1
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Ahmad R, Shaju R, Atfi A, Razzaque MS. Zinc and Diabetes: A Connection between Micronutrient and Metabolism. Cells 2024; 13:1359. [PMID: 39195249 DOI: 10.3390/cells13161359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus is a global health problem and a major contributor to mortality and morbidity. The management of this condition typically involves using oral antidiabetic medication, insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However, several human studies have indicated that a deficiency in micronutrients, such as zinc, can be associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release, and storage. These diverse functions make zinc an important trace element for the regulation of blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing diabetic complications. This review article explains the role of zinc in glucose metabolism and the effects of its inadequacy on the development, progression, and complications of diabetes mellitus. Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The available information suggests that zinc has beneficial effects on the management of diabetic patients. Although additional large-scale randomized clinical trials are needed to establish zinc's clinical utility further, efforts should be made to increase awareness of its potential benefits on human health and disease.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh
| | - Ronald Shaju
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S Razzaque
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| |
Collapse
|
3
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024:10.1007/s12035-024-04178-5. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
4
|
Chang Y, Wang K, Liu G, Zhao H, Chen X, Cai J, Jia G. Zinc glycine chelate ameliorates DSS-induced intestinal barrier dysfunction via attenuating TLR4/NF-κB pathway in meat ducks. J Anim Sci Biotechnol 2024; 15:5. [PMID: 38243258 PMCID: PMC10797781 DOI: 10.1186/s40104-023-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/01/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Zinc glycine chelate (Zn-Gly) has anti-inflammation and growth-promoting properties; however, the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown. Three-hundred 1-day-old ducks were divided into 5 groups (6 replicates and 10 ducks per replicate) in a completely randomized design: the control and dextran sulfate sodium (DSS) groups were fed a corn-soybean meal basal diet, and experimental groups received supplements of 70, 120 or 170 mg/kg Zn in form of Zn-Gly. The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15-21, and the control group received normal saline. The experiment lasted 21 d. RESULTS Compared with DSS group, 70, 120 and 170 mg/kg Zn significantly increased body weight (BW), villus height and the ratio of villus to crypt, and significantly decreased the crypt depth of jejunum at 21 d. The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining. Compared with control, the content of intestinal permeability marker D-lactic acid (D-LA) and fluxes of fluorescein isothiocyanate (FITC-D) in plasma of DSS group significantly increased, and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes. Compared with control, contents of plasma, jejunum endotoxin and jejunum pro-inflammatory factors IL-1β, IL-6 and TNF-α were significantly increased in DSS group, and were significantly decreased by 170 mg/kg Zn supplementation. Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10, IL-22 and sIgA and IgG in jejunum. Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum, and decreased gene and protein expression of CLDN-2 compared with DSS group. The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA. Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-α expression levels and TNF-α protein expression in jejunum. Additionally, Zn significantly reduced the gene and protein expression of TLR4, MYD88 and NF-κB p65. CONCLUSIONS Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology, barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.
Collapse
Affiliation(s)
- Yaqi Chang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Prado Y, Aravena D, Gatica S, Llancalahuen FM, Aravena C, Gutiérrez-Vera C, Carreño LJ, Cabello-Verrugio C, Simon F. From genes to systems: The role of food supplementation in the regulation of sepsis-induced inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166909. [PMID: 37805092 DOI: 10.1016/j.bbadis.2023.166909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Systemic inflammation includes a widespread immune response to a harmful stimulus that results in extensive systemic damage. One common example of systemic inflammation is sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Under the pro-inflammatory environment of sepsis, oxidative stress contributes to tissue damage due to dysfunctional microcirculation that progressively causes the failure of multiple organs that ultimately triggers death. To address the underlying inflammatory condition in critically ill patients, progress has been made to assess the beneficial effects of dietary supplements, which include polyphenols, amino acids, fatty acids, vitamins, and minerals that are recognized for their immuno-modulating, anticoagulating, and analgesic properties. Therefore, we aimed to review and discuss the contribution of food-derived supplementation in the regulation of inflammation from gene expression to physiological responses and summarize the precedented potential of current therapeutic approaches during systemic inflammation.
Collapse
Affiliation(s)
- Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
6
|
Kumar S, Ansari S, Narayanan S, Ranjith-Kumar CT, Surjit M. Antiviral activity of zinc against hepatitis viruses: current status and future prospects. Front Microbiol 2023; 14:1218654. [PMID: 37908540 PMCID: PMC10613677 DOI: 10.3389/fmicb.2023.1218654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shabnam Ansari
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sriram Narayanan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
7
|
Dadashkhan S, Mirmotalebisohi SA, Poursheykhi H, Sameni M, Ghani S, Abbasi M, Kalantari S, Zali H. Deciphering crucial genes in multiple sclerosis pathogenesis and drug repurposing: A systems biology approach. J Proteomics 2023; 280:104890. [PMID: 36966969 DOI: 10.1016/j.jprot.2023.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/10/2023]
Abstract
This study employed systems biology and high-throughput technologies to analyze complex molecular components of MS pathophysiology, combining data from multiple omics sources to identify potential biomarkers and propose therapeutic targets and repurposed drugs for MS treatment. This study analyzed GEO microarray datasets and MS proteomics data using geWorkbench, CTD, and COREMINE to identify differentially expressed genes associated with MS disease. Protein-protein interaction networks were constructed using Cytoscape and its plugins, and functional enrichment analysis was performed to identify crucial molecules. A drug-gene interaction network was also created using DGIdb to propose medications. This study identified 592 differentially expressed genes (DEGs) associated with MS disease using GEO, proteomics, and text-mining datasets. 37 DEGs were found to be important by topographical network studies, and 6 were identified as the most significant for MS pathophysiology. Additionally, we proposed six drugs that target these key genes. Crucial molecules identified in this study were dysregulated in MS and likely play a key role in the disease mechanism, warranting further research. Additionally, we proposed repurposing certain FDA-approved drugs for MS treatment. Our in silico results were supported by previous experimental research on some of the target genes and drugs. SIGNIFICANCE: As the long-lasting investigations continue to discover new pathological territories in neurodegeneration, here we apply a systems biology approach to determine multiple sclerosis's molecular and pathophysiological origin and identify multiple sclerosis crucial genes that contribute to candidating new biomarkers and proposing new medications.
Collapse
Affiliation(s)
- Sadaf Dadashkhan
- Molecular Medicine Research Centre, Universitätsklinikum Jena, Jena, Germany; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Poursheykhi
- Department of New Scientist, Faculty of Medical Sciences, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sima Kalantari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Shi Y, Zhong H, Pang L. Maternal micronutrient disturbance as risks of offspring metabolic syndrome. J Trace Elem Med Biol 2023; 75:127097. [PMID: 36272194 DOI: 10.1016/j.jtemb.2022.127097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is defined as a constellation of individual metabolic disturbances, including central obesity, hypertension, dyslipidemia, and insulin resistance. The established pathogenesis of MetS varies extensively with gender, age, ethnic background, and nutritional status. In terms of nutritional status, micronutrients are more likely to be discounted as essential components of required nutrition than macronutrients due to the small amount required. Numerous observational studies have shown that pregnant women frequently experience malnutrition, especially in developing and low-income countries, resulting in chronic MetS in the offspring due to the urgent and increasing demands for micronutrients during gestation and lactation. Over the past few decades, scientific developments have revolutionized our understanding of the association between balanced maternal micronutrients and MetS in the offspring. Examples of successful individual, dual, or multiple maternal micronutrient interventions on the offspring include iron for hypertension, selenium for type 2 diabetes, and a combination of folate and vitamin D for adiposity. In this review, we aim to elucidate the effects of maternal micronutrient intake on offspring metabolic homeostasis and discuss potential perspectives and challenges in the field of maternal micronutrient interventions.
