1
|
Yang T, Yuan X, Gao W, Hu MJ, Lu MJ, Sun HS. Mendelian randomization did not support the causal effect of diabetes on aortic diseases. Intern Emerg Med 2024:10.1007/s11739-024-03727-z. [PMID: 39210233 DOI: 10.1007/s11739-024-03727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/11/2023] [Indexed: 09/04/2024]
Abstract
Observational studies revealed paradoxically inverse associations between diabetes and aortic diseases (aortic aneurysm or aortic dissection), yet the causality remains to be determined. To investigate the causal associations between diabetes and aortic diseases using Mendelian randomization (MR) analyses. Summary-level data for exposures (type 1 diabetes, type 2 diabetes, fasting glucose, fasting insulin, glycated hemoglobin) and outcomes (aortic dissection and aortic aneurysm) were obtained from public genome-wide association study data. The principal analysis was the inverse-variance weighted (IVW) method. Sensitivity analyses were also carried out, including weighted median, MR-Egger, and multivariable MR methods. According to IVW results, type 1 diabetes (odds ratio [OR]: 0.99; 95% confidence interval [CI] 0.93-1.07; P = 0.87), type 2 diabetes (OR: 0.97; 95% CI 0.77-1.20; P = 0.75), fasting glucose (OR: 1.16; 95% CI 0.48-2.84; P = 0.74), fasting insulin (OR: 2.75; 95% CI 0.53-14.26; P = 0.23), or glycated hemoglobin (OR: 0.33; 95% CI 0.09-1.17; P = 0.09) had no causal effect on aortic dissection. Similarly, type 1 diabetes, type 2 diabetes, fasting glucose, fasting insulin, or glycated hemoglobin had no causal effect on aortic aneurysm. Sensitivity analyses revealed consistent results. MR-Egger method and funnel plot yielded no indication of directional pleiotropy. Diabetes had no causal associations with aortic dissection or aortic aneurysm. The observed inverse associations in previous cohort studies may be explained by confounding factors or reverse causation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No. 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Xin Yuan
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No. 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Wei Gao
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No. 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Meng-Jin Hu
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No. 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Min-Jie Lu
- Department of Magnetic Resonance Imaging, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No. 167 North Lishi Road, Xicheng District, Beijing, 100037, China.
| | - Han-Song Sun
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, No. 167 North Lishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
2
|
Zhang R, Zhang L, Du W, Tang J, Yang L, Geng D, Cheng Y. Caffeine alleviate lipopolysaccharide-induced neuroinflammation and depression through regulating p-AKT and NF-κB. Neurosci Lett 2024; 837:137923. [PMID: 39106918 DOI: 10.1016/j.neulet.2024.137923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Caffeine, a nonselective adenosine receptor antagonist, is the major component of coffee and the most consumed psychostimulant at nontoxic doses in the world. It has been identified that caffeine consumption reduces the risk of several neurological diseases. However, the mechanisms by which it impacts the pathophysiology of neurological diseases remain to be elucidated. In this study, we investigated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation and depression in vivo and explored the potential mechanism of caffeine through LPS-induced brain injury. Adult male Sprague-Dawley (SD) rats were intraperitoneal injected with various concentrations of LPS to induce the neuroinflammation and depressive-like behavior. Then SD rats were treated with caffeine in the presence or absence of LPS. Open-filed and closed-field tests were applied to detect the behaviors of SD rats, while western blot was performed to measure the phosphorylation level of protein kinase B (p-AKT) and nuclear factor κB (NF-κB) in the cortex after caffeine was orally administered. Our findings indicated that caffeine markedly improved the neuroinflammation and depressive-like behavior of LPS-treated SD rats. Mechanistic investigations demonstrated that caffeine down-regulated the expression of p-AKT and NF-κB in LPS-induced SD rats cortex. Taken together, these results indicated that caffeine, a potential agent for preventing inflammatory diseases, may suppress LPS-induced inflammatory and depressive responses by regulating AKT phosphorylation and NF-κB.
Collapse
Affiliation(s)
- Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Lei Zhang
- Department of Neurology, the People's Hospital of Jiawang District of Xuzhou City, Xuzhou 221004, PR China
| | - Wenqi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Jiao Tang
- Department of Neurology, the First People's Hospital of Yan Cheng City, Yan Cheng 224000, PR China
| | - Long Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China.
| | - Yanbo Cheng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China.
| |
Collapse
|
3
|
Gaye B, Vignac M, Gådin JR, Ladouceur M, Caidahl K, Olsson C, Franco-Cereceda A, Eriksson P, Björck HM. Predictive machine learning models for ascending aortic dilatation in patients with bicuspid and tricuspid aortic valves undergoing cardiothoracic surgery: a prospective, single-centre and observational study. BMJ Open 2024; 14:e067977. [PMID: 38508639 PMCID: PMC10961501 DOI: 10.1136/bmjopen-2022-067977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVES The objective of this study was to develop clinical classifiers aiming to identify prevalent ascending aortic dilatation in patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV). DESIGN AND SETTING A prospective, single-centre and observational cohort. PARTICIPANTS The study involved 543 BAV and 491 TAV patients with aortic valve disease and/or ascending aortic dilatation, excluding those with coronary artery disease, undergoing cardiothoracic surgery at the Karolinska University Hospital (Sweden). MAIN OUTCOME MEASURES Predictors of high risk of ascending aortic dilatation (defined as ascending aorta with a diameter above 40 mm) were identified through the application of machine learning algorithms and classic logistic regression models. EXPOSURES Comprehensive multidimensional data, including valve morphology, clinical information, family history of cardiovascular diseases, prevalent diseases, demographic details, lifestyle factors, and medication. RESULTS BAV patients, with an average age of 60.4±12.4 years, showed a higher frequency of aortic dilatation (45.3%) compared with TAV patients, who had an average age of 70.4±9.1 years (28.9% dilatation, p <0.001). Aneurysm prediction models for TAV patients exhibited mean area under the receiver-operating-characteristic curve (AUC) values above 0.8, with the absence of aortic stenosis being the primary predictor, followed by diabetes and high-sensitivity C reactive protein. Conversely, prediction models for BAV patients resulted in AUC values between 0.5 and 0.55, indicating low usefulness for predicting aortic dilatation. Classification results remained consistent across all machine learning algorithms and classic logistic regression models. CONCLUSION AND RECOMMENDATION Cardiovascular risk profiles appear to be more predictive of aortopathy in TAV patients than in patients with BAV. This adds evidence to the fact that BAV-associated and TAV-associated aortopathy involves different pathways to aneurysm formation and highlights the need for specific aneurysm preventions in these patients. Further, our results highlight that machine learning approaches do not outperform classical prediction methods in addressing complex interactions and non-linear relations between variables.
Collapse
Affiliation(s)
- Bamba Gaye
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maxime Vignac
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Kenneth Caidahl
- Clinical Physiology Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Christian Olsson
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Wang M, Wang S, Tang HP, Li JY, Zhang ZJ, Yang BY, Kuang HX. Buddleja officinalis Maxim.: A review of its botany, ethnopharmacology, phytochemistry, pharmacology, and therapeutic potential for ophthalmic diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116993. [PMID: 37541402 DOI: 10.1016/j.jep.2023.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buddleja officinalis Maxim. (B. officinalis), commonly known as "Menghua" "Yangerduo" is a widely recognized traditional herbal medicine in China, Korea, and Vietnam. For thousands of years, it has been used to treat dry eye disease, conjunctivitis, keratitis, eye ulcers, eye pain, cough, asthma, hemoptysis, and other medical conditions. AIM OF THE REVIEW This review article aims to provide a concise summary of the botany, ethnopharmacology, phytochemistry, pharmacology, medicinal potential, and application of B. officinalis in treating ophthalmic diseases and critically evaluates the existing literature to establish a scientific basis for its reasonable utilization and further investigation. MATERIALS AND METHODS The information reviewed in this study was collected from various electronic resources, including the Web of Science, PubMed, and Google Scholar. RESULTS To date, 80 structurally diverse compounds have been isolated and characterized from B. officinalis, primarily flavonoids, phenylethanoids, triterpenoids, and monoterpenes. Extracts and compounds derived from B. officinalis have been reported to possess broad pharmacological effects including anti-dry eye disease, anti-inflammation, anti-oxidation, anti-diabetes, anti-obesity, improving osteoporosis and treatment of skin diseases. This review provides a reference for the future studies on of B. officinalis. CONCLUSIONS As a natural medicinal plant, B. officinalis is worthy of further development in botany, ethnopharmacology, phytochemistry, pharmacology, and therapeutic potential for ophthalmic diseases. Although some components have demonstrated multiple pharmacological activities, their mechanisms of action remain unclear. Further studies on the underlying molecular basis and mechanism of action are warranted.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jia-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
5
|
Zeng S, Liu Y, Fan P, Yang L, Liu X. Role of leptin in the pathophysiology of preeclampsia. Placenta 2023; 142:128-134. [PMID: 37713744 DOI: 10.1016/j.placenta.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Preeclampsia (PE) is a severe pregnancy complication. The exact pathogenesis of PE remains unclear, but it is related to immune, inflammatory, circulatory, and oxidative stress factors. Leptin is a protein involved in these processes and is essential for maintaining a normal pregnancy and healthy fetal growth. Abnormal increases in leptin levels have been observed in the peripheral blood and placenta of patients with PE. Disturbances in leptin can affect the proliferation and hypertrophy of vascular smooth muscle cells, which are important for placentation. Leptin also regulates arterial tension and trophoblast function in pregnant women. In addition, consistently high levels of leptin are linked to hyperactive inflammation and oxidative stress reactions in both patients with PE and animal models. This review focuses on the role of leptin in the pathophysiology of PE and elucidates its potential mechanisms.
