1
|
Hayes EJ, Hurst C, Granic A, Sayer AA, Stevenson E. Challenges in Conducting Exercise Recovery Studies in Older Adults and Considerations for Future Research: Findings from a Nutritional Intervention Study. Geriatrics (Basel) 2024; 9:116. [PMID: 39311241 PMCID: PMC11417820 DOI: 10.3390/geriatrics9050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Maximising the potential benefit of resistance exercise (RE) programs by ensuring optimal recovery is an important aim of exercise prescription. Despite this, research surrounding recovery from RE in older adults is limited and inconsistent. The following randomised controlled trial was designed to investigate the efficacy of milk consumption for improving recovery from RE in older adults. However, the study encountered various challenges that may be applicable to similar studies. These include recruitment issues, a lack of measurable perturbations in muscle function following RE, and potential learning effects amongst participants. Various considerations for exercise research have arisen from the data which could inform the design of future studies in this area. These include (i) recruitment-consider ways in which the study design could be altered to aid recruitment or allow a longer recruitment period; (ii) learning effects and familiarisation-consider potential learning effects of outcome measures and adjust familiarisation accordingly; (iii) identify, validate and optimise protocols for outcome measures that are applicable for the specific population; (iv) adjust the exercise protocol according to the specific aims of the study (e.g., are you replicating a usual exercise bout or is the intent to cause large amounts of muscle damage?).
Collapse
Affiliation(s)
- Eleanor Jayne Hayes
- Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Christopher Hurst
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (C.H.); (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Antoneta Granic
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (C.H.); (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Avan A. Sayer
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (C.H.); (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Emma Stevenson
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| |
Collapse
|
2
|
Deane CS, Cox J, Atherton PJ. Critical variables regulating age-related anabolic responses to protein nutrition in skeletal muscle. Front Nutr 2024; 11:1419229. [PMID: 39166128 PMCID: PMC11333332 DOI: 10.3389/fnut.2024.1419229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Protein nutrition is critical for the maintenance of skeletal muscle mass across the lifecourse and for the growth of muscle in response to resistance exercise - both acting via the stimulation of protein synthesis. The transient anabolic response to protein feeding may vary in magnitude and duration, depending on, e.g., timing, dose, amino acid composition and delivery mode, which are in turn influenced by physical activity and age. This review aims to: (i) summarise the fundamental metabolic responses of muscle to protein feeding, (ii) discuss key variables regulating muscle anabolic responses to protein feeding, and (iii) explore how these variables can be optimised for muscle anabolism in response to physical activity and ageing.
Collapse
Affiliation(s)
- Colleen S. Deane
- Human Development & Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Jake Cox
- Centre of Metabolism, Ageing & Physiology, MRC/Versus Arthritis Centre of Excellence for Musculoskeletal Research, NIHR Biomedical Research Centre (BRC), University of Nottingham, Royal Derby Hospital Medical School, Derby, United Kingdom
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology, MRC/Versus Arthritis Centre of Excellence for Musculoskeletal Research, NIHR Biomedical Research Centre (BRC), University of Nottingham, Royal Derby Hospital Medical School, Derby, United Kingdom
- Faculty of Sport and Health Science, Ritsumeikan Advanced Research Academy (RARA), Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
3
|
Morgan PT, Smeuninx B, Marshall RN, Korzepa M, Quinlan JI, McPhee JS, Breen L. Greater myofibrillar protein synthesis following weight-bearing activity in obese old compared with non-obese old and young individuals. GeroScience 2024; 46:3759-3778. [PMID: 37328646 PMCID: PMC11226697 DOI: 10.1007/s11357-023-00833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/18/2023] Open
Abstract
The mechanisms through which obesity impacts age-related muscle mass regulation are unclear. In the present study, rates of integrated myofibrillar protein synthesis (iMyoPS) were measured over 48-h prior-to and following a 45-min treadmill walk in 10 older-obese (O-OB, body fat[%]: 33 ± 3%), 10 older-non-obese (O-NO, 20 ± 3%), and 15 younger-non-obese (Y-NO, 13 ± 5%) individuals. Surface electromyography was used to determine thigh muscle "activation". Quadriceps cross-sectional area (CSA), volume, and intramuscular thigh fat fraction (ITFF) were measured by magnetic resonance imaging. Quadriceps maximal voluntary contraction (MVC) was measured by dynamometry. Quadriceps CSA and volume were greater (muscle volume, Y-NO: 1182 ± 232 cm3; O-NO: 869 ± 155 cm3; O-OB: 881 ± 212 cm3, P < 0.01) and ITFF significantly lower (m. vastus lateralis, Y-NO: 3.0 ± 1.0%; O-NO: 4.0 ± 0.9%; O-OB: 9.1 ± 2.6%, P ≤ 0.03) in Y-NO compared with O-NO and O-OB, with no difference between O-NO and O-OB in quadriceps CSA and volume. ITFF was significantly higher in O-OB compared with O-NO. Relative MVC was lower in O-OB compared with Y-NO and O-NO (Y-NO: 5.5 ± 1.6 n·m/kg-1; O-NO: 3.9 ± 1.0 n·m/kg-1; O-OB: 2.9 ± 1.1 n·m/kg-1, P < 0.0001). Thigh muscle "activation" during the treadmill walk was greater in O-OB compared with Y-NO and O-NO (Y-NO: 30.5 ± 13.5%; O-NO: 35.8 ± 19.7%; O-OB: 68.3 ± 32.3%, P < 0.01). Habitual iMyoPS did not differ between groups, whereas iMyoPS was significantly elevated over 48-h post-walk in O-OB (+ 38.6 ± 1.2%·day-1, P < 0.01) but not Y-NO or O-NO (+ 11.4 ± 1.1%·day-1 and + 17.1 ± 1.1%·day-1, respectively, both P > 0.271). Equivalent muscle mass in O-OB may be explained by the muscle anabolic response to weight-bearing activity, whereas the age-related decline in indices of muscle quality appears to be exacerbated in O-OB and warrants further exploration.
Collapse
Affiliation(s)
- Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, 99 Oxford Road, Manchester, M1 7EL, UK
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Monash Institute of Pharmacological Sciences, Monash University, Parkville, VIC, Australia
| | - Ryan N Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marie Korzepa
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, 99 Oxford Road, Manchester, M1 7EL, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Weijzen MEG, van Loon LJC. Reply - Letter to the editor: Access to a pre-sleep protein snack increases daily energy and protein intake in surgical hospitalized patients. Clin Nutr 2024; 43:1888-1889. [PMID: 38970942 DOI: 10.1016/j.clnu.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Affiliation(s)
- Michelle E G Weijzen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, the Netherlands.
| |
Collapse
|
5
|
Viner Smith E, Lambell K, Tatucu-Babet OA, Ridley E, Chapple LA. Nutrition considerations for patients with persistent critical illness: A narrative review. JPEN J Parenter Enteral Nutr 2024; 48:658-666. [PMID: 38520657 DOI: 10.1002/jpen.2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Critically ill patients experience high rates of malnutrition and significant muscle loss during their intensive care unit (ICU) admission, impacting recovery. Nutrition is likely to play an important role in mitigating the development and progression of malnutrition and muscle loss observed in ICU, yet definitive clinical trials of nutrition interventions in ICU have failed to show benefit. As improvements in the quality of medical care mean that sicker patients are able to survive the initial insult, combined with an aging and increasingly comorbid population, it is anticipated that ICU length of stay will continue to increase. This review aims to discuss nutrition considerations unique to critically ill patients who have persistent critical illness, defined as an ICU stay of >10 days. A discussion of nutrition concepts relevant to patients with persistent critical illness will include energy and protein metabolism, prescription, and delivery; monitoring of nutrition at the bedside; and the role of the healthcare team in optimizing nutrition support.
Collapse
Affiliation(s)
- Elizabeth Viner Smith
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kate Lambell
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Dietetics and Nutrition, Alfred Health, Melbourne, Australia
| | - Oana A Tatucu-Babet
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Emma Ridley
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Dietetics and Nutrition, Alfred Health, Melbourne, Australia
| | - Lee-Anne Chapple
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Aussieker T, Janssen TAH, Hermans WJH, Holwerda AM, Senden JM, van Kranenburg JMX, Goessens JPB, Snijders T, van Loon LJC. Coingestion of Collagen With Whey Protein Prevents Postexercise Decline in Plasma Glycine Availability in Recreationally Active Men. Int J Sport Nutr Exerc Metab 2024; 34:189-198. [PMID: 38604602 DOI: 10.1123/ijsnem.2023-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/13/2024]
Abstract
Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m-2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged -8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.
Collapse
Affiliation(s)
- Thorben Aussieker
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tom A H Janssen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wesley J H Hermans
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau M X van Kranenburg
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy P B Goessens
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
7
|
Monteyne AJ, West S, Stephens FB, Wall BT. Reconsidering the pre-eminence of dietary leucine and plasma leucinemia for predicting the stimulation of postprandial muscle protein synthesis rates. Am J Clin Nutr 2024; 120:7-16. [PMID: 38705358 PMCID: PMC11251220 DOI: 10.1016/j.ajcnut.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition. Our view is that recent evidence is driving a more nuanced picture of the regulation of postprandial MPS by revealing a compelling dissociation between ingested leucine or plasma leucinemia and the magnitude of the postprandial MPS response. Much of this lack of coherence has arisen as experimental progress has demanded relevant studies move beyond reliance on isolated amino acids and proteins to use increasingly complex protein-rich meals, whole foods, and mixed meals. Our overreliance on the centrality of leucine in this field has been reflected in 2 recent systematic reviews. In this perspective, we propose a re-evaluation of the pre-eminent role of these leucine variables in the stimulation of postprandial MPS. We view the development of a more complex intellectual framework now a priority if we are to see continued progress concerning the mechanistic regulation of postprandial muscle protein turnover, but also consequential from an applied perspective when evaluating the value of novel dietary protein sources.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sam West
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
8
|
Pinckaers PJ, Domić J, Petrick HL, Holwerda AM, Trommelen J, Hendriks FK, Houben LH, Goessens JP, van Kranenburg JM, Senden JM, de Groot LC, Verdijk LB, Snijders T, van Loon LJ. Higher Muscle Protein Synthesis Rates Following Ingestion of an Omnivorous Meal Compared with an Isocaloric and Isonitrogenous Vegan Meal in Healthy, Older Adults. J Nutr 2024; 154:2120-2132. [PMID: 37972895 DOI: 10.1016/j.tjnut.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates. So far, no study has compared the anabolic response following ingestion of an omnivorous compared with a vegan meal. OBJECTIVES This study aimed to compare postprandial muscle protein synthesis rates following ingestion of a whole-food omnivorous meal providing 100 g lean ground beef with an isonitrogenous, isocaloric whole-food vegan meal in healthy, older adults. METHODS In a randomized, counter-balanced, cross-over design, 16 older (65-85 y) adults (8 males, 8 females) underwent 2 test days. On one day, participants consumed a whole-food omnivorous meal containing beef as the primary source of protein (0.45 g protein/kg body mass; MEAT). On the other day, participants consumed an isonitrogenous and isocaloric whole-food vegan meal (PLANT). Primed continuous L-[ring-13C6]-phenylalanine infusions were applied with blood and muscle biopsies being collected frequently for 6 h to assess postprandial plasma amino acid profiles and muscle protein synthesis rates. Data are presented as means ± standard deviations and were analyzed by 2 way-repeated measures analysis of variance and paired-samples t tests. RESULTS MEAT increased plasma essential amino acid concentrations more than PLANT over the 6-h postprandial period (incremental area under curve 87 ± 37 compared with 38 ± 54 mmol·6 h/L, respectively; P-interaction < 0.01). Ingestion of MEAT resulted in ∼47% higher postprandial muscle protein synthesis rates when compared with the ingestion of PLANT (0.052 ± 0.023 and 0.035 ± 0.021 %/h, respectively; paired-samples t test: P = 0.037). CONCLUSIONS Ingestion of a whole-food omnivorous meal containing beef results in greater postprandial muscle protein synthesis rates when compared with the ingestion of an isonitrogenous whole-food vegan meal in healthy, older adults. This study was registered at clinicaltrials.gov as NCT05151887.
