1
|
Martin E, Cao M, Schulz KP, Hildebrandt T, Sysko R, Berner LA, Li X. Distinct Topological Properties of the Reward Anticipation Network in Preadolescent Children With Binge Eating Disorder Symptoms. J Am Acad Child Adolesc Psychiatry 2024; 63:1158-1168. [PMID: 38461893 PMCID: PMC11380707 DOI: 10.1016/j.jaac.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Few studies have considered the neural underpinnings of binge eating disorder (BED) in children, despite clinical and subclinical symptom presentation occurring in this age group. Symptom presentation at this age is of clinical relevance, as early onset of binge eating is linked to negative health outcomes. Studies in adults have highlighted dysfunction in the frontostriatal reward system as a potential candidate for binge eating pathophysiology, although the exact nature of such dysfunction is currently unclear. METHOD Data from 83 children (mean age 9.9 years, SD = 0.60) with symptoms of BED (57% girls) and 123 control participants (mean age 10.0 years, SD = 0.60) (52% girls) were acquired from the 4.0 baseline release of the Adolescent Brain Cognitive Development Study. Task-based graph theoretic techniques were used to analyze data from anticipation trials of the monetary incentive delay task. Network and nodal properties were compared between groups. RESULTS The BED-S group showed alterations in topological properties associated with the frontostriatal subnetwork, such as reduced nodal efficiency in the superior frontal gyrus, nucleus accumbens, putamen, and in normal sex-difference patterns of these properties, such as diminished girls-greater-than-boys pattern of betweenness-centrality in nucleus accumbens observed in controls. CONCLUSION Distinct network properties and sex-difference patterns in preadolescent children with BED-S suggest dysregulation in the reward system compared to those of matched controls. For the first time, these results quantify this dysregulation in terms of systems-level properties during anticipation of monetary reward and significantly inform the early and sex-related brain markers of BED symptoms. PLAIN LANGUAGE SUMMARY Binge eating disorder is the most common eating disorder. One factor that may contribute to binge eating is dysregulation of the reward system in the brain. This study analyzed brain activity during anticipation of monetary rewards in 83 youth with and 123 children without binge eating disorder symptoms from the Adolescent Brain Cognitive Development Study. The authors found specific alterations in the frontostriatal system, responsible for reward processing, in children with binge eating disorder symptoms, compared to the control group, suggesting dysregulation of the reward system.
Collapse
Affiliation(s)
- Elizabeth Martin
- Icahn School of Medicine at Mount Sinai, New York, New Jersey; New Jersey Institute of Technology, Newark, New Jersey
| | - Meng Cao
- New Jersey Institute of Technology, Newark, New Jersey
| | - Kurt P Schulz
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Tom Hildebrandt
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Robyn Sysko
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Laura A Berner
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Xiaobo Li
- New Jersey Institute of Technology, Newark, New Jersey.
| |
Collapse
|
2
|
Sommerfeld A, Herrmann M, Heldmann M, Erhard P, Münte TF. Associations Between Intertemporal Food Choice and BMI in Adult Women: An fMRI Study Using a Quasi-realistic Design. Cogn Behav Neurol 2024:00146965-990000000-00078. [PMID: 39435613 DOI: 10.1097/wnn.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/15/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Impulsivity resulting in unrestrained eating has been implicated as a contributing factor for obesity. Delay discounting (DD) tasks where individuals choose between a smaller immediate reward and a larger delayed reward provide useful data to describe impulsive decision-making and to determine the extent to which delayed rewards are discounted. OBJECTIVE To study the association between body mass index(BMI) and delay discounting for food and money in adult women. METHODS We used a DD task with real food rewards to investigate impulsive decision-making as related to BMI in participants who self-identified as women. Participants in group A had a mean BMI of 21.4 (n = 14), and participants in group B had a mean BMI of 32.2 (n = 14). Each group was tested in a hungry state during a single session. We performed fMRI during a DD task requiring participants to choose between a food item (one sandwich) constituting a smaller immediate reward and multiple food items (two, three, or four sandwiches) constituting a series of larger delayed rewards available at different intervals. The steepness of the discounting curve for food was determined from these decisions. Participants then completed a monetary discounting task to facilitate a comparison of the discounting of food and monetary rewards. RESULTS Participants in group B discounted food rewards more steeply than monetary rewards. Decisions for delayed rewards led to increased activations of brain areas related to executive control on fMRI, such as the head of the caudate nucleus and the anterior cingulate cortex (ACC) in group A, but not group B participants. CONCLUSION Our findings suggest that group B had difficulty deciding against the immediate food rewards due to insufficient recruitment of cortical control areas. Therefore, impulsivity is an important target for behavioral interventions in individuals with obesity.
Collapse
Affiliation(s)
- Anne Sommerfeld
- Institute of Psychology, University of Göttingen, Göttingen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Manfred Herrmann
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
- Center for Advanced Imaging, Universities of Bremen and Magdeburg, Bremen, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Peter Erhard
- Center for Advanced Imaging, Universities of Bremen and Magdeburg, Bremen, Germany
| | - Thomas F Münte
- Center of Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Iannazzo LH, Hayden MJ, Lawrence NS, Kakoschke N, Hughes LK, Van Egmond K, Lum J, Staiger PK. Inhibitory control training to reduce appetitive behaviour: a meta-analytic investigation of effectiveness, potential moderators, and underlying mechanisms of change. Health Psychol Rev 2024:1-30. [PMID: 39397386 DOI: 10.1080/17437199.2024.2410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND/AIMS Inhibitory control training (ICT) is a cognitive intervention that has been suggested to reduce problematic appetitive behaviours, such as unhealthy eating and excessive alcohol consumption. We conducted a meta-analytic review of ICT for reducing appetitive behaviours. METHODS Two meta-analyses were conducted for behavioural (objective) outcomes and self-report outcomes, along with 14 moderator analyses, and two secondary analyses investigating changes in cue-devaluation and inhibitory control. RESULTS The review included 46 articles (67 effect sizes and 4231 participants) and four appetitive health behaviours (eating, drinking, smoking, gambling). A significant effect of ICT on behavioural outcomes was found (SMD = 0.241, p .001). The self-report outcomes meta-analysis was not significant (p > .05). Secondary analyses also demonstrated greater inhibitory control (p < .05) and cue devaluation (p < .05) following ICT. CONCLUSIONS This meta-analytic review is the largest synthesis of ICT interventions for appetitive behaviours. ICT significantly reduced problematic eating behaviours when adopting behavioural outcomes, but this was not found for other appetitive behaviours. ICT also significantly improved inhibitory control and reduced cue evaluations. Further studies are required before drawing any conclusions regarding impacts on other appetitive behaviours.
Collapse
Affiliation(s)
- Lauren H Iannazzo
- School of Psychology, Deakin University, Geelong, Australia
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Melissa J Hayden
- School of Psychology, Deakin University, Geelong, Australia
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | | - Naomi Kakoschke
- School of Psychology, Flinders University, Adelaide, Australia
- Human Health, Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, Australia
| | - Laura K Hughes
- School of Psychology, Deakin University, Geelong, Australia
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | | - Jarrad Lum
- School of Psychology, Deakin University, Geelong, Australia
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | |
Collapse
|
4
|
Aydin BN, Stinson EJ, Travis KT, Krakoff J, Rodzevik T, Chang DC, Gluck ME. Reduced plasma interleukin-6 concentration after transcranial direct current stimulation to the prefrontal cortex. Behav Brain Res 2024; 474:115201. [PMID: 39151649 PMCID: PMC11401619 DOI: 10.1016/j.bbr.2024.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Transcranial direct stimulation (tDCS) targeted to the dorsolateral prefrontal cortex (DLPFC) reduces food intake and hunger, but its effects on circulating factors are unclear. We assessed the effect of repeated administration of tDCS to the left DLPFC (L-DLPFC) on concentrations of pro/anti-inflammatory and appetitive hormone concentrations. MATERIALS AND METHODS Twenty-nine healthy adults with obesity (12 M; 42±11 y; BMI=39±8 kg/m2) received 3 consecutive inpatient sessions of either anodal or sham tDCS targeted to the L-DLPFC during a period of ad libitum food intake. Fasting plasma concentrations of IL-6, orexin, cortisol, TNF-α, IL-1β, ghrelin, PYY, and GLP-1 were measured before the initial and after the final tDCS sessions. RESULTS IL-6 (β=-0.92 pg/ml p=0.03) decreased in the anodal group compared with sham, even after adjusting for kcal intake; there were no changes in other hormones. Mean kcal intake was associated with higher IL-1β and ghrelin concentrations after the ad libitum period (β=0.00018 pg/ml/kcal, p=0.03; β=0.00011 pg/ml/kcal, p=0.02; respectively), but not differ by intervention groups. CONCLUSIONS IL-6 concentrations were reduced following anodal tDCS to the L-DLPFC independent of ad libitum intake. IL-6 concentrations reflect the inflammatory state of adiposity and may affect eating behavior and weight gain. These findings provide evidence of therapeutic benefit of tDCS.
Collapse
Affiliation(s)
- Beyza N Aydin
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Emma J Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Katherine T Travis
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Theresa Rodzevik
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States
| | - Marci E Gluck
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, United States.
| |
Collapse
|
5
|
Labonté K, Fantino M, Nielsen DE. Disentangling inhibition toward food and non-food stimuli across two hunger levels: An fNIRS study. Appetite 2024; 203:107678. [PMID: 39277924 DOI: 10.1016/j.appet.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
While individuals tend to display poorer inhibitory control toward food-related than neutral stimuli, it is unclear whether this challenge is specific to food or extends to other pleasant stimuli. Uncertainty also remains regarding the general impact of hunger on inhibition. To address these questions, we used a within-subjects design whereby 44 healthy adults completed two go/no-go tasks including no-go images of highly palatable foods and no-go images of animals matched for valence and physical properties. Both tasks were completed one week apart in either a fed or a fasted state. Prefrontal cortex activity was measured using functional near-infrared spectroscopy. Poorer behavioral inhibition was observed when participants needed to withhold their response to images of food compared to animals, regardless of hunger state. In addition, more commission errors were made in the fasted compared to the fed condition, regardless of the type of image to avoid responding to. Responses to go trials were slower when these trials were interspersed with food compared to animal no-go trials. However, hunger did not influence go response time. Greater activation was observed in the dorsolateral prefrontal cortex during blocks of trials with (vs. without) no-go images, but brain activity did not differ according to the type of no-go image. The effect of hunger on prefrontal brain activity was also not significant. Exploratory correlations showed that food-related inhibition deficits were positively related to self-reported impulsivity, but unrelated to body mass index. This study suggests that even among healthy adults, food-related inhibitory control may have a unique behavioral signature beyond general inhibition toward pleasant stimuli. Hunger also exerts an independent influence on general inhibitory capabilities, highlighting the importance of carefully controlling hunger levels in inhibition studies.
