1
|
Meehan RR, Pennings S. Rett syndrome: interferon-γ to the rescue? EMBO Mol Med 2024:10.1038/s44321-024-00154-7. [PMID: 39496971 DOI: 10.1038/s44321-024-00154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/06/2024] Open
Affiliation(s)
- Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Sari Pennings
- Centre for Cardiovascular Science, Institute for Neuroscience and Cardiovascular Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
2
|
Sigutova V, Xiang W, Regensburger M, Winner B, Prots I. Alpha-synuclein fine-tunes neuronal response to pro-inflammatory cytokines. Brain Behav Immun 2024; 122:216-230. [PMID: 39128571 DOI: 10.1016/j.bbi.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Pro-inflammatory cytokines are emerging as neuroinflammatory mediators in Parkinson's disease (PD) due to their ability to act through neuronal cytokine receptors. Critical questions persist regarding the role of cytokines in neuronal dysfunction and their contribution to PD pathology. Specifically, the potential synergy of the hallmark PD protein alpha-synuclein (α-syn) with cytokines is of interest. We therefore investigated the direct impact of pro-inflammatory cytokines on neurons and hypothesized that α-syn pathology exacerbates cytokine-induced neuronal deficits in PD. iPSC-derived cortical neurons (CNs) from healthy controls and patients with α-syn gene locus duplication (SNCA dupl) were stimulated with IL-17A, TNF-α, IFN-γ, or a combination thereof. For rescue experiments, CNs were pre-treated with α-syn anti-oligomerisation compound NPT100-18A prior to IL-17A stimulation. Cytokine receptor expression, microtubule cytoskeleton, axonal transport and neuronal activity were assessed. SNCA dupl CNs displayed an increased IL-17A receptor expression and impaired IL-17A-mediated cytokine receptor regulation. Cytokines exacerbated the altered distribution of tubulin post-translational modifications in SNCA dupl neurites, with SNCA dupl-specific IL-17A effects. Tau pathology in SNCA dupl CNs was also aggravated by IL-17A and cytokine mix. Cytokines slowed down mitochondrial axonal transport, with IL-17A-mediated retrograde slowing in SNCA dupl only. The pre-treatment of SNCA dupl CNs with NPT100-18A prevented the IL-17A-induced functional impairments in axonal transport and neural activity. Our work elucidates the detrimental effects of pro-inflammatory cytokines, particularly IL-17A, on human neuronal structure and function in the context of α-syn pathology, suggesting that cytokine-mediated inflammation represents a second hit to neurons in PD which is amenable to disease modifying therapies that are currently in clinical trials.
Collapse
Affiliation(s)
- Veronika Sigutova
- Department of Stem Cell Biology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Dental Clinic 1, Department of Operative Dentistry and Periodontology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany; Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Dental Clinic 1, Department of Operative Dentistry and Periodontology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Becher B, Derfuss T, Liblau R. Targeting cytokine networks in neuroinflammatory diseases. Nat Rev Drug Discov 2024; 23:862-879. [PMID: 39261632 DOI: 10.1038/s41573-024-01026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of 'sterile' neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Tobias Derfuss
- Department of Neurology and Biomedicine, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Roland Liblau
- Institute for inflammatory and infectious diseases, INSERM UMR1291 - CNRS UMR505, Toulouse, France.
| |
Collapse
|
4
|
Green M, Foster JA. First responders have it covered. Science 2024; 386:497-498. [PMID: 39480951 DOI: 10.1126/science.adt0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Meningeal innate lymphoid cells guide inhibitory neurons in early life.
Collapse
Affiliation(s)
- Miranda Green
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Barron JJ, Mroz NM, Taloma SE, Dahlgren MW, Ortiz-Carpena JF, Keefe MG, Escoubas CC, Dorman LC, Vainchtein ID, Chiaranunt P, Kotas ME, Nowakowski TJ, Bender KJ, Molofsky AB, Molofsky AV. Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior. Science 2024; 386:eadi1025. [PMID: 39480923 DOI: 10.1126/science.adi1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/22/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024]
Abstract
The innate immune system shapes brain development and is implicated in neurodevelopmental diseases. It is critical to define the relevant immune cells and signals and their impact on brain circuits. In this work, we found that group 2 innate lymphoid cells (ILC2s) and their cytokine interleukin-13 (IL-13) signaled directly to inhibitory interneurons to increase inhibitory synapse density in the developing mouse brain. ILC2s expanded and produced IL-13 in the developing brain meninges. Loss of ILC2s or IL-13 signaling to interneurons decreased inhibitory, but not excitatory, cortical synapses. Conversely, ILC2s and IL-13 were sufficient to increase inhibitory synapses. Loss of this signaling pathway led to selective impairments in social interaction. These data define a type 2 neuroimmune circuit in early life that shapes inhibitory synapse development and behavior.
Collapse
Affiliation(s)
- Jerika J Barron
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas M Mroz
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sunrae E Taloma
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madelene W Dahlgren
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jorge F Ortiz-Carpena
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew G Keefe
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline C Escoubas
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leah C Dorman
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pailin Chiaranunt
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin J Bender
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Zhang Y, Chen H, Cao J, Gao L, Jing Y. Maternal separation alters peripheral immune responses associated with IFN-γ and OT in mice. Peptides 2024; 182:171318. [PMID: 39486747 DOI: 10.1016/j.peptides.2024.171318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The co-evolution of social behavior and the immune system plays a critical role in individuals' adaptation to their environment. However, also need for further research on the key molecules that co-regulate social behavior and immunity. This study focused on neonatal mice that were separated from their mothers for 4 hours per day between the 6th and 16th day after birth. The results showed that these mice had lower plasma levels of IFN-γ and oxytocin, but higher levels of plasma glucocorticoids (GC), then impacting their social abilities. Additionally, maternal separation led to decreased levels of BDNF, IGF2, and CREB mRNAs in the hippocampus, while levels in the prefrontal cortex (PFC) remained unaffected. Maternal separation also resulted in increased levels of oxytocin and CRH mRNA in the hypothalamus, as well as an increase in CD45+ lymphocyte subsets in the meninges and choroid plexus (CP), with CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP showing an increase. In IFN-γ-/- mice, a decrease in social preference was observed alongside lower plasma oxytocin levels. Moreover, IFN-γ-/- mice exhibited reduced numbers of oxytocin neurons in the paraventricular nucleus of the paraventricular nucleus of hypothalamus (PVN), decreased BDNF levels in the PFC and hippocampus, and alterations in CD45+ lymphocytes in CP and meninges, with an increase in CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP. These findings highlight the immunological impact of social stress on IFN-γ regulation, suggesting that the immunomodulatory molecule IFN-γ may influence social behavior by affecting synaptic efficiency in brain regions such as the hippocampus and PFC, which are linked to oxytocin in the PVN.
