1
|
Helena GA, Kume S. A sneak peek into chronic glucose exposure and insulin secretion impairment through translatome. J Diabetes Investig 2024; 15:1174-1176. [PMID: 38949390 PMCID: PMC11363108 DOI: 10.1111/jdi.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetes is an epidemic caused by a multitude of factors. Despite the studies attempting to unravel its mechanism, there is still more to discover about glucose-insulin dynamics. In a recent issue of the Journal of Clinical Investigation, Cheruiyot et al. uncovered a translational regulatory circuit during β-cell glucose toxicity that inherently affects the translational makeup and protein expression in functioning β-cells.Journal of Clinical Investigation, Cheruiyot et al. uncovered a translational regulatory circuit during β-cell glucose toxicity that inherently affects the translational makeup and protein expression in functioning β-cells. Their multiomics approach might provide a deeper understanding of high glucose and translational regulation of genes involved in β-cell insulin impairment caused by prolonged high-glucose exposure.
Collapse
Affiliation(s)
| | - Shoen Kume
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
2
|
Strage EM, Ley C, Westermark GT, Tengholm A. Insulin release from isolated cat islets of Langerhans. Domest Anim Endocrinol 2024; 87:106836. [PMID: 38141375 DOI: 10.1016/j.domaniend.2023.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Feline diabetes mellitus is a common endocrine disease with increasing prevalence. It shows similarities with human type 2 diabetes and is characterized by insulin resistance and deficient insulin secretion. Moreover, cats and humans belong to the very few species that form amyloid depositions in the pancreatic islets. However, little is known about cat islet function and no studies have addressed insulin secretion from isolated islets ex vivo. The aim of this study was to establish a protocol for isolation of islets of Langerhans from pancreata of cats euthanized due to disease, and to evaluate insulin secretion responses to various physiological and pharmacological stimuli. Collagenase digestion of pancreatic tissue from 13 non-diabetic cats and two cats with diabetic ketoacidosis yielded individual islets surrounded by a layer of exocrine tissue that was reduced after two days in culture. Histological examination showed islet amyloid in pancreatic biopsies from most non-diabetic and in one diabetic cat. Islets from non-diabetic cats cultured at 5.5 mM glucose responded with increased insulin secretion to 16.7 mM glucose, 30 mM K+ and 20 µM of the sulfonylurea glipizide (2-3 times basal secretion at 3 mM glucose). The glucagon-like peptide-1 receptor agonist exendin-4 (100 nM) had no effect under basal conditions but potentiated glucose-triggered insulin release. Only one of nine islet batches from diabetic cats released detectable amounts of insulin, which was enhanced by exendin-4. Culture of islets from non-diabetic cats at 25 mM glucose impaired secretion both in response to glucose and K+ depolarization. In conclusion, we describe a procedure for isolation of islets from cat pancreas biopsies and demonstrate that isolated cat islets secrete insulin in response to glucose and antidiabetic drugs. The study provides a basis for future ex vivo studies of islet function relevant to the understanding of the pathophysiology and treatment of feline diabetes.
Collapse
Affiliation(s)
- Emma M Strage
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, Uppsala SE-750 07, Sweden.
| | - Cecilia Ley
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, Uppsala SE-750 07, Sweden; Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, P.O. Box 571, Uppsala SE-751 23, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, P.O. Box 571, Uppsala SE-751 23, Sweden
| |
Collapse
|
3
|
Kalnytska O, Qvist P, Kunz S, Conrad T, Willnow TE, Schmidt V. SORCS2 activity in pancreatic α-cells safeguards insulin granule formation and release from glucose-stressed β-cells. iScience 2024; 27:108725. [PMID: 38226160 PMCID: PMC10788290 DOI: 10.1016/j.isci.2023.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Sorting receptor SORCS2 is a stress-response factor protecting neurons from acute insults, such as during epilepsy. SORCS2 is also expressed in the pancreas, yet its action in this tissue remains unknown. Combining metabolic studies in SORCS2-deficient mice with ex vivo functional analyses and single-cell transcriptomics of pancreatic tissues, we identified a role for SORCS2 in protective stress response in pancreatic islets, essential to sustain insulin release. We show that SORCS2 is predominantly expressed in islet alpha cells. Loss of expression coincides with inability of these cells to produce osteopontin, a secreted factor that facilitates insulin release from stressed beta cells. In line with diminished osteopontin levels, beta cells in SORCS2-deficient islets show gene expression patterns indicative of aggravated cell stress, and exhibit defects in insulin granule maturation and a blunted glucose response. These findings corroborate a function for SORCS2 in protective stress response that extends to metabolism.
Collapse
Affiliation(s)
- Oleksandra Kalnytska
- Molecular Cardiovascular Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Séverine Kunz
- Technology Platform for Electron Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Thomas E. Willnow
- Molecular Cardiovascular Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Vanessa Schmidt
- Molecular Cardiovascular Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
4
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
5
|
Cheruiyot A, Hollister-Lock J, Sullivan B, Pan H, Dreyfuss JM, Bonner-Weir S, Schaffer JE. Sustained hyperglycemia specifically targets translation of mRNAs for insulin secretion. J Clin Invest 2023; 134:e173280. [PMID: 38032734 PMCID: PMC10849759 DOI: 10.1172/jci173280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Pancreatic β cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair β cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion is similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on β cell mRNA translation. Before induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our study uncovered a translational regulatory circuit during β cell glucose toxicity that impairs expression of proteins with critical roles in β cell function.
Collapse
|
6
|
Perrier J, Nawrot M, Madec AM, Chikh K, Chauvin MA, Damblon C, Sabatier J, Thivolet CH, Rieusset J, Rautureau GJP, Panthu B. Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate. Nutrients 2023; 15:4791. [PMID: 38004183 PMCID: PMC10674605 DOI: 10.3390/nu15224791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets.
Collapse
Affiliation(s)
- Johan Perrier
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Anne-Marie Madec
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Karim Chikh
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, 69310 Pierre-Bénite, France
| | - Marie-Agnès Chauvin
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des Sciences, Université de Liège, 99131 Liège, Belgium
| | - Julia Sabatier
- Laboratory of Cell Therapy for Diabetes (LTCD), PRIMS Facility, Institute for Regenerative Medicine and Biotherapy (IRMB), University Hospital of Montpellier, 34295 Montpellier, France
| | - Charles H. Thivolet
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, 69310 Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082 CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Baptiste Panthu
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| |
Collapse
|
7
|
Sremac M, Luo H, Deng H, Parr MFE, Hutcheson J, Verde PS, Alagpulinsa DA, Kitzmann JM, Papas KK, Brauns T, Markmann JF, Lei J, Poznansky MC. Short-term function and immune-protection of microencapsulated adult porcine islets with alginate incorporating CXCL12 in healthy and diabetic non-human primates without systemic immune suppression: A pilot study. Xenotransplantation 2023; 30:e12826. [PMID: 37712342 DOI: 10.1111/xen.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Replacement of insulin-producing pancreatic beta-cells by islet transplantation offers a functional cure for type-1 diabetes (T1D). We recently demonstrated that a clinical grade alginate micro-encapsulant incorporating the immune-repellent chemokine and pro-survival factor CXCL12 could protect and sustain the integrity and function of autologous islets in healthy non-human primates (NHPs) without systemic immune suppression. In this pilot study, we examined the impact of the CXCL12 micro encapsulant on the function and inflammatory and immune responses of xenogeneic islets transplanted into the omental tissue bilayer sac (OB; n = 4) and diabetic (n = 1) NHPs. Changes in the expression of cytokines after implantation were limited to 2-6-fold changes in blood, most of which did not persist over the first 4 weeks after implantation. Flow cytometry of PBMCs following transplantation showed minimal changes in IFNγ or TNFα expression on xenoantigen-specific CD4+ or CD8+ T cells compared to unstimulated cells, and these occurred mainly in the first 4 weeks. Microbeads were readily retrievable for assessment at day 90 and day 180 and at retrieval were without microscopic signs of degradation or foreign body responses (FBR). In vitro and immunohistochemistry studies of explanted microbeads indicated the presence of functional xenogeneic islets at day 30 post transplantation in all biopsied NHPs. These results from a small pilot study revealed that CXCL12-microencapsulated xenogeneic islets abrogate inflammatory and adaptive immune responses to the xenograft. This work paves the way toward future larger scale studies of the transplantation of alginate microbeads with CXCL12 and porcine or human stem cell-derived beta cells or allogeneic islets into diabetic NHPs without systemic immunosuppression.
Collapse
Affiliation(s)
- Marinko Sremac
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hao Luo
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Hongping Deng
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Madeline F E Parr
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Pushkar S Verde
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Alagpulinsa
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jenna Miner Kitzmann
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Klearchos K Papas
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Markmann
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ji Lei
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Cheruiyot A, Hollister-Lock J, Sullivan B, Pan H, Dreyfuss JM, Bonner-Weir S, Schaffer JE. Sustained hyperglycemia specifically targets translation of mRNAs for insulin secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560203. [PMID: 37808767 PMCID: PMC10557781 DOI: 10.1101/2023.09.29.560203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Pancreatic β-cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair β-cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion are similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on β-cell mRNA translation. Prior to induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also of mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex-vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our findings uncover a translational regulatory circuit during β-cell glucose toxicity that impairs expression of proteins with critical roles in β-cell function.
Collapse
|
9
|
Santo-Domingo J, Lassueur S, Galindo AN, Alvarez-Illera P, Romero-Sanz S, Caldero-Escudero E, de la Fuente S, Dayon L, Wiederkehr A. SLC25A46 promotes mitochondrial fission and mediates resistance to lipotoxic stress in INS-1E insulin-secreting cells. J Cell Sci 2023; 136:jcs260049. [PMID: 36942724 DOI: 10.1242/jcs.260049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Glucose sensing in pancreatic β-cells depends on oxidative phosphorylation and mitochondria-derived signals that promote insulin secretion. Using mass spectrometry-based phosphoproteomics to search for downstream effectors of glucose-dependent signal transduction in INS-1E insulinoma cells, we identified the outer mitochondrial membrane protein SLC25A46. Under resting glucose concentrations, SLC25A46 was phosphorylated on a pair of threonine residues (T44/T45) and was dephosphorylated in response to glucose-induced Ca2+ signals. Overexpression of SLC25A46 in INS-1E cells caused complete mitochondrial fragmentation, resulting in a mild mitochondrial defect associated with lowered glucose-induced insulin secretion. In contrast, inactivation of the Slc25a46 gene resulted in dramatic mitochondrial hyperfusion, without affecting respiratory activity or insulin secretion. Consequently, SLC25A46 is not essential for metabolism-secretion coupling under normal nutrient conditions. Importantly, insulin-secreting cells lacking SLC25A46 had an exacerbated sensitivity to lipotoxic conditions, undergoing massive apoptosis when exposed to palmitate. Therefore, in addition to its role in mitochondrial dynamics, SLC25A46 plays a role in preventing mitochondria-induced apoptosis in INS-E cells exposed to nutrient stress. By protecting mitochondria, SLC25A46 might help to maintain β-cell mass essential for blood glucose control.