Collapse
Affiliation(s)
- Katherine Labonté
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Manon Fantino
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Daiva E Nielsen
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
6
|
Sardjoe M, Aldred S, Adam T, Plasqui G, Brunstrom JM, Dourish CT, Higgs S. Inhibitory control mediates the effect of high intensity interval exercise on food choice. Appetite 2024; 200:107499. [PMID: 38759756 DOI: 10.1016/j.appet.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Exercise is associated with changes in food consumption and cognitive function. The aim of this study was to examine the immediate effects of acute exercise on appetite, food choices, and cognitive processes, and the mediating role of cognitive functioning, namely inhibitory control, working memory, cognitive flexibility and decision making. We compared the effects of high-intensity interval exercise (HIIE) to a resting condition on appetite and food choices, using visual analogue rating scales and a computerised portion selection task. Mediation analysis was performed with exercise/rest condition as a predictor variable and cognitive measures were entered as mediating variables and food choice measures as outcomes. Young women with low activity levels, aged between 18 and 35 years with a body mass index (BMI) between 18 and 25 kg/m², were recruited. Participants (n = 30) demonstrated improved performance on a Stroop task following HIIE compared to the rest session, indicating enhanced attentional inhibition. Accuracy on an N-back task was significantly higher after HIIE, indicating an improvement in working memory and response times on the N-back task were shorter after HIIE, suggesting increased processing speed. Delay discounting for food (but not money) was reduced after HIEE but there were no significant effects on go/no-go task performance. On the trail-making task (a measure of cognitive flexibility), the time difference between trail B and A was significantly lower after HIIE, compared to rest. HIIE reduced rated enjoyment and ideal portion size selection for high energy dense foods. The relationship between exercise and food choices was mediated by inhibition as assessed by the Stoop task. These results suggest that HIIE leads to cognitive benefits and a reduced preference for high-calorie foods and that an enhancement of attentional inhibition may underlie this relationship.
Collapse
Affiliation(s)
- Madhronica Sardjoe
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Tanja Adam
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, PO Box 616, 6200, Maastricht, MD, the Netherlands
| | - Guy Plasqui
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, PO Box 616, 6200, Maastricht, MD, the Netherlands
| | - Jeffrey M Brunstrom
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, United Kingdom; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, BS8 2BN, United Kingdom
| | - Colin T Dourish
- Blue Day Healthcare, Marlow, Buckinghamshire, SL7 3QT, United Kingdom
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
7
|
Guo H, Han J, Xiao M, Chen H. Functional alterations in overweight/obesity: focusing on the reward and executive control network. Rev Neurosci 2024; 35:697-707. [PMID: 38738975 DOI: 10.1515/revneuro-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.
Collapse
Affiliation(s)
- Haoyu Guo
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Jinfeng Han
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Mingyue Xiao
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
- Research Center of Psychology and Social Development, 26463 Southwest University , Chongqing 400715, China
| |
Collapse
|
8
|
Saad M, Bohon C, Weinbach N. Mechanisms underlying food devaluation after response inhibition to food. Appetite 2024; 199:107387. [PMID: 38692510 DOI: 10.1016/j.appet.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Multiple studies reveal that a requirement to stop a response to appetitive food stimuli causes devaluation of these stimuli. However, the mechanism underlying food devaluation after stopping is still under debate. The immediate-affect theory suggests that an increase in negative affect after stopping a response is the driving force for food devaluation. A competing value-updating theory presumes that food devaluation after stopping occurs through the need to align behavior with goals. The current study assessed how food devaluation after response inhibition is influenced by negative emotional reactivity and behavior-goal alignment on a trial-by-trial basis. The study included 60 healthy participants who completed a Food-Stop-Signal-Emotion task. Participants categorized high vs. low-calorie food stimuli and stopped their response upon encountering a stop signal. Subsequently, participants made subjective negativity ratings of negative- or neutral-valenced emotional images, and rated their desire to eat the previously depicted food. In contrast to predictions made by the immediate-affect account, food devaluation after stopping was not mediated nor moderated via changes in negative emotional reactivity after stopping. In support of the value-updating account, food devaluation was modulated by behavior-goal alignment, indicated by larger food devaluation after successful vs. failed stopping. In agreement with this theory, the findings indicate that devaluation occurs more strongly when performance aligns with the task requirement. This study sheds light on the mechanism that likely underlies food devaluation after stopping. Implications regarding applied use of food-inhibition trainings are discussed.
Collapse
Affiliation(s)
- Maram Saad
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Noam Weinbach
- School of Psychological Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
9
|
Ruiz-Molina YG, Herrera-Ávila J, Espinosa-Juárez JV, Esquinca-Avilés HA, Tejas-Juárez JG, Flores-Guillén E, Morales-Martínez LA, Briones-Aranda A, Jiménez-Ceballos B, Sierra-Ramírez JA, Cruz-Trujillo R. Association of Overweight and Obesity with Impaired Executive Functioning in Mexican Adolescents: The Importance of Inhibitory Control. Healthcare (Basel) 2024; 12:1368. [PMID: 39057511 PMCID: PMC11275439 DOI: 10.3390/healthcare12141368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Overweight and obesity are major public health issues worldwide, including in Mexico, particularly among adolescents. This study aimed to analyze the associations between nutritional status and impaired executive function (EF) in Mexican adolescents. A case-control study was conducted with 98 male and female adolescents, categorized into normal weight and overweight/obese groups based on body mass index. EF was assessed using the BANFE-2 test. The prevalence of overweight and obesity was 54.3%. The EF assessment revealed that 82.45% of the overweight/obese group exhibited mild-to-severe impairment, compared to only 36.58% in the normal weight group (X2 = 21.69, p < 0.0001). In the inhibitory control assessment, adolescents with overweight and obesity performed worse than their normal-weight counterparts. Specifically, females with overweight/obesity scored lower than females with normal weight on the risk-benefit processing test. The risk of severe EF impairment significantly increased with the presence of overweight/obesity (OR = 7.8, p < 0.0001). These findings indicate that EF, particularly inhibitory control and risk-benefit processing, is impaired in adolescents with overweight or obesity.
Collapse
Affiliation(s)
- Yatzeny Guadalupe Ruiz-Molina
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (Y.G.R.-M.); (J.H.-Á.)
| | - Josué Herrera-Ávila
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (Y.G.R.-M.); (J.H.-Á.)
| | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa 29140, Mexico; (J.V.E.-J.); (H.A.E.-A.)
| | - Héctor Armando Esquinca-Avilés
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa 29140, Mexico; (J.V.E.-J.); (H.A.E.-A.)
| | - Juan Gabriel Tejas-Juárez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Tabasco 86658, Mexico;
| | - Elena Flores-Guillén
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas (UNICACH), Libramiento Norte-Poniente 1150, Col. Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico; (E.F.-G.); (L.A.M.-M.)
| | - Luis Alberto Morales-Martínez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas (UNICACH), Libramiento Norte-Poniente 1150, Col. Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico; (E.F.-G.); (L.A.M.-M.)
| | - Alfredo Briones-Aranda
- Facultad de Medicina Humana Campus II, Universidad Autónoma de Chiapas (UNACH), Décima Sur esquina Calle Central S/N, Tuxtla Gutiérrez 29050, Mexico;
| | - Betsabé Jiménez-Ceballos
- Clínica de Trastornos del Sueño, Universidad Autónoma Metropolitana, Unidad Iztapalapa (UAM-I), Av. San Rafael Atlixco 185, Col. Leyes de Reforma, Iztapalapa, Ciudad de Mexico 09340, Mexico;
| | - José Alfredo Sierra-Ramírez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (Y.G.R.-M.); (J.H.-Á.)
| | - Refugio Cruz-Trujillo
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa 29140, Mexico; (J.V.E.-J.); (H.A.E.-A.)
- Departamento de Químicos Farmacobiólogos, Universidad Pablo Guardado Chávez (UPGCH), Libramiento Norte Oriente No. 3450, Tuxtla Gutiérrez 29040, Mexico
| |
Collapse
|
10
|
Takehana A, Tanaka D, Arai M, Hattori Y, Yoshimoto T, Matsui T, Sadato N, Chikazoe J, Jimura K. Healthy dietary choices involve prefrontal mechanisms associated with long-term reward maximization but not working memory. Cereb Cortex 2024; 34:bhae302. [PMID: 39066505 DOI: 10.1093/cercor/bhae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Taste and health are critical factors to be considered when choosing foods. Prioritizing healthiness over tastiness requires self-control. It has also been suggested that self-control is guided by cognitive control. We then hypothesized that neural mechanisms underlying healthy food choice are associated with both self-control and cognitive control. Human participants performed a food choice task and a working memory task during functional MRI scanning. Their degree of self-control was assessed behaviorally by the value discount of delayed monetary rewards in intertemporal choice. Prioritizing healthiness in food choice was associated with greater activity in the superior, dorsolateral, and medial prefrontal cortices. Importantly, the prefrontal activity was greater in individuals with smaller delay discounting (i.e. high self-control) who preferred a delayed larger reward to an immediate smaller reward in intertemporal choice. On the other hand, working memory activity did not show a correlation with delay discounting or food choice activity, which was further supported by supplementary results that analyzed data from the Human Connectome Project. Our results suggest that the prefrontal cortex plays a critical role in healthy food choice, which requires self-control, but not working memory, for maximization of reward attainments in a remote future.