Collapse
Affiliation(s)
- Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - HaiChao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - JiaXin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - LiPing Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - YuHong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
7
|
Benarroch E. What Is the Role of Cytokines in Synaptic Transmission? Neurology 2024; 103:e209928. [PMID: 39303183 DOI: 10.1212/wnl.0000000000209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
|
8
|
Heesbeen EJ, Bijlsma EY, Risseeuw TA, Hessel EVS, Groenink L. A systematic approach to identify gaps in neuroimmunology: TNF-α and fear learning deficits, a worked example. Brain Behav Immun 2024; 123:752-764. [PMID: 39442635 DOI: 10.1016/j.bbi.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The pathophysiology of several neurodegenerative and neuropsychiatric disorders is linked to an altered immune system. However, it is often unclear how the immune system specifically affects these disorders since neuroimmune interactions are very complex. In this paper, we introduce an adjusted version of the adverse outcome pathway (AOP) approach from toxicology to the field of neuroimmunology. A review of the effect of TNF-α on fear learning deficits is used as a worked example to demonstrate how an AOP approach can help identify gaps of knowledge and crucial steps in the pathophysiology of neuroimmunological disorders. METHODS The AOP was constructed in five steps. First, the adverse outcome was formulated clearly and specifically. Second, the link between the molecular initiating event and the adverse outcome was established with a preliminary literature search in the Medline database. Third, a systematic literature search was performed in which we identified 95 relevant articles. Fourth, the main biological processes and relevant key events were identified. Fifth, the links between key events were determined and an AOP network was constructed. RESULTS We identified three pathways through which TNF-α may affect fear learning. First, TNF-α receptor activation increases NF-κB levels which increases oxidative stress levels and reduces the activity of glutamate transporters. This alters the synaptic plasticity which is associated with impaired fear acquisition, consolidation, and fear extinction. Second, activation of TNF-α receptors increases the expression and capacity of the serotonin transporter which is linked to impaired fear acquisition, expression, and extinction. Third, TNF-α receptor 1 activation can induce necroptosis, leading to neuroinflammation which is linked to fear learning deficits. CONCLUSION To successfully apply the AOP approach in neuroimmunology we recommend defining adverse outcomes more precisely, establishing stronger connections between key events from various biological processes, incorporating feedforward and feedback loops, and identifying more mechanistic knowledge in later key events. These adjustments are needed to map the complex processes within the field of neuroimmunology and to identify gaps of knowledge.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the).
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Tristan A Risseeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Ellen V S Hessel
- Public Health and Health Services, RIVM National Institute for Public Health and the Environment, Bilthoven, Netherlands (the)
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| |
Collapse
|
9
|
Towner TT, Coleman HJ, Goyden MA, Vore AS, Papastrat KM, Varlinskaya EI, Werner DF. Prelimbic cortex perineuronal net expression and social behavior: Impact of adolescent intermittent ethanol exposure. Neuropharmacology 2024; 262:110195. [PMID: 39437849 DOI: 10.1016/j.neuropharm.2024.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Adolescent intermittent ethanol (AIE) exposure in rats leads to social deficits. Parvalbumin (PV) expressing fast-spiking interneurons in the prelimbic cortex (PrL) contribute to social behavior, and perineuronal nets (PNNs) within the PrL preferentially encompass and regulate PV interneurons. AIE exposure increases PNNs, but it is unknown if this upregulation contributes to AIE-induced social impairments. The current study was designed to determine the effect of AIE exposure on PNN expression in the PrL and to assess whether PNN dysregulation contributes to social deficits elicited by AIE. cFos-LacZ male and female rats were exposed every other day to tap water or ethanol (4 g/kg, 25% w/v) via intragastric gavage between postnatal day (P) 25-45. We evaluated neuronal activation by β-galactosidase expression and PNN levels either at the end of the exposure regimen on P45 and/or in adulthood on P70. In addition, we used Chondroitinase ABC (ChABC) to deplete PNNs following adolescent exposure (P48) and allowed for PNN restoration before social testing in adulthhod. AIE exposure increased PNN expression in the PrL of adult males, but decreased PNNs immediately following AIE. Vesicular glutamate transporter 2 (vGlut2) and vesicular GABA transporter (vGat) near PNNs were downregulated only in AIE-exposed females. Gene expression of PNN components was largely unaffected by AIE exposure. Removal and reestablishment of PrL PNNs by ChABC led to upregulation of PNNs and social impairments in males, regardless of adolescent exposure. These data suggest that AIE exposure in males upregulates PrL PNNs that likely contribute to social impairments induced by AIE.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Harper J Coleman
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Matthew A Goyden
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Andrew S Vore
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Kimberly M Papastrat
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - David F Werner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
10
|
Bouras M, Tessier P, Poulain C, Schirr-Bonnans S, Roquilly A. Three-month outcomes and cost-effectiveness of interferon gamma-1b in critically ill patients: a secondary analysis of the PREV-HAP trial. J Intensive Care 2024; 12:40. [PMID: 39394183 PMCID: PMC11468134 DOI: 10.1186/s40560-024-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Interferon gamma‑1b has been proposed to treat critical illness-induced immunosuppression. We aimed to determine the effects on 90-day outcomes and the cost-effectiveness of interferon gamma‑1b compared to placebo in mechanically ventilated critically ill patients. METHODS A cost-effectiveness analysis (CEA) was embedded in the "PREV-HAP trial", a multicenter, placebo‑controlled, randomized trial, which randomly assigned critically ill adults under mechanical ventilation to receive interferon gamma or placebo. The CEA compared interferon-gamma with placebo using a collective perspective at a 90-day time horizon. The primary outcome was the incremental cost-effectiveness ratio (ICER) expressed in terms of adjusted cost per adjusted Quality-Adjusted Life-Years (QALYs) gained. QALYs were estimated from the responses of patients and proxy respondents to the health-related quality of life questionnaire EQ-5D-3L. RESULTS The 109 patients in the PREV-HAP trial were included in the CEA. At day 90, all-cause mortality rates were 23.6% in the interferon group and 25% in the placebo group (Odds Ratio (OR) = 0.88 (0.40 -1.93) p = 0.67). The difference in the mean adjusted costs per patient at 90 days was €-1.638 (95%CI €-17.534 to €11.968) in favor of interferon gamma-1b. The mean difference in adjusted QALYs between interferon gamma-1b and the placebo group was + 0.019 (95%CI -0.005 to 0.043). The probability that interferon gamma-1b was cost-effective ranged from 0.60 to 0.71 for a willingness to pay a QALY between €20k and €150k for the base case analysis. CONCLUSION Early administration of interferon gamma might be cost-effective in critically ill patients supporting the realization of other studies on this treatment. However, the generalization of the findings should be considered cautiously, given the small sample size due to the premature end of PREV-HAP. Trial registration ClinicalTrials.gov Identifier: NCT04793568, Registration date: 2021-02-24.
Collapse
Affiliation(s)
- Marwan Bouras
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France.
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France.
- Department of Anaesthesia, Intensive Care Medicine and Peri-Operative Medicine, Hôpital de La Cavale Blanche, Bd Tanguy Prigent, CHRU de Brest, 29200, Brest, France.
| | - Philippe Tessier
- SPHERE, Service Evaluation Economique Et Développement Des Produits de Santé, Direction de La Recherche Et de LInnovation, Nantes Université, INSERM, MethodS in Patients-Centered Outcomes and HEalth Research, Université́, CHU Nantes, 44000, Nantes, Nantes, France
| | - Cécile Poulain
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France
| | - Solène Schirr-Bonnans
- SPHERE, Service Evaluation Economique Et Développement Des Produits de Santé, Direction de La Recherche Et de LInnovation, Nantes Université, INSERM, MethodS in Patients-Centered Outcomes and HEalth Research, Université́, CHU Nantes, 44000, Nantes, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, Service d'Anesthésie Réanimation, 44000, Nantes, France
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, 44000, Nantes, France
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Kina E, Larouche JD, Thibault P, Perreault C. The cryptic immunopeptidome in health and disease. Trends Genet 2024:S0168-9525(24)00210-5. [PMID: 39389870 DOI: 10.1016/j.tig.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
Peptides presented by MHC proteins regulate all aspects of T cell biology. These MHC-associated peptides (MAPs) form what is known as the immunopeptidome and their comprehensive analysis has catalyzed the burgeoning field of immunopeptidomics. Advances in mass spectrometry (MS) and next-generation sequencing have facilitated significant breakthroughs in this area, some of which are highlighted in this article on the cryptic immunopeptidome. Here, 'cryptic' refers to peptides and proteins encoded by noncanonical open reading frames (ORFs). Cryptic MAPs derive mainly from short unstable proteins found in normal, infected, and neoplastic cells. Cryptic MAPs show minimal overlap with cryptic proteins found in whole-cell extracts. In many cancer types, most cancer-specific MAPs are cryptic.
