pathway analyses were performed for differentially expressed genes. The ceRNA regulatory network of lncRNA-miRNA-mRNA was constructed, followed by visualization of the results. The expressions of miR-139-5p and DCBLD2 after PVT1 overexpression in 293T cells were detected by qRT-PCR and Western blot. Results In the test group, 396 and 511 differentially expressed lncRNAs and mRNAs, respectively, were screened out. The trend of real-time PCR results was consistent with that of the microarray results. The differentially expressed mRNAs were found to be primarily involved in the adhesion spot, leukocyte migration via endothelial cells, gap junction, actin cytoskeleton regulation, and extracellular matrix-receptor interaction signaling pathways. By constructing the ceRNA regulatory network, we found that lncRNA PVT1-miR-139-5p-DCBLD2 has a potential ceRNA regulatory mechanism involved in the development of essential hypertension in Xinjiang Kazakh people. In 293T cells, lncRNA PVT1 overexpression inhibited miR-139-5p and DCBLD2 levels. Conclusions Our findings indicate that differentially expressed lncRNAs may be involved in the development of essential hypertension. lncRNA PVT1-miR-139-5p-DCBLD2 was indicated to comprise a potential ceRNA regulatory mechanism involved in the development of essential hypertension in the Xinjiang Kazakh population. Thus, it may act as a novel screening marker or therapeutic target for essential hypertension in this population.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jie Gao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yingying Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Liya Shan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
11
|
Aboukhater D, Morad B, Nasrallah N, Nasser SA, Sahebkar A, Kobeissy F, Boudaka A, Eid AH. Inflammation and hypertension: Underlying mechanisms and emerging understandings. J Cell Physiol 2023; 238:1148-1159. [PMID: 37039489 DOI: 10.1002/jcp.31019] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Hypertension remains a major contributor to cardiovascular disease (CVD), a leading cause of global death. One of the major insults that drive increased blood pressure is inflammation. While it is the body's defensive response against some homeostatic imbalances, inflammation, when dysregulated, can be very deleterious. In this review, we highlight and discuss the causative relationship between inflammation and hypertension. We critically discuss how the interplay between inflammation and reactive oxygen species evokes endothelial damage and dysfunction, ultimately leading to narrowing and stiffness of blood vessels. This, along with phenotypic switching of the vascular smooth muscle cells and the abnormal increase in extracellular matrix deposition further exacerbates arterial stiffness and noncompliance. We also discuss how hyperhomocysteinemia and microRNA act as links between inflammation and hypertension. The premises we discuss suggest that the blue-sky scenarios for targeting the underlying mechanisms of hypertension necessitate further research.
Collapse
Affiliation(s)
- Diana Aboukhater
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bassel Morad
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadim Nasrallah
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Xiu J, Lin X, Chen Q, Yu P, Lu J, Yang Y, Chen W, Bao K, Wang J, Zhu J, Zhang X, Pan Y, Tu J, Chen K, Chen L. The aggregate index of systemic inflammation (AISI): a novel predictor for hypertension. Front Cardiovasc Med 2023; 10:1163900. [PMID: 37265570 PMCID: PMC10229810 DOI: 10.3389/fcvm.2023.1163900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Objective Inflammation plays an important role in the pathophysiology of hypertension (HTN). Aggregate index of systemic inflammation (AISI), as a new inflammatory and prognostic marker has emerged recently. Our goal was to determine whether there was a relationship between HTN and AISI. Methods We analyzed patients with HTN from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. The primary end point was cardiovascular mortality. A total of 23,765 participants were divided into four groups according to the AISI quartile level. The association between AISI and cardiovascular mortality in patients with HTN was assessed by survival curves and Cox regression analyses based on NHANES recommended weights. Results High levels of AISI were significantly associated with cardiovascular mortality in patients with HTN. After full adjustment for confounders, there was no significant difference in the risk of cardiovascular mortality in Q2 and Q3 compared to Q1, while Q4 (HR: 1.91, 95% CI: 1.42-2.58; P < 0.001) had a higher risk of cardiovascular mortality compared to Q1. Results remained similar in subgroup analyses stratified by age (P for interaction = 0.568), gender (P for interaction = 0.059), and obesity (P for interaction = 0.289). Conclusions In adults with HTN, elevated AISI levels are significantly associated with an increased risk of cardiovascular mortality and may serve as an early warning parameter for poor prognosis.
Collapse
Affiliation(s)
- Jiaming Xiu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xueqin Lin
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qiansheng Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Pei Yu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jin Lu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yanfang Yang
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Weihua Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kunming Bao
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Junjie Wang
- Department of Cardiology, Fuzhou First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinlong Zhu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiaoying Zhang
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yuxiong Pan
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jiabin Tu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Liling Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
13
|
Yihui C, Yanfeng G. Inflammatory markers in patients with hypertension. Br J Hosp Med (Lond) 2023; 84:1-8. [PMID: 37235676 DOI: 10.12968/hmed.2022.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hypertension is a chronic disease with high levels of morbidity and disability. Elevated blood pressure can lead to many complications and is the main risk factor for stroke, heart failure and nephropathy. Factors associated with hypertension and inflammatory response differ from those associated with vascular inflammation. The immune system plays a vital role in the pathophysiology of hypertension. Inflammation is particularly relevant in the progression of cardiovascular diseases, which has led to extensive research on inflammatory markers and indicators.
Collapse
Affiliation(s)
- Chen Yihui
- Department of General Practice, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gong Yanfeng
- Department of General Practice, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
15
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
16
|
Cao Y, Li P, Zhang Y, Qiu M, Li J, Ma S, Yan Y, Li Y, Han Y. Dietary Inflammatory Index and All-Cause Mortality in Older Adults with Hypertension: Results from NHANES. J Clin Med 2023; 12:jcm12020506. [PMID: 36675436 PMCID: PMC9864621 DOI: 10.3390/jcm12020506] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Both diet and inflammation are strongly associated with hypertension. However, the relationship between the dietary inflammatory index (DII) and the prognosis of hypertensive patients over 65 years of age is unclear. The objective of this study is to investigate the correlation between DII and all-cause mortality in older adults with hypertension. Data were obtained from the 2011−2018 National Health and Nutrition Examination Survey (NHANES) and followed for survival through December 31, 2019. DII was calculated by the 24 h dietary history interview. Cox proportional hazards models were used to investigate the associations. A total of 2531 participants were finally included. During a median follow-up of 4.33 years, 471 participants were determined as all-cause mortality. After adjusting for confounding factors, DII was positively correlated with the risk of all-cause mortality (HR = 1.08, 95% CI = 1.01−1.16). Compared with the anti-inflammatory diet group (DII < 0), the pro-inflammatory diet group (DII > 0) had a 54% increased risk of all-cause death (HR = 1.54, 95% CI = 1.13−2.10). The results were robust in subgroup and sensitivity analyses. DII was positively correlated with the all-cause mortality of elderly hypertensive patients. The results provided an aid to dietary evaluation in the nonpharmacologic management of hypertension.
Collapse
Affiliation(s)
- Yang Cao
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
- The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi’an 710000, China
| | - Pengxiao Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
- The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi’an 710000, China
| | - Yan Zhang
- The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi’an 710000, China
| | - Miaohan Qiu
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Jing Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Sicong Ma
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Yudong Yan
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
- The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi’an 710000, China
| | - Yi Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
- Correspondence: (Y.L.); (Y.H.)
| | - Yaling Han
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
- Correspondence: (Y.L.); (Y.H.)
| |
Collapse
|
17
|
Cao Y, Li P, Zhang Y, Qiu M, Li J, Ma S, Yan Y, Li Y, Han Y. Association of systemic immune inflammatory index with all-cause and cause-specific mortality in hypertensive individuals: Results from NHANES. Front Immunol 2023; 14:1087345. [PMID: 36817427 PMCID: PMC9932782 DOI: 10.3389/fimmu.2023.1087345] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Background The relationship between the systemic immune inflammatory index (SII) and the prognosis of hypertensive patients is unclear. This study aims to explore the association of SII with all-cause and cause-specific mortality in patients with hypertension. Methods This study included 8524 adults with hypertension from the National Health and Nutritional Examination Surveys (NHANES) 2011-2018, and followed for survival through December 31, 2019. Cox proportional hazards models were used to investigate the associations between SII and mortality from all causes, cardiovascular disease (CVD), and cancer. Restricted cubic spline, piecewise linear regression, subgroup and sensitivity analyses were also used. Results During a median follow-up of 4.58 years, 872 all-cause deaths occurred. After adjusting for covariates, higher SII was significantly associated with an elevated risk of CVD mortality. There was a 102% increased risk of CVD mortality per one-unit increment in natural log-transformed SII (lnSII) (P < 0.001). Consistent results were also observed when SII was examined as categorical variable (quartiles). The associations of SII with all-cause and cancer mortality were detected as U-shaped with threshold values of 5.97 and 6.18 for lnSII respectively. Below thresholds, higher SII was significantly associated with lower all-cause mortality (HR=0.79, 95%CI=0.64-0.97) and cancer mortality (HR=0.73, 95%CI=0.53-1.00). Above thresholds, SII was significantly positive associated with all-cause mortality (HR=1.93, 95%CI=1.55-2.40) and cancer mortality (HR=1.93, 95%CI=1.22-3.05). The results were robust in subgroup and sensitivity analyses. Conclusion Higher SII (either as a continuous or categorical variable) were significantly associated with a higher risk of CVD mortality. The U-shaped associations were observed between SII and all-cause and cancer mortality.