Collapse
Affiliation(s)
- Yujie Shi
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Hong Zhong
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Lingxia Pang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
9
|
Li W, Yang X, Ding M, Shi W, Huang Y, An Q, Qi Z, Zhao Y. Zinc accumulation aggravates cerebral ischemia/reperfusion injury by promoting inflammation. Front Cell Neurosci 2023; 17:1065873. [PMID: 36970418 PMCID: PMC10030816 DOI: 10.3389/fncel.2023.1065873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Intracellular zinc accumulation has been shown to be associated with neuronal death after cerebral ischemia. However, the mechanism of zinc accumulation leading to neuronal death in ischemia/reperfusion (I/R) is still unclear. Intracellular zinc signals are required for the production of proinflammatory cytokines. The present study investigated whether intracellular accumulated zinc aggravates I/R injury through inflammatory response, and inflammation-mediated neuronal apoptosis. Male Sprague-Dawley rats were treated with vehicle or zinc chelator TPEN 15 mg/kg before a 90-min middle cerebral artery occlusion (MCAO). The expressions of proinflammatory cytokines TNF-α, IL-6, NF-κB p65, and NF-κB inhibitory protein IκB-α, as well as anti-inflammatory cytokine IL-10 were assessed at 6 or 24 h after reperfusion. Our results demonstrated that the expression of TNF-α, IL-6, and NF-κB p65 increased after reperfusion, while the expression of IκB-α and IL-10 decreased, suggesting that cerebral ischemia triggers inflammatory response. Furthermore, TNF-α, NF-κB p65, and IL-10 were all colocalized with the neuron-specific nuclear protein (NeuN), suggesting that the ischemia-induced inflammatory response occurs in neurons. Moreover, TNF-α was also colocalized with the zinc-specific dyes Newport Green (NG), suggesting that intracellular accumulated zinc might be associated with neuronal inflammation following cerebral I/R. Chelating zinc with TPEN reversed the expression of TNF-α, NF-κB p65, IκB-α, IL-6, and IL-10 in ischemic rats. Besides, IL-6-positive cells were colocalized with TUNEL-positive cells in the ischemic penumbra of MCAO rats at 24 h after reperfusion, indicating that zinc accumulation following I/R might induce inflammation and inflammation-associated neuronal apoptosis. Taken together, this study demonstrates that excessive zinc activates inflammation and that the brain injury caused by zinc accumulation is at least partially due to specific neuronal apoptosis induced by inflammation, which may provide an important mechanism of cerebral I/R injury.
Collapse
Affiliation(s)
- Wei Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xueqi Yang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Mao Ding
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenjuan Shi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi An
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Zhifeng Qi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- *Correspondence: Zhifeng Qi Yongmei Zhao
| | - Yongmei Zhao
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- *Correspondence: Zhifeng Qi Yongmei Zhao
| |
Collapse
|
10
|
Zinc in Human Health and Infectious Diseases. Biomolecules 2022; 12:biom12121748. [PMID: 36551176 PMCID: PMC9775844 DOI: 10.3390/biom12121748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
During the last few decades, the micronutrient zinc has proven to be an important metal ion for a well-functioning immune system, and thus also for a suitable immune defense. Nowadays, it is known that the main cause of zinc deficiency is malnutrition. In particular, vulnerable populations, such as the elderly in Western countries and children in developing countries, are often affected. However, sufficient zinc intake and homeostasis is essential for a healthy life, as it is known that zinc deficiency is associated with a multitude of immune disorders such as metabolic and chronic diseases, as well as infectious diseases such as respiratory infections, malaria, HIV, or tuberculosis. Moreover, the modulation of the proinflammatory immune response and oxidative stress is well described. The anti-inflammatory and antioxidant properties of zinc have been known for a long time, but are not comprehensively researched and understood yet. Therefore, this review highlights the current molecular mechanisms underlying the development of a pro-/ and anti-inflammatory immune response as a result of zinc deficiency and zinc supplementation. Additionally, we emphasize the potential of zinc as a preventive and therapeutic agent, alone or in combination with other strategies, that could ameliorate infectious diseases.
Collapse
|
11
|
Engin AB, Engin ED, Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103937. [PMID: 35882309 PMCID: PMC9307469 DOI: 10.1016/j.etap.2022.103937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 05/14/2023]
Abstract
In severe COVID-19, the levels of iron (Fe), copper (Cu), zinc (Zn) and selenium (Se), do not only regulate host immune responses, but modify the viral genome, as well. While low serum Fe concentration is an independent risk factor for the increased death rate, Zn controls oxidative stress, synthesis of inflammatory cytokines and viral replication. Therefore, Zn deficiency associates with a worse prognosis. Although Cu exposure inactivates the viral genome and exhibits spike protein dispersal, increase in Cu/Zn due to high serum Cu levels, are correlated with enhanced risk of infections. Se levels are significantly higher in surviving COVID-19 patients. Meanwhile, both Zn and Se suppress the replication of SARS-CoV-2. Since the balance between the deficiency and oversupply of these metals due to a reciprocal relationship, has decisive effect on the prognosis of the SARS-CoV-2 infection, monitoring their concentrations may facilitate improved outcomes for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
12
|
Samuelson DR, Haq S, Knoell DL. Divalent Metal Uptake and the Role of ZIP8 in Host Defense Against Pathogens. Front Cell Dev Biol 2022; 10:924820. [PMID: 35832795 PMCID: PMC9273032 DOI: 10.3389/fcell.2022.924820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Manganese (Mn) and Zinc (Zn) are essential micronutrients whose concentration and location within cells are tightly regulated at the onset of infection. Two families of Zn transporters (ZIPs and ZnTs) are largely responsible for regulation of cytosolic Zn levels and to a certain extent, Mn levels, although much less is known regarding Mn. The capacity of pathogens to persevere also depends on access to micronutrients, yet a fundamental gap in knowledge remains regarding the importance of metal exchange at the host interface, often referred to as nutritional immunity. ZIP8, one of 14 ZIPs, is a pivotal importer of both Zn and Mn, yet much remains to be known. Dietary Zn deficiency is common and commonly occurring polymorphic variants of ZIP8 that decrease cellular metal uptake (Zn and Mn), are associated with increased susceptibility to infection. Strikingly, ZIP8 is the only Zn transporter that is highly induced following bacterial exposure in key immune cells involved with host defense against leading pathogens. We postulate that mobilization of Zn and Mn into key cells orchestrates the innate immune response through regulation of fundamental defense mechanisms that include phagocytosis, signal transduction, and production of soluble host defense factors including cytokines and chemokines. New evidence also suggests that host metal uptake may have long-term consequences by influencing the adaptive immune response. Given that activation of ZIP8 expression by pathogens has been shown to influence parenchymal, myeloid, and lymphoid cells, the impact applies to all mucosal surfaces and tissue compartments that are vulnerable to infection. We also predict that perturbations in metal homeostasis, either genetic- or dietary-induced, has the potential to impact bacterial communities in the host thereby adversely impacting microbiome composition. This review will focus on Zn and Mn transport via ZIP8, and how this vital metal transporter serves as a "go to" conductor of metal uptake that bolsters host defense against pathogens. We will also leverage past studies to underscore areas for future research to better understand the Zn-, Mn- and ZIP8-dependent host response to infection to foster new micronutrient-based intervention strategies to improve our ability to prevent or treat commonly occurring infectious disease.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sabah Haq
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Daren L. Knoell,
| |
Collapse
|
13
|
Prophylactic Zinc Administration Combined with Swimming Exercise Prevents Cognitive-Emotional Disturbances and Tissue Injury following a Transient Hypoxic-Ischemic Insult in the Rat. Behav Neurol 2022; 2022:5388944. [PMID: 35637877 PMCID: PMC9146809 DOI: 10.1155/2022/5388944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exercise performance and zinc administration individually yield a protective effect on various neurodegenerative models, including ischemic brain injury. Therefore, this work was aimed at evaluating the combined effect of subacute prophylactic zinc administration and swimming exercise in a transient cerebral ischemia model. The prophylactic zinc administration (2.5 mg/kg of body weight) was provided every 24 h for four days before a 30 min common carotid artery occlusion (CCAO), and 24 h after reperfusion, the rats were subjected to swimming exercise in the Morris Water Maze (MWM). Learning was evaluated daily for five days, and memory on day 12 postreperfusion; anxiety or depression-like behavior was measured by the elevated plus maze and the motor activity by open-field test. Nitrites, lipid peroxidation, and the activity of superoxide dismutase (SOD) and catalase (CAT) were assessed in the temporoparietal cortex and hippocampus. The three nitric oxide (NO) synthase isoforms, chemokines, and their receptor levels were measured by ELISA. Nissl staining evaluated hippocampus cytoarchitecture and Iba-1 immunohistochemistry activated the microglia. Swimming exercise alone could not prevent ischemic damage but, combined with prophylactic zinc administration, reversed the cognitive deficit, decreased NOS and chemokine levels, prevented tissue damage, and increased Iba-1 (+) cell number. These results suggest that the subacute prophylactic zinc administration combined with swimming exercise, but not the individual treatment, prevents the ischemic damage on day 12 postreperfusion in the transient ischemia model.