Collapse
Affiliation(s)
- Eralda Kina
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Schwartz M, Colaiuta SP. Boosting peripheral immunity to fight neurodegeneration in the brain. Trends Immunol 2024; 45:760-767. [PMID: 39358094 DOI: 10.1016/j.it.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Abstract
Reciprocal communication between the brain and the immune system is essential for maintaining lifelong brain function. This interaction is mediated, at least in part, by immune cells recruited from both the circulation and niches at the borders of the brain. Here, we describe how immune exhaustion and senescence, even if not primary causative factors, can accelerate neurodegenerative diseases. We emphasize the role of a compromised peripheral immune system in driving neurodegeneration and discuss strategies for harnessing peripheral immunity to effectively treat neurodegenerative diseases, including the underlying mechanisms and opportunities for clinical translation. Specifically, we highlight the potential of boosting the immune system by blocking inhibitory checkpoint molecules to harness reparative immune cells in helping the brain to fight against neurodegeneration.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
13
|
Zanluqui NG, McGavern DB. Why do central nervous system barriers host a diverse immune landscape? Trends Immunol 2024; 45:738-749. [PMID: 39299888 PMCID: PMC11471389 DOI: 10.1016/j.it.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
The meninges in vertebrates comprise three layers (dura, arachnoid, pia mater), representing an important barrier surrounding and protecting the central nervous system (CNS). The most exterior CNS barrier, the dura mater, is unique because it resembles a peripheral tissue. It hosts a rich immune landscape, lymphatic vessels, and fenestrated vasculature, allowing microbes and other threats from the blood to extravasate into the meninges, potentially reaching the underlying CNS. The highly specialized large venous drainage system in the dura is especially susceptible to infection. Here, we explore specializations in the CNS barrier system from an anatomical and immunological perspective and posit that the dura mater evolved an elaborate innate and adaptive immune system in specific locations within it to protect underlying CNS tissue against invading pathogens.
Collapse
Affiliation(s)
- Nagela G Zanluqui
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
14
|
Shaw BC, Anders VR, Tinkey RA, Habean ML, Brock OD, Frostino BJ, Williams JL. Immunity impacts cognitive deficits across neurological disorders. J Neurochem 2024; 168:3512-3535. [PMID: 37899543 PMCID: PMC11056485 DOI: 10.1111/jnc.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Cognitive deficits are a common comorbidity with neurological disorders and normal aging. Inflammation is associated with multiple diseases including classical neurodegenerative dementias such as Alzheimer's disease (AD) and autoimmune disorders such as multiple sclerosis (MS), in which over half of all patients experience some form of cognitive deficits. Other degenerative diseases of the central nervous system (CNS) including frontotemporal lobe dementia (FTLD), and Parkinson's disease (PD) as well as traumatic brain injury (TBI) and psychological disorders like major depressive disorder (MDD), and even normal aging all have cytokine-associated reductions in cognitive function. Thus, there is likely commonality between these secondary cognitive deficits and inflammation. Neurological disorders are increasingly associated with substantial neuroinflammation, in which CNS-resident cells secrete cytokines and chemokines such as tumor necrosis factor (TNF)α and interleukins (ILs) including IL-1β and IL-6. CNS-resident cells also respond to a wide variety of cytokines and chemokines, which can have both direct effects on neurons by changing the expression of ion channels and perturbing electrical properties, as well as indirect effects through glia-glia and immune-glia cross-talk. There is significant overlap in these cytokine and chemokine expression profiles across diseases, with TNFα and IL-6 strongly associated with cognitive deficits in multiple disorders. Here, we review the involvement of various cytokines and chemokines in AD, MS, FTLD, PD, TBI, MDD, and normal aging in the absence of dementia. We propose that the neuropsychiatric phenotypes observed in these disorders may be at least partially attributable to a dysregulation of immunity resulting in pathological cytokine and chemokine expression from both CNS-resident and non-resident cells.
Collapse
Affiliation(s)
- Benjamin C. Shaw
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Victoria R. Anders
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Maria L. Habean
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
| | - Orion D. Brock
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Molecular Medicine, Lerner Research Institute, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin J. Frostino
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- College of Science, University of Notre Dame, South Bend, IN, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
- Molecular Medicine, Lerner Research Institute, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
15
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
16
|
Ma Z, Liu J, Zhang L. JAK and STAT5B mediate olfactory response of migratory locusts to their own volatiles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104164. [PMID: 39068995 DOI: 10.1016/j.ibmb.2024.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signaling affect social aggregation, mood and psychiatric disorders, nociceptive and depressive behaviors. Olfactory dysfunction is one of the distinct symptoms of these behaviors, but function and mechanism of JAK and STAT in modulating olfaction remain largely unknown. Migratory locusts show olfactory preference for their own volatiles. We thus use this animal model to explore functions and mechanisms of JAK and STAT5B in mediating olfaction response to their own volatiles. Tissue distribution study shows that JAK and STAT5B express in antennae and brains, especially in antennal lobes and mushroom bodies in locust brains, and knockdown of these two genes by RNA interference (RNAi) in antennae and brains results in the loss of olfactory preference for locust volatiles, including chemical odorants indole and β-ionone. RNA-seq analysis reveals that JAK and STAT5B RNAi knockdown downregulates a functional class of transcripts in nucleoprotein complex, including heterogeneous nuclear ribonucleoprotein C (hnRNPC) and small nuclear ribonucleoprotein polypeptide F (SNRPF). HnRNPC and SNRPF mRNAs and proteins are also expressed in antennae and brains, and RNAi knockdown of these two genes reduces the percentage of locusts preferring volatiles, including chemical odorants indole and β-ionone. Furthermore, RNAi knockdown of dopamine receptor 1 (DopR1) results in the decrease of JAK mRNA level in antennae, and JAK/STAT5B, hnRNPC and SNRPF are required for dopamine receptor 1 (DopR1) to modulate olfactory preference for their own volatiles. This study confirms that JAK/STAT5B signaling modulates olfaction by affecting expression levels of hnRNPC and SNRPF, and this pathway is also required for DopR1 to modulate olfactory preference for their own volatiles. These findings highlight novel roles of JAK and STAT5B in modulating olfactory preference. This study provides novel insights into functional links among JAK/STAT5B signaling, RNA binding proteins and DopR1 underlying the modulation of olfactory behaviors.
