801
|
Sgro M, Iacono G, Yamakawa GR, Kodila ZN, Marsland BJ, Mychasiuk R. Age matters: Microbiome depletion prior to repeat mild traumatic brain injury differentially alters microbial composition and function in adolescent and adult rats. PLoS One 2022; 17:e0278259. [PMID: 36449469 PMCID: PMC9710846 DOI: 10.1371/journal.pone.0278259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/13/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of the gut microbiome has been shown to perpetuate neuroinflammation, alter intestinal permeability, and modify repetitive mild traumatic brain injury (RmTBI)-induced deficits. However, there have been no investigations regarding the comparative effects that the microbiome may have on RmTBI in adolescents and adults. Therefore, we examined the influence of microbiome depletion prior to RmTBI on microbial composition and metabolome, in adolescent and adult Sprague Dawley rats. Rats were randomly assigned to standard or antibiotic drinking water for 14 days, and to subsequent sham or RmTBIs. The gut microbiome composition and metabolome were analysed at baseline, 1 day after the first mTBI, and at euthanasia (11 days following the third mTBI). At euthanasia, intestinal samples were also collected to quantify tight junction protein (TJP1 and occludin) expression. Adolescents were significantly more susceptible to microbiome depletion via antibiotic administration which increased pro-inflammatory composition and metabolites. Furthermore, RmTBI induced a transient increase in 'beneficial bacteria' (Lachnospiraceae and Faecalibaculum) in only adolescents that may indicate compensatory action in response to the injury. Finally, microbiome depletion prior to RmTBI generated a microbiome composition and metabolome that exemplified a potentially chronic pathogenic and inflammatory state as demonstrated by increased Clostridium innocuum and Erysipelatoclostridium and reductions in Bacteroides and Clostridium Sensu Stricto. Results highlight that adolescents are more vulnerable to RmTBI compared to adults and dysbiosis prior to injury may exacerbate secondary inflammatory cascades.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Giulia Iacono
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J. Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
802
|
Yin YS, Minacapelli CD, Parmar V, Catalano CC, Bhurwal A, Gupta K, Rustgi VK, Blaser MJ. Alterations of the fecal microbiota in relation to acute COVID-19 infection and recovery. MOLECULAR BIOMEDICINE 2022; 3:36. [PMID: 36437420 PMCID: PMC9702442 DOI: 10.1186/s43556-022-00103-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
People with acute COVID-19 due to SARS-CoV-2 infection experience a range of symptoms, but major factors contributing to severe clinical outcomes remain to be understood. Emerging evidence suggests associations between the gut microbiome and the severity and progression of COVID-19. To better understand the host-microbiota interactions in acute COVID-19, we characterized the intestinal microbiome of patients with active SARS-CoV-2 infection in comparison to recovered patients and uninfected healthy controls. We performed 16S rRNA sequencing of stool samples collected between May 2020 and January 2021 from 20 COVID-19-positive patients, 20 COVID-19-recovered subjects and 20 healthy controls. COVID-19-positive patients had altered microbiome community characteristics compared to the recovered and control subjects, as assessed by both α- and β-diversity differences. In COVID-19-positive patients, we observed depletion of Bacteroidaceae, Ruminococcaceae, and Lachnospiraceae, as well as decreased relative abundances of the genera Faecalibacterium, Adlercreutzia, and the Eubacterium brachy group. The enrichment of Prevotellaceae with COVID-19 infection continued after viral clearance; antibiotic use induced further gut microbiota perturbations in COVID-19-positive patients. In conclusion, we present evidence that acute COVID-19 induces gut microbiota dysbiosis with depletion of particular populations of commensal bacteria, a phenomenon heightened by antibiotic exposure, but the general effects do not persist post-recovery.
Collapse
Affiliation(s)
- Yue Sandra Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Carlos D Minacapelli
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
- Center for Liver Diseases and Liver Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Veenat Parmar
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Carolyn C Catalano
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
- Center for Liver Diseases and Liver Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Abhishek Bhurwal
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
- Center for Liver Diseases and Liver Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kapil Gupta
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
- Center for Liver Diseases and Liver Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Vinod K Rustgi
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA.
- Center for Liver Diseases and Liver Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
803
|
Quagliariello A, Modi A, Innocenti G, Zaro V, Conati Barbaro C, Ronchitelli A, Boschin F, Cavazzuti C, Dellù E, Radina F, Sperduti A, Bondioli L, Ricci S, Lognoli M, Belcastro MG, Mariotti V, Caramelli D, Mariotti Lippi M, Cristiani E, Martino ME, Muntoni IM, Lari M. Ancient oral microbiomes support gradual Neolithic dietary shifts towards agriculture. Nat Commun 2022; 13:6927. [PMID: 36414613 PMCID: PMC9681849 DOI: 10.1038/s41467-022-34416-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The human microbiome has recently become a valuable source of information about host life and health. To date little is known about how it may have evolved during key phases along our history, such as the Neolithic transition towards agriculture. Here, we shed light on the evolution experienced by the oral microbiome during this transition, comparing Palaeolithic hunter-gatherers with Neolithic and Copper Age farmers that populated a same restricted area in Italy. We integrate the analysis of 76 dental calculus oral microbiomes with the dietary information derived from the identification of embedded plant remains. We detect a stronger deviation from the hunter-gatherer microbiome composition in the last part of the Neolithic, while to a lesser extent in the early phases of the transition. Our findings demonstrate that the introduction of agriculture affected host microbiome, supporting the hypothesis of a gradual transition within the investigated populations.
Collapse
Affiliation(s)
- Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy.
| | - Alessandra Modi
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy.
| | - Gabriel Innocenti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy
| | - Valentina Zaro
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| | - Cecilia Conati Barbaro
- Dipartimento di Scienze dell'Antichita, "Sapienza" University of Rome, Rome, 00185, Italy
| | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Claudio Cavazzuti
- Dipartimento di Storia Culture Civiltà, University of Bologna, Bologna, 40126, Italy
| | - Elena Dellù
- Soprintendenza ABAP per la Città Metropolitana di Bari, Bari, 70121, Italy
| | - Francesca Radina
- Soprintendenza ABAP per la Città Metropolitana di Bari, Bari, 70121, Italy
| | - Alessandra Sperduti
- Sezione di Bioarcheologia - Museo delle Civiltà, Roma, 00144, Italy
- Dipartimento Asia, Africa e Mediterraneo, "L'Orientale" University of Neaples, Neaples, Italy
| | - Luca Bondioli
- Sezione di Bioarcheologia - Museo delle Civiltà, Roma, 00144, Italy
- Dipartimento dei Beni Culturali, University of Padua, Padova, 35139, Italy
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Miriam Lognoli
- Department of Biology, Laboratory of Palynology, University of Florence, Florence, 50121, Italy
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Valentina Mariotti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - David Caramelli
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| | - Marta Mariotti Lippi
- Department of Biology, Laboratory of Palynology, University of Florence, Florence, 50121, Italy
| | - Emanuela Cristiani
- DANTE - Diet and ANcient TEchnology laboratory, Department of Maxillo-Facial Sciences, "Sapienza" University of Rome, Rome, 00161, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy
| | - Italo Maria Muntoni
- Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di Barletta - Andria - Trani e Foggia, Foggia, 71121, Italy
| | - Martina Lari
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| |
Collapse
|
804
|
Wallen ZD, Demirkan A, Twa G, Cohen G, Dean MN, Standaert DG, Sampson TR, Payami H. Metagenomics of Parkinson's disease implicates the gut microbiome in multiple disease mechanisms. Nat Commun 2022; 13:6958. [PMID: 36376318 PMCID: PMC9663292 DOI: 10.1038/s41467-022-34667-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) may start in the gut and spread to the brain. To investigate the role of gut microbiome, we conducted a large-scale study, at high taxonomic resolution, using uniform standardized methods from start to end. We enrolled 490 PD and 234 control individuals, conducted deep shotgun sequencing of fecal DNA, followed by metagenome-wide association studies requiring significance by two methods (ANCOM-BC and MaAsLin2) to declare disease association, network analysis to identify polymicrobial clusters, and functional profiling. Here we show that over 30% of species, genes and pathways tested have altered abundances in PD, depicting a widespread dysbiosis. PD-associated species form polymicrobial clusters that grow or shrink together, and some compete. PD microbiome is disease permissive, evidenced by overabundance of pathogens and immunogenic components, dysregulated neuroactive signaling, preponderance of molecules that induce alpha-synuclein pathology, and over-production of toxicants; with the reduction in anti-inflammatory and neuroprotective factors limiting the capacity to recover. We validate, in human PD, findings that were observed in experimental models; reconcile and resolve human PD microbiome literature; and provide a broad foundation with a wealth of concrete testable hypotheses to discern the role of the gut microbiome in PD.
