551
|
Wang X, Anderson BD, Pulscher LA, Bailey ES, Yondon M, Gray GC. Epidemiological study of people living in rural North Carolina for novel respiratory viruses. Zoonoses Public Health 2017; 65:e265-e269. [PMID: 29265702 PMCID: PMC7165517 DOI: 10.1111/zph.12436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 12/14/2022]
Abstract
During the last 10 years, scientists have grown increasingly aware that emerging respiratory viruses are often zoonotic in their origin. These infections can originate from or be amplified in livestock. Less commonly recognized are instances when humans have transmitted their respiratory pathogens to animals (reverse zoonoses). Even with this knowledge of viral exchange at the human–livestock interface, few studies have been conducted to understand this cross‐over. In this pilot study, we examined persons with influenza‐like illness at an outpatient clinic for evidence of infection with novel zoonotic respiratory pathogens in rural North Carolina where there are dense swine and poultry farming. Environmental air sampling was also conducted. From July 2016 to March 2017, a total of 14 human subjects were enrolled and sampled, and 192 bioaerosol samples were collected. Of the 14 human subject samples molecularly tested, three (21.4%) were positive for influenza A, one (7.1%) for influenza B and one (7.1%) for human enterovirus. Of the 192 bioaerosol samples collected and tested by real‐time RT‐PCR or PCR, three (1.6%) were positive for influenza A and two (1.0%) for adenovirus. No evidence was found for novel zoonotic respiratory viruses.
Collapse
Affiliation(s)
- X Wang
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - B D Anderson
- Division of Infectious Disease, School of Medicine, Global Health Institute, Duke University, Durham, NC, USA
| | - L A Pulscher
- Division of Infectious Disease, School of Medicine, Global Health Institute, Duke University, Durham, NC, USA
| | - E S Bailey
- Division of Infectious Disease, School of Medicine, Global Health Institute, Duke University, Durham, NC, USA
| | - M Yondon
- Division of Infectious Disease, School of Medicine, Global Health Institute, Duke University, Durham, NC, USA
| | - G C Gray
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China.,Division of Infectious Disease, School of Medicine, Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
552
|
Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA Viruses Candidate Agents for the Next Global Pandemic? A Review. ILAR J 2017; 58:343-358. [PMID: 28985316 PMCID: PMC7108571 DOI: 10.1093/ilar/ilx026] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenic RNA viruses are potentially the most important group involved in zoonotic disease transmission, and they represent a challenge for global disease control. Their biological diversity and rapid adaptive rates have proved to be difficult to overcome and to anticipate by modern medical technology. Also, the anthropogenic change of natural ecosystems and the continuous population growth are driving increased rates of interspecies contacts and the interchange of pathogens that can develop into global pandemics. The combination of molecular, epidemiological, and ecological knowledge of RNA viruses is therefore essential towards the proper control of these emergent pathogens. This review outlines, throughout different levels of complexity, the problems posed by RNA viral diseases, covering some of the molecular mechanisms allowing them to adapt to new host species-and to novel pharmaceutical developments-up to the known ecological processes involved in zoonotic transmission.
Collapse
Affiliation(s)
- R Carrasco-Hernandez
- R. Carrasco-Hernandez, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Rodrigo Jácome
- Rodrigo Jácome, MD, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Yolanda López Vidal
- Yolanda López-Vidal, MD, PhD, is an associate professor “C” and is responsible for the Program of Microbial Molecular Immunology in the Department of Microbiology and Parasitology of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Samuel Ponce de León
- Samuel Ponce-de-León, MD, MSc, is an associate professor “C”, is responsible for the Microbiome Laboratory and Coordinator of the University Program for Health Research of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| |
Collapse
|
553
|
Droplet-based digital PCR system for detection of single-cell level of foodborne pathogens. BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-017-1410-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
554
|
Duncan SA, Baganizi DR, Sahu R, Singh SR, Dennis VA. SOCS Proteins as Regulators of Inflammatory Responses Induced by Bacterial Infections: A Review. Front Microbiol 2017; 8:2431. [PMID: 29312162 PMCID: PMC5733031 DOI: 10.3389/fmicb.2017.02431] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/23/2017] [Indexed: 12/31/2022] Open
Abstract
Severe bacterial infections can lead to both acute and chronic inflammatory conditions. Innate immunity is the first defense mechanism employed against invading bacterial pathogens through the recognition of conserved molecular patterns on bacteria by pattern recognition receptors (PRRs), especially the toll-like receptors (TLRs). TLRs recognize distinct pathogen-associated molecular patterns (PAMPs) that play a critical role in innate immune responses by inducing the expression of several inflammatory genes. Thus, activation of immune cells is regulated by cytokines that use the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway and microbial recognition by TLRs. This system is tightly controlled by various endogenous molecules to allow for an appropriately regulated and safe host immune response to infections. Suppressor of cytokine signaling (SOCS) family of proteins is one of the central regulators of microbial pathogen-induced signaling of cytokines, principally through the inhibition of the activation of JAK/STAT signaling cascades. This review provides recent knowledge regarding the role of SOCS proteins during bacterial infections, with an emphasis on the mechanisms involved in their induction and regulation of antibacterial immune responses. Furthermore, the implication of SOCS proteins in diverse processes of bacteria to escape host defenses and in the outcome of bacterial infections are discussed, as well as the possibilities offered by these proteins for future targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Skyla A Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Dieudonné R Baganizi
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
555
|
Abstract
Climate is one of several causes of disease emergence. Although half or more of infectious diseases are affected by climate it appears to be a relatively infrequent cause of human disease emergence. Climate mostly affects diseases caused by pathogens that spend part of their lifecycle outside of the host, exposed to the environment. The most important routes of transmission of climate sensitive diseases are by arthropod (insect and tick) vectors, in water and in food. Given the sensitivity of many diseases to climate, it is very likely that at least some will respond to future climate change. In the case of vector-borne diseases this response will include spread to new areas. Several vector-borne diseases have emerged in Europe in recent years; these include vivax malaria, West Nile fever, dengue fever, Chikungunya fever, leishmaniasis, Lyme disease and tick-borne encephalitis. The vectors of these diseases are mosquitoes, sand flies and ticks. The UK has endemic mosquito species capable of transmitting malaria and probably other pathogens, and ticks that transmit Lyme disease. The UK is also threatened by invasive mosquito species known to be able to transmit West Nile, dengue, chikungunya and Zika, and sand flies that spread leishmaniasis. Warmer temperatures in the future will increase the suitability of the UK's climate for these invasive species, and increase the risk that they may spread disease. While much attention is on invasive species, it is important to recognize the threat presented by native species too. Proposed actions to reduce the future impact of emerging vector-borne diseases in the UK include insect control activity at points of entry of vehicles and certain goods, wider surveillance for mosquitoes and sand flies, research into the threat posed by native species, increased awareness of the medical profession of the threat posed by specific diseases, regular risk assessments, and increased preparedness for the occurrence of a disease emergency.
Collapse
Affiliation(s)
- Matthew Baylis
- Liverpool University Climate and Infectious Diseases of Animals group, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
| |
Collapse
|
556
|
Abstract
This article examines how social and health inequalities shape the health impacts of climate change in the UK, and what the implications are for climate change adaptation and health care provision. The evidence generated by the other articles of the special issue were interpreted using social justice reasoning in light of additional literature, to draw out the key implications of health and social inequalities for health outcomes of climate change. Exposure to heat and cold, air pollution, pollen, food safety risks, disruptions to access to and functioning of health services and facilities, emerging infections and flooding are examined as the key impacts of climate change influencing health outcomes. Age, pre-existing medical conditions and social deprivation are found to be the key (but not only) factors that make people vulnerable and to experience more adverse health outcomes related to climate change impacts. In the future, climate change, aging population and decreasing public spending on health and social care may aggravate inequality of health outcomes related to climate change. Health education and public preparedness measures that take into account differential exposure, sensitivity and adaptive capacity of different groups help address health and social inequalities to do with climate change. Adaptation strategies based on individual preparedness, action and behaviour change may aggravate health and social inequalities due to their selective uptake, unless they are coupled with broad public information campaigns and financial support for undertaking adaptive measures.
Collapse
Affiliation(s)
- Jouni Paavola
- Centre for Climate Change Economics and Policy (CCCEP), School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
557
|
Brunt EG, Burgess JG. The promise of marine molecules as cosmetic active ingredients. Int J Cosmet Sci 2017; 40:1-15. [PMID: 29057483 DOI: 10.1111/ics.12435] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/01/2017] [Indexed: 12/21/2022]
Abstract
The marine environment represents an underexploited resource for the discovery of novel products, despite its high level of biological and chemical diversity. With increasing awareness of the harmful effects of chronic ultraviolet exposure, and a universal desire to improve cosmetic appearance, the market for new cosmetic ingredients is growing, and current trends have generated a greater demand for products sourced from the environment. A growing number of novel molecules from marine flora and fauna exhibit potent and effective dermatological activities. Secondary metabolites isolated from macroalgae, including carotenoids and polyphenols, have demonstrated antioxidant, anti-ageing and anti-inflammatory activities. In addition, marine extremophilic bacteria have recently been shown to produce bioactive exopolymeric molecules, some of which have been commercialized. Available data on their activities show significant antioxidant, moisturizing and anti-ageing activities, but a more focussed investigation into their mechanisms and applications is required. This review surveys the reported biological activities of an emerging and growing portfolio of marine molecules that show promise in the treatment of cosmetic skin problems including ultraviolet damage, ageing and cutaneous dryness.