Collapse
Affiliation(s)
- Zongyuan Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Jipeng Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Lichen Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Li JH. CRISPR-based approaches for studying inborn errors of immunity. Clin Transl Med 2024; 14:e70021. [PMID: 39370702 PMCID: PMC11456690 DOI: 10.1002/ctm2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 10/08/2024] Open
Affiliation(s)
- Joey H. Li
- Department of MicrobiologyImmunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesLos AngelesCaliforniaUSA
- Medical Scientist Training ProgramDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
18
|
Diener C, Thüre K, Engel A, Hart M, Keller A, Meese E, Fischer U. Paving the way to a neural fate - RNA signatures in naive and trans-differentiating mesenchymal stem cells. Eur J Cell Biol 2024; 103:151458. [PMID: 39341198 DOI: 10.1016/j.ejcb.2024.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic positions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time-course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural trans-differentiation process. These factors include the persistence of stemness features and the expression of factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These insights can pave the way for the development of safer treatments of neurological disorders.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Konstantin Thüre
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Annika Engel
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Martin Hart
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Ulrike Fischer
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany.
| |
Collapse
|
19
|
Frasca A, Miramondi F, Butti E, Indrigo M, Balbontin Arenas M, Postogna FM, Piffer A, Bedogni F, Pizzamiglio L, Cambria C, Borello U, Antonucci F, Martino G, Landsberger N. Neural precursor cells rescue symptoms of Rett syndrome by activation of the Interferon γ pathway. EMBO Mol Med 2024:10.1038/s44321-024-00144-9. [PMID: 39304759 DOI: 10.1038/s44321-024-00144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The beneficial effects of Neural Precursor Cell (NPC) transplantation in several neurological disorders are well established and they are generally mediated by the secretion of immunomodulatory and neurotrophic molecules. We therefore investigated whether Rett syndrome (RTT), that represents the first cause of severe intellectual disability in girls, might benefit from NPC-based therapy. Using in vitro co-cultures, we demonstrate that, by sensing the pathological context, NPC-secreted factors induce the recovery of morphological and synaptic defects typical of Mecp2 deficient neurons. In vivo, we prove that intracerebral transplantation of NPCs in RTT mice significantly ameliorates neurological functions. To uncover the molecular mechanisms underpinning the mediated benefic effects, we analyzed the transcriptional profile of the cerebellum of transplanted animals, disclosing the possible involvement of the Interferon γ (IFNγ) pathway. Accordingly, we report the capacity of IFNγ to rescue synaptic defects, as well as motor and cognitive alterations in Mecp2 deficient models, thereby suggesting this molecular pathway as a potential therapeutic target for RTT.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Federica Miramondi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Erica Butti
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Marzia Indrigo
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Maria Balbontin Arenas
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Francesca M Postogna
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Arianna Piffer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Francesco Bedogni
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
- Neuroscience and Mental Health Innovation Institute (NMHII), Cardiff University School of Medicine, Cardiff, CF24 4HQ, UK
| | - Lara Pizzamiglio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Ugo Borello
- Cellular and Developmental Biology Unit, Department of Biology, University of Pisa, I-56127, Pisa, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy.
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy.
| |
Collapse
|
20
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
21
|
Bulgur D, Moura RM, Ribot JC. Key actors in neuropathophysiology: The role of γδ T cells. Eur J Immunol 2024:e2451055. [PMID: 39240039 DOI: 10.1002/eji.202451055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The neuroimmune axis has been the focus of many studies, with special emphasis on the interactions between the central nervous system and the different immune cell subsets. T cells are namely recognized to play a critical role due to their interaction with nerves, by secreting cytokines and neurotrophins, which regulate the development, function, and survival of neurons. In this context, γδ T cells are particularly relevant, as they colonize specific tissues, namely the meninges, and have a wide variety of complex functions that balance physiological systems. Notably, γδ T cells are not only key components for maintaining brain homeostasis but are also responsible for triggering or preventing inflammatory responses in various pathologies, including neurodegenerative diseases as well as neuropsychiatric and developmental disorders. Here, we provide an overview of the current state of the art on the contribution of γδ T cells in neuropathophysiology and delve into the molecular mechanisms behind it. We aim to shed light on γδ T cell functions in the central nervous system while highlighting upcoming challenges in the field and providing new clues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Deniz Bulgur
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Raquel Macedo Moura
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| |
Collapse
|
22
|
Braak S, Penninx BW, Su T, Pijnenburg Y, Nijland D, Campos AV, de la Torre-Luque A, Saris IMJ, Reus LM, Beckenstrom AC, Malik A, Dawson GR, Marston H, Alvarez-Linera J, Ayuso-Mateos JLL, Arango C, van der Wee N, Kas MJ, Aghajani M. Social dysfunction relates to shifts within socioaffective brain systems among Schizophrenia and Alzheimer's disease patients. Eur Neuropsychopharmacol 2024; 86:1-10. [PMID: 38909542 DOI: 10.1016/j.euroneuro.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024]
Abstract
Social dysfunction represents one of the most common signs of neuropsychiatric disorders, such as Schizophrenia (SZ) and Alzheimer's disease (AD). Perturbed socioaffective neural processing is crucially implicated in SZ/AD and generally linked to social dysfunction. Yet, transdiagnostic properties of social dysfunction and its neurobiological underpinnings remain unknown. As part of the European PRISM project, we examined whether social dysfunction maps onto shifts within socioaffective brain systems across SZ and AD patients. We probed coupling of social dysfunction with socioaffective neural processing, as indexed by an implicit facial emotional processing fMRI task, across SZ (N = 46), AD (N = 40) and two age-matched healthy control (HC) groups (N = 26 HC-younger and N = 27 HC-older). Behavioural (i.e., social withdrawal, interpersonal dysfunction, diminished prosocial or recreational activity) and subjective (i.e., feelings of loneliness) aspects of social dysfunction were assessed using the Social Functioning Scale and De Jong-Gierveld loneliness questionnaire, respectively. Across SZ/AD/HC participants, more severe behavioural social dysfunction related to hyperactivity within fronto-parieto-limbic brain systems in response to sad emotions (P = 0.0078), along with hypoactivity of these brain systems in response to happy emotions (P = 0.0418). Such relationships were not found for subjective experiences of social dysfunction. These effects were independent of diagnosis, and not confounded by clinical and sociodemographic factors. In conclusion, behavioural aspects of social dysfunction across SZ/AD/HC participants are associated with shifts within fronto-parieto-limbic brain systems. These findings pinpoint altered socioaffective neural processing as a putative marker for social dysfunction, and could aid personalized care initiatives grounded in social behaviour.