Collapse
Affiliation(s)
- Philippe Jm Pinckaers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacintha Domić
- Division of Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Heather L Petrick
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Floris K Hendriks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisanne Hp Houben
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy Pb Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau Mx van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisette Cpgm de Groot
- Division of Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
9
|
McKenna CF, Askow AT, Paulussen KJM, Salvador AF, Fang HY, Ulanov AV, Li Z, Paluska SA, Beals JW, Jäger R, Purpura M, Burd NA. Postabsorptive and postprandial myofibrillar protein synthesis rates at rest and after resistance exercise in women with postmenopause. J Appl Physiol (1985) 2024; 136:1388-1399. [PMID: 38385186 PMCID: PMC11368540 DOI: 10.1152/japplphysiol.00886.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Feeding and resistance exercise stimulate myofibrillar protein synthesis (MPS) rates in healthy adults. This anabolic characterization of "healthy adults" has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in postmenopausal females and compare postabsorptive rates with young females. Sixteen females [60 ± 7 yr; body mass index (BMI) = 26 ± 12 kg·m-2] completed an acute bout of unilateral resistance exercise before consuming either: a fortified whey protein supplement (WHEY) or water. Participants received primed continuous infusions of L-[ring-13C6]phenylalanine with bilateral muscle biopsies before and after treatment ingestion at 2 h and 4 h in nonexercised and exercised legs. Resistance exercise transiently increased MPS above baseline at 0-2 h in the water condition (P = 0.007). Feeding after resistance exercise resulted in a late phase (2-4 h) increase in MPS in the WHEY condition (P = 0.005). In both conditions, resistance exercise did not enhance the cumulative (0-4 h) MPS response. In the nonexercised leg, MPS did not differ at 0-2 h, 2-4 h, or 0-4 h of the measurement periods (all, P > 0.05). Likewise, there were no changes in the phosphorylation of p70S6K, AMPKα, or total and phosphorylated yes-associated protein on Ser127. Finally, postabsorptive MPS was lower in premenopausal versus postmenopausal females (P = 0.023). Our results demonstrate that resistance exercise-induced changes in MPS are temporally regulated, but do not result in greater cumulative (0-4 h) MPS in postmenopausal women.NEW & NOTEWORTHY An adequate quality and quantity of skeletal muscle is relevant to support physical performance and metabolic health. Muscle protein synthesis (MPS) is an established remodeling marker, which can be hypertrophic or nonhypertrophic. Importantly, protein ingestion and resistance exercise are two strategies that support healthy muscle by stimulating MPS. Our study shows postmenopause modulates baseline MPS that may diminish the MPS response to the fundamental anabolic stimuli of protein ingestion and resistance exercise in older females.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Andrew T Askow
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Kevin J M Paulussen
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Scott A Paluska
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Joseph W Beals
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, Wisconsin, United States
| | | | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
10
|
Yotsuya K, Yamazaki K, Sarukawa J, Yasuda T, Matsuyama Y. Relationship between the perioperative prognostic nutritional index and postoperative gait function in elderly hip fractures. Osteoporos Sarcopenia 2024; 10:72-77. [PMID: 39035227 PMCID: PMC11260016 DOI: 10.1016/j.afos.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/28/2024] [Accepted: 05/18/2024] [Indexed: 07/23/2024] Open
Abstract
Objectives We investigated the relationship between the perioperative nutritional status and postoperative walking ability in patients with hip fractures. Methods We included 246 surgically treated elderly patients with hip fractures who were ambulatory before the injury. Patients were divided into two groups: group A, who were able to walk at discharge, and group B, who were unable to walk at discharge. We pair-matched these two groups according to age, preoperative subdivided walking ability, and fracture site to form groups A' and B'. The prognostic nutritional index (PNI; PNI = 10 × serum albumin (g/dL) + 0.005 × blood total lymphocyte count (/mm³)) before surgery and 1 day, 1 week, and 2 weeks after surgery and energy intake 1 and 2 weeks after surgery were compared. Results After adjustments for age, preoperative subdivided walking ability, and fracture site, there were 51 patients in group A' (mean age 84.6 years) and 51 patients in group B' (mean age 84.7 years). In group A'/group B', PNI was 43.38/42.60 (P = 0.19) before surgery, 33.87/33.31 (P = 0.44) 1 day after surgery, 34.99/32.35 (P = 0.01) 1 week after surgery, and 37.33/35.69 (P = 0.15) 2 weeks after surgery. Energy intake was 1380.8/1203.1 kcal (P = 0.01) 1 week after surgery and 1382.0/1335.6 kcal (P = 0.60) 2 weeks after surgery. Conclusions PNI and energy intake at 1 week postoperatively were associated with early postoperative nutrition and the recovery of walking ability.
Collapse
Affiliation(s)
- Kumiko Yotsuya
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Kaoru Yamazaki
- Department of Orthopedic Surgery, Iwata City Hospital, 512-3 Okubo, Iwata City, Shizuoka, 438-8550, Japan
| | - Junichiro Sarukawa
- Department of Orthopedic Surgery, Iwata City Hospital, 512-3 Okubo, Iwata City, Shizuoka, 438-8550, Japan
| | - Tatsuya Yasuda
- Department of Orthopedic Surgery, Iwata City Hospital, 512-3 Okubo, Iwata City, Shizuoka, 438-8550, Japan
| | - Yukihiro Matsuyama
- Department of Orthopedic Surgery, Iwata City Hospital, 512-3 Okubo, Iwata City, Shizuoka, 438-8550, Japan
| |
Collapse
|
11
|
He W, Connolly ED, Cross HR, Wu G. Dietary protein and amino acid intakes for mitigating sarcopenia in humans. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38803274 DOI: 10.1080/10408398.2024.2348549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Adult humans generally experience a 0.5-1%/year loss in whole-body skeletal muscle mass and a reduction of muscle strength by 1.5-5%/year beginning at the age of 50 years. This results in sarcopenia (aging-related progressive losses of skeletal muscle mass and strength) that affects 10-16% of adults aged ≥ 60 years worldwide. Concentrations of some amino acids (AAs) such as branched-chain AAs, arginine, glutamine, glycine, and serine are reduced in the plasma of older than young adults likely due to insufficient protein intake, reduced protein digestibility, and increased AA catabolism by the portal-drained viscera. Acute, short-term, or long-term administration of some of these AAs or a mixture of proteinogenic AAs can enhance blood flow to skeletal muscle, activate the mechanistic target of rapamycin cell signaling pathway for the initiation of muscle protein synthesis, and modulate the metabolic activity of the muscle. In addition, some AA metabolites such as taurine, β-alanine, carnosine, and creatine have similar physiological effects on improving muscle mass and function in older adults. Long-term adequate intakes of protein and the AA metabolites can aid in mitigating sarcopenia in elderly adults. Appropriate combinations of animal- and plant-sourced foods are most desirable to maintain proper dietary AA balance.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - H Russell Cross
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
Trommelen J, van Loon LJC. Quantification and interpretation of postprandial whole-body protein metabolism using stable isotope methodology: a narrative review. Front Nutr 2024; 11:1391750. [PMID: 38812936 PMCID: PMC11133538 DOI: 10.3389/fnut.2024.1391750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Stable isotopes are routinely applied to determine the impact of factors such as aging, disease, exercise, and feeding on whole-body protein metabolism. The most common approaches to quantify whole-body protein synthesis, breakdown, and oxidation rates and net protein balance are based on the quantification of plasma amino acid kinetics. In the postabsorptive state, plasma amino acid kinetics can easily be assessed using a constant infusion of one or more stable isotope labeled amino acid tracers. In the postprandial state, there is an exogenous, dietary protein-derived amino acid flux that needs to be accounted for. To accurately quantify both endogenous as well as exogenous (protein-derived) amino acid release in the circulation, the continuous tracer infusion method should be accompanied by the ingestion of intrinsically labeled protein. However, the production of labeled protein is too expensive and labor intensive for use in more routine research studies. Alternative approaches have either assumed that 100% of exogenous amino acids are released in the circulation or applied an estimated percentage based on protein digestibility. However, such estimations can introduce large artifacts in the assessment of whole-body protein metabolism. The preferred estimation approach is based on the extrapolation of intrinsically labeled protein-derived plasma bioavailability data obtained in a similar experimental design setting. Here, we provide reference data on exogenous plasma amino acid release that can be applied to allow a more accurate routine assessment of postprandial protein metabolism. More work in this area is needed to provide a more extensive reference data set.
Collapse
Affiliation(s)
| | - Luc J. C. van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
13
|
van der Heijden I, West S, Monteyne AJ, Finnigan TJA, Abdelrahman DR, Murton AJ, Stephens FB, Wall BT. Ingestion of a variety of non-animal-derived dietary protein sources results in diverse postprandial plasma amino acid responses which differ between young and older adults. Br J Nutr 2024; 131:1540-1553. [PMID: 38220222 PMCID: PMC11043913 DOI: 10.1017/s0007114524000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Sam West
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Alistair J. Monteyne
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | | | - Doaa R. Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew J. Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Francis B. Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Benjamin T. Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| |
Collapse
|
14
|
Trommelen J, van Lieshout GAA, Nyakayiru J, Holwerda AM, Smeets JSJ, Hendriks FK, van Kranenburg JMX, Zorenc AH, Senden JM, Goessens JPB, Gijsen AP, van Loon LJC. The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration in vivo in humans. Cell Rep Med 2023; 4:101324. [PMID: 38118410 PMCID: PMC10772463 DOI: 10.1016/j.xcrm.2023.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
The belief that the anabolic response to feeding during postexercise recovery is transient and has an upper limit and that excess amino acids are being oxidized lacks scientific proof. Using a comprehensive quadruple isotope tracer feeding-infusion approach, we show that the ingestion of 100 g protein results in a greater and more prolonged (>12 h) anabolic response when compared to the ingestion of 25 g protein. We demonstrate a dose-response increase in dietary-protein-derived plasma amino acid availability and subsequent incorporation into muscle protein. Ingestion of a large bolus of protein further increases whole-body protein net balance, mixed-muscle, myofibrillar, muscle connective, and plasma protein synthesis rates. Protein ingestion has a negligible impact on whole-body protein breakdown rates or amino acid oxidation rates. These findings demonstrate that the magnitude and duration of the anabolic response to protein ingestion is not restricted and has previously been underestimated in vivo in humans.