Collapse
Affiliation(s)
- Jaime Santo-Domingo
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Steve Lassueur
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Pilar Alvarez-Illera
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Silvia Romero-Sanz
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Elena Caldero-Escudero
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Sergio de la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Tariq M, de Souza AH, Bensellam M, Chae H, Jaffredo M, Close AF, Deglasse JP, Santos LRB, Buemi A, Mourad NI, Wojtusciszyn A, Raoux M, Gilon P, Broca C, Jonas JC. Prolonged culture of human pancreatic islets under glucotoxic conditions changes their acute beta cell calcium and insulin secretion glucose response curves from sigmoid to bell-shaped. Diabetologia 2023; 66:709-723. [PMID: 36459178 DOI: 10.1007/s00125-022-05842-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
AIMS/HYPOTHESIS The rapid remission of type 2 diabetes by a diet very low in energy correlates with a marked improvement in glucose-stimulated insulin secretion (GSIS), emphasising the role of beta cell dysfunction in the early stages of the disease. In search of novel mechanisms of beta cell dysfunction after long-term exposure to mild to severe glucotoxic conditions, we extensively characterised the alterations in insulin secretion and upstream coupling events in human islets cultured for 1-3 weeks at ~5, 8, 10 or 20 mmol/l glucose and subsequently stimulated by an acute stepwise increase in glucose concentration. METHODS Human islets from 49 non-diabetic donors (ND-islets) and six type 2 diabetic donors (T2D-islets) were obtained from five isolation centres. After shipment, the islets were precultured for 3-7 days in RPMI medium containing ~5 mmol/l glucose and 10% (vol/vol) heat-inactivated FBS with selective islet picking at each medium renewal. Islets were then cultured for 1-3 weeks in RPMI containing ~5, 8, 10 or 20 mmol/l glucose before measurement of insulin secretion during culture, islet insulin and DNA content, beta cell apoptosis and cytosolic and mitochondrial glutathione redox state, and assessment of dynamic insulin secretion and upstream coupling events during acute stepwise stimulation with glucose [NAD(P)H autofluorescence, ATP/(ATP+ADP) ratio, electrical activity, cytosolic Ca2+ concentration ([Ca2+]c)]. RESULTS Culture of ND-islets for 1-3 weeks at 8, 10 or 20 vs 5 mmol/l glucose did not significantly increase beta cell apoptosis or oxidative stress but decreased insulin content in a concentration-dependent manner and increased beta cell sensitivity to subsequent acute stimulation with glucose. Islet glucose responsiveness was higher after culture at 8 or 10 vs 5 mmol/l glucose and markedly reduced after culture at 20 vs 5 mmol/l glucose. In addition, the [Ca2+]c and insulin secretion responses to acute stepwise stimulation with glucose were no longer sigmoid but bell-shaped, with maximal stimulation at 5 or 10 mmol/l glucose and rapid sustained inhibition above that concentration. Such paradoxical inhibition was, however, no longer observed when islets were acutely depolarised by 30 mmol/l extracellular K+. The glucotoxic alterations of beta cell function were fully reversible after culture at 5 mmol/l glucose and were mimicked by pharmacological activation of glucokinase during culture at 5 mmol/l glucose. Similar results to those seen in ND-islets were obtained in T2D-islets, except that their rate of insulin secretion during culture at 8 and 20 mmol/l glucose was lower, their cytosolic glutathione oxidation increased after culture at 8 and 20 mmol/l glucose, and the alterations in GSIS and upstream coupling events were greater after culture at 8 mmol/l glucose. CONCLUSIONS/INTERPRETATION Prolonged culture of human islets under moderate to severe glucotoxic conditions markedly increased their glucose sensitivity and revealed a bell-shaped acute glucose response curve for changes in [Ca2+]c and insulin secretion, with maximal stimulation at 5 or 10 mmol/l glucose and rapid inhibition above that concentration. This novel glucotoxic alteration may contribute to beta cell dysfunction in type 2 diabetes independently from a detectable increase in beta cell apoptosis.
Collapse
Affiliation(s)
- Mohammad Tariq
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Arnaldo H de Souza
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Mohammed Bensellam
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Manon Jaffredo
- CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, University of Bordeaux, Pessac, France
| | - Anne-Françoise Close
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Philippe Deglasse
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Laila R B Santos
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
- Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium
| | - Antoine Buemi
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle de chirurgie expérimentale, Université catholique de Louvain, Brussels, Belgium
| | - Nizar I Mourad
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle de chirurgie expérimentale, Université catholique de Louvain, Brussels, Belgium
| | - Anne Wojtusciszyn
- Laboratoire de Thérapie Cellulaire du Diabète, Institut de Médecine Régénérative et Biothérapies, Hôpital St Eloi, CHU Montpellier, Montpellier, France
- Service d'Endocrinologie, Diabétologie et Métabolisme, Centre Hospitalier Universitaire Vaudois and Université de Lausanne, Lausanne, Switzerland
| | - Matthieu Raoux
- CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, University of Bordeaux, Pessac, France
| | - Patrick Gilon
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Broca
- Laboratoire de Thérapie Cellulaire du Diabète, Institut de Médecine Régénérative et Biothérapies, Hôpital St Eloi, CHU Montpellier, Montpellier, France
| | - Jean-Christophe Jonas
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
11
|
Jung SY, Bhatti P, Pellegrini M. DNA methylation in peripheral blood leukocytes for the association with glucose metabolism and invasive breast cancer. Clin Epigenetics 2023; 15:23. [PMID: 36782224 PMCID: PMC9926571 DOI: 10.1186/s13148-023-01435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is a well-established factor for breast cancer (BC) risk in postmenopausal women, but the interrelated molecular pathways on the methylome are not explicitly described. We conducted a population-level epigenome-wide association (EWA) study for DNA methylation (DNAm) probes that are associated with IR and prospectively correlated with BC development, both overall and in BC subtypes among postmenopausal women. METHODS We used data from Women's Health Initiative (WHI) ancillary studies for our EWA analyses and evaluated the associations of site-specific DNAm across the genome with IR phenotypes by multiple regressions adjusting for age and leukocyte heterogeneities. For our analysis of the top 20 IR-CpGs with BC risk, we used the WHI and the Cancer Genomic Atlas (TCGA), using multiple Cox proportional hazards and logit regressions, respectively, accounting for age, diabetes, obesity, leukocyte heterogeneities, and tumor purity (for TCGA). We further conducted a Gene Set Enrichment Analysis. RESULTS We detected several EWA-CpGs in TXNIP, CPT1A, PHGDH, and ABCG1. In particular, cg19693031 in TXNIP was replicated in all IR phenotypes, measured by fasting levels of glucose, insulin, and homeostatic model assessment-IR. Of those replicated IR-genes, 3 genes (CPT1A, PHGDH, and ABCG1) were further correlated with BC risk; and 1 individual CpG (cg01676795 in POR) was commonly detected across the 2 cohorts. CONCLUSIONS Our study contributes to better understanding of the interconnected molecular pathways on the methylome between IR and BC carcinogenesis and suggests potential use of DNAm markers in the peripheral blood cells as preventive targets to detect an at-risk group for IR and BC in postmenopausal women.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, School of Nursing, University of California, Los Angeles, 700 Tiverton Ave, 3-264 Factor Building, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
12
|
Fantuzzi F, Toivonen S, Schiavo AA, Chae H, Tariq M, Sawatani T, Pachera N, Cai Y, Vinci C, Virgilio E, Ladriere L, Suleiman M, Marchetti P, Jonas JC, Gilon P, Eizirik DL, Igoillo-Esteve M, Cnop M. In depth functional characterization of human induced pluripotent stem cell-derived beta cells in vitro and in vivo. Front Cell Dev Biol 2022; 10:967765. [PMID: 36060810 PMCID: PMC9428245 DOI: 10.3389/fcell.2022.967765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 01/05/2023] Open
Abstract
In vitro differentiation of human induced pluripotent stem cells (iPSCs) into beta cells represents an important cell source for diabetes research. Here, we fully characterized iPSC-derived beta cell function in vitro and in vivo in humanized mice. Using a 7-stage protocol, human iPSCs were differentiated into islet-like aggregates with a yield of insulin-positive beta cells comparable to that of human islets. The last three stages of differentiation were conducted with two different 3D culture systems, rotating suspension or static microwells. In the latter, homogeneously small-sized islet-like aggregates were obtained, while in rotating suspension size was heterogeneous and aggregates often clumped. In vitro function was assessed by glucose-stimulated insulin secretion, NAD(P)H and calcium fluctuations. Stage 7 aggregates slightly increased insulin release in response to glucose in vitro. Aggregates were transplanted under the kidney capsule of NOD-SCID mice to allow for further in vivo beta cell maturation. In transplanted mice, grafts showed glucose-responsiveness and maintained normoglycemia after streptozotocin injection. In situ kidney perfusion assays showed modulation of human insulin secretion in response to different secretagogues. In conclusion, iPSCs differentiated with equal efficiency into beta cells in microwells compared to rotating suspension, but the former had a higher experimental success rate. In vitro differentiation generated aggregates lacking fully mature beta cell function. In vivo, beta cells acquired the functional characteristics typical of human islets. With this technology an unlimited supply of islet-like organoids can be generated from human iPSCs that will be instrumental to study beta cell biology and dysfunction in diabetes.
Collapse
Affiliation(s)
- Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium,Endocrinology and Metabolism, Department of Medicine and Surgery, University of Parma, Parma, Italy,*Correspondence: Miriam Cnop, ; Federica Fantuzzi,
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Heeyoung Chae
- Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Mohammad Tariq
- Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Pachera
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Ying Cai
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Chiara Vinci
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Enrico Virgilio
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ladriere
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jean-Christophe Jonas
- Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Patrick Gilon
- Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium,*Correspondence: Miriam Cnop, ; Federica Fantuzzi,
| |
Collapse
|
13
|
Ilegems E, Bryzgalova G, Correia J, Yesildag B, Berra E, Ruas JL, Pereira TS, Berggren PO. HIF-1α inhibitor PX-478 preserves pancreatic β cell function in diabetes. Sci Transl Med 2022; 14:eaba9112. [PMID: 35353540 DOI: 10.1126/scitranslmed.aba9112] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During progression of type 2 diabetes, pancreatic β cells are subjected to sustained metabolic overload. We postulated that this state mediates a hypoxic phenotype driven by hypoxia-inducible factor-1α (HIF-1α) and that treatment with the HIF-1α inhibitor PX-478 would improve β cell function. Our studies showed that the HIF-1α protein was present in pancreatic β cells of diabetic mouse models. In mouse islets with high glucose metabolism, the emergence of intracellular Ca2+ oscillations at low glucose concentration and the abnormally high basal release of insulin were suppressed by treatment with the HIF-1α inhibitor PX-478, indicating improvement of β cell function. Treatment of db/db mice with PX-478 prevented the rise of glycemia and diabetes progression by maintenance of elevated plasma insulin concentration. In streptozotocin-induced diabetic mice, PX-478 improved the recovery of glucose homeostasis. Islets isolated from these mice showed hallmarks of improved β cell function including elevation of insulin content, increased expression of genes involved in β cell function and maturity, inhibition of dedifferentiation markers, and formation of mature insulin granules. In response to PX-478 treatment, human islet organoids chronically exposed to high glucose presented improved stimulation index of glucose-induced insulin secretion. These results suggest that the HIF-1α inhibitor PX-478 has the potential to act as an antidiabetic therapeutic agent that preserves β cell function under metabolic overload.
Collapse
Affiliation(s)
- Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Galyna Bryzgalova
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Jorge Correia
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Edurne Berra
- Centro de Investigación Cooperativa en Biociencias CIC bioGUNE, 48160 Derio, Spain
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Teresa S Pereira
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.,Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 308232 Singapore, Singapore.,School of Biomedical Sciences, Ulster University, BT52 1SA Coleraine, Northern Ireland, UK
| |
Collapse
|
14
|
Mirzadeh Z, Faber CL, Schwartz MW. Central Nervous System Control of Glucose Homeostasis: A Therapeutic Target for Type 2 Diabetes? Annu Rev Pharmacol Toxicol 2022; 62:55-84. [PMID: 34990204 PMCID: PMC8900291 DOI: 10.1146/annurev-pharmtox-052220-010446] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Historically, pancreatic islet beta cells have been viewed as principal regulators of glycemia, with type 2 diabetes (T2D) resulting when insulin secretion fails to compensate for peripheral tissue insulin resistance. However, glycemia is also regulated by insulin-independent mechanisms that are dysregulated in T2D. Based on evidence supporting its role both in adaptive coupling of insulin secretion to changes in insulin sensitivity and in the regulation of insulin-independent glucose disposal, the central nervous system (CNS) has emerged as a fundamental player in glucose homeostasis. Here, we review and expand upon an integrative model wherein the CNS, together with the islet, establishes and maintains the defended level of glycemia. We discuss the implications of this model for understanding both normal glucose homeostasis and T2D pathogenesis and highlight centrally targeted therapeutic approaches with the potential to restore normoglycemia to patients with T2D.