Collapse
|
14
|
Faghfouri AH, Khabbazi A, Baradaran B, Khajebishak Y, Baghbani E, Noorolyai S, Rahmani S, Seyyed Shoura SM, Alipour M, Alipour B. Immunomodulatory and clinical responses to zinc gluconate supplementation in patients with Behçet's disease: A double-blind, randomized placebo-controlled clinical trial. Clin Nutr 2022; 41:1083-1092. [DOI: 10.1016/j.clnu.2022.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/15/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022]
|
15
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-safi I, Mechchate H, Lyoussi B. New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols. Nutrients 2022; 14:nu14050942. [PMID: 35267917 PMCID: PMC8912813 DOI: 10.3390/nu14050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an epidemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Populations at risk as well as those who can develop serious complications are people with chronic diseases such as diabetes, hypertension, and the elderly. Severe symptoms of SARS-CoV-2 infection are associated with immune failure and dysfunction. The approach of strengthening immunity may be the right choice in order to save lives. This review aimed to provide an overview of current information revealing the importance of bee products in strengthening the immune system against COVID-19. We highlighted the immunomodulatory and the antiviral effects of zinc and polyphenols, which may actively contribute to improving symptoms and preventing complications caused by COVID-19 and can counteract viral infections. Thus, this review will pave the way for conducting advanced experimental research to evaluate zinc and polyphenols-rich bee products to prevent and reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
- Correspondence:
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
16
|
Marx D, Papini M, Towler M. In vitro immunomodulatory effects of novel strontium and zinc-containing GPCs. Biomed Mater Eng 2022; 33:377-391. [PMID: 35180104 DOI: 10.3233/bme-211346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glass polyalkenoate cements (GPCs) are bio-adhesives which consist of ionomeric glass particles embedded in a poly-salt matrix. These materials have been used in dentistry and orthodontics extensively but are presently being optimized as bone putties for orthopedic applications. OBJECTIVE This study utilized a patented ionomeric glass (mole fraction: SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) to formulate two GPCs: GPC A (<45 μm particle size glass) and GPC B (45 μm-63 μm). These formulations were previously assessed for their effect on osteoblast viability and osteogenic function. However, the immunomodulatory effects of GPC A and B have not previously been investigated. METHOD Non-toxic concentrations of (a) GPC dissolution products and (b) fragmented GPC particles were tested for their ability to affect the secretion of cytokines (TNF-α, IL-1β, IL-6 and IL-10) by rat peripheral blood mononuclear cells (PBMCs), in the presence or absence of the stimulant liposaccharide (LPS). Additionally, the ionic concentrations of Sr, Zn, Ca, and Si were measured in GPC ionic extracts, and the size, shape and concentration of fragmented GPC particles in deionized water were characterized using an optical microscope-based particle analyzer. RESULTS The results showed that GPC A ionic products reduced the concentration of TNF-α secreted by stimulated cells compared with cells stimulated in the absence of GPC products. Interestingly, the particles released from GPC A significantly increased the secretion of both TNF-α and IL-6 from unstimulated cells, compared to control cells. CONCLUSION Neither GPC B ionic products nor released particles were found to be biologically active with respect to PBMC cytokine secretion.
Collapse
Affiliation(s)
- Daniella Marx
- Department of Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Marcello Papini
- Department of Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto, ON, Canada
| | - Mark Towler
- Department of Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
17
|
Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020555. [PMID: 35056870 PMCID: PMC8779769 DOI: 10.3390/molecules27020555] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.
Collapse
|
18
|
Ho E, Wong CP, King JC. Impact of zinc on DNA integrity and age-related inflammation. Free Radic Biol Med 2022; 178:391-397. [PMID: 34921929 DOI: 10.1016/j.freeradbiomed.2021.12.256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Dr. Bruce Ames was a pioneer in understanding the role of oxidative stress and DNA damage, and in the 1990s began to make connections between micronutrient deficiencies and DNA damage. Zinc is an essential micronutrient for human health and a key component for the function of numerous cellular processes. In particular, zinc plays a critical role in cellular antioxidant defense, the maintenance of DNA integrity and is also essential for the normal development and function of the immune system. This review highlights the work helping connect zinc deficiency to oxidative stress, susceptibility to DNA damage and chronic inflammation that was initiated while working with Dr. Ames. This review outlines the body of work in this area, from cells to humans. The article also reviews the unique challenges of maintaining zinc status as we age and the interplay between zinc deficiency and age-related inflammation and immune dysfunction. Several micronutrient deficiencies, including zinc deficiency, can drastically affect the risk of many chronic diseases and underscores the importance of adequate nutrition for healthy aging.