Collapse
Affiliation(s)
- Zachary D. Wallen
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Ayse Demirkan
- grid.5475.30000 0004 0407 4824Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey GU2 7XH UK
| | - Guy Twa
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Gwendolyn Cohen
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Marissa N. Dean
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - David G. Standaert
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Timothy R. Sampson
- grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA ,grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Haydeh Payami
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| |
Collapse
|
805
|
Deledda A, Palmas V, Heidrich V, Fosci M, Lombardo M, Cambarau G, Lai A, Melis M, Loi E, Loviselli A, Manzin A, Velluzzi F. Dynamics of Gut Microbiota and Clinical Variables after Ketogenic and Mediterranean Diets in Drug-Naïve Patients with Type 2 Diabetes Mellitus and Obesity. Metabolites 2022; 12:1092. [PMID: 36355175 PMCID: PMC9693465 DOI: 10.3390/metabo12111092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is a progressive chronic metabolic disease that has increasingly spread worldwide, enhancing the mortality rate, particularly from cardiovascular diseases (CVD). Lifestyle improvement through diet and physical activity is, together with drug treatment, the cornerstone of T2DM management. The Mediterranean diet (MD), which favors a prevalence of unprocessed vegetable foods and a reduction in red meats and industrial foods, without excluding any food category, is usually recommended. Recently, scientific societies have promoted a very low-calorie ketogenic diet (VLCKD), a multiphasic protocol that limits carbohydrates and then gradually re-introduces them, with a favorable outcome on body weight and metabolic parameters. Indeed, gut microbiota (GM) modifications have been linked to overweight/obesity and metabolic alterations typical of T2DM. Diet is known to affect GM largely, but only a few studies have investigated the effects of VLCKD on GM, especially in T2DM. In this study, we have compared anthropometric, biochemical, lifestyle parameters, the quality of life, and the GM of eleven patients with recently diagnosed T2DM and overweight or obesity, randomly assigned to two groups of six and five patients who followed the VLCKD (KETO) or hypocaloric MD (MEDI) respectively; parameters were recorded at baseline (T0) and after two (T2) and three months (T3). The results showed that VLCKD had more significant beneficial effects than MD on anthropometric parameters, while biochemical improvements did not statistically differ. As for the GM, despite the lack of significant results regarding the alpha and beta diversity, and the Firmicutes/Bacteroidota ratio between the two groups, in the KETO group, a significant increase in beneficial microbial taxa such as Verrucomicrobiota phylum with its members Verrucomicrobiae, Verrucomicrobiales, Akkermansiaceae, and Akkermansia, Christensenellaceae family, Eubacterium spp., and a reduction in microbial taxa previously associated with obesity (Firmicutes and Actinobacteriota) or other diseases (Alistipes) was observed both at T2 and T3. With regards to the MEDI group, variations were limited to a significant increase in Actinobacteroidota phylum at T2 and T3 and Firmicutes phylum at T3. Moreover, a metagenomic alteration linked to some metabolic pathways was found exclusively in the KETO group. In conclusion, both dietary approaches allowed patients to improve their state of health, but VLCKD has shown better results on body composition as well as on GM profile.
Collapse
Affiliation(s)
- Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Vitor Heidrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Michele Fosci
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giulia Cambarau
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alessio Lai
- Diabetologia, P.O. Binaghi, ASSL Cagliari, 09126 Cagliari, Italy
| | - Marietta Melis
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Elisabetta Loi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Andrea Loviselli
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
806
|
A distinct clade of Bifidobacterium longum in the gut of Bangladeshi children thrives during weaning. Cell 2022; 185:4280-4297.e12. [PMID: 36323316 DOI: 10.1016/j.cell.2022.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.
Collapse
|
807
|
Au S, Baraniya D, Dao J, Awan SB, Alvarez J, Sklar S, Chen T, Puri S, Al-Hebshi NN. Prolonged mask wearing does not alter the oral microbiome, salivary flow rate or gingival health status – A pilot study. Front Cell Infect Microbiol 2022; 12:1039811. [PMID: 36439237 PMCID: PMC9684305 DOI: 10.3389/fcimb.2022.1039811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The COVID-19 pandemic has resulted in the widespread use of N95 respirators and surgical masks, with anecdotal reports among healthcare providers and the public of xerostomia, halitosis, and gingivitis, a consortium of symptoms colloquially termed “mask mouth”. However, this has not been scientifically verified. The aim of this study was to assess changes in salivary flow rate, gingival health status and oral microbiome associated with prolonged mask use. A total of 25 dental students (mean age = 26.36 ± 1.58) were included in the study and evaluated at three time points: T1, at the end of at least 2 months of full-day mask wear (7.26 ± 1.56 hours/day); T2, at the end of a period of minimal mask use (1.13 ± 1.13 hours/day); and T3, at the end of 2-3 weeks of resuming full-day mask wear (6.93 ± 1.80 hours/day). Unstimulated whole saliva (UWS) flow rate, xerostomia (on a quantitative scale of 10), gingival index (GI) and plaque index (PI) were assessed at each time point. The salivary microbiome was characterized using 16S rRNA gene sequencing. Overall, UWS flow rates were normal (mean of 0.679 ml/min) and xerostomia, PI and GI scores were low (Mean of 3.11, 0.33 and 0.69, respectively) with no significant differences as a result of prolonged mask wearing. Similarly, there were no significant microbial changes at a false discovery rate (FDR) ≤ 0.05. However, some trends were identified using a nominal p-value cut-off of ≤ 0.01, namely Gemella sanguinis, Streptococcus sp. Oral taxon 066 and Oral taxon 058 were associated with prolonged mask wear. Trends were also seen by gender, race and age, for example an increase in P. gingivalis and P. intermedia with age. In conclusion, we found no evidence that prolonged mask wear adversely affects oral health. The findings support that the oral microbiome of healthy individuals is resilient.
Collapse
Affiliation(s)
- Sheralyn Au
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Jason Dao
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Shehar Bano Awan
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Jenelle Alvarez
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Shari Sklar
- Department of Restorative Dentistry, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, MA, United States
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Nezar N. Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
- *Correspondence: Nezar N. Al-Hebshi,
| |
Collapse
|
808
|
Abdel-Haq R, Schlachetzki JCM, Boktor JC, Cantu-Jungles TM, Thron T, Zhang M, Bostick JW, Khazaei T, Chilakala S, Morais LH, Humphrey G, Keshavarzian A, Katz JE, Thomson M, Knight R, Gradinaru V, Hamaker BR, Glass CK, Mazmanian SK. A prebiotic diet modulates microglial states and motor deficits in α-synuclein overexpressing mice. eLife 2022; 11:e81453. [PMID: 36346385 PMCID: PMC9668333 DOI: 10.7554/elife.81453] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder characterized by neuroinflammation, α-synuclein pathology, and neurodegeneration. Most cases of PD are non-hereditary, suggesting a strong role for environmental factors, and it has been speculated that disease may originate in peripheral tissues such as the gastrointestinal (GI) tract before affecting the brain. The gut microbiome is altered in PD and may impact motor and GI symptoms as indicated by animal studies, although mechanisms of gut-brain interactions remain incompletely defined. Intestinal bacteria ferment dietary fibers into short-chain fatty acids, with fecal levels of these molecules differing between PD and healthy controls and in mouse models. Among other effects, dietary microbial metabolites can modulate activation of microglia, brain-resident immune cells implicated in PD. We therefore investigated whether a fiber-rich diet influences microglial function in α-synuclein overexpressing (ASO) mice, a preclinical model with PD-like symptoms and pathology. Feeding a prebiotic high-fiber diet attenuates motor deficits and reduces α-synuclein aggregation in the substantia nigra of mice. Concomitantly, the gut microbiome of ASO mice adopts a profile correlated with health upon prebiotic treatment, which also reduces microglial activation. Single-cell RNA-seq analysis of microglia from the substantia nigra and striatum uncovers increased pro-inflammatory signaling and reduced homeostatic responses in ASO mice compared to wild-type counterparts on standard diets. However, prebiotic feeding reverses pathogenic microglial states in ASO mice and promotes expansion of protective disease-associated macrophage (DAM) subsets of microglia. Notably, depletion of microglia using a CSF1R inhibitor eliminates the beneficial effects of prebiotics by restoring motor deficits to ASO mice despite feeding a prebiotic diet. These studies uncover a novel microglia-dependent interaction between diet and motor symptoms in mice, findings that may have implications for neuroinflammation and PD.