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA;
| | - Chelsea L Faber
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA;
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington 98109, USA;
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington 98109, USA;
| |
Collapse
|
15
|
Nakashima Y, Iguchi H, Takakura K, Nakamura Y, Izumi K, Koba N, Haneda S, Tsukahara M. Adhesion Characteristics of Human Pancreatic Islets, Duct Epithelial Cells, and Acinar Cells to a Polymer Scaffold. Cell Transplant 2022; 31:9636897221120500. [PMID: 36062469 PMCID: PMC9449504 DOI: 10.1177/09636897221120500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We reported in 2018 that among several extracellular matrices, fibronectin, type I collagen, type IV collagen, laminin I, fibrinogen, and bovine serum albumin, fibronectin is particularly useful for adhesion of porcine pancreatic tissue. Subsequently, we developed a technology that enables the chemical coating of the constituent motifs of fibronectin onto cell culture dishes. In this experiment, we used islets (purity ≥ 90%), duct epithelial cells (purity ≥ 60%), and acinar cells (purity ≥ 99%) isolated from human pancreas according to the Edmonton protocol published in 2000 and achieved adhesion to the constituent motifs of fibronectin. A solution including cGMP Prodo Islet Media was used as the assay solution. In islets, adhesion was enhanced with the constitutive motifs of fibronectin compared with uncoated islets. In the functional evaluation of islets, insulin mRNA expression and insulin secretion were enhanced by the constitutive motif of fibronectin compared with non-coated islets. The stimulation index was comparable between non-coated islets and fibronectin motifs. In duct epithelial cells, adhesion was mildly promoted by the fibronectin component compared with non-coated component, while in acinar cells, adhesion was inhibited by the fibronectin component compared with the non-coated component. These data suggest that the constitutive motifs of fibronectin are useful for the adhesion of islets and duct epithelial cells.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Center for iPS Cell Research and Application Foundation, Facility for iPS Cell Therapy, Kyoto University, Kyoto, Japan
| | - Hiroki Iguchi
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Kenta Takakura
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Yuta Nakamura
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | | | | | - Satoshi Haneda
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Masayoshi Tsukahara
- Center for iPS Cell Research and Application Foundation, Facility for iPS Cell Therapy, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Abstract
Pancreatic islets are the body's central rheostat that regulates glucose homeostasis through the production of different hormones, including β cell-derived insulin. During obesity-induced type 2 diabetes (T2D), islet β cells become dysfunctional and inadequate insulin secretion no longer ensures glycemic control. T2D is associated with a chronic low-grade inflammation that manifests in several metabolic organs including the pancreatic islets. Growing evidence suggests that components of the innate immune system, and especially macrophages, play a crucial role in regulating islet homeostasis. Yet, the phenotypes and functions of islet macrophages in physiology and during T2D have only started to attract attention and remain unclear. In this review, the current knowledge about islet inflammation and macrophages will be summarized in humans and rodent models. Recent findings on the cellular and molecular mechanisms involved in islet remodeling and β cell function during obesity and T2D will be discussed.
Collapse
Affiliation(s)
- Joyceline Cuenco
- Centre de Recherche des Cordeliers, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
17
|
Brown ML, Lopez A, Meyer N, Richter A, Thompson TB. FSTL3-Neutralizing Antibodies Enhance Glucose-Responsive Insulin Secretion in Dysfunctional Male Mouse and Human Islets. Endocrinology 2021; 162:6128796. [PMID: 33539535 PMCID: PMC8384134 DOI: 10.1210/endocr/bqab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/23/2022]
Abstract
Diabetes is caused by insufficient insulin production from pancreatic beta cells or insufficient insulin action, leading to an inability to control blood glucose. While a wide range of treatments exist to alleviate the symptoms of diabetes, therapies addressing the root cause of diabetes through replacing lost beta cells with functional cells remain an object of active pursuit. We previously demonstrated that genetic deletion of Fstl3, a critical regulator of activin activity, enhanced beta cell number and glucose-responsive insulin production. These observations suggested the hypothesis that FSTL3 neutralization could be used to therapeutically enhance beta cell number and function in humans. To pursue this possibility, we developed an FSTL3-neutralizing antibody, FP-101, and characterized its ability to prevent or disrupt FSTL3 from complexing with activin or related ligands. This antibody was selective for FSTL3 relative to the closely related follistatin, thereby reducing the chance for off-target effects. In vitro assays with FP-101 and activin revealed that FP-101-mediated neutralization of FSTL3 can enhance both insulin secretion and glucose responsiveness to nonfunctional mouse and human islets under conditions that model diabetes. Thus, FSTL3 neutralization may provide a novel therapeutic strategy for treating diabetes through repairing dysfunctional beta cells.
Collapse
Affiliation(s)
- Melissa L Brown
- Department of Nutrition and Public Health, University of Saint Joseph, West Hartford, CT 06117, USA
- Correspondence: Melissa Brown, PhD, RD, CSSD, LD, University of Saint Joseph, 1678 Asylum Ave, West Hartford, CT 06117, USA. E-mail:
| | - Alexa Lopez
- Fairbanks Pharmaceuticals, Inc., Concord, MA 01742, USA
| | - Nolan Meyer
- Fairbanks Pharmaceuticals, Inc., Concord, MA 01742, USA
| | - Alden Richter
- Fairbanks Pharmaceuticals, Inc., Concord, MA 01742, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
18
|
Kishimoto I, Ohashi A. Impact of Lifestyle Behaviors on Postprandial Hyperglycemia during Continuous Glucose Monitoring in Adult Males with Overweight/Obesity but without Diabetes. Nutrients 2021; 13:nu13093092. [PMID: 34578968 PMCID: PMC8472322 DOI: 10.3390/nu13093092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Data regarding hyperglycemia-related factors were scarce in people without diabetes. Fifty males (age 50–65 years) with overweight/obesity but without diagnosis of diabetes were recruited. After excluding participants with the 2 h plasma glucose value during a 75 g oral glucose tolerance test ≥200 mg/dL, continuous glucose monitoring (CGM) was performed for 6 days. Subjects with ≥1800 CGM readings were included (n = 36). The CGM indices of hyperglycemia were significantly associated with disposition index and snacking frequency. In receiver-operating characteristic analysis for predicting the maximal CGM glucose ≥200 mg/dL, the area under curves of disposition index, snacking frequency, and minimal daily step counts during the study were 0.69, 0.63, and 0.68, whereas the cutoff values were 1.57, once daily, and 2499 steps, respectively. After adjustments, the lower disposition index (≤1.57), higher snacking frequency (≥1 per day), and lower minimal step (≤2499 steps per day) categories conferred 14.5, 14.5, and 6.6-fold increased probabilities for having the maximum level ≥ 200 mg/dL, respectively. In addition, the snacking habits were significantly associated with insulin resistance and compensatory hyperinsulinemia. In conclusion, in middle aged males with overweight/obesity but without diabetes, snacking and physical inactivity serve as the major drivers of postprandial hyperglycemia independently of β-cell function.
Collapse
Affiliation(s)
- Ichiro Kishimoto
- Department of Endocrinology and Diabetes, Toyooka Public Hospital, 1094 Tobera, Toyooka 668-8501, Japan
- Correspondence: ; Tel.: +81-796-22-6111; Fax: +81-796-22-0088
| | - Akio Ohashi
- Environment and Total Quality Management Division, NEC Corporation, 5-7-1 Minato-ku, Shiba, Tokyo 108-0014, Japan;
| |
Collapse
|
19
|
Wheatley SD, Deakin TA, Arjomandkhah NC, Hollinrake PB, Reeves TE. Low Carbohydrate Dietary Approaches for People With Type 2 Diabetes-A Narrative Review. Front Nutr 2021; 8:687658. [PMID: 34336909 PMCID: PMC8319397 DOI: 10.3389/fnut.2021.687658] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Although carbohydrate restriction is not a new approach for the management of Type 2 diabetes, interest in its safety and efficacy has increased significantly in recent years. The purpose of the current narrative review is to summarise the key relevant research and practical considerations in this area, as well as to explore some of the common concerns expressed in relation to the use of such approaches. There is a strong physiological rationale supporting the role of carbohydrate restriction for the management of Type 2 diabetes, and available evidence suggests that low carbohydrate dietary approaches (LCDs) are as effective as, or superior to, other dietary approaches for its management. Importantly, LCDs appear to be more effective than other dietary approaches for facilitating a reduction in the requirement for certain medications, which leads to their effects on other health markers being underestimated. LCDs have also been demonstrated to be an effective method for achieving remission of Type 2 diabetes for some people. The available evidence does not support concerns that LCDs increase the risk of cardiovascular disease, that such approaches increase the risk of nutrient deficiencies, or that they are more difficult to adhere to than other dietary approaches. A growing number of organisations support the use of LCDs as a suitable choice for individuals with Type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Nicola C Arjomandkhah
- School of Social and Health Sciences, Leeds Trinity University, Leeds, United Kingdom
| | | | | |
Collapse
|
20
|
Madec AM, Perrier J, Panthu B, Dingreville F. Role of mitochondria-associated endoplasmic reticulum membrane (MAMs) interactions and calcium exchange in the development of type 2 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:169-202. [PMID: 34392929 DOI: 10.1016/bs.ircmb.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucotoxicity-induced β-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Mitochondria and ER form a network in cells that controls cell function and fate. Mitochondria of the pancreatic β cell play a central role in the secretion of insulin in response to glucose through their ability to produce ATP. Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. Here, we review MAM functions in the cell and we focus on the crosstalk between the ER and Mitochondria in the context of T2D, highlighting the pivotal role played by MAMs especially in β cells through inter-organelle calcium exchange and glucotoxicity-associated β cell dysfunction.
Collapse
Affiliation(s)
| | - Johan Perrier
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon, France
| | | | | |
Collapse
|
21
|
Chronically Elevated Exogenous Glucose Elicits Antipodal Effects on the Proteome Signature of Differentiating Human iPSC-Derived Pancreatic Progenitors. Int J Mol Sci 2021; 22:ijms22073698. [PMID: 33918250 PMCID: PMC8038174 DOI: 10.3390/ijms22073698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022] Open
Abstract
The past decade revealed that cell identity changes, such as dedifferentiation or transdifferentiation, accompany the insulin-producing β-cell decay in most diabetes conditions. Mapping and controlling the mechanisms governing these processes is, thus, extremely valuable for managing the disease progression. Extracellular glucose is known to influence cell identity by impacting the redox balance. Here, we use global proteomics and pathway analysis to map the response of differentiating human pancreatic progenitors to chronically increased in vitro glucose levels. We show that exogenous high glucose levels impact different protein subsets in a concentration-dependent manner. In contrast, regardless of concentration, glucose elicits an antipodal effect on the proteome landscape, inducing both beneficial and detrimental changes in regard to achieving the desired islet cell fingerprint. Furthermore, we identified that only a subgroup of these effects and pathways are regulated by changes in redox balance. Our study highlights a complex effect of exogenous glucose on differentiating pancreas progenitors characterized by a distinct proteome signature.