Collapse
Affiliation(s)
- Ai Takehana
- Department of Informatics, Gunma University, 4-2 Aramaki-machi, Maebashi, 371-8510, Japan
- Faculty of Biological and Environmental Sciences, University of Helsinki, Biocenter 3, Viikinkaari 1, Helsinki 00014, Finland
| | - Daiki Tanaka
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Mariko Arai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yoshiki Hattori
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Yoshimoto
- Supportive Center for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji Okazaki, 444-8585, Japan
- Research & Development Department, Araya Inc., 1-11 Kanda Sakuma-cho, Chiyoda, 101-0025, Tokyo, Japan
| | - Teppei Matsui
- Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Norihiro Sadato
- Supportive Center for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji Okazaki, 444-8585, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu 525-8577, Japan
| | - Junichi Chikazoe
- Supportive Center for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji Okazaki, 444-8585, Japan
- Research & Development Department, Araya Inc., 1-11 Kanda Sakuma-cho, Chiyoda, 101-0025, Tokyo, Japan
| | - Koji Jimura
- Department of Informatics, Gunma University, 4-2 Aramaki-machi, Maebashi, 371-8510, Japan
| |
Collapse
|
11
|
Zhou G, Lane G, Kahnt T, Zelano C. Structural Connectivity between Olfactory Tubercle and Ventrolateral Periaqueductal Gray Implicated in Human Feeding Behavior. J Neurosci 2024; 44:e2342232024. [PMID: 38755004 PMCID: PMC11209663 DOI: 10.1523/jneurosci.2342-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
The olfactory tubercle (TUB), also called the tubular striatum, receives direct input from the olfactory bulb and, along with the nucleus accumbens, is one of the two principal components of the ventral striatum. As a key component of the reward system, the ventral striatum is involved in feeding behavior, but the vast majority of research on this structure has focused on the nucleus accumbens, leaving the TUB's role in feeding behavior understudied. Given the importance of olfaction in food seeking and consumption, olfactory input to the striatum should be an important contributor to motivated feeding behavior. Yet the TUB is vastly understudied in humans, with very little understanding of its structural organization and connectivity. In this study, we analyzed macrostructural variations between the TUB and the whole brain and explored the relationship between TUB structural pathways and feeding behavior, using body mass index (BMI) as a proxy in females and males. We identified a unique structural covariance between the TUB and the periaqueductal gray (PAG), which has recently been implicated in the suppression of feeding. We further show that the integrity of the white matter tract between the two regions is negatively correlated with BMI. Our findings highlight a potential role for the TUB-PAG pathway in the regulation of feeding behavior in humans.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland 21224
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
12
|
Chmiel J, Kurpas D, Rybakowski F, Leszek J. The Effectiveness of Transcranial Direct Current Stimulation (tDCS) in Binge Eating Disorder (BED)-Review and Insight into the Mechanisms of Action. Nutrients 2024; 16:1521. [PMID: 38794759 PMCID: PMC11123682 DOI: 10.3390/nu16101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Binge eating disorder (BED) is the most common eating disorder among those contributing to the development of obesity, and thus acts as a significant burden on the lives and health of patients. It is characterized by complex neurobiology, which includes changes in brain activity and neurotransmitter secretion. Existing treatments are moderately effective, and so the search for new therapies that are effective and safe is ongoing. AIM AND METHODS This review examines the use of transcranial direct current stimulation (tDCS) in the treatment of binge eating disorder. Searches were conducted on the PubMed/Medline, Research Gate, and Cochrane databases. RESULTS Six studies were found that matched the review topic. All of them used the anodal stimulation of the right dorsolateral prefrontal cortex (DLPFC) in BED patients. tDCS proved effective in reducing food cravings, the desire to binge eat, the number of binging episodes, and food intake. It also improved the outcomes of inhibitory control and the treatment of eating disorder psychopathology. The potential mechanisms of action of tDCS in BED are explained, limitations in current research are outlined, and recommendations for future research are provided. CONCLUSIONS Preliminary evidence suggests that the anodal application of tDCS to the right DLPFC reduces the symptoms of BED. However, caution should be exercised in the broader use of tDCS in this context due to the small number of studies performed and the small number of patients included. Future studies should incorporate neuroimaging and neurophysiological measurements to elucidate the potential mechanisms of action of tDCS in BED.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
13
|
Guo J, Wan X, Lian J, Ma H, Dong D, Liu Y, Zhao J. Electrophysiological Characteristics of Inhibitive Control for Adults with Different Physiological or Psychological Obesity. Nutrients 2024; 16:1252. [PMID: 38732499 PMCID: PMC11085209 DOI: 10.3390/nu16091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Individuals exhibiting high scores on the fatness subscale of the negative-physical-self scale (NPSS-F) are characterized by heightened preoccupation with body fat accompanied by negative body image perceptions, often leading to excessive dieting behaviors. This demographic constitutes a considerable segment of the populace in China, even among those who are not obese. Nonetheless, scant empirical inquiries have delved into the behavioral and neurophysiological profiles of individuals possessing a healthy body mass index (BMI) alongside elevated NPSS-F scores. This study employed an experimental paradigm integrating go/no-go and one-back tasks to assess inhibitory control and working memory capacities concerning food-related stimuli across three adult cohorts: those with normal weight and low NPSS-F scores, those with normal weight and high NPSS-F scores, and individuals classified as obese. Experimental stimuli comprised high- and low-caloric-food pictures with concurrent electroencephalogram (EEG) and photoplethysmogram (PPG) recordings. Individuals characterized by high NPSS-F scores and normal weight exhibited distinctive electrophysiological responses compared to the other two cohorts, evident in event-related potential (ERP) components, theta and alpha band oscillations, and heart rate variability (HRV) patterns. In essence, the findings underscore alterations in electrophysiological reactivity among individuals possessing high NPSS-F scores and a healthy BMI in the context of food-related stimuli, underscoring the necessity for increased attention to this demographic alongside individuals affected by obesity.
Collapse
Affiliation(s)
- Jiaqi Guo
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
| | - Xiaofang Wan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
| | - Junwei Lian
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
| | - Hanqing Ma
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
| | - Debo Dong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jia Zhao
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (J.G.); (X.W.); (J.L.); (H.M.); (D.D.)
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Luo Y, Xiao M, Chen X, Zeng W, Chen H. Harsh, unpredictable childhood environments are associated with inferior frontal gyrus connectivity and binge eating tendencies in late adolescents. Appetite 2024; 195:107210. [PMID: 38266713 DOI: 10.1016/j.appet.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/03/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Harsh, unpredictable childhood environments (HUCE) are associated with obesity older in life, but knowledge of how HUCE affect binge eating tendencies is lacking. Five hundred and one late adolescents aged 16-22 were recruited to finish resting state functional magnetic resonance imaging scan, behavioral measures including retrospective recall of childhood environmental harshness and unpredictability, binge eating tendencies and demographics. Three hundred and seventy-six of participants further completed the computerized visual probe task designed to evaluate attentional engagement towards high and low calorie food. As right inferior frontal gyrus (IFG) was the key nodes that related to both early life adversity and binge eating tendencies, it was treated as the interest region in the dynamic functional connectivity analyses. Results found that HUCE are associated with significant but modest decreases in connectivity of right inferior frontal gyrus (IFG)- bilateral medial frontal gyrus, right IFG - bilateral inferior parietal lobule (IPL), and right IFG - left superior frontal gyrus connectivity, as well as attentional engagement to high-calorie food and binge eating tendencies. A machine-learning method named linear support vector regression (SVR) and leave one out cross-validation (LOOCV) procedure used to examine the robustness of the brain-behavior relationship further confirm the findings. Mediation analyses suggested that right IFG - left IPL connectivity mediates the association of HUCE and binge eating tendencies. Findings suggest right IFG - left IPL connectivity may serve as a crucial neurobiological underpinning of HUCE to regulate binge eating behaviors. As such, these results contribute to a novel perspective and hypotheses in elucidating developmental neuro-mechanisms related to binge eating.
Collapse
Affiliation(s)
- Yijun Luo
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Minyue Xiao
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Ximei Chen
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Weiyu Zeng
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Grosu C, Klauser P, Dwir D, Khadimallah I, Alemán-Gómez Y, Laaboub N, Piras M, Fournier M, Preisig M, Conus P, Draganski B, Eap CB. Associations between antipsychotics-induced weight gain and brain networks of impulsivity. Transl Psychiatry 2024; 14:162. [PMID: 38531873 DOI: 10.1038/s41398-024-02881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Given the unpredictable rapid onset and ubiquitous consequences of weight gain induced by antipsychotics, there is a pressing need to get insights into the underlying processes at the brain system level that will allow stratification of "at risk" patients. The pathophysiological hypothesis at hand is focused on brain networks governing impulsivity that are modulated by neuro-inflammatory processes. To this aim, we investigated brain anatomy and functional connectivity in patients with early psychosis (median age: 23 years, IQR = 21-27) using anthropometric data and magnetic resonance imaging acquired one month to one year after initiation of AP medication. Our analyses included 19 patients with high and rapid weight gain (i.e., ≥5% from baseline weight after one month) and 23 patients with low weight gain (i.e., <5% from baseline weight after one month). We replicated our analyses in young (26 years, IQR = 22-33, N = 102) and middle-aged (56 years, IQR = 51-62, N = 875) healthy individuals from the general population. In early psychosis patients, higher weight gain was associated with poor impulse control score (β = 1.35; P = 0.03). Here, the observed brain differences comprised nodes of impulsivity networks - reduced frontal lobe grey matter volume (Pcorrected = 0.007) and higher striatal volume (Pcorrected = 0.048) paralleled by disruption of fronto-striatal functional connectivity (R = -0.32; P = 0.04). Weight gain was associated with the inflammatory biomarker plasminogen activator inhibitor-1 (β = 4.9, P = 0.002). There was no significant association between increased BMI or weight gain and brain anatomy characteristics in both cohorts of young and middle-aged healthy individuals. Our findings support the notion of weight gain in treated psychotic patients associated with poor impulse control, impulsivity-related brain networks and chronic inflammation.
Collapse
Affiliation(s)
- Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland.
| | - Paul Klauser
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
- Connectomics Lab, Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Martin Preisig
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neuroscience - Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Rosales-Fernández R, Paredes M, Zuñiga A, Durán F, Sarce-Paredes N, Vásquez C, Conejero J, Alarcón-Garrido F. [Neuroanatomical mapping of inhibitory attention and working memory with functional magnetic resonance imaging in healthy children]. Rev Neurol 2024; 78:147-155. [PMID: 38482702 PMCID: PMC11064954 DOI: 10.33588/rn.7806.2023221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
INTRODUCTION The objective is to produce an average brain activation mapping template in healthy children using functional magnetic resonance imaging (fMRI), with specific paradigms for activating inhibitory attention and working memory functions. SUBJECTS AND METHODS A nutritional and neuropsychological evaluation was performed on 87 right-handed children. The inclusion criteria were met by 30 children (15 boys and 15 girls) between 9 and 11 years old, who were studied with fMRI in two inhibitory attention tests (Go/No Go), with food cues, a working memory test (Continuous Performance Test Identical Pairs) and measurement of anatomical volumes. These data were subsequently processed with the FSL-v5 program, with a threshold of p < 0.05 (cluster-wise). The brain areas activated were located using a standard Montreal Neurological Institute brain template and the Harvard-Oxford structural cortical atlas. RESULTS The inhibitory attention tests showed activation frontal areas predominantly on the right, and the cingulate, parietal and occipital areas, with preponderance in occipital areas in the food cues test. In the Continuous Performance Test-Identical Pairs test, activation was obtained predominantly in the occipital, frontal and parietal areas. CONCLUSIONS Brain activity mapping templates are obtained in healthy children with tests for inhibitory attention, food cues and working memory. The activation areas are mostly those reported in the literature. This provides baseline brain activation patterns for studying pathologies related to inhibitory attention, impulsivity and working memory.
Collapse
Affiliation(s)
- R Rosales-Fernández
- Universidad de los Andes, Santiago de Chile, Chile
- Clínica Santa María, Santiago, Chile
| | - M Paredes
- Universidad de los Andes, Santiago de Chile, Chile
- Clínica Santa María, Santiago, Chile
| | - A Zuñiga
- Clínica Santa María, Santiago, Chile
| | - F Durán
- Clínica Santa María, Santiago, Chile
| | | | - C Vásquez
- Clínica Santa María, Santiago, Chile
| | | | | |
Collapse
|
17
|
Mattavelli G, Gorrino I, Tornaghi D, Canessa N. Cognitive and motor impulsivity in the healthy brain, and implications for eating disorders and obesity: A coordinate-based meta-analysis and systematic review. Cortex 2024; 171:90-112. [PMID: 37984247 DOI: 10.1016/j.cortex.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/10/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
Alterations in the impulse-control balance, and in its neural bases, have been reported in obesity and eating disorders (EDs). Neuroimaging studies suggest a role of fronto-parietal networks in impulsive behaviour, with evaluation and anticipatory processes additionally recruiting meso-limbic regions. However, whether distinct facets of cognitive and motor impulsivity involve common vs. specific neural correlates remains unclear. We addressed this issue through Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies on delay discounting (DD) and go/no-go (GNG) tasks, alongside conjunction and subtraction analyses. We also performed systematic reviews of neuroimaging studies using the same tasks in individuals with obesity or EDs. ALE results showed consistent activations in the striatum, anterior/posterior cingulate cortex, medial/left superior frontal gyrus and left supramarginal gyrus for impulsive choices in DD, while GNG tasks elicited mainly right-lateralized fronto-parietal activations. Conjunction and subtraction analyses showed: i) common bilateral responses in the caudate nucleus; ii) DD-specific responses in the ventral striatum, anterior/posterior cingulate cortex, left supramarginal and medial frontal gyri; iii) GNG-specific activations in the right inferior parietal cortex. Altered fronto-lateral responses to both tasks are suggestive of dysfunctional cortico-striatal balance in obesity and EDs, but these findings are controversial due to the limited number of studies directly comparing patients and controls. Overall, we found evidence for distinctive neural correlates of the motor and cognitive facets of impulsivity: the right inferior parietal lobe underpins action inhibition, whereas fronto-striatal regions and the left supramarginal gyrus are related to impulsive decision-making. While showing that further research on clinical samples is required to better characterize the neural bases of their behavioural changes, these findings help refining neurocognitive model of impulsivity and highlight potential translational implications for EDs and obesity treatment.