Collapse
Affiliation(s)
- Reem Abdel-Haq
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Johannes CM Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Joseph C Boktor
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Thaisa M Cantu-Jungles
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University West LafayetteWest LafayetteUnited States
| | - Taren Thron
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Mengying Zhang
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - John W Bostick
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Tahmineh Khazaei
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Sujatha Chilakala
- Lawrence J Ellison Institute for Transformative Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Livia H Morais
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Greg Humphrey
- Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical CenterChicagoUnited States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical CenterChicagoUnited States
| | - Jonathan E Katz
- Lawrence J Ellison Institute for Transformative Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Matthew Thomson
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Rob Knight
- Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
- Department of Computer Science and Engineering, University of California, San DiegoSan DiegoUnited States
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
- Center for Microbiome Innovation, University of California San DiegoSan DiegoUnited States
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Bruce R Hamaker
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University West LafayetteWest LafayetteUnited States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
809
|
C3NA: correlation and consensus-based cross-taxonomy network analysis for compositional microbial data. BMC Bioinformatics 2022; 23:468. [DOI: 10.1186/s12859-022-05027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Studying the co-occurrence network structure of microbial samples is one of the critical approaches to understanding the perplexing and delicate relationship between the microbe, host, and diseases. It is also critical to develop a tool for investigating co-occurrence networks and differential abundance analyses to reveal the disease-related taxa–taxa relationship. In addition, it is also necessary to tighten the co-occurrence network into smaller modules to increase the ability for functional annotation and interpretability of these taxa-taxa relationships. Also, it is critical to retain the phylogenetic relationship among the taxa to identify differential abundance patterns, which can be used to resolve contradicting functions reported by different studies.
Results
In this article, we present Correlation and Consensus-based Cross-taxonomy Network Analysis (C3NA), a user-friendly R package for investigating compositional microbial sequencing data to identify and compare co-occurrence patterns across different taxonomic levels. C3NA contains two interactive graphic user interfaces (Shiny applications), one of them dedicated to the comparison between two diagnoses, e.g., disease versus control. We used C3NA to analyze two well-studied diseases, colorectal cancer, and Crohn’s disease. We discovered clusters of study and disease-dependent taxa that overlap with known functional taxa studied by other discovery studies and differential abundance analyses.
Conclusion
C3NA offers a new microbial data analyses pipeline for refined and enriched taxa–taxa co-occurrence network analyses, and the usability was further expanded via the built-in Shiny applications for interactive investigation.
Collapse
|
810
|
Baraniya D, Do T, Chen T, Albandar JM, Chialastri SM, Devine DA, Marsh PD, Al-Hebshi NN. Optimization of conditions for in vitro modeling of subgingival normobiosis and dysbiosis. Front Microbiol 2022; 13:1031029. [PMID: 36406462 PMCID: PMC9670125 DOI: 10.3389/fmicb.2022.1031029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Modeling subgingival microbiome in health and disease is key to identifying the drivers of dysbiosis and to studying microbiome modulation. Here, we optimize growth conditions of our previously described in vitro subgingival microbiome model. Subgingival plaque samples from healthy and periodontitis subjects were used as inocula to grow normobiotic and dysbiotic microbiomes in MBEC assay plates. Saliva supplemented with 1%, 2%, 3.5%, or 5% (v/v) heat-inactivated human serum was used as a growth medium under shaking or non-shaking conditions. The microbiomes were harvested at 4, 7, 10 or 13 days of growth (384 microbiomes in total) and analyzed by 16S rRNA gene sequencing. Biomass significantly increased as a function of serum concentration and incubation period. Independent of growth conditions, the health- and periodontitis-derived microbiomes clustered separately with their respective inocula. Species richness/diversity slightly increased with time but was adversely affected by higher serum concentrations especially in the periodontitis-derived microbiomes. Microbial dysbiosis increased with time and serum concentration. Porphyromonas and Alloprevotella were substantially enriched in higher serum concentrations at the expense of Streptococcus, Fusobacterium and Prevotella. An increase in Porphyromonas, Bacteroides and Mogibacterium accompanied by a decrease in Prevotella, Catonella, and Gemella were the most prominent changes over time. Shaking had only minor effects. Overall, the health-derived microbiomes grown for 4 days in 1% serum, and periodontitis-derived microbiomes grown for 7 days in 3.5%-5% serum were the most similar to the respective inocula. In conclusion, normobiotic and dysbiostic subgingival microbiomes can be grown reproducibly in saliva supplemented with serum, but time and serum concentration need to be adjusted differently for the health and periodontitis-derived microbiomes to maximize similarity to in vivo inocula. The optimized model could be used to identify drivers of dysbiosis, and to evaluate interventions such as microbiome modulators.
Collapse
Affiliation(s)
- Divyashri Baraniya
- Oral Microbiome Research Laboratory, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, MA, United States
| | - Jasim M. Albandar
- Department of Periodontology and Oral Implantology, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Susan M. Chialastri
- Department of Periodontology and Oral Implantology, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Deirdre A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Philip D. Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Nezar N. Al-Hebshi
- Oral Microbiome Research Laboratory, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States,*Correspondence: Nezar N. Al-Hebshi,
| |
Collapse
|
811
|
Barber C, Sabater C, Ávila-Gálvez MÁ, Vallejo F, Bendezu RA, Guérin-Deremaux L, Guarner F, Espín JC, Margolles A, Azpiroz F. Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota. Nutrients 2022; 14:4611. [PMID: 36364873 PMCID: PMC9654059 DOI: 10.3390/nu14214611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/31/2023] Open
Abstract
Previous studies have shown that a resistant dextrin soluble fibre has prebiotic properties with related health benefits on blood glucose management and satiety. Our aim was to demonstrate the effects of continuous administration of resistant dextrin on intestinal gas production, digestive sensations, and gut microbiota metabolism and composition. Healthy subjects (n = 20) were given resistant dextrin (14 g/d NUTRIOSE®, Roquette Frères, Lestrem, France) for four weeks. Outcomes were measured before, at the beginning, end, and two weeks after administration: anal evacuations of gas during daytime; digestive perception, girth, and gas production in response to a standard meal; sensory and digestive responses to a comfort meal; volume of colonic biomass by magnetic resonance; taxonomy and metabolic functions of fecal microbiota by shotgun sequencing; metabolomics in urine. Dextrin administration produced an initial increase in intestinal gas production and gas-related sensations, followed by a subsequent decrease, which magnified after discontinuation. Dextrin enlarged the volume of colonic biomass, inducing changes in microbial metabolism and composition with an increase in short chain fatty acids-producing species and modulation of bile acids and biotin metabolism. These data indicate that consumption of a soluble fibre induces an adaptative response of gut microbiota towards fermentative pathways with lower gas production.
Collapse
Affiliation(s)
- Claudia Barber
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), 28029 Madrid, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry, IPLA-CSIC, 33300 Asturias, Spain
- Health Research Institute of Asturias, ISPA, 33011 Asturias, Spain
| | - María Ángeles Ávila-Gálvez
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Fernando Vallejo
- Metabolomics Service, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | - Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry, IPLA-CSIC, 33300 Asturias, Spain
- Health Research Institute of Asturias, ISPA, 33011 Asturias, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), 28029 Madrid, Spain
| |
Collapse
|
812
|
Warda AK, Dempsey EM, Forssten SD, Ryan CA, Cryan JF, Patterson E, O'Riordan MN, O'Shea CA, Keohane F, Meehan G, O'Connor O, Ross RP, Stanton C. Cross-sectional observational study protocol: missing microbes in infants born by caesarean section (MiMIC): antenatal antibiotics and mode of delivery. BMJ Open 2022; 12:e064398. [PMID: 36323464 PMCID: PMC9639109 DOI: 10.1136/bmjopen-2022-064398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION The intestinal microbiome in early life plays a major role in infant health and development. Factors like antibiotic exposure, breast/formula feeding and mode of delivery are known to affect the microbiome. The increasing occurrence of caesarean section (C-section) deliveries and antibiotic exposure warrants further insight into the potential missing microbes in those infants. The study objective is to study the effect of maternal antibiotic administration during pregnancy and/or C-section mode of delivery on the development of the infant's intestinal microbiome until the age of 2 years. METHODS AND ANALYSIS A single site, cross-sectional observational study of C-section and vaginally delivered infants being either exposed to maternal antibiotic treatment or not during the third trimester of pregnancy. Throughout the nine visits, stool, urine, saliva, hair, breast milk and vaginal swabs will be collected from either mother and/or infant for microbiome and metabolomic analysis. ETHICS AND DISSEMINATION The protocol was approved by the Clinical Research Ethics Committee of the Cork Teaching Hospitals. The trial has been registered at ClinicalTrials.gov.The findings from this study will be disseminated in peer-reviewed journals, during scientific conferences, and directly to the study participants. Sequencing data will be deposited in public databases. TRIAL REGISTRATION NUMBER NCT04134819.