Collapse
Affiliation(s)
- Emily Ho
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, 101 Milam Hall, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Carmen P Wong
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, 101 Milam Hall, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Janet C King
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| |
Collapse
|
19
|
Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021; 13:nu13124456. [PMID: 34960004 PMCID: PMC8707169 DOI: 10.3390/nu13124456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc, an essential micronutrient in the human body, is a component in over 300 enzymes and participates in regulating enzymatic activity. Zinc metalloenzymes play a crucial role in physiological processes including antioxidant, anti-inflammatory, and immune responses, as well as apoptosis. Aberrant enzyme activity can lead to various human diseases. In this review, we summarize zinc homeostasis, the roles of zinc in zinc metalloenzymes, the physiological processes of zinc metalloenzymes, and aberrant zinc metalloenzymes in human diseases. In addition, potential mechanisms of action are also discussed. This comprehensive understanding of the mechanisms of action of the regulatory functions of zinc in enzyme activity could inform novel zinc-micronutrient-supply strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Yunqi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China;
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
20
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|
21
|
Mousaviyan R, Davoodian N, Alizadeh F, Ghasemi-Kasman M, Mousavi SA, Shaerzadeh F, Kazemi H. Zinc Supplementation During Pregnancy Alleviates Lipopolysaccharide-Induced Glial Activation and Inflammatory Markers Expression in a Rat Model of Maternal Immune Activation. Biol Trace Elem Res 2021; 199:4193-4204. [PMID: 33400154 DOI: 10.1007/s12011-020-02553-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Maternal immune activation (MIA) model has been profoundly described as a suitable approach to study the pathophysiological mechanisms of neuropsychiatric disorders, including schizophrenia. Our previous study revealed that prenatal exposure to lipopolysaccharide (LPS) induced working memory impairments in only male offspring. Based on the putative role of prefrontal cortex (PFC) in working memory process, the current study was conducted to examine the long-lasting effect of LPS-induced MIA on several neuroinflammatory mediators in the PFC of adult male pups. We also investigated whether maternal zinc supplementation can alleviate LPS-induced alterations in this region. Pregnant rats received intraperitoneal injections of either LPS (0.5 mg/kg) or saline on gestation days 15/16 and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy. At postnatal day 60, the density of both microglia and astrocyte cells and the expression levels of IL-6, IL-1β, iNOS, TNF-α, NF-κB, and GFAP were evaluated in the PFC of male pups. Although maternal LPS treatment increased microglia and astrocyte density, number of neurons in the PFC of adult offspring remained unchanged. These findings were accompanied by the exacerbated mRNA levels of IL-6, IL-1β, iNOS, TNF-α, NF-κB, and GFAP as well. Conversely, prenatal zinc supplementation alleviated the mentioned alterations induced by LPS. These findings support the idea that the deleterious effects of prenatal LPS exposure could be attenuated by zinc supplementation during pregnancy. It is of interest to suggest early therapeutic intervention as a valuable approach to prevent neurodevelopmental deficits, following maternal infection. Schematic diagram describing the experimental timeline. On gestation days (GD) 15 and 16, pregnant dams were administered with intraperitoneal injections of either LPS (0.5 mg/kg) or vehicle and supplemented with ZnSO4 (30 mg/kg) throughout pregnancy by gavage. The resulting offspring were submitted to qPCR, immunostaining, and morphological analysis at PND 60. Maternal zinc supplementation alleviated increased expression levels of inflammatory mediators and microglia and astrocyte density induced by LPS in the PFC of treated offspring. PND postnatal day, PFC prefrontal cortex.
Collapse
Affiliation(s)
- Ronak Mousaviyan
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Faezeh Alizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Reesearch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Abdollah Mousavi
- Pathology Department, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Haniyeh Kazemi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
22
|
Panwar A, Wangchuk J, Kar M, Lodha R, Medigeshi GR. Dengue virus replication enhances labile zinc pools by modulation of ZIP8. Cell Microbiol 2021; 23:e13395. [PMID: 34619004 PMCID: PMC7612096 DOI: 10.1111/cmi.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Zinc‐dependent viral proteins rely on intracellular zinc homeostasis for successful completion of infectious life‐cycle. Here, we report that the intracellular labile zinc levels were elevated at early stages of dengue virus (DENV) infection in hepatic cells and this increase in free zinc was abolished in cells infected with UV‐inactivated virus or with a DENV replication inhibitor implicating a role for zinc homeostasis in viral RNA replication. This change in free zinc was mediated by zinc transporter, ZIP8, as siRNA‐mediated knockdown of ZIP8 resulted in abrogation of increase in free zinc levels leading to significant reduction in DENV titers suggesting a crucial role for ZIP8 in early stages of DENV replication. Furthermore, elevated free zinc levels correlated with high copy numbers of dengue genome in peripheral blood leukocytes obtained from dengue patients compared to healthy controls suggesting a critical role for zinc homeostasis in dengue infection.
Collapse
Affiliation(s)
- Aleksha Panwar
- Clinical and Cellular Virology lab, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jigme Wangchuk
- Clinical and Cellular Virology lab, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Meenakshi Kar
- Clinical and Cellular Virology lab, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Guruprasad R Medigeshi
- Clinical and Cellular Virology lab, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
23
|
|
24
|
Rani I, Goyal A, Bhatnagar M, Manhas S, Goel P, Pal A, Prasad R. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutr Res 2021; 92:109-128. [PMID: 34284268 PMCID: PMC8200255 DOI: 10.1016/j.nutres.2021.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
Novel coronavirus disease 2019 (COVID-19) has spread across the globe; and surprisingly, no potentially protective or therapeutic antiviral molecules are available to treat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, zinc (Zn) and copper (Cu) have been shown to exert protective effects due to their antioxidant, anti-inflammatory, and antiviral properties. Therefore, it is hypothesized that supplementation with Zn and Cu alone or as an adjuvant may be beneficial with promising efficacy and a favorable safety profile to mitigate symptoms, as well as halt progression of the severe form of SARS-CoV-2 infection. The objective of this review is to discuss the proposed underlying molecular mechanisms and their implications for combating SARS-CoV-2 infection in response to Zn and Cu administration. Several clinical trials have also included the use of Zn as an adjuvant therapy with dietary regimens/antiviral drugs against COVID-19 infection. Overall, this review summarizes that nutritional intervention with Zn and Cu may offer an alternative treatment strategy by eliciting their virucidal effects through several fundamental molecular cascades, such as, modulation of immune responses, redox signaling, autophagy, and obstruction of viral entry and genome replication during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Anmol Goyal
- Department of Community Medicine, Gian Sagar Medical College and Hospital, Banur, Patiala, Punjab, India
| | - Mini Bhatnagar
- Department of General Medicine, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Sunita Manhas
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Parul Goel
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Amit Pal
- Department of Biochemistry, AIIMS Kalyani, West Bengal, India
| | - Rajendra Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India.
| |
Collapse
|
25
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
26
|
Margolin L, Luchins J, Margolin D, Margolin M, Lefkowitz S. 20-Week Study of Clinical Outcomes of Over-the-Counter COVID-19 Prophylaxis and Treatment. J Evid Based Integr Med 2021; 26:2515690X211026193. [PMID: 34225463 PMCID: PMC8264737 DOI: 10.1177/2515690x211026193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives and Setting. As the lethal COVID-19 pandemic enters its second year, the need for effective modalities of alleviation remains urgent. This includes modalities that can readily be used by the public to reduce disease spread and severity. Such preventive measures and early-stage treatments may temper the immediacy of demand for advanced anti-COVID measures (drugs, antibodies, vaccines) and help relieve strain also on other health system resources. Design and Participants. We present results of a clinical study with a multi-component OTC “core formulation” regimen used in a multiply exposed adult population. Analysis of clinical outcome data from our sample of over 100 subjects − comprised of roughly equal sized regimen-compliant (test) and non-compliant (control) groups meeting equivalent inclusion criteria − demonstrates a strong statistical significance in favor of use of the core formulations. Results. While both groups were moderate in size, the difference between them in outcomes over the 20-week study period was large and stark: Just under 4% of the compliant test group presented flu-like symptoms, but none of the test group was COVID-positive; whereas 20% of the non-compliant control group presented flu-like symptoms, three-quarters of whom (15% overall of the control group) were COVID-positive. Conclusions. Offering a low cost, readily implemented anti-viral approach, the study regimen may serve, at the least, as a stopgap modality and, perhaps, as a useful tool in combatting the pandemic.