Collapse
Affiliation(s)
- E G Brunt
- School of Marine Science and Technology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, U.K
| | - J G Burgess
- School of Marine Science and Technology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
558
|
Zhang J, Wang S, Bai Y, Guo Q, Zhou J, Lei X. Total Syntheses of Natural Metallophores Staphylopine and Aspergillomarasmine A. J Org Chem 2017; 82:13643-13648. [DOI: 10.1021/acs.joc.7b02342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jian Zhang
- School
of Life Sciences, Peking University, Beijing 100871, China
| | - Sanshan Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center
for Life Sciences, Peking University, Beijing 100871, China
| | - Yingjie Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center
for Life Sciences, Peking University, Beijing 100871, China
| | - Qianqian Guo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center
for Life Sciences, Peking University, Beijing 100871, China
| | - Jiang Zhou
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center
for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center
for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
559
|
Abstract
Monitoring response to treatment is a key element in the management of infectious diseases, yet controversies still persist on reliable biomarkers for noninvasive response evaluation. Considering the limitations of invasiveness of most diagnostic procedures and the issue of expression heterogeneity of pathology, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively. The usefulness of 18F-FDG-PET/CT in assessing treatment response in infectious diseases is more promising than for conventional imaging. However, there are currently no clinical criteria or recommended imaging modalities to objectively evaluate the effectiveness of antimicrobial treatment. Therapeutic effectiveness is currently gauged by the patient's subjective clinical response. In this review, we present the current studies for monitoring treatment response, with a focus on Mycobacterium tuberculosis, as it remains a major worldwide cause of morbidity and mortality. The role of molecular imaging in monitoring other infections including spondylodiscitis, infected prosthetic vascular grafts, invasive fungal infections, and a parasitic disease is highlighted. The role of functional imaging in monitoring lipodystrophy associated with highly active antiretroviral therapy for human immunodeficiency virus is considered. We also discuss the key challenges and emerging data in optimizing noninvasive response evaluation.
Collapse
Affiliation(s)
- Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa..
| | - Alfred O Ankrah
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa.; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa
| |
Collapse
|
560
|
NOTA analogue: A first dithiocarbamate inhibitor of metallo-β-lactamases. Bioorg Med Chem Lett 2017; 28:214-221. [PMID: 29248295 DOI: 10.1016/j.bmcl.2017.10.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/04/2017] [Accepted: 10/24/2017] [Indexed: 01/22/2023]
Abstract
The emergence of antibiotic drug (like carbapenem) resistance is being a global crisis. Among those resistance factors of the β-lactam antibiotics, the metallo-β-lactamases (MBLs) is one of the most important reasons. In this paper, a series of cyclic dithiocarbamate compounds were synthesized and their inhibition activities against MBLs were initially tested combined with meropenem (MEM) by in vitro antibacterial efficacy tests. Sodium 1,4,7-triazonane-1,4,7-tris(carboxylodithioate) (compound 5) was identified as the most active molecule to restore the activity of MEM. Further anti-bacterial effectiveness assessment, compound 5 restored the activity of MEM against Escherichia coli, Citrobacter freundii, Proteus mirabilis and Klebsiella pneumonia, which carried resistance genes of blaNDM-1. The compound 5 was non-hemolytic, even at a concentration of 1000 µg/mL. This compound was low toxic toward mammalian cells, which was confirmed by fluorescence microscopy image and the inhibition rate of HeLa cells. The Ki value of compounds 5 against NDM-1 MBL was 5.63 ± 1.27 μM. Zinc ion sensitivity experiments showed that the inhibitory effect of compound 5 as a MBLs inhibitor was influenced by zinc ion. The results of the bactericidal kinetics displayed that compound 5 as an adjuvant assisted MEM to kill all bacteria. These data validated that this NOTA dithiocarbamate analogue is a good inhibitor of MBLs.
Collapse
|
561
|
Raslan R, El Sayegh S, Chams S, Chams N, Leone A, Hajj Hussein I. Re-Emerging Vaccine-Preventable Diseases in War-Affected Peoples of the Eastern Mediterranean Region-An Update. Front Public Health 2017; 5:283. [PMID: 29119098 PMCID: PMC5661270 DOI: 10.3389/fpubh.2017.00283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022] Open
Abstract
For the past few decades, the Eastern Mediterranean Region has been one area of the world profoundly shaped by war and political instability. On-going conflict and destruction have left the region struggling with innumerable health concerns that have claimed the lives of many. Wars, and the chaos they leave behind, often provide the optimal conditions for the growth and re-emergence of communicable diseases. In this article, we highlight a few of the major re-emerging vaccine preventable diseases in four countries of the Eastern Mediterranean Region that are currently affected by war leading to a migration crisis: Iraq, South Sudan, Syria, and Yemen. We will also describe the impact these infections have had on patients, societies, and national health care services. This article also describes the efforts, both local and international, which have been made to address these crises, as well as future endeavors that can be done to contain and control further devastation left by these diseases.
Collapse
Affiliation(s)
- Rasha Raslan
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Skye El Sayegh
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sana Chams
- Department of Internal Medicine, Wayne State University School of Medicine, Rochester, MI, United States
| | - Nour Chams
- Department of Internal Medicine, Wayne State University School of Medicine, Rochester, MI, United States
| | - Angelo Leone
- Department of Experimental and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Inaya Hajj Hussein
- Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
562
|
Gliddon HD, Herberg JA, Levin M, Kaforou M. Genome-wide host RNA signatures of infectious diseases: discovery and clinical translation. Immunology 2017; 153:171-178. [PMID: 28921535 PMCID: PMC5765383 DOI: 10.1111/imm.12841] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
The use of whole blood gene expression to derive diagnostic biomarkers capable of distinguishing between phenotypically similar diseases holds great promise but remains a challenge. Differential gene expression analysis is used to identify the key genes that undergo changes in expression relative to healthy individuals, as well as to patients with other diseases. These key genes can act as diagnostic, prognostic and predictive markers of disease. Gene expression ‘signatures’ in the blood hold the potential to be used for the diagnosis of infectious diseases, where current diagnostics are unreliable, ineffective or of limited potential. For diagnostic tests based on RNA signatures to be useful clinically, the first step is to identify the minimum set of gene transcripts that accurately identify the disease in question. The second requirement is rapid and cost‐effective detection of the gene expression levels. Signatures have been described for a number of infectious diseases, but ‘clinic‐ready’ technologies for RNA detection from clinical samples are limited, though existing methods such as RT‐PCR are likely to be superseded by a number of emerging technologies, which may form the basis of the translation of gene expression signatures into routine diagnostic tests for a range of disease states.
Collapse
Affiliation(s)
- Harriet D Gliddon
- London Centre for Nanotechnology, University College London, London, UK
| | | | - Michael Levin
- Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
563
|
Pathogenesis of infections in HIV-infected individuals: insights from primary immunodeficiencies. Curr Opin Immunol 2017; 48:122-133. [PMID: 28992464 PMCID: PMC5682227 DOI: 10.1016/j.coi.2017.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022]
Abstract
Following infection with almost any given microorganism other than an emerging pathogen, only a minority of individuals develop life-threatening clinical disease, implying that these individuals have some form of immunodeficiency. A growing number of inherited and acquired immunodeficiencies have been deciphered over the last 50 years. HIV infection is probably the best-known acquired immunodeficiency. It emerged about 40 years ago and precipitates various severe infections, the occurrence of which is associated with a fall in circulating CD4+ T cells. However, despite the strength of this correlation, infection rates differ between patients with similar levels and durations of CD4+ T lymphopenia in the presence or absence of antiretroviral treatment. Moreover, a few infections seem to be less dependent on total CD4+ T-cell levels. The fine detail of the mechanisms underlying these infections is unknown. We discuss here how studies of the human genetics and immunology of some of these infections in patients with primary immunodeficiencies (PIDs) have provided unique insights into their molecular and cellular basis. Defects of specific CD4+ Th-cell subsets account for some of these infections, as best exemplified by Th1* for mycobacteriosis and Th17 for candidiasis. PIDs are individually rare, but collectively much more common than initially thought, with new disorders being discovered at an ever-increasing pace and a global prevalence worldwide approaching that of HIV infection. Studies of known and new PIDs should make it possible to dissect the pathogenesis of most human infections at an unprecedented level of molecular and cellular precision. The predictive, preventive, and therapeutic implications of studies of immunity to infection in PIDs may extend to HIV-infected patients and patients with infectious diseases in other settings.