Collapse
Affiliation(s)
- Yang Cao
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.,The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Pengxiao Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.,The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Yan Zhang
- The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Miaohan Qiu
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jing Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Sicong Ma
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yudong Yan
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.,The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Yi Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yaling Han
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Baluku JB, Nabwana M, Nalunjogi J, Muttamba W, Mubangizi I, Nakiyingi L, Ssengooba W, Olum R, Bongomin F, Andia-Biraro I, Worodria W. Cardiovascular risk factors among people with drug-resistant tuberculosis in Uganda. BMC Cardiovasc Disord 2022; 22:464. [PMID: 36333654 PMCID: PMC9636825 DOI: 10.1186/s12872-022-02889-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) and its risk factors are independently associated with cardiovascular disease (CVD). We determined the prevalence and associations of CVD risk factors among people with drug-resistant tuberculosis (DRTB) in Uganda. METHODS In this cross-sectional study, we enrolled people with microbiologically confirmed DRTB at four treatment sites in Uganda between July to December 2021. The studied CVD risk factors were any history of cigarette smoking, diabetes mellitus (DM) hypertension, high body mass index (BMI), central obesity and dyslipidaemia. We used modified Poisson regression models with robust standard errors to determine factors independently associated with each of dyslipidaemia, hypertension, and central obesity. RESULTS Among 212 participants, 118 (55.7%) had HIV. Overall, 196 (92.5%, 95% confidence interval (CI) 88.0-95.3) had ≥ 1 CVD risk factor. The prevalence; 95% CI of individual CVD risk factors was: dyslipidaemia (62.5%; 55.4-69.1), hypertension (40.6%; 33.8-47.9), central obesity (39.3%; 32.9-46.1), smoking (36.3%; 30.1-43.1), high BMI (8.0%; 5.0-12.8) and DM (6.5%; 3.7-11.1). Dyslipidaemia was associated with an increase in glycated haemoglobin (adjusted prevalence ratio (aPR) 1.14, 95%CI 1.06-1.22). Hypertension was associated with rural residence (aPR 1.89, 95% CI 1.14-3.14) and previous history of smoking (aPR 0.46, 95% CI 0.21-0.98). Central obesity was associated with increasing age (aPR 1.02, 95%CI 1.00-1.03), and elevated diastolic blood pressure (aPR 1.03 95%CI 1.00-1.06). CONCLUSION There is a high prevalence of CVD risk factors among people with DRTB in Uganda, of which dyslipidaemia is the commonest. We recommend integrated services for identification and management of CVD risk factors in DRTB.
Collapse
Affiliation(s)
- Joseph Baruch Baluku
- Division of Pulmonology, Kiruddu National Referral Hospital, Kampala, Uganda.
- Makerere University Lung Institute, Kampala, Uganda.
- Directorate of programs, Mildmay Uganda, Wakiso, Uganda.
| | - Martin Nabwana
- Makerere University-John Hopkin's University Collaboration, Kampala, Uganda
| | | | - Winters Muttamba
- Makerere University Lung Institute, Kampala, Uganda
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| | | | - Lydia Nakiyingi
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Willy Ssengooba
- Makerere University Lung Institute, Kampala, Uganda
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Ronald Olum
- Department of Internal Medicine, St. Francis Hospital, Nsambya, Kampala, Uganda
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Department of Internal Medicine, le mémorial Hospital, Kampala, Uganda
| | - Irene Andia-Biraro
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - William Worodria
- Makerere University Lung Institute, Kampala, Uganda
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
19
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
20
|
Munisankar S, Rajamanickam A, Balasubramanian S, Muthusamy S, Menon PA, Ahamed SF, Whalen C, Gumne P, Kaur I, Nadimpalli V, Deverakonda A, Chen Z, Otto JD, Habitegiyorgis T, Kandaswamy H, Babu S. Prevalence of proximate risk factors of active tuberculosis in latent tuberculosis infection: A cross-sectional study from South India. Front Public Health 2022; 10:1011388. [PMID: 36276400 PMCID: PMC9583021 DOI: 10.3389/fpubh.2022.1011388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The prevalence of proximate risk factors for active tuberculosis (TB) in areas of high prevalence of latent tuberculosis infection (LTBI) is not clearly understood. We aimed at assessing the prevalence of non-communicable multi-morbidity focusing on diabetes mellitus (DM), malnutrition, and hypertension (HTN) as common risk factors of LTBI progressing to active TB. In a cross-sectional study, 2,351 adults (45% male and 55% female) from villages in the Kancheepuram district of South India were enrolled between 2013 and 2020. DM was defined as HbA1c >6.4%, undernutrition was defined as low body mass index (LBMI) <18.5 kg/m2, obesity was classified as BMI ≥25 kg/m2, HTN was reported as systolic pressure >130 mmHg, and LTBI was defined as positive (≥ 0.35 international units/ml) by QuantiFERON Gold In-Tube assay. A total of 1,226 individuals (52%) were positive for LTBI out of 2351 tested individuals. The prevalence of DM and pre-diabetes mellitus (PDM) was 21 and 35%, respectively, HTN was 15% in latent tuberculosis (LTB)-infected individuals. The association of DM [odds ratio (OR)]; adjusted odds ratio (aOR) (OR = 1.26, 95% CI: 1.13-1.65; aOR = 1.19, 95% CI: 1.10-1.58), PDM (OR = 1.11, 95% CI: 1.0-1.35), and HTN (OR = 1.28, 95% CI: 1.11-1.62; aOR = 1.18, 95% CI: 1.0-1.56) poses as risk factors of LTBI progression to active TB. The prevalence of LBMI 9% (OR = 1.07, 95% CI: 0.78-1.48) and obesity 42% (OR = 0.85, 95% CI: 0.70-1.03) did not show any statistically significant association with LTB-infected individuals. The present evidence of a high burden of multi-morbidity suggests that proximate risk factors of active TB in LTBI can be managed by nutrition and lifestyle modification.
Collapse
Affiliation(s)
- Saravanan Munisankar
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India,*Correspondence: Saravanan Munisankar
| | - Anuradha Rajamanickam
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Suganthi Balasubramanian
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Satishwaran Muthusamy
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | | | - Shaik Fayaz Ahamed
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Christopher Whalen
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Paschaline Gumne
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Inderdeep Kaur
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Varma Nadimpalli
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Akshay Deverakonda
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhenhao Chen
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John David Otto
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tesfalidet Habitegiyorgis
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Harish Kandaswamy
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Subash Babu
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India,Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Ye C, Geng Z, Zhang LL, Zheng F, Zhou YB, Zhu GQ, Xiong XQ. Chronic infusion of ELABELA alleviates vascular remodeling in spontaneously hypertensive rats via anti-inflammatory, anti-oxidative and anti-proliferative effects. Acta Pharmacol Sin 2022; 43:2573-2584. [PMID: 35260820 PMCID: PMC9525578 DOI: 10.1038/s41401-022-00875-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory activation and oxidative stress promote the proliferation of vascular smooth muscle cells (VSMCs), which accounts for pathological vascular remodeling in hypertension. ELABELA (ELA) is the second endogenous ligand for angiotensin receptor-like 1 (APJ) receptor that has been discovered thus far. In this study, we investigated whether ELA regulated VSMC proliferation and vascular remodeling in spontaneously hypertensive rats (SHRs). We showed that compared to that in Wistar-Kyoto rats (WKYs), ELA expression was markedly decreased in the VSMCs of SHRs. Exogenous ELA-21 significantly inhibited inflammatory cytokines and NADPH oxidase 1 expression, reactive oxygen species production and VSMC proliferation and increased the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) in VSMCs. Osmotic minipump infusion of exogenous ELA-21 in SHRs for 4 weeks significantly decreased diastolic blood pressure, alleviated vascular remodeling and ameliorated vascular inflammation and oxidative stress in SHRs. In VSMCs of WKY, angiotensin II (Ang II)-induced inflammatory activation, oxidative stress and VSMC proliferation were attenuated by pretreatment with exogenous ELA-21 but were exacerbated by ELA knockdown. Moreover, ELA-21 inhibited the expression of matrix metalloproteinase 2 and 9 in both SHR-VSMCs and Ang II-treated WKY-VSMCs. We further revealed that exogenous ELA-21-induced inhibition of proliferation and PI3K/Akt signaling were amplified by the PI3K/Akt inhibitor LY294002, while the APJ receptor antagonist F13A abolished ELA-21-induced PI3K/Akt inhibition and Nrf2 activation in VSMCs. In conclusion, we demonstrate that ELA-21 alleviates vascular remodeling through anti-inflammatory, anti-oxidative and anti-proliferative effects in SHRs, indicating that ELA-21 may be a therapeutic agent for treating hypertension.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Ling-Li Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
22
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
23
|
Lu Y, Zhang Y, Zhao X, Shang C, Xiang M, Li L, Cui X. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Front Cardiovasc Med 2022; 9:900381. [PMID: 36035928 PMCID: PMC9403138 DOI: 10.3389/fcvm.2022.900381] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been on the rise around the globe in the past few decades despite the existing guidelines for prevention and treatment. Short-chain fatty acids (SCFAs) are the main metabolites of certain colonic anaerobic bacterial fermentation in the gastrointestinal tract and have been found to be the key metabolites in the host of CVDs. Accumulating evidence suggest that the end-products of SCFAs (including acetate, propionate, and butyrate) interact with CVDs through maintaining intestinal integrity, anti-inflammation, modulating glucolipid metabolism, blood pressure, and activating gut-brain axis. Recent advances suggest a promising way to prevent and treat CVDs by controlling SCFAs. Hence, this review tends to summarize the functional roles carried out by SCFAs that are reported in CVDs studies. This review also highlights several novel therapeutic interventions for SCFAs to prevent and treat CVDs.