Collapse
Affiliation(s)
- Leon Margolin
- Comprehensive Pain Management Institute, LLC, Columbus, OH, USA
| | - Jeremy Luchins
- Comprehensive Pain Management Institute, LLC, Columbus, OH, USA
| | - Daniel Margolin
- Comprehensive Pain Management Institute, LLC, Columbus, OH, USA
| | | | | |
Collapse
|
27
|
Kim B, Lee WW. Regulatory Role of Zinc in Immune Cell Signaling. Mol Cells 2021; 44:335-341. [PMID: 33986184 PMCID: PMC8175146 DOI: 10.14348/molcells.2021.0061] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Bonah Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Ischemic/Hypoxic Disease Institute, and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
28
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems 2021; 6:e00122-21. [PMID: 33947804 PMCID: PMC8269209 DOI: 10.1128/msystems.00122-21] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents may reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products may help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with a greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.IMPORTANCE Sales of dietary supplements and nutraceuticals have increased during the pandemic due to their perceived "immune-boosting" effects. However, little is known about the efficacy of these dietary supplements and nutraceuticals against the novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) or the disease that it causes, CoV disease 2019 (COVID-19). This review provides a critical overview of the potential prophylactic and therapeutic value of various dietary supplements and nutraceuticals from the evidence available to date. These include vitamin C, vitamin D, and zinc, which are often perceived by the public as treating respiratory infections or supporting immune health. Consumers need to be aware of misinformation and false promises surrounding some supplements, which may be subject to limited regulation by authorities. However, considerably more research is required to determine whether dietary supplements and nutraceuticals exhibit prophylactic and therapeutic value against SARS-CoV-2 infection and COVID-19. This review provides perspective on which nutraceuticals and supplements are involved in biological processes that are relevant to recovery from or prevention of COVID-19.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Hashemzaei M, Fanoudi S, Najari M, Fotouhi M, Belaran M, Alipour NS, Dadrezaei Z, Miri F, Tabrizian K. Effects of Quercetin and Resveratrol on Zinc Chloride- and Sodium Metavanadate-Induced Passive Avoidance Memory Retention Deficits in Male Mice. Prev Nutr Food Sci 2021; 26:67-74. [PMID: 33859961 PMCID: PMC8027046 DOI: 10.3746/pnf.2021.26.1.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022] Open
Abstract
Quercetin and resveratrol are found in a variety of fruits and vegetables and have several biological and pharmacological properties. In this study, the effects of quercetin [50 mg/kg, intraperitoneal (i.p.)] and resveratrol (50 mg/kg, i.p.) on zinc chloride (ZnCl2; 75 mg/kg/d, 2 weeks oral gavage) and sodium metavanadate (SMV; 22.5 mg/kg/d, 2 weeks oral gavage) induced passive avoidance memory retention were investigated in step-through passive avoidance tasks. ZnCl2 was dissolved in saline and SMV was dissolved in drinking water. Mice received ZnCl2 or SMV orally for two weeks and were administered quercetin or resveratrol by i.p. injection on day 14, days 12 and 14, or days 10, 12, and 14. At the end of treatment, animals were trained for one day in a step-through passive avoidance task, then alterations in avoidance memory retention were evaluated after 24, 48, 96, and 168 h. Oral consumption of ZnCl2 and SMV decreased latency time compared with control groups. Both quercetin and resveratrol (50 mg/kg, i.p.) prevented ZnCl2- and SMV-induced avoidance memory retention impairments and did not significantly alter muscle strength, as demonstrated in rotarod tasks. No significant differences were observed between mice who received single, double, or triple doses of quercetin or resveratrol. The results suggest that quercetin and resveratrol may have preventive effects on ZnCl2- and SMV-induced memory impairment in male mice.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Mohadeseh Najari
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Mansoureh Fotouhi
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Maryam Belaran
- Department of Physiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Najmeh Sadat Alipour
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Zahra Dadrezaei
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Fatemeh Miri
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| |
Collapse
|
30
|
Feng J, Wang H, Jing Z, Wang Y, Wang W, Jiang Y, Sun W. Relationships of the Trace Elements Zinc and Magnesium With Diabetic Nephropathy-Associated Renal Functional Damage in Patients With Type 2 Diabetes Mellitus. Front Med (Lausanne) 2021; 8:626909. [PMID: 33859989 PMCID: PMC8042293 DOI: 10.3389/fmed.2021.626909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Zinc (Zn) and magnesium (Mg) are essential trace elements in humans. Their deficiency may be associated with inflammation and oxidative stress (OS) in patients with diabetic nephropathy (DN), but the mechanisms involved have not been fully characterized. We aimed to investigate the relationships between circulating concentrations of Zn and Mg and pro-inflammatory factors with DN-associated renal functional damage in patients with type 2 diabetes mellitus (T2DM). To this end, we studied 20 healthy people, 24 patients with T2DM, and 59 patients with T2DM and T2DN. Serum and urine Zn and Mg concentrations were measured using the 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamine) phenol (nitro-PAPS) chromogenic method and the xylidyl blue method, respectively, and the circulating concentrations of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor-α (TNF-α)] were measured using flow cytometry. The serum concentrations of Zn and Mg were significantly lower in patients with T2DM and DN than in healthy controls. Serum Zn, urine Zn, and urine Mg concentrations decreased, while those of IL-6 and IL-8 increased with the progression of DN-associated renal functional damage. Furthermore, the serum and urine Zn concentrations negatively correlated with the serum IL-6 and IL-8 concentrations. Notably, the serum Zn concentration was found to independently protect against DN in patients with T2DM. Hypozincemia may be associated with the T2DN-associated renal functional damage because it exacerbates inflammation.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.,Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Zhe Jing
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Interactions of zinc- and redox-signaling pathways. Redox Biol 2021; 41:101916. [PMID: 33662875 PMCID: PMC7937829 DOI: 10.1016/j.redox.2021.101916] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc and cellular oxidants such as reactive oxygen species (ROS) each participate in a multitude of physiological functions. There is considerable overlap between the affected events, including signal transduction. While there is no obvious direct connection between zinc and ROS, mainly because the bivalent cation zinc does not change its oxidation state in biological systems, these are linked by their interaction with sulfur, forming the remarkable triad of zinc, ROS, and protein thiols. First, zinc binds to reduced thiols and can be released upon oxidation. Thereby, redox signals are translated into changes in the free zinc concentration, which can act as zinc signals. Second, zinc affects oxidation of thiols in several ways, directly as well as indirectly. A protein incorporating many of these interactions is metallothionein (MT), which is rich in cysteine and capable of binding up to seven zinc ions in its fully reduced state. Zinc binding is diminished after (partial) oxidation, while thiols show increased reactivity in the absence of bound metal ions. Adding still more complexity, the MT promoter is controlled by zinc (via metal regulatory transcription factor 1 (MTF-1)) as well as redox (via nuclear factor erythroid 2-related factor 2 (NRF2)). Many signaling cascades that are important for cell proliferation or apoptosis contain protein thiols, acting as centers for crosstalk between zinc- and redox-signaling. A prominent example for shared molecular targets for zinc and ROS are active site cysteine thiols in protein tyrosine phosphatases (PTP), their activity being downregulated by oxidation as well as zinc binding. Because zinc binding also protects PTP thiols form irreversible oxidation, there is a multi-faceted reciprocal interaction, illustrating that zinc- and redox-signaling are intricately linked on multiple levels.