Collapse
Affiliation(s)
- Alicja K Warda
- APC Microbiome Ireland, Cork, Ireland
- Food Research Centre Moorepark, Teagasc, Moorepark, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, Cork, Ireland
- Cork University Maternity Hospital, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | | | - C Anthony Ryan
- APC Microbiome Ireland, Cork, Ireland
- Cork University Maternity Hospital, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- University College Cork, Cork, Ireland
| | | | - Mairead N O'Riordan
- APC Microbiome Ireland, Cork, Ireland
- Cork University Maternity Hospital, Cork, Ireland
| | - Carol-Anne O'Shea
- APC Microbiome Ireland, Cork, Ireland
- Cork University Maternity Hospital, Cork, Ireland
| | - Finola Keohane
- APC Microbiome Ireland, Cork, Ireland
- Cork University Maternity Hospital, Cork, Ireland
| | - Grainne Meehan
- APC Microbiome Ireland, Cork, Ireland
- Cork University Maternity Hospital, Cork, Ireland
| | - Orlagh O'Connor
- APC Microbiome Ireland, Cork, Ireland
- Cork University Maternity Hospital, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland
- University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Food Research Centre Moorepark, Teagasc, Moorepark, Ireland
| |
Collapse
|
813
|
Alcazar CGM, Paes VM, Shao Y, Oesser C, Miltz A, Lawley TD, Brocklehurst P, Rodger A, Field N. The association between early-life gut microbiota and childhood respiratory diseases: a systematic review. THE LANCET. MICROBE 2022; 3:e867-e880. [PMID: 35988549 PMCID: PMC10499762 DOI: 10.1016/s2666-5247(22)00184-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 01/14/2023]
Abstract
Data from animal models suggest a role of early-life gut microbiota in lung immune development, and in establishing susceptibility to respiratory infections and asthma in humans. This systematic review summarises the association between infant (ages 0-12 months) gut microbiota composition measured by genomic sequencing, and childhood (ages 0-18 years) respiratory diseases (ie, respiratory infections, wheezing, or asthma). Overall, there was evidence that low α-diversity and relative abundance of particular gut-commensal bacteria genera (Bifidobacterium, Faecalibacterium, Ruminococcus, and Roseburia) are associated with childhood respiratory diseases. However, results were inconsistent and studies had important limitations, including insufficient characterisation of bacterial taxa to species level, heterogeneous outcome definitions, residual confounding, and small sample sizes. Large longitudinal studies with stool sampling during the first month of life and shotgun metagenomic approaches to improve bacterial and fungal taxa resolution are needed. Standardising follow-up times and respiratory disease definitions and optimising causal statistical approaches might identify targets for primary prevention of childhood respiratory diseases.
Collapse
Affiliation(s)
| | - Veena Mazarello Paes
- Institute for Child Health, University College London, London, UK; John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Clarissa Oesser
- Institute for Global Health, University College London, London, UK
| | - Ada Miltz
- Institute for Global Health, University College London, London, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Peter Brocklehurst
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Alison Rodger
- Institute for Global Health, University College London, London, UK; Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK
| | - Nigel Field
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
814
|
Lin H, Chen J, Ma S, An R, Li X, Tan H. The Association between Gut Microbiome and Pregnancy-Induced Hypertension: A Nested Case–Control Study. Nutrients 2022; 14:nu14214582. [PMID: 36364844 PMCID: PMC9657571 DOI: 10.3390/nu14214582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
(1) Background: Pregnancy-induced hypertension (PIH) is associated with obvious microbiota dysbiosis in the third trimester of pregnancy. However, the mechanisms behind these changes remain unknown. Therefore, this study aimed to explore the relationship between the gut microbiome in early pregnancy and PIH occurrence. (2) Methods: A nested case–control study design was used based on the follow-up cohort. Thirty-five PIH patients and thirty-five matched healthy pregnant women were selected as controls. The gut microbiome profiles were assessed in the first trimester using metagenomic sequencing. (3) Results: Diversity analyses showed that microbiota diversity was altered in early pregnancy. At the species level, eight bacterial species were enriched in healthy controls: Alistipes putredinis, Bacteroides vulgatus, Ruminococcus torques, Oscillibacter unclassified, Akkermansia muciniphila, Clostridium citroniae, Parasutterella excrementihominis and Burkholderiales bacterium_1_1_47. Conversely, Eubacterium rectale, and Ruminococcus bromii were enriched in PIH patients. The results of functional analysis showed that the changes in these different microorganisms may affect the blood pressure of pregnant women by affecting the metabolism of vitamin K2, sphingolipid, lipid acid and glycine. (4) Conclusion: Microbiota dysbiosis in PIH patients begins in the first trimester of pregnancy, and this may be associated with the occurrence of PIH. Bacterial pathway analyses suggest that the gut microbiome might lead to the development of PIH through the alterations of function modules.
Collapse
Affiliation(s)
- Huijun Lin
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410000, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Junru Chen
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, China
| | - Shujuan Ma
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, China
- Correspondence: (S.M.); (H.T.)
| | - Rongjing An
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410000, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Xingli Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410000, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Hongzhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410000, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410000, China
- Correspondence: (S.M.); (H.T.)
| |
Collapse
|
815
|
Tims S, Marsaux C, Pinto A, Daly A, Karall D, Kuhn M, Santra S, Roeselers G, Knol J, MacDonald A, Scholl-Bürgi S. Altered gut microbiome diversity and function in patients with propionic acidemia. Mol Genet Metab 2022; 137:308-322. [PMID: 36274442 DOI: 10.1016/j.ymgme.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Propionic acidemia (PA) is an inherited metabolic disorder of propionate metabolism, where the gut microbiota may play a role in pathophysiology and therefore, represent a relevant therapeutic target. Little is known about the gut microbiota composition and activity in patients with PA. Although clinical practice varies between metabolic treatment centers, management of PA requires combined dietary and pharmaceutical treatments, both known to affect the gut microbiota. This study aimed to characterize the gut microbiota and its metabolites in fecal samples of patients with PA compared with healthy controls from the same household. Eight patients (aged 3-14y) and 8 controls (4-31y) were recruited from Center 1 (UK) and 7 patients (11-33y) and 6 controls (15-54y) from Center 2 (Austria). Stool samples were collected 4 times over 3 months, alongside data on dietary intakes and medication usage. Several microbial taxa differed between patients with PA and controls, particularly for Center 1, e.g., Proteobacteria levels were increased, whereas butyrate-producing genera, such as Roseburia and Faecalibacterium, were decreased. Most measured microbial metabolites were lower in patients with PA, and butyrate was particularly depleted in patients from Center 1. Furthermore, microbiota profile of these patients showed the lowest compositional and functional diversity, and lowest stability over 3 months. As the first study to map the gut microbiota of patients with PA, this work represents an important step forward for developing new therapeutic strategies to further improve PA clinical status. New dietary strategies should consider microbial propionate production as well as butyrate production and microbiota stability.
Collapse
Affiliation(s)
- Sebastian Tims
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands.
| | - Cyril Marsaux
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands.
| | - Alex Pinto
- Department of Dietetics, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Anne Daly
- Department of Dietetics, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Daniela Karall
- Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria.
| | - Mirjam Kuhn
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands.
| | - Saikat Santra
- Department of Clinical Inherited Metabolic Disorders, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Guus Roeselers
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands.
| | - Jan Knol
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands; Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708WE Wageningen, the Netherlands.
| | - Anita MacDonald
- Department of Dietetics, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria.
| |
Collapse
|
816
|
Hladnik M, Unković N, Janakiev T, Grbić ML, Arbeiter AB, Stanković S, Janaćković P, Gavrilović M, Rančić D, Bandelj D, Dimkić I. An Insight into an Olive Scab on the "Istrska Belica" Variety: Host-Pathogen Interactions and Phyllosphere Mycobiome. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02131-4. [PMID: 36307735 DOI: 10.1007/s00248-022-02131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The olive tree is one of the most important agricultural plants, affected by several pests and diseases that cause a severe decline in health status leading to crop losses. Olive leaf spot disease caused by the fungus Venturia oleaginea can result in complete tree defoliation and consequently lower yield. The aim of the study was to obtain new knowledge related to plant-pathogen interaction, reveal mechanisms of plant defense against the pathogen, and characterize fungal phyllosphere communities on infected and symptomless leaves that could contribute to the development of new plant breeding strategies and identification of novel biocontrol agents. The highly susceptible olive variety "Istrska Belica"' was selected for a detailed evaluation. Microscopy analyses led to the observation of raphides in the mesophyll and parenchyma cells of infected leaves and gave new insight into the complex V. oleaginea pathogenesis. Culturable and total phyllosphere mycobiota, obtained via metabarcoding approach, highlighted Didymella, Aureobasidium, Cladosporium, and Alternaria species as overlapping between infected and symptomless leaves. Only Venturia and Erythrobasidium in infected and Cladosporium in symptomless samples with higher abundance showed statistically significant differences. Based on the ecological role of identified taxa, it can be suggested that Cladosporium species might have potential antagonistic effects on V. oleaginea.