Collapse
Affiliation(s)
- Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Glenn A A van Lieshout
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands; FrieslandCampina, 3818 LE Amersfoort, the Netherlands
| | - Jean Nyakayiru
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Janneau M X van Kranenburg
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Antoine H Zorenc
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Larsen MS, Witard OC, Holm L, Scaife P, Hansen R, Smith K, Tipton KD, Mose M, Bengtsen MB, Lauritsen KM, Mikkelsen UR, Hansen M. Dose-Response of Myofibrillar Protein Synthesis To Ingested Whey Protein During Energy Restriction in Overweight Postmenopausal Women: A Randomized, Controlled Trial. J Nutr 2023; 153:3173-3184. [PMID: 37598750 DOI: 10.1016/j.tjnut.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Diet-induced weight loss is associated with a decline in lean body mass, as mediated by an impaired response of muscle protein synthesis (MPS). The dose-response of MPS to ingested protein, with or without resistance exercise, is well characterized during energy balance but limited data exist under conditions of energy restriction in clinical populations. OBJECTIVE To determine the dose-response of MPS to ingested whey protein following short-term diet-induced energy restriction in overweight, postmenopausal, women at rest and postexercise. DESIGN Forty middle-aged (58.6±0.4 y), overweight (BMI: 28.6±0.4), postmenopausal women were randomly assigned to 1 of 4 groups: Three groups underwent 5 d of energy restriction (∼800 kcal/d). On day 6, participants performed a unilateral leg resistance exercise bout before ingesting either a bolus of 15g (ERW15, n = 10), 35g (ERW35, n = 10) or 60g (ERW60, n = 10) of whey protein. The fourth group (n = 10) ingested a 35g whey protein bolus after 5 d of an energy balanced diet (EBW35, n = 10). Myofibrillar fractional synthetic rate (FSR) was calculated under basal, fed (FED) and postexercise (FED-EX) conditions by combining an L-[ring-13C6] phenylalanine tracer infusion with the collection of bilateral muscle biopsies. RESULTS Myofibrillar FSR was greater in ERW35 (0.043±0.003%/h, P = 0.013) and ERW60 (0.042±0.003%/h, P = 0.026) than ERW15 (0.032 ± 0.003%/h), with no differences between ERW35 and ERW60 (P = 1.000). Myofibrillar FSR was greater in FED (0.044 ± 0.003%/h, P < 0.001) and FED-EX (0.048 ± 0.003%/h, P < 0.001) than BASAL (0.027 ± 0.003%/h), but no differences were detected between FED and FED-EX (P = 0.732) conditions. No differences in myofibrillar FSR were observed between EBW35 (0.042 ± 0.003%/h) and ERW35 (0.043 ± 0.003%/h, P = 0.744). CONCLUSION A 35 g dose of whey protein, ingested with or without resistance exercise, is sufficient to stimulate a maximal acute response of MPS following short-term energy restriction in overweight, postmenopausal women, and thus may provide a per serving protein recommendation to mitigate muscle loss during a weight loss program. TRIAL REGISTRY clinicaltrials.gov (ID: NCT03326284).
Collapse
Affiliation(s)
- Mads S Larsen
- Department of Public Health, Aarhus University, Denmark; Arla Foods Ingredients Group P/S, Denmark
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Lars Holm
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Paula Scaife
- Metabolic Physiology, Medical Research Council and Arthritis Research United Kingdom Centre for Excellence in Musculoskeletal Ageing, School of Graduate Entry Medicine and Health, University of Nottingham, Derby, UK
| | | | - Kenneth Smith
- Metabolic Physiology, Medical Research Council and Arthritis Research United Kingdom Centre for Excellence in Musculoskeletal Ageing, School of Graduate Entry Medicine and Health, University of Nottingham, Derby, UK
| | - Kevin D Tipton
- Department of Sport and Exercise Sciences, Durham University, UK
| | - Maike Mose
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Denmark
| | - Mads B Bengtsen
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Denmark
| | - Katrine M Lauritsen
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Denmark
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Denmark.
| |
Collapse
|
16
|
Smeuninx B, Elhassan YS, Sapey E, Rushton AB, Morgan PT, Korzepa M, Belfield AE, Philp A, Brook MS, Gharahdaghi N, Wilkinson D, Smith K, Atherton PJ, Breen L. A single bout of prior resistance exercise attenuates muscle atrophy and declines in myofibrillar protein synthesis during bed-rest in older men. J Physiol 2023. [PMID: 37856286 DOI: 10.1113/jp285130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Impairments in myofibrillar protein synthesis (MyoPS) during bed rest accelerate skeletal muscle loss in older adults, increasing the risk of adverse secondary health outcomes. We investigated the effect of prior resistance exercise (RE) on MyoPS and muscle morphology during a disuse event in 10 healthy older men (65-80 years). Participants completed a single bout of unilateral leg RE the evening prior to 5 days of in-patient bed-rest. Quadriceps cross-sectional area (CSA) was determined prior to and following bed-rest. Serial muscle biopsies and dual stable isotope tracers were used to determine rates of integrated MyoPS (iMyoPS) over a 7 day habitual 'free-living' phase and the bed-rest phase, and rates of acute postabsorptive and postprandial MyoPS (aMyoPS) at the end of bed rest. Quadriceps CSA at 40%, 60% and 80% of muscle length significantly decreased in exercised (EX) and non-exercised control (CTL) legs with bed-rest. The decline in quadriceps CSA at 40% and 60% of muscle length was attenuated in EX compared with CTL. During bed-rest, iMyoPS rates decreased from habitual values in CTL, but not EX, and were significantly different between legs. Postprandial aMyoPS rates increased above postabsorptive values in EX only. The change in iMyoPS over bed-rest correlated with the change in quadriceps CSA in CTL, but not EX. A single bout of RE attenuated the decline in iMyoPS rates and quadriceps atrophy with 5 days of bed-rest in older men. Further work is required to understand the functional and clinical implications of prior RE in older patient populations. KEY POINTS: Age-related skeletal muscle deterioration, linked to numerous adverse health outcomes, is driven by impairments in muscle protein synthesis that are accelerated during periods of disuse. Resistance exercise can stimulate muscle protein synthesis over several days of recovery and therefore could counteract impairments in this process that occur in the early phase of disuse. In the present study, we demonstrate that the decline in myofibrillar protein synthesis and muscle atrophy over 5 days of bed-rest in older men was attenuated by a single bout of unilateral resistance exercise performed the evening prior to bed-rest. These findings suggest that concise resistance exercise intervention holds the potential to support muscle mass retention in older individuals during short-term disuse, with implications for delaying sarcopenia progression in ageing populations.
Collapse
Affiliation(s)
- Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Cellular & Molecular Metabolism Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Yasir S Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Alison B Rushton
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Marie Korzepa
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Archie E Belfield
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Camperdown, New South Wales, Australia
| | - Matthew S Brook
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Derby, UK
| | - Nima Gharahdaghi
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Derby, UK
| | - Daniel Wilkinson
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Derby, UK
| | - Kenneth Smith
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Derby, UK
| | - Philip J Atherton
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Derby, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Ely IA, Phillips BE, Smith K, Wilkinson DJ, Piasecki M, Breen L, Larsen MS, Atherton PJ. A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin Nutr 2023; 42:1849-1865. [PMID: 37625315 DOI: 10.1016/j.clnu.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are influenced through dietary protein intake and physical (in)activity, which it follows, regulate skeletal muscle (SKM) mass across the lifespan. Following consumption of dietary protein, the bio-availability of essential amino acids (EAA), and primarily leucine (LEU), drive a transient increase in MPS with an ensuing refractory period before the next MPS stimulation is possible (due to the "muscle full" state). At the same time, MPB is periodically constrained via reflex insulin actions. Layering exercise on top of protein intake increases the sensitivity of SKM to EAA, therefore extending the muscle full set-point (∼48 h), to permit long-term remodelling (e.g., hypertrophy). In contrast, ageing and physical inactivity are associated with a premature muscle full set-point in response to dietary protein/EAA and contractile activity. Of all the EAA, LEU is the most potent stimulator of the mechanistic target of rapamycin complex 1 (mTORC1)-signalling pathway, with the phosphorylation of mTORC1 substrates increasing ∼3-fold more than with all other EAA. Furthermore, maximal MPS stimulation is also achieved following low doses of LEU-enriched protein/EAA, negating the need for larger protein doses. As a result, LEU supplementation has been of long term interest to maximise muscle anabolism and subsequent net protein accretion, especially when in tandem with resistance exercise. This review highlights current knowledge vis-à-vis the anabolic effects of LEU supplementation in isolation, and in enriched protein/EAA sources (i.e., EAA and/or protein sources with added LEU), in the context of ageing, exercise and unloading states.
Collapse
Affiliation(s)
- Isabel A Ely
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK.
| |
Collapse
|
18
|
Sakuraya M, Yamashita K, Honda M, Niihara M, Chuman M, Washio M, Hosoda K, Naitoh T, Kumamoto Y, Hiki N. Early administration of postoperative BCAA-enriched PPN may improve lean body mass loss in gastric cancer patients undergoing gastrectomy. Langenbecks Arch Surg 2023; 408:336. [PMID: 37624566 PMCID: PMC10457225 DOI: 10.1007/s00423-023-03045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND It has been reported that weight loss or lean body mass (LBM) loss after gastrectomy for gastric cancer is associated with prognosis and nutritional support alone is insufficient to prevent LBM loss. Branched-chain amino acids (BCAA) play an important role in muscle catabolism, however their clinical effects on suppression of LBM loss in gastric cancer patients undergoing gastrectomy remains elusive. In this current study, we investigated the effect of our original PPN regimen including BCAA (designated to BCAA-regimen) on LBM loss. METHODS We conducted a randomized controlled trial (RCT) at a single institution where patients undergoing gastrectomy were assigned to either receive a five-day early postoperative course of the BCAA-regimen (BCAA group) or conventional nutrition. The primary endpoint was the % reduction in LBM at postoperative day 7. The secondary endpoints included the % reduction in LBM at 1 and 3 months postsurgery. RESULTS At postoperative day 7, LBM loss in the BCAA group tended to be lower than in the control group (0.16% vs. 1.7%, respectively; P = 0.21), while at 1 month postsurgery, LBM loss in the BCAA group was significantly different to that of the control group (- 0.3% vs. 4.5%, respectively; P = 0.04). At 3 months postgastrectomy, however, LBM loss was similar between the BCAA and the control groups. CONCLUSION Our RCT clinical trial clarified that early administration of the postoperative BCAA regimen improved LBM loss at 1 month after surgery in gastric cancer patients undergoing gastrectomy.
Collapse
Affiliation(s)
- Mikiko Sakuraya
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Keishi Yamashita
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Michitaka Honda
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Masahiro Niihara
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Motohiro Chuman
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Marie Washio
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Kei Hosoda
- Department of Surgery, Division of Upper Gastrointestinal Surgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Yusuke Kumamoto
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0375, Japan.
| |
Collapse
|
19
|
Wilkinson K, Koscien CP, Monteyne AJ, Wall BT, Stephens FB. Association of postprandial postexercise muscle protein synthesis rates with dietary leucine: A systematic review. Physiol Rep 2023; 11:e15775. [PMID: 37537134 PMCID: PMC10400406 DOI: 10.14814/phy2.15775] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Dietary protein ingestion augments post (resistance) exercise muscle protein synthesis (MPS) rates. It is thought that the dose of leucine ingested within the protein (leucine threshold hypothesis) and the subsequent plasma leucine variables (leucine trigger hypothesis; peak magnitude, rate of rise, and total availability) determine the magnitude of the postprandial postexercise MPS response. METHODS A quantitative systematic review was performed extracting data from studies that recruited healthy adults, applied a bout of resistance exercise, ingested a bolus of protein within an hour of exercise, and measured plasma leucine concentrations and MPS rates (delta change from basal). RESULTS Ingested leucine dose was associated with the magnitude of the MPS response in older, but not younger, adults over acute (0-2 h, r2 = 0.64, p = 0.02) and the entire postprandial (>2 h, r2 = 0.18, p = 0.01) period. However, no single plasma leucine variable possessed substantial predictive capacity over the magnitude of MPS rates in younger or older adults. CONCLUSION Our data provide support that leucine dose provides predictive capacity over postprandial postexercise MPS responses in older adults. However, no threshold in older adults and no plasma leucine variable was correlated with the magnitude of the postexercise anabolic response.