Collapse
|
32
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals Under Investigation for COVID-19 Prevention and Treatment. ARXIV 2021:arXiv:2102.02250v1. [PMID: 33564696 PMCID: PMC7872359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents could reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products could help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
33
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
34
|
Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients 2020; 12:E3198. [PMID: 33092041 PMCID: PMC7589163 DOI: 10.3390/nu12103198] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
| | | | | | | | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, via Gramsci 14, 43126 Parma, Italy; (F.P.); (F.P.); (A.A.); (C.N.)
| |
Collapse
|
35
|
Gatiatulina ER, Sheina EA, Nemereshina ON, Popova EV, Polyakova VS, Agletdinov EF, Sinitskii AI, Skalny AV, Nikonorov AA, Tinkov AA. Effect of Zn Supplementation on Trace Element Status in Rats with Diet-Induced Non-alcoholic Fatty Liver Disease. Biol Trace Elem Res 2020; 197:202-212. [PMID: 31832925 DOI: 10.1007/s12011-019-01985-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Abstract
The present study aimed to assess the effect of Zn supplementation on trace element levels in the liver, serum, and hair of rats with dietary-induced non-alcoholic fatty liver disease (NAFLD). A total of 26 3-month-old female Wistar rats were divided into four groups: control, NAFLD, Zn-supplemented (227 mg/L zinc as Zn sulfate Zn(SO)4 dissolved in a drinking water), and NAFLD-Zn-supplemented. NAFLD was verified by histological assessment of liver samples. The serum was examined for routine biochemical parameters. Trace elements content was assessed using inductively coupled plasma mass spectrometry (ICP-MS). Zn treatment resulted in an improvement in liver weight and morphology. Dietary supplementation with Zn prevented NAFLD-induced decrease liver Co. The tendency to increase liver Fe in the Zn-treated group was observed. Zn treatment decreased hepatic Al and serum V levels. However, Zn administration did not affect NAFLD-induced I, Mn, and Se depletion in the liver. Hair Zn levels raised in Zn-supplemented groups. Conclusively, the results of the study indicate that Zn supplementation could have a beneficial effect in modulation of the altered trace element status and liver morphology. HIGHLIGHTS: •Zn treatment improved liver weight and morphology in rats with NAFLD. •Zn supplementation decreased liver Al in NAFLD. •Treatment by Zn prevented depletion of liver Co. •Zn decreased serum V and increased hair Zn levels. •No effect of Zn on NAFLD-induced hepatic I, Mn and Se depletion was observed.
Collapse
Affiliation(s)
- Eugenia R Gatiatulina
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina St., 7, Moscow, 117216, Russia.
| | - Evgenia A Sheina
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia
| | - Olga N Nemereshina
- Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
| | - Elizaveta V Popova
- St. Joseph College of Health and Allied Sciences, St Joseph University in Tanzania, 11007, Dar es Salaam, Tanzania
| | | | | | - Anton I Sinitskii
- South Ural State Medical University, Vorovskogo St., 64, Chelyabinsk, 454092, Russia
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
- IM Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, 119991, Russia
| | - Alexandr A Nikonorov
- State Research Center of Dermatovenerology and Cosmetology, Korolenko St., 3-6, Moscow, 107076, Russia
| | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
- IM Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, 119991, Russia
| |
Collapse
|
36
|
Mayor-Ibarguren A, Busca-Arenzana C, Robles-Marhuenda Á. A Hypothesis for the Possible Role of Zinc in the Immunological Pathways Related to COVID-19 Infection. Front Immunol 2020; 11:1736. [PMID: 32754165 PMCID: PMC7365859 DOI: 10.3389/fimmu.2020.01736] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
|
37
|
Ma J, Zhou Y, Wang D, Guo Y, Wang B, Xu Y, Chen W. Associations between essential metals exposure and metabolic syndrome (MetS): Exploring the mediating role of systemic inflammation in a general Chinese population. ENVIRONMENT INTERNATIONAL 2020; 140:105802. [PMID: 32474217 DOI: 10.1016/j.envint.2020.105802] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/02/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Essential metals have been reported to be associated with metabolic diseases. However, the relationships between essential metals exposure and Metabolic Syndrome (MetS) is still uncertain, and the underlying mechanisms of the association remain unclear. OBJECTIVES To investigate the associations of urinary essential metals with MetS prevalence; and further to explore potential role of systemic inflammation biomarker, C-reactive protein (CRP), in relationships between essential metals exposure and MetS prevalence in a cross-sectional study. METHODS Concentrations of 8 urinary essential metals and plasma C-reactive protein (CRP) were quantified in 3272 adults from Wuhan-Zhuhai cohort. Urinary essential metals were adjusted by the corresponding urinary creatinine concentrations and reported as μg/mmol creatinine. Multivariable logistic regression and linear regression models were used to evaluate dose-response relationships between essential metals, plasma CRP, and MetS prevalence. Mediation analysis was performed to investigate the role of plasma CRP in the associations between urinary essential metals and MetS prevalence. RESULTS In the single-metal models, we observed positive dose-dependent relationships of urinary copper and zinc with MetS prevalence. Compared with the lowest quartiles of urinary metals, the ORs (95% CI) of MetS in the highest quartiles were 1.40 (1.03, 1.91) for urinary copper and 2.07 (1.51, 2.84) for zinc, respectively. The dose-dependent relationships of zinc and copper with MetS remained significant in the multiple-metal models and Bayesian kernel machine regression (BKMR) models. No significant associations were observed between others essential metals (e.g. manganese, iron, cobalt, selenium, chromium, molybdenum) and MetS in this general population (all P value > 0.05). In addition, urinary copper and zinc increased monotonically with plasma CRP elevation, and plasma CRP was positively associated with the MetS prevalence. Mediation analysis indicated that plasma CRP mediated 5.2% and 3.2% in the associations of urinary copper and zinc with MetS prevalence, respectively. CONCLUSIONS Elevated concentrations of urinary copper and zinc were associated with increased prevalence of MetS. Systemic inflammation may play an important role in the associations of copper and zinc exposure with MetS.
Collapse
Affiliation(s)
- Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Guo
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yiju Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
38
|
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, Tsatsakis A, Tinkov AA. Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). Int J Mol Med 2020; 46:17-26. [PMID: 32319538 PMCID: PMC7255455 DOI: 10.3892/ijmm.2020.4575] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
In view of the emerging COVID‑19 pandemic caused by SARS‑CoV‑2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID‑19. In vitro experiments demonstrate that Zn2+ possesses antiviral activity through inhibition of SARS‑CoV RNA polymerase. This effect may underlie therapeutic efficiency of chloroquine known to act as zinc ionophore. Indirect evidence also indicates that Zn2+ may decrease the activity of angiotensin‑converting enzyme 2 (ACE2), known to be the receptor for SARS‑CoV‑2. Improved antiviral immunity by zinc may also occur through up‑regulation of interferon α production and increasing its antiviral activity. Zinc possesses anti‑inflammatory activity by inhibiting NF‑κB signaling and modulation of regulatory T‑cell functions that may limit the cytokine storm in COVID‑19. Improved Zn status may also reduce the risk of bacterial co‑infection by improving mucociliary clearance and barrier function of the respiratory epithelium, as well as direct antibacterial effects against S. pneumoniae. Zinc status is also tightly associated with risk factors for severe COVID‑19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID‑19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator‑induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, D-52062 Aachen, Germany
| | - Olga P. Ajsuvakova
- Yaroslavl State University, 150003 Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Michael Aschner
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Viktor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg
| | - Svetlana I. Alekseenko
- I.I. Mechnikov North-Western State Medical University, 191015 St. Petersburg
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, 191000 St. Petersburg, Russia
| | - Andrey A. Svistunov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Jan Aaseth
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Research Department, Innlandet Hospital Trust, 3159894 Brumunddal, Norway
| | - Aristidis Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Center of Toxicology Science and Research
| | - Alexey A. Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Yaroslavl State University, 150003 Yaroslavl, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg
| |
Collapse
|
39
|
Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020; 94:1443-1460. [PMID: 32394086 DOI: 10.1007/s00204-020-02702-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
Zinc (Zn) is one of the most important essential nutrients of great public health significance. It is involved in numerous biological functions and it is considered as a multipurpose trace element, due to its capacity to bind to more than 300 enzymes and more than 2000 transcriptional factors. Its role in biochemical pathways and cellular functions, such as the response to oxidative stress, homeostasis, immune responses, DNA replication, DNA damage repair, cell cycle progression, apoptosis and aging is significant. Zn is required for the synthesis of protein and collagen, thus contributing to wound healing and a healthy skin. Metallothioneins are metal-binding proteins and they are potent scavengers of heavy metals, including Zn, and protect the organism against stress. Zn deficiency is observed almost in 17% of the global population and affects many organ systems, leading to dysfunction of both humoral and cell-mediated immunity, thus increasing the susceptibility to infection. This review gives a thorough insight into the most recent evidence on the association between Zn biochemistry and human pathologies, epigenetic processes, gut microbial composition, drug targets and nanomedicine.