Collapse
|
564
|
The Synergic Activity of Eucalyptus Leaf Oil and Silver Nanoparticles Against Some Pathogenic Bacteria. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2017. [DOI: 10.5812/pedinfect.61654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
565
|
Vittecoq M, Gauduin H, Oudart T, Bertrand O, Roche B, Guillemain M, Boutron O. Modeling the spread of avian influenza viruses in aquatic reservoirs: A novel hydrodynamic approach applied to the Rhône delta (southern France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:787-800. [PMID: 28410528 DOI: 10.1016/j.scitotenv.2017.03.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
Wild aquatic birds represent a natural reservoir of avian influenza viruses (AIV) that can be spread to poultry. AIV epizootics were associated with huge economic impacts during the last decades and are still of major concern. Within aquatic bird populations AIV are transmitted either by direct contact or through the ingestion of water that has been contaminated by infected individuals. This second route involving environmental transmission is of utmost importance in AIV dynamics, yet it has received far less attention than direct bird-to-bird contamination. Our objective was to combine a hydrodynamic model with data on mallard abundance and AIV infection rate within the population, so as to characterize virus dissemination within a complex wetland network. We chose the Vaccarès hydrosystem as a wetland model since it represents a large part of the Camargue region, which is a major wintering site for a large diversity of aquatic birds including AIV hosts. We aimed to identify the environmental parameters that drive AIV dynamics within this system and the spatio-temporal pattern of dispersion and persistence of viruses. Our results show that in a complex hydrosystem we can expect a great heterogeneity in AIV risk among wetlands. Our simulations underline how a simple "homogeneous box" approach could in the case of deltaic ecosystems minimize the expected risk by diluting it in the whole system. Moreover, such undermining of the risk perception could affect the predictions relative to risk duration. We present a new approach to identify hotspots of virus concentrations within deltaic areas that could take advantage of the duck count data, AIV surveys and hydrodynamic models that may already be available in several major duck wintering areas comprised of complex hydrosystems, such as the large European deltas. Our method could be of particular interest to optimize surveillance strategies in the current context of highly pathogenic AIV diffusion within wild bird populations.
Collapse
Affiliation(s)
- Marion Vittecoq
- Tour du Valat Research Institute, Arles, France; UMR MIVEGEC (IRD/CNRS/UM), 5290 Montpellier, France.
| | | | | | | | - Benjamin Roche
- UMR MIVEGEC (IRD/CNRS/UM), 5290 Montpellier, France; IRD, UMMISCO (UMI IRD/UPMC 209), Bondy, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
| | - Matthieu Guillemain
- Office National de la Chasse et de la Faune Sauvage, Unité Avifaune Migratrice, Arles, France
| | | |
Collapse
|
566
|
Xia S, Zhou XN, Liu J. Systems thinking in combating infectious diseases. Infect Dis Poverty 2017; 6:144. [PMID: 28893320 PMCID: PMC5594605 DOI: 10.1186/s40249-017-0339-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
The transmission of infectious diseases is a dynamic process determined by multiple factors originating from disease pathogens and/or parasites, vector species, and human populations. These factors interact with each other and demonstrate the intrinsic mechanisms of the disease transmission temporally, spatially, and socially. In this article, we provide a comprehensive perspective, named as systems thinking, for investigating disease dynamics and associated impact factors, by means of emphasizing the entirety of a system’s components and the complexity of their interrelated behaviors. We further develop the general steps for performing systems approach to tackling infectious diseases in the real-world settings, so as to expand our abilities to understand, predict, and mitigate infectious diseases.
Collapse
Affiliation(s)
- Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,CDC-NIPD & HKBU-CSD Joint Research Laboratory for Intelligent Disease Surveillance and Control, Shanghai, 200025, People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,CDC-NIPD & HKBU-CSD Joint Research Laboratory for Intelligent Disease Surveillance and Control, Shanghai, 200025, People's Republic of China
| | - Jiming Liu
- Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong. .,CDC-NIPD & HKBU-CSD Joint Research Laboratory for Intelligent Disease Surveillance and Control, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
567
|
Trimpert J, Groenke N, Jenckel M, He S, Kunec D, Szpara ML, Spatz SJ, Osterrieder N, McMahon DP. A phylogenomic analysis of Marek's disease virus reveals independent paths to virulence in Eurasia and North America. Evol Appl 2017; 10:1091-1101. [PMID: 29151863 PMCID: PMC5680632 DOI: 10.1111/eva.12515] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/01/2017] [Indexed: 12/28/2022] Open
Abstract
Virulence determines the impact a pathogen has on the fitness of its host, yet current understanding of the evolutionary origins and causes of virulence of many pathogens is surprisingly incomplete. Here, we explore the evolution of Marek's disease virus (MDV), a herpesvirus commonly afflicting chickens and rarely other avian species. The history of MDV in the 20th century represents an important case study in the evolution of virulence. The severity of MDV infection in chickens has been rising steadily since the adoption of intensive farming techniques and vaccination programs in the 1950s and 1970s, respectively. It has remained uncertain, however, which of these factors is causally more responsible for the observed increase in virulence of circulating viruses. We conducted a phylogenomic study to understand the evolution of MDV in the context of dramatic changes to poultry farming and disease control. Our analysis reveals evidence of geographical structuring of MDV strains, with reconstructions supporting the emergence of virulent viruses independently in North America and Eurasia. Of note, the emergence of virulent viruses appears to coincide approximately with the introduction of comprehensive vaccination on both continents. The time‐dated phylogeny also indicated that MDV has a mean evolutionary rate of ~1.6 × 10−5 substitutions per site per year. An examination of gene‐linked mutations did not identify a strong association between mutational variation and virulence phenotypes, indicating that MDV may evolve readily and rapidly under strong selective pressures and that multiple genotypic pathways may underlie virulence adaptation in MDV.
Collapse
Affiliation(s)
- Jakob Trimpert
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Nicole Groenke
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Maria Jenckel
- Institute of Diagnostic Virology Friedrich-Loeffler-Institut Greifswald-Insel Riems Germany
| | - Shulin He
- Institut für Biologie Freie Universität Berlin Berlin Germany.,Department for Materials and Environment BAM Federal Institute for Materials Research and Testing Berlin Germany
| | - Dusan Kunec
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences Pennsylvania State University University Park PA USA
| | - Stephen J Spatz
- United States Department of Agriculture US National Poultry Research Center Athens GA USA
| | | | - Dino P McMahon
- Institut für Biologie Freie Universität Berlin Berlin Germany.,Department for Materials and Environment BAM Federal Institute for Materials Research and Testing Berlin Germany
| |
Collapse
|
568
|
El-Senousy WM, Abou-Elela SI. Assessment and Evaluation of an Integrated Hybrid Anaerobic-Aerobic Sewage Treatment System for the Removal of Enteric Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:287-303. [PMID: 28197973 DOI: 10.1007/s12560-017-9286-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 05/02/2023]
Abstract
The capability of a cost-effective and a small size decentralized pilot wastewater treatment plant (WWTP) to remove enteric viruses such as rotavirus, norovirus genogroup I (GGI), norovirus genogroup II (GGII), Hepatitis E virus (HEV), and adenovirus was studied. This pilot plant is an integrated hybrid anaerobic/aerobic setup which consisted of anaerobic sludge blanket (UASB), biological aerated filter (BAF), and inclined plate settler (IPS). Both the UASB and BAF are packed with a non-woven polyester fabric (NWPF). Results indicated that the overall log10 reductions of enteric viruses' genome copies through the whole system were 3.1 ± 1, 3.3 ± 0.5, and 2.6 ± 0.9 log10 for rotavirus, norovirus GGI, and adenovirus, respectively. Reduction efficiency for both norovirus GGII and HEV after the different treatment steps could not be calculated because there were no significant numbers of positive samples for both viruses. The overall reduction of rotavirus infectious units through the whole system was 2.2 ± 0.8 log10 reduction which is very close to the overall log10 reduction of adenovirus infectious units through the whole system which was 2.1 ± 0.8 log10 reduction. There was no considerable difference in the removal efficiency for different rotavirus G and P types. Adenovirus 41 was the only type detected in the all positive samples. Although the pilot WWTP investigated is cost effective, has a small footprint, does not need a long distance network pipes, and easy to operate, its efficiency to remove enteric viruses is comparable with the conventional centralized WWTPs.
Collapse
Affiliation(s)
- Waled Morsy El-Senousy
- Environmental Virology Lab., Department of Water Pollution Research, National Research Centre (NRC), 33 El-Buhouth st., Dokki, Giza, P.O. 12622, Egypt.
| | - Sohair Imam Abou-Elela
- Wastewater Treatment Lab., Department of Water Pollution Research, National Research Centre (NRC), 33 El-Buhouth st., Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
569
|
Fothergill BT. Human-Aided Movement of Viral Disease and the Archaeology of Avian Osteopetrosis. INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY 2017; 27:853-866. [PMID: 29104410 PMCID: PMC5655762 DOI: 10.1002/oa.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/23/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The term avian osteopetrosis is used to describe alterations to the skeletal elements of several species of domestic bird, most typically the chicken, Gallus gallus domesticus (L. 1758). Such lesions are routinely identified in animal bones from archaeological sites due to their distinctive appearance, which is characterised by proliferative diaphyseal thickening. These lesions are relatively uncomplicated for specialists to differentially diagnose and are caused by a range of avian leucosis viruses in a series of subgroups. Only some avian leucosis viruses cause the development of such characteristic lesions in osteological tissue. Viraemia is necessary for the formation of skeletal pathology, and avian osteopetrosis lesions affect skeletal elements at different rates. Lesion expression differs by the age and sex of the infected individual, and environmental conditions have an impact on the prevalence of avian leucosis viruses in poultry flocks. These factors have implications for the ways in which diagnosed instances of avian osteopetrosis in archaeological assemblages are interpreted. By integrating veterinary research with archaeological evidence for the presence of avian leucosis viruses across Western Europe, this paper discusses the nature of these pathogens, outlines criteria for differential diagnosis, and offers a fresh perspective on the human-aided movement of animal disease in the past through investigation of the incidence and geographic distribution of avian osteopetrosis lesions from the first century BC to the post-medieval period.