Collapse
Affiliation(s)
- Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Nikola Unković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Tamara Janakiev
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | | | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Peđa Janaćković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Milan Gavrilović
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Dragana Rančić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade, Zemun, Serbia
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia.
| |
Collapse
|
817
|
Herrera G, Arboleda JC, Pérez-Jaramillo JE, Patarroyo MA, Ramírez JD, Muñoz M. Microbial Interdomain Interactions Delineate the Disruptive Intestinal Homeostasis in Clostridioides difficile Infection. Microbiol Spectr 2022; 10:e0050222. [PMID: 36154277 PMCID: PMC9602525 DOI: 10.1128/spectrum.00502-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) creates an imbalance in the intestinal microbiota due to the interaction of the components making up this ecosystem, but little is known about the impact of this disease on other microbial members. This work has thus been aimed at evaluating the taxonomic composition, potential gene-associated functions, virulence factors, and antimicrobial resistance profiles of gut microbiomes. A total of 48 DNA samples obtained from patients with health care facility-acquired (HCFO) and community-onset (CO) diarrhea were distributed in the following four groups according to CDI status: HCFO/+ (n = 13), HCFO/- (n = 8), CO/+ (n = 13), and CO/- (n = 14). These samples were subjected to shotgun metagenomics sequencing. Although the CDI groups' microbiota had microbiome alterations, the greatest imbalance was observed in the in the HCFO+/- groups, with an increase in common pathogens and phage populations, as well as a decrease in beneficial microorganisms that leads to a negative impact on some intestinal homeostasis-related metabolic processes. A reduction in the relative abundance of butyrate metabolism-associated genes was also detected in the HCFO groups (P < 0.01), with an increase in some virulence factors and antibiotic-resistance markers. A set of 51 differentially abundant species in the groups with potential association to CDI enabled its characterization, leading to their spatial separation by onset. Strong correlations between phages and some archaeal and bacterial phyla were identified. This highlighted the need to study the microbiota's various components since their imbalance is multifactorial, with some pathogens contributing to a greater or lesser extent because of their interaction with the ecosystem they inhabit. IMPORTANCE Clostridioides difficile infection represents a serious public health problem in different countries due to its high morbi-mortality and the high costs it represents for health care systems. Studies have shown the impact of this infection on intestinal microbiome homeostasis, mainly on bacterial populations. Our research provides evidence of the impact of CDI at both the compositional (bacteria, archaea, and viruses), and functional levels, allowing us to understand that the alterations of the microbiota occur systemically and are caused by multiple perturbations generated by different members of the microbiota as well as by some pathogens that take advantage of the imbalance to proliferate. Likewise, the 51 differentially abundant species in the study groups with potential association to CDI found in this study could help us envisage future treatments against this and other inflammatory diseases, improving future therapeutic options for patients.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan Camilo Arboleda
- Unidad de Bioprospección and Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- Semillero de Investigación en Bioinformática-GenomeSeq, Seccional Oriente, Universidad de Antioquia, Medellín, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Juan E. Pérez-Jaramillo
- Semillero de Investigación en Bioinformática-GenomeSeq, Seccional Oriente, Universidad de Antioquia, Medellín, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
818
|
Abstract
Assigning taxonomy remains a challenging topic in microbiome studies, due largely to ambiguity of reads which overlap multiple reference genomes. With the Web of Life (WoL) reference database hosting 10,575 reference genomes and growing, the percentage of ambiguous reads will only increase. The resulting artifacts create both the illusion of co-occurrence and a long tail end of extraneous reference hits that confound interpretation. We introduce genome cover, the fraction of reference genome overlapped by reads, to distinguish these artifacts. We show how to dynamically predict genome cover by read count and examine our model in Staphylococcus aureus monoculture. Our modeling cleanly separates both S. aureus and true contaminants from the false artifacts of reference overlap. We next introduce saturated genome cover, the true fraction of a reference genome overlapped by sample contents. Genome cover may not saturate for low abundance or low prevalence bacteria. We assuage this worry with examination of a large human fecal data set. By compositing the metric across like samples, genome cover saturates even for rare species. We note that it is a threshold on saturated genome cover, not genome cover itself, which indicates a spurious reference hit or distant relative. We present Zebra, a method to compute and threshold the genome cover metric across like samples, a recurrence to estimate genome cover and confirm saturation, and provide guidance for choosing cover thresholds in real world scenarios. Standalone genome cover and integration into Woltka are available: https://github.com/biocore/zebra_filter, https://github.com/qiyunzhu/woltka. IMPORTANCE Taxonomic assignment, assigning sequences to specific taxonomic units, is a crucial processing step in microbiome analyses. Issues in taxonomic assignment affect interpretation of what microbes are present in each sample and may be associated with specific environmental or clinical conditions. Assigning importance to a particular taxon relies strongly on independence of assigned counts. The false inclusion of thousands of correlated taxa makes interpretation ambiguous, leading to underconstrained results which cannot be reproduced. The importance sometimes attached to implausible artifacts such as anthrax or bubonic plague is especially problematic. We show that the Zebra filter retrieves only the nearest relatives of sample contents enabling more reproducible and biologically plausible interpretation of metagenomic data.
