1
|
Vicuña L, Barrientos E, Leiva-Yamaguchi V, Alvares D, Mericq V, Pereira A, Eyheramendy S. Joint models reveal genetic architecture of pubertal stage transitions and their association with BMI in admixed Chilean population. Hum Mol Genet 2024; 33:1660-1670. [PMID: 38981621 DOI: 10.1093/hmg/ddae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Early or late pubertal onset can lead to disease in adulthood, including cancer, obesity, type 2 diabetes, metabolic disorders, bone fractures, and psychopathologies. Thus, knowing the age at which puberty is attained is crucial as it can serve as a risk factor for future diseases. Pubertal development is divided into five stages of sexual maturation in boys and girls according to the standardized Tanner scale. We performed genome-wide association studies (GWAS) on the "Growth and Obesity Chilean Cohort Study" cohort composed of admixed children with mainly European and Native American ancestry. Using joint models that integrate time-to-event data with longitudinal trajectories of body mass index (BMI), we identified genetic variants associated with phenotypic transitions between pairs of Tanner stages. We identified $42$ novel significant associations, most of them in boys. The GWAS on Tanner $3\rightarrow 4$ transition in boys captured an association peak around the growth-related genes LARS2 and LIMD1 genes, the former of which causes ovarian dysfunction when mutated. The associated variants are expression and splicing Quantitative Trait Loci regulating gene expression and alternative splicing in multiple tissues. Further, higher individual Native American genetic ancestry proportions predicted a significantly earlier puberty onset in boys but not in girls. Finally, the joint models identified a longitudinal BMI parameter significantly associated with several Tanner stages' transitions, confirming the association of BMI with pubertal timing.
Collapse
Affiliation(s)
- Lucas Vicuña
- Department of Medicine, Genetics Section, University of Chicago, Chicago, IL 60637, United States
| | - Esteban Barrientos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
| | | | - Danilo Alvares
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Veronica Mericq
- Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Anita Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Susana Eyheramendy
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Data Observatory Foundation, ANID Technology Center No. DO210001, Chile
- Instituto Milenio Fundamentos de los Datos, Chile
| |
Collapse
|
2
|
Xue P, Lin J, Tang J, Chen Y, Yu T, Chen C, Kong H, Lin C, Liu S. Association of obesity and menarche SNPs and interaction with environmental factors on precocious puberty. Pediatr Res 2024; 96:1076-1083. [PMID: 38649724 DOI: 10.1038/s41390-024-03168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Obesity is an important cause for the precocious or early puberty. However, the association between obesity-related loci and the risk of precocious puberty as well as the effect of gene-environment interaction are unclear, especially in the Chinese children population. METHODS This was a case-control study using baseline data from two cohorts and hospital cases in China. 15 SNPs loci and several environmental factors were included in the analysis of 1201 participants. Chi-square test and logistic regression were used to analyze the association between SNPs and precocious puberty. Additionally, exploratory factor analysis was conducted on 13 environmental variables, and then to explore their interaction with genes on precocious puberty. RESULTS The effect allele C of rs571312, and G of rs12970134 MC4R were associated with precocious puberty in girls with obesity. Regarding the gene-environment interaction, we found that when girls were in the high socioeconomic status, the rs571312 (OR: 3.996; 95% CI: 1.694-9.423) and rs12970134 (OR: 3.529; 95% CI: 1.452-8.573) risk genotypes had a greater effect on precocious puberty. CONCLUSIONS The obesity risk gene polymorphisms MC4R rs571312 and rs12970134 were associated with precocious puberty in Chinese girls with obesity, and girls with risk genotypes and high socioeconomic status should be given extra attention. IMPACT This is the first study that identified the association between rs571312 and rs12970134 of MC4R gene and precocious puberty in Chinese children. We found that when girls were in the high socioeconomic status, the risk genotypes of rs571312 and rs12970134 had a greater effect on precocious puberty. The results of this study have great public health implications. It is recommended that girls who are in high socioeconomic status and have a high genetic risk for early sexual maturity should closely monitor their pubertal development and consider early intervention strategies.
Collapse
Affiliation(s)
- Peng Xue
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianfei Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Tang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Genetic Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Office of Hospital Infection Management, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chang Chen
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Kong
- Department of Pediatrics, Qufu People's Hospital, Qufu, Shandong, China
| | - Cuilan Lin
- Boai Hospital of Zhongshan, Southern Medical University, Zhongshan, Guangdong, China
| | - Shijian Liu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Haque R, Kurien SP, Setty H, Salzberg Y, Stelzer G, Litvak E, Gingold H, Rechavi O, Oren-Suissa M. Sex-specific developmental gene expression atlas unveils dimorphic gene networks in C. elegans. Nat Commun 2024; 15:4273. [PMID: 38769103 PMCID: PMC11106331 DOI: 10.1038/s41467-024-48369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.
Collapse
Affiliation(s)
- Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Sonu Peedikayil Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Stelzer
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Litvak
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Reshetnikov E, Churnosova M, Reshetnikova Y, Stepanov V, Bocharova A, Serebrova V, Trifonova E, Ponomarenko I, Sorokina I, Efremova O, Orlova V, Batlutskaya I, Ponomarenko M, Churnosov V, Aristova I, Polonikov A, Churnosov M. Maternal Age at Menarche Genes Determines Fetal Growth Restriction Risk. Int J Mol Sci 2024; 25:2647. [PMID: 38473894 PMCID: PMC10932237 DOI: 10.3390/ijms25052647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
We aimed to explore the potential link of maternal age at menarche (mAAM) gene polymorphisms with risk of the fetal growth restriction (FGR). This case (FGR)-control (FGR free) study included 904 women (273 FGR and 631 control) in the third trimester of gestation examined/treated in the Departments of Obstetrics. For single nucleotide polymorphism (SNP) multiplex genotyping, 50 candidate loci of mAAM were chosen. The relationship of mAAM SNPs and FGR was appreciated by regression procedures (logistic/model-based multifactor dimensionality reduction [MB-MDR]) with subsequent in silico assessment of the assumed functionality pithy of FGR-related loci. Three mAAM-appertain loci were FGR-linked to genes such as KISS1 (rs7538038) (effect allele G-odds ratio (OR)allelic = 0.63/pperm = 0.0003; ORadditive = 0.61/pperm = 0.001; ORdominant = 0.56/pperm = 0.001), NKX2-1 (rs999460) (effect allele A-ORallelic = 1.37/pperm = 0.003; ORadditive = 1.45/pperm = 0.002; ORrecessive = 2.41/pperm = 0.0002), GPRC5B (rs12444979) (effect allele T-ORallelic = 1.67/pperm = 0.0003; ORdominant = 1.59/pperm = 0.011; ORadditive = 1.56/pperm = 0.009). The haplotype ACA FSHB gene (rs555621*rs11031010*rs1782507) was FRG-correlated (OR = 0.71/pperm = 0.05). Ten FGR-implicated interworking models were founded for 13 SNPs (pperm ≤ 0.001). The rs999460 NKX2-1 and rs12444979 GPRC5B interplays significantly influenced the FGR risk (these SNPs were present in 50% of models). FGR-related mAAM-appertain 15 polymorphic variants and 350 linked SNPs were functionally momentous in relation to 39 genes participating in the regulation of hormone levels, the ovulation cycle process, male gonad development and vitamin D metabolism. Thus, this study showed, for the first time, that the mAAM-appertain genes determine FGR risk.
Collapse
Affiliation(s)
- Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Yuliya Reshetnikova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Vadim Stepanov
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Anna Bocharova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Victoria Serebrova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Ekaterina Trifonova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Olga Efremova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Valentina Orlova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Irina Batlutskaya
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Marina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Vladimir Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (E.R.); (M.C.); (Y.R.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (I.A.); (A.P.)
| |
Collapse
|
5
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Pereira A, Ferrer P, Binder A, Rojas J, Michels KB, Corvalán C, Mericq V. Association Between Markers of Adiposity During Childhood and Puberty Onset in Latino Girls. J Clin Endocrinol Metab 2023; 108:e1272-e1281. [PMID: 37226986 DOI: 10.1210/clinem/dgad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
CONTEXT Prepubertal adiposity is associated with earlier puberty. It is unclear when this association starts, if all adiposity markers are similarly associated, and whether all pubertal milestones are similarly affected. OBJECTIVE To evaluate the association between different adiposity markers during childhood and the timing of different pubertal milestones in Latino girls. DESIGN, SETTING, AND PARTICIPANTS Longitudinal follow-up of 539 female participants of the Chilean Growth and Obesity Cohort recruited from childcare centers (mean age 3.5 years) from the southeast area of Santiago, Chile. Participants were singletons born between 2002 and 2003 within the normal birthweight range. Since 2006, a trained dietitian measured weight, height, waist circumference (WC) and skinfolds to estimate body mass index (BMI) Centers for Disease Control and Prevention percentiles, central obesity, percentage of fat mass (%FM), and fat mass index (FMI, fat mass/height2). MAIN OUTCOME Since 2009, sexual maturation was assessed every 6 months to assess age at (1) thelarche, (2) pubarche, (3) menarche, and (4) peak height velocity (PHV). RESULTS At thelarche, 12.5% were obese and 2% had central obesity. The median age of pubarche, menarche, and PHV were all associated with markers of adiposity at different time points during childhood whereas thelarche only with %FM and FMI. Adiposity clusters models showed that children with trajectories of high WC, %FM, and FMI during childhood were related with earlier thelarche, pubarche, menarche, and PHV but BMI trajectories only with menarche and PHV. CONCLUSIONS Higher WC, %FM, and FMI were associated with earlier age at thelarche, pubarche, menarche, and PHV. The effect of BMI was less consistent.
Collapse
Affiliation(s)
- Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, 7830490 Santiago, Chile
| | - Pedro Ferrer
- Institute of Nutrition and Food Technology, University of Chile, 7830490 Santiago, Chile
| | - Alexandra Binder
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawai'i Cancer Center, Honolulu, HI 96822, USA
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095-1772, USA
| | - Joanna Rojas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Atacama, 1530000 Copiapó, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095-1772, USA
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79110 Freiburg, Germany
| | - Camila Corvalán
- Institute of Nutrition and Food Technology, University of Chile, 7830490 Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, 8360160 Santiago, Chile
| |
Collapse
|
7
|
Reshetnikova Y, Churnosova M, Stepanov V, Bocharova A, Serebrova V, Trifonova E, Ponomarenko I, Sorokina I, Efremova O, Orlova V, Batlutskaya I, Ponomarenko M, Churnosov V, Eliseeva N, Aristova I, Polonikov A, Reshetnikov E, Churnosov M. Maternal Age at Menarche Gene Polymorphisms Are Associated with Offspring Birth Weight. Life (Basel) 2023; 13:1525. [PMID: 37511900 PMCID: PMC10381708 DOI: 10.3390/life13071525] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, the association between maternal age at menarche (AAM)-related polymorphisms and offspring birth weight (BW) was studied. The work was performed on a sample of 716 pregnant women and their newborns. All pregnant women underwent genotyping of 50 SNPs of AAM candidate genes. Regression methods (linear and Model-Based Multifactor Dimensionality Reduction (MB-MDR)) with permutation procedures (the indicator pperm was calculated) were used to identify the correlation between SNPs and newborn weight (transformed BW values were analyzed) and in silico bioinformatic examination was applied to assess the intended functionality of BW-associated loci. Four AAM-related genetic variants were BW-associated including genes such as POMC (rs7589318) (βadditive = 0.202/pperm = 0.015), KDM3B (rs757647) (βrecessive = 0.323/pperm = 0.005), INHBA (rs1079866) (βadditive = 0.110/pperm = 0.014) and NKX2-1 (rs999460) (βrecessive = -0.176/pperm = 0.015). Ten BW-significant models of interSNPs interactions (pperm ≤ 0.001) were identified for 20 polymorphisms. SNPs rs7538038 KISS1, rs713586 RBJ, rs12324955 FTO and rs713586 RBJ-rs12324955 FTO two-locus interaction were included in the largest number of BW-associated models (30% models each). BW-associated AAM-linked 22 SNPs and 350 proxy loci were functionally related to 49 genes relevant to pathways such as the hormone biosynthesis/process and female/male gonad development. In conclusion, maternal AMM-related genes polymorphism is associated with the offspring BW.