Collapse
Affiliation(s)
- Shuai Zeng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yijun Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luming Yang
- Chongqing University Medical School, Chongqing, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Shi H, Wu H, Winkler MA, Belin de Chantemèle EJ, Lee R, Kim HW, Weintraub NL. Perivascular adipose tissue in autoimmune rheumatic diseases. Pharmacol Res 2022; 182:106354. [PMID: 35842184 PMCID: PMC10184774 DOI: 10.1016/j.phrs.2022.106354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023]
Abstract
Perivascular adipose tissue (PVAT) resides at the outermost boundary of the vascular wall, surrounding most conduit blood vessels, except for the cerebral vessels, in humans. A growing body of evidence suggests that inflammation localized within PVAT may contribute to the pathogenesis of cardiovascular disease (CVD). Patients with autoimmune rheumatic diseases (ARDs), e.g., systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriasis, etc., exhibit heightened systemic inflammation and are at increased risk for CVD. Data from clinical studies in patients with ARDs support a linkage between dysfunctional adipose tissue, and PVAT in particular, in disease pathogenesis. Here, we review the data linking PVAT to the pathogenesis of CVD in patients with ARDs, focusing on the role of novel PVAT imaging techniques in defining disease risk and responses to biological therapies.
Collapse
Affiliation(s)
- Hong Shi
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Hanping Wu
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Michael A Winkler
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J Belin de Chantemèle
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Richard Lee
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ha Won Kim
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
7
|
Mitidieri E, Turnaturi C, Vanacore D, Sorrentino R, d'Emmanuele di Villa Bianca R. The Role of Perivascular Adipose Tissue-Derived Hydrogen Sulfide in the Control of Vascular Homeostasis. Antioxid Redox Signal 2022; 37:84-97. [PMID: 35442088 DOI: 10.1089/ars.2021.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Emerging evidence suggests that perivascular adipose tissue (PVAT) has a relevant role in the control of vascular tone in physiology and pathology. Healthy PVAT has anticontractile, anti-inflammatory, and antioxidative actions. Accumulating data from both human and experimental animal models indicate that PVAT dysfunction is conceivably coupled to cardiovascular diseases, and it is associated with vascular inflammation, oxidative stress, and arterial remodeling. Therefore, "healthy" PVAT may constitute a novel therapeutic target for the prevention and treatment of cardiovascular diseases. Recent Advances: Hydrogen sulfide (H2S) has been recognized as a vascular anti-contractile factor released from PVAT. The enzymes deputed to H2S biosynthesis are variously expressed in PVAT and strictly dependent on the vascular bed and species. Metabolic and cardiovascular diseases can alter the morphological and secretory characteristics of PVAT, influencing also the H2S signaling. Here, we discuss the role of PVAT-derived H2S in healthy conditions and its relevance in alterations occurring in vascular disorders. Critical Issues: We discuss how a better understanding may help in the prevention of vascular dysfunction related to alteration in PVAT-released H2S as well as the importance of the interplay between PVAT and H2S. Future Directions: We propose future directions to evaluate the contribution of each enzyme involved in H2S biosynthesis and their alteration/switch occurring in vascular disorders and the remaining challenges in investigating the role of H2S. Antioxid. Redox Signal. 37, 84-97.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carlotta Turnaturi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Domenico Vanacore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
8
|
Abo Zeid AA, Rowida Raafat I, Ahmed AG. Berberine alleviates monosodium glutamate induced postnatal metabolic disorders associated vascular endothelial dysfunction in newborn rats: possible role of matrix metalloproteinase-1. Arch Physiol Biochem 2022; 128:818-829. [PMID: 32072839 DOI: 10.1080/13813455.2020.1729815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Excessive food additives Monosodium glutamate (MSG) results in metabolic disorders with increased Cardiovascular diseases CVD. We aimed to emphasise berberine (BBR) effect on MSG induced metabolic syndrome (MetS) and its associated endothelial dysfunction. Newborn rats were divided into control group, MSG group (4 mg/g) each other day for the first 14 days of life and MSG + BBR group that was given MSG then BBR in dose 150 mg/kg/day for 6 weeks. Body weight, food intake, systolic blood pressure, biochemical metabolic and oxidative stress markers were evaluated. Aortic tissue homogenate Endothelin -1 (ET-1) and matrix metalloproteinase -1 (MMP-1) assessment, in addition to histological and EM examination were done. Newborn rats MSG exposure results in typical adult life MetS and oxidative stress with significant increase in ET-1 and MMP-1with aortic vasculopathy. BBR significantly improved all the disturbed parameters; suppress increased body weight (BW), food intake (FI) and partly improved the aortic vasculopathy lesions, holding a promise for BBR as a defending agent against MSG metabolic and vascular disorders.HIGH LIGHT MSGMSG is frequently consumed as a flavour enhancer especially between children and adolescentExcessive utilisation MSG is associated MS with vascular endothelial dysfunctionMMP-1 may be involved in atherosclerotic plaque formationBBR has beneficial outcome for metabolic disorders induced by MSG among newly born ratsBBR has a role in management vascular inflammation and remodelling.
Collapse
Affiliation(s)
- Abeer A Abo Zeid
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ibrahim Rowida Raafat
- Medical Biochemistry& Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abeer G Ahmed
- Anatomy Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Niu W, Shao J, Yu B, Liu G, Wang R, Dong H, Che H, Li L. Association Between Metformin and Abdominal Aortic Aneurysm: A Meta-Analysis. Front Cardiovasc Med 2022; 9:908747. [PMID: 35677692 PMCID: PMC9168037 DOI: 10.3389/fcvm.2022.908747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To systematically examine the association between metformin and abdominal aortic aneurysm (AAA) and provide a basis for the treatment of AAA. Methods Pubmed, Embase, Cochrane Library, and Ovid databases were searched by computer to identify the literature related to metformin and AAA published until February 2022. The literature was screened according to the inclusion and exclusion criteria, data were extracted, and a quality assessment was conducted. The meta-analysis was performed using Stata 16.0 and RevMan 5.3 software. Results Seven articles containing a total of 10 cohort studies (85,050 patients) met the inclusion criteria and were included in the review. Meta-analysis showed that metformin can limit the expansion of AAA (MD = – 0.72, 95% CI: – 1.08 ~ −0.37, P < 0.00001), as well as reduce AAA repair or AAA rupture-related mortality (OR = 0.80, 95% CI:0.66 ~ 0.96, P = 0.02). The difference was statistically significant (P < 0.05). Conclusion Metformin can limit the expansion of AAA and reduce the incidence of AAA and postoperative mortality. However, further biological experiments and clinical trials still need to be conducted to support this.
Collapse
Affiliation(s)
- Wenqiang Niu
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Juan Shao
- Department of Dermatology, Yantai Yuhuangding Hospital, Yantai, China
| | - Benxiang Yu
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Guolong Liu
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Ran Wang
- Nursing Department, Heze Medical College, Heze, China
| | - Hengyang Dong
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Haijie Che
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
- *Correspondence: Haijie Che
| | - Lubin Li
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
- Lubin Li
| |
Collapse
|
10
|
Liu J, Aylor KW, Chai W, Barrett EJ, Liu Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. Am J Physiol Endocrinol Metab 2022; 322:E293-E306. [PMID: 35128961 PMCID: PMC8897003 DOI: 10.1152/ajpendo.00240.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Insulin increases muscle microvascular perfusion, which contributes to its metabolic action in muscle, but this action is impaired in obesity. Metformin improves endothelial function beyond its glucose lowering effects. We aim to examine whether metformin could prevent microvascular insulin resistance and endothelial dysfunction during the development of obesity. Adult male rats were fed a high-fat diet (HFD) with or without simultaneous metformin administration for either 2 or 4 wk. Insulin's metabolic and microvascular actions were determined using a combined euglycemic-hyperinsulinemic clamp and contrast-enhanced ultrasound approach. Compared with chow-fed controls, HFD feeding increased body adiposity without excess body weight gain, and this was associated with a marked decrease in insulin-mediated whole body glucose disposal and abolishment of insulin-induced muscle microvascular recruitment. Simultaneous administration of metformin fully rescued insulin-induced muscle microvascular recruitment as early as 2 wk and normalized insulin-mediated whole body glucose disposal at week 4. The divergent responses between insulin's microvascular and metabolic actions seen at week 2 were accompanied with reduced endothelial oxidative stress and vascular inflammation, and improved endothelial function and vascular insulin signaling in metformin-treated rats. In conclusions, metformin could prevent the development of microvascular insulin resistance and endothelial dysfunction by alleviating endothelial oxidative stress and vascular inflammation during obesity development.NEW & NOTEWORTHY Muscle microvascular insulin action contributes to insulin-mediated glucose use. Microvascular insulin resistance is an early event in diet-induced obesity and is associated with vascular inflammation. Metformin effectively reduces endothelial oxidative stress, improves endothelial function, and prevents microvascular insulin resistance during obesity development. These may contribute to metformin's salutary diabetes prevention and cardiovascular protective actions.
Collapse
Affiliation(s)
- Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The obesity epidemic is on the rise, and while it is well known that obesity is associated with an increase in cardiovascular risk factors such as type 2 diabetes mellitus, hypertension, and obstructive sleep apnea, recent data has highlighted that the degree and type of fat distribution may play a bigger role in the pathogenesis of cardiovascular disease (CVD) than body mass index (BMI) alone. We aim to review updated data on adipose tissue inflammation and distribution and CVD. RECENT FINDINGS We review the pathophysiology of inflammation secondary to adipose tissue, the association of obesity-related adipokines and CVD, and the differences and significance of brown versus white adipose tissue. We delve into the clinical manifestations of obesity-related inflammation in CVD. We discuss the available data on heterogeneity of adipose tissue-related inflammation with a focus on subcutaneous versus visceral adipose tissue, the differential pathophysiology, and clinical CVD manifestations of adipose tissue across sex, race, and ethnicity. Finally, we present the available data on lifestyle modification, medical, and surgical therapeutics on reduction of obesity-related inflammation. Obesity leads to a state of chronic inflammation which significantly increases the risk for CVD. More research is needed to develop non-invasive VAT quantification indices such as risk calculators which include variables such as sex, age, race, ethnicity, and VAT concentration, along with other well-known CVD risk factors in order to comprehensively determine risk of CVD in obese patients. Finally, pre-clinical biomarkers such as pro-inflammatory adipokines should be validated to estimate risk of CVD in obese patients.