Collapse
Affiliation(s)
- Kiera Wilkinson
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Christopher P. Koscien
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Alistair J. Monteyne
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Benjamin T. Wall
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Francis B. Stephens
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
20
|
Osadnik CR, Brighton LJ, Burtin C, Cesari M, Lahousse L, Man WDC, Marengoni A, Sajnic A, Singer JP, Ter Beek L, Tsiligianni I, Varga JT, Pavanello S, Maddocks M. European Respiratory Society statement on frailty in adults with chronic lung disease. Eur Respir J 2023; 62:2300442. [PMID: 37414420 DOI: 10.1183/13993003.00442-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/11/2023] [Indexed: 07/08/2023]
Abstract
Frailty is a complex, multidimensional syndrome characterised by a loss of physiological reserves that increases a person's susceptibility to adverse health outcomes. Most knowledge regarding frailty originates from geriatric medicine; however, awareness of its importance as a treatable trait for people with chronic respiratory disease (including asthma, COPD and interstitial lung disease) is emerging. A clearer understanding of frailty and its impact in chronic respiratory disease is a prerequisite to optimise clinical management in the future. This unmet need underpins the rationale for undertaking the present work. This European Respiratory Society statement synthesises current evidence and clinical insights from international experts and people affected by chronic respiratory conditions regarding frailty in adults with chronic respiratory disease. The scope includes coverage of frailty within international respiratory guidelines, prevalence and risk factors, review of clinical management options (including comprehensive geriatric care, rehabilitation, nutrition, pharmacological and psychological therapies) and identification of evidence gaps to inform future priority areas of research. Frailty is underrepresented in international respiratory guidelines, despite being common and related to increased hospitalisation and mortality. Validated screening instruments can detect frailty to prompt comprehensive assessment and personalised clinical management. Clinical trials targeting people with chronic respiratory disease and frailty are needed.
Collapse
Affiliation(s)
- Christian R Osadnik
- Monash University, Department of Physiotherapy, Frankston, Australia
- Monash Health, Monash Lung, Sleep, Allergy and Immunology, Frankston, Australia
| | - Lisa J Brighton
- King's College London, Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, London, UK
- King's College London, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Chris Burtin
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Will D C Man
- Heart Lung and Critical Care Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alessandra Marengoni
- Department of Clinical and Experimental Science, University of Brescia, Brescia, Italy
- Aging Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Andreja Sajnic
- Department for Respiratory Diseases Jordanovac, University Hospital Center, Zagreb, Croatia
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lies Ter Beek
- Vrije Universiteit Amsterdam, University Medical Center Groningen, Amsterdam, The Netherlands
| | - Ioanna Tsiligianni
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Janos T Varga
- Semmelweis University, Department of Pulmonology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Department of Pulmonary Rehabilitation, Budapest, Hungary
| | | | - Matthew Maddocks
- King's College London, Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, London, UK
| |
Collapse
|
21
|
Sun B, Darma PN, Sejati PA, Shirai T, Narita K, Takei M. Physiological-induced conductive response evaluation in specific muscle compartments under hybrid of electrical muscle stimulation and voluntary resistance training by electrical impedance tomography. Front Physiol 2023; 14:1185958. [PMID: 37534370 PMCID: PMC10390743 DOI: 10.3389/fphys.2023.1185958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Objective: The physiological-induced conductive response has been visualised for evaluation in specific muscle compartments under hybrid (hybridEMS) of electrical muscle stimulation (EMS) and voluntary resistance training (VRT) by electrical impedance tomography (EIT). Methods: In the experiments, tendency of conductivity distribution images σ over time was clearly detected for three specific muscle compartments, which are called AM 1 compartment composed of biceps brachii muscle, AM 2 compartment composed of triceps brachii muscle, and AM 3 compartment composed of brachialis muscle, under three training modalities. Results: From the experimental results, the tendency of physiological-induced conductive response are increased in all three training modalities with increasing training time. Correspondingly, the spatial-mean conductivity <σ>AM1,AM2,AM3 increased with the conductance value G and extracellular water ratio β of right arm by bio-impedance analysis (BIA) method. In addition, hybridEMS has the greatest effect on physiological-induced conductive response in AM 1, AM 2, and AM 3. Under hybridEMS, the spatial-mean conductivity increased from <σ pre > AM1 = 0.154 to <σ 23mins > AM1 = 0.810 in AM 1 muscle compartment (n = 8, p < 0.001); <σ pre > AM2 = 0.040 to <σ 23mins > AM2 = 0.254 in AM 2 muscle compartment (n = 8, p < 0.05); <σ pre > AM3 = 0.078 to <σ 23mins > AM3 = 0.497 in AM 3 muscle compartment (n = 8, p < 0.05). Conclusion: The paired-samples t-test results of <σ>AM1,AM2,AM3 under all three training modalities suggest hybridEMS has the most efficient elicitation on physiological induced conductive response compared to VRT and EMS. The effect of EMS on deep muscle compartment (AM 3) is slower compared to VRT and hybridEMS, with a significant difference after 15 min of training.
Collapse
Affiliation(s)
- Bo Sun
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, China
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Panji Nursetia Darma
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, China
| | - Prima Asmara Sejati
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
- Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Masahiro Takei
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Zbinden-Foncea H, Ramos-Navarro C, Hevia-Larraín V, Castro-Sepulveda M, Saúl MJ, Kalazich C, Deldicque L. Neither Chia Flour nor Whey Protein Supplementation Further Improves Body Composition or Strength Gains after a Resistance Training Program in Young Subjects with a Habitual High Daily Protein Intake. Nutrients 2023; 15:nu15061365. [PMID: 36986095 PMCID: PMC10051962 DOI: 10.3390/nu15061365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The aim of this study was to compare the potential additional effect of chia flour, whey protein, and a placebo juice to resistance training on fat-free mass (FFM) and strength gains in untrained young men. Eighteen healthy, untrained young men underwent an 8-week whole-body resistance training program, comprising three sessions per week. Subjects were randomized into three groups that after each training session consumed: (1) 30 g whey protein concentrate containing 23 g protein (WG), (2) 50 g chia flour containing 20 g protein (CG), or (3) a placebo not containing protein (PG). Strength tests (lower- and upper-limb one repetition maximum (1 RM) tests) and body composition analyses (dual-energy X-ray absorptiometry; DXA) were performed before (PRE) and after (POST) the intervention. Resistance training increased FFM and the 1 RM for each of the strength tests similarly in the three groups. FFM increased by 2.3% in WG (p = 0.04), by 3.6% in CG (p = 0.004), and by 3.0% in PG (p = 0.002)., and 1 RM increased in the different strength tests in the three groups (p < 0.05) with no difference between PG, CG, and WG. In conclusion, neither chia flour nor whey protein supplementation elicited an enhanced effect on FFM and strength gains after an 8-week resistance training program in healthy, untrained young men consuming a habitual high protein mixed diet (>1.2 g/kg/day).
Collapse
Affiliation(s)
- Hermann Zbinden-Foncea
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7500000, Chile; (H.Z.-F.); (C.R.-N.); (V.H.-L.); (M.C.-S.); (M.J.S.)
- Centro de Salud Deportiva, Clínica Santa María, Santiago 7571894, Chile
- Institute of Neuroscience, UCLouvain, 1348 Louvain-la-Neuve, Belgium
- Faculty of Health Science, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Claudia Ramos-Navarro
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7500000, Chile; (H.Z.-F.); (C.R.-N.); (V.H.-L.); (M.C.-S.); (M.J.S.)
| | - Victoria Hevia-Larraín
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7500000, Chile; (H.Z.-F.); (C.R.-N.); (V.H.-L.); (M.C.-S.); (M.J.S.)
| | - Mauricio Castro-Sepulveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7500000, Chile; (H.Z.-F.); (C.R.-N.); (V.H.-L.); (M.C.-S.); (M.J.S.)
| | - Maria José Saúl
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7500000, Chile; (H.Z.-F.); (C.R.-N.); (V.H.-L.); (M.C.-S.); (M.J.S.)
| | | | - Louise Deldicque
- Institute of Neuroscience, UCLouvain, 1348 Louvain-la-Neuve, Belgium
- Correspondence: ; Tel.: +32-10-47-44-43
| |
Collapse
|
23
|
Aragon AA, Tipton KD, Schoenfeld BJ. Age-related muscle anabolic resistance: inevitable or preventable? Nutr Rev 2023; 81:441-454. [PMID: 36018750 DOI: 10.1093/nutrit/nuac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related loss of muscle mass, strength, and performance, commonly referred to as sarcopenia, has wide-ranging detrimental effects on human health, the ramifications of which can have serious implications for both morbidity and mortality. Various interventional strategies have been proposed to counteract sarcopenia, with a particular emphasis on those employing a combination of exercise and nutrition. However, the efficacy of these interventions can be confounded by an age-related blunting of the muscle protein synthesis response to a given dose of protein/amino acids, which has been termed "anabolic resistance." While the pathophysiology of sarcopenia is undoubtedly complex, anabolic resistance is implicated in the progression of age-related muscle loss and its underlying complications. Several mechanisms have been proposed as underlying age-related impairments in the anabolic response to protein consumption. These include decreased anabolic molecular signaling activity, reduced insulin-mediated capillary recruitment (thus, reduced amino acid delivery), and increased splanchnic retention of amino acids (thus, reduced availability for muscular uptake). Obesity and sedentarism can exacerbate, or at least facilitate, anabolic resistance, mediated in part by insulin resistance and systemic inflammation. This narrative review addresses the key factors and contextual elements involved in reduction of the acute muscle protein synthesis response associated with aging and its varied consequences. Practical interventions focused on dietary protein manipulation are proposed to prevent the onset of anabolic resistance and mitigate its progression.
Collapse
Affiliation(s)
- Alan A Aragon
- is with the Department of Family and Consumer Sciences, California State University, Northridge, California, USA
| | - Kevin D Tipton
- is with the Institute of Performance Nutrition, Edinburgh, Scotland
| | - Brad J Schoenfeld
- is with the Department of Health Sciences, CUNY Lehman College, Bronx, New York, USA
| |
Collapse
|
24
|
Won CW. Management of Sarcopenia in Primary Care Settings. Korean J Fam Med 2023; 44:71-75. [PMID: 36966736 PMCID: PMC10040270 DOI: 10.4082/kjfm.22.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 03/30/2023] Open
Abstract
With aging, loss of skeletal muscle mass and muscle function increases, resulting in an increased risk of falls, fractures, long-term institutional care, cardiovascular and metabolic diseases, and even death. Sarcopenia, which is derived from the Greek words "sarx" or flesh+"penia" or loss, is defined as a condition characterized by low muscle mass and low muscle strength and performance. In 2019, the Asian Working Group for Sarcopenia (AWGS) published a consensus paper on the diagnosis and treatment of sarcopenia. The AWGS 2019 guideline, specifically, presented strategies for case-finding and assessment to help diagnose "possible sarcopenia" in primary care settings. For case finding, the AWGS 2019 guideline proposed an algorithm that recommends calf circumference measurement (cut-off <34 cm in men, <33 cm in women) or the SARC-F (strength, assistance with walking, rising from a chair, climbing stairs, and falls) questionnaire (cut-off ≥4). If this case finding is confirmed, handgrip strength (cutoff <28 kg in men, <18 kg in women) or the 5-time chair stand test (≥12 seconds) should be performed to diagnose "possible sarcopenia." If an individual is diagnosed as "possible sarcopenia," AWGS 2019 recommends that the individual should start lifestyle interventions and related health education for primary healthcare users. Because no medication is available to treat sarcopenia, exercise and nutrition is essential for sarcopenia management. Many guidelines, recommend physical activity, with a focus on progressive resistance (strength) training, as a first-line therapy for the management of sarcopenia. It is essential to educate older adults with sarcopenia on the need to increase protein intake. Many guidelines recommended that older people should consume at least 1.2 g of proteins/kg/d. This minimum threshold can be increased in the presence of catabolic or muscle wasting. Previous studies reported that leucine, a branched-chain amino acid, is essential for protein synthesis in muscle, and a stimulator for skeletal muscle synthesis. A guideline conditionally recommends that diet or nutritional supplements should be combined with exercise intervention for older adults with sarcopenia.