Collapse
|
22
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
23
|
Camara BOS, Ocarino NM, Bertassoli BM, Malm C, Araújo FR, Reis AMS, Jorge EC, Alves EGL, Serakides R. Differentiation of canine adipose mesenchymal stem cells into insulin-producing cells: comparison of different culture medium compositions. Domest Anim Endocrinol 2021; 74:106572. [PMID: 33039930 DOI: 10.1016/j.domaniend.2020.106572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
The aim of this study was to differentiate canine adipose-derived mesenchymal stem cells (ADMSCs) into insulin-producing cells by using culture media with different compositions to determine the most efficient media. Stem cells isolated from the fat tissues close to the bitch uterus were distributed into 6 groups: (1) Dulbecco's modified Eagle medium (DMEM)-high glucose (HG), β-mercaptoethanol, and nicotinamide; (2) DMEM-HG, β-mercaptoethanol, nicotinamide, and exendin-4; (3) DMEM-HG, β-mercaptoethanol, nicotinamide, exendin-4, B27, nonessential amino acids, and l-glutamine; (4) DMEM-HG, β-mercaptoethanol, and nicotinamide (for the initial 8-d period), and DMEM-HG, β-mercaptoethanol, nicotinamide, exendin-4, B27, nonessential amino acids, l-glutamine, and basic fibroblast growth factor (for the remaining 8-d period); (5) DMEM-HG and fetal bovine serum; and (6) DMEM-low glucose and fetal bovine serum (standard control group). Adipose-derived mesenchymal stem cells from groups 1 to 5 gradually became round in shape and gathered in clusters. These changes differed between the groups. In group 3, the cell clusters were apparently more in numbers and gathered as bigger aggregates. Dithizone staining showed that groups 3 and 4 were similar in terms of the mean area of each aggregate stained for insulin. However, only in group 4, the number of insulin aggregates and the total area of aggregates stained were significantly bigger than in the other groups. The mRNA expression of PDX1, BETA2, MafA, and Insulin were also confirmed in all the groups. We conclude that by manipulating the composition of the culture medium it is possible to induce canine ADMSCs into insulin-producing cells, and the 2-staged protocol that was used promoted the best differentiation.
Collapse
Affiliation(s)
- B O S Camara
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - N M Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - B M Bertassoli
- Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - C Malm
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F R Araújo
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A M S Reis
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E C Jorge
- Laboratório de Biologia Oral e do Desenvolvimento, Departamento de Morfologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - E G L Alves
- Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - R Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Merovci A, Tripathy D, Chen X, Valdez I, Abdul-Ghani M, Solis-Herrera C, Gastaldelli A, DeFronzo RA. Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects. Diabetes 2021; 70:204-213. [PMID: 33033064 PMCID: PMC7881846 DOI: 10.2337/db20-0039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
The aim of the current study was to evaluate the effect of sustained physiologic increase of ∼50 mg/dL in plasma glucose concentration on insulin secretion in normal glucose-tolerant (NGT) subjects. Twelve NGT subjects without family history of type 2 diabetes mellitus (T2DM; FH-) and 8 NGT with family history of T2DM (FH+) received an oral glucose tolerance test and two-step hyperglycemic clamp (100 and 300 mg/dL) followed by intravenous arginine bolus before and after 72-h glucose infusion. Fasting plasma glucose increased from 94 ± 2 to 142 ± 4 mg/dL for 72 h. First-phase insulin secretion (0-10 min) increased by 70%, while second-phase insulin secretion during the first (10-80 min) and second (90-160 min) hyperglycemic clamp steps increased by 3.8-fold and 1.9-fold, respectively, following 72 h of physiologic hyperglycemia. Insulin sensitivity during hyperglycemic clamp declined by ∼30% and ∼55% (both P < 0.05), respectively, during the first and second hyperglycemic clamp steps. Insulin secretion/insulin resistance (disposition) index declined by 60% (second clamp step) and by 62% following arginine (both P < 0.005) following 72-h glucose infusion. The effect of 72-h glucose infusion on insulin secretion and insulin sensitivity was similar in subjects with and without FH of T2DM. Following 72 h of physiologic hyperglycemia, metabolic clearance rate of insulin was markedly reduced (P < 0.01). These results demonstrate that sustained physiologic hyperglycemia for 72 h 1) increases absolute insulin secretion but impairs β-cell function, 2) causes insulin resistance, and 3) reduces metabolic clearance rate of insulin.
Collapse
Affiliation(s)
- Aurora Merovci
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
- Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, Foundation for Advancing Veterans' Health Research, San Antonio, TX
| | - Xi Chen
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Ivan Valdez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Muhammad Abdul-Ghani
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Carolina Solis-Herrera
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Amalia Gastaldelli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Ralph A DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
- Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, Foundation for Advancing Veterans' Health Research, San Antonio, TX
| |
Collapse
|
25
|
Chareyron I, Christen S, Moco S, Valsesia A, Lassueur S, Dayon L, Wollheim CB, Santo Domingo J, Wiederkehr A. Augmented mitochondrial energy metabolism is an early response to chronic glucose stress in human pancreatic beta cells. Diabetologia 2020; 63:2628-2640. [PMID: 32960311 PMCID: PMC7641954 DOI: 10.1007/s00125-020-05275-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 01/15/2023]
Abstract
AIMS/HYPOTHESIS In islets from individuals with type 2 diabetes and in islets exposed to chronic elevated glucose, mitochondrial energy metabolism is impaired. Here, we studied early metabolic changes and mitochondrial adaptations in human beta cells during chronic glucose stress. METHODS Respiration and cytosolic ATP changes were measured in human islet cell clusters after culture for 4 days in 11.1 mmol/l glucose. Metabolomics was applied to analyse intracellular metabolite changes as a result of glucose stress conditions. Alterations in beta cell function were followed using insulin secretion assays or cytosolic calcium signalling after expression of the calcium probe YC3.6 specifically in beta cells of islet clusters. RESULTS At early stages of glucose stress, mitochondrial energy metabolism was augmented in contrast to the previously described mitochondrial dysfunction in beta cells from islets of diabetic donors. Following chronic glucose stress, mitochondrial respiration increased (by 52.4%, p < 0.001) and, as a consequence, the cytosolic ATP/ADP ratio in resting human pancreatic islet cells was elevated (by 27.8%, p < 0.05). Because of mitochondrial overactivation in the resting state, nutrient-induced beta cell activation was reduced. In addition, chronic glucose stress caused metabolic adaptations that resulted in the accumulation of intermediates of the glycolytic pathway, the pentose phosphate pathway and the TCA cycle; the most strongly augmented metabolite was glycerol 3-phosphate. The changes in metabolites observed are likely to be due to the inability of mitochondria to cope with continuous nutrient oversupply. To protect beta cells from chronic glucose stress, we inhibited mitochondrial pyruvate transport. Metabolite concentrations were partially normalised and the mitochondrial respiratory response to nutrients was markedly improved. Furthermore, stimulus-secretion coupling as assessed by cytosolic calcium signalling, was restored. CONCLUSION/INTERPRETATION We propose that metabolic changes and associated mitochondrial overactivation are early adaptations to glucose stress, and may reflect what happens as a result of poor blood glucose control. Inhibition of mitochondrial pyruvate transport reduces mitochondrial nutrient overload and allows beta cells to recover from chronic glucose stress. Graphical abstract.
Collapse
Affiliation(s)
- Isabelle Chareyron
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stefan Christen
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Sofia Moco
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Armand Valsesia
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Steve Lassueur
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Jaime Santo Domingo
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland.
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
Marselli L, Piron A, Suleiman M, Colli ML, Yi X, Khamis A, Carrat GR, Rutter GA, Bugliani M, Giusti L, Ronci M, Ibberson M, Turatsinze JV, Boggi U, De Simone P, De Tata V, Lopes M, Nasteska D, De Luca C, Tesi M, Bosi E, Singh P, Campani D, Schulte AM, Solimena M, Hecht P, Rady B, Bakaj I, Pocai A, Norquay L, Thorens B, Canouil M, Froguel P, Eizirik DL, Cnop M, Marchetti P. Persistent or Transient Human β Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes. Cell Rep 2020; 33:108466. [PMID: 33264613 DOI: 10.1016/j.celrep.2020.108466] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic β cell failure is key to type 2 diabetes (T2D) onset and progression. Here, we assess whether human β cell dysfunction induced by metabolic stress is reversible, evaluate the molecular pathways underlying persistent or transient damage, and explore the relationships with T2D islet traits. Twenty-six islet preparations are exposed to several lipotoxic/glucotoxic conditions, some of which impair insulin release, depending on stressor type, concentration, and combination. The reversal of dysfunction occurs after washout for some, although not all, of the lipoglucotoxic insults. Islet transcriptomes assessed by RNA sequencing and expression quantitative trait loci (eQTL) analysis identify specific pathways underlying β cell failure and recovery. Comparison of a large number of human T2D islet transcriptomes with those of persistent or reversible β cell lipoglucotoxicity show shared gene expression signatures. The identification of mechanisms associated with human β cell dysfunction and recovery and their overlap with T2D islet traits provide insights into T2D pathogenesis, fostering the development of improved β cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy.
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Maikel L Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Amna Khamis
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille 59000, France
| | - Gaelle R Carrat
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College, London, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Laura Giusti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy; School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Centre for Advanced Studies and Technologies (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mark Ibberson
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | | | - Ugo Boggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy; Division of General and Transplant Surgery, Cisanello University Hospital, Pisa 56124, Italy
| | - Paolo De Simone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy; Division of Liver Surgery and Transplantation, Cisanello University Hospital, Pisa 56124, Italy
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Miguel Lopes
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Daniela Nasteska
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Emanuele Bosi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Pratibha Singh
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and the Critical Areas, University of Pisa, Pisa 56126, Italy
| | - Anke M Schulte
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Frankfurt, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden 01307, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg 85764, Germany
| | - Peter Hecht
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Frankfurt, Germany
| | | | | | | | | | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille 59000, France
| | - Philippe Froguel
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium; Indiana Biosciences Research Institute, Indianapolis, IN, USA; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy.
| |
Collapse
|
27
|
Castex F, Leroy J, Broca C, Mezghenna K, Duranton F, Lavallard V, Lebreton F, Gross R, Wojtusciszyn A, Lajoix AD. Differential sensitivity of human islets from obese versus lean donors to chronic high glucose or palmitate. J Diabetes 2020; 12:532-541. [PMID: 32090456 DOI: 10.1111/1753-0407.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/15/2020] [Accepted: 02/19/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Due to the shortage of multi-organ donors, human pancreatic islet transplantation has now been extended to islets originating from obese subjects. In this study, our aim is to compare the respective sensitivity of human islets from lean vs obese donors to chronic high glucose or high palmitate. METHODS Human islets were isolated from pancreases harvested from brain-dead multi-organ donors. Islets were cultured during 72 hours in the presence of moderate (16.7 mmol/L) or high (28 mmoL/L) glucose concentrations, or glucose (5.6 mmoL/L) and palmitate (0.4 mmoL/L), before measurement of their response to glucose. RESULTS We first observed a greater insulin response in islets from obese donors under both basal and high-glucose conditions, confirming their hyperresponsiveness to glucose. When islets from obese donors were cultured in the presence of moderate or high glucose concentrations, insulin response to glucose remained unchanged or was slightly reduced, as opposed to that observed in lean subjects. Moreover, culturing islets from obese donors with high palmitate also induced less reduction in insulin response to glucose than in lean subjects. This partial protection of obese islets is associated with less induction of inducible nitric oxide synthase in islets, together with a greater expression of the transcription factor forkhead box O1 (FOXO1). CONCLUSIONS Our data suggest that in addition to an increased sensitivity to glucose, islets from obese subjects can be considered as more resistant to glucose and fatty acid excursions and are thus valuable candidates for transplantation.
