1
|
Kilani Y, Alsakarneh S, Madi MY, Mosquera DAG, Ferreira MN, Jaber F, Helzberg J, Duong N, Syn WK. Autoimmune Hepatitis and Vitamin D Deficiency: A Nationwide Perspective. Aliment Pharmacol Ther 2025; 61:682-692. [PMID: 39660607 DOI: 10.1111/apt.18438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Vitamin D deficiency is linked to worse outcomes in patients with chronic liver diseases (CLD). However, data in patients with autoimmune hepatitis (AIH) remain limited. AIMS We aimed to assess the impact of vitamin D deficiency on the outcomes of individuals with AIH. METHODS This retrospective cohort study used the TriNetX research network to identify patients with AIH. Patients were matched using propensity score matching and stratified to sufficient vitamin D levels (e.g., 25 (OH) D3 ≥ 30 ng/mL), vitamin D insufficiency (25 (OH) D3: 20-29.9 ng/mL) and vitamin D deficiency (e.g., 25 (OH) D3 < 20 ng/mL). The primary outcome was the all-cause mortality among adult patients with AIH. Secondary outcomes included decompensated liver cirrhosis, acute hepatic failure, liver transplantation (LT), all-cause hospitalizations and all-cause critical care admissions. RESULTS A total of 1288 AIH patients with vitamin D deficiency were identified and propensity matched with 1288 patients with normal vitamin D levels. Patients with vitamin D deficiency had significantly increased odds for all-cause mortality compared to those with normal levels (adjusted odds ratio (aOR) = 3.2, 95%CI: 2.3-4.48). Patients with vitamin D deficiency were at increased odds of all-cause hospitalizations (aOR = 2.37, 95%CI: 1.97-2.84), critical care unit admissions (aOR = 2.8, 95%CI: 2.21-3.71), decompensated liver cirrhosis (aOR = 2.74, 95%CI: 2.13-3.54), acute hepatic failure (aOR = 3.11, 95%CI: 2.09-4.62) and LT (aOR = 3.47, 95%CI: 1.71-7.04), as compared to those with normal vitamin D levels. CONCLUSION This cohort study showed significantly increased odds for all-cause mortality in AIH patients with vitamin D deficiency. Vitamin D deficiency in patients with AIH was associated with increased likelihood of hospitalisation, decompensated liver cirrhosis, acute liver failure and LT.
Collapse
Affiliation(s)
- Yassine Kilani
- Department of Medicine, NYC Health + Hospitals, Lincoln - Weill Cornell Medical College Affiliate, New York, New York, USA
| | - Saqr Alsakarneh
- Department of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Mahmoud Y Madi
- Division of Gastroenterology & Hepatology, Department of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Mariana Nunes Ferreira
- Department of Medicine, NYC Health + Hospitals, Lincoln - Weill Cornell Medical College Affiliate, New York, New York, USA
| | - Fouad Jaber
- Department of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Helzberg
- Department of Gastroenterology & Hepatology, University of Missouri-Kansas City, Missouri, USA
| | - Nikki Duong
- Department of Gastroenterology and Hepatology, Stanford University, Stanford, Palo Alto, USA
| | - Wing-Kin Syn
- Division of Gastroenterology & Hepatology, Department of Medicine, Saint Louis University, St. Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
| |
Collapse
|
2
|
Zhang Z, Yu X, Cheng G. Vitamin D sensitizes cervical cancer to radiation-induced apoptosis by inhibiting autophagy through degradation of Ambra1. Cell Death Discov 2025; 11:1. [PMID: 39753527 PMCID: PMC11698873 DOI: 10.1038/s41420-024-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Cervical cancer (CC) is becoming a major health issue globally, and radiotherapy plays a crucial role in its treatment. However, the prognosis of some patients remains poor due to tumor resistance to the therapy. This study aimed to explore whether vitamin D could confer a more radiosensitive phenotype in CC based on our previous findings and detection using the database. We found that vitamin D sensitized vitamin D receptor (VDR)-positive CC cells (Siha and Caski) to the cytotoxic effects of radiation in vivo and in vitro. We examined conventional radiation-induced cell death, such as DNA damage and cell cycle arrest, in vitamin D-treated cells to detect the underlying mechanism, but no association was observed between them. Subsequently, our proteome analysis exhibited that autophagy was reduced in irradiated CCs treated with vitamin D, and apoptosis displayed the opposite effect. Moreover, we confirmed that vitamin D-pretreated irradiated cells displayed reduced autophagy activity mediated by the Ambra1 downregulation, and the elevation of apoptosis was attributed to the activation of caspase 8. Importantly, the pharmacological inhibition of caspases or the Ambra1 overexpression could restore tumor proliferation under the vitamin D and radiation combination treatment. Hence, the aforementioned findings revealed the essential impact of vitamin D in terms of enhancing radiosensitivity in CC meditated by inhibiting autophagy and proposed the addition of vitamin D as a viable strategy to improve the therapeutic efficacy of VDR-positive CC.
Collapse
Affiliation(s)
- Zhaoming Zhang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinyue Yu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Aladdin N, Ghareib SA. Vitamin D3 Exerts a Neuroprotective Effect in Metabolic Syndrome Rats: Role of BDNF/TRKB/Akt/GS3Kβ Pathway. J Biochem Mol Toxicol 2024; 38:e70082. [PMID: 39651608 DOI: 10.1002/jbt.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Metabolic syndrome (MetS) is usually associated with cognitive impairment, neuropathic pain, and reduced brain-derived neurotrophic factor (BDNF) levels. BDNF via tropomyosin receptor kinase B (TrkB) exerts neuroprotection by activating protein kinase B (Akt) to inhibit glycogen synthase kinase-3β (GSK3β). Although Vitamin D3 (VitD3) has demonstrated favorable metabolic and neuronal outcomes in MetS, the precise molecular mechanisms underlying its neuroprotective effects remain poorly elucidated. We aimed to test the hypothesis that VitD3 mitigates MetS-induced cognition deficits and neuropathic pain via modulating the BDNF/TRKB/Akt/GS3Kβ signaling pathway. MetS was induced in male rats by 10% fructose-supplemented water and 3% salt-enriched diet. After 6 weeks, normal and MetS rats received either vehicle or VitD3 (10 µg/kg/day) for an additional 6 weeks. Glycemic status, lipid profile, and behavioral changes were assessed. The advanced glycation end products (AGEs), and markers of inflammation (TNF-α and NF-κB), oxidative stress (malondialdehyde), and apoptosis (caspase3), as well as BDNF, TrkB, PI3K, Akt, GSK3β, phosphorylated tau, and amyloid beta (Aβ) were assessed in the cerebral cortex. MetS rats had deteriorated glycemic and lipid profiles, higher AGEs, reduced levels of BDNF, TrkB, PI3K, and active Akt, along with increased GSK3β levels, inflammation, oxidative stress, and apoptosis. These changes were associated with higher levels of cognitive impairment markers phosphorylated tau and Aβ, as well as behavioral changes indicative of cognitive impairment and neuropathic pain. VitD3 improved the cognitive and behavioral alterations, while mitigating the associated molecular derangements. Our results indicate that VitD3 may exert neuroprotective effects by modulating the BDNF/TrkB/PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Noha Aladdin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Reiter RJ, De Almeida Chuffa LG, Simão VA, Martín Giménez VM, De Las Heras N, Spandidos DA, Manucha W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int J Oncol 2024; 65:114. [PMID: 39450562 PMCID: PMC11575929 DOI: 10.3892/ijo.2024.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Significant advancements have been made in cancer therapy; however, limitations remain with some conventional approaches. Adjuvants are agents used alongside primary treatments to enhance their efficacy and the treatment outcomes of patients. Modern lifestyles contribute to deficiencies in melatonin and vitamin D. Limited sun exposure affects vitamin D synthesis, and artificial light at night suppresses melatonin production. Both melatonin and vitamin D possess anti‑inflammatory, immune‑boosting and anticancer properties, rendering them potential adjuvants of interest. Studies suggest melatonin and vitamin D supplementation may address antioxidant imbalances in lip, oral and pharyngeal cancers. Moreover, promising results from breast, head and neck, brain, and osteosarcoma research indicate potential for tumor growth inhibition, improved survival, and a better quality of life of patients with cancer. The radioprotective properties of melatonin and vitamin D are another exciting area of exploration, potentially enhancing radiotherapy effectiveness while reducing side effects. For its part, the sleep‑promoting effects of melatonin may indirectly benefit patients with cancer by influencing the immune system. Thus, the prevalence of vitamin D and melatonin deficiencies highlights the importance of supplementation, as lower levels can worsen side‑effects from cancer treatments. The present review explores the potential of combining melatonin and vitamin D as synergistic adjuvants for cancer therapy. These agents have shown promise individually in cancer prevention and treatment, and their combined effects warrant investigation. Therefore, large‑scale controlled trials are crucial to definitively determine the optimal dosage, safety and efficacy of this combination in improving the lives of patients with cancer.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Luiz Gustavo De Almeida Chuffa
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Virna Margarita Martín Giménez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Natalia De Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Walter Manucha
- Pharmacology Area, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
5
|
Anilkumar S A, Dutta S, Aboo S, Ismail A. Vitamin D as a modulator of molecular pathways involved in CVDs: Evidence from preclinical studies. Life Sci 2024; 357:123062. [PMID: 39288869 DOI: 10.1016/j.lfs.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Vitamin D deficiency (VDD) is a widespread global health issue, affecting nearly a billion individuals worldwide, and mounting evidence links it to an increased risk of cardiovascular diseases like hypertension, atherosclerosis, and heart failure. The discovery of vitamin D receptors and metabolizing enzymes in cardiac and vascular cells, coupled with experimental studies, underscores the complex relationship between vitamin D and cardiovascular health. This review aims to synthesize and critically evaluate the preclinical evidence elucidating the role of vitamin D in cardiovascular health. We examined diverse preclinical in vitro (cardiomyocyte cell line) models and in vivo models, including knockout mice, diet-induced deficiency, and disease-specific animal models (hypertension, hypertrophy and myocardial infarction). These studies reveal that vitamin D modulates vascular tone, and prevents fibrosis and hypertrophy through effects on major signal transduction pathways (NF-kB, Nrf2, PI3K/AKT/mTOR, Calcineurin/NFAT, TGF-β/Smad, AMPK) and influences epigenetic mechanisms governing inflammation, oxidative stress, and pathological remodeling. In vitro studies elucidate vitamin D's capacity to promote cardiomyocyte differentiation and inhibit pathological remodeling. In vivo studies further uncovered detrimental cardiac effects of VDD, while supplementation with vitamin D in cardiovascular disease (CVD) models demonstrated its protective effects by decreasing inflammation, attenuating hypertrophy, reduction in plaque formation, and improving cardiac function. Hence, this comprehensive review emphasizes the critical role of vitamin D in cardiovascular health and its potential as a preventive/therapeutic strategy in CVDs. However, further research is needed to translate these findings into clinical applications as there are discrepancies between preclinical and clinical studies.