Collapse
Affiliation(s)
- Yuliya Reshetnikova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vadim Stepanov
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Anna Bocharova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Victoria Serebrova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Ekaterina Trifonova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Efremova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Valentina Orlova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Irina Batlutskaya
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Marina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vladimir Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Natalya Eliseeva
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| |
Collapse
|
8
|
Nonneman DJ, Lents CA. Functional genomics of reproduction in pigs: Are we there yet? Mol Reprod Dev 2023; 90:436-444. [PMID: 35704517 DOI: 10.1002/mrd.23625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Reproductive failure is the main reason for culling females in swine herds and is both a financial and sustainability issue. Because reproductive traits are complex and lowly to moderately heritable, genomic selection within populations can achieve substantial genetic gain in reproductive efficiency. A better understanding of the physiological components affecting the expression of these traits will facilitate greater understanding of the genes affecting reproductive traits and is necessary to improve and optimize management strategies to maximize reproductive success of gilts and sows. Large-scale genotyping with single-nucleotide polymorphism (SNP) arrays are used for genome-wide association studies (GWAS) and have facilitated identification of positional candidate genes. Transcriptomic data can be used to weight SNP for GWAS and could lead to previously unidentified candidate genes. Resequencing and fine mapping of candidate genes are necessary to identify putative functional variants and some of these have been incorporated into new genotyping arrays. Sequence imputation and genotype by sequence are newer strategies that could reveal novel functional mutations. In this study, these approaches are discussed. Advantages and limitations are highlighted where additional research is needed.
Collapse
Affiliation(s)
- Dan J Nonneman
- United States Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Clay A Lents
- United States Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| |
Collapse
|
9
|
Diaz-Thomas AM, Golden SH, Dabelea DM, Grimberg A, Magge SN, Safer JD, Shumer DE, Stanford FC. Endocrine Health and Health Care Disparities in the Pediatric and Sexual and Gender Minority Populations: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1533-1584. [PMID: 37191578 PMCID: PMC10653187 DOI: 10.1210/clinem/dgad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Endocrine care of pediatric and adult patients continues to be plagued by health and health care disparities that are perpetuated by the basic structures of our health systems and research modalities, as well as policies that impact access to care and social determinants of health. This scientific statement expands the Society's 2012 statement by focusing on endocrine disease disparities in the pediatric population and sexual and gender minority populations. These include pediatric and adult lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) persons. The writing group focused on highly prevalent conditions-growth disorders, puberty, metabolic bone disease, type 1 (T1D) and type 2 (T2D) diabetes mellitus, prediabetes, and obesity. Several important findings emerged. Compared with females and non-White children, non-Hispanic White males are more likely to come to medical attention for short stature. Racially and ethnically diverse populations and males are underrepresented in studies of pubertal development and attainment of peak bone mass, with current norms based on European populations. Like adults, racial and ethnic minority youth suffer a higher burden of disease from obesity, T1D and T2D, and have less access to diabetes treatment technologies and bariatric surgery. LGBTQIA youth and adults also face discrimination and multiple barriers to endocrine care due to pathologizing sexual orientation and gender identity, lack of culturally competent care providers, and policies. Multilevel interventions to address these disparities are required. Inclusion of racial, ethnic, and LGBTQIA populations in longitudinal life course studies is needed to assess growth, puberty, and attainment of peak bone mass. Growth and development charts may need to be adapted to non-European populations. In addition, extension of these studies will be required to understand the clinical and physiologic consequences of interventions to address abnormal development in these populations. Health policies should be recrafted to remove barriers in care for children with obesity and/or diabetes and for LGBTQIA children and adults to facilitate comprehensive access to care, therapeutics, and technological advances. Public health interventions encompassing collection of accurate demographic and social needs data, including the intersection of social determinants of health with health outcomes, and enactment of population health level interventions will be essential tools.
Collapse
Affiliation(s)
- Alicia M Diaz-Thomas
- Department of Pediatrics, Division of Endocrinology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sherita Hill Golden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Dana M Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adda Grimberg
- Department of Pediatrics, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheela N Magge
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua D Safer
- Department of Medicine, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10001, USA
| | - Daniel E Shumer
- Department of Pediatric Endocrinology, C.S. Mott Children's Hospital, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Fatima Cody Stanford
- Massachusetts General Hospital, Department of Medicine-Division of Endocrinology-Neuroendocrine, Department of Pediatrics-Division of Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Boston, MA 02114, USA
| |
Collapse
|
10
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
11
|
Shared genetic basis between reproductive behaviors and anxiety-related disorders. Mol Psychiatry 2022; 27:4103-4112. [PMID: 35750798 DOI: 10.1038/s41380-022-01667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023]
Abstract
Reproductive behaviors are associated with risks for psychiatric disorders. Reproductive phenotypes are moderately heritable and have genetic overlaps with risks for psychiatric disorders. However, the genetic and causal relationships between anxiety-related disorders or specific anxiety disorders and reproductive phenotypes remain unknown. We utilized large-scale genome-wide association study (GWAS) results (n = 9537-542,901) for five reproductive phenotypes [age at menarche, age at first sexual intercourse (AFS), age at first birth (AFB), number of children ever born (NEB), and age at menopause] and five anxiety-related disorders [panic disorder, anxiety disorders from the ANGST and the UK biobank (UKBB), posttraumatic stress disorder (PTSD) and obsessive-compulsive disorder (OCD)]. To assess genetic correlations and causal associations, linkage disequilibrium score regression and Mendelian randomization analyses, respectively, were performed. We found that AFS and AFB were negatively correlated with anxiety disorders ANGST (AFS: rg ± SE = -0.28 ± 0.08, p = 6.00 × 10-4; AFB: -0.45 ± 0.11, p = 3.26 × 10-5), anxiety disorders UKBB (AFS: -0.18 ± 0.03, p = 9.64 × 10-9; AFB; -0.25 ± 0.03, p = 2.90 × 10-13) and PTSD (AFS: -0.42 ± 0.12, p = 4.00 × 10-4; AFB: -0.44 ± 0.12, p = 2.00 × 10-4) and positively correlated with OCD (AFS: 0.25 ± 0.05, p = 2.46 × 10-6; AFB: 0.25 ± 0.05, p = 3.92 × 10-7). Conversely, NEB was negatively correlated with OCD (-0.28 ± 0.08, p = 6.00 × 10-4). We revealed bidirectional effects between earlier AFS and AFB and anxiety disorders (odds ratios: ORearlier AFS→Anxiety = 1.64, p = 2.27 × 10-8; ORearlier AFB→Anxiety = 1.15, p = 2.28 × 10-3; ORAnxiety→earlier AFS = 1.02, p = 6.62 × 10-8; ORAnxiety→earlier AFB = 1.08, p = 1.60 × 10-4). In contrast, we observed unidirectional effects of later AFS and AFB on OCD (ORlater AFS→OCD = 2.18, p = 2.16 × 10-6; ORlater AFB→OCD = 1.22, p = 0.016). We suggest that those who have earlier sexual debut and childbirth are prone to risk for anxiety disorders and vice versa, while those who have later sexual debut and childbirth are genetically prone to risk for OCD. Our findings further support revising the diagnostic criteria (DSM-5) such that OCD is independent from anxiety disorders.
Collapse
|
12
|
Silventoinen K, Jelenkovic A, Palviainen T, Dunkel L, Kaprio J. The Association Between Puberty Timing and Body Mass Index in a Longitudinal Setting: The Contribution of Genetic Factors. Behav Genet 2022; 52:186-194. [PMID: 35381915 PMCID: PMC9135891 DOI: 10.1007/s10519-022-10100-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
We analyzed the contribution of genetic factors on the association between puberty timing and body mass index (BMI) using longitudinal data and two approaches: (i) genetic twin design and (ii) polygenic scores (PGS) of obesity indices. Our data were derived from Finnish cohorts: 9080 twins had information on puberty timing and BMI and 2468 twins also had genetic data. Early puberty timing was moderately associated with higher BMI in childhood in both boys and girls; in adulthood these correlations were weaker and largely disappeared after adjusting for childhood BMI. The largest proportion of these correlations was attributable to genetic factors. The higher PGSs of BMI and waist circumference were associated with earlier timing of puberty in girls, whereas weaker associations were found in boys. Early puberty is not an independent risk factor for adult obesity but rather reflects the association between puberty timing and childhood BMI contributed by genetic predisposition.
Collapse
Affiliation(s)
- Karri Silventoinen
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, P.O. Box 18, 00014, Helsinki, Finland.
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Aline Jelenkovic
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Leo Dunkel
- Barts & the London Medical School, William Harvey Research Institute, London, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Rodriguez A, Korzeniowska K, Szarejko K, Borowski H, Brzeziński M, Myśliwiec M, Czupryniak L, Berggren PO, Radziwiłł M, Soszyński P. Fitness, Food, and Biomarkers: Characterizing Body Composition in 19,634 Early Adolescents. Nutrients 2022; 14:nu14071369. [PMID: 35405987 PMCID: PMC9003290 DOI: 10.3390/nu14071369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Adolescent obesity persists as a major concern, especially in Central and Eastern Europe, yet evidence gaps exist regarding the pivotal early adolescent years. Our objective was to provide a comprehensive picture using a holistic approach of measured anthropometry in early adolescence, including body composition, cardiorespiratory fitness (CRF), and reported lifestyle characteristics. We aimed to elucidate potential sex/gender differences throughout and associations to biomarkers of disease risk for obese adolescents. Methods: Trained nurses measured 19,634 early adolescents (12−14-year-olds), we collected parental reports, and, for obese adolescents, fasting blood samples in four major Polish cities using a cross-sectional developmental design. Results: 24.7% boys and 18.6% girls were overweight/obese, and 2886 had BMI ≥ 90th percentile. With increasing age, there was greater risk of obesity among boys (p for trend = 0.001) and a decreasing risk of thinness for girls (p for trend = 0.01). Contrary to debate, we found BMI (continuous) was a useful indicator of measured fat mass (FM). There were 38.6% with CRF in the range of poor/very poor and was accounted for primarily by FM in boys, rather than BMI, and systolic blood pressure in girls. Boys, in comparison to girls, engaged more in sports (t = 127.26, p < 0.0001) and consumed more fast food (t = 188.57, p < 0.0001) and sugar-sweetened beverages (167.46, p < 0.0001). Uric acid, a potential marker for prediabetes, was strongly related to BMI in the obese subsample for both boys and girls. Obese girls showed signs of undernutrition. Conclusion: these findings show that overweight/obesity is by far a larger public health problem than thinness in early adolescence and is characterized differentially by sex/gender. Moreover, poor CRF in this age, which may contribute to life course obesity and disease, highlights the need for integrated and personalized intervention strategies taking sex/gender into account.