Collapse
|
819
|
Hammond TC, Powell E, Green SJ, Chlipala G, Frank J, Yackzan AT, Yanckello LM, Chang YH, Xing X, Heil S, Springer JE, Pennypacker K, Stromberg A, Sawaki L, Lin AL. Functional recovery outcomes following acute stroke is associated with abundance of gut microbiota related to inflammation, butyrate and secondary bile acid. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1017180. [PMID: 36386777 PMCID: PMC9644110 DOI: 10.3389/fresc.2022.1017180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that gut microbes modulate brain plasticity via the bidirectional gut-brain axis and play a role in stroke rehabilitation. However, the microbial species alterations associated with stroke and their correlation with functional outcome measures following acute stroke remain unknown. Here we measure post-stroke gut dysbiosis and how it correlates with gut permeability and cognitive functions in 12 stroke participants, 18 controls with risk factors for stroke, and 12 controls without risk factors. Stool samples were used to measure the microbiome with whole genome shotgun sequencing and leaky gut markers. We genotyped APOE status and measured diet composition and motor, cognitive, and emotional status using NIH Toolbox. We used linear regression methods to identify gut microbial associations with cognitive and emotional assessments. We did not find significance differences between the two control groups. In contrast, the bacteria populations of the Stroke group were statistically dissimilar from the control groups. Relative abundance analysis revealed notable decreases in butyrate-producing microbial taxa, secondary bile acid-producing taxa, and equol-producing taxa. The Stroke group had higher levels of the leaky gut marker alpha-1-antitrypsin in the stool than either of the groups and several taxa including Roseburia species (a butyrate producer) were negatively correlated with alpha-1-antitrypsin. Stroke participants scored lower on memory testing than those in the two control groups. Stroke participants with more Roseburia performed better on the picture vocabulary task; more Bacteroides uniformis (a butyrate producer) and less Escherichia coli (a pro-inflammatory species) reported higher levels of self-efficacy. Intakes of fiber, fruit and vegetable were lower, but sweetened beverages were higher, in the Stroke group compared with controls. Vegetable consumption was correlated with many bacterial changes among the participants, but only the species Clostridium bolteae, a pro-inflammatory species, was significantly associated with stroke. Our findings indicate that stroke is associated with a higher abundance of proinflammatory species and a lower abundance of butyrate producers and secondary bile acid producers. These altered microbial communities are associated with poorer functional performances. Future studies targeting the gut microbiome should be developed to elucidate whether its manipulation could optimize rehabilitation and boost recovery.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Elizabeth Powell
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States
| | - George Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, United States
| | - Jacqueline Frank
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Center for Advanced Stroke Science, Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Andrew T. Yackzan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Lucille M. Yanckello
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ya-Hsuan Chang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Xin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
| | - Sally Heil
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Joe E. Springer
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Keith Pennypacker
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Center for Advanced Stroke Science, Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Lumy Sawaki
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, United States
| | - Ai-Ling Lin
- Department of Radiology, University of Missouri, Columbia, MO, United States
- Institute for Data Science & Informatics, University of Missouri, Columbia, MOUnited States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
820
|
Piancone E, Fosso B, Marzano M, De Robertis M, Notario E, Oranger A, Manzari C, Bruno S, Visci G, Defazio G, D’Erchia AM, Filomena E, Maio D, Minelli M, Vergallo I, Minelli M, Pesole G. Natural and after colon washing fecal samples: the two sides of the coin for investigating the human gut microbiome. Sci Rep 2022; 12:17909. [PMID: 36284112 PMCID: PMC9596478 DOI: 10.1038/s41598-022-20888-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/20/2022] [Indexed: 01/20/2023] Open
Abstract
To date several studies address the important role of gut microbiome and its interplay with the human host in the health and disease status. However, the selection of a universal sampling matrix representative of the microbial biodiversity associated with the gastrointestinal (GI) tract, is still challenging. Here we present a study in which, through a deep metabarcoding analysis of the 16S rRNA gene, we compared two sampling matrices, feces (F) and colon washing feces (CWF), in order to evaluate their relative effectiveness and accuracy in representing the complexity of the human gut microbiome. A cohort of 30 volunteers was recruited and paired F and CWF samples were collected from each subject. Alpha diversity analysis confirmed a slightly higher biodiversity of CWF compared to F matched samples. Likewise, beta diversity analysis proved that paired F and CWF microbiomes were quite similar in the same individual, but remarkable inter-individual variability occurred among the microbiomes of all participants. Taxonomic analysis in matched samples was carried out to investigate the intra and inter individual/s variability. Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota were the main phyla in both F and CWF samples. At genus level, Bacteirodetes was the most abundant in F and CWF samples, followed by Faecalibacterium, Blautia and Escherichia-Shigella. Our study highlights an inter-individual variability greater than intra-individual variability for paired F and CWF samples. Indeed, an overall higher similarity was observed across matched F and CWF samples, suggesting, as expected, a remarkable overlap between the microbiomes inferred using the matched F and CWF samples. Notably, absolute quantification of total 16S rDNA by droplet digital PCR (ddPCR) revealed comparable overall microbial load between paired F and CWF samples. We report here the first comparative study on fecal and colon washing fecal samples for investigating the human gut microbiome and show that both types of samples may be used equally for the study of the gut microbiome. The presented results suggest that the combined use of both types of sampling matrices could represent a suitable choice to obtain a more complete overview of the human gut microbiota for addressing different biological and clinical questions.
Collapse
Affiliation(s)
- Elisabetta Piancone
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Bruno Fosso
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Marinella Marzano
- grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Mariangela De Robertis
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Elisabetta Notario
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Annarita Oranger
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Caterina Manzari
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Silvia Bruno
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Grazia Visci
- grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Giuseppe Defazio
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Anna Maria D’Erchia
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.441025.60000 0004 1759 487XConsorzio Interuniversitario Biotecnologie, 34100 Trieste, Italy
| | - Ermes Filomena
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Dominga Maio
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Martina Minelli
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Ilaria Vergallo
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Mauro Minelli
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy ,Centro Direzionale Isola F2, Pegaso Online University, 80132 Naples, Italy
| | - Graziano Pesole
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy ,grid.441025.60000 0004 1759 487XConsorzio Interuniversitario Biotecnologie, 34100 Trieste, Italy
| |
Collapse
|
821
|
Helichrysum italicum (Roth) G. Don and Helichrysum arenarium (L.) Moench Infusion Consumption Affects the Inflammatory Status and the Composition of Human Gut Microbiota in Patients with Traits of Metabolic Syndrome: A Randomized Comparative Study. Foods 2022. [PMCID: PMC9601527 DOI: 10.3390/foods11203277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Helichrysum italicum (Roth) G. Don (HI) and Helichrysum arenarium (L.) Moench (HA) are rich in polyphenols and their infusions have beneficial effects for patients with metabolic syndrome. To investigate whether these effects are mediated by the gut microbiota, we analysed the effects of daily consumption of HI or HA infusion on the composition of gut microbiota, inflammatory status, and zonulin, a marker of gut barrier permeability. The study was a randomized, double-blind comparative trial. Thirty participants were randomly assigned to two groups and received either HA or HI tea filter bags, each containing 1 g of dried plant material, for daily consumption lasting 4 weeks. The results show that consumption of both infusions resulted in a reduction of some genera belonging to Firmicutes and in a slight but significant reduction in Shannon diversity index. Consumption of HI infusion significantly reduced serum levels of proinflammatory markers and zonulin alongside with the observed trend of Proteobacteria reduction. It can therefore be concluded that the HI and HA infusions could act as prebiotics and thus improve the intestinal environment. In addition, HI infusion has a positive impact on microbial dysbiosis and gut barrier dysfunction that occur in obesity and metabolic syndrome.
Collapse
|
822
|
Elmaghrawy K, Fleming P, Fitzgerald K, Cooper S, Dominik A, Hussey S, Moran GP. The oral microbiome in treatment naïve paediatric IBD patients exhibits dysbiosis related to disease severity that resolves following therapy. J Crohns Colitis 2022; 17:553-564. [PMID: 36239621 PMCID: PMC10115232 DOI: 10.1093/ecco-jcc/jjac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is a limited literature describing the oral microbiome and its diagnostic potential in paediatric inflammatory bowel disease (IBD). METHODS We examined the dorsum tongue microbiome by V1-V2 sequencing in a cohort of 156 treatment naïve children diagnosed with IBD compared to 102 healthy control children. Microbiome changes over time following treatment were examined in a subset of patients and associations between IBD diagnosis and dysbiosis were explored. RESULTS Analysis of community structure of the microbiome in tongue samples revealed that IBD samples significantly diverged from healthy control samples (PERMANOVA P=0.0009) and exhibited a reduced abundance of Clostridia in addition to several major oral genera (Veillonella, Prevotella, Fusobacterium species) with an increased abundance of streptococci. This dysbiosis was more marked in patients with severe disease. Higher levels of the potential pathobionts Klebsiella and Pseudomonas spp. were also associated with IBD. In terms of predicted functions, the IBD oral microbiome was potentially more acidogenic and exhibited reduced capacity for B vitamin biosynthesis. We used a machine learning approach to develop a predictive model of IBD which exhibited a mean-prediction AUC: 0.762. Finally, we examined a subset of 53 patients following 12 months of therapy and could show resolution of oral dysbiosis demonstrated by a shift towards a healthy community structure and a significant reduction in oral dysbiosis. CONCLUSION Oral dysbiosis found in children with IBD is disease severity related and resolves over time following successful IBD treatment.
Collapse
Affiliation(s)
- Khalid Elmaghrawy
- School of Dental Science, Trinity College Dublin and Dublin Dental University Hospital, Dublin 2, Republic of Ireland
| | - Paddy Fleming
- School of Dental Science, Trinity College Dublin and Dublin Dental University Hospital, Dublin 2, Republic of Ireland
| | - Kirsten Fitzgerald
- School of Dental Science, Trinity College Dublin and Dublin Dental University Hospital, Dublin 2, Republic of Ireland
| | - Sarah Cooper
- National Children's Research Centre, Crumlin, Dublin, Republic of Ireland
| | - Anna Dominik
- National Children's Research Centre, Crumlin, Dublin, Republic of Ireland
| | - Seamus Hussey
- National Children's Research Centre, Crumlin, Dublin, Republic of Ireland.,Department of Paediatrics, University of Medicine and Health Sciences, RCSI, Dublin and University College Dublin, Ireland
| | - Gary P Moran
- School of Dental Science, Trinity College Dublin and Dublin Dental University Hospital, Dublin 2, Republic of Ireland
| |
Collapse
|
823
|
Genome-centric analysis of short and long read metagenomes reveals uncharacterized microbiome diversity in Southeast Asians. Nat Commun 2022; 13:6044. [PMID: 36229545 PMCID: PMC9561172 DOI: 10.1038/s41467-022-33782-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Despite extensive efforts to address it, the vastness of uncharacterized 'dark matter' microbial genetic diversity can impact short-read sequencing based metagenomic studies. Population-specific biases in genomic reference databases can further compound this problem. Leveraging advances in hybrid assembly (using short and long reads) and Hi-C technologies in a cross-sectional survey, we deeply characterized 109 gut microbiomes from three ethnicities in Singapore to comprehensively reconstruct 4497 medium and high-quality metagenome assembled genomes, 1708 of which were missing in short-read only analysis and with >28× N50 improvement. Species-level clustering identified 70 (>10% of total) novel gut species out of 685, improved reference genomes for 363 species (53% of total), and discovered 3413 strains unique to these populations. Among the top 10 most abundant gut bacteria in our study, one of the species and >80% of strains were unrepresented in existing databases. Annotation of biosynthetic gene clusters (BGCs) uncovered more than 27,000 BGCs with a large fraction (36-88%) unrepresented in current databases, and with several unique clusters predicted to produce bacteriocins that could significantly alter microbiome community structure. These results reveal significant uncharacterized gut microbial diversity in Southeast Asian populations and highlight the utility of hybrid metagenomic references for bioprospecting and disease-focused studies.