Collapse
Affiliation(s)
- Françoise Castex
- Biocommunication in Cardio-Metabolism (BC2M), University Montpellier, Montpellier, France
| | - Jeremy Leroy
- Biocommunication in Cardio-Metabolism (BC2M), University Montpellier, Montpellier, France
| | - Christophe Broca
- Laboratory of Cell Therapy for Diabetes, Institute for Regenerative Medicine & Biotherapy (IRMB), University Montpellier, INSERM, University Hospital Montpellier, Montpellier, France
| | - Karima Mezghenna
- Biocommunication in Cardio-Metabolism (BC2M), University Montpellier, Montpellier, France
| | - Flore Duranton
- Biocommunication in Cardio-Metabolism (BC2M), University Montpellier, Montpellier, France
- RD Néphrologie, Montpellier, France
| | - Vanessa Lavallard
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Genève, Switzerland
| | | | - René Gross
- Biocommunication in Cardio-Metabolism (BC2M), University Montpellier, Montpellier, France
| | - Anne Wojtusciszyn
- Laboratory of Cell Therapy for Diabetes, Institute for Regenerative Medicine & Biotherapy (IRMB), University Montpellier, INSERM, University Hospital Montpellier, Montpellier, France
| | - Anne-Dominique Lajoix
- Biocommunication in Cardio-Metabolism (BC2M), University Montpellier, Montpellier, France
| |
Collapse
|
28
|
A Versatile Model of Microfluidic Perifusion System for the Evaluation of C-Peptide Secretion Profiles: Comparison Between Human Pancreatic Islets and HLSC-Derived Islet-Like Structures. Biomedicines 2020; 8:biomedicines8020026. [PMID: 32046184 PMCID: PMC7168272 DOI: 10.3390/biomedicines8020026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
A robust and easy-to-use tool for the ex vivo dynamic evaluation of pancreatic islet (PI) function is essential for further development of novel cell-based therapeutic approaches to treating diabetes. Here, we developed four different glucose perifusion protocols (GPPs) in a microfluidic perifusion system (MPS), based entirely on commercially available components. After validation, the GPPs were used to evaluate C-peptide secretion profiles of PIs derived from different donors (healthy, obese, and type 2 diabetic) and from human liver stem-cell-derived islet-like structures (HLSC-ILS). Using this device, we demonstrated that PIs derived from healthy donors displayed a physiological C-peptide secretion profile as characterized by the response to (a) different glucose concentrations, (b) consecutive pulses of high-glucose concentrations, (c) a glucose threshold ranging from 5–8 mM, and (d) a constant high-glucose perifusion in a biphasic manner. Moreover, we were able to detect a dysregulated secretion profile in PIs derived from both obese and type 2 diabetes mellitus (T2DM) donors. Finally, we also evaluated the kinetic secretion profiles of HLSC-ILS, demonstrating that, nonetheless, with a lower amplitude of secretion compared to PI derived from healthy donors, they were already glucose-responsive on day seven post-differentiation. In conclusion, we have provided evidence that our MPS is a versatile device and may represent a valuable tool to study insulin-producing cells in vitro.
Collapse
|
29
|
Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, Djukic A, Draginic N, Andjic M, Arsenijevic N, Lukic ML, Jovicic N. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne) 2020; 11:30. [PMID: 32117058 PMCID: PMC7018709 DOI: 10.3389/fendo.2020.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Aims/Hypothesis: Galectin 3 appears to play a proinflammatory role in several inflammatory and autoimmune diseases. Also, there is evidence that galectin 3 plays a role in both type-1 and type-2 diabetes. During obesity, hematopoietic cell-derived galectin 3 induces insulin resistance. While the role of galectin 3 expressed in islet-invading immune cells in both type-1 and type-2 diabetes has been studied, the importance of the expression of this molecule on the target pancreatic β cells has not been defined. Methods: To clarify the role of galectin 3 expression in β cells during obesity-induced diabetogenesis, we developed transgenic mice selectively overexpressing galectin 3 in β cells and tested their susceptibility to obesity-induced type-2 diabetes. Obesity was induced with a 16-week high-fat diet regime. Pancreatic β cells were tested for susceptibility to apoptosis induced by non-esterified fatty acids and cytokines as well as parameters of oxidative stress. Results: Our results demonstrated that overexpression of galectin 3 increases β-cell apoptosis in HFD conditions and increases the percentage of proinflammatory F4/80+ macrophages in islets that express galectin 3 and TLR4. In isolated islets, we have shown that galectin 3 overexpression increases cytokine and palmitate-triggered β-cell apoptosis and also increases NO2--induced oxidative stress of β cells. Also, in pancreatic lymph nodes, macrophages were shifted toward a proinflammatory TNF-α-producing phenotype. Conclusions/Interpretation: By complementary in vivo and in vitro approaches, we have shown that galectin 3-overexpression facilitates β-cell damage, enhances cytokine and palmitate-triggered β-cell apoptosis, and increases NO2--induced oxidative stress in β cells. Further, the results suggest that increased expression of galectin 3 in the pancreatic β cells affects the metabolism of glucose and glycoregulation in mice on a high-fat diet, affecting both fasting glycemic values and glycemia after glucose loading.
Collapse
Affiliation(s)
- Ivica Petrovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nada Pejnovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sladjana Pavlovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ilija Jeftic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Djukic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- *Correspondence: Miodrag L. Lukic
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Nemanja Jovicic
| |
Collapse
|
30
|
Whitticar NB, Nunemaker CS. Reducing Glucokinase Activity to Enhance Insulin Secretion: A Counterintuitive Theory to Preserve Cellular Function and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:378. [PMID: 32582035 PMCID: PMC7296051 DOI: 10.3389/fendo.2020.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic beta-cells are the only cells in the body that can synthesize and secrete insulin. Through the process of glucose-stimulated insulin secretion, beta-cells release insulin into circulation, stimulating GLUT4-dependent glucose uptake into peripheral tissue. Insulin is normally secreted in pulses that promote signaling at the liver. Long before type 2 diabetes is diagnosed, beta-cells become oversensitive to glucose, causing impaired pulsatility and overstimulation in fasting levels of glucose. The resulting hypersecretion of insulin can cause poor insulin signaling and clearance at the liver, leading to hyperinsulinemia and insulin resistance. Continued overactivity can eventually lead to beta-cell exhaustion and failure at which point type 2 diabetes begins. To prevent or reverse the negative effects of overstimulation, beta-cell activity can be reduced. Clinical studies have revealed the potential of beta-cell rest to reverse new cases of diabetes, but treatments lack durable benefits. In this perspective, we propose an intervention that reduces overactive glucokinase activity in the beta-cell. Glucokinase is known as the glucose sensor of the beta-cell due to its high control over insulin secretion. Therefore, glycolytic overactivity may be responsible for hyperinsulinemia early in the disease and can be reduced to restore normal stimulus-secretion coupling. We have previously reported that reducing glucokinase activity in prediabetic mouse islets can restore pulsatility and enhance insulin secretion. Building on this counterintuitive finding, we review the importance of pulsatile insulin secretion and highlight how normalizing glucose sensing in the beta cell during prediabetic hyperinsulinemia may restore pulsatility and improve glucose homeostasis.
Collapse
Affiliation(s)
- Nicholas B. Whitticar
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH, United States
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Craig S. Nunemaker
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- *Correspondence: Craig S. Nunemaker
| |
Collapse
|
31
|
Bensellam M, Shi YC, Chan JY, Laybutt DR, Chae H, Abou-Samra M, Pappas EG, Thomas HE, Gilon P, Jonas JC. Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans. Diabetologia 2019; 62:2273-2286. [PMID: 31624901 DOI: 10.1007/s00125-019-05008-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/13/2019] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The mechanisms responsible for beta cell compensation in obesity and for beta cell failure in type 2 diabetes are poorly defined. The mRNA levels of several metallothionein (MT) genes are upregulated in islets from individuals with type 2 diabetes, but their role in beta cells is not clear. Here we examined: (1) the temporal changes of islet Mt1 and Mt2 gene expression in mouse models of beta cell compensation and failure; and (2) the role of Mt1 and Mt2 in beta cell function and glucose homeostasis in mice. METHODS Mt1 and Mt2 expression was assessed in islets from: (1) control lean (chow diet-fed) and diet-induced obese (high-fat diet-fed for 6 weeks) mice; (2) mouse models of diabetes (db/db mice) at 6 weeks old (prediabetes) and 16 weeks old (after diabetes onset) and age-matched db/+ (control) mice; and (3) obese non-diabetic ob/ob mice (16-week-old) and age-matched ob/+ (control) mice. MT1E, MT1X and MT2A expression was assessed in islets from humans with and without type 2 diabetes. Mt1-Mt2 double-knockout (KO) mice, transgenic mice overexpressing Mt1 under the control of its natural promoter (Tg-Mt1) and corresponding control mice were also studied. In MIN6 cells, MT1 and MT2 were inhibited by small interfering RNAs. mRNA levels were assessed by real-time RT-PCR, plasma insulin and islet MT levels by ELISA, glucose tolerance by i.p. glucose tolerance tests and overnight fasting-1 h refeeding tests, insulin tolerance by i.p. insulin tolerance tests, insulin secretion by RIA, cytosolic free Ca2+ concentration with Fura-2 leakage resistant (Fura-2 LR), cytosolic free Zn2+ concentration with Fluozin-3, and NAD(P)H by autofluorescence. RESULTS Mt1 and Mt2 mRNA levels were reduced in islets of murine models of beta cell compensation, whereas they were increased in diabetic db/db mice. In humans, MT1X mRNA levels were significantly upregulated in islets from individuals with type 2 diabetes in comparison with non-diabetic donors, while MT1E and MT2A mRNA levels were unchanged. Ex vivo, islet Mt1 and Mt2 mRNA and MT1 and MT2 protein levels were downregulated after culture with glucose at 10-30 mmol/l vs 2-5 mmol/l, in association with increased insulin secretion. In human islets, mRNA levels of MT1E, MT1X and MT2A were downregulated by stimulation with physiological and supraphysiological levels of glucose. In comparison with wild-type (WT) mice, Mt1-Mt2 double-KO mice displayed improved glucose tolerance in association with increased insulin levels and enhanced insulin release from isolated islets. In contrast, isolated islets from Tg-Mt1 mice displayed impaired glucose-stimulated insulin secretion (GSIS). In both Mt1-Mt2 double-KO and Tg-Mt1 models, the changes in GSIS occurred despite similar islet insulin content, rises in cytosolic free Ca2+ concentration and NAD(P)H levels, or intracellular Zn2+ concentration vs WT mice. In MIN6 cells, knockdown of MT1 but not MT2 potentiated GSIS, suggesting that Mt1 rather than Mt2 affects beta cell function. CONCLUSIONS/INTERPRETATION These findings implicate Mt1 as a negative regulator of insulin secretion. The downregulation of Mt1 is associated with beta cell compensation in obesity, whereas increased Mt1 accompanies beta cell failure and type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium.
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Heeyoung Chae
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Michel Abou-Samra
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Evan G Pappas
- St Vincent's Institute, Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St Vincent's Institute, Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Patrick Gilon
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Jean-Christophe Jonas
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium.
| |
Collapse
|
32
|
Hwang WB, Kim JH, Cho SM. Two cases of ketosis-prone diabetes mellitus in Korean adolescents. Ann Pediatr Endocrinol Metab 2019; 24:257-261. [PMID: 31905447 PMCID: PMC6944861 DOI: 10.6065/apem.2019.24.4.257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/22/2019] [Indexed: 11/23/2022] Open
Abstract
In recent years, reports of diabetes mellitus (DM) cases that do not fit the traditional classification system have increased in prevalence. While insulin deficiency appears as type 1 DM (T1DM), the new type also has the clinical features of type 2 DM (T2DM); as such, this new type of DM is called ketosis-prone diabetes (KPD) and is correlated with findings of severe hyperglycemia and ketoacidosis. To provide a clear, clinical classification of DM, new classification systems are being studied. Among these, the Aβ system demonstrates the highest sensitivity and specificity in predicting clinical features and prognosis. We report 2 cases of KPD in Korean pediatric patients. The first patient was referred while in a state of diabetic ketoacidosis (DKA) and was considered to have T1DM. However, their blood glucose was well-controlled even with small doses of insulin, and the treatment was able to be changed to metformin therapy. The second patient seemed to be a typical case of T2DM because of his obesity and strong family history. However, blood glucose was not well-controlled with a regular diet, and ketosis occurred. After performing a glucagon stimulation test, both patients showed different clinical features that were finally diagnosed as type A-β+ KPD. The rapid and accurate diagnosis of KPD can reduce the duration of inappropriate insulin use and improve patients' quality of life. Further, the treatment of KPD children should be individualized according to each patient's lifestyle to preventing recurrent DKA.