Collapse
Affiliation(s)
- Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Panagoula-Stamatina A Ntoupa
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece.
| |
Collapse
|
40
|
Skrajnowska D, Bobrowska-Korczak B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019; 11:E2273. [PMID: 31546724 PMCID: PMC6835436 DOI: 10.3390/nu11102273] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
The human body cannot store zinc reserves, so a deficiency can arise relatively quickly, e.g., through an improper diet. Severe zinc deficiency is rare, but mild deficiencies are common around the world. Many epidemiological studies have shown a relationship between the zinc content in the diet and the risk of cancer. The anti-cancer effect of zinc is most often associated with its antioxidant properties. However, this is just one of many possibilities, including the influence of zinc on the immune system, transcription factors, cell differentiation and proliferation, DNA and RNA synthesis and repair, enzyme activation or inhibition, the regulation of cellular signaling, and the stabilization of the cell structure and membranes. This study presents selected issues regarding the current knowledge of anti-cancer mechanisms involving this element.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | | |
Collapse
|
41
|
Ruz M, Carrasco F, Rojas P, Basfi-Fer K, Hernández MC, Pérez A. Nutritional Effects of Zinc on Metabolic Syndrome and Type 2 Diabetes: Mechanisms and Main Findings in Human Studies. Biol Trace Elem Res 2019; 188:177-188. [PMID: 30600497 DOI: 10.1007/s12011-018-1611-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Zinc (Zn) plays crucial roles in mammalian metabolism. There is increasing interest about the potential beneficial effects of Zn on the prevention or treatment of non-communicable diseases. This review critically analyzes the information related to the role of Zn on the metabolic syndrome (MetS) as well as type 2 diabetes (T2D), and summarizes the biological basis of these potential effects of Zn. There are several mechanisms by which Zn may help to prevent the development or progression of MetS and T2D, respectively. Zn is involved in both insulin secretion and action in peripheral tissues. Specifically, Zn has insulin-mimetic properties that increase the activity of the insulin signaling pathway. Zn modulates long-chain polyunsaturated fatty acids levels through its action on the absorption of essential fatty acids in the intestine and its subsequent desaturation. Zn is also involved in both the assembly of chylomicrons and lipoproteins as well as their clearance, and thus, plays a role in lipolysis regulation. Finally, Zn has been found to play a role in redox metabolism, and in turn, on blood pressure. The evidence related to the association between Zn status and occurrence of MetS is inconsistent. Although there are several studies reporting an inverse relationship between Zn status or dietary Zn intake and MetS prevalence, others found a direct relationship between Zn status and MetS prevalence. Intervention studies also provide confusing information about this issue, making it hard to reach firm conclusions. Zn as part of the treatment for patients with T2D has been shown to have positive responses in terms of glucose control outcomes, but only among those with Zn deficiency.
Collapse
Affiliation(s)
- Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile.
| | - Fernando Carrasco
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Pamela Rojas
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Karen Basfi-Fer
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Maria Catalina Hernández
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Alvaro Pérez
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| |
Collapse
|
42
|
The Role of Zinc and Zinc Homeostasis in Macrophage Function. J Immunol Res 2018; 2018:6872621. [PMID: 30622979 PMCID: PMC6304900 DOI: 10.1155/2018/6872621] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
Zinc has long been recognized as an essential trace element, playing roles in the growth and development of all living organisms. In recent decades, zinc homeostasis was also found to be important for the innate immune system, especially for maintaining the function of macrophages. It is now generally accepted that dysregulated zinc homeostasis in macrophages causes impaired phagocytosis and an abnormal inflammatory response. However, many questions remain with respect to the mechanisms that underlie these processes, particularly at the cellular and molecular levels. Here, we review our current understanding of the roles that zinc and zinc transporters play in regulating macrophage function.
Collapse
|
43
|
Jiao LF, Zhang QH, Wu H, Wang CC, Cao ST, Feng J, Hu CH. Influences of Copper/Zinc-Loaded Montmorillonite on Growth Performance, Mineral Retention, Intestinal Morphology, Mucosa Antioxidant Capacity, and Cytokine Contents in Weaned Piglets. Biol Trace Elem Res 2018; 185:356-363. [PMID: 29468611 DOI: 10.1007/s12011-018-1259-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, mineral retention, intestinal morphology, mucosa antioxidant capacity, and cytokine contents in weaned piglets were investigated in the present study. One hundred eight piglets weaned at 21 ± 1 days of age (Duroc × Landrace× Yorkshire; average initial weight of 6.36 kg) were allotted to three treatments for 2 weeks. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet + 39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; (3) Cu + Zn + Mt group: basal diet + mixture of CuSO4, ZnSO4, and Mt (equal amount of Cu, Zn, and Mt to the Cu/Zn-Mt group). Each treatment had six pens of six piglets. The results showed that as compared with the control group and the Cu + Zn + Mt group, Cu/Zn-Mt supplementation increased (P < 0.05) the average daily gain and the gain/feed ratio; Cu/Zn-Mt supplementation increased (P < 0.05) the Cu and Zn concentrations in serum, jejunum, and ileum mucosa, villus height, the ratio of villus height to crypt depth, and the activities of SOD, GSH-Px, and IL-10 levels, and decreased the malondialdehyde concentrations in the jejunum and ileum, and intestinal IL-1β, IL-6, and TNF-α levels. Moreover, supplementation with the mixture of CuSO4, ZnSO4, and Mt had no effect on the growth performance, but increased the mucosa Cu and Zn concentrations, intestinal morphology, antioxidant capacity, and immune function in the duodenum, while it had no effect on the above indexes in the jejunum and ileum. The results indicated that Mt could be used as a controlled carrier for Cu and Zn, which made Cu/Zn-Mt have better biological activities in the intestine than the mixture of Cu, Zn, and Mt.
Collapse
Affiliation(s)
- L F Jiao
- Animal Science College, Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Q H Zhang
- Animal Science College, Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - H Wu
- Animal Science College, Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - C C Wang
- Animal Science College, Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - S T Cao
- Animal Science College, Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - J Feng
- Animal Science College, Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - C H Hu
- Animal Science College, Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Wu GJ, Pen J, Huang Y, An S, Liu Y, Yang Y, Hao Q, Guo XX, Xu TR. KAP1 inhibits the Raf-MEK-ERK pathway to promote tumorigenesis in A549 lung cancer cells. Mol Carcinog 2018; 57:1396-1407. [PMID: 29917268 DOI: 10.1002/mc.22853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/02/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
Aberrant activation of the Raf-MEK-ERK pathway has frequently been associated with various cancers, especially lung cancer. However, the key regulators of this pathway are largely unknown. Using functional proteomics screening, we found that KAP1 interacts with c-Raf. Knocking out KAP1 decreased c-Raf phosphorylation at serine 259 and increased its phosphorylation at serine 338, which activated MEK and ERK. We detected higher KAP1 expression in lung cancer tissues than in normal peri-tumoral tissues. KAP1 knockdown arrested A549 lung cancer cells in the G0/G1 phase of the cell cycle and attenuated cell growth, metastasis, the epithelial-mesenchymal transition, angiogenesis, stemness, and colony formation. Furthermore, knocking out KAP1 remarkably increased the susceptibility of A549 cells to the anti-cancer drug 5-Fluorouracil, which correlated with increasing ERK phosphorylation. In vivo xenograft experiments suggested that KAP1 deficiency significantly decreases the tumorigenicity of A549 cells. Taken together, our findings indicate that KAP1 acts as a key module in the c-Raf-interactome complex and regulates lung cancer development through the Raf-MEK-ERK pathway. Therefore, KAP1 may represent a potential diagnosis biomarker and new treatment target for lung cancer.