Collapse
|
824
|
Atzeni A, Martínez MÁ, Babio N, Konstanti P, Tinahones FJ, Vioque J, Corella D, Fitó M, Vidal J, Moreno-Indias I, Pertusa-Martinez S, Álvarez-Sala A, Castañer O, Goday A, Damas-Fuentes M, Belzer C, Martínez-Gonzalez MÁ, Hu FB, Salas-Salvadó J. Association between ultra-processed food consumption and gut microbiota in senior subjects with overweight/obesity and metabolic syndrome. Front Nutr 2022; 9:976547. [PMID: 36299993 PMCID: PMC9589409 DOI: 10.3389/fnut.2022.976547] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
The production and consumption of ultra-processed foods (UPF) has increased considerably during the last years worldwide. Collective evidence shows the association between UPF consumption and adverse health outcomes, including inflammatory gastro-intestinal disorders and obesity. The gut microbiota has been suggested as potential mediator of the effects of UPF consumption on metabolism and health. However, few studies have been conducted in order to elucidate these aspects. Therefore, the aim of the present study was to assess the cross-sectional associations between UPF consumption and gut microbiota in a population of senior subjects (n = 645) within the frame of the PREDIMED-Plus trial. Eligible participants were men and women (aged 55-75 years), without documented history of cardiovascular disease at enrollment, with overweight/obesity (body mass index ≤ 27 and <40 kg/m2) and metabolic syndrome. Using the information of food frequency questionnaires, the consumption of UPF, expressed as a percentage of total dietary energy intake in kcal/day, was calculated considering those food items classified in group 4 of NOVA system. Population was categorized according to tertiles of UPF consumption. Taxonomic fecal microbiota information, along with blood biochemical parameters, anthropometric measurements and clinical data were obtained. Bioinformatics analysis was performed to study the association between fecal microbiota composition and UPF consumption. We observed that subjects allocated in the highest tertile of UPF consumption (21.4 ± 5.0 % kcal/day) presented lower adherence to MedDiet (p < 0.001) and higher total energy intake (p < 0.001). The taxonomic analysis of the fecal microbiota revealed a significant (Benjamini-Hochberg adjusted p < 0.2) positive association between specific taxa and tertiles (T) of UPF consumption: Alloprevotella (p = 0.041 vs. T2; p = 0.065 vs. T3), Negativibacillus (p = 0.096 vs. T3), Prevotella (p = 0.116 vs. T3), and Sutterella (p = 0.116 vs. T2). UPF consumption was positively associated with lower adherence to MedDiet and higher total energy intake in senior subjects with overweight obesity and metabolic syndrome. In addition, positive association with specific fecal microbiota taxa related to inflammatory gastro-intestinal diseases and low consumption of fruits and vegetables, was observed.
Collapse
Affiliation(s)
- Alessandro Atzeni
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - María Ágeles Martínez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Nancy Babio
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Vic, Málaga, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Moreno-Indias
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Vic, Málaga, Spain
| | | | - Andrea Álvarez-Sala
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Albert Goday
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain.,IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Miguel Damas-Fuentes
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Vic, Málaga, Spain
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Miguel Á Martínez-Gonzalez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Frank B Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States.,Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jordi Salas-Salvadó
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
825
|
Matharu D, Ponsero AJ, Dikareva E, Korpela K, Kolho KL, de Vos WM, Salonen A. Bacteroides abundance drives birth mode dependent infant gut microbiota developmental trajectories. Front Microbiol 2022; 13:953475. [PMID: 36274732 PMCID: PMC9583133 DOI: 10.3389/fmicb.2022.953475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Birth mode and other early life factors affect a newborn's microbial colonization with potential long-term health effects. Individual variations in early life gut microbiota development, especially their effects on the functional repertoire of microbiota, are still poorly characterized. This study aims to provide new insights into the gut microbiome developmental trajectories during the first year of life. Methods Our study comprised 78 term infants sampled at 3 weeks, 3 months, 6 months, and 12 months (n = 280 total samples), and their mothers were sampled in late pregnancy (n = 50). Fecal DNA was subjected to shotgun metagenomic sequencing. Infant samples were studied for taxonomic and functional maturation, and maternal microbiota was used as a reference. Hierarchical clustering on taxonomic profiles was used to identify the main microbiota developmental trajectories in the infants, and their associations with perinatal and postnatal factors were assessed. Results In line with previous studies, infant microbiota composition showed increased alpha diversity and decreased beta diversity by age, converging toward an adult-like profile. However, we did not observe an increase in functional alpha diversity, which was stable and comparable with the mother samples throughout all the sampling points. Using a de novo clustering approach, two main infant microbiota clusters driven by Bacteroidaceae and Clostridiaceae emerged at each time point. The clusters were associated with birth mode and their functions differed mainly in terms of biosynthetic and carbohydrate degradation pathways, some of which consistently differed between the clusters for all the time points. The longitudinal analysis indicated three main microbiota developmental trajectories, with the majority of the infants retaining their characteristic cluster until 1 year. As many as 40% of vaginally delivered infants were grouped with infants delivered by C-section due to their clear and persistent depletion in Bacteroides. Intrapartum antibiotics, any perinatal or postnatal factors, maternal microbiota composition, or other maternal factors did not explain the depletion in Bacteroides in the subset of vaginally born infants. Conclusion Our study provides an enhanced understanding of the compositional and functional early life gut microbiota trajectories, opening avenues for investigating elusive causes that influence non-typical microbiota development.
Collapse
Affiliation(s)
- Dollwin Matharu
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alise J. Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biosystems Engineering and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Evgenia Dikareva
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, Pediatric Research Center, University of Helsinki and HUS, Helsinki, Finland
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
826
|
Yang Z, Chen Z, Lin X, Yao S, Xian M, Ning X, Fu W, Jiang M, Li N, Xiao X, Feng M, Lian Z, Yang W, Ren X, Zheng Z, Zhao J, Wei N, Lu W, Roponen M, Schaub B, Wong GWK, Su Z, Wang C, Li J. Rural environment reduces allergic inflammation by modulating the gut microbiota. Gut Microbes 2022; 14:2125733. [PMID: 36193874 PMCID: PMC9542937 DOI: 10.1080/19490976.2022.2125733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rural environments and microbiota are linked to a reduction in the prevalence of allergies. However, the mechanism underlying the reduced allergies modulated by rural residency is unclear. Here, we assessed gut bacterial composition and metagenomics in urban and rural children in the EuroPrevall-INCO cohort. Airborne dusts, including mattress and rural henhouse dusts, were profiled for bacterial and fungal composition by amplicon sequencing. Mice were repeatedly exposed to intranasal dust extracts and evaluated for their effects on ovalbumin (OVA)-induced allergic airway inflammation, and gut microbiota restoration was validated by fecal microbiota transplant (FMT) from dust-exposed donor mice. We found that rural children had fewer allergies and unique gut microbiota with fewer Bacteroides and more Prevotella. Indoor dusts in rural environments harbored higher endotoxin level and diversity of bacteria and fungi, whereas indoor urban dusts were enriched with Aspergillus and contained elevated pathogenic bacteria. Intranasal administration of rural dusts before OVA sensitization reduced respiratory eosinophils and blood IgE level in mice and also led to a recovery of gut bacterial diversity and Ruminiclostridium in the mouse model. FMT restored the protective effect by reducing OVA-induced lung eosinophils in recipient mice. Together, these results support a cause-effect relationship between exposure to dust microbiota and allergy susceptibility in children and mice. Specifically, rural environmental exposure modulated the gut microbiota, which was essential in reducing allergy in children from Southern China. Our findings support the notion that the modulation of gut microbiota by exposure to rural indoor dust may improve allergy prevention.