Collapse
Affiliation(s)
- Simon Braak
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands.
| | - Brenda Wjh Penninx
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands
| | - Tanja Su
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Daphne Nijland
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands
| | - Alba Vieira Campos
- Centre of Biomedical Research in Mental Health, CIBERSAM, Spain; Memory Unit, Department of Neurology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Alejandro de la Torre-Luque
- Centre of Biomedical Research in Mental Health, CIBERSAM, Spain; Department of Legal Medicine, Psychiatry and Pathology. Complutense University of Madrid, Madrid, Spain
| | - Ilja M J Saris
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands; Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California, United States
| | | | - Asad Malik
- P1vital Ltd. Manor House, Howbery Park, Wallingford, United Kingdom
| | - Gerard R Dawson
- P1vital Ltd. Manor House, Howbery Park, Wallingford, United Kingdom
| | | | | | - Jose-Luis L Ayuso-Mateos
- Centre of Biomedical Research in Mental Health, CIBERSAM, Spain; Department of Psychiatry, Universidad Autonoma de Madrid, Instituto de Investigación Sanitaria Princesa, Spain
| | - Celso Arango
- Centre of Biomedical Research in Mental Health, CIBERSAM, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Gregorio Marañon University Hospital, IiSGM, Spain; Universidad Complutense de Madrid, Spain
| | - Nic van der Wee
- Leiden University Medical Centre, Department of Psychiatry, the Netherlands
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Moji Aghajani
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands
| |
Collapse
|
23
|
Kigar SL, Lynall ME, DePuyt AE, Atkinson R, Sun VH, Samuels JD, Eassa NE, Poffenberger CN, Lehmann ML, Listwak SJ, Livak F, Elkahloun AG, Clatworthy MR, Bullmore ET, Herkenham M. Chronic social defeat stress induces meningeal neutrophilia via type I interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610447. [PMID: 39257811 PMCID: PMC11383661 DOI: 10.1101/2024.08.30.610447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Animal models of stress and stress-related disorders are also associated with blood neutrophilia. The mechanistic relevance of this to symptoms or behavior is unclear. We used cytometry, immunohistochemistry, whole tissue clearing, and single-cell sequencing to characterize the meningeal immune response to chronic social defeat (CSD) stress in mice. We find that chronic, but not acute, stress causes meningeal neutrophil accumulation, and CSD increases neutrophil trafficking in vascular channels emanating from skull bone marrow (BM). Transcriptional analysis suggested CSD increases type I interferon (IFN-I) signaling in meningeal neutrophils. Blocking this pathway via the IFN-I receptor (IFNAR) protected against the anhedonic and anxiogenic effects of CSD stress, potentially through reduced infiltration of IFNAR+ neutrophils into the meninges from skull BM. Our identification of IFN-I signaling as a putative mediator of meningeal neutrophil recruitment may facilitate development of new therapies for stress-related disorders.
Collapse
Affiliation(s)
- Stacey L. Kigar
- National Institute of Mental Health, Bethesda, MD, USA
- Department of Medicine, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Mary-Ellen Lynall
- Department of Psychiatry, University of Cambridge, UK
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | | | | | | | | | | | | | | | - Ferenc Livak
- Laboratory of Genome Integrity, Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Abdel G. Elkahloun
- Microarrays and Single-Cell Genomics, National Human Genome Research Institute, Bethesda, MD, USA
| | - Menna R. Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, UK
| | | | | |
Collapse
|
24
|
Ma YZ, Cao JX, Zhang YS, Su XM, Jing YH, Gao LP. T Cells Trafficking into the Brain in Aging and Alzheimer's Disease. J Neuroimmune Pharmacol 2024; 19:47. [PMID: 39180590 DOI: 10.1007/s11481-024-10147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
The meninges, choroid plexus (CP) and blood-brain barrier (BBB) are recognized as important gateways for peripheral immune cell trafficking into the central nervous system (CNS). Accumulation of peripheral immune cells in brain parenchyma can be observed during aging and Alzheimer's disease (AD). However, the mechanisms by which peripheral immune cells enter the CNS through these three pathways and how they interact with resident cells within the CNS to cause brain injury are not fully understood. In this paper, we review recent research on T cells recruitment in the brain during aging and AD. This review focuses on the possible pathways through which T cells infiltrate the brain, the evidence that T cells are recruited to the brain, and how infiltrating T cells interact with the resident cells in the CNS during aging and AD. Unraveling these issues will contribute to a better understanding of the mechanisms of aging and AD from the perspective of immunity, and hopefully develop new therapeutic strategies for brain aging and AD.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
25
|
Tsitsou-Kampeli A, Suzzi S, Schwartz M. The immune and metabolic milieu of the choroid plexus as a potential target in brain protection. Trends Neurosci 2024; 47:573-582. [PMID: 38945740 DOI: 10.1016/j.tins.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
The brain's choroid plexus (CP), which operates as an anatomical and functional 'checkpoint', regulates the communication between brain and periphery and contributes to the maintenance of healthy brain homeostasis throughout life. Evidence from mouse models and humans reveals a link between loss of CP checkpoint properties and dysregulation of the CP immune milieu as a conserved feature across diverse neurological conditions. In particular, we suggest that an imbalance between different immune signals at the CP, including CD4+ T cell-derived cytokines, type-I interferon, and complement components, can perpetuate brain inflammation and cognitive deterioration in aging and neurodegeneration. Furthermore, we highlight the role of CP metabolism in controlling CP inflammation, and propose that targeting molecules that regulate CP metabolism could be effective in safeguarding brain function.
Collapse
Affiliation(s)
| | - Stefano Suzzi
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Michal Schwartz
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel.
| |
Collapse
|
26
|
Song X, Chen R, Li J, Zhu Y, Jiao J, Liu H, Chen Z, Geng J. Fragile Treg cells: Traitors in immune homeostasis? Pharmacol Res 2024; 206:107297. [PMID: 38977207 DOI: 10.1016/j.phrs.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T (Treg) cells play a key role in maintaining immune tolerance and tissue homeostasis. However, in some disease microenvironments, Treg cells exhibit fragility, which manifests as preserved FoxP3 expression accompanied by inflammation and loss of immunosuppression. Fragile Treg cells are formatively, phenotypically and functionally diverse in various diseases, further complicating the role of Treg cells in the immunotherapeutic response and offering novel targets for disease treatment by modulating specific Treg subsets. In this review, we summarize findings on fragile Treg cells to provide a framework for characterizing the formation and role of fragile Treg cells in different diseases, and we discuss how this information may guide the development of more specific Treg-targeted immunotherapies.
Collapse
Affiliation(s)
- Xiyu Song
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jiaxin Li
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Yumeng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jianhua Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Hongjiao Liu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jiejie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, PR China.
| |
Collapse
|
27
|
Zhang C, Wang F, Bao F, Zhu J, Xu J, Lin D. The effects of nanoplastics and microcystin-LR coexposure on Aristichthys nobilis at the early developmental stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107006. [PMID: 38909583 DOI: 10.1016/j.aquatox.2024.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Nanoplastics (NPs) and microcystin-LR (MC-LR) are two common and harmful pollutants in water environments, especially at aquafarm where are full of plastic products and algae. It is of great significance to study the toxic effects and mechanisms of the NPs and/or MC-LR on fish at the early stage. In this study, the embryo and larvae of a filtering-feeding fish, Aristichthys nobilis, were used as the research objects. The results showed that the survival and hatching rates of the embryo were not significantly affected by the environmental concentration exposure of these two pollutants. Scanning electron microscopy (SEM) observation displayed that NPs adhered to the surface of the embryo membrane. Transcriptomic and bioinformatic analyses revealed that the NPs exposure activated neuromuscular junction development and skeletal muscle fiber in larvae, and affected C5-Branched dibasic acid metabolism. The metabolic and biosynthetic processes of zeaxanthin, xanthophyll, tetraterpenoid, and carotenoid were suppressed after the MC-LR exposure, which was harmful to the retinol metabolism of fish. Excessive production of superoxide dismutase (SOD) was detected under the MC-LR exposure. The MC-LR and NPs coexposure triggered primary immunodeficiency and adaptive immune response, leading to the possibility of reduced fitness of A.nobilis during the development. Collectively, our results indicate that environmental concentration NPs and MC-LR coexposure could cause toxic damage and enhance sick risk in A.nobilis, providing new insights into the risk of NPs and MC-LR on filtering-feeding fish.