Collapse
Affiliation(s)
- Athira Anilkumar S
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Soumam Dutta
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Shabna Aboo
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
6
|
Pegreffi F, Donati Zeppa S, Gervasi M, Fernández-Peña E, Annibalini G, Bartolacci A, Formiglio E, Agostini D, Barbato C, Sestili P, Patti A, Stocchi V, Bellomo RG. A Snapshot of Vitamin D Status, Performance, Blood Markers, and Dietary Habits in Runners and Non-Runners. Nutrients 2024; 16:3912. [PMID: 39599698 PMCID: PMC11597173 DOI: 10.3390/nu16223912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Vitamin D can influence athletic performance and infection risk. This study aimed to investigate vitamin D status, hematochemical factors, anthropometric and performance parameters, and dietary habits in runners (n = 23) and sedentary healthy individuals (non-runners, n = 22) during the autumn season. METHODS Both groups had their serum 25-Hydroxyvitamin D (ng/mL) levels, blood and performance parameters, and dietary habits measured. RESULTS Serum 25-Hydroxyvitamin D levels were significantly lower in non-runners (runners: males 30.0 ± 5.6, females 31.2 ± 5.2 vs. non-runners: males, 22.8 ± 6.5, females 24.7 ± 6.5 ng/mL, p < 0.001). White blood cells, monocyte, and neutrophil levels were higher in non-runners for both males and females. Among the subjects, 23 had optimal vitamin D levels (>29 ng/mL), while 22 had insufficient/deficient levels (<29 ng/mL), with a higher prevalence of insufficiency in non-runners compared to runners (63.6% vs. 34.8%; p = 0.053). Maximal isometric force and jump height were equal in both groups, but VO2max was higher in runners. Linear regression analysis identified monocyte count as the only predictor of vitamin D levels for both males (y = -24.452 x + 40.520; R2 = 0.200; p = 0.015) and females (y = -33.409 x + 45.240; R2 = 0.368; p = 0.003). CONCLUSIONS This study highlights significant differences in vitamin D status between runners and non-runners, with runners exhibiting higher serum 25-Hydroxyvitamin D levels, although this finding is likely due to the increased sun exposure that runners receive. It also provides valuable insights into the vitamin D status of healthy young sedentary individuals and runners, enhancing the understanding of how physical activity influences vitamin D levels.
Collapse
Affiliation(s)
- Francesco Pegreffi
- Department of Medicine and Surgery, School of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| | - Eneko Fernández-Peña
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, 01007 Vitoria-Gasteiz, Spain;
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| | - Eugenio Formiglio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| | - Claudia Barbato
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| | - Antonino Patti
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, 20132 Roma, Italy;
| | - Rosa Grazia Bellomo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (G.A.); (A.B.); (E.F.); (D.A.); (C.B.); (P.S.); (R.G.B.)
| |
Collapse
|
7
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Goyal A, Mehta H, Narang T, Vinay K, Chhabra S, Shilpa, Kaushik H, Kaur M, Sachdeva N, Dogra S. A double-blinded randomised control study to compare the effectiveness and safety of intralesional vitamin D 3 with intralesional triamcinolone and its correlation with tissue expression of vitamin D receptors in patients with keloid. Wound Repair Regen 2024; 32:696-703. [PMID: 39262166 DOI: 10.1111/wrr.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024]
Abstract
Intralesional steroids commonly used for keloid treatment have adverse effects like cutaneous atrophy and telangiectasias. Safer and more effective therapies are needed. Preliminary studies suggest intralesional vitamin D as a potential alternative treatment. The aim of this study was to compare efficacy and safety of intralesional vitamin D with triamcinolone for keloids, and correlate tissue expression of vitamin D receptors (VDRs) with treatment outcomes. Sixty patients were randomly assigned to two groups: Group A (intralesional vitamin D) and Group B (intralesional triamcinolone). Four injections were given at 4-week intervals, with an 8-week follow-up. Biopsies were taken pre- and post-treatment to examine VDR expression levels and treatment response correlation. The primary outcome of interest was the proportion of patients achieving a 50% reduction in Vancouver Scar Scale (VSS). Secondary outcomes included incidence of adverse effects, and changes in VDR expression before and after treatment. Baseline VSS scores were 9.73 ± 1.01 (vitamin D group) and 10.13 ± 1.07 (triamcinolone group). After treatment, mean VSS decreased to 5.17 ± 0.59 (vitamin D group, p < 0.001) and 4.77 ± 0.77 (triamcinolone group, p < 0.001), with significantly better response in latter (p = 0.03). More than 50% reduction in VSS score was higher in the triamcinolone group (76.7% vs. 50%, p = 0.032). No recurrences were noted during the 8-week follow-up. Hypopigmentation (80% vs. 36.7%, p < 0.001) and atrophy (73.3% vs. 40%, p = 0.009) were more common in the triamcinolone group. No significant difference in pre- and post-treatment VDR receptor expression was observed in either group. Both triamcinolone acetonide and vitamin D were effective for keloids. Triamcinolone was more efficacious, whereas vitamin D was safer, suggesting it as a viable alternative for keloid management.
Collapse
Affiliation(s)
- Aman Goyal
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hitaishi Mehta
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshavamurthy Vinay
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shilpa
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hitaishi Kaushik
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manjot Kaur
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Shaikh NA, Liu C, Yin Y, Baylink DJ, Tang X. 1,25-Dihydroxyvitamin D Enhances the Regenerative Function of Lgr5 + Intestinal Stem Cells In Vitro and In Vivo. Cells 2024; 13:1465. [PMID: 39273035 PMCID: PMC11394149 DOI: 10.3390/cells13171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestines without a cure. Current therapies suppress inflammation to prevent further intestinal damage. However, healing already damaged intestinal epithelia is still an unmet medical need. Under physiological conditions, Lgr5+ intestinal stem cells (ISCs) in the intestinal crypts replenish the epithelia every 3-5 days. Therefore, understanding the regulation of Lgr5+ ISCs is essential. Previous data suggest vitamin D signaling is essential to maintain normal Lgr5+ ISC function in vivo. Our recent data indicate that to execute its functions in the intestines optimally, 1,25(OH)2D requires high concentrations that, if present systemically, can cause hypercalcemia (i.e., blood calcium levels significantly higher than physiological levels), leading to severe consequences. Using 5-bromo-2'-deoxyuridine (BrdU) to label the actively proliferating ISCs, our previous data suggested that de novo synthesized locally high 1,25(OH)2D concentrations effectively enhanced the migration and differentiation of ISCs without causing hypercalcemia. However, although sparse in the crypts, other proliferating cells other than Lgr5+ ISCs could also be labeled with BrdU. This current study used high-purity Lgr5+ ISC lines and a mouse strain, in which Lgr5+ ISCs and their progeny could be specifically tracked, to investigate the effects of de novo synthesized locally high 1,25(OH)2D concentrations on Lgr5+ ISC function. Our data showed that 1,25(OH)2D at concentrations significantly higher than physiological levels augmented Lgr5+ ISC differentiation in vitro. In vivo, de novo synthesized locally high 1,25(OH)2D concentrations significantly elevated local 1α-hydroxylase expression, robustly suppressed experimental colitis, and promoted Lgr5+ ISC differentiation. For the first time, this study definitively demonstrated 1,25(OH)2D's role in Lgr5+ ISCs, underpinning 1,25(OH)2D's promise in IBD therapy.
Collapse
Affiliation(s)
- Nisar Ali Shaikh
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Chenfan Liu
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Shandong Public Health Clinical Center, Shandong University, Jinan 250013, China
| | - Yue Yin
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
10
|
Gupta VK, Sahu L, Sonwal S, Suneetha A, Kim DH, Kim J, Verma HK, Pavitra E, Raju GSR, Bhaskar L, Lee HU, Huh YS. Advances in biomedical applications of vitamin D for VDR targeted management of obesity and cancer. Biomed Pharmacother 2024; 177:117001. [PMID: 38936194 DOI: 10.1016/j.biopha.2024.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND 1,25(OH)2D3 is a fat-soluble vitamin, involved in regulating Ca2+ homeostasis in the body. Its storage in adipose tissue depends on the fat content of the body. Obesity is the result of abnormal lipid deposition due to the prolonged positive energy balance and increases the risk of several cancer types. Furthermore, it has been associated with vitamin D deficiency and defined as a low 25(OH)2D3 blood level. In addition, 1,25(OH)2D3 plays vital roles in Ca2+-Pi and glucose metabolism in the adipocytes of obese individuals and regulates the expressions of adipogenesis-associated genes in mature adipocytes. SCOPE AND APPROACH The present contribution focused on the VDR mediated mechanisms interconnecting the obese condition and cancer proliferation due to 1,25(OH)2D3-deficiency in humans. This contribution also summarizes the identification and development of molecular targets for VDR-targeted drug discovery. KEY FINDINGS AND CONCLUSIONS Several studies have revealed that cancer development in a background of 1,25(OH)2D3 deficient obesity involves the VDR gene. Moreover, 1,25(OH)2D3 is also known to influence several cellular processes, including differentiation, proliferation, and adhesion. The multifaceted physiology of obesity has improved our understanding of the cancer therapeutic targets. However, currently available anti-cancer drugs are notorious for their side effects, which have raised safety issues. Thus, there is interest in developing 1,25(OH)2D3-based therapies without any side effects.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Lipina Sahu
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Sonam Sonwal
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Achanti Suneetha
- Department of Pharmaceutical Analysis, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh 520010, India
| | - Dong Hyeon Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, Munich 85764, Germany
| | - Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Hyun Uk Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon 34133, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
11
|
Russo C, Valle MS, D’Angeli F, Surdo S, Malaguarnera L. Resveratrol and Vitamin D: Eclectic Molecules Promoting Mitochondrial Health in Sarcopenia. Int J Mol Sci 2024; 25:7503. [PMID: 39062745 PMCID: PMC11277153 DOI: 10.3390/ijms25147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcopenia refers to the progressive loss and atrophy of skeletal muscle function, often associated with aging or secondary to conditions involving systemic inflammation, oxidative stress, and mitochondrial dysfunction. Recent evidence indicates that skeletal muscle function is not only influenced by physical, environmental, and genetic factors but is also significantly impacted by nutritional deficiencies. Natural compounds with antioxidant properties, such as resveratrol and vitamin D, have shown promise in preventing mitochondrial dysfunction in skeletal muscle cells. These antioxidants can slow down muscle atrophy by regulating mitochondrial functions and neuromuscular junctions. This review provides an overview of the molecular mechanisms leading to skeletal muscle atrophy and summarizes recent advances in using resveratrol and vitamin D supplementation for its prevention and treatment. Understanding these molecular mechanisms and implementing combined interventions can optimize treatment outcomes, ensure muscle function recovery, and improve the quality of life for patients.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
12
|
Saidjalolov S, Coelho F, Mercier V, Moreau D, Matile S. Inclusive Pattern Generation Protocols to Decode Thiol-Mediated Uptake. ACS CENTRAL SCIENCE 2024; 10:1033-1043. [PMID: 38799667 PMCID: PMC11117725 DOI: 10.1021/acscentsci.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
Thiol-mediated uptake (TMU) is an intriguing enigma in current chemistry and biology. While the appearance of cell-penetrating activity upon attachment of cascade exchangers (CAXs) has been observed by many and is increasingly being used in practice, the molecular basis of TMU is essentially unknown. The objective of this study was to develop a general protocol to decode the dynamic covalent networks that presumably account for TMU. Uptake inhibition patterns obtained from the removal of exchange partners by either protein knockdown or alternative inhibitors are aligned with original patterns generated by CAX transporters and inhibitors and patterns from alternative functions (here cell motility). These inclusive TMU patterns reveal that the four most significant CAXs known today enter cells along three almost orthogonal pathways. Epidithiodiketopiperazines (ETP) exchange preferably with integrins and protein disulfide isomerases (PDIs), benzopolysulfanes (BPS) with different PDIs, presumably PDIA3, and asparagusic acid (AspA), and antisense oligonucleotide phosphorothioates (OPS) exchange with the transferrin receptor and can be activated by the removal of PDIs with their respective inhibitors. These findings provide a solid basis to understand and use TMU to enable and prevent entry into cells.