Collapse
Affiliation(s)
- Guo-Jin Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Pen
- The First People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Ying Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
45
|
Wang B, Chen T, Wang J, Jia Y, Ren H, Wu F, Hu M, Chen Y. Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the cAMP/PKA/CREB signaling pathway in lipopolysaccharide-activated microglia. Int Immunopharmacol 2018; 56:168-178. [PMID: 29414647 DOI: 10.1016/j.intimp.2018.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023]
Abstract
Methamphetamine (METH) elicits neuroinflammatory effects that may implicate its regulatory role on the microglial immune response. However, the mechanism underlying this remains unclear. In the present study, the effects of METH on lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) productions were tested in BV-2 cells and primary microglial cells. Additionally, western blot analysis was used to examine the phosphorylation of mitogenactivated protein kinases (MAPKs). Next, we detected the alterations in cAMP content and the phosphorylation levels of CREB in microglial cells to determine the involvement of the cAMP/CREB signaling pathway. We also used an adenylyl cyclase (AC) agonist (forskolin) and antagonist (MDL-12330A) and a PKA antagonist (H89) to confirm their participation. We observed that METH alone did not affect the production of IL-6 or TNF-α. In contrast, METH augmented the IL-6 production and inhibited the TNF-α production induced by LPS. A similar effect of forskolin was also observed in BV-2 cells. While MAPK activation was not influenced by METH alone, the LPS-induced phosphorylation of p38, JNK and ERK1/2 were all reduced by METH. Both the concentration of cAMP and the phosphorylation of CREB were increased by METH in LPS-activated microglial cells. The effects of METH were altered by MDL-12330A and H89. Moreover, the inhibition of the phosphorylation of ERK1/2 by METH was also reversed. These results suggest that the differential regulation of IL-6 and TNF-α by METH in LPS-activated microglial cells may be attributable to the cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an 710061, China
| | - Jing Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuwei Jia
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Huixun Ren
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Mei Hu
- Editorial Department of Infectious Disease Information, 302 Hospital of PLA, Beijing 100039, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
46
|
Bonafini C, Marzotto M, Bellavite P. In vitro effects of Zinc in soluble and homeopathic formulations on macrophages and astrocytes. HOMEOPATHY 2017; 106:103-113. [DOI: 10.1016/j.homp.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/27/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022]
Abstract
Zinc is an important metal in body homeostasis. Zinc in soluble form (Zn2+) and homeopathic Zincum metallicum were tested in macrophages and astrocytes in order to investigate its potential toxic or therapeutic effects. We evaluated cell viability (WST assay), cytokine production such as tumour necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) by enzyme-linked immunosorbent assay (ELISA) and nitric oxide release by Griess reaction. The effect of zinc-depletion and high zinc pre-treatments on the cell adaptation capability was also investigated. In THP-1 macrophage cell line and in human primary macrophages, Zn2+ at sub-toxic doses (30 μM) caused stimulation of TNF-α and IL-10 with different dynamics reaching the maximum peak at the zinc concentration 100 μM, before the cell death. Highest doses (300 μM) impaired dramatically cell vitality. Similar effects on cell viability were obtained also in C6 astrocytes, where Zn2+ slightly increased the nitric oxide release only in cells activated by one of the pro-inflammatory stimuli used in our cellular model (interferon gamma plus TNF-α). Zinc depletion markedly reduced IL-10 production and cell viability. Zincum metallicum did not cause toxicity in any cell type and showed some small stimulation in WST assay that was statistically significant in a few experimental conditions.
Collapse
|
47
|
Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Zinc in Wound Healing Modulation. Nutrients 2017; 10:E16. [PMID: 29295546 PMCID: PMC5793244 DOI: 10.3390/nu10010016] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Wound care is a major healthcare expenditure. Treatment of burns, surgical and trauma wounds, diabetic lower limb ulcers and skin wounds is a major medical challenge with current therapies largely focused on supportive care measures. Successful wound repair requires a series of tightly coordinated steps including coagulation, inflammation, angiogenesis, new tissue formation and extracellular matrix remodelling. Zinc is an essential trace element (micronutrient) which plays important roles in human physiology. Zinc is a cofactor for many metalloenzymes required for cell membrane repair, cell proliferation, growth and immune system function. The pathological effects of zinc deficiency include the occurrence of skin lesions, growth retardation, impaired immune function and compromised would healing. Here, we discuss investigations on the cellular and molecular mechanisms of zinc in modulating the wound healing process. Knowledge gained from this body of research will help to translate these findings into future clinical management of wound healing.
Collapse
Affiliation(s)
- Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Matthew Sermersheim
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Haichang Li
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Peter H U Lee
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Steven M Steinberg
- Department of Surgery, Division of Trauma, Critical Care and Burn, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jianjie Ma
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
48
|
Mechanistic insights into the protective impact of zinc on sepsis. Cytokine Growth Factor Rev 2017; 39:92-101. [PMID: 29279185 DOI: 10.1016/j.cytogfr.2017.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Sepsis, a systemic inflammation as a response to a bacterial infection, is a huge unmet medical need. Data accumulated over the last decade suggest that the nutritional status of patients as well as composition of their gut microbiome, are strongly linked with the risk to develop sepsis, the severity of the disease and prognosis. In particular, the essential micronutrient zinc is essential in the resistance against sepsis and has shown to be protective in animal models as well as in human patients. The potential mechanisms by which zinc protects in sepsis are discussed in this review paper: we will focus on the inflammatory response, chemotaxis, phagocytosis, immune response, oxidative stress and modulation of the microbiome. A full understanding of the mechanism of action of zinc may open new preventive and therapeutic interventions in sepsis.
Collapse
|
49
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
50
|
Salmonella Utilizes Zinc To Subvert Antimicrobial Host Defense of Macrophages via Modulation of NF-κB Signaling. Infect Immun 2017; 85:IAI.00418-17. [PMID: 28874447 PMCID: PMC5695101 DOI: 10.1128/iai.00418-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023] Open
Abstract
Zinc sequestration by macrophages is considered a crucial host defense strategy against infection by the intracellular bacterium Salmonella enterica serovar Typhimurium. However, the underlying mechanisms remain elusive. In this study, we found that zinc favors pathogen survival within macrophages. Salmonella-hosting macrophages contained higher free zinc levels than did uninfected macrophages and cells that successfully eliminated bacteria, which was paralleled by the impaired production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in bacterium-harboring cells. A profound, zinc-mediated inhibition of NF-κB p65 transcriptional activity affecting the expression of the ROS- and RNS-forming enzymes phos47 and inducible nitric oxide synthase (iNOS) provided a mechanistic explanation for this phenomenon. Macrophages responded to infection by enhancing the expression of zinc-scavenging metallothioneins 1 and 2, whose genetic deletion caused increased free zinc levels, reduced ROS and RNS production, and increased the survival of Salmonella. Our data suggest that Salmonella invasion of macrophages results in a bacterium-driven increase in the intracellular zinc level, which weakens antimicrobial defense and the ability of macrophages to eradicate the pathogen. Thus, limitation of cytoplasmic zinc levels may help to control infection by intracellular bacteria.
Collapse
|