Collapse
Affiliation(s)
- Yingdong Lu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Zhao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Li Li,
| | - Xiangning Cui
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiangning Cui,
| |
Collapse
|
24
|
Zhou B, Wu N, Yan Y, Wu LL, Zhu GQ, Xiong XQ. Angiotensin II-induced miR-31-5p upregulation promotes vascular smooth muscle cell proliferation and migration. Exp Cell Res 2022; 419:113303. [DOI: 10.1016/j.yexcr.2022.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
|
25
|
Moll-Bernardes R, Fortier SC, Sousa AS, Lopes RD, Vera N, Conde L, Feldman A, Arruda G, Cabral-Castro M, Albuquerque DC, Paula TC, Furquim T, Loures VA, Giusti K, Oliveira N, Macedo A, Barros e Silva P, De Luca F, Kotsugai M, Domiciano R, Silva FA, Santos MF, Souza OF, Bozza FA, Luiz RR, Medei E. NKG2A Expression among CD8 Cells Is Associated with COVID-19 Progression in Hypertensive Patients: Insights from the BRACE CORONA Randomized Trial. J Clin Med 2022; 11:jcm11133713. [PMID: 35806995 PMCID: PMC9267446 DOI: 10.3390/jcm11133713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular comorbidities and immune-response dysregulation are associated with COVID-19 severity. We aimed to explore the key immune cell profile and understand its association with disease progression in 156 patients with hypertension that were hospitalized due to COVID-19. The primary outcome was progression to severe disease. The probability of progression to severe disease was estimated using a logistic regression model that included clinical variables and immune cell subsets associated with the primary outcome. Obesity; diabetes; oxygen saturation; lung involvement on computed tomography (CT) examination; the C-reactive protein concentration; total lymphocyte count; proportions of CD4+ and CD8+ T cells; CD4/CD8 ratio; CD8+ HLA-DR MFI; and CD8+ NKG2A MFI on admission were all associated with progression to severe COVID-19. This study demonstrated that increased CD8+ NKG2A MFI at hospital admission, in combination with some clinical variables, is associated with a high risk of COVID-19 progression in hypertensive patients. These findings reinforce the hypothesis of the functional exhaustion of T cells with the increased expression of NKG2A in patients with severe COVID-19, elucidating how severe acute respiratory syndrome coronavirus 2 infection may break down the innate antiviral immune response at an early stage of the disease, with future potential therapeutic implications.
Collapse
Affiliation(s)
- Renata Moll-Bernardes
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
| | - Sérgio C. Fortier
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Pathological Anatomy Laboratory, Rede D’Or São Luiz, São Paulo 04321-120, Brazil
| | - Andréa S. Sousa
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Renato D. Lopes
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27710, USA
- Brazilian Clinical Research Institute, São Paulo 01404-000, Brazil;
| | - Narendra Vera
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (N.V.); (L.C.)
| | - Luciana Conde
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (N.V.); (L.C.)
| | - André Feldman
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- São Luiz Anália Franco Hospital, São Paulo 03313-001, Brazil
| | - Guilherme Arruda
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- São Luiz São Caetano Hospital, São Caetano do Sul 09531-205, Brazil
| | - Mauro Cabral-Castro
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Denílson C. Albuquerque
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Cardiology Department, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil
| | - Thiago C. Paula
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- São Luiz Jabaquara Hospital, São Paulo 04321-120, Brazil
| | - Thyago Furquim
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Sino Brasileiro Hospital, Osasco 06016-050, Brazil
| | - Vitor A. Loures
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- São Luiz Anália Franco Hospital, São Paulo 03313-001, Brazil
| | - Karla Giusti
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Villa Lobos Hospital, São Paulo 03184-020, Brazil
| | - Nathália Oliveira
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Villa Lobos Hospital, São Paulo 03184-020, Brazil
| | - Ariane Macedo
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- São Luiz Jabaquara Hospital, São Paulo 04321-120, Brazil
- Santa Casa of São Paulo, São Paulo 01221-010, Brazil
| | | | - Fábio De Luca
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- São Luiz Morumbi Hospital, São Paulo 05605-050, Brazil
| | - Marisol Kotsugai
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- São Luiz Morumbi Hospital, São Paulo 05605-050, Brazil
| | - Rafael Domiciano
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- São Luiz Anália Franco Hospital, São Paulo 03313-001, Brazil
| | - Flávia A. Silva
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Pathological Anatomy Laboratory, Rede D’Or São Luiz, São Paulo 04321-120, Brazil
| | - Mayara F. Santos
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
| | - Olga F. Souza
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Copa Star Hospital, Rio de Janeiro 22031-012, Brazil
| | - Fernando A. Bozza
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Ronir R. Luiz
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Public Health Studies Institute—IESC, Federal University of Rio de Janeiro, Rio de Janeiro 21941-592, Brazil
| | - Emiliano Medei
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; (R.M.-B.); (S.C.F.); (A.S.S.); (R.D.L.); (A.F.); (G.A.); (D.C.A.); (T.C.P.); (T.F.); (V.A.L.); (K.G.); (N.O.); (A.M.); (F.D.L.); (M.K.); (R.D.); (F.A.S.); (M.F.S.); (O.F.S.); (F.A.B.); (R.R.L.)
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (N.V.); (L.C.)
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-21-3938-0370
| |
Collapse
|
26
|
Su S, Chen R, Zhang S, Shu H, Luo J. Immune system changes in those with hypertension when infected with SARS-CoV-2. Cell Immunol 2022; 378:104562. [PMID: 35901625 PMCID: PMC9183242 DOI: 10.1016/j.cellimm.2022.104562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak has become an evolving global health crisis. With an increasing incidence of primary hypertension, there is greater awareness of the relationship between primary hypertension and the immune system [including CD4+, CD8+ T cells, interleukin-17 (IL-17)/T regulatory cells (Treg) balance, macrophages, natural killer (NK) cells, neutrophils, B cells, and cytokines]. Hypertension is associated with an increased risk of various infections, post-infection complications, and increased mortality from severe infections. Despite ongoing reports on the epidemiological and clinical features of COVID-19, no articles have systematically addressed the role of primary hypertension in COVID-19 or how COVID-19 affects hypertension or specific treatment in these high-risk groups. Here, we synthesize recent advances in understanding the relationship between primary hypertension and COVID-19 and its underlying mechanisms and provide specific treatment guidelines for these high-risk groups.