Collapse
Affiliation(s)
- B. Tyr Fothergill
- School of Archaeology and Ancient HistoryUniversity of LeicesterLeicesterUK
| |
Collapse
|
570
|
Rimoin AW, Alfonso VH, Hoff NA, Doshi RH, Mulembakani P, Kisalu NK, Muyembe JJ, Okitolonda EW, Wright LL. Human Exposure to Wild Animals in the Sankuru Province of the Democratic Republic of the Congo. ECOHEALTH 2017; 14:552-563. [PMID: 28831639 DOI: 10.1007/s10393-017-1262-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/11/2017] [Accepted: 06/15/2017] [Indexed: 05/25/2023]
Abstract
Due to the high level of biological diversity in the Congo Basin and human population dependence on bushmeat, the DRC represents an ideal location for expanding knowledge on wild animal exposures and thus the potential for transmission of zoonotic pathogens. However, limited information exists on patterns and extent of contact with wildlife in such communities. Using a cross-sectional study, 14 villages in the Sankuru Province of the DRC were surveyed between August and September 2007. Villagers ≥ 1 year of age and at home of the time of the survey were eligible and enrolled to describe and assess factors associated with animal exposures (both activity and type of animal). Among respondents, 91% reported exposure to rodents, 89% to duikers, 78% to non-human primates (NHPs), and 32% reported contact with bats in the month prior to the survey. The most frequently reported activities included eating (95%), cooking (70%), and butchering or skinning of animals (55%). The activities and animals to which subjects had contact varied by sex and age. Moreover, we observed a high correlation of the same activities across animal types. In this and other populations that rely on bushmeat, there is a high frequency of exposure to multiple animal species through various modalities. In the event of future zoonotic disease outbreaks, effective public health interventions and campaigns that mitigate the risk of animal contact during outbreaks need to be broad to include various modes of contact and should be directed to both men and women across all age groups. As available information is limited, further studies are necessary to better understand the complex relationships and exposures individuals have with animals.
Collapse
Affiliation(s)
- Anne W Rimoin
- Department of Epidemiology, UCLA Fielding School of Public Health, 650 S Charles E Young Drive, Los Angeles, CA, USA.
| | - Vivian Helena Alfonso
- Department of Epidemiology, UCLA Fielding School of Public Health, 650 S Charles E Young Drive, Los Angeles, CA, USA
| | - Nicole A Hoff
- Department of Epidemiology, UCLA Fielding School of Public Health, 650 S Charles E Young Drive, Los Angeles, CA, USA
| | - Reena H Doshi
- Department of Epidemiology, UCLA Fielding School of Public Health, 650 S Charles E Young Drive, Los Angeles, CA, USA
| | - Prime Mulembakani
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Nevile K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Emile W Okitolonda
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Linda L Wright
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
571
|
Sarma N. Emerging and Re-emerging Infectious Diseases in South East Asia. Indian J Dermatol 2017; 62:451-455. [PMID: 28979005 PMCID: PMC5618830 DOI: 10.4103/ijd.ijd_389_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Nilendu Sarma
- Department of Dermatology, Dr. B. C. Roy Postgraduate Institute of Pediatric Science, Kolkata, West Bengal, India E-mail:
| |
Collapse
|
572
|
Discovery of a Highly Divergent Coronavirus in the Asian House Shrew from China Illuminates the Origin of the Alphacoronaviruses. J Virol 2017. [PMID: 28637760 DOI: 10.1128/jvi.00764-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although shrews are one of the largest groups of mammals, little is known about their role in the evolution and transmission of viral pathogens, including coronaviruses (CoVs). We captured 266 Asian house shrews (Suncus murinus) in Jiangxi and Zhejiang Provinces, China, during 2013 to 2015. CoV RNA was detected in 24 Asian house shrews, with an overall prevalence of 9.02%. Complete viral genome sequences were successfully recovered from the RNA-positive samples. The newly discovered shrew CoV fell into four lineages reflecting their geographic origins, indicative of largely allopatric evolution. Notably, these viruses were most closely related to alphacoronaviruses but sufficiently divergent that they should be considered a novel member of the genus Alphacoronavirus, which we denote Wénchéng shrew virus (WESV). Phylogenetic analysis revealed that WESV was a highly divergent member of the alphacoronaviruses and, more dramatically, that the S gene of WESV fell in a cluster that was genetically distinct from that of known coronaviruses. The divergent position of WESV suggests that coronaviruses have a long association with Asian house shrews. In addition, the genome of WESV contains a distinct NS7 gene that exhibits no sequence similarity to genes of any known viruses. Together, these data suggest that shrews are natural reservoirs for coronaviruses and may have played an important and long-term role in CoV evolution.IMPORTANCE The subfamily Coronavirinae contains several notorious human and animal pathogens, including severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and porcine epidemic diarrhea virus. Because of their genetic diversity and phylogenetic relationships, it has been proposed that the alphacoronaviruses likely have their ultimate ancestry in the viruses residing in bats. Here, we describe a novel alphacoronavirus (Wénchéng shrew virus [WESV]) that was sampled from Asian house shrews in China. Notably, WESV is a highly divergent member of the alphacoronaviruses and possesses an S gene that is genetically distinct from those of all known coronaviruses. In addition, the genome of WESV contains a distinct NS7 gene that exhibits no sequence similarity to those of any known viruses. Together, these data suggest that shrews are important and longstanding hosts for coronaviruses that merit additional research and surveillance.
Collapse
|
573
|
Local and global genetic diversity of protozoan parasites: Spatial distribution of Cryptosporidium and Giardia genotypes. PLoS Negl Trop Dis 2017; 11:e0005736. [PMID: 28704362 PMCID: PMC5526614 DOI: 10.1371/journal.pntd.0005736] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/25/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Cryptosporidiosis and giardiasis are recognized as significant enteric diseases due to their long-term health effects in humans and their economic impact in agriculture and medical care. Molecular analysis is essential to identify species and genotypes causing these infectious diseases and provides a potential tool for monitoring. This study uses information on species and genetic variants to gain insights into the geographical distribution and spatial patterns of Cryptosporidium and Giardia parasites. Here, we describe the population heterogeneity of genotypic groups within Cryptosporidium and Giardia present in New Zealand using gp60 and gdh markers to compare the observed variation with other countries around the globe. Four species of Cryptosporidium (C. hominis, C. parvum, C. cuniculus and C. erinacei) and one species of Giardia (G. intestinalis) were identified. These species have been reported worldwide and there are not unique Cryptosporidium gp60 subtype families and Giardiagdh assemblages in New Zealand, most likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes. The global analysis revealed that genetic variants of these pathogens are widely distributed. However, genetic variation is underestimated by data biases (e.g. neglected submission of sequences to genetic databases) and low sampling. New genotypes are likely to be discovered as sampling efforts increase according to accumulation prediction analyses, especially for C. parvum. Our study highlights the need for greater sampling and archiving of genotypes globally to allow comparative analyses that help understand the population dynamics of these protozoan parasites. Overall our study represents a comprehensive overview for exploring local and global protozoan genotype diversity and advances our understanding of the importance for surveillance and potential risk associated with these infectious diseases. Infectious diseases threaten the health and well-being of wildlife, livestock and human populations and contribute to significant economic impact in agriculture and medical care. Cryptosporidium and Giardia are enteric protozoan pathogens that cause diarrhea and nutritional disorders on a global level. Using molecular analysis and a review framework we showed that species and genetic variants within genera Cryptosporidium and Giardia (including two species recently infecting humans) found in an island system are not different from other parts of the world. This similarity is likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes, such as cattle and people. We also show that, although species and genotypes are widely distributed, new variants will arise when sampling effort increase and their dispersal will be facilitated by human activity. These findings suggest that geographical distribution of species and genotypes within Cryptosporidium and Giardia parasites may yield important clues for designing effective surveillance strategies and identification of factors driving within and cross species transmission.