Collapse
Affiliation(s)
- Alina Rodriguez
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| | - Katarzyna Korzeniowska
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, 80-210 Gdansk, Poland; (K.K.); (M.M.)
| | - Kamila Szarejko
- PoZdro! Program Scientific Board, Medicover Foundation, 00-807 Warszawa, Poland; (K.S.); (H.B.); (M.R.); (P.S.)
| | - Hubert Borowski
- PoZdro! Program Scientific Board, Medicover Foundation, 00-807 Warszawa, Poland; (K.S.); (H.B.); (M.R.); (P.S.)
| | - Michał Brzeziński
- Department of Pediatrics, Gastroenterology, Allergology & Nutrition, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Małgorzata Myśliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, 80-210 Gdansk, Poland; (K.K.); (M.M.)
| | - Leszek Czupryniak
- Department of Diabetology and Internal Diseases, Warsaw Medical University, 02-091 Warszawa, Poland;
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Marcin Radziwiłł
- PoZdro! Program Scientific Board, Medicover Foundation, 00-807 Warszawa, Poland; (K.S.); (H.B.); (M.R.); (P.S.)
| | - Piotr Soszyński
- PoZdro! Program Scientific Board, Medicover Foundation, 00-807 Warszawa, Poland; (K.S.); (H.B.); (M.R.); (P.S.)
| |
Collapse
|
14
|
Miranda JP, Lardone MC, Rodríguez F, Cutler GB, Santos JL, Corvalán C, Pereira A, Mericq V. Genome-Wide Association Study and Polygenic Risk Scores of Serum DHEAS Levels in a Chilean Children Cohort. J Clin Endocrinol Metab 2022; 107:e1727-e1738. [PMID: 34748635 DOI: 10.1210/clinem/dgab814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Adrenarche reflects the developmental growth of the adrenal zona reticularis, which produces increasing adrenal androgen secretion (eg, dehydroepiandrosterone [DHEA]/dehydroepiandrosterone sulfate [DHEAS]) from approximately age 5 to 15 years. OBJECTIVE We hypothesized that the study of the genetic determinants associated with variations in serum DHEAS during adrenarche might detect genetic variants influencing the rate or timing of this process. METHODS Genome-wide genotyping was performed in participants of the Chilean pediatric Growth and Obesity Chilean Cohort Study (GOCS) cohort (n = 788). We evaluated the genetic determinants of DHEAS levels at the genome-wide level and in targeted genes associated with steroidogenesis. To corroborate our findings, we evaluated a polygenic risk score (PRS) for age at pubarche, based on the discovered variants, in children from the same cohort. RESULTS We identified one significant variant at the genome-wide level in the full cohort, close to the GALR1 gene (P = 3.81 × 10-8). In addition, variants suggestive of association (P < 1 × 10-5) were observed in PRLR, PITX1, PTPRD, NR1H4, and BCL11B. Stratifying by sex, we found variants suggestive of association in SERBP1 and CAMTA1/VAMP3 for boys and near ZNF98, TRPC6, and SULT2A1 for girls. We also found significant reductions in age at pubarche in those children with higher PRS for greater DHEAS based on these newly identified variants. CONCLUSION Our results disclose one variant associated with DHEAS concentrations at the level of genome-wide association study significance, and several variants with a suggestive association that may be involved in the genetic regulation of adrenarche.
Collapse
Affiliation(s)
- José Patricio Miranda
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
| | - María Cecilia Lardone
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | | | - José Luis Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Corvalán
- Institute of Nutrition and Food Technology (INTA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ana Pereira
- Institute of Nutrition and Food Technology (INTA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Bustamante A, Santos C, Pereira S, Freitas D, Katzmarzyk PT, Maia J. Regional variation in growth status. The Peruvian health and optimist growth study. Am J Hum Biol 2021; 34:e23704. [PMID: 34797005 DOI: 10.1002/ajhb.23704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE This study aims to (1) investigate differences in weight, body mass index (BMI), and waist circumference (WC) among Peruvian children and adolescents living in three areas located at different altitudes; (2) compare age- and sex-specific height, weight, and BMI within each site with US reference data. METHODS We sampled 8753 subjects (4130 boys), aged 4 to 17 years from sea level, rainforest, and high-altitude. Height, weight, and WC were measured and BMI was calculated. Analysis of variance was used to compare variables across geographic regions, and the Hoff and Blackburn procedure was used to compare the Peruvian results with US reference data. RESULTS Participants living at sea level were taller, heavier, had greater BMI and WC relative to those living at high-altitude and in the rainforest. Peruvian schoolchildren of both sexes from the three geographical areas were shorter and lighter than their American peers. Boys and girls living in the rainforest and at high-altitude had lower BMI, whereas WC values of American schoolchildren are higher than those of the Peruvian children by age and gender. CONCLUSIONS Peruvians living at different altitudes differ in their growth indicators (height, weight, BMI, and WC), with significant differences between those living at sea level relative to their peers from other regions. Further, Peruvian schoolchildren of both sexes from the three geographical areas significantly differ from their US counterparts.
Collapse
Affiliation(s)
- Alcibíades Bustamante
- School of Physical Education and Sports, National University of Education Enrique Guzmán y Valle, Lima, Peru
| | - Carla Santos
- CIFI2D, Faculty of Sport, University of Porto, Porto, Portugal
| | - Sara Pereira
- CIFI2D, Faculty of Sport, University of Porto, Porto, Portugal.,CIDEFES, Centro de Investigação em Desporto, Educação Física e Exercício e Saúde, Universidade Lusófona, Lisbon, Portugal
| | - Duarte Freitas
- Department of Physical Education and Sport, University of Madeira, Funchal, Portugal.,Department of Mathematical Sciences, University of Essex, Colchester, UK
| | - Peter T Katzmarzyk
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - José Maia
- CIFI2D, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Kim YY, Kim KS, Kim YJ, Kim SW, Kim H, Ku SY. Transcriptome Analyses Identify Potential Key microRNAs and Their Target Genes Contributing to Ovarian Reserve. Int J Mol Sci 2021; 22:10819. [PMID: 34639162 PMCID: PMC8509654 DOI: 10.3390/ijms221910819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Female endocrinological symptoms, such as premature ovarian inefficiency (POI) are caused by diminished ovarian reserve and chemotherapy. The etiology of POI remains unknown, but this can lead to infertility. This has accelerated the search for master regulator genes or other molecules that contribute as enhancers or silencers. The impact of regulatory microRNAs (miRNAs) on POI has gained attention; however, their regulatory function in this condition is not well known. RNA sequencing was performed at four stages, 2-(2 W), 6-(6 W), 15-(15 W), and 20-(20 W) weeks, on ovarian tissue samples and 5058 differentially expressed genes (DEGs) were identified. Gene expression and enrichment were analyzed based on the gene ontology and KEGG databases, and their association with other proteins was assessed using the STRING database. Gene set enrichment analysis was performed to identify the key target genes. The DEGs were most highly enriched in 6 W and 15 W groups. Figla, GDF9, Nobox, and Pou51 were significantly in-creased at 2 W compared with levels at 6 W and 20 W, whereas the expression of Foxo1, Inha, and Taf4b was significantly de-creased at 20 W. Ccnd2 and Igf1 expression was maintained at similar levels in each stage. In total, 27 genes were upregulated and 26 genes interacted with miRNAs; moreover, stage-specific upregulated and downregulated interactions were demonstrated. Increased and decreased miRNAs were identified at each stage in the ovaries. The constitutively expressed genes, Ccnd2 and Igf1, were identified as the major targets of many miRNAs (p < 0.05), and Fshr and Foxo3 interacted with miRNAs, namely mmu-miR-670-3p and mmu-miR-153-3p. miR-26a-5p interacted with Piwil2, and its target genes were downregulated in the 20 W mouse ovary. In this study, we aimed to identify key miRNAs and their target genes encompassing the reproductive span of mouse ovaries using mRNA and miRNA sequencing. These results indicated that gene sets are regulated in the reproductive stage-specific manner via interaction with miRNAs. Furthermore, consistent expression of Ccnd2 and Igf1 is considered crucial for the ovarian reserve and is regulated by many interactive miRNAs.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-W.K.); (H.K.)
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Kwang-Soo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Yong-Jin Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Goryeodae-ro 73, Seongbuk-gu, Seoul 02841, Korea;
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-W.K.); (H.K.)
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-W.K.); (H.K.)
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-W.K.); (H.K.)
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
17
|
Meyers JL, Zhang J, Chorlian DB, Pandey AK, Kamarajan C, Wang JC, Wetherill L, Lai D, Chao M, Chan G, Kinreich S, Kapoor M, Bertelsen S, McClintick J, Bauer L, Hesselbrock V, Kuperman S, Kramer J, Salvatore JE, Dick DM, Agrawal A, Foroud T, Edenberg HJ, Goate A, Porjesz B. A genome-wide association study of interhemispheric theta EEG coherence: implications for neural connectivity and alcohol use behavior. Mol Psychiatry 2021; 26:5040-5052. [PMID: 32433515 PMCID: PMC8503860 DOI: 10.1038/s41380-020-0777-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
Abstract
Aberrant connectivity of large-scale brain networks has been observed among individuals with alcohol use disorders (AUDs) as well as in those at risk, suggesting deficits in neural communication between brain regions in the liability to develop AUD. Electroencephalographical (EEG) coherence, which measures the degree of synchrony between brain regions, may be a useful measure of connectivity patterns in neural networks for studying the genetics of AUD. In 8810 individuals (6644 of European and 2166 of African ancestry) from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a Multi-Trait Analyses of genome-wide association studies (MTAG) on parietal resting-state theta (3-7 Hz) EEG coherence, which previously have been associated with AUD. We also examined developmental effects of GWAS findings on trajectories of neural connectivity in a longitudinal subsample of 2316 adolescent/young adult offspring from COGA families (ages 12-30) and examined the functional and clinical significance of GWAS variants. Six correlated single nucleotide polymorphisms located in a brain-expressed lincRNA (ENSG00000266213) on chromosome 18q23 were associated with posterior interhemispheric low theta EEG coherence (3-5 Hz). These same variants were also associated with alcohol use behavior and posterior corpus callosum volume, both in a subset of COGA and in the UK Biobank. Analyses in the subsample of COGA offspring indicated that the association of rs12954372 with low theta EEG coherence occurred only in females, most prominently between ages 25 and 30 (p < 2 × 10-9). Converging data provide support for the role of genetic variants on chromosome 18q23 in regulating neural connectivity and alcohol use behavior, potentially via dysregulated myelination. While findings were less robust, genome-wide associations were also observed with rs151174000 and parieto-frontal low theta coherence, rs14429078 and parieto-occipital interhemispheric high theta coherence, and rs116445911 with centro-parietal low theta coherence. These novel genetic findings highlight the utility of the endophenotype approach in enhancing our understanding of mechanisms underlying addiction susceptibility.
Collapse
Affiliation(s)
- Jacquelyn L Meyers
- Department of Psychiatry and the Henri Begleiter Neurodynamics Laboratory, State University of New York Downstate Medical Center, Brooklyn, NY, 11203, USA.
| | - Jian Zhang
- Department of Psychiatry and the Henri Begleiter Neurodynamics Laboratory, State University of New York Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - David B Chorlian
- Department of Psychiatry and the Henri Begleiter Neurodynamics Laboratory, State University of New York Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Ashwini K Pandey
- Department of Psychiatry and the Henri Begleiter Neurodynamics Laboratory, State University of New York Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Chella Kamarajan
- Department of Psychiatry and the Henri Begleiter Neurodynamics Laboratory, State University of New York Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Jen-Chyong Wang
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael Chao
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Grace Chan
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Sivan Kinreich
- Department of Psychiatry and the Henri Begleiter Neurodynamics Laboratory, State University of New York Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Manav Kapoor
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Bertelsen
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jeanette McClintick
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lance Bauer
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Victor Hesselbrock
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Samuel Kuperman
- Department of Psychiatry, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - John Kramer
- Department of Psychiatry, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jessica E Salvatore
- Department of Psychology and the Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Danielle M Dick
- Department of Psychology and the Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alison Goate
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bernice Porjesz
- Department of Psychiatry and the Henri Begleiter Neurodynamics Laboratory, State University of New York Downstate Medical Center, Brooklyn, NY, 11203, USA
| |
Collapse
|
18
|
Delayed Puberty in Girls with Primary Amenorrhea: A Report of Cases. JOURNAL OF BIOMEDICINE AND TRANSLATIONAL RESEARCH 2021. [DOI: 10.14710/jbtr.v7i2.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background:Female puberty starts when the pituitary hormone producing follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which will stimulate the ovaries to produce estrogen. Delayed puberty with primary amenorrhea in female is the lack of breast development followed by the absence of menses 3 years after the initiation of breast development. Sex chromosomes have an important role in determining the sex, germ cell differentiation of foetus, and reproductive functions of an offspring, thus, sex chromosomal aberrations frequently cause primary amenorrheaCase presentation: We report two delayed puberty cases with the chief complain of primary amenorrhea. Both cases showed hypoplasia of uterus and ovaries on pelvic imaging and hormonal assay showed low of FSH. The first case was gonadal dysgenesis with 46,XX karyotype and low level of estrogen and the second case was a turner syndrome with 45,X karyotype and normal level of estrogen. Conclusion:This study reported delayed puberty with primary amenorrhea cases due to different chromosomal aberration pattern which have similar clinical features. Therefore, cytogenetic examination is needed for any primary amenorrhea cases in order to accomplish the confirmatory diagnosis and for the clinicians to make a correct intervention and treatment.