Collapse
Affiliation(s)
| | - Filipe Coelho
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vincent Mercier
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dimitri Moreau
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
13
|
Grzesiak M, Herian M, Kamińska K, Ajersch P. Insight into vitamin D 3 action within the ovary-Basic and clinical aspects. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:99-130. [PMID: 39059995 DOI: 10.1016/bs.apcsb.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Vitamin D3 is a fat-soluble secosteroid predominantly synthesized in the skin or delivered with a diet. Nevertheless, recently it is considered more as a hormone than a vitamin due to its pleiotropic function within the organism ensured by widely distributed vitamin D receptors and metabolic enzymes. Besides the main role in calcium and phosphorus homeostasis, vitamin D3 was shown to regulate many cellular and metabolic processes in normal and cancerous tissues within the immune system, the cardiovascular system, the respiratory system and the endocrine system. The ovary is an important extraskeletal tissue of vitamin D3 action and local metabolism, indicating its role in the regulation of ovarian functions upon physiological and pathological conditions. This chapter reviews firstly the updated information about vitamin D3 metabolism and triggered intracellular pathways. Furthermore, the basic information about ovarian physiology and several aspects of vitamin D3 effects within the ovary are presented. Finally, the special attention is paid into possible mechanism of vitamin D3 action within ovarian pathologies such as premature ovarian failure, polycystic ovary syndrome, and ovarian cancer, considering its clinical application as alternative therapy.
Collapse
Affiliation(s)
- Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | | | - Kinga Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Paula Ajersch
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Aleksova A, Janjusevic M, Zhou XNO, Zandonà L, Chicco A, Stenner E, Beltrami AP, D'Errico S, Sinagra G, Marketou M, Fluca AL, Zwas DR. Persistence of vitamin D deficiency among Italian patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis 2024; 34:1283-1294. [PMID: 38494368 DOI: 10.1016/j.numecd.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIMS Vitamin D deficiency is a common cardiovascular risk factor associated with the development of atherosclerosis. We evaluated changes in 25(OH)D concentrations in 1510 patients with acute myocardial infarction (AMI) over a long observation period, including the COVID-19 pandemic. METHODS AND RESULTS Patients were separated into four groups according to the year of enrolment, group 1 (2009-2010), group 2 (2014-2016), group 3 (2017-2019), and group 4 (2020-2022). The median 25(OH)D concentration in the overall cohort was 17.15 (10.3-24.7) ng/mL. The median plasma concentrations of 25(OH)D for groups 1, 2, 3, and 4 were 14.45 (7.73-22.58) ng/mL, 17.3 ng/mL (10.33-24.2), 18.95 (11.6-26.73) ng/mL and 19.05 (12.5-27.3) ng/mL, respectively. Although 25(OH)D levels increased over the years, the prevalence of vitamin D deficiency remained high in each group (68.4%, 61.4%, 53.8%, and 52% respectively). Hypovitaminosis D was predicted by the season influence (OR:2.03, p < 0.0001), higher body mass index (OR:1.25; p = 0.001), diabetes mellitus (OR:1.54; p = 0.001), smoking (OR:1.47; p = 0.001), older age (OR:1.07; p = 0.008), higher triglycerides levels (OR:1.02; p = 0.01), and female gender (OR:1.3; p = 0.038). After multivariable adjustment, vitamin D ≤ 20 ng/mL was an independent predictor of mortality. CONCLUSION Vitamin D deficiency is highly prevalent and persistent in patients with AMI despite a trend towards increasing 25(OH)D concentrations over the years. The frequent lockdowns did not reduce the levels of 25(OH)D in the fourth group. Low levels of 25(OH)D are an independent predictor of mortality.
Collapse
Affiliation(s)
- Aneta Aleksova
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | - Milijana Janjusevic
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Xin Ning Oriana Zhou
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Lorenzo Zandonà
- SC Laboratorio Unico, Ospedale Maggiore, ASUGI, 34125 Trieste, Italy
| | - Andrea Chicco
- SC Laboratorio Unico, Ospedale Maggiore, ASUGI, 34125 Trieste, Italy
| | - Elisabetta Stenner
- Department of Diagnostics, Azienda USL Toscana Nordovest, 57100 Livorno, Italy
| | | | - Stefano D'Errico
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Maria Marketou
- Heraklion University General Hospital, University of Crete, School of Medicine, Cardiology Department Crete, Greece
| | - Alessandra Lucia Fluca
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Donna R Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|
16
|
Jung H, Zarlenga D, Martin JC, Geldhof P, Hallsworth-Pepin K, Mitreva M. The identification of small molecule inhibitors with anthelmintic activities that target conserved proteins among ruminant gastrointestinal nematodes. mBio 2024; 15:e0009524. [PMID: 38358246 PMCID: PMC10936192 DOI: 10.1128/mbio.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Gastrointestinal nematode (GIN) infections are a major concern for the ruminant industry worldwide and result in significant production losses. Naturally occurring polyparasitism and increasing drug resistance that potentiate disease outcomes are observed among the most prevalent GINs of veterinary importance. Within the five major taxonomic clades, clade Va represents a group of GINs that predominantly affect the abomasum or small intestine of ruminants. However, the development of effective broad-spectrum anthelmintics against ruminant clade Va GINs has been challenged by a lack of comprehensive druggable genome resources. Here, we first assembled draft genomes for three clade Va species (Cooperia oncophora, Trichostrongylus colubriformis, and Ostertagia ostertagi) and compared them with closely related ruminant GINs. Genome-wide phylogenetic reconstruction showed a relationship among ruminant GINs structured by taxonomic classification. Orthogroup (OG) inference and functional enrichment analyses identified 220 clade Va-specific and Va-conserved OGs, enriched for functions related to cell cycle and cellular senescence. Further transcriptomic analysis identified 61 taxonomically and functionally conserved clade Va OGs that may function as drug targets for new broad-spectrum anthelmintics. Chemogenomic screening identified 11 compounds targeting homologs of these OGs, thus having potential anthelmintic activity. In in vitro phenotypic assays, three kinase inhibitors (digitoxigenin, K-252a, and staurosporine) exhibited broad-spectrum anthelmintic activities against clade Va GINs by obstructing the motility of exsheathed L3 (xL3) or molting of xL3 to L4. These results demonstrate valuable applications of the new ruminant GIN genomes in gaining better insights into their life cycles and offer a contemporary approach to discovering the next generation of anthelmintics.IMPORTANCEGastrointestinal nematode (GIN) infections in ruminants are caused by parasites that inhibit normal function in the digestive tract of cattle, sheep, and goats, thereby causing morbidity and mortality. Coinfection and increasing drug resistance to current therapeutic agents will continue to worsen disease outcomes and impose significant production losses on domestic livestock producers worldwide. In combination with ongoing therapeutic efforts, advancing the discovery of new drugs with novel modes of action is critical for better controlling GIN infections. The significance of this study is in assembling and characterizing new GIN genomes of Cooperia oncophora, Ostertagia ostertagi, and Trichostrongylus colubriformis for facilitating a multi-omics approach to identify novel, biologically conserved drug targets for five major GINs of veterinary importance. With this information, we were then able to demonstrate the potential of commercially available compounds as new anthelmintics.
Collapse
Affiliation(s)
- Hyeim Jung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | - John C. Martin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | | | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Yazarlou F, Alizadeh F, Lipovich L, Giordo R, Ghafouri-Fard S. Tracing vitamins on the long non-coding lane of the transcriptome: vitamin regulation of LncRNAs. GENES & NUTRITION 2024; 19:5. [PMID: 38475720 PMCID: PMC10935982 DOI: 10.1186/s12263-024-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
A major revelation of genome-scale biological studies in the post-genomic era has been that two-thirds of human genes do not encode proteins. The majority of non-coding RNA transcripts in humans are long non-coding RNA (lncRNA) molecules, non-protein-coding regulatory transcripts with sizes greater than 500 nucleotides. LncRNAs are involved in nearly every aspect of cellular physiology, playing fundamental regulatory roles both in normal cells and in disease. As result, they are functionally linked to multiple human diseases, from cancer to autoimmune, inflammatory, and neurological disorders. Numerous human conditions and diseases stem from gene-environment interactions; in this regard, a wealth of reports demonstrate that the intake of specific and essential nutrients, including vitamins, shapes our transcriptome, with corresponding impacts on health. Vitamins command a vast array of biological activities, acting as coenzymes, antioxidants, hormones, and regulating cellular proliferation and coagulation. Emerging evidence suggests that vitamins and lncRNAs are interconnected through several regulatory axes. This type of interaction is expected, since lncRNA has been implicated in sensing the environment in eukaryotes, conceptually similar to riboswitches and other RNAs that act as molecular sensors in prokaryotes. In this review, we summarize the peer-reviewed literature to date that has reported specific functional linkages between vitamins and lncRNAs, with an emphasis on mammalian models and humans, while providing a brief overview of the source, metabolism, and function of the vitamins most frequently investigated within the context of lncRNA molecular mechanisms, and discussing the published research findings that document specific connections between vitamins and lncRNAs.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Box 505055, Dubai, United Arab Emirates
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People's Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Box 505055, Dubai, United Arab Emirates.