Collapse
Affiliation(s)
- Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy; Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.
| | - Irene Gorrino
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Diana Tornaghi
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy; Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
18
|
Hu Y, Li G, Zhang W, Wang J, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow N, Ji G, Wang GJ, Zhang Y. Obesity is associated with alterations in anatomical connectivity of frontal-corpus callosum. Cereb Cortex 2024; 34:bhae014. [PMID: 38300178 PMCID: PMC11486688 DOI: 10.1093/cercor/bhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
Obesity has been linked to abnormal frontal function, including the white matter fibers of anterior portion of the corpus callosum, which is crucial for information exchange within frontal cortex. However, alterations in white matter anatomical connectivity between corpus callosum and cortical regions in patients with obesity have not yet been investigated. Thus, we enrolled 72 obese and 60 age-/gender-matched normal weight participants who underwent clinical measurements and diffusion tensor imaging. Probabilistic tractography with connectivity-based classification was performed to segment the corpus callosum and quantify white matter anatomical connectivity between subregions of corpus callosum and cortical regions, and associations between corpus callosum-cortex white matter anatomical connectivity and clinical behaviors were also assessed. Relative to normal weight individuals, individuals with obesity exhibited significantly greater white matter anatomical connectivity of corpus callosum-orbitofrontal cortex, which was positively correlated with body mass index and self-reported disinhibition of eating behavior, and lower white matter anatomical connectivity of corpus callosum-prefrontal cortex, which was significantly negatively correlated with craving for high-calorie food cues. The findings show that alterations in white matter anatomical connectivity between corpus callosum and frontal regions involved in reward and executive control are associated with abnormal eating behaviors.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Haoyi Wang
- College of Westa, Southwest University, 2 Tiansheng Road, Chongqing 400715, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Nora Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| |
Collapse
|
19
|
Ostende MMVDH, Schwarz U, Gawrilow C, Kaup B, Svaldi J. Practice makes perfect: Restrained eaters' heightened control for food images. EUROPEAN EATING DISORDERS REVIEW 2024; 32:90-98. [PMID: 37612812 DOI: 10.1002/erv.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Restrained eaters (RE) show behaviourally unregulated food intake, which is often explained by a deficit in inhibitory control. Despite evidence for general inhibitory deficits in RE, it remains unclear how the variety of (food) cues in our environment can influence cognitive control. METHOD In this re-analysis, we explored the inhibitory capacity of RE and unrestrained eaters (URE) on a stop-signal task with modal (pictures) and amodal (word) food and non-food stimuli. RESULTS Although we did not find the expected inhibitory deficits in RE compared to URE, we found a significant Group × Modality × Stimulus Type interaction. This indicated that RE have relatively good inhibitory control for food, compared to non-food modal cues, and that this relationship is reversed for amodal cues. CONCLUSIONS Hence, we showed differential processing of information based on food-specificity and presentation format in RE. The format of food cues is thus an important new avenue to understand how the food environment impedes those struggling with regulating their eating behaviour.
Collapse
|
20
|
Adise S, Boutelle KN, Rezvan PH, Kan E, Rhee KE, Goran MI, Sowell ER. Sex-specific impulsivity, but not other facets of executive function, predicts fat and sugar intake two-years later amongst adolescents with a healthy weight: Findings from the ABCD study. Appetite 2024; 192:107081. [PMID: 37839556 PMCID: PMC10842015 DOI: 10.1016/j.appet.2023.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
During adolescence, processes that control food intake (executive functions [EF]) undergo extensive refinement; underlying differences in EF may explain the inability to resist overeating unhealthy foods. Yet, overeating fat and sugar also causes changes to EF and cognition but disentangling these relationships has been difficult, as previous studies included youth with obesity. Here, amongst youth initially of a healthy weight, we evaluate whether 1) sex-specific underlying variation in EF/cognition at 9/10-years-old predict fat/sugar two-years later (Y2) and 2) if these relationships are moderated by body mass index (BMI), using linear mixed effects models (controlled for puberty, caregiver education; random effect: study site). Data were leveraged from Adolescent Brain Cognitive Development Study (n = 2987; 50.4% male; 15.4% Latino/a/x; 100% healthy weight at baseline; 12.4% overweight/obese by Y2, data release 4.0). EF and cognition (e.g., inhibition, cognition, motor, memory, impulsivity) were assessed with the NIH toolbox, Rey Auditory Verbal Learning Task, Little Man Task, the BIS/BAS, and UPPS-P. A saturated fat/added sugar (kcals) composite score was extracted from the validated Kids Food Block Screener. For males, greater baseline impulsivity (e.g., Positive Urgency, Lack of Planning and Perseverance) and reward (e.g., Fun seeking, Drive) was related to greater Y2 intake. For both sexes, greater baseline Negative Urgency and higher BMI was related to greater Y2 intake. No other relationships were observed. Our findings highlight a phenotype that may be more at risk for weight gain due to overconsumption of fat/sugar. Thus, prevention efforts may wish to focus on impulsive tendencies for these foods.
Collapse
Affiliation(s)
- Shana Adise
- Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| | - Kerri N Boutelle
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States; Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA, United States; Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Panteha Hayati Rezvan
- Biostatistics and Data Management Core, The Saban Research Institute, Children's Hospital of Los Angeles, Los Angeles, CA, United States
| | - Eric Kan
- Department of Pediatrics, Division of Pediatric Research Administration, Children's Hospital of Los Angeles, Los Angeles, CA, United States
| | - Kyung E Rhee
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Michael I Goran
- Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth R Sowell
- Department of Pediatrics, Division of Neurology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Zhou J, Wu X, Xiang T, Liu F, Gao H, Tong L, Yan B, Li Z, Zhang C, Wang L, Ou L, Li Z, Wang W, Yang T, Li F, Ma H, Zhao X, Mi N, Yu Z, Lan C, Wang Q, Li H, Wang L, Wang X, Li Y, Zeng Q. Dynamical alterations of brain function and gut microbiome in weight loss. Front Cell Infect Microbiol 2023; 13:1269548. [PMID: 38173792 PMCID: PMC10761423 DOI: 10.3389/fcimb.2023.1269548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024] Open
Abstract
Objective Intermittent energy restriction (IER) is an effective weight loss strategy. However, little is known about the dynamic effects of IER on the brain-gut-microbiome axis. Methods In this study, a total of 25 obese individuals successfully lost weight after a 2-month IER intervention. FMRI was used to determine the activity of brain regions. Metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways in from fecal samples. Results Our results showed that IER longitudinally reduced the activity of obese-related brain regions at different timepoints, including the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit. IER longitudinally reduced E. coli abundance across multiple timepoints while elevating the abundance of obesity-related Faecalibacterium prausnitzii, Parabacteroides distasonis, and Bacterokles uniformis. Correlation analysis revealed longitudinally correlations between gut bacteria abundance alterations and brain activity changes. Conclusions There was dynamical alteration of BGM axis (the communication of E. coli with specific brain regions) during the weight loss under the IER.
Collapse
Affiliation(s)
- Jing Zhou
- Henan Provincial Research Center of Clinical Medicine of Nephropathy, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaoling Wu
- Department of Nuclear Medicine, Henan Key Laboratory of Chronic Disease Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Tianyuan Xiang
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Lei Ou
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd, Guangzhou, Guangdong, China
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Wang
- Department of Nutrition, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, Zhengzhou, China
| | - Tingting Yang
- Department of Nutrition, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, Zhengzhou, China
| | - Fengyun Li
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Huimin Ma
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiaojuan Zhao
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Na Mi
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Ziya Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Canhui Lan
- Beijing Rexinchang Biotechnology Research Institute Co. Ltd, Beijing, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Li
- Department of Health Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Liming Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Wang
- The Institute of Geriatrics, The State Clinic Center for Geriatrics & The State Key Laboratory of Kidney, The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yongli Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
22
|
Cui K, Zhao J, Li R, Gao Y, Gao X. Higher visceral adipose tissue is associated with decreased memory suppression ability on food-related thoughts: A 1-year prospective ERP study. Appetite 2023; 191:107048. [PMID: 37804604 DOI: 10.1016/j.appet.2023.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
Memory about food and eating is crucial in regulating appetite and eating behaviors. Successfully stopping vivid imagination of delicious food could help reduce food craving and thus reduce the possibility of further intake. Memory inhibition is a cognitive process that involves intentional suppression of certain memories coming to consciousness. Successful memory suppression derives from inhibitory control. Although considerable work has consistently observed the impairment in motor or response inhibitory control among individuals with obesity, there has been a lack of investigation into the influence of bodyweight status on memory inhibitory control. To fill this gap, current study investigated behavioral and neurophysiological correlates of memory suppression in young women. Using Think/No-Think task and event-related potentials among 47 females, we found that participants with higher visceral adipose tissue (VAT) showed a tendency towards decreased suppression ability for memories related to food but not memories related to nonfood items. In depth analysis showed that decrease in the differences in P2 amplitudes between suppression vs. retrieval of food-related memories mediated the impairment of suppression ability by high VAT. We then tested whether individual differences in memory suppression ability as well as ERP correlates predicted future BMI or VAT change over 1-year follow-up. Results showed that P2 amplitudes when retrieving food-related memory could predict VAT change at 1-year follow-up among participants with healthy BMI. These observations suggest a hypersensitivity inference hypothesis underlying memory control impairments. To be specific, deficits in memory suppression may be in part resulted from elevated sensitivity to the cues coupling with food-related memory. It extends previous studies of memory suppression with food rewards and provides the first evidence to help understand the relationship between inhibitory control on food-related memory and obesity.
Collapse
Affiliation(s)
- Ke Cui
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jia Zhao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - RuoNan Li
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yuan Gao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiao Gao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Vöhringer J, Schroeder PA, Hütter M, Svaldi J. Does inhibitory control spill over to eating behaviors? Two preregistered studies of inhibitory spillover effects on food intake and reactions to food stimuli. Appetite 2023; 191:107083. [PMID: 37832723 DOI: 10.1016/j.appet.2023.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Overweight and obesity are worldwide conditions associated with detrimental medical and psychosocial outcomes. As inhibitory control deficits are thought to contribute to weight gain, they are a worthwhile target for new approaches. Previous research has shown that the execution of inhibitory control in one domain leads to a concurrent increase of inhibitory control in another domain, an effect denoted as inhibitory spillover effect (ISE). Therefore, we assumed that exertion of inhibitory control in a food-unrelated domain in overweight and normal weight individuals will decrease food intake in a simultaneous bogus taste test (BTT; study 1) as well as increase food-specific response inhibition ability in a stop signal task (SST; study 2). We assumed stronger effects in overweight individuals. In both studies ISE was induced via cognitive priming and compared to a neutral condition in a group of overweight (OW: n = 46 for study 1, n = 46 for study 2) and normal weight (NW: n = 46 for study 1, n = 46 for study 2) individuals. In the ISE condition with an inhibitory control priming task, participants had to learn and retain control-related words while simultaneously performing a BTT (study 1) or SST (study 2). In the neutral condition, participants followed the same protocol, albeit memorizing neutral (i.e., control-unrelated) words. There was no significant interaction of weight group × cognitive priming condition neither regarding food intake (study 1) nor regarding food-related response inhibition (study 2). Cognitive priming, as implemented in the present studies, does not instigate an ISE strong enough to improve inhibitory control during food intake or food-related response inhibition. Relevant practical and theoretical aspects as well as implications for future research on the ISE are discussed.