Collapse
|
19
|
Smit DJA, Andreassen OA, Boomsma DI, Burwell SJ, Chorlian DB, de Geus EJC, Elvsåshagen T, Gordon RL, Harper J, Hegerl U, Hensch T, Iacono WG, Jawinski P, Jönsson EG, Luykx JJ, Magne CL, Malone SM, Medland SE, Meyers JL, Moberget T, Porjesz B, Sander C, Sisodiya SM, Thompson PM, van Beijsterveldt CEM, van Dellen E, Via M, Wright MJ. Large-scale collaboration in ENIGMA-EEG: A perspective on the meta-analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity. Brain Behav 2021; 11:e02188. [PMID: 34291596 PMCID: PMC8413828 DOI: 10.1002/brb3.2188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. METHODS We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. RESULTS We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. CONCLUSION The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability.
Collapse
Affiliation(s)
- Dirk J A Smit
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Scott J Burwell
- Department of Psychology, Minnesota Center for Twin and Family Research, University of Minnesota, Minneapolis, MN, USA.,Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - David B Chorlian
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Reyna L Gordon
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Jeremy Harper
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Ulrich Hegerl
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Goethe Universität Frankfurt am Main, Frankfurt, Germany
| | - Tilman Hensch
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany.,LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,IU International University, Erfurt, Germany
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Philippe Jawinski
- LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erik G Jönsson
- TOP-Norment, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Outpatient Second Opinion Clinic, GGNet Mental Health, Apeldoorn, The Netherlands
| | - Cyrille L Magne
- Psychology Department, Middle Tennessee State University, Murfreesboro, TN, USA.,Literacy Studies Ph.D. Program, Middle Tennessee State University, Mufreesboro, TN, USA
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jacquelyn L Meyers
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, Downstate Health Sciences University, Brooklyn, NY, USA.,Department of Psychiatry, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Torgeir Moberget
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | | | - Edwin van Dellen
- Department of Psychiatry, Department of Intensive Care Medicine, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marc Via
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, and Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Tahir MS, Porto-Neto LR, Gondro C, Shittu OB, Wockner K, Tan AWL, Smith HR, Gouveia GC, Kour J, Fortes MRS. Meta-Analysis of Heifer Traits Identified Reproductive Pathways in Bos indicus Cattle. Genes (Basel) 2021; 12:768. [PMID: 34069992 PMCID: PMC8157873 DOI: 10.3390/genes12050768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Fertility traits measured early in life define the reproductive potential of heifers. Knowledge of genetics and biology can help devise genomic selection methods to improve heifer fertility. In this study, we used ~2400 Brahman cattle to perform GWAS and multi-trait meta-analysis to determine genomic regions associated with heifer fertility. Heifer traits measured were pregnancy at first mating opportunity (PREG1, a binary trait), first conception score (FCS, score 1 to 3) and rebreeding score (REB, score 1 to 3.5). The heritability estimates were 0.17 (0.03) for PREG1, 0.11 (0.05) for FCS and 0.28 (0.05) for REB. The three traits were highly genetically correlated (0.75-0.83) as expected. Meta-analysis was performed using SNP effects estimated for each of the three traits, adjusted for standard error. We identified 1359 significant SNPs (p-value < 9.9 × 10-6 at FDR < 0.0001) in the multi-trait meta-analysis. Genomic regions of 0.5 Mb around each significant SNP from the meta-analysis were annotated to create a list of 2560 positional candidate genes. The most significant SNP was in the vicinity of a genomic region on chromosome 8, encompassing the genes SLC44A1, FSD1L, FKTN, TAL2 and TMEM38B. The genomic region in humans that contains homologs of these genes is associated with age at puberty in girls. Top significant SNPs pointed to additional fertility-related genes, again within a 0.5 Mb region, including ESR2, ITPR1, GNG2, RGS9BP, ANKRD27, TDRD12, GRM1, MTHFD1, PTGDR and NTNG1. Functional pathway enrichment analysis resulted in many positional candidate genes relating to known fertility pathways, including GnRH signaling, estrogen signaling, progesterone mediated oocyte maturation, cAMP signaling, calcium signaling, glutamatergic signaling, focal adhesion, PI3K-AKT signaling and ovarian steroidogenesis pathway. The comparison of results from this study with previous transcriptomics and proteomics studies on puberty of the same cattle breed (Brahman) but in a different population identified 392 genes in common from which some genes-BRAF, GABRA2, GABR1B, GAD1, FSHR, CNGA3, PDE10A, SNAP25, ESR2, GRIA2, ORAI1, EGFR, CHRNA5, VDAC2, ACVR2B, ORAI3, CYP11A1, GRIN2A, ATP2B3, CAMK2A, PLA2G, CAMK2D and MAPK3-are also part of the above-mentioned pathways. The biological functions of the positional candidate genes and their annotation to known pathways allowed integrating the results into a bigger picture of molecular mechanisms related to puberty in the hypothalamus-pituitary-ovarian axis. A reasonable number of genes, common between previous puberty studies and this study on early reproductive traits, corroborates the proposed molecular mechanisms. This study identified the polymorphism associated with early reproductive traits, and candidate genes that provided a visualization of the proposed mechanisms, coordinating the hypothalamic, pituitary, and ovarian functions for reproductive performance in Brahman cattle.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD 4072, Australia;
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Olasege B. Shittu
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Kimberley Wockner
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Andre W. L. Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Hugo R. Smith
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Gabriela C. Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Jagish Kour
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| |
Collapse
|
21
|
Yang B, Ostbye T, Huang X, Li Y, Fang B, Wang H, Liu Q. Maternal Age at Menarche and Pubertal Timing in Boys and Girls: A Cohort Study From Chongqing, China. J Adolesc Health 2021; 68:508-516. [PMID: 32798100 DOI: 10.1016/j.jadohealth.2020.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This study explored the association of maternal age at menarche (AAM) with pubertal timing among girls and boys in Chongqing, China. METHODS Pubertal development of 1,237 children (542 girls and 695 boys) were examined half-yearly through inspection and palpation from April 2014 to June 2019. Characteristics of parents and maternal AAM were collected by a parental questionnaire at baseline. Maternal AAM was used both as a continuous and a categorical variable in Cox regression models. RESULTS A total of 1,198 children (528 girls and 670 boys) were included in the study. In the simple Cox model, earlier maternal AAM was associated with girls' earlier menarche, breast and pubic hair development, and boys' first ejaculation, testicular development, and genital development. When adjusting for children's body mass index z-scores (BMIz) and socioeconomic covariates, we found that girls whose mothers had early AAM had a higher risk of earlier onset of menarche (hazard ratio [HR]: .922, 95% confidence interval [CI]: .852-.998 for continuous maternal AAM, HR: 1.297, 95% CI: 1.041-1.616 for maternal AAM ≤13 years), and boys whose mother achieved menarche earlier experienced a higher risk of earlier onset of first ejaculation (HR: .896, 95% CI: .830-.968). Children's BMIz were related to all nine pubertal milestones. Parental education and relationship, birth weight, parity, and family type were also associated with pubertal timing. CONCLUSIONS Earlier maternal AAM was related to earlier pubertal timing in both girls and boys in Chongqing, especially girls' age at menarche and boys' first ejaculation. Children's BMIz was the most consistent factor for pubertal timing. Children's BMIz and socioeconomic conditions had greater influence on most pubertal milestones than maternal AAM.
Collapse
Affiliation(s)
- Bo Yang
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, Chongqing, China
| | - Truls Ostbye
- Department of Family Medicine & Community Health and Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Xin Huang
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yueyue Li
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, Chongqing, China
| | - Bo Fang
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, Chongqing, China
| | - Qin Liu
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Richmond S, Zhurov AI, Ali ABM, Pirttiniemi P, Heikkinen T, Harila V, Silinevica S, Jakobsone G, Urtane I. Exploring the midline soft tissue surface changes from 12 to 15 years of age in three distinct country population cohorts. Eur J Orthod 2021; 42:517-524. [PMID: 31748803 DOI: 10.1093/ejo/cjz080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Several studies have highlighted differences in the facial features in a White European population. Genetics appear to have a major influence on normal facial variation, and environmental factors are likely to have minor influences on face shape directly or through epigenetic mechanisms. AIM The aim of this longitudinal cohort study is to determine the rate of change in midline facial landmarks in three distinct homogenous population groups (Finnish, Latvian, and Welsh) from 12.8 to 15.3 years of age. This age range covers the pubertal growth period for the majority of boys and girls. METHODS A cohort of children aged 12 were monitored for facial growth in three countries [Finland (n = 60), Latvia (n = 107), and Wales (n = 96)]. Three-dimensional facial surface images were acquired (using either laser or photogrammetric methods) at regular intervals (6-12 months) for 4 years. Ethical approval was granted in each country. Nine midline landmarks were identified and the relative spatial positions of these surface landmarks were measured relative to the mid-endocanthion (men) over a 4-year period. RESULTS This study reports the children who attended 95 per cent of all scanning sessions (Finland 48 out of 60; Latvia 104 out of 107; Wales 50 out of 96). Considerable facial variation is seen for all countries and sexes. There are clear patterns of growth that show different magnitudes at different age groups for the different country groups, sexes, and facial parameters. The greatest single yearly growth rate (5.4 mm) was seen for Welsh males for men-pogonion distance at 13.6 years of age. Males exhibit greater rates of growth compared to females. These variations in magnitude and timings are likely to be influenced by genetic ancestry as a result of population migration. CONCLUSION The midline points are a simple and valid method to assess the relative spatial positions of facial surface landmarks. This study confirms previous reports on the subtle differences in facial shapes and sizes of male and female children in different populations and also highlights the magnitudes and timings of growth for various midline landmark distances to the men point.
Collapse
Affiliation(s)
- Stephen Richmond
- Orthodontic Department, Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Heath Park, Cardiff, UK
| | - Alexei I Zhurov
- Orthodontic Department, Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Heath Park, Cardiff, UK
| | - Azrul Bin Mohd Ali
- Orthodontic Department, Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Heath Park, Cardiff, UK
| | - Pertti Pirttiniemi
- Oral Development and Orthodontics, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuomo Heikkinen
- Oral Development and Orthodontics, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Virpi Harila
- Oral Development and Orthodontics, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Signe Silinevica
- Orthodontic Department, RSU Institute of Stomatology, Rīga, Latvia
| | | | - Ilga Urtane
- Orthodontic Department, RSU Institute of Stomatology, Rīga, Latvia
| |
Collapse
|
23
|
Ponomarenko I, Reshetnikov E, Polonikov A, Verzilina I, Sorokina I, Yermachenko A, Dvornyk V, Churnosov M. Candidate Genes for Age at Menarche Are Associated With Uterine Leiomyoma. Front Genet 2021; 11:512940. [PMID: 33552117 PMCID: PMC7863975 DOI: 10.3389/fgene.2020.512940] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Age at menarche (AAM) is an important marker of the pubertal development and function of the hypothalamic-pituitary-ovarian system. It was reported as a possible factor for a risk of uterine leiomyoma (UL). However, while more than 350 loci for AAM have been determined by genome-wide association studies (GWASs) to date, no studies of these loci for their association with UL have been conducted so far. In this study, we analyzed 52 candidate loci for AAM for possible association with UL in a sample of 569 patients and 981 controls. The results of the study suggested that 23 out of the 52 studied polymorphisms had association with UL. Locus rs7759938 LIN28B was individually associated with the disease according to the dominant model. Twenty loci were associated with UL within 11 most significant models of intergenic interactions. Nine loci involved in 16 most significant models of interactions between single-nucleotide polymorphism (SNP), induced abortions, and chronic endometritis were associated with UL. Among the 23 loci associated with UL, 16 manifested association also with either AAM (7 SNPs) or height and/or body mass index (BMI) (13 SNPs). The above 23 SNPs and 514 SNPs linked to them have non-synonymous, regulatory, and expression quantitative trait locus (eQTL) significance for 35 genes, which play roles in the pathways related to development of the female reproductive organs and hormone-mediated signaling [false discovery rate (FDR) ≤ 0.05]. This is the first study reporting associations of candidate genes for AAM with UL.