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, 07100, Italy.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Li W, Zhuang Y, Shao SJ, Trivedi P, Zheng B, Huang GL, He Z, Zhang X. Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review). Mol Med Rep 2024; 29:39. [PMID: 38240082 PMCID: PMC10828999 DOI: 10.3892/mmr.2024.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
The intracellular pathway of Janus kinase/signal transducer and activator of transcription (JAK/STAT) and modification of nucleosome histone marks regulate the expression of proinflammatory mediators, playing an essential role in carcinogenesis, antiviral immunity and the interaction of host proteins with Herpesviral particles. The pathway has also been suggested to play a vital role in the clinical course of the acute infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS‑CoV‑2; known as coronavirus infection‑2019), a novel human coronavirus initially identified in the central Chinese city Wuhan towards the end of 2019, which evolved into a pandemic affecting nearly two million people worldwide. The infection mainly manifests as fever, cough, myalgia and pulmonary involvement, while it also attacks multiple viscera, such as the liver. The pathogenesis is characterized by a cytokine storm, with an overproduction of proinflammatory mediators. Innate and adaptive host immunity against the viral pathogen is exerted by various effectors and is regulated by different signaling pathways notably the JAK/STAT. The elucidation of the underlying mechanism of the regulation of mediating factors expressed in the viral infection would assist diagnosis and antiviral targeting therapy, which will help overcome the infection caused by SARS‑CoV‑2.
Collapse
Affiliation(s)
- Wenkai Li
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yunjing Zhuang
- Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Song-Jun Shao
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University of Rome, Rome I-00158, Italy
| | - Biying Zheng
- Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Guo-Liang Huang
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
19
|
Olszewska AM, Nowak JI, Myszczynski K, Słominski A, Żmijewski MA. Dissection of an impact of VDR and RXRA on the genomic activity of 1,25(OH) 2D 3 in A431 squamous cell carcinoma. Mol Cell Endocrinol 2024; 582:112124. [PMID: 38123121 PMCID: PMC10872374 DOI: 10.1016/j.mce.2023.112124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Human skin is the natural source, place of metabolism, and target for vitamin D3. The classical active form of vitamin D3, 1,25(OH)2D3, expresses pluripotent properties and is intensively studied in cancer prevention and therapy. To define the specific role of vitamin D3 receptor (VDR) and its co-receptor retinoid X receptor alpha (RXRA) in genomic regulation, VDR or RXRA genes were silenced in the squamous cell carcinoma cell line A431 and treated with 1,25(OH)2D3 at long incubation time points 24 h/72 h. Extending the incubation time of A431 WT (wild-type) cells with 1,25(OH)2D3 resulted in a two-fold increase in DEGs (differentially expressed genes) and a change in the amount of downregulated from 37% to 53%. VDR knockout led to a complete loss of 1,25(OH)2D3-induced genome-wide gene regulation at 24 h time point, but after 72 h, 20 DEGs were found, of which 75% were downregulated, and most of them belonged to the gene ontology group "immune response". This may indicate the existence of an alternative, secondary response to 1,25(OH)2D3. In contrast, treatment of A431 ΔRXRA cells with 1,25(OH)2D3 for 24 h only partially affected DEGs, suggesting RXRA-independent regulation. Interestingly, overexpression of classic 1,25(OH)2D3 targets, like CYP24A1 (family 24 of subfamily A of cytochrome P450 member 1) or CAMP (cathelicidin antimicrobial peptide) was found to be RXRA-independent. Also, immunofluorescence staining of A431 WT cells revealed partial VDR/RXRA colocalization after 24 h and 72 h 1,25(OH)2D3 treatment. Comparison of transcriptome changes induced by 1,25(OH)2D3 in normal keratinocytes vs. cancer cells showed high cell type specific expression pattern with only a few genes commonly regulated by 1,25(OH)2D3. Activation of the genomic pathway at least partially reversed the expression of cancer-related genes, forming a basis for anti-cancer activates of 1,25(OH)2D3. In summary, VDR or RXRA independent genomic activities of 1,25(OH)2D3 suggest the involvement of alternative factors, opening new challenges in this field.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland
| | - Kamil Myszczynski
- Centre of Biostatistics and Bioinformatics Analysis Medical University of Gdansk, 1aDebinki, 80-211 Gdansk, Poland
| | - Andrzej Słominski
- Department of Dermatology, University of Alabama at Birmingham, AL 35292, USA; Birmingham Veteran Administration Medical Center, Birmingham, AL 35292, USA
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211Gdansk, Poland.
| |
Collapse
|
20
|
Jain GK, Raina V, Grover R, Sharma J, Warsi MH, Aggarwal G, Kesharwani P. Revisiting the significance of nano-vitamin D for food fortification and therapeutic application. Drug Dev Ind Pharm 2024; 50:89-101. [PMID: 38175566 DOI: 10.1080/03639045.2023.2301478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Vitamin D (a prohormone) is an important micronutrient required by the body for skeletal homeostasis and a range of non-skeletal actions. Calcitriol, the active form of vitamin D, regulates a variety of cellular and metabolic processes through both genomic and nongenomic pathways. Often prescribed for treating rickets and osteoporosis, vitamin D deficiency can exacerbate various other medical conditions. SIGNIFICANCE, METHODS, AND RESULTS Despite its multifunctional uses, the sensitivity of vitamin D makes formulating an efficient drug delivery system a challenging task, which is further complicated by its poor aqueous solubility. Enhancing the oral absorption of vitamin D is vital in utilizing its full efficacy. Recent developments in encapsulation and nanotechnology have shown promising results in overcoming these constraints. CONCLUSION This review thus offers an insight to adequately comprehend the mechanistic pharmacology of vitamin D, its pathophysiological role, and justification of its medical indications, along with the benefits of utilizing nanotechnology for vitamin D delivery.
Collapse
Affiliation(s)
- Gaurav K Jain
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Vidya Raina
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Rakshita Grover
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Jagriti Sharma
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Geeta Aggarwal
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
21
|
Talib WH, Ahmed Jum’AH DA, Attallah ZS, Jallad MS, Al Kury LT, Hadi RW, Mahmod AI. Role of vitamins A, C, D, E in cancer prevention and therapy: therapeutic potentials and mechanisms of action. Front Nutr 2024; 10:1281879. [PMID: 38274206 PMCID: PMC10808607 DOI: 10.3389/fnut.2023.1281879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer, a leading global cause of mortality, arises from intricate interactions between genetic and environmental factors, fueling uncontrolled cell growth. Amidst existing treatment limitations, vitamins have emerged as promising candidates for cancer prevention and treatment. This review focuses on Vitamins A, C, E, and D because of their protective activity against various types of cancer. They are essential as human metabolic coenzymes. Through a critical exploration of preclinical and clinical studies via PubMed and Google Scholar, the impact of these vitamins on cancer therapy was analyzed, unraveling their complicated mechanisms of action. Interestingly, vitamins impact immune function, antioxidant defense, inflammation, and epigenetic regulation, potentially enhancing outcomes by influencing cell behavior and countering stress and DNA damage. Encouraging clinical trial results have been observed; however, further well-controlled studies are imperative to validate their effectiveness, determine optimal dosages, and formulate comprehensive cancer prevention and treatment strategies. Personalized supplementation strategies, informed by medical expertise, are pivotal for optimal outcomes in both clinical and preclinical contexts. Nevertheless, conclusive evidence regarding the efficacy of vitamins in cancer prevention and treatment is still pending, urging further research and exploration in this compelling area of study.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | | | - Zeena Shamil Attallah
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Mohanned Sami Jallad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Rawan Wamidh Hadi
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
22
|
Zeqaj I, Piffero R, Calzaducca E, Pirisi M, Bellan M. The Potential Role of Vitamin D Supplementation in Cognitive Impairment Prevention. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:628-637. [PMID: 36998124 DOI: 10.2174/1871527322666230328130417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Vitamin D is implicated in many processes in the central nervous system (CNS), such as neurogenesis, neurotransmitter synthesis, synaptogenesis and protection against oxidative stress, thereby exerting a neuroprotective effect. OBJECTIVE In the present review, we aimed to evaluate the potential benefit(s) of vitamin D supplementation for CNS aging in different clinical contexts. METHODS We performed a literature search, looking for clinical trials and randomized clinical trials evaluating the effect of vitamin D supplementation on different endpoints related to cognitive outcomes. RESULTS Firstly, we identified 16 papers dealing with the impact of vitamin D supplementation on cognitive function in healthy subjects; the current literature suggests a real role for vitamin D supplementation in the prevention of cognitive decay in this clinical setting. Conversely, two papers suggest that vitamin D supplementation may be beneficial in patients with mild cognitive impairment (MCI). Finally, current data on vitamin D in Alzheimer's disease are contradictory. CONCLUSION Vitamin D supplementation may improve the cognitive outcomes of patients with MCI, whereas there is no evidence that it may prevent dementia or modulate the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Iris Zeqaj
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, "AOU Maggiore della Carità", Novara, Italy
| | - Roberto Piffero
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, "AOU Maggiore della Carità", Novara, Italy
| | - Elisa Calzaducca
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, "AOU Maggiore della Carità", Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, "AOU Maggiore della Carità", Novara, Italy
- CAAD, (Center for Translational Research on Autoimmune and Allergic Disease) Università del Piemonte Orientale UPO, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, "AOU Maggiore della Carità", Novara, Italy
- CAAD, (Center for Translational Research on Autoimmune and Allergic Disease) Università del Piemonte Orientale UPO, Novara, Italy
| |
Collapse
|
23
|
Dong H, Chen S, Liang X, Cai Q, Zhang X, Xie J, Sun Z. Vitamin D and Its Receptors in Cervical Cancer. J Cancer 2024; 15:926-938. [PMID: 38230221 PMCID: PMC10788714 DOI: 10.7150/jca.87499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
Several studies have investigated the relationship between vitamin D (VD) and its receptors (VDR) and the risk of cervical cancer. However, the underlying mechanisms that underpin these associations remain incompletely comprehended. In this review, we analyzed the impacts of VD and VDR on cervical cancer and related mechanisms, and discussed the effects of VD, calcium, and other vitamins on cervical cancer. Our literature research found that VD, VDR and their related signaling pathways played indispensable roles in the occurrence and progression of cervical cancer. Epidemiological studies have established associations between VD, VDR, and cervical cancer susceptibility. Current studies have shown that the inhibitory effect of VD and VDR on cervical cancer may be attributed to a variety of molecules and pathways, such as the EAG potassium channel, HCCR-1, estrogen and its receptor, p53, pRb, TNF-α, the PI3K/Akt pathway, and the Wnt/β-catenin pathway. This review also briefly discussed the association between VDR gene polymorphisms and cervical cancer, albeit a comprehensive elucidation of this relationship remains an ongoing research endeavor. Additionally, the potential ramifications of VD, calcium, and other vitamins on cervical cancer has been elucidated, yet further exploration into the precise mechanistic underpinnings of these potential effects is warranted. Therefore, we suggest that further studies should focus on explorations into the intricate interplay among diverse molecular pathways and entities, elucidation of the mechanistic underpinnings of VDR polymorphic loci changes in the context of HPV infection and VD, inquiries into the mechanisms of VD in conjunction with calcium and other vitamins, as well as investigations of the efficacy of VD supplementation or VDR agonists as part of cervical cancer treatment strategies in the clinical trials.