Collapse
Affiliation(s)
- Chang Won Won
- Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
- Corresponding Author: Chang Won Won https://orcid.org/0000-0002-6429-4461 Tel: +82-2-958-8697, Fax: +82-2-958-8699, E-mail:
| |
Collapse
|
25
|
Kassis A, Fichot MC, Horcajada MN, Horstman AMH, Duncan P, Bergonzelli G, Preitner N, Zimmermann D, Bosco N, Vidal K, Donato-Capel L. Nutritional and lifestyle management of the aging journey: A narrative review. Front Nutr 2023; 9:1087505. [PMID: 36761987 PMCID: PMC9903079 DOI: 10.3389/fnut.2022.1087505] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
With age, the physiological responses to occasional or regular stressors from a broad range of functions tend to change and adjust at a different pace and restoring these functions in the normal healthy range becomes increasingly challenging. Even if this natural decline is somehow unavoidable, opportunities exist to slow down and attenuate the impact of advancing age on major physiological processes which, when weakened, constitute the hallmarks of aging. This narrative review revisits the current knowledge related to the aging process and its impact on key metabolic functions including immune, digestive, nervous, musculoskeletal, and cardiovascular functions; and revisits insights into the important biological targets that could inspire effective strategies to promote healthy aging.
Collapse
Affiliation(s)
- Amira Kassis
- Whiteboard Nutrition Science, Beaconsfield, QC, Canada,Amira Kassis,
| | | | | | | | - Peter Duncan
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Nicolas Preitner
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Diane Zimmermann
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Laurence Donato-Capel
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland,*Correspondence: Laurence Donato-Capel,
| |
Collapse
|
26
|
Hermans WJ, Fuchs CJ, Nyakayiru J, Hendriks FK, Houben LH, Senden JM, van Loon LJ, Verdijk LB. Acute Quark Ingestion Increases Muscle Protein Synthesis Rates at Rest with a Further Increase after Exercise in Young and Older Adult Males in a Parallel-Group Intervention Trial. J Nutr 2023; 153:66-75. [PMID: 36913480 DOI: 10.1016/j.tjnut.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ingestion of protein concentrates or isolates increases muscle protein synthesis rates in young and older adults. There is far less information available on the anabolic response following the ingestion of dairy wholefoods, which are commonly consumed in a normal diet. OBJECTIVES This study investigates whether ingestion of 30 g protein provided as quark increases muscle protein synthesis rates at rest and whether muscle protein synthesis rates are further increased after resistance exercise in young and older adult males. METHODS In this parallel-group intervention trial, 14 young (18-35 y) and 15 older (65-85 y) adult males ingested 30 g protein provided as quark after a single-legged bout of resistance exercise on leg press and leg extension machines. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data represent means ± SDs; η2 was used to measure the effect size. RESULTS Plasma total amino acid and leucine concentrations increased after quark ingestion in both groups (both time: P < 0.001; η2 > 0.8), with no differences between groups (time × group: P = 0.127 and P = 0.172, respectively; η2<0.1). Muscle protein synthesis rates increased following quark ingestion at rest in both young (from 0.030 ± 0.011 to 0.051 ± 0.011 %·h-1) and older adult males (from 0.036 ± 0.011 to 0.062 ± 0.013 %·h-1), with a further increase in the exercised leg (to 0.071 ± 0.023 %·h-1 and to 0.078 ± 0.019 %·h-1, respectively; condition: P < 0.001; η2 = 0.716), with no differences between groups (condition × group: P = 0.747; η2 = 0.011). CONCLUSIONS Quark ingestion increases muscle protein synthesis rates at rest with a further increase following exercise in both young and older adult males. The postprandial muscle protein synthetic response following quark ingestion does not differ between healthy young and older adult males when an ample amount of protein is ingested. This trial was registered at the Dutch Trial register, which is accessible via trialsearch.who.int www.trialregister.nl as NL8403.
Collapse
Affiliation(s)
- Wesley Jh Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | | | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Lisanne Hp Houben
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Luc Jc van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
27
|
Chapple LAS, Parry SM, Schaller SJ. Attenuating Muscle Mass Loss in Critical Illness: the Role of Nutrition and Exercise. Curr Osteoporos Rep 2022; 20:290-308. [PMID: 36044178 PMCID: PMC9522765 DOI: 10.1007/s11914-022-00746-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Impaired recovery following an intensive care unit (ICU) admission is thought related to muscle wasting. Nutrition and physical activity are considered potential avenues to attenuate muscle wasting. The aim of this review was to present evidence for these interventions in attenuating muscle loss or improving strength and function. RECENT FINDINGS Randomised controlled trials on the impact of nutrition or physical activity interventions in critically ill adult patients on muscle mass, strength or function are presented. No nutrition intervention has shown an effect on strength or function, and the effect on muscle mass is conflicting. RCTs on the effect of physical activity demonstrate conflicting results; yet, there is a signal for improved strength and function with higher levels of physical activity, particularly when commenced early. Further research is needed to elucidate the impact of nutrition and physical activity on muscle mass, strength and function, particularly in combination.
Collapse
Affiliation(s)
- Lee-Anne S Chapple
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Selina M Parry
- Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Stefan J Schaller
- Department of Anesthesiology and Operative Intensive Care Medicine (CVK, CCM), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Klinikum rechts der Isar, Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
28
|
Moore DR, Williamson EP, Hodson N, Estafanos S, Mazzulla M, Kumbhare D, Gillen JB. Walking or body weight squat 'activity snacks' increase dietary amino acid utilization for myofibrillar protein synthesis during prolonged sitting. J Appl Physiol (1985) 2022; 133:777-785. [PMID: 35952344 DOI: 10.1152/japplphysiol.00106.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interrupting prolonged sitting with intermittent exercise enhances postprandial glycemic control but has unknown effects on sensitizing skeletal muscle to dietary amino acids. We hypothesized that brief walking or body weight squats would enhance the utilization of dietary phenylalanine for myofibrillar protein synthesis (MyoPS) during prolonged sitting. Participants (7 males and 5 females; ~23y; ~25.1kg/m2; ~7300 steps/d) completed three 7.5h trials consisting of prolonged sitting (SIT) or sitting with intermittent (every 30 minutes) walking (WALK) or body weight squatting (SQUAT). Two mixed-macronutrient meals (~55:30:15% carbohydrate:fat:protein), enriched with L-[ring-2H5]phenylalanine or L-[ring-13C6]phenylalanine, were provided to mimic breakfast and lunch. Tracer incorporation into myofibrillar protein was determined from the vastus lateralis with MyoPS estimated using plasma enrichment as precursor surrogate. Phosphorylation of candidate anabolic signaling proteins were determined by immunoblotting. There was no difference between conditions (p≥0.78) in the time course or area under the curve for plasma phenylalanine enrichment. MyoPS was greater (p<0.05, weighted planned comparison) in SQUAT (0.103±0.030%/h) and WALK (0.118±0.037%/h) compared to SIT (0.080±0.032%/h). Compared to SIT, there were moderate-to-large effect sizes, respectively, for SQUAT (ES=0.75; 95% CI -0.10-1.55) and WALK (ES=1.10; 95% CI 0.20-1.91). Fold change in rpS6Ser240/244 phosphorylation was greater in SQUAT compared to SIT (7.6±2.7 vs. 1.6±0.45 fold, p<0.05) with no difference (p≥0.21) in any other targets measured (4E-BP1Thr37/46, eEF2Thr56, mTORSer2448, ERK1/2Thr202/Tyr204). Interrupting prolonged sitting with short 'activity snacks' improves the utilization of dietary amino acids for MyoPS. The long term impact of this practical lifestyle modification for muscle mass or quality should be investigated.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Eric P Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Stephanie Estafanos
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | | | - Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Franzke B, Bileck A, Unterberger S, Aschauer R, Zöhrer PA, Draxler A, Strasser EM, Wessner B, Gerner C, Wagner KH. The plasma proteome is favorably modified by a high protein diet but not by additional resistance training in older adults: A 17-week randomized controlled trial. Front Nutr 2022; 9:925450. [PMID: 35990326 PMCID: PMC9389340 DOI: 10.3389/fnut.2022.925450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe age-related loss of muscle mass significantly contributes to the development of chronic diseases, loss of mobility and dependency on others, yet could be improved by an optimized lifestyle.ObjectiveThe goal of this randomized controlled trial was to compare the influence of a habitual diet (CON) with either a diet containing the recommended protein intake (RP) or a high protein intake (HP), both with and without strength training, on the plasma proteome in older adults.MethodsOne hundred and thirty-six women and men (65–85 years) were randomly assigned to three intervention groups. CON continued their habitual diet; participants of the HP and RP group consumed either high protein or standard foods. After 6 weeks of dietary intervention, HP and RP groups additionally started a strength training intervention twice per week for 8 weeks. Twenty-four hours dietary recalls were performed every 7–10 days. Body composition was assessed and blood taken. Plasma proteomics were assessed with LC-MS.ResultsParticipants of the HP group doubled their baseline protein intake from 0.80 ± 0.31 to 1.63 ± 0.36 g/kg BW/d; RP increased protein intake from 0.89 ± 0.28 to 1.06 ± 0.26 g/kg BW/d. The CON group kept the protein intake stable throughout the study. Combined exercise and HP initiated notable changes, resulting in a reduction in bodyfat and increased muscle mass. Proteomics analyses revealed 14 significantly affected proteins by HP diet, regulating innate immune system, lipid transport and blood coagulation, yet the additional strength training did not elicit further changes.ConclusionsCombined HP and resistance exercise in healthy older adults seem to induce favorable changes in the body composition. Changes in the plasma proteome due to the high protein diet point to a beneficial impact for the innate immune system, lipid transport and blood coagulation system, all of which are involved in chronic disease development.Clinical trial registrationThe study was registered at ClinicalTrials.gov (NCT04023513).