Collapse
Affiliation(s)
- Julian Vöhringer
- Department of Psychology, Clinical Psychology & Psychotherapy, University of Tübingen, Schleichstraße 4, 72076, Tübingen, Germany.
| | - Philipp A Schroeder
- Department of Psychology, Clinical Psychology & Psychotherapy, University of Tübingen, Schleichstraße 4, 72076, Tübingen, Germany; DZPG (German Center for Mental Health), Partner Site, Tübingen, Germany
| | - Mandy Hütter
- Department of Psychology, Social Cognition and Decision Sciences, University of Tübingen, Schleichstraße 4, 72076, Tübingen, Germany
| | - Jennifer Svaldi
- Department of Psychology, Clinical Psychology & Psychotherapy, University of Tübingen, Schleichstraße 4, 72076, Tübingen, Germany; DZPG (German Center for Mental Health), Partner Site, Tübingen, Germany
| |
Collapse
|
24
|
Liu N, Heng C, Cui Y, Wu D, Li L, Bai M, Guo Y, Wang W, Zhang Y. Investigating the relationship between inhibitory control and dietary adherence among patients with type 2 diabetes mellitus based on subjective and objective measures. Nutr Diabetes 2023; 13:23. [PMID: 37989739 PMCID: PMC10663600 DOI: 10.1038/s41387-023-00252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Dietary management has been recommended as the cornerstone of type 2 diabetes mellitus (T2DM) management. However, low adherence to dietary recommendations has been identified in both developed and developing countries. Previous research suggests that inhibitory control influences eating behavior, but few studies have been conducted in patients with T2DM. Thus, we aimed to explore the relationship between inhibitory control and dietary adherence among patients with T2DM. METHODS A total of 393 patients with T2DM from the endocrinology departments of three tertiary hospitals in China were enrolled by the convenience sampling method. Dietary adherence was measured by the Dietary Behavior Adherence Scale for Patients with Type 2 Diabetes Mellitus. Additionally, inhibitory control was subjectively measured by the Behavior Rating Inventory of Executive Function-Adult version (BRIEF-A) and objectively assessed by the stop signal task (SST) and the Stroop task. The relationship between inhibitory control and dietary adherence was analyzed using Pearson correlation analysis and hierarchical regression analysis. RESULTS Subjectively measured inhibitory control had a significant predictive effect for dietary adherence after controlling for demographic and clinical variables. Adding the inhibitory control variable to the regression equation resulted in the following values: overall model F (19, 373) = 7.096, p < 0.001, increase in R2 value by 0.069, change in F (1, 373) = 35.219, p < 0.001. Similarly, the performance of the Stroop task had a significant predictive effect for dietary adherence to some foods, i.e., carbohydrate and fat. Adding the Stroop effect variable to the regression equation resulted in the following values: overall model F (19, 81) = 2.848, p = 0.005, increase in R2 value by 0.060, change in F (1, 81) = 8.137, p = 0.006. CONCLUSIONS Inhibitory control was a predictor of dietary adherence in patients with T2DM. Future interventions should investigate whether inhibitory control training results in the improvement of dietary adherence in patients with T2DM.
Collapse
Affiliation(s)
- Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Chunni Heng
- Department of Endocrinology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yi Cui
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Di Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Ling Li
- Department of Endocrinology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Mengge Bai
- Department of Endocrinology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yanxue Guo
- Department of Endocrinology, the Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Yinling Zhang
- Department of Nursing, Air Force Medical University, Xi'an, China.
| |
Collapse
|
25
|
Huerta-Canseco C, Caba M, Camacho-Morales A. Obesity-mediated Lipoinflammation Modulates Food Reward Responses. Neuroscience 2023; 529:37-53. [PMID: 37591331 DOI: 10.1016/j.neuroscience.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
Collapse
Affiliation(s)
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico; Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
| |
Collapse
|
26
|
Lane JM, Wright RO, Eggers S. The interconnection between obesity and executive function in adolescence: The role of the gut microbiome. Neurosci Biobehav Rev 2023; 153:105337. [PMID: 37524139 PMCID: PMC10592180 DOI: 10.1016/j.neubiorev.2023.105337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
In the United States, adolescent obesity is a growing epidemic associated with maladaptive executive functioning. Likewise, data link the microbiome to obesity. Emerging microbiome research has demonstrated an interconnection between the gut microbiome and the brain, indicating a bidirectional communication system within the gut-microbiome-brain axis in the pathophysiology of obesity. This narrative review identifies and summarizes relevant research connecting adolescent obesity as it relates to three core domains of executive functioning and the contribution of the gut microbiome in the relationship between obesity and executive functions in adolescence. The review suggests that (1) the interconnection between obesity, executive function, and the gut microbiome is a bidirectional connection, and (2) the gut microbiome may mediate the neurobiological pathways between obesity and executive function deficits. The findings of this review provide valuable insights into obesity-associated executive function deficits and elucidate the possible mediation role of the gut microbiome.
Collapse
Affiliation(s)
- Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
27
|
Yokum S, Stice E. Relation of BOLD response to food-specific and generic motor response inhibition tasks to body fat gain in adults with overweight and obesity. Physiol Behav 2023; 267:114206. [PMID: 37094746 PMCID: PMC10205669 DOI: 10.1016/j.physbeh.2023.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Low inhibitory control has been theorized to contribute to the development and maintenance of obesity. Knowledge on the neurobiological indicators of inhibitory control deficits predicting future weight gain is limited. The current study examined if individual differences in blood-oxygenation-level-dependent (BOLD) activity associated with food-specific and general motor response inhibition predict future body fat change in adults with overweight or obesity. METHODS BOLD activity and behavioral responses of adults with overweight or obesity (N = 160) were recorded while performing a food-specific stop signal task (n = 92) or a generic stop signal task (n = 68). Percent body fat was measured at baseline, posttest, 3-month, and 6-month follow-up. RESULTS Elevated BOLD activity in somatosensory (postcentral gyrus), and attention (precuneus) regions during successful inhibition in the food-specific stop signal task and elevated BOLD activity in a motor region (anterior cerebellar lobe) in the generic stop signal task predicted greater body fat gain over 6-month follow-up. Elevated BOLD activity in inhibitory control regions (inferior-, middle-, superior frontal gyri) and error monitoring regions (anterior cingulate cortex, insula) during erroneous responses in the generic stop signal task predicted body fat loss. CONCLUSIONS Results suggest that improving motor response inhibition and error monitoring may facilitate weight loss in adults with overweight and obesity.
Collapse
Affiliation(s)
- Sonja Yokum
- Oregon Research Institute, 3800 Sports Way, Springfield OR 97477, USA.
| | - Eric Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford CA 94305, USA
| |
Collapse
|
28
|
Loch LK, Tanofsky-Kraff M, Parker MN, Haynes HE, Te-Vazquez JA, Bloomer BF, Lazareva J, Moursi NA, Nwosu EE, Yang SB, Turner SA, Brady SM, Bowling AI, Chen KY, Yanovski JA. Associations of food reinforcement and food- related inhibitory control with adiposity and weight gain in children and adolescents. Physiol Behav 2023; 266:114198. [PMID: 37062516 PMCID: PMC10374226 DOI: 10.1016/j.physbeh.2023.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Some, but not all studies have reported that, among youth with disordered eating and high weight, the relative reinforcing value of food (RRV-F, i.e., how hard a person will work for a high-energy-dense food when another reward is available) is greater, and food-related inhibitory control (i.e., ability to withhold a response to food-related stimuli) is lower, compared to peers without disordered eating or overweight. In most studies, high RRV-F and low food-related inhibitory control have been studied separately, as independent factors, with each suggested to predict excess weight and adiposity (fat mass) gain. We hypothesized that the interaction of these factors would prospectively exacerbate risk for weight and adiposity (fat mass) gain three years later in a sample of healthy youth. At baseline, RRV-F was measured using a Behavior Choice Task with the rewards being standardized servings of chocolate candies, cheese crackers, or fruit snacks. Food-related inhibitory control was determined by performance in response to food and non-food stimuli during a Food Go/No-Go task. At baseline and 3-year visits, total body adiposity was measured by dual-energy X-ray absorptiometry (DXA) and body mass index (BMI) was obtained using measured weight and height. A linear regression was conducted with 3-year adiposity as the dependent variable. RRV-F, food-related inhibitory control, and the RRV-F x food-related inhibitory control interaction as independent variables. Baseline adiposity, age, height, sex, race/ethnicity, and days between visits were included as covariates for model predicting 3-year adiposity. Baseline BMI, age, sex, race/ethnicity, and days between visits were included as covariates for model predicting 3-year BMI. One-hundred and nine youth (mean 12.4±2.7y, mean 0.50±1.02 BMIz, 30.3% with overweight/obesity, 45.9% female, 51.4% non-Hispanic White), 8-17 years at baseline, were studied. Baseline food-related inhibitory control (βunstandardized = 0.33, p = .037, 95% CI [.02, 0.64]), but not baseline RRV-F (βunstandardized = -0.003, p = .914), 95% CI [-0.05, 0.05]) was significantly associated with 3-year adiposity such that those with the poorest food-related inhibitory control (great number of commision errors) had the greatest adiposity gain. The interaction between RRV-F and food-related inhibitory control did not predict 3-year adiposity (βunstandardized = -0.07, p = .648, 95% CI [-0.39, 0.25]). The pattern of findings was the same for models examining non-food related inhibitory control. Neither baseline food-related inhibitory control (βunstandardized = 2.16, p = .256, 95% CI [-1.59, 5.92]), baseline RRV-F (βunstandardized = 0.14, p = .660, 95% CI [-0.48, 0.75]), nor their interaction (βunstandardized = -1.18, p = .547, 95% CI [-5.04, 2.69]) were significantly associated with 3-year BMI. However, non-food related inhibitory control (βunstandardized = 0.54, p = .038, 95% CI [.22, 7.15]) was significantly associated with 3-year BMI. In summary, food-related inhibitory control but not RRV-F, was associated with changes in adiposity in a sample of children and adolescents. Among generally healthy youth, food-related inhibitory control may be a more relevant risk factor than food reinforcement for adiposity gain. Additional data are needed to determine how inhibitory control and reward systems, as well as other disinhibited eating behaviors/traits, may interact to promote excess weight gain over time in youth.
Collapse
Affiliation(s)
- Lucy K Loch
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Marian Tanofsky-Kraff
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States; Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, United States; Department of Medicine, Military Cardiovascular Outcomes Research (MiCOR) Program, USU, Bethesda, MD, United States.
| | - Megan N Parker
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States; Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, United States
| | - Hannah E Haynes
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States; Department of Medicine, Military Cardiovascular Outcomes Research (MiCOR) Program, USU, Bethesda, MD, United States; Metis Foundation, San Antonio, TX, United States
| | - Jennifer A Te-Vazquez
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Bess F Bloomer
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Julia Lazareva
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Nasreen A Moursi
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States; Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, United States
| | - Ejike E Nwosu
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Shanna B Yang
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sara A Turner
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sheila M Brady
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Andrea I Bowling
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | - Jack A Yanovski
- Division of Intramural Research, National Institutes of Health (NIH), Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
29
|
Liu X, Turel O, Xiao Z, Lv C, He Q. Neural differences of food-specific inhibitory control in people with healthy vs higher BMI. Appetite 2023; 188:106759. [PMID: 37390598 DOI: 10.1016/j.appet.2023.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Consistent with the idea that deficits in inhibition limit resistance to tempting, tasty, high-calorie foods, and might result in a higher BMI, we test whether people with higher BMIs (BMI >25 kg/m2) present inefficient inhibitory control over food-related responses. To unpack this association, we also examine individual differences in the neural mechanisms of food inhibitory control in healthy vs higher BMI individuals. We test these aspects with a sample of 109 participants (49 with higher BMI and 60 with healthy BMI) and the food stop-signal task, which was used to examine individuals' inhibitory control. Results demonstrated that people with higher BMI had significantly poorer food inhibitory control than healthy BMI individuals. fMRI results showed that, in both Go (Go_food vs Go_nature) and Stop conditions (Stop_food vs Stop_nature), compared to healthy BMI individuals, individuals with higher BMI had lower activation in the superior frontal gyrus, precuneus, precentral gyrus, and supramarginal gyrus in the food stimulus condition. Moreover, ROI analysis results showed that under the Stop_food condition, the activation in the inferior frontal gyrus in the higher BMI group was significantly negatively correlated with inhibitory control abilities. These results suggest that people with a higher BMI have limited ability to inhibit food impulsions, and that the prefrontal regions and parietal cortex may contribute to the progression of inhibitory control limitations in relation to food.