Collapse
Affiliation(s)
- Hanyu Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Shiyue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Xiaoshan Liang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiliang Cai
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Juan Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Zhuoyu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
24
|
Łuczkowska K, Kulig P, Baumert B, Machaliński B. Vitamin D and K Supplementation Is Associated with Changes in the Methylation Profile of U266-Multiple Myeloma Cells, Influencing the Proliferative Potential and Resistance to Bortezomib. Nutrients 2023; 16:142. [PMID: 38201971 PMCID: PMC10780809 DOI: 10.3390/nu16010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that, despite recent advances in therapy, continues to pose a major challenge to hematologists. Currently, different classes of drugs are applied to treat MM, among others, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies. Most of them participate in an interplay with the immune system, hijacking its effector functions and redirecting them to anti-MM activity. Therefore, adjuvant therapies boosting the immune system may be potentially beneficial in MM therapy. Vitamin D (VD) and vitamin K (VK) have multiple so called "non-classical" actions. They exhibit various anti-inflammatory and anti-cancer properties. In this paper, we investigated the influence of VD and VK on epigenetic alterations associated with the proliferative potential of MM cells and the development of BTZ resistance. Our results showed that the development of BTZ resistance is associated with a global decrease in DNA methylation. On the contrary, both control MM cells and BTZ-resistant MM cells exposed to VD alone and to the combination of VD and VK exhibit a global increase in methylation. In conclusion, VD and VK in vitro have the potential to induce epigenetic changes that reduce the proliferative potential of plasma cells and may at least partially prevent the development of resistance to BTZ. However, further ex vivo and in vivo studies are needed to confirm the results and introduce new supplementation recommendations as part of adjuvant therapy.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
25
|
Popa AD, Niță O, Caba L, Gherasim A, Graur M, Mihalache L, Arhire LI. From the Sun to the Cell: Examining Obesity through the Lens of Vitamin D and Inflammation. Metabolites 2023; 14:4. [PMID: 38276294 PMCID: PMC10820276 DOI: 10.3390/metabo14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Obesity affects more than one billion people worldwide and often leads to cardiometabolic chronic comorbidities. It induces senescence-related alterations in adipose tissue, and senescence is closely linked to obesity. Fully elucidating the pathways through which vitamin D exerts anti-inflammatory effects may improve our understanding of local adipose tissue inflammation and the pathogenesis of metabolic disorders. In this narrative review, we compiled and analyzed the literature from diverse academic sources, focusing on recent developments to provide a comprehensive overview of the effect of vitamin D on inflammation associated with obesity and senescence. The article reveals that the activation of the NF-κB (nuclear factor kappa B subunit 1) and NLRP3 inflammasome (nucleotide-binding domain, leucine-rich-containing, pyrin domain-containing-3) pathways through the toll-like receptors, which increases oxidative stress and cytokine release, is a common mechanism underlying inflammation associated with obesity and senescence, and it discusses the potential beneficial effect of vitamin D in alleviating the development of subclinical inflammation. Investigating the main target cells and pathways of vitamin D action in adipose tissue could help uncover complex mechanisms of obesity and cellular senescence. This review summarizes significant findings related to opportunities for improving metabolic health.
Collapse
Affiliation(s)
- Alina Delia Popa
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Otilia Niță
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lavinia Caba
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Andreea Gherasim
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Laura Mihalache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lidia Iuliana Arhire
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| |
Collapse
|
26
|
Máčová L, Kancheva R, Bičíková M. Molecular Regulation of the CNS by Vitamin D. Physiol Res 2023; 72:S339-S356. [PMID: 38116771 DOI: 10.33549/physiolres.935248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Vitamin D is a lipid-soluble vitamin that can be found in some foods. It is also produced endogenously (in the presence of ultraviolet light), transported through the blood to the targets organs and this is the reason to consider vitamin D as a hormone. It is known that vitamin D has genomic and non-genomic effects. This review is focused mainly on the vitamin D receptors, the importance of vitamin D as a neuromodulator, the role of vitamin D in the pathophysiology of devastating neurological disorders such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and the benefit of vitamin D and its derivates in alleviating these disorders.
Collapse
Affiliation(s)
- L Máčová
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic
| | | | | |
Collapse
|
27
|
Hrabia A, Kamińska K, Socha M, Grzesiak M. Vitamin D 3 Receptors and Metabolic Enzymes in Hen Reproductive Tissues. Int J Mol Sci 2023; 24:17074. [PMID: 38069397 PMCID: PMC10707381 DOI: 10.3390/ijms242317074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, vitamin D3 has been revealed as an important regulator of reproductive processes in humans and livestock; however, its role in the female reproductive system of poultry is poorly known. The aim of this study was to examine vitamin D3 receptor (VDR and PDIA3) and metabolic enzyme (1α-hydroxylase and 24-hydroxylase) mRNA transcript and protein abundances, and protein localization within the hen ovary, oviductal shell gland, pituitary, liver, and kidney. We demonstrated, for the first time, the patterns of the relative mRNA and protein abundances of examined molecules in the ovary, dependent on follicle development and the layer of follicle wall, as well as in other examined organs. Immunohistochemically, PDIA3, 1α-hydroxylase, and 24-hydroxylase are localized in follicular theca and granulosa layers, luminal epithelium and tubular glands of the shell gland, pituitary, liver, and kidney. These results indicate that reproductive tissues have both receptors, VDR, primarily involved in genomic action, and PDIA3, probably participating in the rapid, non-genomic effect of vitamin D3. The finding of 1α-hydroxylase and 24-hydroxylase expression indicates that the reproductive system of chickens has the potential for vitamin D3 synthesis and inactivation, and may suggest that locally produced vitamin D3 can be considered as a significant factor in the orchestration of ovarian and shell gland function in hens. These results provide a new insight into the potential mechanisms of vitamin D3 action and metabolism in the chicken ovary and oviduct.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Kinga Kamińska
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Magdalena Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
28
|
Lalunio H, Parker L, Hanson ED, Gregorevic P, Levinger I, Hayes A, Goodman CA. Detecting the vitamin D receptor (VDR) protein in mouse and human skeletal muscle: Strain-specific, species-specific and inter-individual variation. Mol Cell Endocrinol 2023; 578:112050. [PMID: 37683909 DOI: 10.1016/j.mce.2023.112050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Vitamin D, and its receptor (VDR), play roles in muscle development/function, however, VDR detection in muscle has been controversial. Using different sample preparation methods and antibodies, we examined differences in muscle VDR protein abundance between two mouse strains and between mice and humans. The mouse D-6 VDR antibody was not reliable for detecting VDR in mouse muscle, but was suitable for human muscle, while the rabbit D2K6W antibody was valid for mouse and human muscle. VDR protein was generally lower in muscles from C57 B l/6 than FVB/N mice and was higher in human than mouse muscle. Two putative VDR bands were detected in human muscle, possibly representing VDR isoforms/splice variants, with marked inter-individual differences. This study provides new information on detecting VDR in muscle and on inter-mouse strain and inter-human individual differences in VDR expression. These findings may have implications for future pre-clinical and clinical studies and prompt further investigation to confirm possible VDR isoforms in human muscle.
Collapse
Affiliation(s)
- Hannah Lalunio
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Erik D Hanson
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, The University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry and Molecular Biology, Monash University, VIC, Australia
| | - Itamar Levinger
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia; Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Alan Hayes
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia; Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, Victoria, Australia; Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Jamshidian-Ghalehsefidi N, Rabiee F, Tavalaee M, Kiani S, Pouriayevali F, Razi M, Dattilo M, Nasr-Esfahani MH. The role of the transsulfuration pathway in spermatogenesis of vitamin D deficient mice. Sci Rep 2023; 13:19173. [PMID: 37932339 PMCID: PMC10628119 DOI: 10.1038/s41598-023-45986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Vitamin D deficiency is a global health problem and has been linked to defective spermatogenesis and male infertility. In this study, we aimed to investigate the main enzymes involved in the transsulfuration pathway of 1-carbon metabolism, and spermatogenesis function. Therefore, sixteen male C57 mice were addressed to a control (standard diet) or vitamin D deficient (VDD) diet for 14 weeks. The results show that compared to the standard diet, VDD increased final body weight and reduced sperm quality, caused damage to the testicular structure, and decreased the serum levels of testosterone. In addition, serum concentrations of homocysteine, vitamin B12, and sperm oxidative stress markers increased. In testicular tissues, the CBS and CSE protein levels were down-regulated whereas HO-1 was up-regulated at both mRNA and protein expression levels. Within a mice deprivation model, VDD deeply suppressed testosterone and impaired spermatogenesis with oxidative stress-mediated mechanisms. The effects of the deprivation appeared to be at least in part independent of genomic and receptor-mediated vitamin D actions and suggest a specific impairment of the alternative transsulfuration pathway.