Collapse
|
27
|
Yin B, Wang YB, Li X, Hou XW. β‑aminoisobutyric acid ameliorates hypertensive vascular remodeling via activating the AMPK/SIRT1 pathway in VSMCs. Bioengineered 2022; 13:14382-14401. [PMID: 36694438 PMCID: PMC9995136 DOI: 10.1080/21655979.2022.2085583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play a fundamental role in the pathogenesis of hypertension-related vascular remodeling. β-aminoisobutyric acid (BAIBA) is a nonprotein β-amino acid with multiple pharmacological actions. Recently, BAIBA has been shown to attenuate salt‑sensitive hypertension, but the role of BAIBA in hypertension-related vascular remodeling has yet to be fully clarified. This study examined the potential roles and underlying mechanisms of BAIBA in VSMC proliferation and migration induced by hypertension. Primary VSMCs were cultured from the aortas of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Our results showed that BAIBA pretreatment obviously alleviated the phenotypic transformation, proliferation, and migration of SHR-derived VSMCs. Exogenous BAIBA significantly inhibited the release of inflammatory cytokines by diminishing phosphorylation and nuclear translocation of p65 NFκB, retarding IκBα phosphorylation and degradation, as well as erasing STAT3 phosphorylation in VSMCs. Supplementation of BAIBA triggered Nrf2 dissociation from Keap1 and inhibited oxidative stress in VSMCs from SHR. Mechanistically, activation of the AMPK/sirtuin 1 (SIRT1) axis was required for BAIBA to cube hypertension-induced VSMC proliferation, migration, oxidative damage and inflammatory response. Most importantly, exogenous BAIBA alleviated hypertension, ameliorated vascular remodeling and fibrosis, abated vascular oxidative burst and inflammation in SHR, an effect that was abolished by deficiency of AMPKα1 and SIRT1. BAIBA might serve as a novel therapeutic agent to prevent vascular remodeling in the context of hypertension.
Collapse
Affiliation(s)
- Bo Yin
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu-Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiang Li
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu-Wei Hou
- Department of Human Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
28
|
Hypertension Induces Gonadal Macrophage Imbalance, Inflammation, Lymphangiogenesis, and Dysfunction. Clin Sci (Lond) 2022; 136:879-894. [PMID: 35532133 DOI: 10.1042/cs20220117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Hypertension (HTN) is associated with gonadal dysfunction and impaired reproductive health in both men and women. An imbalance in the systemic and renal pro-inflammatory (M1)/anti-inflammatory (M2) macrophage ratio, increased inflammation, and inflammation-associated lymphangiogenesis have been observed in animals with HTN. However, the impact of HTN on gonadal macrophages, inflammation, and lymphatics remains obscure. We hypothesized that salt-sensitive HTN (SSHTN) and HTN alters gonadal macrophage polarization, which is associated with inflammation, inflammation-associated lymphangiogenesis and reproductive dysfunction. Flow cytometry analyses revealed a significant increase in M1 macrophages in the testes of SSHTN and nitric oxide synthase inhibition-induced HTN (LHTN) mice, with a concurrent decrease in M2 macrophages in SSHTN mice yet an increase in M2 macrophages in LHTN mice. Ovaries from SSHTN mice exhibited increase in M1 and a decrease in M2 macrophages, while ovaries from LHTN mice had a significant increase in M2 and a decrease in M1 macrophages. Gene expression patterns of pro-inflammatory cytokines revealed gonadal inflammation in all hypertensive mice. Increased lymphatic vessel density in the gonads of both male and female hypertensive mice was confirmed by immunofluorescence staining for LYVE-1. HTN adversely affected the expression pattern of steroidogenic enzymes, hormone receptors, and secretory proteins in both the testes and ovaries. In line with these results, male hypertensive mice also presented with decreased sperm concentration, and increased percentage of sperm with abnormal morphology, damaged acrosome, and non-functional mitochondrial activity. These data demonstrate that HTN alters gonadal macrophage polarization, which is associated with gonadal inflammation, inflammation-associated lymphangiogenesis, and dysfunction.
Collapse
|
29
|
Luo M, Mou Q, Liu L, Tian J, Liu L. Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate-Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy. J Cardiovasc Pharmacol 2022; 79:711-718. [PMID: 35058409 PMCID: PMC9067088 DOI: 10.1097/fjc.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The aim of this study was to investigate whether Treg/Th17 ratio regulation plays an important role in epigallocatechin-3-gallate (EGCG) in attenuating increased afterload-induced cardiac hypertrophy. Three-month-old male C57BL/6 mice were divided into sham + vehicle, abdominal aortic constriction (AAC) + vehicle, and AAC + EGCG groups. Intraperitoneal EGCG (50 mg/kg/d) administration was conducted. Cardiac structure and function were examined by ultrasonography. Pathology was examined by hematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichome staining. T-lymphocyte subtypes were analyzed using immunofluorescence and flow cytometry assays. Ultrasonography showed that the ventricular wall in the AAC + vehicle group was thicker than that in the sham + vehicle group (P < 0.05). Hematoxylin and eosin staining revealed cardiomyocyte hypertrophy accompanied by a small amount of inflammatory cell infiltration in the AAC + vehicle group. The results of wheat germ agglutinin staining demonstrated the presence of hypertrophic cardiomyocytes in the AAC + vehicle group (P < 0.01). Masson's trichome staining showed cardiac fibrosis in the AAC + vehicle group, and the immunofluorescence assay revealed infiltration of CD4+ cells in both AAC + vehicle and AAC + EGCG groups. Splenic flow cytometry showed a significant increase in the proportion of Treg cells in the AAC + EGCG group (P < 0.05). The proportion of Th17 cells in the AAC + vehicle group was significantly higher than that in the sham + vehicle group (P < 0.05). In conclusion, changes in the Treg/Th17 ratio are associated with the occurrence of myocardial hypertrophy caused by increased afterload. Moreover, regulation of the Treg/Th17 ratio by EGCG may play an important role in the attenuation of myocardial hypertrophy.
Collapse
Affiliation(s)
- Min Luo
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Qiuhong Mou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Lingjuan Liu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Jie Tian
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Lifei Liu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
30
|
Lima LR, Okamura AB, de Carvalho KMB, Dutra ES, Gonçalves VSS. Hypertension and Associated Lipid, Glucose, and Adiposity Parameters in School-Aged Adolescents in the Federal District, Brazil. Arq Bras Cardiol 2022; 118:719-726. [PMID: 35137784 PMCID: PMC9007003 DOI: 10.36660/abc.20201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prevalence of hypertension and other metabolic disorders has increased in young individuals. However, no representative studies have been conducted in the population of the Federal District, Brazil. OBJECTIVE To estimate the prevalence of hypertension and its association with lipid, glucose, and adiposity markers in school-aged adolescents living in the Federal District. METHODS This cross-sectional study included participants of the Study of Cardiovascular Risks in Adolescents (Portuguese acronym, ERICA). Blood pressure, blood glucose, glycated hemoglobin, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, body mass index (BMI), waist circumference, and economic, demographic, and sexual maturity variables were assessed. The data were analyzed in Stata, and the analysis was divided into different stages: descriptive, crude, and adjusted. Significant results were set at p < 0.05. RESULTS In total, 1,200 adolescents were included, and their mean age was 14.8 years. The prevalence of hypertension was 8% (95% confidence interval: 6.3; 9.9). Most parameters were associated with blood pressure in crude analysis. In adjusted analysis, glucose, lipid, and adiposity markers maintained the associations, and the highest magnitudes were those of BMI and HOMA-IR. CONCLUSION The study revealed a high prevalence of hypertension in adolescents living in the Federal District, and blood pressure levels were associated with other markers of lipid, glucose, and adiposity profile. The findings indicate the relevance of health surveillance for planning effective actions aimed at reversing this situation and preventing new cases.