Collapse
Affiliation(s)
- Mariam N Rana
- Department of Medicine, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Ian J Neeland
- Department of Medicine, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Harrington Heart and Vascular Institute, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Leptin in Atherosclerosis: Focus on Macrophages, Endothelial and Smooth Muscle Cells. Int J Mol Sci 2021; 22:ijms22115446. [PMID: 34064112 PMCID: PMC8196747 DOI: 10.3390/ijms22115446] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing adipose tissue mass in obesity directly correlates with elevated circulating leptin levels. Leptin is an adipokine known to play a role in numerous biological processes including regulation of energy homeostasis, inflammation, vascular function and angiogenesis. While physiological concentrations of leptin may exhibit multiple beneficial effects, chronically elevated pathophysiological levels or hyperleptinemia, characteristic of obesity and diabetes, is a major risk factor for development of atherosclerosis. Hyperleptinemia results in a state of selective leptin resistance such that while beneficial metabolic effects of leptin are dampened, deleterious vascular effects of leptin are conserved attributing to vascular dysfunction. Leptin exerts potent proatherogenic effects on multiple vascular cell types including macrophages, endothelial cells and smooth muscle cells; these effects are mediated via an interaction of leptin with the long form of leptin receptor, abundantly expressed in atherosclerotic plaques. This review provides a summary of recent in vivo and in vitro studies that highlight a role of leptin in the pathogenesis of atherosclerotic complications associated with obesity and diabetes.
Collapse
|
13
|
Andrade FB, Gualberto A, Rezende C, Percegoni N, Gameiro J, Hottz ED. The Weight of Obesity in Immunity from Influenza to COVID-19. Front Cell Infect Microbiol 2021; 11:638852. [PMID: 33816341 PMCID: PMC8011498 DOI: 10.3389/fcimb.2021.638852] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in December 2019 and rapidly outspread worldwide endangering human health. The coronavirus disease 2019 (COVID-19) manifests itself through a wide spectrum of symptoms that can evolve to severe presentations as pneumonia and several non-respiratory complications. Increased susceptibility to COVID-19 hospitalization and mortality have been linked to associated comorbidities as diabetes, hypertension, cardiovascular diseases and, recently, to obesity. Similarly, individuals living with obesity are at greater risk to develop clinical complications and to have poor prognosis in severe influenza pneumonia. Immune and metabolic dysfunctions associated with the increased susceptibility to influenza infection are linked to obesity-associated low-grade inflammation, compromised immune and endocrine systems, and to high cardiovascular risk. These preexisting conditions may favor virological persistence, amplify immunopathological responses and worsen hemodynamic instability in severe COVID-19 as well. In this review we highlight the main factors and the current state of the art on obesity as risk factor for influenza and COVID-19 hospitalization, severe respiratory manifestations, extrapulmonary complications and even death. Finally, immunoregulatory mechanisms of severe influenza pneumonia in individuals with obesity are addressed as likely factors involved in COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Fernanda B. Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ana Gualberto
- Laboratory of Immunology, Obesity and Infectious Diseases, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Camila Rezende
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Nathércia Percegoni
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology, Obesity and Infectious Diseases, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
14
|
Ganguly R, Khanal S, Mathias A, Gupta S, Lallo J, Sahu S, Ohanyan V, Patel A, Storm K, Datta S, Raman P. TSP-1 (Thrombospondin-1) Deficiency Protects ApoE -/- Mice Against Leptin-Induced Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:e112-e127. [PMID: 33327743 PMCID: PMC8105272 DOI: 10.1161/atvbaha.120.314962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hyperleptinemia, hallmark of obesity, is a putative pathophysiologic trigger for atherosclerosis. We previously reported a stimulatory effect of leptin on TSP-1 (thrombospondin-1) expression, a proatherogenic matricellular protein implicated in atherogenesis. However, a causal role of TSP-1 in leptin-driven atherosclerosis remains unknown. Approach and Results: Seventeen-weeks-old ApoE-/- and TSP-1-/-/ApoE-/- double knockout mice, on normocholesterolemic diet, were treated with or without murine recombinant leptin (5 µg/g bwt, IP) once daily for 3 weeks. Using aortic root morphometry and en face lesion assay, we found that TSP-1 deletion abrogated leptin-stimulated lipid-filled lesion burden, plaque area, and collagen accumulation in aortic roots of ApoE-/- mice, shown via Oil red O, hematoxylin and eosin, and Masson trichrome staining, respectively. Immunofluorescence microscopy of aortic roots showed that TSP-1 deficiency blocked leptin-induced inflammatory and smooth muscle cell abundance as well as cellular proliferation in ApoE-/- mice. Moreover, these effects were concomitant to changes in VLDL (very low-density lipoprotein)-triglyceride and HDL (high-density lipoprotein)-cholesterol levels. Immunoblotting further revealed reduced vimentin and pCREB (phospho-cyclic AMP response element-binding protein) accompanied with augmented smooth muscle-myosin heavy chain expression in aortic vessels of leptin-treated double knockout versus leptin-treated ApoE-/-; also confirmed in aortic smooth muscle cells from the mice genotypes, incubated ± leptin in vitro. Finally, TSP-1 deletion impeded plaque burden in leptin-treated ApoE-/- on western diet, independent of plasma lipid alterations. CONCLUSIONS The present study provides evidence for a protective effect of TSP-1 deletion on leptin-stimulated atherogenesis. Our findings suggest a regulatory role of TSP-1 on leptin-induced vascular smooth muscle cell phenotypic transition and inflammatory lesion invasion. Collectively, these results underscore TSP-1 as a potential target of leptin-induced vasculopathy.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/chemically induced
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/chemically induced
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Collagen/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Leptin
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Signal Transduction
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Mice
Collapse
Affiliation(s)
- Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
- Current Address: Department of Diabetes Complications and Metabolism, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
- Current Address: National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Aakaash Patel
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Kyle Storm
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Sujay Datta
- Department of Statistics, The University of Akron, Akron, OH
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| |
Collapse
|
15
|
Role of Uremic Toxins in Early Vascular Ageing and Calcification. Toxins (Basel) 2021; 13:toxins13010026. [PMID: 33401534 PMCID: PMC7824162 DOI: 10.3390/toxins13010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
In patients with advanced chronic kidney disease (CKD), the accumulation of uremic toxins, caused by a combination of decreased excretion secondary to reduced kidney function and increased generation secondary to aberrant expression of metabolite genes, interferes with different biological functions of cells and organs, contributing to a state of chronic inflammation and other adverse biologic effects that may cause tissue damage. Several uremic toxins have been implicated in severe vascular smooth muscle cells (VSMCs) changes and other alterations leading to vascular calcification (VC) and early vascular ageing (EVA). The above mentioned are predominant clinical features of patients with CKD, contributing to their exceptionally high cardiovascular mortality. Herein, we present an update on pathophysiological processes and mediators underlying VC and EVA induced by uremic toxins. Moreover, we discuss their clinical impact, and possible therapeutic targets aiming at preventing or ameliorating the harmful effects of uremic toxins on the vasculature.
Collapse
|
16
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Zhang YY, Shi YN, Zhu N, Zhao TJ, Guo YJ, Liao DF, Dai AG, Qin L. PVAT targets VSMCs to regulate vascular remodelling: angel or demon. J Drug Target 2020; 29:467-475. [PMID: 33269623 DOI: 10.1080/1061186x.2020.1859515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular remodelling refers to abnormal changes in the structure and function of blood vessel walls caused by injury, and is the main pathological basis of cardiovascular diseases such as atherosclerosis, hypertension, and pulmonary hypertension. Among them, the neointimal hyperplasia caused by abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a key role in the pathogenesis of vascular remodelling. Perivascular adipose tissue (PVAT) can release vasoactive substances to target VSMCs and regulate the pathological process of vascular remodelling. Specifically, PVAT can promote the conversion of VSMCs phenotype from contraction to synthesis by secreting visfatin, leptin, and resistin, and participate in the development of vascular remodelling-related diseases. Conversely, it can also inhibit the growth of VSMCs by secreting adiponectin and omentin to prevent neointimal hyperplasia and alleviate vascular remodelling. Therefore, exploring and developing new drugs or other treatments that facilitate the beneficial effects of PVAT on VSMCs is a potential strategy for prevention or treatment of vascular remodelling-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yin-Yu Zhang
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Ya-Ning Shi
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Tan-Jun Zhao
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Yi-Jie Guo
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Duan-Fang Liao
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Ai-Guo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Li Qin
- Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, P.R. China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
18
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
19
|
Aydemir N, Pike MM, Alsouqi A, Headley SAE, Tuttle K, Evans EE, Milch CM, Moody KA, Germain M, Lipworth L, Himmelfarb J, Ikizler TA, Robinson-Cohen C. Effects of diet and exercise on adipocytokine levels in patients with moderate to severe chronic kidney disease. Nutr Metab Cardiovasc Dis 2020; 30:1375-1381. [PMID: 32571614 PMCID: PMC7659879 DOI: 10.1016/j.numecd.2020.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Obesity is a pro-inflammatory risk factor for progression of CKD and cardiovascular disease. We hypothesized that implementation of caloric restriction and endurance exercise would improve adipocytokine profiles in patients with moderate to severe CKD. METHODS AND RESULTS We enrolled patients with moderate to severe CKD through a multi-center pilot randomized trial of diet and exercise in a 4-arm design (dietary restriction of 10%-15% reduction in caloric intake, exercise three times/week, combined diet and exercise, and control) (NCT01150851). Adipocytokines (adiponectin and leptin) were measured at the beginning and end of the study period as secondary outcomes. Treatment effect was analyzed in a multivariable model adjusted for baseline outcome values, age, gender, site and diabetes. A total of 122 participants were consented, 111 were randomized (42% female, 25% diabetic, and 91% hypertensive), 104 started intervention and 92 completed the study (Figure 1). Plasma adiponectin levels increased significantly in response to diet by 23% (95% CI: 0.2%, 49.8%, p = 0.048) among participants randomized to the caloric restriction and usual activity arm but not to exercise, whereas circulating leptin did not change by either treatment. CONCLUSION Our data suggest that dietary caloric restriction increases plasma adiponectin levels in stage 3-4 CKD patients, with limited effect on leptin levels. These findings suggest the potential for improving the metabolic milieu of CKD with moderate calorie restriction.