Collapse
Affiliation(s)
- Narges Jamshidian-Ghalehsefidi
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farzaneh Rabiee
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Shaghayegh Kiani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnaz Pouriayevali
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mazdak Razi
- Division of Histology and Embryology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Mohammad Hossein Nasr-Esfahani
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
30
|
Nowak JI, Olszewska AM, Piotrowska A, Myszczyński K, Domżalski P, Żmijewski MA. PDIA3 modulates genomic response to 1,25-dihydroxyvitamin D 3 in squamous cell carcinoma of the skin. Steroids 2023; 199:109288. [PMID: 37549780 DOI: 10.1016/j.steroids.2023.109288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
An active form of vitamin D3 (1,25-dihydroxyvitamin D3) acts through vitamin D receptor (VDR) initiating genomic response, but several studies described also non-genomic actions of 1,25-dihydroxyvitamin D3, implying the role of PDIA3 in the process. PDIA3 is a membrane-associated disulfide isomerase involved in disulfide bond formation, protein folding, and remodeling. Here, we used a transcriptome-based approach to identify changes in expression profiles in PDIA3-deficient squamous cell carcinoma line A431 after 1,25-dihydroxyvitamin D3 treatment. PDIA3 knockout led to changes in the expression of more than 2000 genes and modulated proliferation, cell cycle, and mobility of cells; suggesting an important regulatory role of PDIA3. PDIA3-deficient cells showed increased sensitivity to 1,25-dihydroxyvitamin D3, which led to decrease migration. 1,25-dihydroxyvitamin D3 treatment altered also genes expression profile of A431ΔPDIA3 in comparison to A431WT cells, indicating the existence of PDIA3-dependent genes. Interestingly, classic targets of VDR, including CAMP (Cathelicidin Antimicrobial Peptide), TRPV6 (Transient Receptor Potential Cation Channel Subfamily V Member 6), were regulated differently by 1,25-dihydroxyvitamin D3, in A431ΔPDIA3. Deletion of PDIA3 impaired 1,25-dihydroxyvitamin D3-response of genes, such as PTGS2, MMP12, and FOCAD, which were identified as PDIA3-dependent. Additionally, response to 1,25-dihydroxyvitamin D3 in cancerous A431 cells differed from immortalized HaCaT keratinocytes, used as non-cancerous control. Finally, silencing of PDIA3 and 1,25-dihydroxyvitamin D3, at least partially reverse the expression of cancer-related genes in A431 cells, thus targeting PDIA3 and use of 1,25-dihydroxyvitamin D3 could be considered in a prevention and therapy of the skin cancer. Taken together, PDIA3 has a strong impact on gene expression and physiology, including genomic response to 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| | - Paweł Domżalski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| |
Collapse
|
31
|
Argano C, Mirarchi L, Amodeo S, Orlando V, Torres A, Corrao S. The Role of Vitamin D and Its Molecular Bases in Insulin Resistance, Diabetes, Metabolic Syndrome, and Cardiovascular Disease: State of the Art. Int J Mol Sci 2023; 24:15485. [PMID: 37895163 PMCID: PMC10607188 DOI: 10.3390/ijms242015485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In the last decade, an increasing awareness was directed to the role of Vitamin D in non-skeletal and preventive roles for chronic diseases. Vitamin D is an essential hormone in regulating calcium/phosphorous balance and in the pathogenesis of inflammation, insulin resistance, and obesity. The main forms of vitamin D, Cholecalciferol (Vitamin D3) and Ergocalciferol (Vitamin D2) are converted into the active form (1,25-dihydroxyvitamin D) thanks to two hydroxylations in the liver, kidney, pancreas, and immune cells. Some anti-inflammatory cytokines are produced at higher levels by vitamin D, while some pro-inflammatory cytokines are released at lower levels. Toll-Like Receptor (TLR) expression is increased, and a pro-inflammatory state is also linked to low levels of vitamin D. Regardless of how it affects inflammation, various pathways suggest that vitamin D directly improves insulin sensitivity and secretion. The level of vitamin D in the body may change the ratio of pro- to anti-inflammatory cytokines, which would impact insulin action, lipid metabolism, and the development and function of adipose tissue. Many studies have demonstrated an inverse relationship between vitamin D concentrations and pro-inflammatory markers, insulin resistance, glucose intolerance, metabolic syndrome, obesity, and cardiovascular disease. It is interesting to note that several long-term studies also revealed an inverse correlation between vitamin D levels and the occurrence of diabetes mellitus. Vitamin D supplementation in people has controversial effects. While some studies demonstrated improvements in insulin sensitivity, glucose, and lipid metabolism, others revealed no significant effect on glycemic homeostasis and inflammation. This review aims to provide insight into the molecular basis of the relationship between vitamin D, insulin resistance, metabolic syndrome, type 1 and 2 diabetes, gestational diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Luigi Mirarchi
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Simona Amodeo
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Valentina Orlando
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Alessandra Torres
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, [PROMISE], University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
32
|
Jaratsittisin J, Sornjai W, Chailangkarn T, Jongkaewwattana A, Smith DR. The vitamin D receptor agonist EB1089 can exert its antiviral activity independently of the vitamin D receptor. PLoS One 2023; 18:e0293010. [PMID: 37847693 PMCID: PMC10581485 DOI: 10.1371/journal.pone.0293010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Vitamin D has been shown to have antiviral activity in a number of different systems. However, few studies have investigated whether the antiviral activity is exerted through the vitamin D receptor (VDR). In this study, we investigated whether the antiviral activity of a vitamin D receptor agonist (EB1089) towards dengue virus (DENV) was modulated by VDR. To undertake this, VDR was successively overexpressed, knocked down and retargeted through mutation of the nuclear localization signal. In no case was an effect seen on the level of the antiviral activity induced by EB1089, strongly indicating that the antiviral activity of EB1089 is not exerted through VDR. To further explore the antiviral activity of EB1089 in a more biologically relevant system, human neural progenitor cells were differentiated from induced pluripotent stem cells, and infected with Zika virus (ZIKV). EB1089 exerted a significant antiviral effect, reducing virus titers by some 2Log10. In support of the results seen with DENV, no expression of VDR at the protein level was observed. Collectively, these results show that the vitamin D receptor agonist EB1089 exerts its antiviral activity independently of VDR.
Collapse
Affiliation(s)
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| |
Collapse
|
33
|
Tarfeen N, Nisa KU, Ahmad MB, Waza AA, Ganai BA. Metabolic and Genetic Association of Vitamin D with Calcium Signaling and Insulin Resistance. Indian J Clin Biochem 2023; 38:407-417. [PMID: 37746541 PMCID: PMC10516840 DOI: 10.1007/s12291-022-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Various evidences have unveiled the significance of Vitamin D in diverse processes which include its action in prevention of immune dysfunction, cancer and cardiometabolic disorders. Studies have confirmed the function of VD in controlling the expression of approximately nine hundred genes including gene expression of insulin. VD insufficiency may be linked with the pathogenesis of diseases that are associated with insulin resistance (IR) including diabetes as well as obesity. Thus, VD lowers IR-related disorders such as inflammation and oxidative stress. This review provides an insight regarding the molecular mechanism manifesting, how insufficiency of VD may be connected with the IR and diabetes. It also discusses the effect of VD in maintaining the Ca2+ levels in beta cells of the pancreas and in the tissues that are responsive to insulin.
Collapse
Affiliation(s)
- Najeebul Tarfeen
- Centre of Research for Development, University of Kashmir, Srinagar, India
| | - Khair Ul Nisa
- Department of Environmental Science, University of Kashmir, Srinagar, India
| | - Mir Bilal Ahmad
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical Collage (GMC) Srinagar, Srinagar, J & K 190010 India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, India
| |
Collapse
|
34
|
Shah M, Poojari M, Nadig P, Kakkad D, Dutta SB, Sinha S, Chowdhury K, Dagli N, Haque M, Kumar S. Vitamin D and Periodontal Health: A Systematic Review. Cureus 2023; 15:e47773. [PMID: 37899906 PMCID: PMC10612541 DOI: 10.7759/cureus.47773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 10/31/2023] Open
Abstract
The role of vitamin D in maintaining gum well-being is crucial. However, scientific research reported that the connotations of cholecalciferol and periodontal health have been divested in the present literature. However, there is enormous heterogeneity in the data available. The current review aims to systematically review and appraise the available literature investigating the role of vitamin D in maintaining periodontal health. Studies included randomized controlled trials and clinical trials following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and cohort studies reporting associations between vitamin D and oral health in systemically healthy patients. Databases such as PubMed, Google Scholar, Scopus, Embase, and other sources, including hand search, were searched until May 2023 using together-equipped search sequences. Altogether, scientific articles that conform to the inclusion principles underwent a thorough eminence evaluation. All papers meeting inclusion criteria were subject to quality assessment, and the method used to assess the risk of bias was the Cochrane risk of bias tool. The search identified 1883 papers, among which 1435 were excluded after title evaluation. After abstract and title screening, 455 were excluded, and six full texts were assessed. After full-text evaluation, two articles were excluded, and only four were included. The data shows vitamin D's association with oral health maintenance. Along with its action on bone metabolism, it has extended function, which provides for its action as an anti-inflammatory agent and production of anti-microbial peptides, which help maintain oral health. Although the literature available is immense, there is enormous heterogenicity in the papers conducted to appraise the association between vitamin D and oral health. This systematic review has filtered all the data to review a few essential aspects of the role of vitamin D in maintaining oral physiology. Vitamin D has a linear relationship with periodontal health; however, the evidence is insufficient, and further studies must be done.
Collapse
Affiliation(s)
- Monali Shah
- Periodontology, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, IND
| | - Megha Poojari
- Periodontology, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, IND
| | - Prasad Nadig
- Periodontology, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, IND
| | - Dinta Kakkad
- Public Health Dentistry, Gujarat University, Ahmedabad, IND
| | | | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Kona Chowdhury
- Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Namrata Dagli
- Dental Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
35
|
Wimalawansa SJ. Infections and Autoimmunity-The Immune System and Vitamin D: A Systematic Review. Nutrients 2023; 15:3842. [PMID: 37686873 PMCID: PMC10490553 DOI: 10.3390/nu15173842] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Both 25-autoimmunity and(25(OH)D: calcifediol) and its active form, 1,25-dihydroxyvitamin D (1,25(OH)2D: calcitriol), play critical roles in protecting humans from invasive pathogens, reducing risks of autoimmunity, and maintaining health. Conversely, low 25(OH)D status increases susceptibility to infections and developing autoimmunity. This systematic review examines vitamin D's mechanisms and effects on enhancing innate and acquired immunity against microbes and preventing autoimmunity. The study evaluated the quality of evidence regarding biology, physiology, and aspects of human health on vitamin D related to infections and autoimmunity in peer-reviewed journal articles published in English. The search and analyses followed PRISMA guidelines. Data strongly suggested that maintaining serum 25(OH)D concentrations of more than 50 ng/mL is associated with significant risk reduction from viral and bacterial infections, sepsis, and autoimmunity. Most adequately powered, well-designed, randomized controlled trials with sufficient duration supported substantial benefits of vitamin D. Virtually all studies that failed to conclude benefits or were ambiguous had major study design errors. Treatment of vitamin D deficiency costs less than 0.01% of the cost of investigation of worsening comorbidities associated with hypovitaminosis D. Despite cost-benefits, the prevalence of vitamin D deficiency remains high worldwide. This was clear among those who died from COVID-19 in 2020/21-most had severe vitamin D deficiency. Yet, the lack of direction from health agencies and insurance companies on using vitamin D as an adjunct therapy is astonishing. Data confirmed that keeping an individual's serum 25(OH)D concentrations above 50 ng/mL (125 nmol/L) (and above 40 ng/mL in the population) reduces risks from community outbreaks, sepsis, and autoimmune disorders. Maintaining such concentrations in 97.5% of people is achievable through daily safe sun exposure (except in countries far from the equator during winter) or taking between 5000 and 8000 IU vitamin D supplements daily (average dose, for non-obese adults, ~70 to 90 IU/kg body weight). Those with gastrointestinal malabsorption, obesity, or on medications that increase the catabolism of vitamin D and a few other specific disorders require much higher intake. This systematic review evaluates non-classical actions of vitamin D, with particular emphasis on infection and autoimmunity related to the immune system.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Medicine, Endocrinology & Nutrition, Cardiometabolic & Endocrine Institute, North Brunswick, NJ 08902, USA
| |
Collapse
|
36
|
Gao N, Raduka A, Rezaee F. Vitamin D 3 protects against respiratory syncytial virus-induced barrier dysfunction in airway epithelial cells via PKA signaling pathway. Eur J Cell Biol 2023; 102:151336. [PMID: 37354621 PMCID: PMC10773979 DOI: 10.1016/j.ejcb.2023.151336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection in infants and young children globally and is responsible for hospitalization and mortality in the elderly population. Virus-induced airway epithelial barrier damage is a critical step during RSV infection, and emerging studies suggest that RSV disrupts the tight junctions (TJs) and adherens junctions (AJs) between epithelial cells, increasing the permeability of the airway epithelial barrier. The lack of commercially available vaccines and effective antiviral drugs for RSV emphasizes the need for new management strategies. Vitamin D3 is a promising intervention for viral infection due to its critical role in modulating innate immune responses. However, there is limited evidence on the effect of vitamin D3 on RSV pathogenies. Here, we investigated the impact of vitamin D3 on RSV-induced epithelial barrier dysfunction and the underlying mechanisms. We found that pre-incubation with 1,25(OH)2D3, the active form of vitamin D3, alleviated RSV-induced epithelial barrier disruption in a dose-dependent manner without affecting viability in 16HBE cells. 1,25(OH)2D3 induced minor changes in the protein expression level of TJ/AJ proteins in RSV-infected cells. We observed increased CREB phosphorylation at Ser133 during 1,25(OH)2D3 exposure, indicating that vitamin D3 triggered protein kinase A (PKA) activity in 16HBE. PKA inhibitors modified the restoration of barrier function by 1,25(OH)2D3 in RSV-infected cells, implying that PKA signaling is responsible for the protective effects of vitamin D3 against RSV-induced barrier dysfunction in airway epithelial cells. Our findings suggest vitamin D3 as a prophylactic intervention to protect the respiratory epithelium during RSV infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.