Collapse
Affiliation(s)
- Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- *Correspondence: Bernhard Franzke
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Sandra Unterberger
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Rudolf Aschauer
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Patrick A. Zöhrer
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Agnes Draxler
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Eva-Maria Strasser
- Karl Landsteiner Institute for Remobilization and Functional Health/Institute for Physical Medicine and Rehabilitation, Kaiser Franz Joseph Hospital, Social Medical Center South, Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Lee MC, Hsu YJ, Wu FY, Huang CC, Li HY, Chen WC. Isolated Soy Protein Supplementation Combined With Resistance Training Improves Muscle Strength, Mass, and Physical Performance of Aging Female Mice. Front Physiol 2022; 13:893352. [PMID: 35721547 PMCID: PMC9204525 DOI: 10.3389/fphys.2022.893352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background/Purpose: In recent years, the aging population has gradually increased, and the aging process is accompanied by health-associated problems, such as loss of muscle mass and weakness. Therefore, it is important to explore alternative strategies for improving the health status and physical fitness of the aged population. In this study, we investigated the effect of soy protein supplementation combined with resistance training on changes in the muscle mass, muscle strength, and functional activity performance of aging mice. Methods: Female Institute of Cancer Research (ICR) mice were divided into four groups (n = 8 per group): sedentary control (SC), isolated soy protein (ISP) supplementation, resistance training (RT), and a combination of ISP and RT (ISP + RT). The mice in designated groups received oral ISP supplementation (0.123 g/kg/day), RT (5 days/week for a period of 4 weeks), or a combination of both ISP plus RT for 4 weeks. Afterward, we assessed muscle strength, endurance, and anaerobic endurance performance and analyzed blood biochemical and pathological tissue sections to investigate whether there were adverse effects or not in mice. Results: ISP supplementation effectively improved the muscle mass, muscle endurance, and endurance performance of aging female mice. The RT group not only showed similar results with ISP but also increased muscle strength and glycogen content. Nevertheless, the combination of ISP supplementation and RT had greater beneficial effects on muscle strength, physical performance, and glycogen levels (p < 0.05). In addition, the combination of ISP supplementation and RT had significantly increased type II muscle percentage and cross-sectional area (p < 0.05). Conclusion: Although ISP or RT alone improved muscle mass and performance, the combination of ISP with RT showed greater beneficial effects in aging mice. Our findings suggest that regular exercise along with protein supplementation could be an effective strategy to improve overall health and physical fitness among the elderly.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Fang-Yu Wu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Hsueh-Yu Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Sleep Center, Linkou-Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Chyuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Sleep Center, Linkou-Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for General Education, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
31
|
Nutrition policy: developing scientific recommendations for food-based dietary guidelines for older adults living independently in Ireland. Proc Nutr Soc 2022; 81:49-61. [DOI: 10.1017/s0029665122001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Older adults (≥65 years) are the fastest growing population group. Thus, ensuring nutritional well-being of the ‘over-65s’ to optimise health is critically important. Older adults represent a diverse population – some are fit and healthy, others are frail and many live with chronic conditions. Up to 78% of older Irish adults living independently are overweight or obese. The present paper describes how these issues were accommodated into the development of food-based dietary guidelines for older adults living independently in Ireland. Food-based dietary guidelines previously established for the general adult population served as the basis for developing more specific recommendations appropriate for older adults. Published international reports were used to update nutrient intake goals for older adults, and available Irish data on dietary intakes and nutritional status biomarkers were explored from a population-based study (the National Adult Nutrition Survey; NANS) and two longitudinal cohorts: the Trinity-Ulster and Department of Agriculture (TUDA) and the Irish Longitudinal Study on Ageing (TILDA) studies. Nutrients of public health concern were identified for further examination. While most nutrient intake goals were similar to those for the general adult population, other aspects were identified where nutritional concerns of ageing require more specific food-based dietary guidelines. These include, a more protein-dense diet using high-quality protein foods to preserve muscle mass; weight maintenance in overweight or obese older adults with no health issues and, where weight-loss is required, that lean tissue is preserved; the promotion of fortified foods, particularly as a bioavailable source of B vitamins and the need for vitamin D supplementation.
Collapse
|
32
|
Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021; 14:nu14010052. [PMID: 35010928 PMCID: PMC8746908 DOI: 10.3390/nu14010052] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Sarcopenia is one of the main issues associated with the process of aging. Characterized by muscle mass loss, it is triggered by several conditions, including sedentary habits and negative net protein balance. According to World Health Organization, it is expected a 38% increase in older individuals by 2025. Therefore, it is noteworthy to establish recommendations to prevent sarcopenia and several events and comorbidities associated with this health issue condition. In this review, we discuss the role of these factors, prevention strategies, and recommendations, with a focus on protein intake and exercise.
Collapse
|
33
|
Abou Sawan S, Hodson N, Tinline-Goodfellow C, West DWD, Malowany JM, Kumbhare D, Moore DR. Incorporation of Dietary Amino Acids Into Myofibrillar and Sarcoplasmic Proteins in Free-Living Adults Is Influenced by Sex, Resistance Exercise, and Training Status. J Nutr 2021; 151:3350-3360. [PMID: 34486662 DOI: 10.1093/jn/nxab261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute exercise increases the incorporation of dietary amino acids into de novo myofibrillar proteins after a single meal in controlled laboratory studies in males. It is unclear whether this extends to free-living settings or is influenced by training or sex. OBJECTIVES We determined the effects of exercise, training status, and sex on 24-hour free-living dietary phenylalanine incorporation into skeletal muscle proteins. METHODS In a parallel group design, recreationally active males (mean ± SD age, 23 ± 3 years; BMI. 23.4 ± 2.9 kg/m2; n = 10) and females (age 24 ± 5 years; BMI, 23.1 ± 3.9 kg/m2; n = 9) underwent 8 weeks of whole-body resistance exercise 3 times a week. Controlled diets containing 1.6 g/kg-1/d-1 (amino acids modelled after egg), enriched to 10% with [13C6] or [2H5]phenylalanine, were consumed before and after an acute bout of resistance exercise. Fasted muscle biopsies were obtained before [untrained, pre-exercise condition (REST ] and 24 hours after an acute bout of resistance exercise in untrained (UT) and trained (T) states to determine dietary phenylalanine incorporation into myofibrillar (ΔMyo) and sarcoplasmic (ΔSarc) proteins, intracellular mechanistic target of rapamycin (mTOR) colocalization with ulex europaeus agglutinin-1 (UEA-1; capillary marker; immunofluorescence), and amino acid transporter expression (Western blotting). RESULTS The ΔMyo values were ∼62% greater (P < 0.01) in females than males at REST. The ΔMyo values increased above REST by ∼51% during UT and ∼30% in T (both P < 0.01) in males, remained unchanged in females during UT, and were ∼33% lower at T when compared to UT (P = 0.013). Irrespective of sex, ΔMyo and ΔSarc were decreased at T compared to UT (P ≤ 0.026). Resistance training increased mTOR colocalization with UEA-1 (P = 0.004), while L amino acid transporter 1, which was greater in males (P < 0.01), and sodium-coupled neutral amino acid transporter 2 protein expression were not affected by acute exercise (P ≥ 0.33) or training (P ≥ 0.45). CONCLUSIONS The exercise-induced incorporation of dietary phenylalanine into myofibrillar and sarcoplasmic proteins is attenuated after training regardless of sex, suggesting a reduced reliance on dietary amino acids for postexercise skeletal muscle remodeling in the T state.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, Toronto, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Mazzulla M, Hodson N, Lees M, Scaife PJ, Smith K, Atherton PJ, Kumbhare D, Moore DR. LAT1 and SNAT2 Protein Expression and Membrane Localization of LAT1 Are Not Acutely Altered by Dietary Amino Acids or Resistance Exercise Nor Positively Associated with Leucine or Phenylalanine Incorporation in Human Skeletal Muscle. Nutrients 2021; 13:nu13113906. [PMID: 34836160 PMCID: PMC8624011 DOI: 10.3390/nu13113906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
The influx of essential amino acids into skeletal muscle is primarily mediated by the large neutral amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated by the sodium-dependent neutral amino acid transporter 2 (SNAT2). The protein expression and membrane localization of LAT1 may be influenced by amino acid ingestion and/or resistance exercise, although its acute influence on dietary amino acid incorporation into skeletal muscle protein has not been investigated. In a group design, healthy males consumed a mixed carbohydrate (0.75 g·kg-1) crystalline amino acid (0.25 g·kg-1) beverage enriched to 25% and 30% with LAT1 substrates L-[1-13C]leucine (LEU) and L-[ring-2H5]phenylalanine (PHE), respectively, at rest (FED: n = 7, 23 ± 5 y, 77 ± 4 kg) or after a bout of resistance exercise (EXFED: n = 7, 22 ± 2 y, 78 ± 11 kg). Postprandial muscle biopsies were collected at 0, 120, and 300 min to measure transporter protein expression (immunoblot), LAT1 membrane localization (immunofluorescence), and dietary amino acid incorporation into myofibrillar protein (ΔLEU and ΔPHE). Basal LAT1 and SNAT2 protein contents were correlated with each other (r = 0.55, p = 0.04) but their expression did not change across time in FED or EXFED (all, p > 0.05). Membrane localization of LAT1 did not change across time in FED or EXFED whether measured as outer 1.5 µm intensity or membrane-to-fiber ratio (all, p > 0.05). Basal SNAT2 protein expression was not correlated with ΔLEU or ΔPHE (all, p ≥ 0.05) whereas basal LAT1 expression was negatively correlated with ΔPHE in FED (r = -0.76, p = 0.04) and EXFED (r = -0.81, p = 0.03) but not ΔLEU (p > 0.05). Basal LAT1 membrane localization was not correlated with ΔLEU or ΔPHE (all, p > 0.05). Our results suggest that LAT1/SNAT2 protein expression and LAT1 membrane localization are not influenced by acute anabolic stimuli and do not positively influence the incorporation of dietary amino acids for de novo myofibrillar protein synthesis in healthy young males.
Collapse
Affiliation(s)
- Michael Mazzulla
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Nathan Hodson
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Matthew Lees
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Paula J. Scaife
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Dinesh Kumbhare
- Department of Medicine, University of Toronto, Toronto, ON M5S 2C9, Canada;
| | - Daniel R. Moore
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
- Correspondence: ; Tel.: +1-(416)-946-4088
| |
Collapse
|
35
|
Pohl A, Schünemann F, Bersiner K, Gehlert S. The Impact of Vegan and Vegetarian Diets on Physical Performance and Molecular Signaling in Skeletal Muscle. Nutrients 2021; 13:3884. [PMID: 34836139 PMCID: PMC8623732 DOI: 10.3390/nu13113884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Muscular adaptations can be triggered by exercise and diet. As vegan and vegetarian diets differ in nutrient composition compared to an omnivorous diet, a change in dietary regimen might alter physiological responses to physical exercise and influence physical performance. Mitochondria abundance, muscle capillary density, hemoglobin concentration, endothelial function, functional heart morphology and availability of carbohydrates affect endurance performance and can be influenced by diet. Based on these factors, a vegan and vegetarian diet possesses potentially advantageous properties for endurance performance. Properties of the contractile elements, muscle protein synthesis, the neuromuscular system and phosphagen availability affect strength performance and can also be influenced by diet. However, a vegan and vegetarian diet possesses potentially disadvantageous properties for strength performance. Current research has failed to demonstrate consistent differences of performance between diets but a trend towards improved performance after vegetarian and vegan diets for both endurance and strength exercise has been shown. Importantly, diet alters molecular signaling via leucine, creatine, DHA and EPA that directly modulates skeletal muscle adaptation. By changing the gut microbiome, diet can modulate signaling through the production of SFCA.
Collapse
Affiliation(s)
- Alexander Pohl
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Frederik Schünemann
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Käthe Bersiner
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Sebastian Gehlert
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
- Department for Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany
| |
Collapse
|
36
|
Holwerda AM, van Loon LJC. The impact of collagen protein ingestion on musculoskeletal connective tissue remodeling: a narrative review. Nutr Rev 2021; 80:1497-1514. [PMID: 34605901 PMCID: PMC9086765 DOI: 10.1093/nutrit/nuab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Collagen is the central structural component of extracellular connective tissue, which provides elastic qualities to tissues. For skeletal muscle, extracellular connective tissue transmits contractile force to the tendons and bones. Connective tissue proteins are in a constant state of remodeling and have been shown to express a high level of plasticity. Dietary-protein ingestion increases muscle protein synthesis rates. High-quality, rapidly digestible proteins are generally considered the preferred protein source to maximally stimulate myofibrillar (contractile) protein synthesis rates. In contrast, recent evidence demonstrates that protein ingestion does not increase muscle connective tissue protein synthesis. The absence of an increase in muscle connective tissue protein synthesis after protein ingestion may be explained by insufficient provision of glycine and/or proline. Dietary collagen contains large amounts of glycine and proline and, therefore, has been proposed to provide the precursors required to facilitate connective tissue protein synthesis. This literature review provides a comprehensive evaluation of the current knowledge on the proposed benefits of dietary collagen consumption to stimulate connective tissue remodeling to improve health and functional performance.