Collapse
|
574
|
Rabaan AA, Al-Ahmed SH, Bazzi AM, Al-Tawfiq JA. Dynamics of scientific publications on the MERS-CoV outbreaks in Saudi Arabia. J Infect Public Health 2017. [PMID: 28625842 PMCID: PMC7102777 DOI: 10.1016/j.jiph.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging disease with a relatively high case fatality rate. Most cases have been reported from Saudi Arabia, and the disease epidemic potential is considered to be limited. However, human-human transmission has occurred, usually in the context of healthcare facility-associated outbreaks. The scientific and medical community depends on timely publication of epidemiological information on emerging diseases during outbreaks to appropriately target public health responses. In this review, we considered the academic response to four MERS CoV outbreaks that occurred in Al-Hasa in 2013, Jeddah in 2014 and Riyadh in 2014 and 2015. We analysed 68 relevant epidemiology articles. For articles for which submission dates were available, six articles were submitted during the course of an outbreak. One article was published within a month of the Al-Hasa outbreak, and one each was accepted during the Jeddah and Riyadh outbreaks. MERS-CoV epidemiology articles were cited more frequently than articles on other subjects in the same journal issues. Thus, most epidemiology articles on MERS-CoV were published with no preferential advantage over other articles. Collaboration of the research community and the scientific publishing industry is needed to facilitate timely publication of emerging infectious diseases.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Ali M Bazzi
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
575
|
Li WT, Luo D, Huang JN, Wang LL, Zhang FG, Xi T, Liao JM, Lu YY. Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Nat Prod Res 2017; 32:662-667. [DOI: 10.1080/14786419.2017.1335730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wen-ting Li
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, Nanjing Shi, China
| | - Dan Luo
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, Nanjing Shi, China
| | - Jia-ning Huang
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, Nanjing Shi, China
| | - Lin-lin Wang
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, Nanjing Shi, China
| | - Feng-guo Zhang
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, Nanjing Shi, China
| | - Tao Xi
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, Nanjing Shi, China
| | - Jian-min Liao
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, Nanjing Shi, China
| | - Yuan-yuan Lu
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, Nanjing Shi, China
| |
Collapse
|
576
|
Quantitative assessment of social and economic impact of African swine fever outbreaks in northern Uganda. Prev Vet Med 2017; 144:134-148. [PMID: 28716195 DOI: 10.1016/j.prevetmed.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/23/2017] [Accepted: 06/04/2017] [Indexed: 11/23/2022]
Abstract
African swine fever (ASF) is one of the most important pig diseases, causing high case fatality rate and trade restrictions upon reported outbreaks. In Uganda, a low-income country with the largest pig population in East Africa, ASF is endemic. Animal disease impact is multidimensional and include social and economic impact along the value chain. In low-income settings, this impact keep people poor and push those that have managed to escape poverty back again. If the diseases can be controlled, their negative consequences can be mitigated. However, to successfully argue for investment in disease control, its cost-benefits need to be demonstrated. One part in the cost-benefit equations is disease impact quantification. The objective of this study was therefore to investigate the socio-economic impact of ASF outbreaks at household level in northern Uganda. In a longitudinal study, structured interviews with two hundred, randomly selected, pig-keeping households were undertaken three times with a six month interval. Questions related to family and pig herd demographics, pig trade and pig business. Associations between ASF outbreaks and economic and social impact variables were evaluated using linear regression models. The study showed that pigs were kept in extreme low-input-low-output farming systems involving only small monetary investments. Yearly incidence of ASF on household level was 19%. Increasing herd size was positively associated with higher economic output. The interaction between ASF outbreaks and the herd size showed that ASF outbreaks were negatively associated with economic output at the second interview occasion and with one out of two economic impact variables at the third interview occasion. No significant associations between the social impact variables included in the study and ASF outbreaks could be established. Trade and consumption of sick and dead pigs were coping strategies used to minimize losses of capital and animal protein. The results indicate that causality of social and economic impact of ASF outbreaks in smallholder systems is complex. Pigs are mostly kept as passive investments rather than active working capital, complicating economic analyses and further disqualifying disease control arguments based only on standard economic models.
Collapse
|
577
|
Khalil AT, Ali M, Tanveer F, Ovais M, Idrees M, Shinwari ZK, Hollenbeck JE. Emerging Viral Infections in Pakistan: Issues, Concerns, and Future Prospects. Health Secur 2017. [DOI: 10.1089/hs.2016.0072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
578
|
Canavan CR, Noor RA, Golden CD, Juma C, Fawzi W. Sustainable food systems for optimal planetary health. Trans R Soc Trop Med Hyg 2017; 111:238-240. [PMID: 29044366 PMCID: PMC5914329 DOI: 10.1093/trstmh/trx038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/04/2017] [Accepted: 09/01/2017] [Indexed: 11/12/2022] Open
Abstract
Sustainable food systems are an important component of a planetary health strategy to reduce the threat of infectious disease, minimize environmental footprint and promote nutrition. Human population trends and dietary transition have led to growing demand for food and increasing production and consumption of meat, amid declining availability of arable land and water. The intensification of livestock production has serious environmental and infectious disease impacts. Land clearing for agriculture alters ecosystems, increases human-wildlife interactions and leads to disease proliferation. Context-specific interventions should be evaluated towards optimizing nutrition resilience, minimizing environmental footprint and reducing animal and human disease risk.
Collapse
Affiliation(s)
- Chelsey R Canavan
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Global Health and Population
| | - Ramadhani A Noor
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Nutrition
| | - Christopher D Golden
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Environmental Health
- Harvard University Center for the Environment, Cambridge, MA, 02138, USA
| | - Calestous Juma
- Harvard Kennedy School, Cambridge, MA, 02138, USA
- Belfer Center for Science and International Affairs
| | - Wafaie Fawzi
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Global Health and Population
- Department of Nutrition
- Department of Epidemiology
| |
Collapse
|
579
|
Dutta J, Naicker T, Ebenhan T, Kruger HG, Arvidsson PI, Govender T. Synthetic approaches to radiochemical probes for imaging of bacterial infections. Eur J Med Chem 2017; 133:287-308. [DOI: 10.1016/j.ejmech.2017.03.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
|
580
|
Kinnula H, Mappes J, Valkonen JK, Pulkkinen K, Sundberg L. Higher resource level promotes virulence in an environmentally transmitted bacterial fish pathogen. Evol Appl 2017; 10:462-470. [PMID: 28515779 PMCID: PMC5427672 DOI: 10.1111/eva.12466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Diseases have become a primary constraint to sustainable aquaculture, but remarkably little attention has been paid to a broad class of pathogens: the opportunists. Opportunists often persist in the environment outside the host, and their pathogenic features are influenced by changes in the environment. To test how environmental nutrient levels influence virulence, we used strains of Flavobacterium columnare, an environmentally transmitted fish pathogen, to infect rainbow trout and zebra fish in two different nutrient concentrations. To separate the effects of dose and nutrients, we used three infective doses and studied the growth of bacteria in vitro. High nutrient concentration promoted both the virulence and the outside-host growth of the pathogen, most notably in a low-virulence strain. The increase in virulence could not be exhaustively explained by the increased dose under higher nutrient supply, suggesting virulence factor activation. In aquaculture settings, accumulation of organic material in rearing units can locally increase water nutrient concentration and therefore increase disease risk as a response to elevated bacterial density and virulence factor activation. Our results highlight the role of increased nutrients in outside-host environment as a selective agent for higher virulence and faster evolutionary rate in opportunistic pathogens.
Collapse
Affiliation(s)
- Hanna Kinnula
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| | - Johanna Mappes
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| | - Janne K. Valkonen
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| | - Katja Pulkkinen
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| | - Lotta‐Riina Sundberg
- Department of Biological and Environmental ScienceCentre of Excellence in Biological InteractionsUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
581
|
Isolation and molecular characterization of actinomycetes with antimicrobial and mosquito larvicidal properties. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2017.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
582
|
Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO. Pathways to zoonotic spillover. Nat Rev Microbiol 2017; 15:502-510. [PMID: 28555073 PMCID: PMC5791534 DOI: 10.1038/nrmicro.2017.45] [Citation(s) in RCA: 597] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zoonotic spillover, which is the transmission of a pathogen from a vertebrate animal to a human, presents a global public health burden but is a poorly understood phenomenon. Zoonotic spillover requires several factors to align, including the ecological, epidemiological and behavioural determinants of pathogen exposure, and the within-human factors that affect susceptibility to infection. In this Opinion article, we propose a synthetic framework for animal-to-human transmission that integrates the relevant mechanisms. This framework reveals that all zoonotic pathogens must overcome a hierarchical series of barriers to cause spillover infections in humans. Understanding how these barriers are functionally and quantitatively linked, and how they interact in space and time, will substantially improve our ability to predict or prevent spillover events. This work provides a foundation for transdisciplinary investigation of spillover and synthetic theory on zoonotic transmission.
Collapse
Affiliation(s)
- Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Hamish McCallum
- Griffith School of Environment, Griffith University, Brisbane, Queensland 4111, Australia
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06520-8034, USA
| | - Andrea L Graham
- Department of Ecology &Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - James O Lloyd-Smith
- Department of Ecology &Evolutionary Biology, University of California, Los Angeles, Los Angeles, California 90095-7239, USA; and at Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892-2220, USA
| |
Collapse
|
583
|
Islam NU, Amin R, Shahid M, Amin M, Zaib S, Iqbal J. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. Altern Ther Health Med 2017; 17:276. [PMID: 28535789 PMCID: PMC5442863 DOI: 10.1186/s12906-017-1791-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/15/2017] [Indexed: 01/30/2023]
Abstract
Background Phytotherapeutics exhibit diverse pharmacological effects that are based on the combined action of a mixture of phytoconstituents. In this study, Prunus domestica gum-loaded, stabilized gold and silver nanoparticles (Au/Ag-NPs) were evaluated for their prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory, and analgesic properties. Methods Au/Ag-NPs were biosynthesized and characterized with UV-Vis, FTIR, SEM, EDX, and XRD techniques. The effect of gum and metal ion concentration, reaction temperature, and time on the synthetic stability of nanoparticles was studied along with their post-synthetic stability against varying pH and salt concentrations, long-term storage and extremes of temperature. Nanoparticles were tested for anticancer (HeLa cervical cancer cells), antibacterial (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), urease inhibition (jack-bean urease), anti-inflammatory (carrageenan-induced paw edema), and antinociceptive (abdominal constriction response) activities. Results The nanoparticles were mostly spherical with an average particle size between 7 and 30 nm (Au-NPs) and 5–30 nm (Ag-NPs). Au/Ag-NPs maintained their colloidal stability and nanoscale characteristics against variations in physicochemical factors. Au/Ag-NPs have potent anticancer potential (IC50 = 2.14 ± 0.15 μg/mL and 3.45 ± 0.23 μg/mL). Au/Ag-NPs selectively suppressed the growth of S. aureus (10.5 ± 0.6 mm, 19.7 ± 0.4 mm), E. coli (10 ± 0.4 mm, 14.4 ± 0.7 mm), and P. aeruginosa (8.2 ± 0.3 mm, 13.1 ± 0.2 mm), as well as showed preferential inhibition against jack-bean urease (19.2 ± 0.86%, 21.5 ± 1.17%). At doses of 40 and 80 mg/kg, Au-NPs significantly ameliorated the increase in paw edema during the 1st h (P < 0.05, P < 0.01) and 2–5 h (P < 0.001) of carrageenan-induced inflammation compared to the 200 and 400 mg/kg doses of P. domestica gum (P < 0.05, P < 0.001). At similar doses, Au-NPs also significantly abolished (P < 0.01) the tonic visceral, chemically-induced nociception, which was comparable to that of P. domestica gum (200 mg/kg; P < 0.05, 400 mg/kg; P < 0.01).