| |
Collapse
|
37
|
Kim HT, Lee SH, Lee JK, Chung SW. Influence of Vitamin D Deficiency on the Expression of Genes and Proteins in Patients With Medium Rotator Cuff Tears. Am J Sports Med 2023; 51:2650-2658. [PMID: 37449678 DOI: 10.1177/03635465231184392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Whether vitamin D deficiency is related to rotator cuff muscle and tendon physiology is controversial. PURPOSE To assess the relationship between vitamin D deficiency and various gene expression patterns in patients with rotator cuff tears. STUDY DESIGN Controlled laboratory study. METHODS During arthroscopic surgery, samples from the supraspinatus muscle, deltoid muscle, and supraspinatus tendon were acquired from 12 patients with vitamin D deficiency (serum 25-hydroxyvitamin D concentration <20 ng/dL) and 12 patients with sufficient vitamin D levels (control group, serum 25-hydroxyvitamin D concentration ≥30 ng/dL) who were matched for age, sex, and tear size. Alterations in the expression of genes and proteins associated with myogenesis, muscle atrophy, adipogenesis, inflammation, and apoptosis, as well as in vitamin D receptor expression, were assessed using quantitative reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry and were compared between the 2 groups. RESULTS Vitamin D receptor gene expression in the deltoid muscle was significantly lower in the vitamin D deficiency group than in the control group (P = .043). Additionally, in the deltoid muscle, myoDgene expression levels were lower and atrogin levels were higher in the vitamin D deficiency group than in the control group (P = .034 and P = .011, respectively). However, in the supraspinatus muscle, no differences were observed between groups in the expression of myogenesis- or atrophy-related genes (all P > .05). The expression of inflammation-related genes (interleukin (IL)-1β and IL-6) was significantly higher in the vitamin D deficiency group, in both the deltoid and supraspinatus muscles (all P < .05). The supraspinatus tendon tissue did not show any significant differences in any gene expression evaluated (all P > .05). A correlation between gene and protein expression was observed for atrogin and IL-1β in the deltoid muscle (P = .019 and P = .037, respectively) and for IL-6 in the supraspinatus muscle (P = .044). CONCLUSION Vitamin D deficiency was not associated with the expression of myogenesis-related or muscle atrophy-related genes in the supraspinatus muscle of patients with rotator cuff tears, unlike in the deltoid muscle; rather, vitamin D deficiency was associated with increased proinflammatory cytokine expression. CLINICAL RELEVANCE In patients with rotator cuff tears, vitamin D deficiency was observed to be associated with increased levels of proinflammatory cytokines in the rotator cuff muscles, without significant changes in gene expression related to myogenesis or muscle atrophy.
Collapse
Affiliation(s)
- Hyun Tae Kim
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Su Hyun Lee
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Jeong Kun Lee
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Seok Won Chung
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Mirarchi A, Albi E, Beccari T, Arcuri C. Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. Int J Mol Sci 2023; 24:11892. [PMID: 37569267 PMCID: PMC10419106 DOI: 10.3390/ijms241511892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
39
|
Lebiedziński F, Lisowska KA. Impact of Vitamin D on Immunopathology of Hashimoto's Thyroiditis: From Theory to Practice. Nutrients 2023; 15:3174. [PMID: 37513592 PMCID: PMC10385100 DOI: 10.3390/nu15143174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is a common autoimmune disease affecting the thyroid gland, characterized by lymphocytic infiltration, damage to thyroid cells, and hypothyroidism, and often requires lifetime treatment with levothyroxine. The disease has a complex etiology, with genetic and environmental factors contributing to its development. Vitamin D deficiency has been linked to a higher prevalence of thyroid autoimmunity in certain populations, including children, adolescents, and obese individuals. Moreover, vitamin D supplementation has shown promise in reducing antithyroid antibody levels, improving thyroid function, and improving other markers of autoimmunity, such as cytokines, e.g., IP10, TNF-α, and IL-10, and the ratio of T-cell subsets, such as Th17 and Tr1. Studies suggest that by impacting various immunological mechanisms, vitamin D may help control autoimmunity and improve thyroid function and, potentially, clinical outcomes of HT patients. The article discusses the potential impact of vitamin D on various immune pathways in HT. Overall, current evidence supports the potential role of vitamin D in the prevention and management of HT, although further studies are needed to fully understand its mechanisms of action and potential therapeutic benefits.
Collapse
Affiliation(s)
- Filip Lebiedziński
- Department of Physiopathology, Medical University of Gdańsk, 80-211 Gdansk, Poland
| | | |
Collapse
|
40
|
Tourkochristou E, Tsounis EP, Tzoupis H, Aggeletopoulou I, Tsintoni A, Lourida T, Diamantopoulou G, Zisimopoulos K, Kafentzi T, de Lastic AL, Rodi M, Tselios T, Thomopoulos K, Mouzaki A, Triantos C. The Influence of Single Nucleotide Polymorphisms on Vitamin D Receptor Protein Levels and Function in Chronic Liver Disease. Int J Mol Sci 2023; 24:11404. [PMID: 37511164 PMCID: PMC10380285 DOI: 10.3390/ijms241411404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the vitamin D receptor (VDR) gene have been associated with chronic liver disease. We investigated the role of VDR SNPs on VDR protein levels and function in patients with chronic liver disease. VDR expression levels were determined in peripheral T lymphocytes (CD3+VDR+), monocytes (CD14+VDR+), and plasma from patients (n = 66) and healthy controls (n = 38). Genotyping of SNPs and the determination of expression of VDR/vitamin D-related genes were performed by using qPCR. The effect of FokI SNP on vitamin D-binding to VDR was investigated by molecular dynamics simulations. CD14+VDR+ cells were correlated with the MELD score. The ApaI SNP was associated with decreased CD3+VDR+ levels in cirrhotic patients and with higher liver stiffness in HCV patients. The BsmI and TaqI SNPs were associated with increased VDR plasma concentrations in cirrhotic patients and decreased CD14+VDR+ levels in HCV patients. The FokI SNP was associated with increased CD3+VDR+ levels in cirrhotic patients and controls. VDR polymorphisms were significantly related to the expression of genes critical for normal hepatocyte function and immune homeostasis. VDR expression levels were related to the clinical severity of liver disease. VDR SNPs may be related to the progression of chronic liver disease by affecting VDR expression levels.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | | | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Aggeliki Tsintoni
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Theoni Lourida
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Georgia Diamantopoulou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Konstantinos Zisimopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Theodora Kafentzi
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Anne-Lise de Lastic
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Maria Rodi
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
41
|
Agliardi C, Guerini FR, Bolognesi E, Zanzottera M, Clerici M. VDR Gene Single Nucleotide Polymorphisms and Autoimmunity: A Narrative Review. BIOLOGY 2023; 12:916. [PMID: 37508347 PMCID: PMC10376382 DOI: 10.3390/biology12070916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023]
Abstract
The vitamin D/Vitamin D receptor (VDR) axis is crucial for human health as it regulates the expression of genes involved in different functions, including calcium homeostasis, energy metabolism, cell growth and differentiation, and immune responses. In particular, the vitamin D/VDR complex regulates genes of both innate and adaptive immunity. Autoimmune diseases are believed to arise from a genetic predisposition and the presence of triggers such as hormones and environmental factors. Among these, a role for Vitamin D and molecules correlated to its functions has been repeatedly suggested. Four single nucleotide polymorphisms (SNPs) of the VDR gene, ApaI, BsmI, TaqI, and FokI, in particular, have been associated with autoimmune disorders. The presence of particular VDR SNP alleles and genotypes, thus, was observed to modulate the likelihood of developing diverse autoimmune conditions, either increasing or reducing it. In this work, we will review the scientific literature suggesting a role for these different factors in the pathogenesis of autoimmune conditions and summarize evidence indicating a possible VDR SNP involvement in the onset of these diseases. A better understanding of the role of the molecular mechanisms linking Vitamin D/VDR and autoimmunity might be extremely useful in designing novel therapeutic avenues for these disorders.
Collapse
Affiliation(s)
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, LAMMB, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
42
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
43
|
Wu J, Atkins A, Downes M, Wei Z. Vitamin D in Diabetes: Uncovering the Sunshine Hormone's Role in Glucose Metabolism and Beyond. Nutrients 2023; 15:nu15081997. [PMID: 37111216 PMCID: PMC10142687 DOI: 10.3390/nu15081997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last decades, epidemiology and functional studies have started to reveal a pivotal role of vitamin D in both type 1 and type 2 diabetes pathogenesis. Acting through the vitamin D receptor (VDR), vitamin D regulates insulin secretion in pancreatic islets and insulin sensitivity in multiple peripheral metabolic organs. In vitro studies and both T1D and T2D animal models showed that vitamin D can improve glucose homeostasis by enhancing insulin secretion, reducing inflammation, reducing autoimmunity, preserving beta cell mass, and sensitizing insulin action. Conversely, vitamin D deficiency has been shown relevant in increasing T1D and T2D incidence. While clinical trials testing the hypothesis that vitamin D improves glycemia in T2D have shown conflicting results, subgroup and meta-analyses support the idea that raising serum vitamin D levels may reduce the progression from prediabetes to T2D. In this review, we summarize current knowledge on the molecular mechanisms of vitamin D in insulin secretion, insulin sensitivity, and immunity, as well as the observational and interventional human studies investigating the use of vitamin D as a treatment for diabetes.