Collapse
Affiliation(s)
- Nihal Aydemir
- Hitit University Medical School, Nephrology Department, Corum, Turkey
| | - Mindy M Pike
- Vanderbilt O'Brien Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aseel Alsouqi
- Vanderbilt O'Brien Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel A E Headley
- Department of Exercise Science and Athletic Training, Springfield College, Springfield, MA, USA
| | - Katherine Tuttle
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA; Providence Medical Research Center, Providence Health Care, Spokane, WA, USA
| | - Elizabeth E Evans
- Department of Exercise Science and Athletic Training, Springfield College, Springfield, MA, USA
| | - Charles M Milch
- Department of Exercise Science and Athletic Training, Springfield College, Springfield, MA, USA
| | - Kelsey A Moody
- Department of Exercise Science and Athletic Training, Springfield College, Springfield, MA, USA
| | - Michael Germain
- Department of Nephrology, Bay State Medical Center, Springfield, MA, USA
| | - Loren Lipworth
- Vanderbilt O'Brien Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - T A Ikizler
- Vanderbilt O'Brien Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassianne Robinson-Cohen
- Vanderbilt O'Brien Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
20
|
Markowicz-Piasecka M, Sadkowska A, Huttunen KM, Podsiedlik M, Mikiciuk-Olasik E, Sikora J. An investigation into the pleiotropic activity of metformin. A glimpse of haemostasis. Eur J Pharmacol 2020; 872:172984. [PMID: 32017937 DOI: 10.1016/j.ejphar.2020.172984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
The most characteristic features of type 2 diabetes mellitus (T2DM) are hyperglycaemia and insulin resistance, however, patients with T2DM are at higher risk of cardiovascular disease (CVD) and atherosclerosis. Diabetes, frequently related to metabolic and vascular impairments, is also associated with thrombosis, increased blood coagulation and an imbalance between coagulation and fibrinolysis. Metformin is the most often used oral glucose-lowering agent; its beneficial properties include lowering insulin resistance, weight reduction and cardioprotection. Available data suggest that the advantageous properties of metformin stem from its favourable effects on endothelium, and anti-oxidative and anti-inflammatory properties. This paper reviews the favourable impact of metformin on endothelial function, with particular emphasis on the release of endogenous molecules modulating the state of the vascular endothelium and coagulation. It also summarizes the present knowledge on the influence of metformin on platelet activity and plasma haemostasis, including clot formation, stabilization and fibrinolysis. Its findings confirm that metformin should constitute first line therapy of T2DM subjects; however, more comprehensive methodical studies are required to discover the full potential of this drug.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Adrianna Sadkowska
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211, Kuopio, Finland.
| | - Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
21
|
Markowicz-Piasecka M, Huttunen KM, Sadkowska A, Sikora J. Pleiotropic Activity of Metformin and Its Sulfonamide Derivatives on Vascular and Platelet Haemostasis. Molecules 2019; 25:E125. [PMID: 31905674 PMCID: PMC6982810 DOI: 10.3390/molecules25010125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
As type 2 diabetes mellitus (T2DM) predisposes patients to endothelial cell injury and dysfunction, improvement of vascular function should be an important target for therapy. The aim of this study was to evaluate the effects of metformin, its sulfenamide and sulfonamide derivatives on selected parameters of endothelial and smooth muscle cell function, and platelet activity. Metformin was not found to significantly affect the viability of human umbilical vein endothelial cells (HUVECs) or aortal smooth muscle cells (AoSMC); however, it decreased cell migration by approximately 21.8% in wound healing assays after 24 h stimulation (wound closure 32.5 µm versus 41.5 µm for control). Metformin reduced platelet aggregation manifested by 19.0% decrease in maximum of aggregation (Amax), and 20% reduction in initial platelet aggregation velocity (v0). Furthermore, metformin decreased spontaneous platelet adhesion by 27.7% and ADP-induced adhesion to fibrinogen by 29.6% in comparison to control. Metformin sulfenamide with an n-butyl alkyl chain (compound 1) appeared to exert the most unfavourable effects on AoSMC cell viability (IC50 = 0.902 ± 0.015 μmol/mL), while 4-nitrobenzenesulfonamide (compound 3) and 2-nitrobenzenesulfonamide (compound 4) derivatives of metformin did not affect AoSMC and HUVEC viability at concentrations up to 2.0 μmol/mL. These compounds were also found to significantly reduce migration of smooth muscle cells by approximately 81.0%. Furthermore, sulfonamides 3 and 4 decreased the initial velocity of platelet aggregation by 11.8% and 20.6%, respectively, and ADP-induced platelet adhesion to fibrinogen by 76.3% and 65.6%. Metformin and its p- and o-nitro-benzenesulfonamide derivatives 3, 4 appear to exert beneficial effects on some parameters of vascular and platelet haemostasis.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland;
| | - Adrianna Sadkowska
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
22
|
Lee S, Lee A, Kweon OK, Kim WH. Changes in pre- and postoperative serum leptin concentrations in dogs with gallbladder mucocele and cholelithiasis. BMC Vet Res 2019; 15:215. [PMID: 31238989 PMCID: PMC6593571 DOI: 10.1186/s12917-019-1964-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/16/2019] [Indexed: 12/05/2022] Open
Abstract
Background Leptin has been shown to have various physiological and pathological roles in the canine gallbladder. In this study, we performed pre- and postoperative short-term follow-up analyses to confirm changes in serum leptin levels before and after cholecystectomy due to gallbladder mucocele (GBM) or cholelithiasis in dogs. Results Twenty-six cholecystectomized dogs (GBM: n = 14; cholelithiasis: n = 12) for prophylactic or clinical symptom relief were enrolled in the present study. Dogs were subgrouped according to clinical symptoms and prognosis after surgery as follows: 1) asymptomatic group (n = 13), 2) recovery group (n = 8), and 3) death group (n = 5). Liver enzymes, total bilirubin, lipid profiles, and leptin concentrations were determined from sera on the pre-operative day and at 1, 3, and 7 days postoperation. Serum leptin concentrations were gradually but significantly decreased in the asymptomatic group (p = 0.008, 0.004, and 0.004 on days 1, 3, and 7, respectively, compared with that before surgery) and the recovery group (p = 0.048 and 0.048 on days 3 and 7, respectively, compared with that before surgery). However, in the death group, leptin concentrations did not differ significantly over time (p = 0.564). Additionally, serum leptin levels in the recovery group (p = 0.006) and death group (p = 0.021) were significantly higher than those in the asymptomatic group. Liver enzymes and total bilirubin (T-Bil) were significantly decreased only in the recovery group, particularly on day 7. In the asymptomatic group, liver enzymes and T-Bil were not changed significantly over time, and in the death group, only T-Bil was significantly decreased on day 7. Total cholesterol and triglyceride levels were not significantly decreased over time in all groups. Conclusions These results indicate that leptin is a potential biomarker reflecting the severity and prognosis of GBM and cholelithiasis both before and after cholecystectomy in dogs.
Collapse
Affiliation(s)
- Sungin Lee
- Department of Veterinary Clinical Sciences College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Aeri Lee
- Department of Veterinary Clinical Sciences College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Oh-Kyeong Kweon
- Department of Veterinary Clinical Sciences College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
23
|
Ranchoux B, Nadeau V, Bourgeois A, Provencher S, Tremblay É, Omura J, Coté N, Abu-Alhayja'a R, Dumais V, Nachbar RT, Tastet L, Dahou A, Breuils-Bonnet S, Marette A, Pibarot P, Dupuis J, Paulin R, Boucherat O, Archer SL, Bonnet S, Potus F. Metabolic Syndrome Exacerbates Pulmonary Hypertension due to Left Heart Disease. Circ Res 2019; 125:449-466. [PMID: 31154939 DOI: 10.1161/circresaha.118.314555] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Pulmonary hypertension (PH) due to left heart disease (LHD), or group 2 PH, is the most prevalent form of PH worldwide. PH due to LHD is often associated with metabolic syndrome (MetS). In 12% to 13% of cases, patients with PH due to LHD display vascular remodeling of pulmonary arteries (PAs) associated with poor prognosis. Unfortunately, the underlying mechanisms remain unknown; PH-targeted therapies for this group are nonexistent, and the development of a new preclinical model is crucial. Among the numerous pathways dysregulated in MetS, inflammation plays also a critical role in both PH and vascular remodeling. OBJECTIVE We hypothesized that MetS and inflammation may trigger the development of vascular remodeling in group 2 PH. METHODS AND RESULTS Using supracoronary aortic banding, we induced diastolic dysfunction in rats. Then we induced MetS by a combination of high-fat diet and olanzapine treatment. We used metformin treatment and anti-IL-6 (interleukin-6) antibodies to inhibit the IL-6 pathway. Compared with sham conditions, only supracoronary aortic banding+MetS rats developed precapillary PH, as measured by both echocardiography and right/left heart catheterization. PH in supracoronary aortic banding+MetS was associated with macrophage accumulation and increased IL-6 production in lung. PH was also associated with STAT3 (signal transducer and activator of transcription 3) activation and increased proliferation of PA smooth muscle cells, which contributes to remodeling of distal PA. We reported macrophage accumulation, increased IL-6 levels, and STAT3 activation in the lung of group 2 PH patients. In vitro, IL-6 activates STAT3 and induces human PA smooth muscle cell proliferation. Metformin treatment decreased inflammation, IL-6 levels, STAT3 activation, and human PA smooth muscle cell proliferation. In vivo, in the supracoronary aortic banding+MetS animals, reducing IL-6, either by anti-IL-6 antibody or metformin treatment, reversed pulmonary vascular remodeling and improve PH due to LHD. CONCLUSIONS We developed a new preclinical model of group 2 PH by combining MetS with LHD. We showed that MetS exacerbates group 2 PH. We provided evidence for the importance of the IL-6-STAT3 pathway in our experimental model of group 2 PH and human patients.