Collapse
Affiliation(s)
- Letícia Rocha Lima
- Departamento de NutriçãoUniversidade de BrasíliaBrasíliaDFBrasilDepartamento de Nutrição - Universidade de Brasília, Brasília, DF – Brasil
| | - Aline Bassetto Okamura
- Programa de Pós-graduação em Saúde ColetivaUniversidade de BrasíliaBrasíliaDFBrasilPrograma de Pós-graduação em Saúde Coletiva - Universidade de Brasília, Brasília, DF – Brasil
| | - Kênia Mara Baiocchi de Carvalho
- Programa de Pós-graduação em Saúde ColetivaUniversidade de BrasíliaBrasíliaDFBrasilPrograma de Pós-graduação em Saúde Coletiva - Universidade de Brasília, Brasília, DF – Brasil
- Programa de Pós-graduação em Nutrição HumanaUniversidade de BrasíliaBrasíliaDFBrasilPrograma de Pós-graduação em Nutrição Humana - Universidade de Brasília, Brasília, DF – Brasil
| | - Eliane Said Dutra
- Programa de Pós-graduação em Nutrição HumanaUniversidade de BrasíliaBrasíliaDFBrasilPrograma de Pós-graduação em Nutrição Humana - Universidade de Brasília, Brasília, DF – Brasil
| | - Vivian Siqueira Santos Gonçalves
- Programa de Pós-graduação em Saúde ColetivaUniversidade de BrasíliaBrasíliaDFBrasilPrograma de Pós-graduação em Saúde Coletiva - Universidade de Brasília, Brasília, DF – Brasil
| |
Collapse
|
31
|
Sylvester MA, Pollow DP, Moffett C, Nunez W, Uhrlaub JL, Nikolich-Zugich J, Brooks HL. Splenocyte transfer from hypertensive donors eliminates premenopausal female protection from ANG II-induced hypertension. Am J Physiol Renal Physiol 2022; 322:F245-F257. [PMID: 35001661 PMCID: PMC8858666 DOI: 10.1152/ajprenal.00369.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Premenopausal females are protected from angiotensin II (ANG II)-induced hypertension following the adoptive transfer of T cells from normotensive donors. For the present study, we hypothesized that the transfer of hypertensive T cells (HT) or splenocytes (HS) from hypertensive donors would eliminate premenopausal protection from hypertension. Premenopausal recombination-activating gene-1 (Rag-1)-/- females received either normotensive (NT) or hypertensive cells 3 wk before ANG II infusion (14 days, 490 ng/kg/min). Contrary to our hypothesis, no increase in ANG II-induced blood pressure was observed in the NT/ANG or HT/ANG groups. Flow cytometry demonstrated that renal FoxP3+ T regulatory cells were significantly decreased, and immunohistochemistry showed an increase in renal F4/80+ macrophages in the HT/ANG group, suggesting a shift in the renal inflammatory environment despite no change in blood pressure. Renal mRNA expression of macrophage chemoattractant protein-1 (MCP-1), endothelin-1 (ET-1), and G protein-coupled estrogen receptor-1 (GPER-1) was significantly decreased in the HT/ANG group. The adoptive transfer of hypertensive splenocytes before ANG II infusion (HS/ANG) eliminated premenopausal protection from hypertension and significantly decreased splenic FoxP3+ T regulatory cells compared with females that received normotensive splenocytes (NS/ANG). Expression of macrophage inflammatory protein 1α/chemokine (C-C motif) ligand 3 (MCP-1/CCL3), a potent macrophage chemokine, was elevated in the HS/ANG group; however, no increase in renal macrophage infiltration occurred. Together, these data show that in premenopausal females, T cells from hypertensive donors are not sufficient to induce robust ANG II-mediated hypertension; in contrast, transfer of hypertensive splenocytes (consisting of T/B lymphocytes, dendritic cells, and macrophages) is sufficient. Further work is needed to understand how innate and adaptive immune cells and estrogen signaling coordinate to cause differential hypertensive outcomes in premenopausal females.NEW & NOTEWORTHY Our study is the first to explore the role of hypertensive T cells versus hypertensive splenocytes in premenopausal protection from ANG II-induced hypertension. We show that the hypertensive status of T cell donors does not impact blood pressure in the recipient female. However, splenocytes, when transferred from hypertensive donors, significantly increased premenopausal recipient blood pressure following ANG II infusion, highlighting the importance of further investigation into estrogen signaling and immune cell activation in females.
Collapse
Affiliation(s)
| | - Dennis P Pollow
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Caitlin Moffett
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Wendy Nunez
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, Arizona
- University of Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Janko Nikolich-Zugich
- Department of Immunobiology, University of Arizona, Tucson, Arizona
- University of Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- University of Arizona Center on Aging, University of Arizona, Tucson, Arizona
| |
Collapse
|
32
|
Ge W, Guo X, Song X, Pang J, Zou X, Liu Y, Niu Y, Li Z, Zhao H, Gao R, Wang J. OUP accepted manuscript. Cardiovasc Res 2022; 118:2985-2999. [PMID: 35048969 DOI: 10.1093/cvr/cvac010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Junling Pang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Xuan Zou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Yonglin Liu
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shaanxi Province, Shenmu 719300, China
| | - Yongliang Niu
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shaanxi Province, Shenmu 719300, China
| | - Zhengqing Li
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shaanxi Province, Shenmu 719300, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Ran Gao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| |
Collapse
|
33
|
Sahinoz M, Elijovich F, Ertuglu LA, Ishimwe J, Pitzer A, Saleem M, Mwesigwa N, Kleyman TR, Laffer CL, Kirabo A. Salt Sensitivity of Blood Pressure in Blacks and Women: A Role of Inflammation, Oxidative Stress, and Epithelial Na + Channel. Antioxid Redox Signal 2021; 35:1477-1493. [PMID: 34569287 PMCID: PMC8713266 DOI: 10.1089/ars.2021.0212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
Significance: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for mortality and morbidity due to cardiovascular disease, and disproportionately affects blacks and women. Several mechanisms have been proposed, including exaggerated activation of sodium transporters in the kidney leading to salt retention and water. Recent Advances: Recent studies have found that in addition to the renal epithelium, myeloid immune cells can sense sodium via the epithelial Na+ channel (ENaC), which leads to activation of the nicotinamide adenine dinucleotide phosphate oxidase enzyme complex, increased fatty acid oxidation, and production of isolevuglandins (IsoLGs). IsoLGs are immunogenic and contribute to salt-induced hypertension. In addition, aldosterone-mediated activation of ENaC has been attributed to the increased SSBP in women. The goal of this review is to highlight mechanisms contributing to SSBP in blacks and women, including, but not limited to increased activation of ENaC, fatty acid oxidation, and inflammation. Critical Issues: A critical barrier to progress in management of SSBP is that its diagnosis is not feasible in the clinic and is limited to expensive and laborious research protocols, which makes it difficult to investigate. Yet without understanding the underlying mechanisms, this important risk factor remains without treatment. Future Directions: Further studies are needed to understand the mechanisms that contribute to differential blood pressure responses to dietary salt and find feasible diagnostic tools. This is extremely important and may go a long way in mitigating the racial and sex disparities in cardiovascular outcomes. Antioxid. Redox Signal. 35, 1477-1493.
Collapse
Affiliation(s)
- Melis Sahinoz
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lale A. Ertuglu
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naome Mwesigwa
- Department of Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
34
|
Grassi G. The Sympathetic Nervous System in Hypertension: Roadmap Update of a Long Journey. Am J Hypertens 2021; 34:1247-1254. [PMID: 34355740 PMCID: PMC8643601 DOI: 10.1093/ajh/hpab124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
The present paper will provide an update on the role of sympathetic neural factors in the development and progression of essential hypertension by reviewing data collected in the past 10 years. This will be done by discussing the results of the published studies in which sympathetic neural function in essential hypertension and related disease has been investigated via sophisticated and highly sensitive techniques, such as microneurographic recording of sympathetic nerve traffic and regional norepinephrine spillover. First, the relevance of the pathophysiological background of the neurogenic alterations will be discussed. It will be then examined the behavior of the sympathetic neural function in specific clinical phenotypes, such as resistant hypertension, pseudoresistant hypertension, and hypertensive states displaying elevated resting heart values. This will be followed by a discussion of the main results of the meta-analytic studies examining the behavior of sympathetic nerve traffic in essential hypertension, obesity, metabolic syndrome, and chronic renal failure. The sympathetic effects of renal denervation and carotid baroreceptor stimulation as well as the possible involvement of sympathetic neural factors in the determination of the so-called "residual risk" of the treated hypertensive patients will be finally discussed.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
35
|
Onuh JO, Qiu H. Metabolic Profiling and Metabolites Fingerprints in Human Hypertension: Discovery and Potential. Metabolites 2021; 11:687. [PMID: 34677402 PMCID: PMC8539280 DOI: 10.3390/metabo11100687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of pathogenesis through biomarkers holds the key to controlling hypertension and preventing cardiovascular complications. Metabolomics profiling acts as a potent and high throughput tool offering new insights on disease pathogenesis and potential in the early diagnosis of clinical hypertension with a tremendous translational promise. This review summarizes the latest progress of metabolomics and metabolites fingerprints and mainly discusses the current trends in the application in clinical hypertension. We also discussed the associated mechanisms and pathways involved in hypertension's pathogenesis and explored related research challenges and future perspectives. The information will improve our understanding of the development of hypertension and inspire the clinical application of metabolomics in hypertension and its associated cardiovascular complications.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
36
|
Formanowicz D, Gutowska K, Szawulak B, Formanowicz P. The Crosstalk between SARS-CoV-2 Infection and the RAA System in Essential Hypertension-Analyses Using Systems Approach. Int J Mol Sci 2021; 22:ijms221910518. [PMID: 34638859 PMCID: PMC8508810 DOI: 10.3390/ijms221910518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the coronavirus disease of 2019 (COVID-19) pandemic, has affected and continues to affect millions of people across the world. Patients with essential arterial hypertension and renal complications are at particular risk of the fatal course of this infection. In our study, we have modeled the selected processes in a patient with essential hypertension and chronic kidney disease (CKD) suffering from COVID-19, emphasizing the function of the renin-angiotensin-aldosterone (RAA) system. The model has been built in the language of Petri nets theory. Using the systems approach, we have analyzed how COVID-19 may affect the studied organism, and we have checked whether the administration of selected anti-hypertensive drugs (angiotensin-converting enzyme inhibitors (ACEIs) and/or angiotensin receptor blockers (ARBs)) may impact the severity of the infection. Besides, we have assessed whether these drugs effectively lower blood pressure in the case of SARS-CoV-2 infection affecting essential hypertensive patients. Our research has shown that neither the ACEIs nor the ARBs worsens the course infection. However, when assessing the treatment of hypertension in the active SARS-CoV-2 infection, we have observed that ARBs might not effectively reduce blood pressure; they may even have the slightly opposite effect. On the other hand, we have confirmed the effectiveness of arterial hypertension treatment in patients receiving ACEIs. Moreover, we have found that the simultaneous use of ARBs and ACEIs averages the effects of taking both drugs, thus leading to only a slight decrease in blood pressure. We are a way from suggesting that ARBs in all hypertensive patients with COVID-19 are ineffective, but we have shown that research in this area should still be continued.