Collapse
Affiliation(s)
- Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Irina Verzilina
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Inna Sorokina
- Department of Social Epidemiology, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France
| | - Anna Yermachenko
- Department of Social Epidemiology, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| |
Collapse
|
24
|
Wu X, Niculite CM, Preda MB, Rossi A, Tebaldi T, Butoi E, White MK, Tudoran OM, Petrusca DN, Jannasch AS, Bone WP, Zong X, Fang F, Burlacu A, Paulsen MT, Hancock BA, Sandusky GE, Mitra S, Fishel ML, Buechlein A, Ivan C, Oikonomopoulos S, Gorospe M, Mosley A, Radovich M, Davé UP, Ragoussis J, Nephew KP, Mari B, McIntyre A, Konig H, Ljungman M, Cousminer DL, Macchi P, Ivan M. Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS. Nat Commun 2020; 11:4755. [PMID: 32958772 PMCID: PMC7505984 DOI: 10.1038/s41467-020-18411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/16/2020] [Indexed: 01/09/2023] Open
Abstract
We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance.
Collapse
Affiliation(s)
- Xue Wu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cristina M Niculite
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,"Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elena Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mattie K White
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Daniela N Petrusca
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amber S Jannasch
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - William P Bone
- Department of Genetics, Department of Systems Pharmacology and Translational Therapeutics, Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xingyue Zong
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fang Fang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brad A Hancock
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sumegha Mitra
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa L Fishel
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aaron Buechlein
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, 47405, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Spyros Oikonomopoulos
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Milan Radovich
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Utpal P Davé
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Kenneth P Nephew
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Bernard Mari
- CNRS, IPMC, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Alan McIntyre
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heiko Konig
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Centre for Cancer Sciences, Biodiscovery Institute, Nottingham University, Nottingham, UK
| | - Diana L Cousminer
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Mircea Ivan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Common Genetic Influences on Age at Pubertal Voice Change and BMI in Male Twins. Twin Res Hum Genet 2020; 23:235-240. [PMID: 32772962 DOI: 10.1017/thg.2020.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study aimed to explore secular trends in age at voice change (AVC), estimate heritability of AVC and investigate to what extent common genes influence the association between AVC and body mass index (BMI) in South Korean males. The sample of 955 male twins consisted of 241 pairs and 118 co-twin missing monozygotic (MZ) twins, 82 pairs and 50 co-twin missing dizygotic (DZ) twins and 141 male members of opposite-sex DZ twins who participated in telephone surveys in the South Korean Twin Registry. AVC was asked of twins during the surveys. The mean (SD) age of the sample was 18.92 (2.42) years (range: 16.00-29.25 years). The birth years of the twins were divided into two groups (1988-1993, 1994-2001). Kaplan-Meyer survival analyses were conducted to compute the mean age of AVC in the total sample as well as to test mean differences between the two birth cohorts. Maximum likelihood twin correlations and univariate and bivariate model-fitting analyses were performed. The mean AVC in the total sample was 14.19 (95% CI [14.09, 14.29]) years. The mean AVC significantly declined from 14.38 to 14.02 years from 1988 to 2001, confirming downward trends in AVC in recent years. Heritability for AVC was .59 (95% CI [.50, .67]), which was within the range reported in most Western twin studies. Although the phenotypic correlation between AVC and BMI was modest (r = -.14; 95% CI [-.07, -.21]), it was entirely mediated by common genes, similar to what has been found in females in prior twin studies. In conclusion, the present twin study underscores the importance of genetic influences on pubertal timing and its association with BMI in South Korean males.
Collapse
|
26
|
Nieuwenhuis D, Pujol‐Gualdo N, Arnoldussen IA, Kiliaan AJ. Adipokines: A gear shift in puberty. Obes Rev 2020; 21:e13005. [PMID: 32003144 PMCID: PMC7317558 DOI: 10.1111/obr.13005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
Abstract
In this review, we discuss the role of adipokines in the onset of puberty in children with obesity during adrenarche and gonadarche and provide a clear and detailed overview of the biological processes of two major players, leptin and adiponectin. Adipokines, especially leptin and adiponectin, seem to induce an early onset of puberty in girls and boys with obesity by affecting the hypothalamic-pituitary-gonadal (HPG) axis. Moreover, adipokines and their receptors are expressed in the gonads, suggesting a role in sexual maturation and reproduction. All in all, adipokines may be a clue in understanding mechanisms underlying the onset of puberty in childhood obesity and puberty onset variability.
Collapse
Affiliation(s)
- Desirée Nieuwenhuis
- Department of AnatomyRadboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIMENijmegenThe Netherlands
| | - Natàlia Pujol‐Gualdo
- Department of AnatomyRadboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIMENijmegenThe Netherlands
| | - Ilse A.C. Arnoldussen
- Department of AnatomyRadboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIMENijmegenThe Netherlands
| | - Amanda J. Kiliaan
- Department of AnatomyRadboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIMENijmegenThe Netherlands
| |
Collapse
|
27
|
Racial differences in prostate cancer: does timing of puberty play a role? Br J Cancer 2020; 123:349-354. [PMID: 32439935 PMCID: PMC7403332 DOI: 10.1038/s41416-020-0897-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
The burden of prostate cancer has a remarkably disproportionate distribution across racial groups. For example, in the USA, African Americans are twice as likely as individuals of European ancestry to develop or die from prostate cancer, and have a more aggressive disease nature at diagnosis. In contrast, Asian American men have the lowest incidence and mortality rates of prostate cancer. That considerable racial disparities exist even in the subclinical stage of prostate cancer among young men in their 20–30s suggests that patterns of prostate carcinogenesis start to diverge even earlier, perhaps during puberty, when the prostate matures at its most rapid rate. Mendelian randomisation studies have provided strong population-based evidence supporting the hypothesis that earlier onset of puberty increases the risk of prostate cancer—particularly of high grade—and prostate cancer-specific mortality later in life, observations which correspond to the epidemiology of the disease in African Americans. Notably, African American boys initiate genital development ~1 year earlier and thus go through longer periods of pubertal maturation compared with European American boys. In this perspective, bringing together existing evidence, we point to puberty as a potential critical window of increased susceptibility to prostate carcinogenesis that could account for the marked prevailing racial differences in the burden of prostate cancer.
Collapse
|
28
|
Cao G, Gao Z, Jiang Y, Chu M. Lin28 gene and mammalian puberty. Mol Reprod Dev 2020; 87:525-533. [PMID: 32363678 DOI: 10.1002/mrd.23347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/21/2020] [Indexed: 11/10/2022]
Abstract
Lin28a and Lin28b, homologs of the Caenorhabditis elegans Lin28 gene, play important roles in cell pluripotency, reprogramming, and tumorigenicity. Recently, genome-wide association and transgenic studies showed that Lin28a and/or Lin28b gene were involved in the onset of mammalian puberty, the stage representing the attainment of reproduction capacity; however, the detailed mechanism of these genes in mammalian puberty remains largely unknown. The present paper reviews the research progress on the roles of Lin28a/b genes in the onset of mammalian puberty by analyzing the results coming from gene expression patterns, mutations, and transgenic studies, and put forward possible pathways for further studies on their roles in animal reproduction.
Collapse
Affiliation(s)
- Guiling Cao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,College of Agriculture, Liaocheng University, Liaocheng, China
| | - Zeyang Gao
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Yunliang Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Mingxing Chu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Chen S, Refaey H, Mukherjee N, Solatikia F, Jiang Y, Arshad SH, Ewart S, Holloway JW, Zhang H, Karmaus W. Age at onset of different pubertal signs in boys and girls and differential DNA methylation at age 10 and 18 years: an epigenome-wide follow-up study. Hum Reprod Open 2020; 2020:hoaa006. [PMID: 32190749 PMCID: PMC7067683 DOI: 10.1093/hropen/hoaa006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 01/16/2020] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Is the age of onset of pubertal markers related to subsequent changes in DNA methylation (DNAm)? SUMMARY ANSWER We identified 273 cytosine-phosphate-guanine (CpG) dinucleotides in girls and 67 CpGs in boys that were related to puberty and that were replicable in two other investigations. WHAT IS KNOWN ALREADY Previously, 457 CpGs (not gender-specific) and 347 (in girls) and 50 (in boys), respectively, were found to be associated with puberty, according to investigations of studies from Denmark (20 girls and 31 boys) and North America (30 girls and 25 boys). STUDY DESIGN SIZE DURATION The study was based on a birth cohort of 1456 participants born in 1989/90, with follow-up at age 10 and 18 years. PARTICIPANTS/MATERIALS SETTING METHODS The follow-up included 470 participants with information on DNAm and age of pubertal onset (244 girls and 226 boys). Age of pubertal onset was ascertained retrospectively at age 18 years. Using the Pubertal Development Scale, both genders were asked about ages of onset of growth spurt, body hair growth and skin changes. Ages at voice deepening and growth of facial hair were inquired from boys; ages at breast development and menarche from girls. Blood samples were collected at 10 and 18 years of age. DNA was extracted using a standard salting out procedure. The methylation level for each CpG site was assessed using one of two different platforms. DNAm was measured by a ratio of intensities denoted as β values for each CpG site. After quality control, 349 455 CpG sites were available for analysis. M values were calculated (log2(β/(1-β)) to approximate a normal distribution, and their levels were adjusted for blood cell proportions. Linear mixed models were applied to test the association between age of pubertal markers and repeated measurement of DNAm at 10 and 18 years. MAIN RESULTS AND THE ROLE OF CHANCE In girls, a total of 63 019 CpGs statistically significantly changed after occurrence of any of the five pubertal events and 13 487 were changed subsequent to all five events: the respective number is boys were 3072 and 301. To further exclude false-positive findings, we investigated which CpGs were replicable in prior studies from Denmark or North America, resulting in 273 replicable CpG in girls and 67 CpGs in boys (236 and 68 genes, respectively). Most identified genes are known to be related to biological processes of puberty; however, genetic polymorphisms of only four of these genes were previously linked to pubertal markers in humans. LIMITATIONS REASONS FOR CAUTION The relative age of pubertal onset to the age of DNAm measurements does not allow causal inference, since DNAm at an earlier age may have affected the pubertal age or pubertal age may have altered later DNAm. This investigation concentrates on autosomes. CpGs on X and Y chromosomes are not included in the current study. WIDER IMPLICATIONS OF THE FINDINGS Assessment of biological processes involved in pubertal transitions should include epigenetic information. Differential DNAm related to puberty needs to be investigated to determine whether it can act as an early marker for adult diseases known to be associated with puberty. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH grants R03HD092776 (Epigenetic characterization of pubertal transitions) and R01AI121226. The 10-year follow-up of this study was funded by National Asthma Campaign, UK (Grant No 364), and the 18-year follow-up by a grant from the National Heart and Blood Institute (R01 HL082925). The authors have no conflicts to report.