Collapse
Affiliation(s)
- Benoît Ranchoux
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Valérie Nadeau
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Alice Bourgeois
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Steeve Provencher
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Éve Tremblay
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Junichi Omura
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Nancy Coté
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Rami Abu-Alhayja'a
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Valérie Dumais
- Institut universitaire de cardiologie et de pneumologie de Québec Research Center, Laval University, Québec City, Canada (V.D., R.T.N., A.M.)
| | - Renato T Nachbar
- Institut universitaire de cardiologie et de pneumologie de Québec Research Center, Laval University, Québec City, Canada (V.D., R.T.N., A.M.)
| | - Lionel Tastet
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Abdellaziz Dahou
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Sandra Breuils-Bonnet
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - André Marette
- Institut universitaire de cardiologie et de pneumologie de Québec Research Center, Laval University, Québec City, Canada (V.D., R.T.N., A.M.)
| | - Philippe Pibarot
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Jocelyn Dupuis
- Institut de cardiologie de Montréal, Québec, Canada (J.D.)
| | - Roxane Paulin
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Olivier Boucherat
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A., F.P.)
| | - Sébastien Bonnet
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - François Potus
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.).,Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A., F.P.)
| |
Collapse
|
24
|
Markowicz-Piasecka M, Huttunen KM, Broncel M, Sikora J. Sulfenamide and Sulfonamide Derivatives of Metformin - A New Option to Improve Endothelial Function and Plasma Haemostasis. Sci Rep 2019; 9:6573. [PMID: 31024058 PMCID: PMC6484023 DOI: 10.1038/s41598-019-43083-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/16/2019] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multi-factorial disease which can cause multiple organ dysfunction, including that of the vascular endothelium. The aim of the present study was to evaluate the effects of metformin, and its sulfenamide and sulfonamide derivatives (compounds 1–8) on the selected markers of endothelial function and blood coagulation. The integrity of endothelial cells(ECs) was examined using the real-time cell electric impedance system. Tissue Factor(TF) production, the release of von Willebrand Factor (vWF) and tissue plasminogen activator(t-PA) from ECs were determined using immunoenzymatic assays, while the process of platelet thrombus formation using the Total Thrombus-Formation Analysis System. Sulfenamide with n-butyl alkyl chain(3) does not interfere with ECs integrity, and viability (nCI(24h) = 1.03 ± 0.03 vs. 1.06 ± 0.11 for control), but possesses anticoagulation properties manifested by prolonged platelet-dependent thrombus formation (Occlusion Time 370.3 ± 77.0 s vs. 286.7 ± 65.5 s for control) in semi-physiological conditions. Both p- and o-nitro-benzenesulfonamides (compounds7,8) exhibit anti-coagulant properties demonstrated by decreased vWF release and prolonged parameters of platelet thrombus formation and total blood thrombogenicity. In conclusion, chemical modification of metformin scaffold into sulfenamides or sulfonamides might be regarded as a good starting point for the design and synthesis of novel biguanide-based compounds with anticoagulant properties and valuable features regarding endothelial function.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Kristiina M Huttunen
- School Of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211, Kuopio, Finland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347, Lodz, Poland
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland
| |
Collapse
|
25
|
Yu X, Jiang D, Wang J, Wang R, Chen T, Wang K, Durgahee MSA, Wei X, Cao S. Metformin prescription and aortic aneurysm: systematic review and meta-analysis. Heart 2019; 105:1351-1357. [PMID: 30936409 DOI: 10.1136/heartjnl-2018-314639] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE To assess the association of metformin prescription with the risk of aortic aneurysm, aortic aneurysm events and the enlargement of abdominal aortic aneurysm (AAA). DESIGN Systematic review and meta-analysis. METHODS We searched PubMed, Embase and Scopus for epidemiological studies up to November 2018. We included observational studies which evaluated the association of metformin prescription with the risk of aortic aneurysm disease, and we also included studies involving progression and enlargement of AAA. The Newcastle-Ottawa Scale was used to assess the quality of included studies. Random-effect meta-analyses were conducted in line with the between-study heterogeneity. Sensitivity analyses were performed to identify the source of heterogeneity. RESULTS Eight studies enrolling 29 587 participants met the inclusion criteria and were included in this systematic review. We found that metformin prescription could significantly limit the enlargement of aortic aneurysm (weighted mean difference: -0.83 mm/year, 95% CI -1.38 to -0.28, I2=89.6%) among patients with AAA. Metformin prescription status may be associated with a decreased risk of aortic aneurysm and aortic aneurysm events. CONCLUSIONS According to the available epidemiological evidence, metformin prescription could limit the expansion of AAA among patients with this disease, and may be involved with a lower incidence of aortic aneurysm and aortic aneurysm events. Randomised controlled trials are needed to confirm whether metformin could reduce the enlargement of AAA in patients with or without diabetes.
Collapse
Affiliation(s)
- Xinyu Yu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jing Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taiqiang Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kan Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mouniir Sha Ahmad Durgahee
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Bodur A, İnce İ, Kahraman C, Abidin İ, Aydin-Abidin S, Alver A. Effect of a high sucrose and high fat diet in BDNF (+/-) mice on oxidative stress markers in adipose tissues. Arch Biochem Biophys 2019; 665:46-56. [PMID: 30797748 DOI: 10.1016/j.abb.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the effects of a high fat and a high sucrosediet in wild type and BDNF (+/-) mice on oxidative stress in epididymal and subcutaneousadipose tissues by measuring different markers of oxidative stress and antioxidant enzymes. Wild type (WT) and BDNF (+/-) male mice were divided into six groups receiving fed control diet (CD), high sucrose diet (HSD), or high fat diet (HFD) for four months. Levels of 3-nitrotyrosine (3-NT) increased in the HFD-fed BDNF (+/-) mice, while 4-hydroxynonenal (4-HNE) levels increased in the CD and HFD-fed BDNF (+/-) groups. Malondialdehyde (MDA) levels decreased in subcutaneous tissue compared to epididymal adipose tissue, independently of diet type. Superoxide dismutase (SOD) activity was reduced by HFD (p < 0.05), butglutathione peroxidase (GSH-Px) activity was increased by HSD in epididymal adipose tissuein BDNF (+/-) mice (p < 0.05). GSH-Px activities was increased by CD and HFD in subcutaneous adipose tissue of BDNF (+/-) (p < 0.05). SOD2 and GSH-Px3 expressions were only decreased by HSD in epididymal and subcutaneous adipose tissues of BDNF (+/-) mice (p < 0.05). In conclusion, reduced BDNF may increase OS in epididymal adipose tissue, but not in subcutaneous adipose tissue following HSD and HFD.
Collapse
Affiliation(s)
- Akın Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İmran İnce
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Cemil Kahraman
- Department of Nutrition and Dietetics, School of Health, Düzce University, Düzce, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydin-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
27
|
Zahner GJ, Ramirez JL, Spaulding KA, Khetani SA, Gasper WJ, Grunfeld C, Hills NK, Schafer AL, Grenon SM. Leptinemia is Associated With Peripheral Artery Disease. J Surg Res 2019; 238:48-56. [PMID: 30738358 DOI: 10.1016/j.jss.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Leptin, adiponectin, and resistin are in a class of hormones called adipokines that are produced by adipocytes and have been implicated in the causal pathway of atherosclerosis. We examined the association between adipokine levels and peripheral artery disease (PAD), hypothesizing that after adjusting for fat mass, leptin and resistin would be higher, whereas adiponectin would be lower, in patients with PAD. METHODS A cross-sectional sample of 179 predominately male (97%) vascular surgery outpatients was recruited from the San Francisco Veterans Affairs Medical Center (SFVAMC). PAD was defined as either an ankle-brachial index < 0.9 plus symptoms of claudication or prior revascularization for symptomatic PAD (n = 141). Controls had an ankle-brachial index ≥0.9 and no history of atherosclerotic disease (n = 38). Adipokines were assayed using commercially available ELISA kits and values were log-transformed. Fat mass was measured using bioelectrical impedance. RESULTS In an analysis adjusting for body mass index (BMI) and atherosclerotic risk factors, higher serum leptin was associated with PAD (OR 2.54, 95% CI 1.07-6.01, P = 0.03), whereas high molecular weight adiponectin was inversely associated, though not significantly (OR 0.60, 95% CI 0.33-1.08, P = 0.09). Resistin was not associated with PAD. Sensitivity analyses using fat mass/height2 rather than BMI yielded similar results. CONCLUSIONS These results indicate that after adjusting for BMI or fat mass, serum leptin levels are positively and independently associated with PAD, whereas high molecular weight adiponectin might be inversely associated. Using a more representative, nonveteran sample, further investigations should focus on the potential role of adipokines in the pathophysiology of PAD as well as determine whether leptin levels have clinical utility in predicting PAD outcomes.
Collapse
Affiliation(s)
- Greg J Zahner
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Joel L Ramirez
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Kimberly A Spaulding
- Department of Surgery, University of California, San Francisco, San Francisco, California; Vascular Surgery Section, Veterans Affairs Medical Center, San Francisco, California
| | - Sukaynah A Khetani
- Department of Surgery, University of California, San Francisco, San Francisco, California; Vascular Surgery Section, Veterans Affairs Medical Center, San Francisco, California
| | - Warren J Gasper
- Department of Surgery, University of California, San Francisco, San Francisco, California; Vascular Surgery Section, Veterans Affairs Medical Center, San Francisco, California
| | - Carl Grunfeld
- Department of Medicine, University of California, San Francisco, San Francisco, California; Metabolism Section, Veterans Affairs Medical Center, San Francisco, California
| | - Nancy K Hills
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Anne L Schafer
- Department of Medicine, University of California, San Francisco, San Francisco, California; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California; Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California
| | - S Marlene Grenon
- Department of Surgery, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
28
|
Heiston EM, Malin SK. Impact of Exercise on Inflammatory Mediators of Metabolic and Vascular Insulin Resistance in Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:271-294. [PMID: 30919343 DOI: 10.1007/978-3-030-12668-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of obesity is cornerstone in the etiology of metabolic and vascular insulin resistance and consequently exacerbates glycemic control. Exercise is an efficacious first-line therapy for type 2 diabetes that improves insulin action through, in part, reducing hormone mediated inflammation. Together, improving the coordination of skeletal muscle metabolism with vascular delivery of glucose will be required for optimizing type 2 diabetes and cardiovascular disease treatment.