Collapse
Affiliation(s)
- Xing Liu
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Ofir Turel
- Computing Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Zhibing Xiao
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Chenyu Lv
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University, Chongqing, China.
| |
Collapse
|
30
|
Guan M, Dong TS, Subramanyam V, Guo Y, Bhatt RR, Vaughan A, Barry RL, Gupta A. Improved psychosocial measures associated with physical activity may be explained by alterations in brain-gut microbiome signatures. Sci Rep 2023; 13:10332. [PMID: 37365200 PMCID: PMC10293244 DOI: 10.1038/s41598-023-37009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity contributes to physical comorbidities and mental health consequences. We explored whether physical activity could influence more than metabolic regulation and result in psychological benefits through the brain-gut microbiome (BGM) system in a population with high BMI. Fecal samples were obtained for 16 s rRNA profiling and fecal metabolomics, along with psychological and physical activity questionnaires. Whole brain resting-state functional MRI was acquired, and brain connectivity metrics were calculated. Higher physical activity was significantly associated with increased connectivity in inhibitory appetite control brain regions, while lower physical activity was associated with increased emotional regulation network connections. Higher physical activity was also associated with microbiome and metabolite signatures protective towards mental health and metabolic derangements. The greater resilience and coping, and lower levels of food addiction seen with higher physical activity, may be explained by BGM system differences. These novel findings provide an emphasis on the psychological and resilience benefits of physical activity, beyond metabolic regulation and these influences seem to be related to BGM interactions.
Collapse
Affiliation(s)
| | - Tien S Dong
- David Geffen School of Medicine, Los Angeles, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- Goodman-Luskin Microbiome Center at UCLA, Los Angeles, USA
- University of California, Los Angeles, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Vishvak Subramanyam
- University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA
| | - Yiming Guo
- University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA
| | - Ravi R Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine at USC, University of Southern California, Los Angeles, USA
| | - Allison Vaughan
- David Geffen School of Medicine, Los Angeles, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- Goodman-Luskin Microbiome Center at UCLA, Los Angeles, USA
- University of California, Los Angeles, USA
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Arpana Gupta
- David Geffen School of Medicine, Los Angeles, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA.
- Goodman-Luskin Microbiome Center at UCLA, Los Angeles, USA.
- University of California, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA.
| |
Collapse
|
31
|
Zhang Y, Ji W, Jiang F, Wu F, Li G, Hu Y, Zhang W, Wang J, Fan X, Wei X, Manza P, Tomasi D, Volkow ND, Gao X, Wang GJ, Zhang Y. Associations among body mass index, working memory performance, gray matter volume, and brain activation in healthy children. Cereb Cortex 2023; 33:6335-6344. [PMID: 36573454 PMCID: PMC10422922 DOI: 10.1093/cercor/bhac507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
To investigate the neural mechanisms underlying the association between poorer working memory performance and higher body mass index (BMI) in children. We employed structural-(sMRI) and functional magnetic resonance imaging (fMRI) with a 2-back working memory task to examine brain abnormalities and their associations with BMI and working memory performance in 232 children with overweight/obesity (OW/OB) and 244 normal weight children (NW) from the Adolescent Brain Cognitive Development dataset. OW/OB had lower working memory accuracy, which was associated with higher BMI. They showed smaller gray matter (GM) volumes in the left superior frontal gyrus (SFG_L), dorsal anterior cingulate cortex, medial orbital frontal cortex, and medial superior frontal gyrus, which were associated with lower working memory accuracy. During the working memory task, OW/OB relative to NW showed weaker activation in the left superior temporal pole, amygdala, insula, and bilateral caudate. In addition, caudate activation mediated the relationship between higher BMI and lower working memory accuracy. Higher BMI is associated with smaller GM volumes and weaker brain activation in regions involved with working memory. Task-related caudate dysfunction may account for lower working memory accuracy in children with higher BMI.
Collapse
Affiliation(s)
- Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Xiao Fan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Xiaorong Wei
- Kindergarten affiliated to Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, United States
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, No. 2, Chongwen Road, Chongqing 400065, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, No. 2, Chongwen Road, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, United States
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| |
Collapse
|
32
|
Wu Q, Xia H, Shields GS, Nie H, Li J, Chen H, Yang Y. Neural correlates underlying preference changes induced by food Go/No-Go training. Appetite 2023; 186:106578. [PMID: 37150052 DOI: 10.1016/j.appet.2023.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Consistently not responding to appetitive foods during food go/no-go training could change individuals' food choices and sometimes even body weight, however, fewer studies have explored the neural pathways underlying the effects of food go/no-go training. In this study, we scanned eighty-six female participants using functional magnetic resonance imaging and investigated the neural bases of preference changes in a binary food choice task following action (e.g., go) or inaction (e.g., no-go) toward distinct foods within a food go/no-go training paradigm. In line with prior behavioral work, we found that participants' food preferences changed as a function of food go/no-go training, with participants choosing more "go" over "no-go" foods for consumption following training. At a neural level, preference changes were inversely associated with frontoparietal and salience network activity when choosing go (vs. no-go) foods. Additionally, task-related functional connectivities from the inferior parietal lobule to the pre-supplementary motor cortex, dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex were related to these preference changes. Together, current work supports that food go/no-go training reliably changes people's preferences. More importantly, our findings suggest that a neural pathway centered on areas traditionally associated with selective attention may interface with prefrontal regions to guide preference changes induced by food go/no-go training, though future studies using other tasks (e.g., passive viewing tasks) are still needed to test this potential neural mechanism.
Collapse
Affiliation(s)
- Qian Wu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Haoyu Nie
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jiwen Li
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, 400715, China; Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, 400715, China.
| | - Yingkai Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
33
|
de Klerk MT, Smeets PAM, la Fleur SE. Inhibitory control as a potential treatment target for obesity. Nutr Neurosci 2023; 26:429-444. [PMID: 35343884 DOI: 10.1080/1028415x.2022.2053406] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Strong reward responsiveness to food and insufficient inhibitory control are thought to be implicated in the development and maintenance of obesity. This narrative review addresses the role of inhibitory control in obesity and weight loss, and in how far inhibitory control is a promising target for weight loss interventions. METHODS PubMed, Web of Science, and Google Scholar were searched for papers up to May 2021. 41 papers were included. RESULTS Individuals with obesity have poorer food-specific inhibitory control, particularly when hungry, and less concurrent activation of inhibitory brain areas. Moreover, this was strongly predictive of future weight gain. More activation of inhibitory brain areas, on the other hand, was predictive of weight loss: individuals with successful weight loss initially show inhibitory brain activity comparable to that of normal weight individuals. When successful weight maintenance is achieved for at least 1 year, this inhibitory activity is further increased. Interventions targeting inhibitory control in obese individuals have divergent effects. Firstly, food-specific inhibitory control training is particularly effective for people with low inhibitory control and high BMI. Secondly, neuromodulation paradigms are rather heterogeneous: although rTMS to the left dorsolateral prefrontal cortex induced some weight-loss, multiple sessions of tDCS reduced food consumption (desire) and induced weight loss in two thirds of the papers. Thirdly, neurofeedback results in successful upregulation of brain activity and connectivity, but occasionally leads to increased food intake. In conclusion, inhibitory control is implicated in obesity. It can be targeted to promote weight loss although major weight losses have not been achieved.
Collapse
Affiliation(s)
- M T de Klerk
- Image Sciences Institute, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Neurobiology of Energy Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - P A M Smeets
- Image Sciences Institute, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - S E la Fleur
- Neurobiology of Energy Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Jiang F, Li G, Ji W, Zhang Y, Wu F, Hu Y, Zhang W, Manza P, Tomasi D, Volkow ND, Gao X, Wang GJ, Zhang Y. Obesity is associated with decreased gray matter volume in children: a longitudinal study. Cereb Cortex 2023; 33:3674-3682. [PMID: 35989308 PMCID: PMC10068275 DOI: 10.1093/cercor/bhac300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Childhood obesity has become a global health problem. Previous studies showed that childhood obesity is associated with brain structural differences relative to controls. However, few studies have been performed with longitudinal evaluations of brain structural developmental trajectories in childhood obesity. We employed voxel-based morphometry (VBM) analysis to assess gray matter (GM) volume at baseline and 2-year follow-up in 258 obese children (OB) and 265 normal weight children (NW), recruited as part of the National Institutes of Health Adolescent Brain and Cognitive Development study. Significant group × time effects on GM volume were observed in the prefrontal lobe, thalamus, right precentral gyrus, caudate, and parahippocampal gyrus/amygdala. OB compared with NW had greater reductions in GM volume in these regions over the 2-year period. Body mass index (BMI) was negatively correlated with GM volume in prefrontal lobe and with matrix reasoning ability at baseline and 2-year follow-up. In OB, Picture Test was positively correlated with GM volume in the left orbital region of the inferior frontal gyrus (OFCinf_L) at baseline and was negatively correlated with reductions in OFCinf_L volume (2-year follow-up vs. baseline). These findings indicate that childhood obesity is associated with GM volume reduction in regions involved with reward evaluation, executive function, and cognitive performance.
Collapse
Affiliation(s)
- Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
35
|
Labonté K, Nielsen DE. Measuring food-related inhibition with go/no-go tasks: Critical considerations for experimental design. Appetite 2023; 185:106497. [PMID: 36893916 DOI: 10.1016/j.appet.2023.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 02/18/2023] [Indexed: 03/09/2023]
Abstract
The use of go/no-go tasks to assess inhibitory control over food stimuli is becoming increasingly popular. However, the wide variability in the design of these tasks makes it difficult to fully leverage their results. The goal of this commentary was to provide researchers with crucial aspects to consider when designing food-related go/no-go experiments. We examined 76 studies that used food-themed go/no-go tasks and extracted characteristics related to participant population, methodology, and analysis. Based on our observations of common issues that can influence study conclusions, we stress the importance for researchers to design an appropriate control condition and match stimuli between experimental conditions in terms of emotional and physical properties. We also emphasize that stimuli should be tailored to the participants under study, whether at the individual or group level. To ensure that the task truly measures inhibitory abilities, researchers should promote the establishment of a prepotent response pattern by presenting more go than no-go trials and by using short trials. Researchers should also pre-specify the criteria used to identify potentially invalid data. While go/no-go tasks represent valuable tools for studying food cognition, researchers should choose task parameters carefully and justify their methodological and analytical decisions in order to ensure the validity of results and promote best practices in food-related inhibition research.