Collapse
Affiliation(s)
- Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
37
|
Monteyne AJ, Dunlop MV, Machin DJ, Coelho MOC, Pavis GF, Porter C, Murton AJ, Abdelrahman DR, Dirks ML, Stephens FB, Wall BT. A mycoprotein-based high-protein vegan diet supports equivalent daily myofibrillar protein synthesis rates compared with an isonitrogenous omnivorous diet in older adults: a randomised controlled trial. Br J Nutr 2021; 126:674-684. [PMID: 33172506 PMCID: PMC8110608 DOI: 10.1017/s0007114520004481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Animal-derived dietary protein ingestion and physical activity stimulate myofibrillar protein synthesis rates in older adults. We determined whether a non-animal-derived diet can support daily myofibrillar protein synthesis rates to the same extent as an omnivorous diet. Nineteen healthy older adults (aged 66 (sem 1) years; BMI 24 (sem 1) kg/m2; twelve males, seven females) participated in a randomised, parallel-group, controlled trial during which they consumed a 3-d isoenergetic high-protein (1·8 g/kg body mass per d) diet, where the protein was provided from predominantly (71 %) animal (OMNI; n 9; six males, three females) or exclusively vegan (VEG; n 10; six males, four females; mycoprotein providing 57 % of daily protein intake) sources. During the dietary control period, participants conducted a daily bout of unilateral resistance-type leg extension exercise. Before the dietary control period, participants ingested 400 ml of deuterated water, with 50-ml doses consumed daily thereafter. Saliva samples were collected throughout to determine body water 2H enrichments, and muscle samples were collected from rested and exercised muscle to determine daily myofibrillar protein synthesis rates. Deuterated water dosing resulted in body water 2H enrichments of approximately 0·78 (sem 0·03) %. Daily myofibrillar protein synthesis rates were 13 (sem 8) (P = 0·169) and 12 (sem 4) % (P = 0·016) greater in the exercised compared with rested leg (1·59 (sem 0·12) v. 1·77 (sem 0·12) and 1·76 (sem 0·14) v. 1·93 (sem 0·12) %/d) in OMNI and VEG groups, respectively. Daily myofibrillar protein synthesis rates did not differ between OMNI and VEG in either rested or exercised muscle (P > 0·05). Over the course of a 3-d intervention, omnivorous- or vegan-derived dietary protein sources can support equivalent rested and exercised daily myofibrillar protein synthesis rates in healthy older adults consuming a high-protein diet.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Mandy V Dunlop
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - David J Machin
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Mariana OC Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - George F Pavis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- The Claude D. Pepper Older Americans Independence Center University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Marlou L Dirks
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
38
|
Salvador AF, McKenna CF, Paulussen KJM, Keeble AR, Askow AT, Fang HY, Li Z, Ulanov AV, Paluska SA, Moore DR, Burd NA. Early resistance training-mediated stimulation of daily muscle protein synthetic responses to higher habitual protein intake in middle-aged adults. J Physiol 2021; 599:4287-4307. [PMID: 34320223 DOI: 10.1113/jp281907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The ingestion of protein potentiates the stimulation of myofibrillar protein synthesis rates after an acute bout of resistance exercise. Protein supplementation (eating above the protein Recommended Dietary Allowance) during resistance training has been shown to maximize lean mass and strength gains in healthy young and older adults. Here, contractile, oxidative, and structural protein synthesis were assessed in skeletal muscle in response to a moderate or higher protein diet during the early adaptive phase of resistance training in middle-aged adults. The stimulation of myofibrillar, mitochondrial or collagen protein synthesis rates during 0-3 weeks of resistance training is not further enhanced by a higher protein diet. These results show that moderate protein diets are sufficient to support the skeletal muscle adaptive response during the early phase of a resistance training programme. ABSTRACT Protein ingestion augments muscle protein synthesis (MPS) rates acutely after resistance exercise and can offset age-related loss in muscle mass. Skeletal muscle contains a variety of protein pools, such as myofibrillar (contractile), mitochondrial (substrate oxidation), and collagen (structural support) proteins, and the sensitivity to nutrition and exercise seems to be dependent on the major protein fraction studied. However, it is unknown how free-living conditions with high dietary protein density and habitual resistance exercise mediates muscle protein subfraction synthesis. Therefore, we investigated the effect of moderate (MOD: 1.06 ± 0.22 g kg-1 day-1 ) or high (HIGH: 1.55 ± 0.25 g kg-1 day-1 ) protein intake on daily MPS rates within the myofibrillar (MyoPS), mitochondrial (MitoPS) and collagen (CPS) protein fractions in middle-aged men and women (n = 20, 47 ± 1 years, BMI 28 ± 1 kg m-2 ) during the early phase (0-3 weeks) of a dietary counselling-controlled resistance training programme. Participants were loaded with deuterated water, followed by daily maintenance doses throughout the intervention. Muscle biopsies were collected at baseline and after weeks 1, 2 and 3. MyoPS in the HIGH condition remained constant (P = 1.000), but MOD decreased over time (P = 0.023). MitoPS decreased after 0-3 weeks when compared to 0-1 week (P = 0.010) with no effects of protein intake (P = 0.827). A similar decline with no difference between groups (P = 0.323) was also observed for CPS (P = 0.007). Our results demonstrated that additional protein intake above moderate amounts does not potentiate the stimulation of longer-term MPS responses during the early stage of resistance training adaptations in middle-aged adults.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kevin J M Paulussen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander R Keeble
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew T Askow
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
39
|
Pasiakos SM, Howard EE. High-Quality Supplemental Protein Enhances Acute Muscle Protein Synthesis and Long-Term Strength Adaptations to Resistance Training in Young and Old Adults. J Nutr 2021; 151:1677-1679. [PMID: 33978162 DOI: 10.1093/jn/nxab099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Emily E Howard
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| |
Collapse
|
40
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
41
|
Kim HN, Song SW. Association between dietary protein intake and skeletal muscle mass in older Korean adults. Eur Geriatr Med 2021; 12:1221-1228. [PMID: 34156655 DOI: 10.1007/s41999-021-00530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE We investigated the association of low and high daily protein intakes on skeletal muscle mass status in Korean adults aged 60 years and older. METHODS This cross-sectional study used data from the Korean National Health and Nutrition Examination Survey conducted between 2008 and 2011. The participants' dietary protein intake was assessed using the 24-h dietary recall method and was classified as low (< 0.8 g/kg body weight/day), moderate (0.8-1.2 g/kg/day), and high (> 1.2 g/kg/day). Amount of skeletal muscle mass was measured using whole-body dual-energy X-ray absorptiometry. Low skeletal muscle mass was defined as appendicular skeletal muscle mass index < 7.0 kg/m2 in men and < 5.4 kg/m2 in women. RESULTS The study included data from 4585 participants (2022 men and 2563 women). All skeletal muscle parameters in women and total lean mass in men decreased as the amount of protein consumed daily increased. However, there was no association between high or low protein intake and low skeletal muscle mass in men or women. CONCLUSIONS No association was found between the amount of daily protein intake and skeletal muscle mass status in older Korean adults. Gender-specific further studies focussing on the interactions of dietary protein intake under specific conditions including physical activity status and the daily distribution of protein intake and the quality and source of the protein are needed to evaluate the impact of protein intake status on muscle health in older Koreans.
Collapse
Affiliation(s)
- Ha-Na Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon, Gyeonggi, 16247, Republic of Korea
| | - Sang-Wook Song
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon, Gyeonggi, 16247, Republic of Korea.
| |
Collapse
|
42
|
de Marco Castro E, Murphy CH, Roche HM. Targeting the Gut Microbiota to Improve Dietary Protein Efficacy to Mitigate Sarcopenia. Front Nutr 2021; 8:656730. [PMID: 34235167 PMCID: PMC8256992 DOI: 10.3389/fnut.2021.656730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is characterised by the presence of diminished skeletal muscle mass and strength. It is relatively common in older adults as ageing is associated with anabolic resistance (a blunted muscle protein synthesis response to dietary protein consumption and resistance exercise). Therefore, interventions to counteract anabolic resistance may benefit sarcopenia prevention and are of utmost importance in the present ageing population. There is growing speculation that the gut microbiota may contribute to sarcopenia, as ageing is also associated with [1) dysbiosis, whereby the gut microbiota becomes less diverse, lacking in healthy butyrate-producing microorganisms and higher in pathogenic bacteria, and [2) loss of epithelial tight junction integrity in the lining of the gut, leading to increased gut permeability and higher metabolic endotoxemia. Animal data suggest that both elements may impact muscle physiology, but human data corroborating the causality of the association between gut microbiota and muscle mass and strength are lacking. Mechanisms wherein the gut microbiota may alter anabolic resistance include an attenuation of gut-derived low-grade inflammation and/or the increased digestibility of protein-containing foods and consequent higher aminoacidemia, both in favour of muscle protein synthesis. This review focuses on the putative links between the gut microbiota and skeletal muscle in the context of sarcopenia. We also address the issue of plant protein digestibility because plant proteins are increasingly important from an environmental sustainability perspective, yet they are less efficient at stimulating muscle protein synthesis than animal proteins.
Collapse
Affiliation(s)
- Elena de Marco Castro
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Caoileann H Murphy
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
43
|
Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise? Nutrients 2021; 13:nu13061962. [PMID: 34200501 PMCID: PMC8230006 DOI: 10.3390/nu13061962] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023] Open
Abstract
Adequate dietary protein is important for many aspects of health with current evidence suggesting that exercising individuals need greater amounts of protein. When assessing protein quality, animal sources of protein routinely rank amongst the highest in quality, largely due to the higher levels of essential amino acids they possess in addition to exhibiting more favorable levels of digestibility and absorption patterns of the amino acids. In recent years, the inclusion of plant protein sources in the diet has grown and evidence continues to accumulate on the comparison of various plant protein sources and animal protein sources in their ability to stimulate muscle protein synthesis (MPS), heighten exercise training adaptations, and facilitate recovery from exercise. Without question, the most robust changes in MPS come from efficacious doses of a whey protein isolate, but several studies have highlighted the successful ability of different plant sources to significantly elevate resting rates of MPS. In terms of facilitating prolonged adaptations to exercise training, multiple studies have indicated that a dose of plant protein that offers enough essential amino acids, especially leucine, consumed over 8–12 weeks can stimulate similar adaptations as seen with animal protein sources. More research is needed to see if longer supplementation periods maintain equivalence between the protein sources. Several practices exist whereby the anabolic potential of a plant protein source can be improved and generally, more research is needed to best understand which practice (if any) offers notable advantages. In conclusion, as one considers the favorable health implications of increasing plant intake as well as environmental sustainability, the interest in consuming more plant proteins will continue to be present. The evidence base for plant proteins in exercising individuals has seen impressive growth with many of these findings now indicating that consumption of a plant protein source in an efficacious dose (typically larger than an animal protein) can instigate similar and favorable changes in amino acid update, MPS rates, and exercise training adaptations such as strength and body composition as well as recovery.