Collapse
Affiliation(s)
- Chaonan Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Huzhou 313300, China
| | - Fei Wang
- Zhejiang Ecological Civilization Academy, Huzhou 313300, China; National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Feifan Bao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Junjie Zhu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jiang Xu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Huzhou 313300, China.
| |
Collapse
|
28
|
Manjili MH, Manjili SH. The quantum model of T-cell activation: Revisiting immune response theories. Scand J Immunol 2024; 100:e13375. [PMID: 38750629 PMCID: PMC11250909 DOI: 10.1111/sji.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 07/16/2024]
Abstract
Our understanding of the immune response is far from complete, missing out on more detailed explanations that could be provided by molecular insights. To bridge this gap, we introduce the quantum model of T-cell activation. This model suggests that the transfer of energy during protein phosphorylation within T cells is not a continuous flow but occurs in discrete bursts, or 'quanta', of phosphates. This quantized energy transfer is mediated by oscillating cycles of receptor phosphorylation and dephosphorylation, initiated by dynamic 'catch-slip' pulses in the peptide-major histocompatibility complex-T-cell receptor (pMHC-TcR) interactions. T-cell activation is predicated upon achieving a critical threshold of catch-slip pulses at the pMHC-TcR interface. Costimulation is relegated to a secondary role, becoming crucial only when the frequency of pMHC-TcR catch-slip pulses does not meet the necessary threshold for this quanta-based energy transfer. Therefore, our model posits that it is the quantum nature of energy transfer-not the traditional signal I or signal II-that plays the decisive role in T-cell activation. This paradigm shift highlights the importance of understanding T-cell activation through a quantum lens, offering a potentially transformative perspective on immune response regulation.
Collapse
Affiliation(s)
- Masoud H. Manjili
- Department of Microbiology & Immunology, VCU School of Medicine
- Massey Comprehensive Cancer Center, 401 College Street, Richmond, VA, 23298, USA
| | - Saeed H. Manjili
- AMF Automation Technologies LLC, 2115 W. Laburnum Ave., Richmond, VA 23227
| |
Collapse
|
29
|
Woo MS, Mayer C, Binkle-Ladisch L, Sonner JK, Rosenkranz SC, Shaposhnykov A, Rothammer N, Tsvilovskyy V, Lorenz SM, Raich L, Bal LC, Vieira V, Wagner I, Bauer S, Glatzel M, Conrad M, Merkler D, Freichel M, Friese MA. STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell 2024; 187:4043-4060.e30. [PMID: 38878778 DOI: 10.1016/j.cell.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 07/28/2024]
Abstract
Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.
Collapse
Affiliation(s)
- Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Artem Shaposhnykov
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
30
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
31
|
Wang F, Wang Y, Zhang QY, Hu KY, Song YJ, Yang L, Fei F, Xu CL, Cui SL, Ruan YP, Wang Y, Chen Z. Small-molecule caspase-1 inhibitor CZL80 terminates refractory status epilepticus via inhibition of glutamatergic transmission. Acta Pharmacol Sin 2024; 45:1381-1392. [PMID: 38514863 PMCID: PMC11192899 DOI: 10.1038/s41401-024-01257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Status epilepticus (SE), a serious and often life-threatening medical emergency, is characterized by abnormally prolonged seizures. It is not effectively managed by present first-line anti-seizure medications and could readily develop into drug resistance without timely treatment. In this study, we highlight the therapeutic potential of CZL80, a small molecule that inhibits caspase-1, in SE termination and its related mechanisms. We found that delayed treatment of diazepam (0.5 h) easily induces resistance in kainic acid (KA)-induced SE. CZL80 dose-dependently terminated diazepam-resistant SE, extending the therapeutic time window to 3 h following SE, and also protected against neuronal damage. Interestingly, the effect of CZL80 on SE termination was model-dependent, as evidenced by ineffectiveness in the pilocarpine-induced SE. Further, we found that CZL80 did not terminate KA-induced SE in Caspase-1-/- mice but partially terminated SE in IL1R1-/- mice, suggesting the SE termination effect of CZL80 was dependent on the caspase-1, but not entirely through the downstream IL-1β pathway. Furthermore, in vivo calcium fiber photometry revealed that CZL80 completely reversed the neuroinflammation-augmented glutamatergic transmission in SE. Together, our results demonstrate that caspase-1 inhibitor CZL80 terminates diazepam-resistant SE by blocking glutamatergic transmission. This may be of great therapeutic significance for the clinical treatment of refractory SE.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qing-Yang Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ke-Yu Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying-Jie Song
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sun-Liang Cui
- Key Laboratory of Medical Neurobiology of The Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ye-Ping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Medical Neurobiology of The Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Medical Neurobiology of The Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
O'Connor AM, Hagenauer MH, Thew Forrester LC, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. Neurobiol Stress 2024; 31:100651. [PMID: 38933284 PMCID: PMC11201356 DOI: 10.1016/j.ynstr.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | - Megan Hastings Hagenauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Liam Cannon Thew Forrester
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Pamela M. Maras
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Keiko Arakawa
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elaine K. Hebda-Bauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huzefa Khalil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Evelyn R. Richardson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Farizah I. Rob
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Yusra Sannah
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Stanley J. Watson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huda Akil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
33
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
34
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
35
|
Dai B, Li T, Cao J, Zhao X, Jiang Y, Shi L, Wei J. CD4 + T-cell subsets are associated with chronic stress effects in newly diagnosed anxiety disorders. Neurobiol Stress 2024; 31:100661. [PMID: 39070284 PMCID: PMC11279324 DOI: 10.1016/j.ynstr.2024.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
Aim Prior research has indicated a connection between CD4+ T cells and the development of anxiety, but the specific CD4+ T cell subsets linked to anxiety disorders remain uncertain. Our study seeks to investigate the relationship between distinct CD4+ T cell subsets and anxiety, as well as to explore whether CD4+ T cell subsets mediate the effect of chronic psychological stress on anxiety. Methods 56 eligible matched participants were recruited in Peking Union Medical College Hospital. The diagnosis was made based on DSM-5 diagnostic criteria. The severity of anxiety and depression symptoms was assessed using the Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale, respectively. The Life Events Scale (LES) evaluated the chronic stress level. CD4+ T cell subsets were characterized using multiparametric flow cytometry. To assess the impact of CD4+ T cells on the effect of chronic psychological stress on anxiety, Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis was employed. Results We discovered fifteen notably distinct CD4+ T-cell subsets in anxiety disorder patients compared to healthy controls. Multiple linear regression analysis unveiled an association between anxiety severity and CD27+CD45RA- Th cells, CD27+CD28+ Tregs, and the total Life Events Scale (LES) score. The PLS-SEM analysis demonstrated that CD4+ T cell subsets and LES could explain 80.2% of the variance in anxiety. Furthermore, it was observed that CD27+CD28+ Th/Treg cells acted as inverse mediators of the effects of LES on anxiety (P = 0.031). Conclusions Drug naïve anxiety disorder patients exhibited significant alterations in numerous CD4+ T-cell subsets. Specifically, the memory subset of CD27+CD45RA- Th cells and the naïve subset of CD27+CD28+ Treg cells were found to be independent factors associated with the severity of anxiety. Additionally, the CD27+CD28+ Th and Treg cell subsets played a significant mediating role in the influence of long-term psychological stress on anxiety.