Collapse
Affiliation(s)
- Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Kaja Gutowska
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland; (K.G.); (B.S.)
| | - Bartłomiej Szawulak
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland; (K.G.); (B.S.)
| | - Piotr Formanowicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland; (K.G.); (B.S.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence:
| |
Collapse
|
37
|
Dayaramani C, De Leon J, Reiss AB. Cardiovascular Disease Complicating COVID-19 in the Elderly. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:833. [PMID: 34441038 PMCID: PMC8399122 DOI: 10.3390/medicina57080833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2, a single-stranded RNA coronavirus, causes an illness known as coronavirus disease 2019 (COVID-19). The highly transmissible virus gains entry into human cells primarily by the binding of its spike protein to the angiotensin-converting enzyme 2 receptor, which is expressed not only in lung tissue but also in cardiac myocytes and the vascular endothelium. Cardiovascular complications are frequent in patients with COVID-19 and may be a result of viral-associated systemic and cardiac inflammation or may arise from a virus-induced hypercoagulable state. This prothrombotic state is marked by endothelial dysfunction and platelet activation in both macrovasculature and microvasculature. In patients with subclinical atherosclerosis, COVID-19 may incite atherosclerotic plaque disruption and coronary thrombosis. Hypertension and obesity are common comorbidities in COVID-19 patients that may significantly raise the risk of mortality. Sedentary behaviors, poor diet, and increased use of tobacco and alcohol, associated with prolonged stay-at-home restrictions, may promote thrombosis, while depressed mood due to social isolation can exacerbate poor self-care. Telehealth interventions via smartphone applications and other technologies that document nutrition and offer exercise programs and social connections can be used to mitigate some of the potential damage to heart health.
Collapse
Affiliation(s)
| | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (C.D.); (J.D.L.)
| |
Collapse
|
38
|
Karanfil M, Gayretli Yayla K. The association of aortic elasticity properties with novel inflammatory marker CRP /albumin ratio. Clin Exp Hypertens 2021; 43:780-787. [PMID: 34340611 DOI: 10.1080/10641963.2021.1960368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Hypertension (HT) is the most important preventable cause of cardiovascular disease and mortality. Aortic elasticity parameters are affected in HT, and inflammation plays a central role in the development of HT. C-reactive protein (CRP) to albumin ratio (CAR) is a novel inflammatory marker. We aimed to evaluate the association of aortic elasticity properties with CAR. METHODS A total of newly diagnosed untreated 101 hypertensive patients and 98 control participants were included to study. Clinical, demographic parameters, and blood sample parameters were recorded. Aortic strain, aortic stiffness index (ASI), and aortic distensibility (AoD) as aortic elasticity parameters were obtained from transthoracic echocardiography. RESULTS CRP, CAR, ASI were significantly higher in hypertensive patients. (6.32 ± 2.48 vs 8.41 ± 3.35, p:<0.001; 0.158 ± 0.065 vs. 0.204 ± 0.083, p: <0.001; 6.73 ± 1.00 vs. 10.93 ± 1.81, p: <0.001, respectively) Aortic strain and AoD levels were significantly lower in hypertensive patients. (6.75 ± 2.17 vs 7.98 ± 2.27; p: <0.001 vs. 3.05 ± 0.97 vs 5.16 ± 1.01; p: <0.001, respectively). CONCLUSION CAR a novel inflammatory marker, which can be obtained from blood samples without additional time and cost, can be useful to predict aortic elasticity properties of hypertensive patients in daily clinical practice.
Collapse
Affiliation(s)
| | - Kadriye Gayretli Yayla
- Department of Cardiology, Dr. Abdurrahman Yurtaslan Ankara Oncology Research Ang Training Hospital, Ankara, Turkey
| |
Collapse
|
39
|
Schreckenberg R, Wolf A, Troidl C, Simsekyilmaz S, Schlüter KD. Pro-inflammatory Vascular Stress in Spontaneously Hypertensive Rats Associated With High Physical Activity Cannot Be Attenuated by Aldosterone Blockade. Front Cardiovasc Med 2021; 8:699283. [PMID: 34381826 PMCID: PMC8349986 DOI: 10.3389/fcvm.2021.699283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The effect of high physical activity, performed as voluntary running wheel exercise, on inflammation and vascular adaptation may differ between normotensive and spontaneously hypertensive rats (SHRs). We investigated the effects of running wheel activity on leukocyte mobilization, neutrophil migration into the vascular wall (aorta), and transcriptional adaptation of the vascular wall and compared and combined the effects of high physical activity with that of pharmacological treatment (aldosterone antagonist spironolactone). At the start of the 6th week of life, before hypertension became established in SHRs, rats were provided with a running wheel over a period of 10-months'. To investigate to what extent training-induced changes may underlie a possible regression, controls were also generated by removal of the running wheel for the last 4 months. Aldosterone blockade was achieved upon oral administration of Spironolactone in the corresponding treatment groups for the last 4 months. The number of circulating blood cells was quantified by FACS analysis of peripheral blood. mRNA expression of selected proteins was quantified by RT-PCR. Histology and confocal laser microscopy were used to monitor cell migration. Although voluntary running wheel exercise reduced the number of circulating neutrophils in normotensive rats, it rather increased it in SHRs. Furthermore, running wheel activity in SHRs but not normotensive rats increased the number of natural killer (NK)-cells. Except of the increased expression of plasminogen activator inhibitor (PAI)-1 and reduction of von Willebrand factor (vWF), running wheel activity exerted a different transcriptional response in the vascular tissue of normotensive and hypertensive rats, i.e., lack of reduction of the pro-inflammatory IL-6 in vessels from hypertensive rats. Spironolactone reduced the number of neutrophils; however, in co-presence with high physical activity this effect was blunted. In conclusion, although high physical activity has beneficial effects in normotensive rats, this does not predict similar beneficial effects in the concomitant presence of hypertension and care has to be taken on interactions between pharmacological approaches and high physical activity in hypertensives.
Collapse
Affiliation(s)
- Rolf Schreckenberg
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Annemarie Wolf
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christian Troidl
- Department of Cardiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sakine Simsekyilmaz
- Department of Pharmacology and Clinical Pharmacology, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | | |
Collapse
|
40
|
Wu HM, Goate AM, O'Reilly PF. Heterogeneous effects of genetic risk for Alzheimer's disease on the phenome. Transl Psychiatry 2021; 11:406. [PMID: 34301914 PMCID: PMC8302633 DOI: 10.1038/s41398-021-01518-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Here we report how four major forms of Alzheimer's disease (AD) genetic risk-APOE-ε4, APOE-ε2, polygenic risk and familial risk-are associated with 273 traits in ~500,000 individuals in the UK Biobank. The traits cover blood biochemistry and cell traits, metabolic and general health, psychosocial health, and cognitive function. The difference in the profile of traits associated with the different forms of AD risk is striking and may contribute to heterogenous presentation of the disease. However, we also identify traits significantly associated with multiple forms of AD genetic risk, as well as traits showing significant changes across ages in those at high risk of AD, which may point to their potential roles in AD etiology. Finally, we highlight how survivor effects, in particular those relating to shared risks of cardiovascular disease and AD, can generate associations that may mislead interpretation in epidemiological AD studies. The UK Biobank provides a unique opportunity to powerfully compare the effects of different forms of AD genetic risk on the phenome in the same cohort.