Collapse
|
584
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
585
|
Ilin AI, Kulmanov ME, Korotetskiy IS, Islamov RA, Akhmetova GK, Lankina MV, Reva ON. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1. Front Cell Infect Microbiol 2017; 7:151. [PMID: 28534009 PMCID: PMC5420568 DOI: 10.3389/fcimb.2017.00151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022] Open
Abstract
Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis. Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion phenomenon is hereby introduced.
Collapse
Affiliation(s)
| | | | | | - Rinat A Islamov
- Scientific Center for Anti-Infectious DrugsAlmaty, Kazakhstan
| | | | | | - Oleg N Reva
- Department of Biochemistry, Centre for Bioinformatics and Computational Biology, University of PretoriaPretoria, South Africa
| |
Collapse
|
586
|
Qin J, Lin C, Cheruiyot P, Mkpanam S, Good-Mary Duma N. Potential effects of rainwater-borne hydrogen peroxide on pollutants in stagnant water environments. CHEMOSPHERE 2017; 174:90-97. [PMID: 28160681 DOI: 10.1016/j.chemosphere.2017.01.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/13/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Microcosm experiments were conducted to examine the effects of rainwater-borne H2O2 on inactivation of water-borne coliforms, oxidation of ammonia and nitrite, and degradation of organic pollutants in canal and urban lake water. The results show that the soluble iron in the investigated water samples was sufficiently effective for reaction with H2O2 in the simulated rainwater-affected stagnant water to produce OH (Fenton reaction), which inactivated coliform bacteria even at a H2O2 dose as low as 5 μM within just 1 min of contact time. Coliform inhibition could last for at least 1 h and repeated input of H2O2 at a 30 min interval allowed maintenance of microbial inhibition for at least 3 h. Nitrification was also impeded by the Fenton process. The resulting inhibition of ammonia-oxidizing microbes reduced the removal rate of NH4+ and the emission of gaseous N species. In the presence of H2O2 at a dose of 20 μM, Fenton-driven chemical oxidation appeared to outplay the impediment of biodegradation caused by inhibited microbial activities in terms of removing total polycyclic aromatic hydrocarbons from the water column. The findings point to a potential research direction that may help to explain the dynamics of water-borne pollutants in ambient water environments.
Collapse
Affiliation(s)
- Junhao Qin
- College of Resources and Environment, South China Agricultural University, Guangzhou, China; School of Environment and Life Science, University of Salford, Greater Manchester, M5 4WT, United Kingdom
| | - Chuxia Lin
- School of Environment and Life Science, University of Salford, Greater Manchester, M5 4WT, United Kingdom.
| | - Patrick Cheruiyot
- School of Environment and Life Science, University of Salford, Greater Manchester, M5 4WT, United Kingdom
| | - Sandra Mkpanam
- School of Environment and Life Science, University of Salford, Greater Manchester, M5 4WT, United Kingdom
| | - Nelisiwe Good-Mary Duma
- School of Environment and Life Science, University of Salford, Greater Manchester, M5 4WT, United Kingdom
| |
Collapse
|
587
|
Maridor M, Ruch S, Bangerter A, Emery V. Skepticism toward Emerging Infectious Diseases and Influenza Vaccination Intentions in Nurses. JOURNAL OF HEALTH COMMUNICATION 2017; 22:386-394. [PMID: 28375808 DOI: 10.1080/10810730.2017.1296509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nurses generally show low compliance with vaccination recommendations. We assessed whether low vaccine acceptance is due to skeptical attitudes toward emerging infectious diseases (EIDs). Skepticism toward EIDs manifests as doubts about the real threat of emerging diseases and as distrust in the motives and the competence of institutions that fight these diseases. We performed a cross-sectional questionnaire study in 293 Swiss nurses using a newly developed scale to assess skepticism toward EIDs. Skepticism affected nurses' intentions to vaccinate themselves against seasonal influenza and against possible future pandemic influenza. The influence of skepticism persisted after controlling for other factors that are known to determine nurses' vaccination behavior, namely vaccination habits, feeling at risk of catching influenza, and perceiving vaccination as a professional duty. Skeptical attitudes toward EIDs seem to have a unique and hitherto ignored impact on vaccination intentions. Nurses' vaccine acceptance could be increased if vaccination campaigns specifically target skeptical attitudes toward EIDs. These campaigns should address nurses' doubts about the real threat of EIDs and should rebuild their trust in institutions which fight these diseases.
Collapse
Affiliation(s)
- Mathieu Maridor
- a Institute of Work and Organizational Psychology , University of Neuchâtel , Neuchâtel , Switzerland
| | - Simon Ruch
- a Institute of Work and Organizational Psychology , University of Neuchâtel , Neuchâtel , Switzerland
- b Department of Psychology , University of Bern , Bern , Switzerland
| | - Adrian Bangerter
- a Institute of Work and Organizational Psychology , University of Neuchâtel , Neuchâtel , Switzerland
| | - Véronique Emery
- a Institute of Work and Organizational Psychology , University of Neuchâtel , Neuchâtel , Switzerland
| |
Collapse
|
588
|
Artika IM, Ma'roef CN. Laboratory biosafety for handling emerging viruses. Asian Pac J Trop Biomed 2017; 7:483-491. [PMID: 32289025 PMCID: PMC7103938 DOI: 10.1016/j.apjtb.2017.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/24/2016] [Accepted: 12/13/2016] [Indexed: 11/05/2022] Open
Abstract
Emerging viruses are viruses whose occurrence has risen within the past twenty years, or whose presence is likely to increase in the near future. Diseases caused by emerging viruses are a major threat to global public health. In spite of greater awareness of safety and containment procedures, the handling of pathogenic viruses remains a likely source of infection, and mortality, among laboratory workers. There is a steady increase in both the number of laboratories and scientist handling emerging viruses for diagnostics and research. The potential for harm associated to work with these infectious agents can be minimized through the application of sound biosafety concepts and practices. The main factors to the prevention of laboratory-acquired infection are well-trained personnel who are knowledgable and biohazard aware, who are perceptive of the various ways of transmission, and who are professional in safe laboratory practice management. In addition, we should emphasize that appropriate facilities, practices and procedures are to be used by the laboratory workers for the handling of emerging viruses in a safe and secure manner. This review is aimed at providing researchers and laboratory personnel with basic biosafety principles to protect themselves from exposure to emerging viruses while working in the laboratory. This paper focuses on what emerging viruses are, why emerging viruses can cause laboratory-acquired infection, how to assess the risk of working with emerging viruses, and how laboratory-acquired infection can be prevented. Control measures used in the laboratory designed as such that they protect workers from emerging viruses and safeguard the public through the safe disposal of infectious wastes are also addressed.
Collapse
Affiliation(s)
- I. Made Artika
- Biosafety Level 3 Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
| | - Chairin Nisa Ma'roef
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| |
Collapse
|
589
|
Combe M, Velvin CJ, Morris A, Garchitorena A, Carolan K, Sanhueza D, Roche B, Couppié P, Guégan JF, Gozlan RE. Global and local environmental changes as drivers of Buruli ulcer emergence. Emerg Microbes Infect 2017; 6:e21. [PMID: 28442755 PMCID: PMC5457673 DOI: 10.1038/emi.2017.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/21/2022]
Abstract
Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.