Collapse
Affiliation(s)
- Emily M Heiston
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Steven K Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
29
|
Tayara K, Espinosa-Oliva AM, García-Domínguez I, Ismaiel AA, Boza-Serrano A, Deierborg T, Machado A, Herrera AJ, Venero JL, de Pablos RM. Divergent Effects of Metformin on an Inflammatory Model of Parkinson's Disease. Front Cell Neurosci 2018; 12:440. [PMID: 30519161 PMCID: PMC6258993 DOI: 10.3389/fncel.2018.00440] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023] Open
Abstract
The oral antidiabetic drug metformin is known to exhibit anti-inflammatory properties through activation of AMP kinase, thus protecting various brain tissues as cortical neurons, for example. However, the effect of metformin on the substantia nigra (SN), the main structure affected in Parkinson’s disease (PD), has not yet been studied in depth. Inflammation is a key feature of PD and it may play a central role in the neurodegeneration that takes place in this disorder. The aim of this work was to determine the effect of metformin on the microglial activation of the SN of rats using the animal model of PD based on the injection of the pro-inflammogen lipopolysaccharide (LPS). In vivo and in vitro experiments were conducted to study the activation of microglia at both the cellular and molecular levels. Our results indicate that metformin overall inhibits microglia activation measured by OX-6 (MHCII marker), IKKβ (pro-inflammatory marker) and arginase (anti-inflammatory marker) immunoreactivity. In addition, qPCR experiments reveal that metformin treatment minimizes the expression levels of several pro- and anti-inflammatory cytokines. Mechanistically, the drug decreases the phosphorylated forms of mitogen-activated protein kinases (MAPKs) as well as ROS generation through the inhibition of the NADPH oxidase enzyme. However, metformin treatment fails to protect the dopaminergic neurons of SN in response to intranigral LPS. These findings suggest that metformin could have both beneficial and harmful pharmacological effects and raise the question about the potential use of metformin for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Khadija Tayara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Afrah Abdul Ismaiel
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio Boza-Serrano
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alberto Machado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio J Herrera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José L Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
30
|
Patel K, Zafar M, Ziganshin B, Elefteriades J. Diabetes Mellitus: Is It Protective against Aneurysm? A Narrative Review. Cardiology 2018; 141:107-122. [DOI: 10.1159/000490373] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/24/2018] [Indexed: 11/19/2022]
Abstract
Objectives: In the course of extensive clinical aortic surgery, we noticed that the aorta was quite thick and fibrotic in diabetic patients. We thought the diabetic aortic aorta might be inimitable to aortic dissection. On this basis, we set out to review information in the literature regarding aortic growth and dissection in diabetic patients. Methods: We used a 2-step search approach to the available literature on diabetes and aneurysm. Firstly, databases including PubMed, Cochrane, Embase and TRIP were searched. Secondly, relevant studies were identified through secondary sources including references of initially selected articles. We address the relationship between diabetes and the incidence, prevalence, growth, mortality and rupture of an aneurysm. Results: Diabetes is thought to exert a protective role in both thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA). Diabetics were shown to have a slower aneurysm growth rate, lower rupture rate, delayed (> 65 years) age of rupture, decreased rate of mortality from an aneurysm and a decreased length of hospital stay. There was also noted a decreased rate of incidence and prevalence of TAA and AAA in diabetics, smaller aneurysm diameter, reduction in matrix metalloproteinases and an increased aortic wall stress in diabetics. Antidiabetic agents like metformin, thiazolidinediones and dipeptidyl peptidase-4 inhibitors may protect against an aneurysm. Conclusion: Our literature review provides strong (but often circumstantial) evidence that diabetic patients exhibit slower growth of aortic aneurysms and a lower rate of aortic dissection. Furthermore, clinical and experimental studies indicate that common antidiabetic medications on their own inhibit growth of aortic aneurysms. These findings indicate a paradoxically beneficial effect of the otherwise highly detrimental diabetic state.
Collapse
|
31
|
Metformin inhibits estradiol and progesterone-induced decidualization of endometrial stromal cells by regulating expression of progesterone receptor, cytokines and matrix metalloproteinases. Biomed Pharmacother 2018; 109:1578-1585. [PMID: 30551411 DOI: 10.1016/j.biopha.2018.10.128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a serious threat for reproductive-aged women. Metformin has been used for the treatment of PCOS. However, its molecular mechanism in decidualization process of PCOS has not been well featured. METHODS RT-qPCR analysis was used to detect expression patterns of progesterone receptor (PGR), estradiol receptor alpha (ERα), Cytokeratin 8 and Vimentin in endometrial tissues of PCOS and non-PCOS patients. RT-qPCR assay was also employed to determine mRNA expression of prolactin, Insulin-like growth factor-binding protein 1 (IGFBP-1), matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP9). Cytokine secretion were measured by matching ELISA kits. Protein expression of p-ERK1/2, ERK1/2, p-p38 MAPK, p38 MAPK, and PGR (PGRA and PGRB) was tested by western blot assay. RESULTS PGR expression was upregulated in PCOS patients. Metformin alleviated estradiol (E2) and progesterone (P4) (EP)-induced decidualization of endometrial stromal cells. Abnormal cytokine secretion was observed in EP-stimulated endometrial stromal cells in the absence or presence of metfromin. Metformin suppressed EP-induced MMP-2 and MMP-9 upregulation. Metformin alleviated EP-triggered p38 MAPK inactivation and PGR (PGRA and PGRB) expression. Metfromin had no effect on ERK1/2 signaling in EP-stimulated endometrial stromal cells. CONCLUSION Metformin alleviated EP-induced decidualization of endometrial stromal cells by modulating secretion of multiple cytokines, inhibiting expression of MMP-2 and MMP-9, activating p38-MAPK signaling and reducing PGR expression, providing a deep insight into the molecular basis of metfromin therapy for PCOS patients.
Collapse
|
32
|
Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin 2018; 39:1176-1188. [PMID: 29877321 PMCID: PMC6289384 DOI: 10.1038/aps.2018.40] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Leptin, an adipokine that is implicated in the control of food intake via appetite suppression, may also stimulate oxidative stress, inflammation, thrombosis, arterial stiffness, angiogenesis and atherogenesis. These leptin-induced effects may predispose to the development of cardiovascular diseases. In the present review we discuss the evidence linking leptin levels with the presence, severity and/or prognosis of both coronary artery disease and non-cardiac vascular diseases such as stroke, carotid artery disease, peripheral artery disease (PAD) and abdominal aortic aneurysms (AAA) as well as with chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM). Leptin levels have been positively associated with the presence, severity, extent and lesion complexity of coronary atherosclerosis as well as with the presence, severity and poor clinical outcomes of both ischemic and hemorrhagic strokes. But conflicting results also exist. Furthermore, leptin was reported to independently predict common carotid intima-media thickness and carotid plaque instability. A link between hyperleptinemia and PAD has been reported, whereas limited data were available on the potential association between leptin and AAA. Elevated leptin concentrations have also been related to CKD incidence and progression as well as with insulin resistance, T2DM, micro- and macrovascular diabetic complications. Statins and antidiabetic drugs (including sitagliptin, metformin, pioglitazone, liraglutide and empagliflozin) may affect leptin levels. Further research is needed to establish the potential use (if any) of leptin as a therapeutic target in these diseases.
Collapse
Affiliation(s)
- Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK.
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
La diabetes mellitus como factor protector del aneurisma de aorta abdominal: posibles mecanismos. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:181-187. [DOI: 10.1016/j.arteri.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 11/22/2022]
|
34
|
Tan BL, Norhaizan ME, Liew WPP. Nutrients and Oxidative Stress: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9719584. [PMID: 29643982 PMCID: PMC5831951 DOI: 10.1155/2018/9719584] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Cigarette Smoking and Adipose Tissue: The Emerging Role in Progression of Atherosclerosis. Mediators Inflamm 2017; 2017:3102737. [PMID: 29445255 PMCID: PMC5763059 DOI: 10.1155/2017/3102737] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Smoking is an established risk factor for atherosclerosis through several underlying pathways. Moreover, in the development of atherosclerotic plaque formation, obesity, defined as excess fat mass accumulation, also plays a vital role in dyslipidemia and insulin resistance. Substantial evidence shows that cigarette smoking induces multiple pathological effects in adipose tissue, such as differentiation of adipocytes, lipolysis, and secretion properties in adipose tissue. Therefore, there is an emerging speculation in which adipose tissue abnormality induced by smoking or nicotine is likely to accelerate the progression of atherosclerosis. Herein, this review aims to investigate the possible interplay between smoking and adipose tissue dysfunction in the development of atherosclerosis.
Collapse
|
36
|
Yu YM, Tsai CC, Tzeng YW, Chang WC, Chiang SY, Lee MF. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells. Can J Physiol Pharmacol 2017; 95:811-818. [PMID: 28177667 DOI: 10.1139/cjpp-2016-0398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation and vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Ya-Mei Yu
- a Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chiang-Chin Tsai
- b Department of Surgery, Tainan Sin-Lau Hospital, Tainan, Taiwan
- c Department of Health Care Administration, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Wen Tzeng
- d Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Weng-Cheng Chang
- e Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Su-Yin Chiang
- f Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Ming-Fen Lee
- a Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| |
Collapse
|
37
|
Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res 2017; 118:1786-807. [PMID: 27230642 DOI: 10.1161/circresaha.115.306885] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.
Collapse
Affiliation(s)
- José J Fuster
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| | - Noriyuki Ouchi
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Noyan Gokce
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| |
Collapse
|
38
|
Inflammatory Cytokines as Uremic Toxins: "Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son". Toxins (Basel) 2017; 9:toxins9040114. [PMID: 28333114 PMCID: PMC5408188 DOI: 10.3390/toxins9040114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease is among the fastest growing causes of death worldwide. An increased risk of all-cause and cardiovascular death is thought to depend on the accumulation of uremic toxins when glomerular filtration rate falls. In addition, the circulating levels of several markers of inflammation predict mortality in patients with chronic kidney disease. Indeed, a number of cytokines are listed in databases of uremic toxins and uremic retention solutes. They include inflammatory cytokines (IL-1β, IL-18, IL-6, TNFα), chemokines (IL-8), and adipokines (adiponectin, leptin and resistin), as well as anti-inflammatory cytokines (IL-10). We now critically review the cytokines that may be considered uremic toxins. We discuss the rationale to consider them uremic toxins (mechanisms underlying the increased serum levels and evidence supporting their contribution to CKD manifestations), identify gaps in knowledge, discuss potential therapeutic implications to be tested in clinical trials in order to make this knowledge useful for the practicing physician, and identify additional cytokines, cytokine receptors and chemokines that may fulfill the criteria to be considered uremic toxins, such as sIL-6R, sTNFR1, sTNFR2, IL-2, CXCL12, CX3CL1 and others. In addition, we suggest that IL-10, leptin, adiponectin and resistin should not be considered uremic toxins toxins based on insufficient or contradictory evidence of an association with adverse outcomes in humans or preclinical data not consistent with a causal association.