Collapse
Affiliation(s)
- Katherine Labonté
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Daiva E Nielsen
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
36
|
Ely AV, Wetherill RR. Reward and inhibition in obesity and cigarette smoking: Neurobiological overlaps and clinical implications. Physiol Behav 2023; 260:114049. [PMID: 36470508 PMCID: PMC10694810 DOI: 10.1016/j.physbeh.2022.114049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Cigarette smoking and obesity are the leading causes of premature morbidity and mortality and increase the risk of all-cause mortality four-fold when comorbid. Individuals with these conditions demonstrate neurobiological and behavioral differences regarding how they respond to rewarding stimuli or engage in inhibitory control. This narrative review examines the role of reward and inhibition in cigarette smoking and obesity independently, as well as recent research demonstrating an effect of increased body mass index (BMI) on neurocognitive function in individuals who smoke. It is possible that chronic smoking and overeating of highly palatable food, contributing to obesity, dysregulates reward neurocircuitry, subsequently leading to hypofunction of brain networks associated with inhibitory control. These brain changes do not appear to be specific to food or nicotine and, as a result, can potentiate continued cross-use. Changes to reward and inhibitory function due to increased BMI may also make cessation more difficult for those comorbid for obesity and smoking.
Collapse
Affiliation(s)
- Alice V Ely
- Cooper University Health Care, Center for Healing, Division of Addiction Medicine, Camden, NJ 08103, USA.
| | - Reagan R Wetherill
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Bianco V, Veniero D, D’Acunto A, Koch G, Picazio S. Challenging inhibitory control with high- and low-calorie food: A behavioural and TMS study. Front Nutr 2023; 10:1016017. [PMID: 36908918 PMCID: PMC9992824 DOI: 10.3389/fnut.2023.1016017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Most people are often tempted by their impulses to "indulge" in high-calorie food, even if this behaviour is not consistent with their goal to control weight in the long term and might not be healthy. The outcome of this conflict is strongly dependent on inhibitory control. It has already been reported that individuals with weaker inhibitory control consume more high-calorie food, are more often unsuccessful dieters, overweight or obese compared to people with more effective inhibitory control. In the present study, we aimed at investigating inhibitory control in the context of human eating behaviour. A sample of 20 healthy normal-weight adults performed a 50% probability visual affective Go/NoGo task involving food (high- and low-calorie) and non-food images as stimuli. Single-pulse transcranial magnetic stimulation (TMS) was administered over the right primary motor cortex (M1) either 300 ms after image presentation to measure corticospinal excitability during the different stimulus categories or 300 ms after the appearance of a fixation point, as a control stimulation condition. The experimental session consisted of a food target and a non-food target block. Behavioural outcomes showed a natural implicit inclination towards high-calorie food in that participants were faster and more accurate compared to the other categories. This advantage was selectively deleted by TMS, which slowed down reaction times. MEPs did not differ according to the stimulus category, but, as expected, were bigger for Go compared to NoGo trials. Participants judged high-calorie food also as more appetising than low-calorie food images. Overall, our results point to a differential modulation when targeting inhibitory control, in favour of the more palatable food category (high-calorie). Present data suggest that the activity of the motor system is modulated by food nutritional value, being more engaged by appetising food. Future work should explore to what extent these processes are affected in patients with eating disorders and should aim to better characterise the related dynamics of cortical connectivity within the motor network.
Collapse
Affiliation(s)
- Valentina Bianco
- Laboratory of Experimental Neuropsychophysiology, Santa Lucia Foundation IRCCS, Rome, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Alessia D’Acunto
- Laboratory of Experimental Neuropsychophysiology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Giacomo Koch
- Laboratory of Experimental Neuropsychophysiology, Santa Lucia Foundation IRCCS, Rome, Italy
- Human Physiology Section, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Silvia Picazio
- Laboratory of Experimental Neuropsychophysiology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
38
|
Zhang X, Wen K, Han J, Chen H. The Neural Processes in Food Decision-making and their Effect on Daily Diet Management in Successful and Unsuccessful Restrained Eaters. Neuroscience 2023; 517:1-17. [PMID: 36764599 DOI: 10.1016/j.neuroscience.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
This study aimed to explore the neural mechanisms underlying food decision making in unsuccessful restrained eaters (US-REs) and successful restrained eaters (S-REs). During a functional magnetic resonance imaging scan, participants were required to choose between pairs of high- and low-calorie foods under the following conditions: the congruent condition (choose between high- and low-calorie foods with the same level of tastiness) and incongruent condition (choose between high-calorie foods tastier than the corresponding low-calorie foods). Subsequently, the participants' diets were monitored for one week. The behavioral results showed that US-REs (n = 28) chose more high-calorie foods than S-REs (n = 26); in contrast, S-REs spent more time in choosing for the incongruent than the congruent condition. The fMRI results found that US-REs exhibited more activity in reward regions (caudate and thalamus) than S-REs in the congruent condition. In the incongruent condition, S-REs showed stronger functional connectivity between the conflict-monitoring region (anterior cingulate cortex) and inhibitory-control regions (inferior frontal gyrus [IFG] and medial frontal gyrus) than US-REs. In both the conditions, increased activation of the insula, putamen, middle frontal gyrus, and IFG could predict increased food intake among US-REs in the following week. Furthermore, in both the conditions, increased IFG activation could predict decreased food cravings among S-REs during the following week. Our results suggest that US-REs have a strong reward response to food. Compared to US-REs, S-REs are more guided more by the goal of weight control, and exhibit strong functional connections between the conflict-monitoring and inhibitory-control regions. Therefore, eating enjoyment and weight-control goals influence restrained eating in daily life.
Collapse
Affiliation(s)
- Xuemeng Zhang
- School of Psychology, Southwest University, Chongqing, China; Research Center for Brain and Cognitive Science, Chongqing Normal University, Chongqing, China
| | - Ke Wen
- Research Center for Brain and Cognitive Science, Chongqing Normal University, Chongqing, China
| | - Jinfeng Han
- School of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
39
|
Poghosyan V, Ioannou S, Al-Amri KM, Al-Mashhadi SA, Al-Mohammed F, Al-Otaibi T, Al-Saeed W. Spatiotemporal profile of altered neural reactivity to food images in obesity: Reward system is altered automatically and predicts efficacy of weight loss intervention. Front Neurosci 2023; 17:948063. [PMID: 36845430 PMCID: PMC9944082 DOI: 10.3389/fnins.2023.948063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Obesity presents a significant public health problem. Brain plays a central role in etiology and maintenance of obesity. Prior neuroimaging studies have found that individuals with obesity exhibit altered neural responses to images of food within the brain reward system and related brain networks. However, little is known about the dynamics of these neural responses or their relationship to later weight change. In particular, it is unknown if in obesity, the altered reward response to food images emerges early and automatically, or later, in the controlled stage of processing. It also remains unclear if the pretreatment reward system reactivity to food images is predictive of subsequent weight loss intervention outcome. Methods In this study, we presented high-calorie and low-calorie food, and nonfood images to individuals with obesity, who were then prescribed lifestyle changes, and matched normal-weight controls, and examined neural reactivity using magnetoencephalography (MEG). We performed whole-brain analysis to explore and characterize large-scale dynamics of brain systems affected in obesity, and tested two specific hypotheses: (1) in obese individuals, the altered reward system reactivity to food images occurs early and automatically, and (2) pretreatment reward system reactivity predicts the outcome of lifestyle weight loss intervention, with reduced activity associated with successful weight loss. Results We identified a distributed set of brain regions and their precise temporal dynamics that showed altered response patterns in obesity. Specifically, we found reduced neural reactivity to food images in brain networks of reward and cognitive control, and elevated reactivity in regions of attentional control and visual processing. The hypoactivity in reward system emerged early, in the automatic stage of processing (< 150 ms post-stimulus). Reduced reward and attention responsivity, and elevated neural cognitive control were predictive of weight loss after six months in treatment. Discussion In summary, we have identified, for the first time with high temporal resolution, the large-scale dynamics of brain reactivity to food images in obese versus normal-weight individuals, and have confirmed both our hypotheses. These findings have important implications for our understanding of neurocognition and eating behavior in obesity, and can facilitate development of novel integrated treatment strategies, including tailored cognitive-behavioral and pharmacological therapies.
Collapse
Affiliation(s)
- Vahe Poghosyan
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia,*Correspondence: Vahe Poghosyan,
| | - Stephanos Ioannou
- Department of Physiological Sciences, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalid M. Al-Amri
- Obesity, Endocrinology and Metabolism Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sufana A. Al-Mashhadi
- Research Unit, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fedaa Al-Mohammed
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tahani Al-Otaibi
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wjoud Al-Saeed
- Research Unit, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Yang Y, Morys F, Wu Q, Li J, Chen H. Pilot study of food-specific go/no-go training for overweight individuals: brain imaging data suggest inhibition shapes food evaluation. Soc Cogn Affect Neurosci 2023; 18:6464693. [PMID: 34918164 PMCID: PMC10074770 DOI: 10.1093/scan/nsab137] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 11/14/2022] Open
Abstract
Food-specific go/no-go training might reduce overeating and facilitate weight loss. In this pilot study, we examined whether a food-specific go/no-go training over five weeks, as compared to a non-food-specific training, could produce changes in behavioral and neural responses to food images and body weight. Here, we used a sample of 51 overweight participants divided into training and control groups whose brain activity and food evaluation were measured before and after the training. Compared with the control group, in the training group we found significant reductions in high-calorie food evaluation. We also found lower activations in inhibitory control- and reward-related brain regions in response to high-calorie food images. Further, activation change of the mid-insula in response to the high-calorie food images was positively associated with change in the evaluation of those images. However, we found no evidence for a significant effect of food-specific go/no-go training on body weight change. Our findings highlight that food-specific go/no-go training in overweight individuals can reduce high-calorie food evaluation, but also neural activations in inhibitory control- and reward- related brain regions.
Collapse
Affiliation(s)
- Yingkai Yang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Qian Wu
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Research Center of Mental Health Education, Southwest University, Chongqing 400715, China
| | - Jiwen Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China.,Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
41
|
Grandjean da Costa K, Bortolotti H, Cabral DA, Rêgo ML, Brito K, Cunha de Medeiros GO, Price M, Palhano-Fontes F, Barros de Araujo D, Fontes EB. Insular cortex activity during food-specific inhibitory control is associated with academic achievement in children. Physiol Behav 2022; 257:114001. [DOI: 10.1016/j.physbeh.2022.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
42
|
Pimpini L, Kochs S, Franssen S, van den Hurk J, Valente G, Roebroeck A, Jansen A, Roefs A. More complex than you might think: Neural representations of food reward value in obesity. Appetite 2022; 178:106164. [PMID: 35863505 DOI: 10.1016/j.appet.2022.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
Obesity reached pandemic proportions and weight-loss treatments are mostly ineffective. The level of brain activity in the reward circuitry is proposed to be proportionate to the reward value of food stimuli, and stronger in people with obesity. However, empirical evidence is inconsistent. This may be due to the double-sided nature of high caloric palatable foods: at once highly palatable and high in calories (unhealthy). This study hypothesizes that, viewing high caloric palatable foods, a hedonic attentional focus compared to a health and a neutral attentional focus elicits more activity in reward-related brain regions, mostly in people with obesity. Moreover, caloric content and food palatability can be decoded from multivoxel patterns of activity most accurately in people with obesity and in the corresponding attentional focus. During one fMRI-session, attentional focus (hedonic, health, neutral) was manipulated using a one-back task with individually tailored food stimuli in 32 healthy-weight people and 29 people with obesity. Univariate analyses (p < 0.05, FWE-corrected) showed that brain activity was not different for palatable vs. unpalatable foods, nor for high vs. low caloric foods. Instead, this was higher in the hedonic compared to the health and neutral attentional focus. Multivariate analyses (MVPA) (p < 0.05, FDR-corrected) showed that palatability and caloric content could be decoded above chance level, independently of either BMI or attentional focus. Thus, brain activity to visual food stimuli is neither proportionate to the reward value (palatability and/or caloric content), nor significantly moderated by BMI. Instead, it depends on people's attentional focus, and may reflect motivational salience. Furthermore, food palatability and caloric content are represented as patterns of brain activity, independently of BMI and attentional focus. So, food reward value is reflected in patterns, not levels, of brain activity.