Collapse
Affiliation(s)
- Hei Man Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
Shah H, Khan MSH, Dhurandhar NV, Hegde V. The triumvirate: why hypertension, obesity, and diabetes are risk factors for adverse effects in patients with COVID-19. Acta Diabetol 2021; 58:831-843. [PMID: 33587177 PMCID: PMC7882857 DOI: 10.1007/s00592-020-01636-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a pandemic. The cellular receptor for SARS-CoV-2 entry is the angiotensin-converting enzyme 2, a membrane-bound homolog of angiotensin-converting enzyme. Henceforth, this has brought the attention of the scientific community to study the interaction between COVID-19 and the renin-angiotensin system (RAS), as well as RAS inhibitors. However, these inhibitors are commonly used to treat hypertension, chronic kidney disorder, and diabetes. Obesity is a known risk factor for heart disease, diabetes, and hypertension, whereas diabetes and hypertension may be indirectly related to each other through the effects of obesity. Furthermore, people with hypertension, obesity, diabetes, and other related complications like cardiovascular and kidney diseases have a higher risk of severe COVID-19 infection than the general population and usually exhibit poor prognosis. This severity could be due to systemic inflammation and compromised immune response and RAS associated with these comorbid conditions. Therefore, there is an urgent need to develop evidence-based treatment methods that do not affect the severity of COVID-19 infection and effectively manage these chronic diseases in people with COVID-19.
Collapse
Affiliation(s)
- Harsh Shah
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, 79409, USA
| | - Md Shahjalal Hossain Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, 79409, USA
| | - Nikhil V Dhurandhar
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, 79409, USA
| | - Vijay Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, 79409, USA.
| |
Collapse
|
42
|
Rodrigues-Diez RR, Tejera-Muñoz A, Orejudo M, Marquez-Exposito L, Santos-Sanchez L, Rayego-Mateos S, Cantero-Navarro E, Tejedor-Santamaria L, Marchant V, Ortiz A, Egido J, Mezzano S, Selgas R, Navarro-González JF, Valdivielso JM, Lavoz C, Ruiz-Ortega M. Interleukin-17A: Potential mediator and therapeutic target in hypertension. Nefrologia 2021; 41:244-257. [PMID: 36166242 DOI: 10.1016/j.nefroe.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 06/16/2023] Open
Abstract
Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and in target organ damage. Preclinical studies in mice have shown that systemic adminstration of IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Many studies in hypertensive mice models have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, the blockade of IL-17A by genetic strategies or using neutralizing antibodies, disminished blood pressure, probablyby acting on the small mesenteric arteries as well as in the regulation of tubule sodium transport. Moreover, IL-17A inhibition reduces end-organs damage. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target of hypertension-related pathologies in the future.
Collapse
Affiliation(s)
- Raúl R Rodrigues-Diez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marquez-Exposito
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Elena Cantero-Navarro
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Selgas
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación La Paz (IdiPAZ), Hospital Universitario La Paz, Universidad Autónoma, IRSIN, Madrid, Spain
| | - Juan F Navarro-González
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Jose M Valdivielso
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
43
|
Ying W, Tang K, Avolio E, Schilling JM, Pasqua T, Liu MA, Cheng H, Gao H, Zhang J, Mahata S, Ko MS, Bandyopadhyay G, Das S, Roth DM, Sahoo D, Webster NJG, Sheikh F, Ghosh G, Patel HH, Ghosh P, van den Bogaart G, Mahata SK. Immunosuppression of Macrophages Underlies the Cardioprotective Effects of CST (Catestatin). Hypertension 2021; 77:1670-1682. [PMID: 33826401 DOI: 10.1161/hypertensionaha.120.16809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wei Ying
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| | - Kechun Tang
- VA San Diego Healthcare System, CA (T.P., K.T., J.M.S., D.M.R., N.J.G.W., H.H.P., S.K.M.)
| | - Ennio Avolio
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla.,Comparative Anatomy & Cytology, Dept. of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende-Cosenza, Italy (E.A.)
| | - Jan M Schilling
- VA San Diego Healthcare System, CA (T.P., K.T., J.M.S., D.M.R., N.J.G.W., H.H.P., S.K.M.).,Department of Anesthesiology (J.M.S., D.M.R., H.H.P.), University of California San Diego, La Jolla
| | - Teresa Pasqua
- VA San Diego Healthcare System, CA (T.P., K.T., J.M.S., D.M.R., N.J.G.W., H.H.P., S.K.M.).,Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy (T.P.)
| | - Matthew A Liu
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| | - Hongqiang Cheng
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China (H.C.)
| | - Hong Gao
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| | - Jing Zhang
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| | - Sumana Mahata
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| | - Myung S Ko
- Department of Chemistry and Biochemistry (M.S.K., G.G.), University of California San Diego, La Jolla
| | - Gautam Bandyopadhyay
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| | - Soumita Das
- Department of Pathology (S.D.), University of California San Diego, La Jolla
| | - David M Roth
- VA San Diego Healthcare System, CA (T.P., K.T., J.M.S., D.M.R., N.J.G.W., H.H.P., S.K.M.).,Department of Anesthesiology (J.M.S., D.M.R., H.H.P.), University of California San Diego, La Jolla
| | - Debashis Sahoo
- Department of Pediatrics (D.S.), University of California San Diego, La Jolla.,Department of Computer Science and Engineering (D.S.), University of California San Diego, La Jolla
| | - Nicholas J G Webster
- VA San Diego Healthcare System, CA (T.P., K.T., J.M.S., D.M.R., N.J.G.W., H.H.P., S.K.M.).,Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| | - Farah Sheikh
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry (M.S.K., G.G.), University of California San Diego, La Jolla
| | - Hemal H Patel
- VA San Diego Healthcare System, CA (T.P., K.T., J.M.S., D.M.R., N.J.G.W., H.H.P., S.K.M.).,Department of Anesthesiology (J.M.S., D.M.R., H.H.P.), University of California San Diego, La Jolla
| | - Pradipta Ghosh
- Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla.,Cellular and Molecular Medicine (P.G.), University of California San Diego, La Jolla
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands (G.v.d.B.).,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (G.v.d.B.)
| | - Sushil K Mahata
- VA San Diego Healthcare System, CA (T.P., K.T., J.M.S., D.M.R., N.J.G.W., H.H.P., S.K.M.).,Department of Medicine (W.Y., E.A., M.A.L., H.G., J.Z., S.M., G.B., F.S., N.J.G.W., P.G., S.K.M.), University of California San Diego, La Jolla
| |
Collapse
|
44
|
Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, Peck RN, Laffer CL, Kirabo A. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ Res 2021; 128:908-933. [PMID: 33793336 PMCID: PMC8023750 DOI: 10.1161/circresaha.121.318052] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.
Collapse
Affiliation(s)
- Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Kingery
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit (MITU), Mwanza, Tanzania
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| |
Collapse
|
45
|
Heterogeneity of neutrophils in arterial hypertension. Exp Cell Res 2021; 402:112577. [PMID: 33811902 DOI: 10.1016/j.yexcr.2021.112577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/21/2023]
Abstract
Cellular heterogeneity and diversity are recognized to contribute to the functions of neutrophils under homeostatic and pathological conditions. We previously suggested that the chronic inflammatory responses associated with hypertension (HTN) are related to the participation of different subpopulations of neutrophils. Two populations of neutrophils can be obtained by density gradient centrifugation: normal-density neutrophils (NDN) and low-density neutrophils (LDN). However, the lack of standardized functional protocols has limited phenotypic characterization and functional comparisons of LDN and NDN. Based on their capability to incorporate Na+, maturity and activation stage, we characterized NDN and LDN in blood samples from ten patients with HTN and ten healthy individuals (HI) using flow cytometry. We compared the levels of reactive oxygen species (ROS), generation of neutrophil extracellular traps (NETs) and levels of apoptosis in NDN and LDN. In general, the NDN and LDN subpopulations from patients with HTN exhibited higher levels of sodium influx and ROS, and lower levels of apoptosis than the corresponding NDN and LDN subsets from HI. Transmission electron microscopy revealed NDN and LDN from patients with HTN exhibited alterations to mitochondrial morphology and fewer cytoplasmic granules than the corresponding HI subpopulations. Our results indicate both the NDN and LDN subpopulations enhance the effects of inflammation that contribute to the pathophysiology of HTN. Further detailed studies are required to characterize the events during ontogeny of the myeloid lineage that result in the diverse phenotypic characteristics of each subpopulation of LDN and NDN.
Collapse
|
46
|
Regulatory T-cell subset distribution in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J Hypertens 2021; 38:692-700. [PMID: 31834124 DOI: 10.1097/hjh.0000000000002328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The relationship between circulating regulatory T-cell (Tregs) subset distribution and hypertension severity in children with primary hypertension is not known. We aimed to find out if target organ damage (TOD) in children with primary hypertension is related to defects in Tregs distribution reflected by their phenotype characteristics. METHODS The study constituted 33 nontreated hypertensive children and 35 sex-matched and age-matched controls. Using multicolor flow cytometry technique, we assessed a distribution of the total Tregs (CD4CD25CD127) and their subsets (CD45RA-naive Tregs, CD45RA memory/activated Tregs, CD45RACD31 recent thymic emigrants Tregs and mature naive CD45RACD31 Tregs) in the whole blood. RESULTS Hypertensive children showed decreased percentage of the total Tregs, the CD45RA-naive Tregs, the total CD31 Tregs and the recent thymic emigrants Tregs but elevation of the CD45RA memory/activated Treg and mature naive CD45RACD31 Tregs. Decreased frequency of the total Tregs, naive Tregs and CD31-bearing Treg cell subsets (CD31 total Tregs, CD45RACD31 recent thymic emigrants Tregs) negatively correlated to TOD markers, arterial stiffness and blood pressure elevation. In contrast, increased percentage of memory Tregs and CD31 Tregs subsets positively correlated to organ damage markers, arterial stiffness and blood pressure values. These changes were independent of BMI, age, sex and hsCRP. CONCLUSION Both diagnosis of hypertension, TOD and arterial stiffness in hypertensive children were associated with decreased population of total CD4 Tregs, limited output of recent thymic emigrants Tregs, and increased pool of activated/memory Tregs. Hypertension was an independent predictor of the circulating Treg subsets distribution irrespective of hsCRP.