Collapse
Affiliation(s)
- Marine Combe
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Camilla Jensen Velvin
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Aaron Morris
- The Royal Veterinary College, Department of Production and Population Health, The Royal Veterinary College, Hawkshead Lane North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Andres Garchitorena
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
- PIVOT, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Carolan
- Computational & Systems Biology, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Daniel Sanhueza
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Benjamin Roche
- UMMISCO, Département Sociétés et Mondialisation, UMI IRD-UPMC 209, 93143 Bondy, France
| | - Pierre Couppié
- Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, 97306 Cayenne, French Guiana, France
- Service de Dermatologie, Cayenne Hospital, rue des Flamboyant, BP 6006, 97306 Cayenne, French Guiana, France
| | - Jean-François Guégan
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
- Future Earth International Programme, OneHealth Global Research Project, Future Earth Montréal Hub, Montréal, QC H3H 2L3, Canada
| | - Rodolphe Elie Gozlan
- Institut de Recherche pour le Développement, Département Ecologie, Biodiversité et Fonctionnement des Ecosystemes Continentaux, UMR BOREA IRD 207, CNRS 7208, MNHN, UPMC, Muséum National d'Histoire Naturelle, 75231 Paris, France
| |
Collapse
|
590
|
Krishnasamy SK, Namasivayam V, Mathew S, Eakambaram RS, Ibrahim IA, Natarajan A, Palaniappan S. Design, Synthesis, and Characterization of Some Hybridized Pyrazolone Pharmacophore Analogs against Mycobacterium tuberculosis. Arch Pharm (Weinheim) 2017; 349:383-97. [PMID: 27135906 DOI: 10.1002/ardp.201600019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 11/06/2022]
Abstract
Twenty-seven hybridized pyrazolone analogs were designed, docked, synthesized in two series and evaluated for their in vitro antimycobacterial properties. In the first series, four Schiff base derivatives, 6b, 7b, 7h, and 7i, show good antitubercular activity with minimum inhibition concentration (MIC) values in the range of 32.56-42.55 µM. In the second series, two compounds, 8b and 8c, possessed significant antitubercular activity with MIC <0.37 and <0.44 μM, respectively; they were even more potent than the standards pyrazinamide (12.99 μM), ciprofloxacin (4.82 μM), and streptomycin (5.36 μM), with a selectivity index of >630. Compounds 8b and 8c showed shikimate kinase inhibition activity at 5.84 and 6.93 µM, respectively. The activity and docking results lead to the conclusion that the compounds without double bond in the imine side chain and hydrophobic clashes at the pyrazolone end are necessary for good accommodation in the binding pocket and for imparting flexibility. All the compounds were also tested for antimicrobial activity (antibacterial and antifungal) and show highly significant activities against all the microorganisms tested.
Collapse
Affiliation(s)
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Chemistry I, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Sincy Mathew
- Department of Pharmaceutical Chemistry, Medicinal Chemistry Research, KMCH College of Pharmacy, Kovai Estate, Coimbatore, India
| | - Ragavendran S Eakambaram
- Department of Pharmaceutical Chemistry, Medicinal Chemistry Research, KMCH College of Pharmacy, Kovai Estate, Coimbatore, India
| | - Ibrahim A Ibrahim
- Department of Pharmaceutical Chemistry, Medicinal Chemistry Research, KMCH College of Pharmacy, Kovai Estate, Coimbatore, India
| | - Adhirajan Natarajan
- Department of Pharmaceutical Biotechnology, KMCH College of Pharmacy, Kovai Estate, Coimbatore, India
| | - Senthilkumar Palaniappan
- Department of Pharmaceutical Chemistry, Medicinal Chemistry Research, KMCH College of Pharmacy, Kovai Estate, Coimbatore, India
| |
Collapse
|
591
|
Abstract
Infectious diseases are now emerging or reemerging almost every year. This trend will continue because a number of factors, including the increased global population, aging, travel, urbanization, and climate change, favor the emergence, evolution, and spread of new pathogens. The approach used so far for emerging infectious diseases (EIDs) does not work from the technical point of view, and it is not sustainable. However, the advent of platform technologies offers vaccine manufacturers an opportunity to develop new vaccines faster and to reduce the investment to build manufacturing facilities, in addition to allowing for the possible streamlining of regulatory processes. The new technologies also make possible the rapid development of human monoclonal antibodies that could become a potent immediate response to an emergency. So far, several proposals to approach EIDs have been made independently by scientists, the private sector, national governments, and international organizations such as the World Health Organization (WHO). While each of them has merit, there is a need for a global governance that is capable of taking a strong leadership role and making it attractive to all partners to come to the same table and to coordinate the global approach.
Collapse
|
592
|
Hussain MB, Hannan A, Absar M, Butt N. In-vitro susceptibility of methicillin-resistant Stayphylococcus aureus to honey. Complement Ther Clin Pract 2017; 27:57-60. [PMID: 28438282 DOI: 10.1016/j.ctcp.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/04/2017] [Indexed: 01/22/2023]
Abstract
Wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA) is becoming much complicated and costly to treat as antimicrobial resistance is quite common. Twenty five MRSA strains isolated from infected wounds and three ATCC reference strains were evaluated for their susceptibility to locally produced black seed (Nigella sativa), beri (ZiziphusJujuba) and shain honey (Plectranthus rugosus wall) by agar incorporation assay. Medically graded manuka honey (UMF 21+) was included as control. Locally produced black seed honey inhibited all clinical isolates at mean MIC of 5.5% (v/v), whereas manuka honey at mean MIC of 4.4% (v/v). The other two locally produced honey; beri and shain honey inhibited these isolates at 6.4% and 10.4% (v/v) respectively. The result of the study has demonstrated that indigenous black seed honey has comparable antibacterial activity to manuka honey and thus offers a good new addition to the existing honey resource for the treatment of wound infections.
Collapse
Affiliation(s)
- Muhammad Barkaat Hussain
- Department of Microbiology, Faculty of Medicine, King Abdul Aziz University, Rabigh Branch, 21589, Saudi Arabia.
| | - Abdul Hannan
- Department of Microbiology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore 54000, Pakistan.
| | - Muhammad Absar
- Department of Pathology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh 11461, Saudi Arabia.
| | - NadeemShafique Butt
- Department of Community Medicine, Faculty of Medicine, King Abdul Aziz University, Rabigh Branch, 21589, Saudi Arabia.
| |
Collapse
|
593
|
Eads DA, Hoogland JL. Precipitation, Climate Change, and Parasitism of Prairie Dogs by Fleas that Transmit Plague. J Parasitol 2017; 103:309-319. [PMID: 28359175 DOI: 10.1645/16-195] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that can reduce the fitness of vertebrate hosts. Laboratory populations of fleas decline under dry conditions, implying that populations of fleas will also decline when precipitation is scarce under natural conditions. If precipitation and hence vegetative production are reduced, however, then herbivorous hosts might suffer declines in body condition and have weakened defenses against fleas, so that fleas will increase in abundance. We tested these competing hypotheses using information from 23 yr of research on 3 species of colonial prairie dogs in the western United States: Gunnison's prairie dog (Cynomys gunnisoni, 1989-1994), Utah prairie dog (Cynomys parvidens, 1996-2005), and white-tailed prairie dog (Cynomys leucurus, 2006-2012). For all 3 species, flea-counts per individual varied inversely with the number of days in the prior growing season with >10 mm of precipitation, an index of the number of precipitation events that might have caused a substantial, prolonged increase in soil moisture and vegetative production. Flea-counts per Utah prairie dog also varied inversely with cumulative precipitation of the prior growing season. Furthermore, flea-counts per Gunnison's and white-tailed prairie dog varied inversely with cumulative precipitation of the just-completed January and February. These results complement research on black-tailed prairie dog (Cynomys ludovicianus) and might have important ramifications for plague, a bacterial disease transmitted by fleas that devastates populations of prairie dogs. In particular, our results might help to explain why, at some colonies, epizootics of plague, which can kill >95% of prairie dogs, are more likely to occur during or shortly after periods of reduced precipitation. Climate change is projected to increase the frequency of droughts in the grasslands of western North America. If so, then climate change might affect the occurrence of plague epizootics among prairie dogs and other mammalian species that associate with them.
Collapse
Affiliation(s)
- David A Eads
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523. Correspondence should be sent to David A. Eads at:
| | - John L Hoogland
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523. Correspondence should be sent to David A. Eads at:
| |
Collapse
|
594
|
Comparing nonpharmaceutical interventions for containing emerging epidemics. Proc Natl Acad Sci U S A 2017; 114:4023-4028. [PMID: 28351976 DOI: 10.1073/pnas.1616438114] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Strategies for containing an emerging infectious disease outbreak must be nonpharmaceutical when drugs or vaccines for the pathogen do not yet exist or are unavailable. The success of these nonpharmaceutical strategies will depend on not only the effectiveness of isolation measures but also the epidemiological characteristics of the infection. However, there is currently no systematic framework to assess the relationship between different containment strategies and the natural history and epidemiological dynamics of the pathogen. Here, we compare the effectiveness of quarantine and symptom monitoring, implemented via contact tracing, in controlling epidemics using an agent-based branching model. We examine the relationship between epidemic containment and the disease dynamics of symptoms and infectiousness for seven case-study diseases with diverse natural histories, including Ebola, influenza A, and severe acute respiratory syndrome (SARS). We show that the comparative effectiveness of symptom monitoring and quarantine depends critically on the natural history of the infectious disease, its inherent transmissibility, and the intervention feasibility in the particular healthcare setting. The benefit of quarantine over symptom monitoring is generally maximized for fast-course diseases, but we show the conditions under which symptom monitoring alone can control certain outbreaks. This quantitative framework can guide policymakers on how best to use nonpharmaceutical interventions and prioritize research during an outbreak of an emerging pathogen.
Collapse
|
595
|
Tsou LK, Yount JS, Hang HC. Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells. Bioorg Med Chem 2017; 25:2883-2887. [PMID: 28325635 DOI: 10.1016/j.bmc.2017.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
Increasing antibiotic resistance and beneficial effects of host microbiota has motivated the search for anti-infective agents that attenuate bacterial virulence rather than growth. For example, we discovered that specific flavonoids such as baicalein and quercetin from traditional medicinal plant extracts could attenuate Salmonella enterica serovar Typhimurium type III protein secretion and invasion of host cells. Here, we show epigallocatechin-3-gallate from green tea extracts also inhibits the activity of S. Typhimurium type III protein effectors and significantly reduces bacterial invasion into host cells. These results reveal additional dietary plant metabolites that can attenuate bacterial virulence and infection of host cells.