Collapse
Affiliation(s)
- Jie Wu
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Annette Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Division of Endocrinology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| |
Collapse
|
44
|
AlNafea HM, Korish AA. The interplay between hypovitaminosis D and the immune dysfunction in the arteriovenous thrombotic complications of the sever coronavirus disease 2019 (COVID-19) infection. Blood Coagul Fibrinolysis 2023; 34:129-137. [PMID: 36966750 PMCID: PMC10089932 DOI: 10.1097/mbc.0000000000001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/11/2023] [Indexed: 03/28/2023]
Abstract
Thromboembolic complications including cerebrovascular accidents, pulmonary embolism, myocardial infarction, deep vein thrombosis and disseminating intravascular coagulopathy are serious encounters in sever coronavirus disease 2019 (COVID-19) infected patients. This worsens the prognosis and may lead to death or life long morbidities. The laboratory finding of the disturbed haemostasias and the hyperinflammatory response are almost invariably present in COVID-19 patients. Multiple treatment modalities are utilized by the healthcare professionals to overcome the cytokine storm, oxidative stress, endothelial dysfunction, and coagulopathy in these patients. The combined actions of vitamin D (VitD) as a steroid hormone with anti-inflammatory, immunomodulatory, and antithrombotic properties increase the potential of the possible involvement of hypovitaminosis D in the thromboembolic complications of COVID-19 infection, and stimulated researchers and physicians to administer VitD therapy to prevent the infection and/or overcome the disease complications. The current review highlighted the immunomodulatory, anti-inflammatory, antioxidative and hemostatic functions of VitD and its interrelation with the renin-angiotensin-aldosterone system (RAAS) pathway and the complement system. Additionally, the association of VitD deficiency with the incidence and progression of COVID-19 infection and the associated cytokine storm, oxidative stress, hypercoagulability, and endothelial dysfunction were emphasized. Normalizing VitD levels by daily low dose therapy in patients with hypovitaminosis D below (25 nmol/l) is essential for a balanced immune response and maintaining the health of the pulmonary epithelium. It protects against upper respiratory tract infections and decreases the complications of COVID-19 infections. Understanding the role of VitD and its associated molecules in the protection against the coagulopathy, vasculopathy, inflammation, oxidative stress and endothelial dysfunction in COVID-19 infection could lead to new therapeutic strategies to prevent, treat, and limit the complications of this deadly virus infection.
Collapse
Affiliation(s)
- Haifa M. AlNafea
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University
| | - Aida A. Korish
- Physiology Department (29), College of Medicine, King Saud University Medical City (KSUMC), King Saud university, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Hamza FN, Daher S, Fakhoury HMA, Grant WB, Kvietys PR, Al-Kattan K. Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients 2023; 15:nu15071696. [PMID: 37049536 PMCID: PMC10097244 DOI: 10.3390/nu15071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Vitamin D plays a crucial role in modulating the innate immune response by interacting with its intracellular receptor, VDR. In this review, we address vitamin D/VDR signaling and how it contributes to the regulation of intestinal and respiratory microbiota. We additionally review some components of the innate immune system, such as the barrier function of the pulmonary and intestinal epithelial membranes and secretion of mucus, with their respective modulation by vitamin D. We also explore the mechanisms by which this vitamin D/VDR signaling mounts an antimicrobial response through the transduction of microbial signals and the production of antimicrobial peptides that constitute one of the body’s first lines of defense against pathogens. Additionally, we highlight the role of vitamin D in clinical diseases, namely inflammatory bowel disease and acute respiratory distress syndrome, where excessive inflammatory responses and dysbiosis are hallmarks. Increasing evidence suggests that vitamin D supplementation may have potentially beneficial effects on those diseases.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Sarah Daher
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Hana M. A. Fakhoury
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Correspondence:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Peter R. Kvietys
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
46
|
Tuckey RC, Cheng CYS, Li L, Jiang Y. Analysis of the ability of vitamin D3-metabolizing cytochromes P450 to act on vitamin D3 sulfate and 25-hydroxyvitamin D3 3-sulfate. J Steroid Biochem Mol Biol 2023; 227:106229. [PMID: 36455719 DOI: 10.1016/j.jsbmb.2022.106229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
25-Hydroxyvitamin D3 (25(OH)D3) is present in the human circulation esterified to sulfate with some studies showing that 25(OH)D3 3-sulfate levels are almost as high as unconjugated 25(OH)D3. Vitamin D3 is also present in human serum in the sulfated form as are other metabolites. Our aim was to determine whether sulfated forms of vitamin D3 and vitamin D3 metabolites can be acted on by vitamin D-metabolizing cytochromes P450 (CYPs), one of which (CYP11A1) is known to act on cholesterol sulfate. We used purified, bacterially expressed CYPs to test if they could act on the sulfated forms of their natural substrates. Purified CYP27A1 converted vitamin D3 sulfate to 25(OH)D3 3-sulfate with a catalytic efficiency (kcat/Km) approximately half that for the conversion of vitamin D3 to 25(OH)D3. Similarly, the rate of metabolism of vitamin D3 sulfate was half that of vitamin D3 for CYP27A1 in rat liver mitochondria. CYP2R1 which is also a vitamin D 25-hydroxylase did not act on vitamin D3 sulfate. CYP11A1 was able to convert vitamin D3 sulfate to 20(OH)D3 3-sulfate but at a considerably lower rate than for conversion of vitamin D3 to 20(OH)D3. 25(OH)D3 3-sulfate was not metabolized by the activating enzyme, CYP27B1, nor by the inactivating enzyme, CYP24A1. Thus, we conclude that 25(OH)D3 3-sulfate in the circulation may act as a pool of metabolically inactive vitamin D3 to be released by hydrolysis at times of need whereas vitamin D3 sulfate can be metabolized in a similar manner to free vitamin D3 by CYP27A1 and to a lesser degree by CYP11A1.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Lei Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuhan Jiang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
47
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jensen NS, Wehland M, Wise PM, Grimm D. Latest Knowledge on the Role of Vitamin D in Hypertension. Int J Mol Sci 2023; 24:ijms24054679. [PMID: 36902110 PMCID: PMC10003079 DOI: 10.3390/ijms24054679] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Hypertension is the third leading cause of the global disease burden, and while populations live longer, adopt more sedentary lifestyles, and become less economically concerned, the prevalence of hypertension is expected to increase. Pathologically elevated blood pressure (BP) is the strongest risk factor for cardiovascular disease (CVD) and related disability, thus making it imperative to treat this disease. Effective standard pharmacological treatments, i.e., diuretics, angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blocker (ARBs), beta-adrenergic receptor blockers (BARBs), and calcium channel blockers (CCBs), are available. Vitamin D (vitD) is known best for its role in bone and mineral homeostasis. Studies with vitamin D receptor (VDR) knockout mice show an increased renin-angiotensin-aldosterone system (RAAS) activity and increased hypertension, suggesting a key role for vitD as a potential antihypertensive agent. Similar studies in humans displayed ambiguous and mixed results. No direct antihypertensive effect was shown, nor a significant impact on the human RAAS. Interestingly, human studies supplementing vitD with other antihypertensive agents reported more promising results. VitD is considered a safe supplement, proposing its great potential as antihypertensive supplement. The aim of this review is to examine the current knowledge about vitD and its role in the treatment of hypertension.
Collapse
Affiliation(s)
- Niklas S. Jensen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Petra M. Wise
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
49
|
Genomic or Non-Genomic? A Question about the Pleiotropic Roles of Vitamin D in Inflammatory-Based Diseases. Nutrients 2023; 15:nu15030767. [PMID: 36771473 PMCID: PMC9920355 DOI: 10.3390/nu15030767] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Vitamin D (vit D) is widely known for its role in calcium metabolism and its importance for the bone system. However, various studies have revealed a myriad of extra-skeletal functions, including cell differentiation and proliferation, antibacterial, antioxidant, immunomodulatory, and anti-inflammatory properties in various cells and tissues. Vit D mediates its function via regulation of gene expression by binding to its receptor (VDR) which is expressed in almost all cells within the body. This review summarizes the pleiotropic effects of vit D, emphasizing its anti-inflammatory effect on different organ systems. It also provides a comprehensive overview of the genetic and epigenetic effects of vit D and VDR on the expression of genes pertaining to immunity and anti-inflammation. We speculate that in the context of inflammation, vit D and its receptor VDR might fulfill their roles as gene regulators through not only direct gene regulation but also through epigenetic mechanisms.
Collapse
|
50
|
Hill A, Starchl C, Dresen E, Stoppe C, Amrein K. An update of the effects of vitamins D and C in critical illness. Front Med (Lausanne) 2023; 9:1083760. [PMID: 36726354 PMCID: PMC9885715 DOI: 10.3389/fmed.2022.1083760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Many critically ill patients are vitamin D and vitamin C deficient and the current international guidelines state that hypovitaminoses should be compensated. However, uncertainty about optimal dosage, timing and indication exists in clinical routine, mainly due to the conflicting evidence. This narrative review discusses both micronutrients with regards to pathophysiology, clinical evidence of benefits, potential risks, and guideline recommendations. Evidence generated from the most recent clinical trials are summarized and discussed. In addition, pragmatic tips for the application of these vitamins in the clinical routine are given. The supplementations of vitamin D and C represent cost-effective and simple interventions with excellent safety profiles. Regarding vitamin D, critically ill individuals require a loading dose to improve 25(OH)D levels within a few days, followed by a daily or weekly maintenance dose, usually higher doses than healthy individuals are needed. For vitamin C, dosages of 100-200 mg/d are recommended for patients receiving parenteral nutrition, but needs may be as high as 2-3 g/d in acutely ill patients.
Collapse
Affiliation(s)
- Aileen Hill
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany,Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany,*Correspondence: Aileen Hill,
| | - Christina Starchl
- Klinische Abteilung für Endokrinologie und Diabetologie, Klinik für Innere Medizin, Medizinische Universität Graz, Graz, Austria
| | - Ellen Dresen
- Department of Anaesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Christian Stoppe
- Department of Anaesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Würzburg, Würzburg, Germany,Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Amrein
- Klinische Abteilung für Endokrinologie und Diabetologie, Klinik für Innere Medizin, Medizinische Universität Graz, Graz, Austria,Karin Amrein,
| |
Collapse
|