Collapse
Affiliation(s)
- Leonardo Pimpini
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Sarah Kochs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sieske Franssen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Job van den Hurk
- Scannexus, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
43
|
Ester T, Kullmann S. Neurobiological regulation of eating behavior: Evidence based on non-invasive brain stimulation. Rev Endocr Metab Disord 2022; 23:753-772. [PMID: 34862944 PMCID: PMC9307556 DOI: 10.1007/s11154-021-09697-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
The prefrontal cortex is appreciated as a key neurobiological player in human eating behavior. A special focus is herein dedicated to the dorsolateral prefrontal cortex (DLPFC), which is critically involved in executive function such as cognitive control over eating. Persons with obesity display hypoactivity in this brain area, which is linked to overconsumption and food craving. Contrary to that, higher activity in the DLPFC is associated with successful weight-loss and weight-maintenance. Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation tool used to enhance self-control and inhibitory control. The number of studies using tDCS to influence eating behavior rapidly increased in the last years. However, the effectiveness of tDCS is still unclear, as studies show mixed results and individual differences were shown to be an important factor in the effectiveness of non-invasive brain stimulation. Here, we describe the current state of research of human studies using tDCS to influence food intake, food craving, subjective feeling of hunger and body weight. Excitatory stimulation of the right DLPFC seems most promising to reduce food cravings to highly palatable food, while other studies provide evidence that stimulating the left DLPFC shows promising effects on weight loss and weight maintenance, especially in multisession approaches. Overall, the reported findings are heterogeneous pointing to large interindividual differences in tDCS responsiveness.
Collapse
Affiliation(s)
- Theresa Ester
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Ebehard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
44
|
Parsons N, Steward T, Clohesy R, Almgren H, Duehlmeyer L. A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward. Rev Endocr Metab Disord 2022; 23:861-879. [PMID: 34159504 DOI: 10.1007/s11154-021-09665-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Obesity is the second most common cause of preventable morbidity worldwide. Resting-state functional magnetic resonance imaging (fMRI) has been used extensively to characterise altered communication between brain regions in individuals with obesity, though findings from this research have not yet been systematically evaluated within the context of prominent neurobiological frameworks. This systematic review aggregated resting-state fMRI findings in individuals with obesity and evaluated the contribution of these findings to current neurobiological models. Findings were considered in relation to a triadic model of problematic eating, outlining disrupted communication between reward, inhibitory, and homeostatic systems. We identified a pattern of consistently increased orbitofrontal and decreased insula cortex resting-state functional connectivity in individuals with obesity in comparison to healthy weight controls. BOLD signal amplitude was also increased in people with obesity across studies, predominantly confined to subcortical regions, including the hippocampus, amygdala, and putamen. We posit that altered orbitofrontal cortex connectivity may be indicative of a shift in the valuation of food-based rewards and that dysfunctional insula connectivity likely contributes to altered homeostatic signal processing. Homeostatic violation signals in obesity may be maintained despite satiety, thereby 'hijacking' the executive system and promoting further food intake. Moving forward, we provide a roadmap for more reliable resting-state and task-based functional connectivity experiments, which must be reconciled within a common framework if we are to uncover the interplay between psychological and biological factors within current theoretical frameworks.
Collapse
Affiliation(s)
- Nicholas Parsons
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne Burwood Campus, VIC, Australia
| | - Trevor Steward
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca Clohesy
- School of Psychology, Deakin University, Melbourne Burwood Campus, VIC, Australia
| | - Hannes Almgren
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | | |
Collapse
|
45
|
Liu J, Li Y, Zhou T, Lu Y, Sang M, Li L, Fang C, Hu W, Sun X, Quan M, Liu J. Relationship Between Gross Motor Skills and Inhibitory Control in Preschool Children: A Pilot Study. Front Hum Neurosci 2022; 16:848230. [PMID: 35903789 PMCID: PMC9314641 DOI: 10.3389/fnhum.2022.848230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose Gross motor skills (GMS) and inhibitory control (IC) which are both development in preschool stage is significant for preschooler to healthy growth. However, the evidence of relationship between them in preschoolers are still insufficient, most of studies only focus on youth. Thus, the aim of this research is to examine the association between GMS and IC in preschool children. Methods This cross-sectional study used baseline data from a previous intervention study of preschoolers conducted in 2018. GMS were assessed by using the Test for Gross Motor Development (2nd edition) in preschoolers, which includes two subtests of locomotor and object control skills. Total GMS is calculated from the sum of these two subtests. The Fish Flanker task was used to evaluate both accuracy and reaction time of IC. Multivariate linear regression models were established to analyze the relationships between GMS and IC. Results A total of 123 preschool-age children (55 girls, 68 boys) were included in the final analysis. After adjusting for confounders, GMS (β = −8.27 ms, 95%CI: −14.2, −2.34), locomotor (β = −11.2 ms, 95%CI: −21.43, −0.97), and object control skills (β = −12.15 ms, 95%CI: −22.07, −2.23) were all negatively related with reaction time of IC. Conclusion There was a significant negative correlation between gross motor skills and the reaction time of inhibitory control in preschool children. Further research is needed to verify this finding in prospective and experimental studies.
Collapse
Affiliation(s)
- Jiajia Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yiyan Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Tang Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yanhua Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Menghao Sang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Longkai Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chunyi Fang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wenwen Hu
- Department of Physical Education, Institute of Disaster Prevention, Langfang, China
| | - Xiaojiao Sun
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Minghui Quan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Jinyan Liu
- Department of Physical Education, Donghua University, Shanghai, China
- *Correspondence: Jinyan Liu,
| |
Collapse
|
46
|
Wilson S, Benning SD, Racine SE. Examining relationships among thin-ideal internalization, eating pathology, and motivational reactions to high- and low-calorie food. Appetite 2022; 178:106258. [DOI: 10.1016/j.appet.2022.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
|
47
|
A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export. Cell Mol Gastroenterol Hepatol 2022; 14:409-434. [PMID: 35489715 PMCID: PMC9305019 DOI: 10.1016/j.jcmgh.2022.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin. METHODS Single-cell RNA-sequencing, transcriptomics, and lineage trajectory was performed on primary human jejunum. In vivo absorptive enterocyte maturational states informed conditions used to differentiate human intestinal stem cells (ISCs) that mimic in vivo absorptive enterocyte maturation. The system was scaled for high-throughput drug screening. Fatty acid oxidation was modulated pharmacologically and BODIPY (Thermo Fisher Scientific, Waltham, MA) (B)-labeled fatty acids were used to evaluate fatty acid handling via fluorescence and thin-layer chromatography. RESULTS Single-cell RNA-sequencing shows increasing expression of lipid-handling genes as absorptive enterocytes mature. Culture conditions promote ISC differentiation into confluent absorptive enterocyte monolayers. Fatty acid-handling gene expression mimics in vivo maturational states. The fatty acid oxidation inhibitor etomoxir decreased apical-to-basolateral export of medium-chain B-C12 and long-chain B-C16 fatty acids, whereas the CPT1 agonist C75 and the antidiabetic drug metformin increased apical-to-basolateral export. Short-chain B-C5 was unaffected by fatty acid oxidation inhibition and diffused through absorptive enterocytes. CONCLUSIONS Primary human ISCs in culture undergo programmed maturation. Absorptive enterocyte monolayers show in vivo maturational states and lipid-handling gene expression profiles. Absorptive enterocytes create strong epithelial barriers in 96-Transwell format. Fatty acid export is proportional to fatty acid oxidation. Metformin enhances fatty acid oxidation and increases basolateral fatty acid export, supporting an intestine-specific role.
Collapse
|
48
|
de Vries R, Boesveldt S, Sotomayor Sainz A, Copier J, de Vet E. Wired for harsh food environments: Human spatial memory favours the effortless location and consumption of high-calorie foods. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2021.104478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Dakhili A, Sangchooli A, Jafakesh S, Zare-Bidoky M, Soleimani G, Batouli SAH, Kazemi K, Faghiri A, Oghabian MA, Ekhtiari H. Cue-induced craving and negative emotion disrupt response inhibition in methamphetamine use disorder: Behavioral and fMRI results from a mixed Go/No-Go task. Drug Alcohol Depend 2022; 233:109353. [PMID: 35249000 DOI: 10.1016/j.drugalcdep.2022.109353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Drug-related cue-reactivity, dysfunctional negative emotion processing, and response-disinhibition constitute three core aspects of methamphetamine use disorder (MUD). These phenomena have been studied independently, but the neuroscientific literature on their interaction in addictive disorders remains scant. METHODS 62 individuals with MUD were scanned when responding to the geometric Go or No-Go cues superimposed over blank, neutral, negative-emotional and drug-related background images. Neural correlates of drug and negative-emotional cue-reactivity, response-inhibition and their interactions were estimated, and methamphetamine cue-reactivity was compared between individuals with MUD and 23 healthy controls. Relationships between behavioral characteristics and observed activations were investigated. RESULTS Individuals with MUD had longer reaction times and more errors in drug and negative-emotional compared to blank blocks, and more omission errors in drug compared to neutral blocks. They showed higher drug cue-reactivity than controls across prefrontal, fusiform, and visual regions (Z > 3.1, p-corrected<0.05). Response-inhibition was associated with precuneal, inferior parietal, anterior cingulate, temporal, and inferior frontal activations (Z > 3.1, p-corrected<0.05). Response-inhibition in drug cue blocks coincided with higher activations in the visual cortex and lower activations in the paracentral lobule and superior and inferior frontal gyri, while inhibition during negative-emotional blocks led to higher superior parietal, fusiform, and lateral occipital activations (Z > 3.1, p-corrected<0.05). CONCLUSION Drug cue-reactivity may impair response inhibition partly through activating dis-inhibitory regions, while temporal and parietal activations associated with response-inhibition in negative blocks suggest compensatory activity. Results suggest that drug and negative-emotional cue-reactivity influence response-inhibition, and the study of these interactions may aid mechanistic understanding of methamphetamine use disorder.
Collapse
Affiliation(s)
- Amirhossein Dakhili
- Neuroimaging and Analysis Group. (NIAG), Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran Iran; Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran
| | - Arshiya Sangchooli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Science, Tehran, Iran
| | - Sara Jafakesh
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Science, Tehran, Iran; School of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Kazemi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group. (NIAG), Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran Iran; Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran Iran
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA.
| |
Collapse
|
50
|
Wang J, Wang H, Yu H, Wang J, Guo X, Tong S, Bao Y, Hong X. Neural mechanisms of inhibitory control deficits in obesity revealed by P3 but not N2 event-related potential component. Appetite 2022; 171:105908. [DOI: 10.1016/j.appet.2021.105908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/02/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
|