Collapse
Affiliation(s)
- Won Bin Hwang
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Ji Hyun Kim
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea,Address for correspondence: Ji Hyun Kim, MD, PhD Department of Pediatrics, Dongguk University Ilsan Hospital, 27 Dongguk-ro, Ilsandong-gu, Goyang 10326, Korea Tel: +82-31-961-7190 Fax: +82-31-961-7188 E-mail:
| | - Sung Min Cho
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
33
|
Santo-Domingo J, Dayon L, Wiederkehr A. Protein Lysine Acetylation: Grease or Sand in the Gears of β-Cell Mitochondria? J Mol Biol 2019; 432:1446-1460. [PMID: 31628953 DOI: 10.1016/j.jmb.2019.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Mitochondria carry out many essential functions in metabolism. A central task is the oxidation of nutrients and the generation of ATP by oxidative phosphorylation. Mitochondrial metabolism needs to be tightly regulated for the cell to respond to changes in ATP demand and nutrient supply. Here, we review how protein lysine acetylation contributes to the regulation of mitochondrial metabolism in insulin target tissues and the insulin-secreting pancreatic β-cell. We summarize recent evidence showing that in pancreatic β-cells, lysine acetylation occurs on a large number of proteins involved in metabolism. Furthermore, we give a brief overview of the molecular mechanism that controls lysine acetylation dynamics. We propose that protein lysine acetylation is an important mechanism for the fine-tuning of mitochondrial activity in β-cells during normal physiology. In contrast, nutrient oversupply, oxidative stress, or inhibition of the mitochondrial deacetylase SIRT3 leads to protein lysine hyperacetylation, which impairs mitochondrial function. By perturbing mitochondrial activity in β-cells and insulin target tissues, protein lysine hyperacetylation may contribute to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Jaime Santo-Domingo
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland.
| |
Collapse
|
34
|
Dingreville F, Panthu B, Thivolet C, Ducreux S, Gouriou Y, Pesenti S, Chauvin MA, Chikh K, Errazuriz-Cerda E, Van Coppenolle F, Rieusset J, Madec AM. Differential Effect of Glucose on ER-Mitochondria Ca 2+ Exchange Participates in Insulin Secretion and Glucotoxicity-Mediated Dysfunction of β-Cells. Diabetes 2019; 68:1778-1794. [PMID: 31175102 DOI: 10.2337/db18-1112] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022]
Abstract
Glucotoxicity-induced β-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. The role of MAMs in β-cells is still largely unknown, and their implication in glucotoxicity-associated β-cell dysfunction remains to be defined. Here, we report that acute glucose treatment stimulated ER-mitochondria interactions and calcium (Ca2+) exchange in INS-1E cells, whereas disruption of MAMs altered glucose-stimulated insulin secretion (GSIS). Conversely, chronic incubations with high glucose of either INS-1E cells or human pancreatic islets altered GSIS and concomitantly reduced ER Ca2+ store, increased basal mitochondrial Ca2+, and reduced ATP-stimulated ER-mitochondria Ca2+ exchanges, despite an increase of organelle interactions. Furthermore, glucotoxicity-induced perturbations of Ca2+ signaling are associated with ER stress, altered mitochondrial respiration, and mitochondria fragmentation, and these organelle stresses may participate in increased organelle tethering as a protective mechanism. Last, sustained induction of ER-mitochondria interactions using a linker reduced organelle Ca2+ exchange, induced mitochondrial fission, and altered GSIS. Therefore, dynamic organelle coupling participates in GSIS in β-cells, and over time, disruption of organelle Ca2+ exchange might be a novel mechanism contributing to glucotoxicity-induced β-cell dysfunction.
Collapse
Affiliation(s)
- Florian Dingreville
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| | - Charles Thivolet
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, Pierre-Bénite, France
| | - Sylvie Ducreux
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| | - Yves Gouriou
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| | - Sandra Pesenti
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| | - Marie-Agnès Chauvin
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| | - Karim Chikh
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, Pierre-Bénite, France
| | | | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| | - Anne-Marie Madec
- CarMeN Laboratory, INSERM, INRA, INSA, Université Claude Bernard Lyon 1, Oullins, France
| |
Collapse
|
35
|
Hart NJ, Powers AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia 2019; 62:212-222. [PMID: 30547228 PMCID: PMC6325002 DOI: 10.1007/s00125-018-4772-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
Over the last two decades, improved access to human islets and the development of human islet distribution networks have enabled the use of millions of human islets in hundreds of scientific research projects, leading to a dramatic increase in our understanding of human islet biology. Here we discuss recent scientific advances as well as methodological and experimental challenges that impact human islet quality, experimental outcomes and the reporting of human islets used in scientific publications. In a survey of over 200 scientific publications with human islet experimentation, we found that the reporting of critical information was quite variable, sometimes obscure, and often failed to adequately outline the experiments and results using human islets. As the complexity of human islet research grows, we propose that members of the human islet research ecosystem work together to develop procedures and approaches for accessible and transparent collecting and reporting of crucial human islet characteristics and, through this, enhance collaboration, reproducibility and rigour, leading to further advances in our understanding of human islet biology.
Collapse
Affiliation(s)
- Nathaniel J Hart
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, 7465 Medical Research Bldg IV, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN, 37232-0475, USA
- Institute for Cellular Transplantation, College of Medicine, Department of Surgery, Arizona Health Sciences Center, Tucson, AZ, USA
| | - Alvin C Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, 7465 Medical Research Bldg IV, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN, 37232-0475, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- VA Tennessee Valley Healthcare, Nashville, TN, USA.
| |
Collapse
|
36
|
Tang C, Yeung LSN, Koulajian K, Zhang L, Tai K, Volchuk A, Giacca A. Glucose-Induced β-Cell Dysfunction In Vivo: Evidence for a Causal Role of C-jun N-terminal Kinase Pathway. Endocrinology 2018; 159:3643-3654. [PMID: 30215691 PMCID: PMC6195676 DOI: 10.1210/en.2018-00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022]
Abstract
Prolonged elevation of glucose can adversely affect β-cell function. Oxidative stress, which has been implicated in glucose-induced β-cell dysfunction, can activate c-jun N-terminal kinase (JNK). However, whether JNK is causal in glucose-induced β-cell dysfunction in vivo is unclear. Therefore, we aimed at investigating the causal role of JNK activation in in vivo models of glucose-induced β-cell dysfunction. Glucose-induced β-cell dysfunction was investigated in the presence or absence of JNK inhibition. JNK inhibition was achieved using either (i) the JNK-specific inhibitor SP600125 or (ii) JNK-1-null mice. (i) Rats or mice were infused intravenously with saline or glucose with or without SP600125. (ii) JNK-1 null mice and their littermate wild-type controls were infused intravenously with saline or glucose. Following the glucose infusion periods in rats and mice, β-cell function was assessed in isolated islets or in vivo using hyperglycemic clamps. Forty-eight-hour hyperglycemia at ~20 mM in rats or 96-hour hyperglycemia at ~13 mM in mice impaired β-cell function in isolated islets and in vivo. Inhibition of JNK using either SP600125 or JNK-1-null mice prevented glucose-induced β-cell dysfunction in isolated islets and in vivo. Islets of JNK-1-null mice exposed to hyperglycemia in vivo showed an increase in Pdx-1 and insulin 2 mRNA, whereas islets of wild-type mice did not. Together, these data show that JNK pathway is involved in glucose-induced β-cell dysfunction in vivo and is thus a potential therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Christine Tang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lucy Shu Nga Yeung
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Khajag Koulajian
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liling Zhang
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kevin Tai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Keenan Research Centre for Biomedical Science, St. Michael Hospital, Toronto, Ontario, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Adria Giacca, MD, Medical Sciences Building, 3336-1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada. E-mail:
| |
Collapse
|
37
|
Guess ND. Dietary Interventions for the Prevention of Type 2 Diabetes in High-Risk Groups: Current State of Evidence and Future Research Needs. Nutrients 2018; 10:E1245. [PMID: 30200572 PMCID: PMC6163866 DOI: 10.3390/nu10091245] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
A series of large-scale randomised controlled trials have demonstrated the effectiveness of lifestyle change in preventing type 2 diabetes in people with impaired glucose tolerance. Participants in these trials consumed a low-fat diet, lost a moderate amount of weight and/or increased their physical activity. Weight loss appears to be the primary driver of type 2 diabetes risk reduction, with individual dietary components playing a minor role. The effect of weight loss via other dietary approaches, such as low-carbohydrate diets, a Mediterranean dietary pattern, intermittent fasting or very-low-energy diets, on the incidence of type 2 diabetes has not been tested. These diets-as described here-could be equally, if not more effective in preventing type 2 diabetes than the tested low-fat diet, and if so, would increase choice for patients. There is also a need to understand the effect of foods and diets on beta-cell function, as the available evidence suggests moderate weight loss, as achieved in the diabetes prevention trials, improves insulin sensitivity but not beta-cell function. Finally, prediabetes is an umbrella term for different prediabetic states, each with distinct underlying pathophysiology. The limited data available question whether moderate weight loss is effective at preventing type 2 diabetes in each of the prediabetes subtypes.
Collapse
Affiliation(s)
- Nicola D Guess
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, Room 4.13, London SE1 9NH, UK.
| |
Collapse
|
38
|
Hall E, Dekker Nitert M, Volkov P, Malmgren S, Mulder H, Bacos K, Ling C. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol Cell Endocrinol 2018; 472:57-67. [PMID: 29183809 DOI: 10.1016/j.mce.2017.11.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/20/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) is a complex disease characterised by chronic hyperglycaemia. The effects of elevated glucose on global gene expression in combination with DNA methylation patterns have not yet been studied in human pancreatic islets. Our aim was to study the impact of 48 h exposure to high (19 mM) versus control (5.6 mM) glucose levels on glucose-stimulated insulin secretion, gene expression and DNA methylation in human pancreatic islets. RESULTS While islets kept at 5.6 mM glucose secreted significantly more insulin in response to short term glucose-stimulation (p = 0.0067), islets exposed to high glucose for 48 h were desensitised and unresponsive to short term glucose-stimulation with respect to insulin secretion (p = 0.32). Moreover, the exposure of human islets to 19 mM glucose resulted in significantly altered expression of eight genes (FDR<5%), with five of these (GLRA1, RASD1, VAC14, SLCO5A1, CHRNA5) also exhibiting changes in DNA methylation (p < 0.05). A gene set enrichment analysis of the expression data showed significant enrichment of e.g. TGF-beta signalling pathway, Notch signalling pathway and SNARE interactions in vesicular transport; these pathways are of relevance for islet function and possibly also diabetes. We also found increased DNA methylation of CpG sites annotated to PDX1 in human islets exposed to 19 mM glucose for 48 h. Finally, we could functionally validate a role for Glra1 in insulin secretion. CONCLUSION Our data demonstrate that high glucose levels affect human pancreatic islet gene expression and several of these genes also exhibit epigenetic changes. This might contribute to the impaired insulin secretion seen in T2D.