Collapse
|
44
|
Hermans WJH, Senden JM, Churchward-Venne TA, Paulussen KJM, Fuchs CJ, Smeets JSJ, van Loon JJA, Verdijk LB, van Loon LJC. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am J Clin Nutr 2021; 114:934-944. [PMID: 34020450 PMCID: PMC8408844 DOI: 10.1093/ajcn/nqab115] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Insects have recently been identified as a more sustainable protein-dense food source and may represent a viable alternative to conventional animal-derived proteins. OBJECTIVES We aimed to compare the impacts of ingesting lesser mealworm- and milk-derived protein on protein digestion and amino acid absorption kinetics, postprandial skeletal muscle protein synthesis rates, and the incorporation of dietary protein-derived amino acids into de novo muscle protein at rest and during recovery from exercise in vivo in humans. METHODS In this double-blind randomized controlled trial, 24 healthy, young men ingested 30 g specifically produced, intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled lesser mealworm- or milk-derived protein after a unilateral bout of resistance-type exercise. Primed continuous l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle tissue samples. RESULTS A total of 73% ± 7% and 77% ± 7% of the lesser mealworm and milk protein-derived phenylalanine was released into the circulation during the 5 h postprandial period, respectively, with no significant differences between groups (P < 0.05). Muscle protein synthesis rates increased after both lesser mealworm and milk protein concentrate ingestion from 0.025 ± 0.008%/h to 0.045 ± 0.017%/h and 0.028 ± 0.010%/h to 0.056 ± 0.012%/h at rest and from 0.025 ± 0.012%/h to 0.059 ± 0.015%/h and 0.026 ± 0.009%/h to 0.073 ± 0.020%/h after exercise, respectively (all P < 0.05), with no differences between groups (both P > 0.05). Incorporation of mealworm and milk protein-derived l-[1-13C]-phenylalanine into de novo muscle protein was greater after exercise than at rest (P < 0.05), with no differences between groups (P > 0.05). CONCLUSIONS Ingestion of a meal-like amount of lesser mealworm-derived protein is followed by rapid protein digestion and amino acid absorption and increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial protein handling of lesser mealworm does not differ from ingesting an equivalent amount of milk protein concentrate in vivo in humans.This trial was registered at www.trialregister.nl as NL6897.
Collapse
Affiliation(s)
- Wesley J H Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tyler A Churchward-Venne
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kevin J M Paulussen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | |
Collapse
|
45
|
Urschel KL, McKenzie EC. Nutritional Influences on Skeletal Muscle and Muscular Disease. Vet Clin North Am Equine Pract 2021; 37:139-175. [PMID: 33820605 DOI: 10.1016/j.cveq.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Skeletal muscle comprises 40% to 55% of mature body weight in horses, and its mass is determined largely by rates of muscle protein synthesis. In order to support exercise, appropriate energy sources are essential: glucose can support both anaerobic and aerobic exercise, whereas fat can only be metabolized aerobically. Following exercise, ingestion of nonfiber carbohydrates and protein can aid muscle growth and recovery. Muscle glycogen replenishment is slow in horses, regardless of dietary interventions. Several heritable muscle disorders, including type 1 and 2 polysaccharide storage myopathy and recurrent exertional rhabdomyolysis, can be managed in part by restricting dietary nonstructural carbohydrate intake.
Collapse
Affiliation(s)
- Kristine L Urschel
- Department of Animal and Food Sciences, University of Kentucky, 612 W.P. Garrigus Building, Lexington, KY 40546, USA
| | - Erica C McKenzie
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, 227 Magruder Hall, 700 Southwest 30th Street, Corvallis, OR 97331, USA.
| |
Collapse
|
46
|
Paulussen KJM, McKenna CF, Beals JW, Wilund KR, Salvador AF, Burd NA. Anabolic Resistance of Muscle Protein Turnover Comes in Various Shapes and Sizes. Front Nutr 2021; 8:615849. [PMID: 34026802 PMCID: PMC8131552 DOI: 10.3389/fnut.2021.615849] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Anabolic resistance is defined by a blunted stimulation of muscle protein synthesis rates (MPS) to common anabolic stimuli in skeletal muscle tissue such as dietary protein and exercise. Generally, MPS is the target of most exercise and feeding interventions as muscle protein breakdown rates seem to be less responsive to these stimuli. Ultimately, the blunted responsiveness of MPS to dietary protein and exercise underpins the loss of the amount and quality of skeletal muscle mass leading to decrements in physical performance in these populations. The increase of both habitual physical activity (including structured exercise that targets general fitness characteristics) and protein dense food ingestion are frontline strategies utilized to support muscle mass, performance, and health. In this paper, we discuss anabolic resistance as a common denominator underpinning muscle mass loss with aging, obesity, and other disease states. Namely, we discuss the fact that anabolic resistance exists as a dimmer switch, capable of varying from higher to lower levels of resistance, to the main anabolic stimuli of feeding and exercise depending on the population. Moreover, we review the evidence on whether increased physical activity and targeted exercise can be leveraged to restore the sensitivity of skeletal muscle tissue to dietary amino acids regardless of the population.
Collapse
Affiliation(s)
- Kevin J. M. Paulussen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Colleen F. McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph W. Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth R. Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
47
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
48
|
Protein Source and Muscle Health in Older Adults: A Literature Review. Nutrients 2021; 13:nu13030743. [PMID: 33652669 PMCID: PMC7996767 DOI: 10.3390/nu13030743] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
Abstract
Research shows that higher dietary protein of up to 1.2 g/kgbodyweight/day may help prevent sarcopenia and maintain musculoskeletal health in older individuals. Achieving higher daily dietary protein levels is challenging, particularly for older adults with declining appetites and underlying health conditions. The negative impact of these limitations on aging muscle may be circumvented through the consumption of high-quality sources of protein and/or supplementation. Currently, there is a debate regarding whether source of protein differentially affects musculoskeletal health in older adults. Whey and soy protein have been used as the most common high-quality proteins in recent literature. However, there is growing consumer demand for additional plant-sourced dietary protein options. For example, pea protein is rapidly gaining popularity among consumers, despite little to no research regarding its long-term impact on muscle health. Therefore, the objectives of this review are to: (1) review current literature from the past decade evaluating whether specific source(s) of dietary protein provide maximum benefit to muscle health in older adults; and (2) highlight the need for future research specific to underrepresented plant protein sources, such as pea protein, to then provide clearer messaging surrounding plant-sourced versus animal-sourced protein and their effects on the aging musculoskeletal system.
Collapse
|
49
|
Hevia-Larraín V, Gualano B, Longobardi I, Gil S, Fernandes AL, Costa LAR, Pereira RMR, Artioli GG, Phillips SM, Roschel H. High-Protein Plant-Based Diet Versus a Protein-Matched Omnivorous Diet to Support Resistance Training Adaptations: A Comparison Between Habitual Vegans and Omnivores. Sports Med 2021; 51:1317-1330. [PMID: 33599941 DOI: 10.1007/s40279-021-01434-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Acute protein turnover studies suggest lower anabolic response after ingestion of plant vs. animal proteins. However, the effects of an exclusively plant-based protein diet on resistance training-induced adaptations are under investigation. OBJECTIVE To investigate the effects of dietary protein source [exclusively plant-based vs. mixed diet] on changes in muscle mass and strength in healthy young men undertaking resistance training. METHODS Nineteen young men who were habitual vegans (VEG 26 ± 5 years; 72.7 ± 7.1 kg, 22.9 ± 2.3 kg/m2) and nineteen young men who were omnivores (OMN 26 ± 4 years; 73.3 ± 7.8 kg, 23.6 ± 2.3 kg/m2) undertook a 12-week, twice weekly, supervised resistance training program. Habitual protein intake was assessed at baseline and adjusted to 1.6 g kg-1 day-1 via supplemental protein (soy for VEG or whey for OMN). Dietary intake was monitored every four weeks during the intervention. Leg lean mass, whole muscle, and muscle fiber cross-sectional area (CSA), as well as leg-press 1RM were assessed before (PRE) and after the intervention (POST). RESULTS Both groups showed significant (all p < 0.05) PRE-to-POST increases in leg lean mass (VEG: 1.2 ± 1.0 kg; OMN: 1.2 ± 0.8 kg), rectus femoris CSA (VEG: 1.0 ± 0.6 cm2; OMN: 0.9 ± 0.5 cm2), vastus lateralis CSA (VEG: 2.2 ± 1.1 cm2; OMN: 2.8 ± 1.0 cm2), vastus lateralis muscle fiber type I (VEG: 741 ± 323 µm2; OMN: 677 ± 617 µm2) and type II CSA (VEG: 921 ± 458 µm2; OMN: 844 ± 638 µm2), and leg-press 1RM (VEG: 97 ± 38 kg; OMN: 117 ± 35 kg), with no between-group differences for any of the variables (all p > 0.05). CONCLUSION A high-protein (~ 1.6 g kg-1 day-1), exclusively plant-based diet (plant-based whole foods + soy protein isolate supplementation) is not different than a protein-matched mixed diet (mixed whole foods + whey protein supplementation) in supporting muscle strength and mass accrual, suggesting that protein source does not affect resistance training-induced adaptations in untrained young men consuming adequate amounts of protein. CLINICAL TRIAL REGISTRATION NCT03907059. April 8, 2019. Retrospectively registered.
Collapse
Affiliation(s)
- Victoria Hevia-Larraín
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil.,Food Research Center, University of São Paulo, R. do Lago, 250, São Paulo, SP, Brazil
| | - Igor Longobardi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil
| | - Saulo Gil
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil
| | - Alan L Fernandes
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil
| | - Luiz A R Costa
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil
| | - Rosa M R Pereira
- Rheumatology Division, Faculdade de Medicina FMUSP, Bone Metabolism Laboratory, Universidade de Sao Paulo, Av. Doutor Arnaldo, 455, São Paulo, SP, Brazil
| | - Guilherme G Artioli
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil.
| |
Collapse
|
50
|
Exercise Plus Presleep Protein Ingestion Increases Overnight Muscle Connective Tissue Protein Synthesis Rates in Healthy Older Men. Int J Sport Nutr Exerc Metab 2021; 31:217-226. [PMID: 33588378 DOI: 10.1123/ijsnem.2020-0222] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
Protein ingestion and exercise stimulate myofibrillar protein synthesis rates. When combined, exercise further increases the postprandial rise in myofibrillar protein synthesis rates. It remains unclear whether protein ingestion with or without exercise also stimulates muscle connective tissue protein synthesis rates. The authors assessed the impact of presleep protein ingestion on overnight muscle connective tissue protein synthesis rates at rest and during recovery from resistance-type exercise in older men. Thirty-six healthy, older men were randomly assigned to ingest 40 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine-labeled casein protein (PRO, n = 12) or a nonprotein placebo (PLA, n = 12) before going to sleep. A third group performed a single bout of resistance-type exercise in the evening before ingesting 40 g intrinsically-labeled casein protein prior to sleep (EX+PRO, n = 12). Continuous intravenous infusions of L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine were applied with blood and muscle tissue samples collected throughout overnight sleep. Presleep protein ingestion did not increase muscle connective tissue protein synthesis rates (0.049 ± 0.013 vs. 0.060 ± 0.024%/hr in PLA and PRO, respectively; p = .73). Exercise plus protein ingestion resulted in greater overnight muscle connective tissue protein synthesis rates (0.095 ± 0.022%/hr) when compared with PLA and PRO (p < .01). Exercise increased the incorporation of dietary protein-derived amino acids into muscle connective tissue protein (0.036 ± 0.013 vs. 0.054 ± 0.009 mole percent excess in PRO vs. EX+PRO, respectively; p < .01). In conclusion, resistance-type exercise plus presleep protein ingestion increases overnight muscle connective tissue protein synthesis rates in older men. Exercise enhances the utilization of dietary protein-derived amino acids as precursors for de novo muscle connective tissue protein synthesis during overnight sleep.
Collapse
|