Collapse
Affiliation(s)
- Bindong Dai
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Tao Li
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Jinya Cao
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Xiaohui Zhao
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Yinan Jiang
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Lili Shi
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Jing Wei
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| |
Collapse
|
36
|
Friedline RH, Noh HL, Suk S, Albusharif M, Dagdeviren S, Saengnipanthkul S, Kim B, Kim AM, Kim LH, Tauer LA, Baez Torres NM, Choi S, Kim BY, Rao SD, Kasina K, Sun C, Toles BJ, Zhou C, Li Z, Benoit VM, Patel PR, Zheng DXT, Inashima K, Beaverson A, Hu X, Tran DA, Muller W, Greiner DL, Mullen AC, Lee KW, Kim JK. IFNγ-IL12 axis regulates intercellular crosstalk in metabolic dysfunction-associated steatotic liver disease. Nat Commun 2024; 15:5506. [PMID: 38951527 PMCID: PMC11217362 DOI: 10.1038/s41467-024-49633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity is a major cause of metabolic dysfunction-associated steatohepatitis (MASH) and is characterized by inflammation and insulin resistance. Interferon-γ (IFNγ) is a pro-inflammatory cytokine elevated in obesity and modulating macrophage functions. Here, we show that male mice with loss of IFNγ signaling in myeloid cells (Lyz-IFNγR2-/-) are protected from diet-induced insulin resistance despite fatty liver. Obesity-mediated liver inflammation is also attenuated with reduced interleukin (IL)-12, a cytokine primarily released by macrophages, and IL-12 treatment in vivo causes insulin resistance by impairing hepatic insulin signaling. Following MASH diets, Lyz-IFNγR2-/- mice are rescued from developing liver fibrosis, which is associated with reduced fibroblast growth factor (FGF) 21 levels. These results indicate critical roles for IFNγ signaling in macrophages and their release of IL-12 in modulating obesity-mediated insulin resistance and fatty liver progression to MASH. In this work, we identify the IFNγ-IL12 axis in regulating intercellular crosstalk in the liver and as potential therapeutic targets to treat MASH.
Collapse
Affiliation(s)
- Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mahaa Albusharif
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Bukyung Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Allison M Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lauren H Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie M Baez Torres
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Stephanie Choi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo-Yeon Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Suryateja D Rao
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kaushal Kasina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cheng Sun
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Benjamin J Toles
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chan Zhou
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zixiu Li
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vivian M Benoit
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Payal R Patel
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Doris X T Zheng
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kunikazu Inashima
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Annika Beaverson
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Duy A Tran
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Werner Muller
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan C Mullen
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- XO Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
37
|
Maldonado-García JL, García-Mena LH, Mendieta-Cabrera D, Pérez-Sánchez G, Becerril-Villanueva E, Alvarez-Herrera S, Homberg T, Vallejo-Castillo L, Pérez-Tapia SM, Moreno-Lafont MC, Ortuño-Sahagún D, Pavón L. Use of Extracellular Monomeric Ubiquitin as a Therapeutic Option for Major Depressive Disorder. Pharmaceuticals (Basel) 2024; 17:841. [PMID: 39065692 PMCID: PMC11279398 DOI: 10.3390/ph17070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Major depressive disorder (MDD) is a mood disorder that has become a global health emergency according to the World Health Organization (WHO). It affects 280 million people worldwide and is a leading cause of disability and financial loss. Patients with MDD present immunoendocrine alterations like cortisol resistance and inflammation, which are associated with alterations in neurotransmitter metabolism. There are currently numerous therapeutic options for patients with MDD; however, some studies suggest a high rate of therapeutic failure. There are multiple hypotheses explaining the pathophysiological mechanisms of MDD, in which several systems are involved, including the neuroendocrine and immune systems. In recent years, inflammation has become an important target for the development of new therapeutic options. Extracellular monomeric ubiquitin (emUb) is a molecule that has been shown to have immunomodulatory properties through several mechanisms including cholinergic modulation and the generation of regulatory T cells. In this perspective article, we highlight the influence of the inflammatory response in MDD. In addition, we review and discuss the evidence for the use of emUb contained in Transferon as a concomitant treatment with selective serotonin reuptake inhibitors (SSRIs).
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Lissette Haydee García-Mena
- Departamento de Salud Digital, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico;
| | - Danelia Mendieta-Cabrera
- Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| | - Toni Homberg
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (T.H.); (L.V.-C.)
- Laboratorio Nacional Para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) Para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
| | - Martha C. Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (S.M.P.-T.)
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Jalisco 44340, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (G.P.-S.); (E.B.-V.); (S.A.-H.)
| |
Collapse
|
38
|
Zhang S, Yang J, Ji D, Meng X, Zhu C, Zheng G, Glessner J, Qu HQ, Cui Y, Liu Y, Wang W, Li X, Zhang H, Xiu Z, Sun Y, Sun L, Li J, Hakonarson H, Li J, Xia Q. NASP gene contributes to autism by epigenetic dysregulation of neural and immune pathways. J Med Genet 2024; 61:677-688. [PMID: 38443156 DOI: 10.1136/jmg-2023-109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.
Collapse
Affiliation(s)
- Sipeng Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyi Meng
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chonggui Zhu
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Zheng
- National Supercomputer Center in Tianjin (NSCC-TJ), Tianjin, China
| | - Joseph Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuechen Cui
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Wang
- The Institute of Psychology of the Chinese Academy of Sciences, Beijing, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hao Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanjie Xiu
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Sun
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Sun
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Marin-Rodero M, Reyes EC, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a unique compartment of regulatory T cells that bulwarks adult hippocampal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599387. [PMID: 38948783 PMCID: PMC11212874 DOI: 10.1101/2024.06.17.599387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.
Collapse
|
40
|
He H, Zhang X, He H, Xiao C, Xu G, Li L, Liu YE, Yang C, Zhou T, You Z, Zhang J. Priming of hippocampal microglia by IFN-γ/STAT1 pathway impairs social memory in mice. Int Immunopharmacol 2024; 134:112191. [PMID: 38759369 DOI: 10.1016/j.intimp.2024.112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
Social behavior is inextricably linked to the immune system. Although IFN-γ is known to be involved in social behavior, yet whether and how it encodes social memory remains unclear. In the current study, we injected with IFN-γ into the lateral ventricle of male C57BL/6J mice, and three-chamber social test was used to examine the effects of IFN-γ on their social preference and social memory. The morphology of microglia in the hippocampus, prelimbic cortex and amygdala was examined using immunohistochemistry, and the phenotype of microglia were examined using immunohistochemistry and enzyme-linked immunosorbent assays. The IFN-γ-injected mice were treated with lipopolysaccharide, and effects of IFN-γ on behavior and microglial responses were evaluated. STAT1 pathway and microglia-neuron interactions were examined in vivo or in vitro using western blotting and immunohistochemistry. Finally, we use STAT1 inhibitor or minocycline to evaluated the role of STAT1 in mediating the microglial priming and effects of primed microglia in IFN-γ-induced social dysfunction. We demonstrated that 500 ng of IFN-γ injection results in significant decrease in social index and social novelty recognition index, and induces microglial priming in hippocampus, characterized by enlarged cell bodies, shortened branches, increased expression of CD68, CD86, CD74, CD11b, CD11c, CD47, IL-33, IL-1β, IL-6 and iNOS, and decreased expression of MCR1, Arg-1, IGF-1 and BDNF. This microglia subpopulation is more sensitive to LPS challenge, which characterized by more significant morphological changes and inflammatory responses, as well as induced increased sickness behaviors in mice. IFN-γ upregulated pSTAT1 and STAT1 and promoted the nuclear translocation of STAT1 in the hippocampal microglia and in the primary microglia. Giving minocycline or STAT1 inhibitor fludarabin blocked the priming of hippocampal microglia induced by IFN-γ, ameliorated the dysfunction in hippocampal microglia-neuron interactions and synapse pruning by microglia, thereby improving social memory deficits in IFN-γ injected mice. IFN-γ initiates STAT1 pathway to induce priming of hippocampal microglia, thereby disrupts hippocampal microglia-neuron interactions and neural circuit link to social memory. Blocking STAT1 pathway or inhibiting microglial priming may be strategies to reduce the effects of IFN-γ on social behavior.