Collapse
|
39
|
New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 2017; 103:41-55. [PMID: 28237775 DOI: 10.1016/j.fct.2017.02.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Ferulic acid, a natural phytochemical has gained importance as a potential therapeutic agent by virtue of its easy commercial availability, low cost and minimal side-effects. It is a derivative of curcumin and possesses the necessary pharmacokinetic properties to be retained in the general circulation for several hours. The therapeutic effects of ferulic acid are mediated through its antioxidant and anti-inflammatory properties. It exhibits different biological activities such as anti-inflammatory, anti-apoptotic, anti-carcinogenic, anti-diabetic, hepatoprotective, cardioprotective, neuroprotective actions, etc. The current review addresses its therapeutic effects under different pathophysiological conditions (eg. cancer, cardiomyopathy, skin disorders, brain disorders, viral infections, diabetes etc.).
Collapse
|
40
|
Wang L, Djousse L, Song Y, Akinkuolie AO, Matsumoto C, Manson JE, Gaziano JM, Sesso HD. Associations of Diabetes and Obesity with Risk of Abdominal Aortic Aneurysm in Men. J Obes 2017; 2017:3521649. [PMID: 28326193 PMCID: PMC5343258 DOI: 10.1155/2017/3521649] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/29/2017] [Indexed: 12/24/2022] Open
Abstract
Background. The associations of diabetes and obesity with the risk of abdominal aortic aneurysm (AAA) are inconclusive in previous studies. Subjects/Methods. We conducted prospective analysis in the Physicians' Health Study. Among 25,554 male physicians aged ≥ 50 years who reported no AAA at baseline, 471 reported a newly diagnosed AAA during a mean of 10.4 years' follow-up. Results. Compared with men who had baseline body mass index (BMI) < 25 kg/m2, the multivariable hazard ratio (HR [95% CI]) of newly diagnosed AAA was 1.30 [1.06-1.59] for BMI 25-<30 kg/m2 and 1.69 [1.24-2.30] for BMI ≥ 30 kg/m2. The risk of diagnosed AAA was significantly higher by 6% with each unit increase in baseline BMI. This association was consistent regardless of the other known AAA risk factors and preexisting vascular diseases. Overall, baseline history of diabetes tended to be associated with a lower risk of diagnosed AAA (HR = 0.79 [0.57-1.11]); this association appeared to vary by follow-up time (HR = 1.56 and 0.63 during ≤ and >2 years' follow-up, resp.). Conclusion. In a large cohort of middle-aged and older men, obesity was associated with a higher risk, while history of diabetes tended to associate with a lower risk of diagnosed AAA, particularly over longer follow-up.
Collapse
Affiliation(s)
- Lu Wang
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- *Lu Wang:
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
| | - Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Akintunde O. Akinkuolie
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Chisa Matsumoto
- Department of Clinical Epidemiology, Division of Cardiology, Tokyo Medical University Hospital, Tokyo, Japan
| | - JoAnn E. Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - J. Michael Gaziano
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
| | - Howard D. Sesso
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
41
|
Cho JG, Song JJ, Choi J, Im GJ, Jung HH, Chae SW. The suppressive effects of metformin on inflammatory response of otitis media model in human middle ear epithelial cells. Int J Pediatr Otorhinolaryngol 2016; 89:28-32. [PMID: 27619024 DOI: 10.1016/j.ijporl.2016.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Metformin is a well-known anti-diabetic agent, but its mechanism is unclear. Recently, many reports have described the anti-inflammatory effects of metformin on various cell types, including human vascular smooth muscle cells and endothelial cells. This study was designed to investigate the anti-inflammatory effect of metformin on lipopolysaccharide (LPS) induced inflammation in human middle ear epithelial cell lines (HMEECs). METHODS The effect of pretreatment by metformin (0, 1, 2, 4 mM) was evaluated by the inflammatory response in the HMEECs exposed to LPS (10 ng/ml). For verifying the suppression effect of metformin on the inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) was evaluated by real-time polymerase chain reaction, and COX-2 protein was assessed by western blotting. Intracellular reactive oxygen species (ROS) was measured using 2', 7'-dichlorofluorescein diacetate (DCFHDA) fluorocytometer. RESULTS Stimulation by LPS 10 ng/ml concentration showed 12.4 folds increase the expression of TNF-α mRNA compared to control on HMEECs. Pretreatment of metformin dose dependently suppressed the expression of TNF-α mRNA induced by LPS (2 mM, p = 0.03). The amount of COX-2 protein production was significantly decreased by metformin pretreatment (4 mM, p = 0.01). The production of ROS was decreased significantly by pretreatment of metformin (p = 0.03). CONCLUSIONS These findings suggest that the inflammatory response and oxidative stress induced by LPS could be suppressed by metformin in HMEECs. Therefore, metformin may have a therapeutic potential for the treatment of the otitis media.
Collapse
Affiliation(s)
- Jae Gu Cho
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Jae Jun Song
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - June Choi
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Gi Jung Im
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Hak Hyun Jung
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Sung Won Chae
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
42
|
Tsai YC, Leu SY, Peng YJ, Lee YM, Hsu CH, Chou SC, Yen MH, Cheng PY. Genistein suppresses leptin-induced proliferation and migration of vascular smooth muscle cells and neointima formation. J Cell Mol Med 2016; 21:422-431. [PMID: 27677429 PMCID: PMC5323876 DOI: 10.1111/jcmm.12986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/16/2016] [Indexed: 01/25/2023] Open
Abstract
Obesity is a strong risk factor for the development of cardiovascular diseases and is associated with a marked increase in circulating leptin concentration. Leptin is a peptide hormone mainly produced by adipose tissue and is regulated by energy level, hormones and various inflammatory mediators. Genistein is an isoflavone that exhibits diverse health‐promoting effects. Here, we investigated whether genistein suppressed the atherogenic effect induced by leptin. The A10 cells were treated with leptin and/or genistein, and then the cell proliferation and migration were analysed. The reactive oxygen species (ROS) and proteins levels were also measured, such as p44/42MAPK, cell cycle‐related protein (cyclin D1 and p21) and matrix metalloproteinase‐2 (MMP‐2). Immunohistochemistry and morphometric analysis were used for the neointima formation in a rat carotid artery injury model. Genistein (5 μM) significantly inhibited both the proliferation and migration of leptin (10 ng/ml)‐stimulated A10 cells. In accordance with these finding, genistein decreased the leptin‐stimulated ROS production and phosphorylation of the p44/42MAPK signal transduction pathway. Meanwhile, genistein reversed the leptin‐induced expression of cyclin D1, and cyclin‐dependent kinase inhibitor, p21. Genistein attenuated leptin‐induced A10 cell migration by inhibiting MMP‐2 activity. Furthermore, the leptin (0.25 mg/kg)‐augmented neointima formation in a rat carotid artery injury model was attenuated in the genistein (5 mg/kg body weight)‐treated group when compared with the balloon injury plus leptin group. Genistein was capable of suppressing the atherogenic effects of leptin in vitro and in vivo, and may be a promising candidate drug in the clinical setting.
Collapse
Affiliation(s)
- Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Sport Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sy-Ying Leu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hsiung Hsu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shen-Chieh Chou
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Mao-Hsiung Yen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
43
|
Hsu CY, Su YW, Chen YT, Tsai SH, Chang CC, Li SY, Huang PH, Chen JW, Lin SJ. Association between use of oral-antidiabetic drugs and the risk of aortic aneurysm: a nested case-control analysis. Cardiovasc Diabetol 2016; 15:125. [PMID: 27585542 PMCID: PMC5009543 DOI: 10.1186/s12933-016-0447-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/23/2016] [Indexed: 11/17/2022] Open
Abstract
Background Pleiotropic effects on cardiovascular protection have been suggested in several oral antidiabetic drugs (OAD). The impacts of OADs on aortic aneurysm (AA) growth have been found in animal studies, but the evidence of their beneficial effects for AA protection in human are lacking. We investigated the relationship between OAD therapy and the risk of developing AA. Methods We conducted a nested case–control analysis using the database extracted from Taiwan’s National Health Insurance Research Database. The database consists of 1.2 million diabetic patients representing the majority of the type 2 diabetes population in Taiwan from 2000 to 2013. Cases were identified as those with either inpatient or outpatient diagnosis code of AA. One control was selected for each case matching on duration of follow-up, age, sex, urbanization, monthly income, severity of diabetes, and risk factor for AA. We identified variable classes of OADs, including metformin, sulfonylureas, thiazolidinedione (TZD), alpha-glucosidase inhibitors, meglitinide, dipeptidyl peptidase-4 (DPP-4) inhibitors prior to the development of AA. Results A total of 4468 cases diagnosed with AA and 4468 matched controls were identified. Metformin use, sulfonylurea use, and TZD were associated with lower risk of developing AA, odds ratio [OR] 0.72 (95 % confidence interval [CI] 0.64–0.80), 0.82 (95 % CI 0.74–0.92), and 0.82 (95 % CI 0.69–0.98), respectively. The effects of metformin and sulfonylurea on AA were dose responsive. Neither alpha-glucosidase inhibitors (OR 0.95; 95 % CI 0.81–1.11) nor DPP-4 inhibitors (OR 0.85; 95 % CI 0.68–1.07) was significantly associated with AA events. Conclusions Metformin, sulfonylurea, and TZD treated patients were associated with lower risks of AA development, but not DPP-4 inhibitors or alpha-glucosidase inhibitor. The protective effects of hypoglycemic agents are further confirmed by the dose responsive relations in metformin and sulfonylurea groups.