Collapse
Affiliation(s)
- Su Chen
- Department of Mathematical Science, University of Memphis, Dunn Hall, Memphis, TN, USA
| | - Hala Refaey
- School of Public Health, University of Memphis, Robison Hall, Memphis, TN, USA
| | - Nandini Mukherjee
- School of Public Health, University of Memphis, Robison Hall, Memphis, TN, USA
| | - Farnaz Solatikia
- Department of Mathematical Science, University of Memphis, Dunn Hall, Memphis, TN, USA
- School of Public Health, University of Memphis, Robison Hall, Memphis, TN, USA
| | - Yu Jiang
- School of Public Health, University of Memphis, Robison Hall, Memphis, TN, USA
| | - S Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- The David Hide Asthma and Allergy Research Centre, Newport PO30 5TG, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Robison Hall, Memphis, TN, USA
| | - Wilfried Karmaus
- School of Public Health, University of Memphis, Robison Hall, Memphis, TN, USA
| |
Collapse
|
30
|
Lardone MC, Busch AS, Santos JL, Miranda P, Eyheramendy S, Pereira A, Juul A, Almstrup K, Mericq V. A Polygenic Risk Score Suggests Shared Genetic Architecture of Voice Break With Early Markers of Pubertal Onset in Boys. J Clin Endocrinol Metab 2020; 105:dgaa003. [PMID: 31915828 DOI: 10.1210/clinem/dgaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/07/2020] [Indexed: 02/03/2023]
Abstract
CONTEXT Voice break, as a landmark of advanced male puberty in genome-wide association studies (GWAS), has revealed that pubertal timing is a highly polygenic trait. Although voice break is easily recorded in large cohorts, it holds quite low precision as a marker of puberty. In contrast, gonadarche and pubarche are early and clinically well-defined measures of puberty onset. OBJECTIVE To determine whether a polygenic risk score (PRS) of alleles that confer risk for voice break associates with age at gonadarche (AAG) and age at pubarche (AAP) in Chilean boys. EXPERIMENTAL DESIGN Longitudinal study. SUBJECTS AND METHODS 401 boys from the Growth and Obesity Chilean Cohort Study (n = 1194; 49.2% boys). MAIN OUTCOME MEASURES Biannual clinical pubertal staging including orchidometry. AAG and AAP were estimated by censoring methods. Genotyping was performed using the Multi-Ethnic Global Array (Illumina). Using GWAS summary statistics from the UK-Biobank, 29 significant and independent single nucleotide polymorphisms associated with age at voice break were extracted. Individual PRS were computed as the sum of risk alleles weighted by the effect size. RESULTS The PRS was associated with AAG (β=0.01, P = 0.04) and AAP (β=0.185, P = 0.0004). In addition, boys within the 20% highest PRS experienced gonadarche and pubarche 0.55 and 0.67 years later than those in the lowest 20%, respectively (P = 0.013 and P = 0.007). CONCLUSIONS Genetic variants identified in large GWAS on age at VB significantly associate with age at testicular growth and pubic hair development, suggesting that these events share a genetic architecture across ethnically distinct populations.
Collapse
Affiliation(s)
- María C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Alexander S Busch
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio Miranda
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susana Eyheramendy
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Santiago, Chile
| | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Wang J, Kwok MK, Au Yeung SL, Zhao J, Li AM, Lam HS, Leung GM, Schooling CM. Age of puberty and Sleep duration: Observational and Mendelian randomization study. Sci Rep 2020; 10:3202. [PMID: 32081851 PMCID: PMC7035269 DOI: 10.1038/s41598-020-59811-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/17/2020] [Indexed: 11/17/2022] Open
Abstract
Earlier age of puberty has detrimental consequences for many aspects of health. Here, for the first time, we assessed the association of earlier puberty with sleep duration observationally and with validation using Mendelian Randomization. In the “Children of 1997” birth cohort (n = 8,327), we used adjusted multivariable logistic regression to assess the associations of each clinically assessed marker of earlier puberty with self-report sleep duration in adolescence. Using two-sample MR, we assessed the effect of earlier puberty timing based on 203 single nucleotide polymorphisms applied to genome wide association studies of sleep duration in adults (n = 335,410). In “Children of 1997”, cross-sectionally, older age of menarche was associated with longer (9+ hours) sleep duration [odds ratio (OR) 1.11, 95% confidence interval (CI) 1.01 to 1.21] at 13.5 years. The other earlier puberty markers were unrelated to sleep duration. Using inverse variance weighting, later of age at menarche increased adult sleep duration [0.020 per category, 95% CI 0.006 to 0.034]. This study demonstrated a causal effect of age at menarche on adult sleep duration, since age of menarche also affects obesity, our novel finding may be relevant to the observed relation of sleep duration with obesity and poor health.
Collapse
Affiliation(s)
- Jiao Wang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jie Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Albert Martin Li
- Department of Pediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hugh Simon Lam
- Department of Pediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gabriel Matthew Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Catherine Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,City University of New York, School of Public Health and Health Policy, New York, USA.
| |
Collapse
|
32
|
Jordan DM, Verbanck M, Do R. HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol 2019; 20:222. [PMID: 31653226 PMCID: PMC6815001 DOI: 10.1186/s13059-019-1844-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023] Open
Abstract
Horizontal pleiotropy, where one variant has independent effects on multiple traits, is important for our understanding of the genetic architecture of human phenotypes. We develop a method to quantify horizontal pleiotropy using genome-wide association summary statistics and apply it to 372 heritable phenotypes measured in 361,194 UK Biobank individuals. Horizontal pleiotropy is pervasive throughout the human genome, prominent among highly polygenic phenotypes, and enriched in active regulatory regions. Our results highlight the central role horizontal pleiotropy plays in the genetic architecture of human phenotypes. The HOrizontal Pleiotropy Score (HOPS) method is available on Github at https://github.com/rondolab/HOPS.
Collapse
Affiliation(s)
- Daniel M Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.,The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA
| | - Marie Verbanck
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.,The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA.,Université de Paris, EA 7537 BioSTM, Paris, France
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA. .,The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA.
| |
Collapse
|
33
|
Chan YM, Feld A, Jonsdottir-Lewis E. Effects of the Timing of Sex-Steroid Exposure in Adolescence on Adult Health Outcomes. J Clin Endocrinol Metab 2019; 104:4578-4586. [PMID: 31194243 PMCID: PMC6736212 DOI: 10.1210/jc.2019-00569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
CONTEXT Variation in pubertal timing is associated with a wide range of adult risks and outcomes, but it is unclear whether these associations are causal, and it is largely unknown whether these associations can be modified by treatment. EVIDENCE ACQUISITION We conducted PubMed searches to identify Mendelian randomization (MR) studies on the influence of pubertal timing on adult health and studies on sex-steroid treatment of the following conditions associated with reduced reproductive endocrine function in adolescence: constitutional delay, Turner syndrome, and Klinefelter syndrome. EVIDENCE SYNTHESIS Results of MR studies suggest that earlier pubertal timing increases body mass index; increases risk for breast, ovarian, endometrial, and prostate cancers; elevates fasting glucose levels and blood pressure; impairs lung capacity and increases risk for asthma; leads to earlier sexual intercourse and first birth; decreases time spent in education; and increases depressive symptoms in adolescence. Later pubertal timing appears to lower bone mineral density (BMD). Although studies of constitutional delay have not shown that sex-steroid treatment alters adult height or BMD, studies of girls with Turner syndrome and boys with Klinefelter syndrome suggest that earlier initiation of sex-steroid treatment improves physical and neurocognitive outcomes. CONCLUSIONS Despite having some limitations, MR studies suggest that pubertal timing causally influences many adult conditions and disease risks. Studies of Turner syndrome and Klinefelter syndrome suggest that earlier sex-steroid exposure may have short- and long-term benefits. The mechanisms underlying these findings and the effects of trends and treatments affecting pubertal timing remain to be determined.
Collapse
Affiliation(s)
- Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Correspondence and Reprint Requests: Yee-Ming Chan, MD, PhD, Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115. E-mail:
| | - Amalia Feld
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Elfa Jonsdottir-Lewis
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
34
|
Susman EJ, Marceau K, Dockray S, Ram N. Interdisciplinary Work Is Essential for Research on Puberty: Complexity and Dynamism in Action. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2019; 29:115-132. [PMID: 30869845 PMCID: PMC6844367 DOI: 10.1111/jora.12420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Puberty is associated with changes in behavior and psychosocial well-being, and is important in lifelong health. We present five different facets regarding interdisciplinary research that are important to puberty. A short history of philosophical issues instrumental in promoting early interdisciplinary research is first presented. We discuss then what is hard and what is easy about interdisciplinary research, the purpose of which is to alert scientists to challenges and opportunities for interdisciplinary research on puberty. Readers then are introduced to advances and obstacles in interdisciplinary research on development. Recommendations for tailoring graduate education toward interdisciplinarity are introduced. Finally, issues related to publication, education of scientists, and policy makers are described. The report concludes with a discussion of funding and policy issues.
Collapse
|
35
|
Middeldorp CM, Felix JF, Mahajan A, McCarthy MI. The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects. Eur J Epidemiol 2019; 34:279-300. [PMID: 30887376 PMCID: PMC6447695 DOI: 10.1007/s10654-019-00502-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/25/2019] [Indexed: 11/14/2022]
Abstract
The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
Collapse
Affiliation(s)
- Christel M Middeldorp
- Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia.
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia.
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| |
Collapse
|
36
|
Links between age at menarche, antral follicle count, and body mass index in African American and European American women. Fertil Steril 2019; 111:122-131. [PMID: 30611402 DOI: 10.1016/j.fertnstert.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To examine the relationships between age at menarche, antral follicle count (AFC), and body mass index (BMI) in a multi-ethnic population of women. DESIGN Community-based, cross-sectional study. SETTING Academic setting. PATIENT(S) A total of 245 African American women and 273 European American women, aged 25-45 years, with regular menstrual cycles and no reproductive disorders. The ethnicity of these women was self-reported and genetically validated. INTERVENTION(S) The AFCs were measured by transvaginal ultrasound during the early follicular phase. Anthropometric measurements were taken, and age at menarche was gathered by questionnaire. MAIN OUTCOME MEASURE(S) Determination of the associations between age of menarche and adult AFC and BMI. RESULT(S) Earlier age of menarche was associated with both higher BMIs and higher AFCs in adulthood, with control for female age. The antral follicle difference between early (<12 years) vs. late (≥15 years) initiation of menarche in both white and black women was +3.81 and +3.34 follicles, respectively, which is equivalent to an approximately 20% difference in AFC. CONCLUSION(S) This study provides the first evidence that timing of menarche may influence AFC. Because of limited studies on African American women, this work provides additional needed data and may enhance our ability to prospectively screen and better treat various diseases associated with the female reproductive lifespan.
Collapse
|
37
|
Ponomarenko I, Reshetnikov E, Altuchova O, Polonikov A, Sorokina I, Yermachenko A, Dvornyk V, Golovchenko O, Churnosov M. Association of genetic polymorphisms with age at menarche in Russian women. Gene 2018; 686:228-236. [PMID: 30453067 DOI: 10.1016/j.gene.2018.11.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Examine the association of genetic polymorphisms with age at menarche (AAM) in Russian women. STUDY DESIGN A total of 1613 Russian females were recruited for the study. Fifty two polymorphisms were analyzed for their association with AAM, height, and BMI. The associations were analyzed assuming the additive, dominant, and recessive models and using the log-linear regression as implemented in PLINK v. 2.050. The 2-, 3-, and 4-loci models of gene-gene interactions were analyzed using the MB-MDR method and validated by the permutation test. MAIN OUTCOME MEASURES Genetic polymorphism rs6438424 3q13.32 was independently associated with AAM in Russian women. In addition, 14 SNPs were determined as possible contributors to this trait through gene-gene interactions. RESULTS The obtained results suggest that 14 out of 52 studied polymorphisms may contribute to AAM in Russian women. The rs6438424 3q13.32 polymorphism was associated with AAM according to both additive and dominant models (рperm = 0.005). In total 12 two-, three-, and four-locus models of gene-gene interactions were determined as contributing to AAM (pperm ≤ 0.006). Nine of the 14 AAM-associated SNPs are also associated with height and BMI (pperm ≤ 0.003). Among 14 AAM-associated SNPs (a priori all having regulatory significance), the highest regulatory potential was determined for rs4633 COMT, rs2164808 POMC, rs2252673INSR, rs6438424 3q13.32, and rs10769908 STK33. Eleven loci are cis-eQTL and affect expression of 14 genes in various tissues and organs (FDR < 0.05). The neuropeptide-encoding genes were overrepresented among the AAM-associated genes (pbonf = 0.039). CONCLUSIONS The rs6438424 polymorphism is independently associated with AAM in Russian females in this study. The other 14 SNPs manifest this association through gene-gene interactions.