Collapse
Affiliation(s)
- Haili He
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiaomei Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui He
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Gaojie Xu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yu-E Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chengyan Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
41
|
Kim RK, Truby NL, Silva GM, Picone JA, Miller CS, Baldwin AN, Neve RL, Cui X, Hamilton PJ. Histone H1x in mouse ventral hippocampus associates with, but does not cause behavioral adaptations to stress. Transl Psychiatry 2024; 14:239. [PMID: 38834575 PMCID: PMC11150540 DOI: 10.1038/s41398-024-02931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Prior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress. First, we demonstrated that stress-susceptible mice uniquely express elevated vHipp H1x protein levels following chronic stress. Given that linker histones coordinate heterochromatin compaction, we hypothesize that elevated levels of H1x in the vHipp may impede pro-resilience transcriptional adaptations and prevent development of the resilient phenotype following social stress. To test this, 8-10-week-old male C57BL/6 J mice were randomly assigned to groups undergoing 10 days of chronic social defeat stress (CSDS) or single housing, respectively. Following CSDS, mice were classified as susceptible versus resilient based on their social interaction behaviors. We synthesized a viral overexpression (OE) vector for H1x and transduced all stressed and single housed mice with either H1x or control GFP within vHipp. Following viral delivery, we conducted social, anxiety-like, and memory-reliant behavior tests on distinct cohorts of mice. We found no behavioral adaptations following H1x OE compared to GFP controls in susceptible, resilient, or single housed mice. In sum, although we confirm elevated vHipp protein levels of H1x associate with susceptibility to social stress, we observe no significant behavioral consequence of H1x OE. Thus, we conclude elevated levels of H1x are associated with, but are not singularly sufficient to drive development of behavioral adaptations to stress.
Collapse
Affiliation(s)
- R Kijoon Kim
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Natalie L Truby
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Gabriella M Silva
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Joseph A Picone
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Cary S Miller
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Amber N Baldwin
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - Xiaohong Cui
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Peter J Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
42
|
Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Marrocco J, Balacco J, Ndhlovu LC, Milner TA, Fedrigo O, Jarvis ED, Sheynkman G, Korkin D, Ross ME, Tilgner HU. Single-cell long-read sequencing-based mapping reveals specialized splicing patterns in developing and adult mouse and human brain. Nat Neurosci 2024; 27:1051-1063. [PMID: 38594596 PMCID: PMC11156538 DOI: 10.1038/s41593-024-01616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Bei Zhang
- Spatial Genomics, Inc., Pasadena, CA, USA
| | - Oleksandr Narykov
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mark Diekhans
- UC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jordan Marrocco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Biology, Touro University, New York, NY, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
43
|
Mokbel AY, Burns MP, Main BS. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J Neuroinflammation 2024; 21:135. [PMID: 38802931 PMCID: PMC11131220 DOI: 10.1186/s12974-024-03122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.
Collapse
Affiliation(s)
- Alaa Y Mokbel
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Bevan S Main
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
44
|
González-Madrid E, Rangel-Ramírez MA, Opazo MC, Méndez L, Bohmwald K, Bueno SM, González PA, Kalergis AM, Riedel CA. Gestational hypothyroxinemia induces ASD-like phenotypes in behavior, proinflammatory markers, and glutamatergic protein expression in mouse offspring of both sexes. Front Endocrinol (Lausanne) 2024; 15:1381180. [PMID: 38752179 PMCID: PMC11094302 DOI: 10.3389/fendo.2024.1381180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1β, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.
Collapse
Affiliation(s)
- Enrique González-Madrid
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María C. Opazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Luis Méndez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
45
|
Boskovic P, Gao W, Kipnis J. Will cellular immunotherapies end neurodegenerative diseases? Trends Immunol 2024; 45:329-337. [PMID: 38600001 DOI: 10.1016/j.it.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders present major challenges to global health, exacerbated by an aging population and the absence of therapies. Despite diverse pathological manifestations, they share a common hallmark, loosely termed 'neuroinflammation'. The prevailing dogma is that the immune system is an active contributor to neurodegeneration; however, recent evidence challenges this. By analogy with road construction, which causes temporary closures and disruptions, the immune system's actions in the central nervous system (CNS) might initially appear destructive, and might even cause harm, while aiming to combat neurodegeneration. We propose that the application of cellular immunotherapies to coordinate the immune response towards remodeling might pave the way for new modes of tackling the roadblocks of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pavle Boskovic
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA.
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA.
| |
Collapse
|
46
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Estevez I, Buckley BD, Panzera N, Lindman M, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during CNS viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591333. [PMID: 38712188 PMCID: PMC11071512 DOI: 10.1101/2024.04.26.591333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While recent work has identified roles for immune mediators in the regulation of neural activity, the capacity for cell intrinsic innate immune signaling within neurons to influence neurotransmission remains poorly understood. However, the existing evidence linking immune signaling with neuronal function suggests that modulation of neurotransmission may serve previously undefined roles in host protection during infection of the central nervous system. Here, we identify a specialized function for RIPK3, a kinase traditionally associated with necroptotic cell death, in preserving neuronal survival during neurotropic flavivirus infection through the suppression of excitatory neurotransmission. We show that RIPK3 coordinates transcriptomic changes in neurons that suppress neuronal glutamate signaling, thereby desensitizing neurons to excitotoxic cell death. These effects occur independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promotes phosphorylation of the key neuronal regulatory kinase CaMKII, which in turn activates the transcription factor CREB to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting new mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D. Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J. Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
48
|
Medzhitov R, Iwasaki A. Exploring new perspectives in immunology. Cell 2024; 187:2079-2094. [PMID: 38670066 DOI: 10.1016/j.cell.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Several conceptual pillars form the foundation of modern immunology, including the clonal selection theory, antigen receptor diversity, immune memory, and innate control of adaptive immunity. However, some immunological phenomena cannot be explained by the current framework. Thus, we still do not know how to design vaccines that would provide long-lasting protective immunity against certain pathogens, why autoimmune responses target some antigens and not others, or why the immune response to infection sometimes does more harm than good. Understanding some of these mysteries may require that we question existing assumptions to develop and test alternative explanations. Immunology is increasingly at a point when, once again, exploring new perspectives becomes a necessity.
Collapse
Affiliation(s)
- Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA; Tananbaum Center for Theoretical and Analytical Human Biology, Yale School of Medicine, New Haven, CT, USA.
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
49
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
50
|
O'Connor AM, Hagenauer MH, Forrester LCT, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560702. [PMID: 38645129 PMCID: PMC11030238 DOI: 10.1101/2023.10.03.560702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huda Akil
- Univ. of Michigan, Ann Arbor, MI, USA
| |
Collapse
|