Collapse
Affiliation(s)
- Chien-Yi Hsu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Wen Su
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Tai Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec.2, Cheng-Kung Road, Taipei, Taiwan.
| | - Chun-Chin Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan
| | - Szu-Yuan Li
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department of Medical Research, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Department of Medical Research, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
44
|
Abstract
Since the clinical demonstration of a protective effect of metformin against chronic diabetic angiopathy in the United Kingdom Prospective Diabetes Study, many data have accumulated which confirm such effects in acute or chronic situations as diverse as ischaemia, non-diabetic insulin resistant states and diabetes. Recent years have provided several mechanisms of action and further documented some unique properties of this compound such as improvements in microcirculatory flow, glycation and oxidative stress. In particular, the latter effect could be shown in mitochondria, i.e. the most important sources of reactive oxygen species in diabetes. Specific, non-toxic actions of metformin at the level of the mitochondrial respiratory chain also prevent apoptosis, another mechanism to explain the long-term protection afforded by metformin. Noteworthy, most of these effects of metformin are unrelated to drug dosage and largely independent of its antihyperglycaemic effect (intrinsic properties). These new data open potential avenues for larger therapeutic utilisations of this drug, 50 years after its launch for the treatment of type 2 diabetes.
Collapse
|
45
|
Takagi H. Association of diabetes mellitus with presence, expansion, and rupture of abdominal aortic aneurysm: "Curiouser and curiouser!" cried ALICE. Semin Vasc Surg 2016; 29:18-26. [PMID: 27823585 DOI: 10.1053/j.semvascsurg.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Both coronary artery and peripheral artery disease are representative atherosclerotic diseases that are positively associated with presence of abdominal aortic aneurysm (AAA). Diabetes mellitus, which is one of major risk factors of coronary artery and peripheral artery diseases, however, has been curiously suggested to be negatively associated with AAA, despite the positive associations of coronary artery and peripheral artery diseases with presence of AAA. In the present article, we overviewed epidemiologic evidence (meta-analyses) regarding the associations of diabetes mellitus with presence, expansion, and rupture of AAA through a systematic literature search. Our exhaustive search identified seven meta-analyses. Main results of almost all meta-analyses (except for the two earliest ones) apparently found that diabetes mellitus is negatively associated with presence, expansion, and rupture of AAA.
Collapse
Affiliation(s)
- Hisato Takagi
- Department of Cardiovascular Surgery, Shizuoka Medical Center, 762-1 Nagasawa, Shimizu-cho, Sunto-gun, Shizuoka 411-8611, Japan.
| | -
- Department of Cardiovascular Surgery, Shizuoka Medical Center, 762-1 Nagasawa, Shimizu-cho, Sunto-gun, Shizuoka 411-8611, Japan
| |
Collapse
|
46
|
Sahu S, Ganguly R, Raman P. Leptin augments recruitment of IRF-1 and CREB to thrombospondin-1 gene promoter in vascular smooth muscle cells in vitro. Am J Physiol Cell Physiol 2016; 311:C212-24. [PMID: 27281481 DOI: 10.1152/ajpcell.00068.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/02/2016] [Indexed: 01/26/2023]
Abstract
We previously reported that high pathophysiological concentrations of leptin, the adipocyte-secreted peptide, upregulate the expression of a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in vascular smooth muscle cells. Moreover, this regulation was found to occur at the level of transcription; however, the underlying molecular mechanisms remain unknown. The goal of the present study was to investigate the specific transcriptional mechanisms that mediate upregulation of TSP-1 expression by leptin. Primary human aortic smooth muscle cell cultures were transiently transfected with different TSP-1 gene (THBS1) promoter-linked luciferase reporter constructs, and luciferase activity in response to leptin (100 ng/ml) was assessed. We identified a long THBS1 promoter (-1270/+750) fragment with specific leptin response elements that are required for increased TSP-1 transcription by leptin. Promoter analyses, protein/DNA array and gel shift assays demonstrated activation and association of transcription factors, interferon regulatory factor-1 (IRF-1) and cAMP response element-binding protein (CREB), to the distal fragment of the THBS1 promoter in response to leptin. Supershift, chromatin immunoprecipitation, and coimmunoprecipitation assays revealed formation of a single complex between IRF-1 and CREB in response to leptin; importantly, recruitment of this complex to the THBS1 promoter mediated leptin-induced TSP-1 transcription. Finally, binding sequence decoy oligomer and site-directed mutagenesis revealed that regulatory elements for both IRF-1 (-1019 to -1016) and CREB (-1198 to -1195), specific to the distal THBS1 promoter, were required for leptin-induced TSP-1 transcription. Taken together, these findings demonstrate that leptin promotes a cooperative association between IRF-1 and CREB on the THBS1 promoter driving TSP-1 transcription in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
47
|
Why are kids with lupus at an increased risk of cardiovascular disease? Pediatr Nephrol 2016; 31:861-83. [PMID: 26399239 DOI: 10.1007/s00467-015-3202-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
Juvenile-onset systemic lupus erythematosus (SLE) is an aggressive multisystem autoimmune disease. Despite improvements in outcomes for adult patients, children with SLE continue to have a lower life expectancy than adults with SLE, with more aggressive disease, a higher incidence of lupus nephritis and there is an emerging awareness of their increased risk of cardiovascular disease (CVD). In this review, we discuss the evidence for an increased risk of CVD in SLE, its pathogenesis, and the clinical approach to its management.
Collapse
|
48
|
Sulforaphane improves dysregulated metabolic profile and inhibits leptin-induced VSMC proliferation: Implications toward suppression of neointima formation after arterial injury in western diet-fed obese mice. J Nutr Biochem 2016; 32:73-84. [PMID: 27142739 DOI: 10.1016/j.jnutbio.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
Abstract
Sulforaphane (SFN), a dietary phase-2 enzyme inducer that mitigates cellular oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) activation, is known to exhibit beneficial effects in the vessel wall. For instance, it inhibits vascular smooth muscle cell (VSMC) proliferation, a major event in atherosclerosis and restenosis after angioplasty. In particular, SFN attenuates the mitogenic and pro-inflammatory actions of platelet-derived growth factor (PDGF) and tumor necrosis factor-α (TNFα), respectively, in VSMCs. Nevertheless, the vasoprotective role of SFN has not been examined in the setting of obesity characterized by hyperleptinemia and insulin resistance. Using the mouse model of western diet-induced obesity, the present study demonstrates for the first time that subcutaneous delivery of SFN (0.5mg/Kg/day) for~3weeks significantly attenuates neointima formation in the injured femoral artery [↓ (decrease) neointima/media ratio by~60%; n=5-8]. This was associated with significant improvements in metabolic parameters, including ↓ weight gain by~52%, ↓ plasma leptin by~42%, ↓ plasma insulin by~63%, insulin resistance [↓ homeostasis model assessment of insulin resistance (HOMA-IR) index by~73%], glucose tolerance (↓ AUCGTT by~24%), and plasma lipid profile (e.g., ↓ triglycerides). Under in vitro conditions, SFN significantly decreased leptin-induced VSMC proliferation by~23% (n=5) with associated diminutions in leptin-induced cyclin D1 expression and the phosphorylation of p70S6kinase and ribosomal S6 protein (n=3-4). The present findings reveal that, in addition to improving systemic metabolic parameters, SFN inhibits leptin-induced VSMC proliferative signaling that may contribute in part to the suppression of injury-induced neointima formation in diet-induced obesity.
Collapse
|
49
|
Ismaiel AAK, Espinosa-Oliva AM, Santiago M, García-Quintanilla A, Oliva-Martín MJ, Herrera AJ, Venero JL, de Pablos RM. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicol Appl Pharmacol 2016; 298:19-30. [PMID: 26971375 DOI: 10.1016/j.taap.2016.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 03/08/2016] [Indexed: 01/11/2023]
Abstract
Metformin is a widely used oral antidiabetic drug with known anti-inflammatory properties due to its action on AMPK protein. This drug has shown a protective effect on various tissues, including cortical neurons. The aim of this study was to determine the effect of metformin on the dopaminergic neurons of the substantia nigra of mice using the animal model of Parkinson's disease based on the injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an inhibitor of the mitochondrial complex I. In vivo and in vitro experiments were used to study the activation of microglia and the damage of the dopaminergic neurons. Our results show that metformin reduced microglial activation measured both at cellular and molecular levels. Rather than protecting, metformin exacerbated dopaminergic damage in response to MPTP. Our data suggest that, contrary to other brain structures, metformin treatment could be deleterious for the dopaminergic system. Hence, metformin treatment may be considered as a risk factor for the development of Parkinson's disease.
Collapse
Affiliation(s)
- Afrah A K Ismaiel
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ana M Espinosa-Oliva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Martiniano Santiago
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Albert García-Quintanilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María J Oliva-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Antonio J Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José L Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Rocío M de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
50
|
Ryan MJ, Coleman TT, Sasser JM, Pittman KM, Hankins MW, Stec DE. Vascular smooth muscle-specific deletion of the leptin receptor attenuates leptin-induced alterations in vascular relaxation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R960-7. [PMID: 26936780 DOI: 10.1152/ajpregu.00336.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
Abstract
Obesity is a risk factor for cardiovascular disease and is associated with increased plasma levels of the adipose-derived hormone leptin. Vascular smooth muscle cells (VSMC) express leptin receptors (LepR); however, their physiological role is unclear. We hypothesized that leptin, at levels to mimic morbid obesity, impairs vascular relaxation. To test this, we used control and VSM-LepR knockout mice (VSM-LepR KO) created with a tamoxifen-inducible specific Cre recombinase to delete the LepR gene in VSMC. Control (10-12 wk old) and VSM-LepR KO (10-12 wk old) mice were fed a diet containing tamoxifen (50 mg/kg) for 6 wk, after which vascular reactivity was studied in isolated carotid arteries using an organ chamber bath. Vessels were incubated with leptin (100 ng/ml) or vehicle (0.1 mM Tris·HCl) for 30 min. Leptin treatment resulted in significant impairment of vessel relaxation to the endothelial-specific agonist acetylcholine (ACh). When these experiments were repeated in the presence of the superoxide scavenger tempol, relaxation responses to ACh were restored. VSM-LepR deletion resulted in a significant attenuation of leptin-mediated impaired ACh-induced relaxation. These data show that leptin directly impairs vascular relaxation via a VSM-LepR-mediated mechanism, suggesting a potential pathogenic role for leptin to increase cardiovascular risk during obesity.
Collapse
Affiliation(s)
- Michael J Ryan
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| | - T Taylor Coleman
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Katarina M Pittman
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| | - Michael W Hankins
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| |
Collapse
|