Collapse
Affiliation(s)
- Lun K Tsou
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, ROC
| | - Jacob S Yount
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA; Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
596
|
Chen X, Wang K. Geographic area-based rate as a novel indicator to enhance research and precision intervention for more effective HIV/AIDS control. Prev Med Rep 2017; 5:301-307. [PMID: 28229038 PMCID: PMC5312507 DOI: 10.1016/j.pmedr.2017.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/10/2017] [Accepted: 01/22/2017] [Indexed: 11/28/2022] Open
Abstract
Ending the HIV epidemic needs additional methods to better assess the incidence and prevalence of HIV infection. In this study, a new indicator - G-rate was developed for the evaluation of HIV epidemics across regions with regard to geographic area size. Different from the commonly used incidence and prevalence rates that assess the HIV epidemic with reference to population (termed as P rate in this study), G rate measures the number of new infections (incidence) or cases (prevalence) over a unit land area in one year. We demonstrated the utility of G rates using officially reported data on new HIV infections and persons living with HIV in the United States during 2000-2012. Findings of our analysis indicate that relative to P rates, G rates indicated a quicker increase in the HIV epidemic in the United States during the study period. In 2012, 4.6 persons were newly infected and 101.4 persons lived with HIV per 1000 km2 land area. The five states with both highest P prevalence rates and highest G prevalence rates were Florida, Maryland, New York, New Jersey and Washington DC, which included New Jersey ranked 8th by P rate and excluded Massachusetts ranked 5th by G rate. In conclusion, adding G rates extends the conventional measurement system that consists of case count and P rate. Combining G rates with P rates provides a new approach for information extraction to support precision intervention strategy toward the goal of creating an AIDS-Free Generation.
Collapse
Affiliation(s)
- Xinguang Chen
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
597
|
Paull SH, Horton DE, Ashfaq M, Rastogi D, Kramer LD, Diffenbaugh NS, Kilpatrick AM. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc Biol Sci 2017; 284:20162078. [PMID: 28179512 PMCID: PMC5310598 DOI: 10.1098/rspb.2016.2078] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/12/2017] [Indexed: 11/12/2022] Open
Abstract
The effect of global climate change on infectious disease remains hotly debated because multiple extrinsic and intrinsic drivers interact to influence transmission dynamics in nonlinear ways. The dominant drivers of widespread pathogens, like West Nile virus, can be challenging to identify due to regional variability in vector and host ecology, with past studies producing disparate findings. Here, we used analyses at national and state scales to examine a suite of climatic and intrinsic drivers of continental-scale West Nile virus epidemics, including an empirically derived mechanistic relationship between temperature and transmission potential that accounts for spatial variability in vectors. We found that drought was the primary climatic driver of increased West Nile virus epidemics, rather than within-season or winter temperatures, or precipitation independently. Local-scale data from one region suggested drought increased epidemics via changes in mosquito infection prevalence rather than mosquito abundance. In addition, human acquired immunity following regional epidemics limited subsequent transmission in many states. We show that over the next 30 years, increased drought severity from climate change could triple West Nile virus cases, but only in regions with low human immunity. These results illustrate how changes in drought severity can alter the transmission dynamics of vector-borne diseases.
Collapse
Affiliation(s)
- Sara H Paull
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA
- Research Applications Lab, National Center for Atmospheric Research, 3450 Mitchell Ln, Boulder, CO 80301, USA
| | - Daniel E Horton
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA
- Department of Earth System Science and Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Moetasim Ashfaq
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Deeksha Rastogi
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
- School of Public Health, Department of Biomedical Sciences, SUNY, Albany, NY 12201, USA
| | - Noah S Diffenbaugh
- Department of Earth System Science and Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA
| |
Collapse
|
598
|
Wu T, Perrings C, Kinzig A, Collins JP, Minteer BA, Daszak P. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. AMBIO 2017; 46:18-29. [PMID: 27492678 PMCID: PMC5226902 DOI: 10.1007/s13280-016-0809-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/16/2016] [Accepted: 07/18/2016] [Indexed: 05/17/2023]
Abstract
Three interrelated world trends may be exacerbating emerging zoonotic risks: income growth, urbanization, and globalization. Income growth is associated with rising animal protein consumption in developing countries, which increases the conversion of wild lands to livestock production, and hence the probability of zoonotic emergence. Urbanization implies the greater concentration and connectedness of people, which increases the speed at which new infections are spread. Globalization-the closer integration of the world economy-has facilitated pathogen spread among countries through the growth of trade and travel. High-risk areas for the emergence and spread of infectious disease are where these three trends intersect with predisposing socioecological conditions including the presence of wild disease reservoirs, agricultural practices that increase contact between wildlife and livestock, and cultural practices that increase contact between humans, wildlife, and livestock. Such an intersection occurs in China, which has been a "cradle" of zoonoses from the Black Death to avian influenza and SARS. Disease management in China is thus critical to the mitigation of global zoonotic risks.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences, Arizona State University, LSA 123, 427 East Tyler Mall, Tempe, AZ 85287 USA
| | - Charles Perrings
- School of Life Sciences, Arizona State University, LSA 127, 427 East Tyler Mall, Tempe, AZ 85287 USA
| | - Ann Kinzig
- School of Life Sciences, Arizona State University, LSA 124, 427 East Tyler Mall, Tempe, AZ 85287 USA
- Global Institute of Sustainability, Arizona State University, 800 South Cady Mall, Tempe, AZ 85287 USA
| | - James P. Collins
- School of Life Sciences, Arizona State University, LSC 402, 427 East Tyler Mall, Tempe, AZ 85287 USA
| | - Ben A. Minteer
- School of Life Sciences, Arizona State University, LSA 262, 427 East Tyler Mall, Tempe, AZ 85287 USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street - 17th Floor, New York, NY 10001 USA
| |
Collapse
|
599
|
Kopprio GA, Streitenberger ME, Okuno K, Baldini M, Biancalana F, Fricke A, Martínez A, Neogi SB, Koch BP, Yamasaki S, Lara RJ. Biogeochemical and hydrological drivers of the dynamics of Vibrio species in two Patagonian estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:646-656. [PMID: 27871750 DOI: 10.1016/j.scitotenv.2016.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The ecology of the most relevant Vibrio species for human health and their relation to water quality and biogeochemistry were studied in two estuaries in Argentinian Patagonia. Vibrio cholerae and Vibrio parahaemolyticus were reported in >29% of cases at the Río Colorado and Río Negro estuaries. Neither the pandemic serogroups of Vibrio cholerae O1, Vibrio cholerae O139 nor the cholera toxin gene were detected in this study. However, several strains of V. cholerae (not O1 or O139) are able to cause human disease or acquire pathogenic genes by horizontal transfer. Vibrio vulnificus was detected only in three instances in the microplankton fraction of the Río Negro estuary. The higher salinity in the Río Colorado estuary and in marine stations at both estuaries favours an abundance of culturable Vibrio. The extreme peaks for ammonium, heterotrophic bacteria and faecal coliforms in the Río Negro estuary supported a marked impact on sewage discharge. Generally, the more pathogenic strains of Vibrio have a faecal origin. Salinity, pH, ammonium, chlorophyll a, silicate and carbon/nitrogen ratio of suspended organic particulates were the primary factors explaining the distribution of culturable bacteria after distance-based linear models. Several effects of dissolved organic carbon on bacterial distribution are inferred. Global change is expected to increase the trophic state and the salinisation of Patagonian estuaries. Consequently, the distribution and abundance of Vibrio species is projected to increase under future changing baselines. Adaptation strategies should contribute to sustaining good water quality to buffer climate- and anthropogenic- driven impacts.
Collapse
Affiliation(s)
- Germán A Kopprio
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina; Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany.
| | - M Eugenia Streitenberger
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Kentaro Okuno
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mónica Baldini
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Florencia Biancalana
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
| | - Anna Fricke
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina; Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Ana Martínez
- Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Sucharit B Neogi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Boris P Koch
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Marine Chemistry, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Shinji Yamasaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Rubén J Lara
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
| |
Collapse
|
600
|
Effect of host diversity and species assemblage composition on bovine tuberculosis (bTB) risk in Ethiopian cattle. Parasitology 2017; 144:783-792. [PMID: 28134065 DOI: 10.1017/s0031182016002511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Current theories on diversity-disease relationships describe host species diversity and species identity as important factors influencing disease risk, either diluting or amplifying disease prevalence in a community. Whereas the simple term 'diversity' embodies a set of animal community characteristics, it is not clear how different measures of species diversity are correlated with disease risk. We therefore tested the effects of species richness, Pielou's evenness and Shannon's diversity on bovine tuberculosis (bTB) risk in cattle in the Afar Region and Awash National Park between November 2013 and April 2015. We also analysed the identity effect of a particular species and the effect of host habitat use overlap on bTB risk. We used the comparative intradermal tuberculin test to assess the number of bTB-infected cattle. Our results suggested a dilution effect through species evenness. We found that the identity effect of greater kudu - a maintenance host - confounded the dilution effect of species diversity on bTB risk. bTB infection was positively correlated with habitat use overlap between greater kudu and cattle. Different diversity indices have to be considered together for assessing diversity-disease relationships, for understanding the underlying causal mechanisms. We posit that unpacking diversity metrics is also relevant for formulating disease control strategies to manage cattle in ecosystems characterized by seasonally limited resources and intense wildlife-livestock interactions.
Collapse
|