Collapse
Affiliation(s)
- Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia.
| | - Oksana Altuchova
- Department of Obstetrics and Gynecology, Belgorod State University, 308015 Belgorod, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Anna Yermachenko
- Department of Social Epidemiology, Pierre Louis Institute of Epidemiology and Public Health, 75571 Paris, France; Sorbonne Universités, 75320 Paris, France
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Oleg Golovchenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| |
Collapse
|
38
|
Liang X, Wu C, Zhao H, Liu L, Du Y, Li P, Wen Y, Zhao Y, Ding M, Cheng B, Cheng S, Ma M, Zhang L, Guo X, Shen H, Tian Q, Zhang F, Deng HW. Assessing the genetic correlations between early growth parameters and bone mineral density: A polygenic risk score analysis. Bone 2018; 116:301-306. [PMID: 30172743 PMCID: PMC6298225 DOI: 10.1016/j.bone.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The relationships between early growth parameters and bone mineral density (BMD) remain elusive now. In this study, we performed a large scale polygenic risk score (PRS) analysis to evaluate the potential impact of early growth parameters on the variations of BMD. METHODS We used 2286 Caucasian subjects as cohort 1 and 3404 Framingham Heart Study (FHS) subjects as cohort 2 in this study. BMD at ulna & radius, hip and spine were measured using dual energy X-ray absorptiometry. BMD values were adjusted for age, sex, height and weight as covariates. Genome-wide single-nucleotide polymorphism (SNP) genotyping of the 2286 Caucasian subjects was performed using Affymetrix Human SNP Array 6.0. The GWAS datasets of early growth parameters were driven from the Early Growth Genetics Consortium, including birth weight (BW), birth head circumference (BHC), childhood body mass index (CBMI), pubertal height growth related indexes and tanner stage. Polygenic Risk Score (PRSice) and linkage disequilibrium (LD) score regression analysis were conducted to assess the genetic correlation between early growth parameters and BMD. RESULTS We detected significant genetic correlations in cohort 1, such as total spine BMD vs. CBMI (p value = 1.51 × 10-4, rg = 0.4525), right ulna and radius BMD vs. CBMI (p value = 1.51 × 10-4, rg = 0.4399) and total body BMD vs. tanner stage (p value = 7.00 × 10-4, rg = -0.0721). For cohort 2, significant correlations were observed for total spine BMD vs. height change standard deviation score (SDS) between 8 years and adult (denoted as PGF + PGM) (p value = 3.97 × 10-4, rg = -0.1425), femoral neck BMD vs. the timing of peak height velocity by looking at the height change SDS between age 14 years and adult (denoted as PTF + PTM) (p value = 7.04 × 10-4, rg = -0.2185), and total spine BMD vs. PTF + PTM (p value = 6.86 × 10-4, rg = -0.2180). CONCLUSION Our study results suggest that some early growth parameters could affect the variations of BMD.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - CuiYan Wu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hongmou Zhao
- Department of Orthopedics Surgery, Red Cross Hospital, Xi'an 710054, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Miao Ding
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, USA.
| |
Collapse
|
39
|
Richmond S, Howe LJ, Lewis S, Stergiakouli E, Zhurov A. Facial Genetics: A Brief Overview. Front Genet 2018; 9:462. [PMID: 30386375 PMCID: PMC6198798 DOI: 10.3389/fgene.2018.00462] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Historically, craniofacial genetic research has understandably focused on identifying the causes of craniofacial anomalies and it has only been within the last 10 years, that there has been a drive to detail the biological basis of normal-range facial variation. This initiative has been facilitated by the availability of low-cost hi-resolution three-dimensional systems which have the ability to capture the facial details of thousands of individuals quickly and accurately. Simultaneous advances in genotyping technology have enabled the exploration of genetic influences on facial phenotypes, both in the present day and across human history. There are several important reasons for exploring the genetics of normal-range variation in facial morphology. - Disentangling the environmental factors and relative parental biological contributions to heritable traits can help to answer the age-old question "why we look the way that we do?" - Understanding the etiology of craniofacial anomalies; e.g., unaffected family members of individuals with non-syndromic cleft lip/palate (nsCL/P) have been shown to differ in terms of normal-range facial variation to the general population suggesting an etiological link between facial morphology and nsCL/P. - Many factors such as ancestry, sex, eye/hair color as well as distinctive facial features (such as, shape of the chin, cheeks, eyes, forehead, lips, and nose) can be identified or estimated using an individual's genetic data, with potential applications in healthcare and forensics. - Improved understanding of historical selection and adaptation relating to facial phenotypes, for example, skin pigmentation and geographical latitude. - Highlighting what is known about shared facial traits, medical conditions and genes.
Collapse
Affiliation(s)
- Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Laurence J. Howe
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Sarah Lewis
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexei Zhurov
- Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To summarize advances in the genetics underlying variation in normal pubertal timing, precocious puberty, and delayed puberty, and to discuss mechanisms by which genes may regulate pubertal timing. RECENT FINDINGS Genome-wide association studies have identified hundreds of loci that affect pubertal timing in the general population in both sexes and across ethnic groups. Single genes have been implicated in both precocious and delayed puberty. Potential mechanisms for how these genetic loci influence pubertal timing may include effects on the development and function of the GnRH neuronal network and the responsiveness of end-organs. SUMMARY There has been significant progress in identifying genetic loci that affect normal pubertal timing, and the first single-gene causes of precocious and delayed puberty are being described. How these genes influence pubertal timing remains to be determined.
Collapse
Affiliation(s)
- Jia Zhu
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital
| | - Temitope O Kusa
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital.,Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Fernández-Rhodes L, Malinowski JR, Wang Y, Tao R, Pankratz N, Jeff JM, Yoneyama S, Carty CL, Setiawan VW, Le Marchand L, Haiman C, Corbett S, Demerath E, Heiss G, Gross M, Buzkova P, Crawford DC, Hunt SC, Rao DC, Schwander K, Chakravarti A, Gottesman O, Abul-Husn NS, Bottinger EP, Loos RJF, Raffel LJ, Yao J, Guo X, Bielinski SJ, Rotter JI, Vaidya D, Chen YDI, Castañeda SF, Daviglus M, Kaplan R, Talavera GA, Ryckman KK, Peters U, Ambite JL, Buyske S, Hindorff L, Kooperberg C, Matise T, Franceschini N, North KE. The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic meta-analysis. PLoS One 2018; 13:e0200486. [PMID: 30044860 PMCID: PMC6059436 DOI: 10.1371/journal.pone.0200486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
Current knowledge of the genetic architecture of key reproductive events across the female life course is largely based on association studies of European descent women. The relevance of known loci for age at menarche (AAM) and age at natural menopause (ANM) in diverse populations remains unclear. We investigated 32 AAM and 14 ANM previously-identified loci and sought to identify novel loci in a trans-ethnic array-wide study of 196,483 SNPs on the MetaboChip (Illumina, Inc.). A total of 45,364 women of diverse ancestries (African, Hispanic/Latina, Asian American and American Indian/Alaskan Native) in the Population Architecture using Genomics and Epidemiology (PAGE) Study were included in cross-sectional analyses of AAM and ANM. Within each study we conducted a linear regression of SNP associations with self-reported or medical record-derived AAM or ANM (in years), adjusting for birth year, population stratification, and center/region, as appropriate, and meta-analyzed results across studies using multiple meta-analytic techniques. For both AAM and ANM, we observed more directionally consistent associations with the previously reported risk alleles than expected by chance (p-valuesbinomial≤0.01). Eight densely genotyped reproductive loci generalized significantly to at least one non-European population. We identified one trans-ethnic array-wide SNP association with AAM and two significant associations with ANM, which have not been described previously. Additionally, we observed evidence of independent secondary signals at three of six AAM trans-ethnic loci. Our findings support the transferability of reproductive trait loci discovered in European women to women of other race/ethnicities and indicate the presence of additional trans-ethnic associations both at both novel and established loci. These findings suggest the benefit of including diverse populations in future studies of the genetic architecture of female growth and development.
Collapse
Affiliation(s)
- Lindsay Fernández-Rhodes
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | | | - Yujie Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Janina M. Jeff
- Genotyping Arrays Division, Illumina, Inc., San Diego, California, United States of America
| | - Sachiko Yoneyama
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cara L. Carty
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - V. Wendy Setiawan
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Christopher Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Steven Corbett
- Kansas Health Institute, Topeka, Kansas, United States of America
| | - Ellen Demerath
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Petra Buzkova
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Dana C. Crawford
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Steven C. Hunt
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - D. C. Rao
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Michigan, United States of America
| | - Karen Schwander
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Michigan, United States of America
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Omri Gottesman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Noura S. Abul-Husn
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Erwin P. Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Leslie J. Raffel
- Division of Genetic and Genomic Medicine, University of California—Irvine, Irvine, California, United States of America
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Suzette J. Bielinski
- College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Sheila F. Castañeda
- South Bay Latino Research Center, Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Martha Daviglus
- Institute of Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gregory A. Talavera
- South Bay Latino Research Center, Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Kelli K. Ryckman
- Departments of Epidemiology and Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, California, United States of America
| | - Steven Buyske
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Lucia Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Tara Matise
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
42
|
Wang X, Zou P, Mo M, Yang H, Chen Q, Zhou N, Sun L, Chen H, Ao L, Cui Z, Cao J. Early pubertal timing is associated with lower sperm concentration in college students. Oncotarget 2018; 9:24178-24186. [PMID: 29849931 PMCID: PMC5966273 DOI: 10.18632/oncotarget.24415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/14/2018] [Indexed: 11/25/2022] Open
Abstract
To study the associations between pubertal timing and semen quality and reproductive hormones, 680 volunteers were recruited from universities in Chongqing, China. Pubertal timing was obtained using a questionnaire. The main measurements were five routine semen parameters and six reproductive hormones. After adjusting for potential confounders, we found that early pubertal timing was associated with lower sperm concentration. An one-year increase in age of peak height velocity was associated with a 4.7% (95% confidence interval [CI] = 1.0 to 8.6) increase in sperm concentration. An one-year increase in age of first spermatorrhea was associated with a 6.4% increase in sperm concentration and a 2.9% decrease in semen volume (95% CI = 1.7 to 11.3, -5.5 to -0.3; respectively). Regarding reproductive hormones, an one-year increase in age of height spurt and peak height velocity was associated with a 6.5% and a 6.7% decrease in estrogen (95% CI = -9.8 to -3.0, -10.4 to -2.8; respectively). While an one-year increase in age of height spurt was associated with higher follicle-stimulating hormone (% change = 2.6, 95% CI = 0.2 to 4.7). This was the first report that has suggested that early pubertal timing is associated with lower sperm concentration. However, further study is still needed to validate this association and fully elucidate the mechanism behind it.
Collapse
Affiliation(s)
- Xiaogang Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Min Mo
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Niya Zhou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Hongqiang Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhihong Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Shalitin S, Kiess W. Putative Effects of Obesity on Linear Growth and Puberty
. Horm Res Paediatr 2018; 88:101-110. [PMID: 28183093 DOI: 10.1159/000455968] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/10/2017] [Indexed: 01/02/2023] Open
Abstract
Childhood obesity is a major public health problem that has grown to epidemic proportions throughout the world. Obesity is influenced by genetic and environmental factors. The nutritional status plays an important role in growth and body weight regulation. Excess adiposity during childhood can affect the process of growth and puberty. Obese children are frequently tall for their age, with accelerated epiphyseal growth plate maturation despite low growth hormone levels. Several regulatory hormones may affect the process of linear growth in the constellation of obesity, as high levels of insulin and leptin are observed in obese children. Leptin can act as a skeletal growth factor, with a direct effect on skeletal growth centers. The finding that overweight children, especially girls, tend to mature earlier than lean children has led to the hypothesis that the degree of body fatness may trigger the neuroendocrine events that lead to the onset of puberty. Leptin receptors have been identified in the hypothalamus, as well as in gonadotrope cells, ovarian follicular cells, and Leydig cells. The increased leptin and androgen levels seen in obese children may be implicated in their earlier onset of puberty and accelerated pubertal growth. This review is focused on the interaction between childhood obesity and growth and pubertal processes.
.