Collapse
Affiliation(s)
- Elin Hall
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Marloes Dekker Nitert
- School of Medicine, Royal Brisbane Clinical School, The University of Queensland, Herston Qld 4029, Australia
| | - Petr Volkov
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Siri Malmgren
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden; Molecular Metabolism, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Hindrik Mulder
- Molecular Metabolism, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden.
| |
Collapse
|
39
|
Short-term high glucose culture potentiates pancreatic beta cell function. Sci Rep 2018; 8:13061. [PMID: 30166558 PMCID: PMC6117280 DOI: 10.1038/s41598-018-31325-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022] Open
Abstract
The exposure of pancreatic islets to high glucose is believed to be one of the causal factors of the progressive lowering of insulin secretion in the development of type 2 diabetes. The progression of beta cell failure to type 2 diabetes is preceded by an early positive increase in the insulin secretory response to glucose, which is only later followed by a loss in the secretion capacity of pancreatic islets. Here we have investigated the electrophysiological mechanisms underlying the early glucose-mediated gain of function. Rodent pancreatic islets or dispersed islet cells were cultured in medium containing either 5.6 (control) or 16.7 (high-glucose) mM glucose for 24 h after isolation. Glucose-stimulated insulin secretion was enhanced in a concentration-dependent manner in high glucose-cultured islets. This was associated with a positive effect on beta cell exocytotic capacity, a lower basal KATP conductance and a higher glucose sensitivity to fire action potentials. Despite no changes in voltage-gated Ca2+ currents were observed in voltage-clamp experiments, the [Ca2+]I responses to glucose were drastically increased in high glucose-cultured cells. Of note, voltage-dependent K+ currents were decreased and their activation was shifted to more depolarized potentials by high-glucose culture. This decrease in voltage-dependent K+ channel (Kv) current may be responsible for the elevated [Ca2+]I response to metabolism-dependent and independent stimuli, associated with more depolarized membrane potentials with lower amplitude oscillations in high glucose-cultured beta cells. Overall these results show that beta cells improve their response to acute challenges after short-term culture with high glucose by a mechanism that involves modulation not only of metabolism but also of ion fluxes and exocytosis, in which Kv activity appears as an important regulator.
Collapse
|
40
|
Guruswamy Damodaran R, Poussard A, Côté B, Andersen PL, Vermette P. Insulin secretion kinetics from single islets reveals distinct subpopulations. Biotechnol Prog 2018; 34:1059-1068. [PMID: 29603910 DOI: 10.1002/btpr.2632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Type II diabetes progresses with inadequate insulin secretion and prolonged elevated circulating glucose levels. Also, pancreatic islets isolated for transplantation or tissue engineering can be exposed to glucose over extended timeframe. We hypothesized that isolated pancreatic islets can secrete insulin over a prolonged period of time when incubated in glucose solution and that not all islets release insulin in unison. Insulin secretion kinetics was examined and modeled from single mouse islets in response to chronic glucose exposure (2.8-20 mM). Results with single islets were compared to those from pools of islets. Kinetic analysis of 58 single islets over 72 h in response to elevated glucose revealed distinct insulin secretion profiles: slow-, fast-, and constant-rate secretors, with slow-secretors being most prominent (ca., 50%). Variations in the temporal response to glucose therefore exist. During short-term (<4 h) exposure to elevated glucose few islets are responding with sustained insulin release. The model allowed studying the influence of islet size, revealing no clear effect. At high-glucose concentrations, when secretion is normalized to islet volume, the tendency is that smaller islets secrete more insulin. At high-glucose concentrations, insulin secretion from single islets is representative of islet populations, while under low-glucose conditions pooled islets did not behave as single ones. The characterization of insulin secretion over prolonged periods complements studies on insulin secretion performed over short timeframe. Further investigation of these differences in secretion profiles may resolve open-ended questions on pre-diabetic conditions and transplanted islets performance. This study deliberates the importance of size of islets in insulin secretion. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1059-1068, 2018.
Collapse
Affiliation(s)
- Rajesh Guruswamy Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
- Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, QC, J1H 4C4, Canada
| | - Alexandre Poussard
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
- Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, QC, J1H 4C4, Canada
| | - Benoît Côté
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Parker L Andersen
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
- Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, QC, J1H 4C4, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
- Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, QC, J1H 4C4, Canada
| |
Collapse
|
41
|
Shin H, Han JH, Yoon J, Sim HJ, Park TJ, Yang S, Lee EK, Kulkarni RN, Egan JM, Kim W. Blockade of cannabinoid 1 receptor improves glucose responsiveness in pancreatic beta cells. J Cell Mol Med 2018; 22:2337-2345. [PMID: 29431265 PMCID: PMC5867156 DOI: 10.1111/jcmm.13523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/01/2017] [Indexed: 01/19/2023] Open
Abstract
Cannabinoid 1 receptors (CB1Rs) are expressed in peripheral tissues, including islets of Langerhans, where their function(s) is under scrutiny. Using mouse β-cell lines, human islets and CB1R-null (CB1R-/- ) mice, we have now investigated the role of CB1Rs in modulating β-cell function and glucose responsiveness. Synthetic CB1R agonists diminished GLP-1-mediated cAMP accumulation and insulin secretion as well as glucose-stimulated insulin secretion in mouse β-cell lines and human islets. In addition, silencing CB1R in mouse β cells resulted in an increased expression of pro-insulin, glucokinase (GCK) and glucose transporter 2 (GLUT2), but this increase was lost in β cells lacking insulin receptor. Furthermore, CB1R-/- mice had increased pro-insulin, GCK and GLUT2 expression in β cells. Our results suggest that CB1R signalling in pancreatic islets may be harnessed to improve β-cell glucose responsiveness and preserve their function. Thus, our findings further support that blocking peripheral CB1Rs would be beneficial to β-cell function in type 2 diabetes.
Collapse
Affiliation(s)
- Hanho Shin
- Department of Molecular Science and TechnologyAjou UniversitySuwonSouth Korea
| | - Ji Hye Han
- Department of Molecular Science and TechnologyAjou UniversitySuwonSouth Korea
| | - Juhwan Yoon
- Department of Molecular Science and TechnologyAjou UniversitySuwonSouth Korea
| | - Hyo Jung Sim
- School of Life ScienceUlsan National Institute of Science and Technology (UNIST)UlsanSouth Korea
- Center for Genomic IntegrityInstitute for Basic ScienceUlsanSouth Korea
| | - Tae Joo Park
- School of Life ScienceUlsan National Institute of Science and Technology (UNIST)UlsanSouth Korea
- Center for Genomic IntegrityInstitute for Basic ScienceUlsanSouth Korea
| | - Siyoung Yang
- Department of PharmacologyAjou University School of MedicineSuwonSouth Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwonSouth Korea
| | - Eun Kyung Lee
- Department of BiochemistryCollege of MedicineThe Catholic University of KoreaSeoulSouth Korea
| | - Rohit N. Kulkarni
- Department of Islet Cell and Regenerative BiologyJoslin Diabetes Center and Department of MedicineHarvard Medical SchoolHarvard Stem Cell InstituteBostonMAUSA
| | - Josephine M. Egan
- Laboratory of Clinical InvestigationNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Wook Kim
- Department of Molecular Science and TechnologyAjou UniversitySuwonSouth Korea
| |
Collapse
|
42
|
Identification of miR-9 as a negative factor of insulin secretion from beta cells. J Physiol Biochem 2018; 74:291-299. [PMID: 29470815 DOI: 10.1007/s13105-018-0615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
MicroRNA is a novel class of small noncoding RNA that has been implicated in a variety of physiological and pathological processes, including glucose homeostasis and diabetes mellitus. So far, a few studies have reported that miRNAs may be an important regulator in glucose-stimulated insulin secretion (GSIS) pathway. However, the role of miRNAs in this process remains unclear. The levels of miRNAs in mouse islets and MIN6 cells were determined by quantitative RT-PCR. Concentration of insulin was determined by ELISA, and the expression of the target protein was determined with western blot assay. The overexpression and downregulation of miRNAs in MIN6 were conducted using cell transfection methods. And luciferase assay was used to measure the direct interaction between miRNAs and target messenger RNAs 3'UTR. miR-9 was screened out for it was downregulated under the effects of short-term high glucose, while long-term high glucose relatively increased miR-9 expression. The Stxbp1 expression was decreased with the overexpression of miR-9 in MIN6 cells and increased when miR-9 was downregulated. Moreover, it was verified by luciferase assay that miR-9 regulated Stxbp1 gene expression by directly targeting Stxbp1 messenger RNA 3'UTR. This study suggests that the pathway consisting of miR-9 and Stxbp1 plays a key role in β-cell function, thus contributing to the network of miRNA-insulin secretion and offering a new candidate for diabetes therapy.
Collapse
|
43
|
Tsonkova VG, Sand FW, Wolf XA, Grunnet LG, Kirstine Ringgaard A, Ingvorsen C, Winkel L, Kalisz M, Dalgaard K, Bruun C, Fels JJ, Helgstrand C, Hastrup S, Öberg FK, Vernet E, Sandrini MPB, Shaw AC, Jessen C, Grønborg M, Hald J, Willenbrock H, Madsen D, Wernersson R, Hansson L, Jensen JN, Plesner A, Alanentalo T, Petersen MBK, Grapin-Botton A, Honoré C, Ahnfelt-Rønne J, Hecksher-Sørensen J, Ravassard P, Madsen OD, Rescan C, Frogne T. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol Metab 2018; 8:144-157. [PMID: 29307512 PMCID: PMC5985049 DOI: 10.1016/j.molmet.2017.12.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. METHODS EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. RESULTS Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins. Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate. By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation. ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. CONCLUSIONS Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates.
Collapse
Affiliation(s)
- Violeta Georgieva Tsonkova
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark; University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Fredrik Wolfhagen Sand
- Novo Nordisk A/S, Diabetes Research, GLP-1 & T2D Pharmacology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Xenia Asbæk Wolf
- Novo Nordisk A/S, Diabetes Research, GLP-1 & T2D Pharmacology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Lars Groth Grunnet
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Anna Kirstine Ringgaard
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark; University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Camilla Ingvorsen
- Novo Nordisk A/S, Diabetes Research, Histology & Imaging, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Louise Winkel
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Mark Kalisz
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Kevin Dalgaard
- Novo Nordisk A/S, Diabetes Research, GLP-1 & T2D Pharmacology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Christine Bruun
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Johannes Josef Fels
- Novo Nordisk A/S, Discovery Biology & Technology, Research Bioanalysis, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Charlotte Helgstrand
- Novo Nordisk A/S, Protein Engineering, Expression Technologies 1, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Sven Hastrup
- Novo Nordisk A/S, Protein Engineering, Expression Technologies 1, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Fredrik Kryh Öberg
- Novo Nordisk A/S, Protein Engineering, Expression Technologies 1, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Erik Vernet
- Novo Nordisk Research Center Seattle Inc., Protein Engineering, NNRC Seattle, Inc., 530 Fairview Avenue North, 98109, Seattle, WA, USA
| | | | - Allan Christian Shaw
- Novo Nordisk A/S, Protein Engineering, Characterisation & Modelling Technology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Carsten Jessen
- Novo Nordisk A/S, Protein Engineering, Protein & Peptide Chemistry 2, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Mads Grønborg
- Novo Nordisk A/S, Discovery Biology & Technology, Discovery ADME, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Jacob Hald
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Hanni Willenbrock
- Novo Nordisk A/S, Discovery Biology & Technology, Bioinformatics, Maaloev, Denmark
| | - Dennis Madsen
- Novo Nordisk A/S, Discovery Biology & Technology, Bioinformatics, Maaloev, Denmark
| | | | - Lena Hansson
- Intomics A/S, Lottenborgvej 26, DK-2800, Lyngby, Denmark; Novo Nordisk Pharma Ltd., Research Centre Oxford, Bioinformatics, Novo Nordisk Ltd., 3 City Place Beehive Ring Road, Gatwick, RH6 0PA, West Sussex, United Kingdom
| | - Jan Nygaard Jensen
- Novo Nordisk Pharma Ltd., Research Centre Oxford, Bioinformatics, Novo Nordisk Ltd., 3 City Place Beehive Ring Road, Gatwick, RH6 0PA, West Sussex, United Kingdom
| | - Annette Plesner
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Tomas Alanentalo
- Novo Nordisk A/S, Diabetes Research, Histology & Imaging, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Maja Borup Kjær Petersen
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark; University of Copenhagen, DanStem, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Anne Grapin-Botton
- University of Copenhagen, DanStem, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Christian Honoré
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Jonas Ahnfelt-Rønne
- Novo Nordisk A/S, Diabetes Research, Histology & Imaging, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Jacob Hecksher-Sørensen
- Novo Nordisk A/S, Diabetes Research, Histology & Imaging, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Philippe Ravassard
- Institut du cerveau et de la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Sorbonne Universités, Inserm, CNRS, UPMC Univ, Paris 06, Paris, France
| | - Ole D Madsen
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Claude Rescan
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark
| | - Thomas Frogne
- Novo Nordisk A/S, Diabetes Research, Department of Islet & Stem Cell Biology, Novo Nordisk Park, 2760, Maaloev, Denmark.