Collapse
|
47
|
Lazaridis A, Gavriilaki E, Douma S, Gkaliagkousi E. Toll-Like Receptors in the Pathogenesis of Essential Hypertension. A Forthcoming Immune-Driven Theory in Full Effect. Int J Mol Sci 2021; 22:3451. [PMID: 33810594 PMCID: PMC8037648 DOI: 10.3390/ijms22073451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Essential hypertension (EH) is a highly heterogenous disease with a complex etiology. Recent evidence highlights the significant contribution of subclinical inflammation, triggered and sustained by excessive innate immune system activation in the pathogenesis of the disease. Toll-like receptors (TLRs) have been implied as novel effectors in this inflammatory environment since they can significantly stimulate the production of pro-inflammatory cytokines, the migration and proliferation of smooth muscle cells and the generation of reactive oxygen species (ROS), facilitating a low-intensity inflammatory background that is evident from the very early stages of hypertension. Furthermore, the net result of their activation is oxidative stress, endothelial dysfunction, vascular remodeling, and finally, vascular target organ damage, which forms the pathogenetic basis of EH. Importantly, evidence of augmented TLR expression and activation in hypertension has been documented not only in immune but also in several non-immune cells located in the central nervous system, the kidneys, and the vasculature which form the pathogenetic core systems operating in hypertensive disease. In this review, we will try to highlight the contribution of innate immunity in the pathogenesis of hypertension by clarifying the deleterious role of TLR signaling in promoting inflammation and facilitating hypertensive vascular damage.
Collapse
Affiliation(s)
- Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| | - Eleni Gavriilaki
- Hematology Department, Bone Marrow Transplantation Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| |
Collapse
|
48
|
Rodrigues-Diez RR, Tejera-Muñoz A, Orejudo M, Marquez-Exposito L, Santos L, Rayego-Mateos S, Cantero-Navarro E, Tejedor-Santamaria L, Marchant V, Ortiz A, Egido J, Mezzano S, Selgas R, Navarro-González JF, Valdivielso JM, Lavoz C, Ruiz-Ortega M. [Interleukin-17A: Possible mediator and therapeutic target in hypertension]. Nefrologia 2021; 41:244-257. [PMID: 33775443 DOI: 10.1016/j.nefro.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 lymphocytes and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and target organ damage. Studies in mice have shown that IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Preclinical studies on arterial hypertension have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, blocking IL-17A by genetic strategies, or using neutralising antibodies, lowers blood pressure by acting on the vascular wall and tubule sodium transport and reduces damage to target organs. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target in the future.
Collapse
Affiliation(s)
- Raúl R Rodrigues-Diez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Antonio Tejera-Muñoz
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, España
| | - Laura Marquez-Exposito
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Laura Santos
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, España
| | - Elena Cantero-Navarro
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Lucia Tejedor-Santamaria
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Vanessa Marchant
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, España
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Selgas
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Instituto de Investigación La Paz (IdiPAZ), Hospital Universitario La Paz, Universidad Autónoma, IRSIN, Madrid, España
| | - Juan F Navarro-González
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España; Instituto de Tecnologías Biomédicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, España
| | - Jose M Valdivielso
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, España
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
49
|
Wu S, Yang YM, Zhu J, Ren JM, Wang J, Zhang H, Shao XH. Impact of Baseline Neutrophil-to-Lymphocyte Ratio on Long-Term Prognosis in Patients With Atrial Fibrillation. Angiology 2021; 72:819-828. [PMID: 33719617 DOI: 10.1177/00033197211000495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We performed a retrospective analysis involving 1269 patients with atrial fibrillation (AF) to evaluate the predictive value of the neutrophil-to-lymphocyte ratio (NLR) on long-term outcomes. The primary outcomes were all-cause mortality and combined end point events (CEEs). Cox proportional hazards regression analysis and net reclassification improvement (NRI) analysis were performed. During a median follow-up of 3.32 years, 285 deaths and 376 CEEs occurred. With the elevation of the NLR, the incidence of all-cause mortality (2.77, 4.14, 6.12, and 12.18/100 person-years) and CEEs (4.19, 7.40, 8.03, and 15.22/100 person-years) significantly increased. Multivariate Cox analysis indicated that the highest NLR quartile was independently associated with the incidence of all-cause mortality (hazard ratio [HR] = 1.77, 95% CI: 1.19-2.65) and CEEs (HR = 1.66, 95% CI: 1.18-2.33). When the NLR was analyzed as a continuous variable, a 1-unit increment in log NLR was related to 134% increased risk of all-cause mortality and 119% increased risk of CEEs. Net reclassification improvement analysis revealed that NLR significantly improved risk stratification for all-cause death and CEEs by 15.0% and 9.6%, respectively. Neutrophil-to-lymphocyte ratio could be an independent predictor of long-term outcomes in patients with AF.
Collapse
Affiliation(s)
- Shuang Wu
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan-Min Yang
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jun Zhu
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jia-Meng Ren
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Juan Wang
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Han Zhang
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xing-Hui Shao
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
50
|
Radchenko GD, Sirenko YM. Prognostic Significance of Systemic Arterial Stiffness Evaluated by Cardio-Ankle Vascular Index in Patients with Idiopathic Pulmonary Hypertension. Vasc Health Risk Manag 2021; 17:77-93. [PMID: 33731998 PMCID: PMC7957228 DOI: 10.2147/vhrm.s294767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In a previous study, the cardio-ankle vascular index (CAVI) was increased significantly in idiopathic pulmonary arterial hypertension (IPAH) patients compared to the healthy group and did not much differ from one in systemic hypertensives. In this study the relations between survival and CAVI was evaluated in patients with IPAH. PATIENTS AND METHODS We included 89 patients with new-diagnosed IPAH without concomitant diseases. Standard examinations, including right heart catheterization (RHC) and systemic arterial stiffness evaluation, were performed. All patients were divided according to CAVI value: the group with CAVI ≥ 8 (n = 18) and the group with CAVI < 8 (n = 71). The mean follow-up was 33.8 ± 23.7 months. Kaplan-Meier and Cox regression analysis were performed for the evaluation of our cohort survival and the predictors of death. RESULTS The group with CAVI≥8 was older and more severe compared to the group with CAVI< 8. Patients with CAVI≥8 had significantly reduced end-diastolic (73.79±18.94 vs 87.35±16.69 mL, P<0.009) and end-systolic (25.71±9.56 vs 33.55±10.33 mL, P<0.01) volumes of the left ventricle, the higher right ventricle thickness (0.77±0.12 vs 0.62±0.20 mm, P < 0.006), and the lower TAPSE (13.38±2.15 vs 15.98±4.4 mm, P<0.018). RHC data did not differ significantly between groups, except the higher level of the right atrial pressure in patients with CAVI≥ 8-11.38±7.1 vs 8.76±4.7 mmHg, P<0.08. The estimated overall survival rate was 61.2%. The CAVI≥8 increased the risk of mortality 2.34 times (CI 1.04-5.28, P = 0.041). The estimated Kaplan-Meier survival in the patients with CAVI ≥ 8 was only 46.7 ± 7.18% compared to patients with CAVI < 8 - 65.6 ± 4.2%, P = 0.035. At multifactorial regression analysis, the CAVI reduced but saved its relevance as death predictor - OR = 1.13, CI 1.001-1.871. SUMMARY We suggested the CAVI could be a new independent predictor of death in the IPAH population and could be used to better risk stratify this patient population if CAVI is validated as a marker in a larger multicenter trial.
Collapse
Affiliation(s)
- Ganna D Radchenko
- Department of Symptomatic Hypertension, “National Scientific Center “The M.D. Strazhesko Institute of Cardiology”” of National Academy of Medical Science, Kyiv, Ukraine
| | - Yuriy M Sirenko
- Department of Symptomatic Hypertension, “National Scientific Center “The M.D. Strazhesko Institute of Cardiology”” of National Academy of Medical Science, Kyiv, Ukraine
| |
Collapse
|