Collapse
Affiliation(s)
- Shlomit Shalitin
- The Jesse Z. and Sara Lea Shafer Institute of Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Wieland Kiess
- Department of Women and Child Health, Hospital for Children and Adolescents, University Hospitals, University of Leipzig, Leipzig, Germany
| |
Collapse
|
44
|
Peek K, Gatherer D, Bennett KJM, Fransen J, Watsford M. Muscle strength characteristics of the hamstrings and quadriceps in players from a high-level youth football (soccer) Academy. Res Sports Med 2018; 26:276-288. [PMID: 29506423 DOI: 10.1080/15438627.2018.1447475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The objective of this study was to investigate knee muscle strength characteristics in players from a high-level youth football Academy. In total, 110 players (aged 8-15 years) underwent muscle strength assessments carried out by a research physiotherapist using a computer-linked hand-held dynamometer. Results indicated that isometric hamstrings and quadriceps strength increased with age, whereas the isometric hamstring to quadriceps (H/Q) ratio decreased with age. A number of youth football players (n = 20; 18%; 95% CI: 11-27%) demonstrated isometric H/Q ratios of less than 0.60, as well as muscle strength asymmetries between limbs for the hamstrings (n = 40, 36%; 95% CI: 27-46%) and quadriceps (n = 51, 46%; 95% CI 37-56%), potentially increasing injury risk. This study provides new evidence that the isometric H/Q ratio reduces with advancing age during adolescence which may have important implications for junior athlete development and long-term injury prevention in football.
Collapse
Affiliation(s)
- Kerry Peek
- a School of Medicine and Public Health , University of Newcastle, University Drive , Callaghan , Australia
| | | | - Kyle J M Bennett
- c Applied Sports Science and Exercise Testing Laboratory, Faculty of Science and Information Technology , University of Newcastle , Ourimbah , Australia
| | - Job Fransen
- d Sport and Exercise Science, Faculty of Health , University of Technology Sydney , Moore Park , Australia
| | - Mark Watsford
- d Sport and Exercise Science, Faculty of Health , University of Technology Sydney , Moore Park , Australia
| |
Collapse
|
45
|
Howard SR, Guasti L, Poliandri A, David A, Cabrera CP, Barnes MR, Wehkalampi K, O’Rahilly S, Aiken CE, Coll AP, Ma M, Rimmington D, Yeo GSH, Dunkel L. Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty. J Clin Endocrinol Metab 2018; 103:649-659. [PMID: 29161441 PMCID: PMC5800831 DOI: 10.1210/jc.2017-02147] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. OBJECTIVE/MAIN OUTCOME MEASURES We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. DESIGN/PATIENTS We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. RESULTS We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p.Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto+/- mice displayed a significantly delayed timing of pubertal onset (P < 0.05). CONCLUSIONS Mutations in genes implicated in body mass and timing of puberty in the general population may contribute to the pathogenesis of self-limited DP.
Collapse
Affiliation(s)
- Sasha R. Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Ariel Poliandri
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Alessia David
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claudia P. Cabrera
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michael R. Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Karoliina Wehkalampi
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, FIN-00029 HUS Helsinki, Finland
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Catherine E. Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, United Kingdom
- National Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, United Kingdom
| | - Anthony P. Coll
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Marcella Ma
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Debra Rimmington
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Giles S. H. Yeo
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
46
|
Qasim A, Turcotte M, de Souza RJ, Samaan MC, Champredon D, Dushoff J, Speakman JR, Meyre D. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes Rev 2018; 19:121-149. [PMID: 29144594 DOI: 10.1111/obr.12625] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
Genetic predisposition to obesity presents a paradox: how do genetic variants with a detrimental impact on human health persist through evolutionary time? Numerous hypotheses, such as the thrifty genotype hypothesis, attempt to explain this phenomenon yet fail to provide a justification for the modern obesity epidemic. In this critical review, we appraise existing theories explaining the evolutionary origins of obesity and explore novel biological and sociocultural agents of evolutionary change to help explain the modern-day distribution of obesity-predisposing variants. Genetic drift, acting as a form of 'blind justice,' may randomly affect allele frequencies across generations while gene pleiotropy and adaptations to diverse environments may explain the rise and subsequent selection of obesity risk alleles. As an adaptive response, epigenetic regulation of gene expression may impact the manifestation of genetic predisposition to obesity. Finally, exposure to malnutrition and disease epidemics in the wake of oppressive social systems, culturally mediated notions of attractiveness and desirability, and diverse mating systems may play a role in shaping the human genome. As an important first step towards the identification of important drivers of obesity gene evolution, this review may inform empirical research focused on testing evolutionary theories by way of population genetics and mathematical modelling.
Collapse
Affiliation(s)
- A Qasim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - R J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M C Samaan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - D Champredon
- Department of Biology, McMaster University, Hamilton, ON, Canada.,Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada
| | - J Dushoff
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - J R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
47
|
Hou H, Uusküla-Reimand L, Makarem M, Corre C, Saleh S, Metcalf A, Goldenberg A, Palmert MR, Wilson MD. Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development. Hum Mol Genet 2018; 26:3585-3599. [PMID: 28911201 DOI: 10.1093/hmg/ddx246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
The timing of human puberty is highly variable, sexually dimorphic, and associated with adverse health outcomes. Over 20 genes carrying rare mutations have been identified in known pubertal disorders, many of which encode critical components of the hypothalamic-pituitary-gonadal (HPG) axis. Recent genome-wide association studies (GWAS) have identified more than 100 candidate genes at loci associated with age at menarche or voice breaking in males. We know little about the spatial, temporal or postnatal expression patterns of the majority of these puberty-associated genes. Using a high-throughput and sensitive microfluidic quantitative PCR strategy, we profiled the gene expression patterns of the mouse orthologs of 178 puberty-associated genes in male and female mouse HPG axis tissues, the pineal gland, and the liver at five postnatal ages spanning the pubertal transition. The most dynamic gene expression changes were observed prior to puberty in all tissues. We detected known and novel tissue-enhanced gene expression patterns, with the hypothalamus expressing the largest number of the puberty-associated genes. Notably, over 40 puberty-associated genes in the pituitary gland showed sex-biased gene expression, most of which occurred peri-puberty. These sex-biased genes included the orthologs of candidate genes at GWAS loci that show sex-discordant effects on pubertal timing. Our findings provide new insight into the expression of puberty-associated genes and support the possibility that the pituitary plays a role in determining sex differences in the timing of puberty.
Collapse
Affiliation(s)
- Huayun Hou
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liis Uusküla-Reimand
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Gene Technology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | - Maisam Makarem
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Christina Corre
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Shems Saleh
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Ariane Metcalf
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anna Goldenberg
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Mark R Palmert
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Endocrinology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
48
|
Argente-Arizón P, Castro-González D, Díaz F, Fernández-Gómez MJ, Sánchez-Garrido MA, Tena-Sempere M, Argente J, Chowen JA. Neonatal Overnutrition Increases Testicular Size and Expression of Luteinizing Hormone β-Subunit in Peripubertal Male Rats. Front Endocrinol (Lausanne) 2018; 9:168. [PMID: 29706935 PMCID: PMC5909034 DOI: 10.3389/fendo.2018.00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 11/15/2022] Open
Abstract
Proper nutrition is important for growth and development. Maturation of the reproductive axis and the timing of pubertal onset can be delayed when insufficient nutrition is available, or possibly advanced with nutritional abundance. The childhood obesity epidemic has been linked to a secular trend in advanced puberty in some populations. The increase in circulating leptin that occurs in association with obesity has been suggested to act as a signal that an adequate nutritional status exists for puberty to occur, allowing activation of central mechanisms. However, obesity-associated hyperleptinemia is linked to decreased leptin sensitivity, at least in adults. Here, we analyzed whether neonatal overnutrition modifies the response to an increase in leptin in peripubertal male rats, as previously demonstrated in females. Wistar rats were raised in litters of 4 (neonatal overnutrition) or 12 pups (controls) per dam. Leptin was administered sc (3 µg/g body weight) at postnatal day 35 and the rats killed 45 min or 2 h later. Postnatal overfeeding resulted in increased body weight and circulating leptin levels; however, we found no overweight-related changes in the mRNA levels of neuropeptides involved in metabolism or reproduction. In contrast, pituitary expression of luteinizing hormone (LH) beta-subunit was increased in overweight rats, as was testicular weight. There were no basal differences between L4 and L12 males or in their response to leptin administration in pSTAT3 levels in the hypothalamus at either 45 min or 2 h. In contrast, pJAK2 was found to be higher at 45 min in L4 compared to L12 males regardless of leptin treatment, while at 2 h it was higher in L4 leptin-treated males compared to L12 leptin-treated males, as well as L4 vehicle-treated rats. There were no changes in response to leptin administration in the expression of the neuropeptides analyzed. However, serum LH levels rose only in L4 males in response to leptin, but with no change in testosterone levels. In conclusion, the advancement in pubertal onset in males with neonatal overnutrition does not appear to be related to overt modifications in the central response to exogenous leptin during the peripubertal period.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación La Princesa, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Castro-González
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación La Princesa, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación La Princesa, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miguel A. Sánchez-Garrido
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigacion Biomédicas de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, University of Córdoba, Córdoba, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigacion Biomédicas de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, University of Córdoba, Córdoba, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación La Princesa, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain
- *Correspondence: Jesús Argente, ; Julie A. Chowen,
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación La Princesa, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain
- *Correspondence: Jesús Argente, ; Julie A. Chowen,
| |
Collapse
|
49
|
Fedele M, Crescenzi E, Cerchia L. The POZ/BTB and AT-Hook Containing Zinc Finger 1 (PATZ1) Transcription Regulator: Physiological Functions and Disease Involvement. Int J Mol Sci 2017; 18:ijms18122524. [PMID: 29186807 PMCID: PMC5751127 DOI: 10.3390/ijms18122524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
PATZ1 is a zinc finger protein, belonging to the POZ domain Krüppel-like zinc finger (POK) family of architectural transcription factors, first discovered in 2000 by three independent groups. Since that time accumulating evidences have shown its involvement in a variety of biological processes (i.e., embryogenesis, stemness, apoptosis, senescence, proliferation, T-lymphocyte differentiation) and human diseases. Here we summarize these studies with a focus on the PATZ1 emerging and controversial role in cancer, where it acts as either a tumor suppressor or an oncogene. Finally, we give some insight on clinical perspectives using PATZ1 as a prognostic marker and therapeutic target.
Collapse
|
50
|
Luijken J, van der Schouw YT, Mensink D, Onland-Moret NC. Association between age at menarche and cardiovascular disease: A systematic review on risk and potential mechanisms. Maturitas 2017; 104:96-116. [PMID: 28923182 DOI: 10.1016/j.maturitas.2017.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Age at menarche (AAM) has been reported to be associated with the risk of cardiovascular disease (CVD), but the shape of and the mechanisms behind this association remain unclear. We reviewed the data on the association between AAM and different subtypes of CVD, and used shared genetic loci to identify possible mechanisms underlying this association using shared genetic association. We searched the databases of PubMed, Web of Science and Embase through to April 2017. We included articles with any clinically manifest CVD endpoint and for any ethnicity. We identified single nucleotide polymorphisms (SNPs) for AAM in genome-wide association studies (GWAS) in Caucasians through PubMed and HuGE Navigator, and searched whether these SNPs or any of their proxies were associated with any CVD-related trait. Eight studies in Caucasian populations reported an inverse linear relation between AAM and CVD risk, whereas one large study reported a significant U-shaped relation between them. Data from Asian populations were contradictory and inconclusive. In total, 122 AAM SNPs were identified at a genome-wide significance level (p<5×10-8). Of those, 18 were also associated with various CVD-related traits, primarily body mass index (BMI), obesity, and height. In conclusion, early AAM and possibly also late AAM increase the risk of CVD in Caucasian populations. Weight and height may be part of the mechanism underlying the relation between AAM and CVD risk in Caucasians. Data on other ethnicities are too limited for meaningful analysis and conclusions.
Collapse
Affiliation(s)
- Janneke Luijken
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Daniëlle Mensink
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands; Cardialysis, Rotterdam, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|