| |
Collapse
|
44
|
Zhou M, Pan Y, Jing J, Wang Y, Zhao X, Liu L, Li H, Wang Y. Association between β‐cell function estimated by
HOMA
‐β and prognosis of non‐diabetic patients with ischaemic stroke. Eur J Neurol 2018; 25:549-555. [DOI: 10.1111/ene.13546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Affiliation(s)
- M. Zhou
- Department of Neurology Beijing Tiantan Hospital Capital Medical University BeijingChina
- China National Clinical Research Centre for Neurological Diseases BeijingChina
- Centre of Stroke Beijing Institute for Brain Disorders BeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease BeijingChina
| | - Y. Pan
- Department of Neurology Beijing Tiantan Hospital Capital Medical University BeijingChina
- Department of Epidemiology and Health Statistics School of Public Health Capital Medical University BeijingChina
- Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - J. Jing
- Department of Neurology Beijing Tiantan Hospital Capital Medical University BeijingChina
- China National Clinical Research Centre for Neurological Diseases BeijingChina
- Centre of Stroke Beijing Institute for Brain Disorders BeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease BeijingChina
| | - Y. Wang
- Department of Neurology Beijing Tiantan Hospital Capital Medical University BeijingChina
- China National Clinical Research Centre for Neurological Diseases BeijingChina
- Centre of Stroke Beijing Institute for Brain Disorders BeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease BeijingChina
| | - X. Zhao
- Department of Neurology Beijing Tiantan Hospital Capital Medical University BeijingChina
- China National Clinical Research Centre for Neurological Diseases BeijingChina
- Centre of Stroke Beijing Institute for Brain Disorders BeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease BeijingChina
| | - L. Liu
- Department of Neurology Beijing Tiantan Hospital Capital Medical University BeijingChina
- China National Clinical Research Centre for Neurological Diseases BeijingChina
- Centre of Stroke Beijing Institute for Brain Disorders BeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease BeijingChina
| | - H. Li
- Department of Neurology Beijing Tiantan Hospital Capital Medical University BeijingChina
- China National Clinical Research Centre for Neurological Diseases BeijingChina
- Centre of Stroke Beijing Institute for Brain Disorders BeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease BeijingChina
| | - Y. Wang
- Department of Neurology Beijing Tiantan Hospital Capital Medical University BeijingChina
- China National Clinical Research Centre for Neurological Diseases BeijingChina
- Centre of Stroke Beijing Institute for Brain Disorders BeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease BeijingChina
| |
Collapse
|
45
|
Zhang H, Liu R, Deng T, Wang X, Lang H, Qu Y, Duan J, Huang D, Ying G, Ba Y. The microRNA-124-iGluR2/3 pathway regulates glucagon release from alpha cells. Oncotarget 2017; 7:24734-43. [PMID: 27013590 PMCID: PMC5029737 DOI: 10.18632/oncotarget.8270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 01/30/2023] Open
Abstract
Glucagon, secreted from islet alpha cells, plays an important role in regulating glucose homeostasis; however, the molecular mechanism underlying this process is not fully understood. Previous studies have demonstrated that miRNAs are involved in the function of alpha cells. Glutamate promotes glucagon secretion by mediating the opening of Ca2+ channels. In this present, iGluR2 and iGluR3 levels were significantly increased in fasting-treated mouse islets. Additional studies showed that miR-124-3p simultaneously regulates the expression of iGluR2 and iGluR3 through the direct targeting of mRNA 3’UTR of these two genes. The miR-124-iGluRs pathway also contributed to the high level of glucagon secretion through long-term high glucose levels. Thus, a novel pathway comprising miRNA, glutamate and iGluRs has been demonstrated to regulate the biological process of glucagon release.
Collapse
Affiliation(s)
- Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xia Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Hongmei Lang
- Department of Endocrinology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Yanjun Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jingjing Duan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
46
|
Ma K, Xiao A, Park SH, Glenn L, Jackson L, Barot T, Weaver JR, Taylor-Fishwick DA, Luci DK, Maloney DJ, Mirmira RG, Imai Y, Nadler JL. 12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human Islets and Type 2 Diabetic Islets. J Clin Endocrinol Metab 2017; 102:2789-2797. [PMID: 28609824 PMCID: PMC5546865 DOI: 10.1210/jc.2017-00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT The 12-lipoxygenase (12-LO) pathway produces proinflammatory metabolites, and its activation is implicated in islet inflammation associated with type 1 and type 2 diabetes (T2D). OBJECTIVES We aimed to test the efficacy of ML355, a highly selective, small molecule inhibitor of 12-LO, for the preservation of islet function. DESIGN Human islets from nondiabetic donors were incubated with a mixture of tumor necrosis factor α , interluekin-1β, and interferon-γ to model islet inflammation. Cytokine-treated islets and human islets from T2D donors were incubated in the presence and absence of ML355. SETTING In vitro study. PARTICIPANTS Human islets from organ donors aged >20 years of both sexes and any race were used. T2D status was defined from either medical history or most recent hemoglobin A1c value >6.5%. INTERVENTION Glucose stimulation. MAIN OUTCOME MEASURES Static and dynamic insulin secretion and oxygen consumption rate (OCR). RESULTS ML355 prevented the reduction of insulin secretion and OCR in cytokine-treated human islets and improved both parameters in human islets from T2D donors. CONCLUSIONS ML355 was efficacious in improving human islet function after cytokine treatment and in T2D islets in vitro. The study suggests that the blockade of the 12-LO pathway may serve as a target for both form of diabetes and provides the basis for further study of this small molecule inhibitor in vivo.
Collapse
Affiliation(s)
- Kaiwen Ma
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - An Xiao
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - So Hyun Park
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Lindsey Glenn
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Laura Jackson
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Tatvam Barot
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica R. Weaver
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - David A. Taylor-Fishwick
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Diane K. Luci
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Raghavendra G. Mirmira
- Department of Pediatrics, IU Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Departments of Biochemistry and Molecular Biology, Medicine, and Cellular and Integrative Physiology, IU Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Indiana Biosciences Research Institute, Indianapolis, Indiana 46202
| | - Yumi Imai
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, The University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Jerry L. Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
47
|
The impact of diet-based glycaemic response and glucose regulation on cognition: evidence across the lifespan. Proc Nutr Soc 2017; 76:466-477. [DOI: 10.1017/s0029665117000829] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The brain has a high metabolic rate and its metabolism is almost entirely restricted to oxidative utilisation of glucose. These factors emphasise the extreme dependence of neural tissue on a stable and adequate supply of glucose. Whereas initially it was thought that only glucose deprivation (i.e. under hypoglycaemic conditions) can affect brain function, it has become apparent that low-level fluctuations in central availability can affect neural and consequently, cognitive performance. In the present paper the impact of diet-based glycaemic response and glucose regulation on cognitive processes across the lifespan will be reviewed. The data suggest that although an acute rise in blood glucose levels has some short-term improvements of cognitive function, a more stable blood glucose profile, which avoids greater peaks and troughs in circulating glucose is associated with better cognitive function and a lower risk of cognitive impairments in the longer term. Therefore, a habitual diet that secures optimal glucose delivery to the brain in the fed and fasting states should be most advantageous for the maintenance of cognitive function. Although the evidence to date is promising, it is insufficient to allow firm and evidence-based nutritional recommendations. The rise in obesity, diabetes and metabolic syndrome in recent years highlights the need for targeted dietary and lifestyle strategies to promote healthy lifestyle and brain function across the lifespan and for future generations. Consequently, there is an urgent need for hypothesis-driven, randomised controlled trials that evaluate the role of different glycaemic manipulations on cognition.
Collapse
|
48
|
Hamid M, McCluskey JT, McClenaghan NH, Flatt PR. Comparative Functional Study of Clonal Insulin-Secreting Cells Cultured in Five Commercially Available Tissue Culture Media. Cell Transplant 2017. [DOI: 10.3727/000000001783986837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Muhajir Hamid
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Jane T. McCluskey
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Neville H. McClenaghan
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R. Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
49
|
Abstract
Cell and tissue culture techniques have improved considerably since the first attempts to maintain explants of animal tissue in vitro. The two major developments that have allowed these improvements are the ability to produce continuous cell lines, thus allowing reproducible results to be obtained, and the definition of media for different cell types, thereby reducing the need for supplements of serum and other extraneous extracts. The requirements of islets in culture have been more difficult to define, largely because islets do not proliferate in culture and proliferation rate cannot therefore be used to measure the suitability of the medium. Further difficulties arise because islets are highly metabolically active “mini-organelles.” Although many studies have been undertaken to try and optimize media for the culture islets of Langerhans, the media most commonly used are commercially available media developed for other cell types. There remains ample scope for further refinement of the composition of islet culture media, with the possibility of different media for islets from different species.
Collapse
Affiliation(s)
- H A Clayton
- Department of Surgery, Clinical Sciences Building, Leicester Royal Infirmary, UK
| | | |
Collapse
|
50
|
Garcia-Contreras M, Tamayo-Garcia A, Pappan KL, Michelotti GA, Stabler CL, Ricordi C, Buchwald P. Metabolomics Study of the Effects of Inflammation, Hypoxia, and High Glucose on Isolated Human Pancreatic Islets. J Proteome Res 2017; 16:2294-2306. [PMID: 28452488 PMCID: PMC5557342 DOI: 10.1021/acs.jproteome.7b00160] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transplantation of human pancreatic islets is a therapeutic possibility for a subset of type 1 diabetic patients who experience severe hypoglycemia. Pre- and post-transplantation loss in islet viability and function, however, is a major efficacy-limiting impediment. To investigate the effects of inflammation and hypoxia, the main obstacles hampering the survival and function of isolated, cultured, and transplanted islets, we conducted a comprehensive metabolomics evaluation of human islets in parallel with dynamic glucose-stimulated insulin release (GSIR) perifusion studies for functional evaluation. Metabolomics profiling of media and cell samples identified a total of 241 and 361 biochemicals, respectively. Metabolites that were altered in highly significant manner in both included, for example, kynurenine, kynurenate, citrulline, and mannitol/sorbitol under inflammation (all elevated) plus lactate (elevated) and N-formylmethionine (depressed) for hypoxia. Dynamic GSIR experiments, which capture both first- and second-phase insulin release, found severely depressed insulin-secretion under hypoxia, whereas elevated baseline and stimulated insulin-secretion was measured for islet exposed to the inflammatory cytokine cocktail (IL-1β, IFN-γ, and TNF-α). Because of the uniquely large changes observed in kynurenine and kynurenate, they might serve as potential biomarkers of islet inflammation, and indoleamine-2,3-dioxygenase on the corresponding pathway could be a worthwhile therapeutic target to dampen inflammatory effects.
Collapse
Affiliation(s)
- Marta Garcia-Contreras
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Ri.Med, Palermo, Italy
- Catholyc University of Valencia, Valencia, Spain
| | | | | | | | - Cherie L. Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Ri.Med, Palermo, Italy
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|