Collapse
Affiliation(s)
- Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CAUSA
| | - Xinliu Lin
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Siyang Yao
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Xiaoping Ning
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Wanyi Fu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Mei Jiang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Xiaojun Xiao
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Mulin Feng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zexuan Lian
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Wenqing Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Xia Ren
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhenyu Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiefeng Zhao
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Nili Wei
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Wenju Lu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Marjut Roponen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | - Bianca Schaub
- Department of Pulmonary and Allergy, University Children’s Hospital Munich, LMU Munich, Munich, Germany
| | - Gary W. K. Wong
- Department of Paediatrics, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China,Gary W. K. Wong Department of Paediatrics, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Zhong Su
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,Zhong Su State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CAUSA,Charles Wang Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA USA
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China,CONTACT Jing Li Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
827
|
Lamichhane S, Sen P, Dickens AM, Alves MA, Härkönen T, Honkanen J, Vatanen T, Xavier RJ, Hyötyläinen T, Knip M, Orešič M. Dysregulation of secondary bile acid metabolism precedes islet autoimmunity and type 1 diabetes. Cell Rep Med 2022; 3:100762. [PMID: 36195095 PMCID: PMC9589006 DOI: 10.1016/j.xcrm.2022.100762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 11/13/2022]
Abstract
The gut microbiota is crucial in the regulation of bile acid (BA) metabolism. However, not much is known about the regulation of BAs during progression to type 1 diabetes (T1D). Here, we analyzed serum and stool BAs in longitudinal samples collected at 3, 6, 12, 18, 24, and 36 months of age from children who developed a single islet autoantibody (AAb) (P1Ab; n = 23) or multiple islet AAbs (P2Ab; n = 13) and controls (CTRs; n = 38) who remained AAb negative. We also analyzed the stool microbiome in a subgroup of these children. Factor analysis showed that age had the strongest impact on both BA and microbiome profiles. We found that at an early age, systemic BAs and microbial secondary BA pathways were altered in the P2Ab group compared with the P1Ab and CTR groups. Our findings thus suggest that dysregulated BA metabolism in early life may contribute to the risk and pathogenesis of T1D.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland,School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Alex M. Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland,Department of Chemistry, University of Turku, 20520 Turku, Finland
| | - Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland,Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, 21941-599 Rio de Janeiro, Brazil
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tommi Vatanen
- The Liggins Institute, University of Auckland, Auckland, New Zealand,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland,School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden,Corresponding author
| |
Collapse
|
828
|
Ma S, Shungin D, Mallick H, Schirmer M, Nguyen LH, Kolde R, Franzosa E, Vlamakis H, Xavier R, Huttenhower C. Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin. Genome Biol 2022; 23:208. [PMID: 36192803 PMCID: PMC9531436 DOI: 10.1186/s13059-022-02753-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
Microbiome studies of inflammatory bowel diseases (IBD) have achieved a scale for meta-analysis of dysbioses among populations. To enable microbial community meta-analyses generally, we develop MMUPHin for normalization, statistical meta-analysis, and population structure discovery using microbial taxonomic and functional profiles. Applying it to ten IBD cohorts, we identify consistent associations, including novel taxa such as Acinetobacter and Turicibacter, and additional exposure and interaction effects. A single gradient of dysbiosis severity is favored over discrete types to summarize IBD microbiome population structure. These results provide a benchmark for characterization of IBD and a framework for meta-analysis of any microbial communities.
Collapse
Affiliation(s)
- Siyuan Ma
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Himel Mallick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Raivo Kolde
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Franzosa
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
829
|
Beck LC, Masi AC, Young GR, Vatanen T, Lamb CA, Smith R, Coxhead J, Butler A, Marsland BJ, Embleton ND, Berrington JE, Stewart CJ. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol 2022; 7:1525-1535. [PMID: 36163498 PMCID: PMC9519454 DOI: 10.1038/s41564-022-01213-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/25/2022] [Indexed: 12/23/2022]
Abstract
The development of the gut microbiome from birth plays important roles in short- and long-term health, but factors influencing preterm gut microbiome development are poorly understood. In the present study, we use metagenomic sequencing to analyse 1,431 longitudinal stool samples from 123 very preterm infants (<32 weeks' gestation) who did not develop intestinal disease or sepsis over a study period of 10 years. During the study period, one cohort had no probiotic exposure whereas two cohorts were given different probiotic products: Infloran (Bifidobacterium bifidum and Lactobacillus acidophilus) or Labinic (B. bifidum, B. longum subsp. infantis and L. acidophilus). Mothers' own milk, breast milk fortifier, antibiotics and probiotics were significantly associated with the gut microbiome, with probiotics being the most significant factor. Probiotics drove microbiome transition into different preterm gut community types (PGCTs), each enriched in a different Bifidobacterium sp. and significantly associated with increased postnatal age. Functional analyses identified stool metabolites associated with PGCTs and, in preterm-derived organoids, sterile faecal supernatants impacted intestinal, organoid monolayer, gene expression in a PGCT-specific manner. The present study identifies specific influencers of gut microbiome development in very preterm infants, some of which overlap with those impacting term infants. The results highlight the importance of strain-specific differences in probiotic products and their impact on host interactions in the preterm gut.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Gregory R Young
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle, UK
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Rachel Smith
- Bioscience Institute, Newcastle University, Newcastle, UK
| | | | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK.
| | | |
Collapse
|
830
|
Fulcher JA, Li F, Tobin NH, Zabih S, Elliott J, Clark JL, D'Aquila R, Mustanski B, Kipke MD, Shoptaw S, Gorbach PM, Aldrovandi GM. Gut dysbiosis and inflammatory blood markers precede HIV with limited changes after early seroconversion. EBioMedicine 2022; 84:104286. [PMID: 36179550 PMCID: PMC9520213 DOI: 10.1016/j.ebiom.2022.104286] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alterations in the gut microbiome have been associated with HIV infection, but the relative impact of HIV versus other factors on the gut microbiome has been difficult to determine in cross-sectional studies. METHODS To address this, we examined the gut microbiome, serum metabolome, and cytokines longitudinally within 27 individuals before and during acute HIV using samples collected from several ongoing cohort studies. Matched control participants (n=28) from the same cohort studies without HIV but at similar behavioral risk were used for comparison. FINDINGS We identified few changes in the microbiome during acute HIV infection, but did find alterations in serum metabolites involving secondary bile acid (lithocholate sulfate, glycocholenate sulfate) and amino acid metabolism (3-methyl-2-oxovalerate, serine, cysteine, N-acetylputrescine). Greater microbiome differences, including decreased Bacteroides spp and increased Megasphaera elsdenii, were seen when comparing pre-HIV infection visits to matched at-risk controls. Those who acquired HIV also had elevated inflammatory cytokines (TNF-α, B cell activating factor, IL-8) and bioactive lipids (palmitoyl-sphingosine-phosphoethanolamide and glycerophosphoinositol) prior to HIV acquisition compared to matched controls. INTERPRETATION Longitudinal sampling identified pre-existing microbiome differences in participants with acute HIV compared to matched control participants observed over the same period. These data highlight the importance of increasing understanding of the role of the microbiome in HIV susceptibility. FUNDING This work was supported by NIH/NIAID (K08AI124979; P30AI117943), NIH/NIDA (U01DA036267; U01DA036939; U01DA036926; U24DA044554), and NIH/NIMH (P30MH058107; R34MH105272).
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Fan Li
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nicole H Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sara Zabih
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Julie Elliott
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jesse L Clark
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard D'Aquila
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Mustanski
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, Chicago, IL 60611, USA
| | - Michele D Kipke
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90027, USA
| | - Steven Shoptaw
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Pamina M Gorbach
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Grace M Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
831
|
Acute Endotoxemia-Induced Respiratory and Intestinal Dysbiosis. Int J Mol Sci 2022; 23:ijms231911602. [PMID: 36232913 PMCID: PMC9569575 DOI: 10.3390/ijms231911602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a severe condition characterized by systemic inflammation, which may lead to multiple organ failure, shock and death. SIRS is common in burn patients, pancreatitis and sepsis. SIRS is often accompanied by intestinal dysbiosis. However, the mechanism, role and details of microbiome alterations during the early phase of acute SIRS are not completely understood. The current study aimed to characterize the dynamic alterations of both the intestinal and respiratory microbiome at two timepoints during the early phase of acute SIRS (4 and 8 h after LPS) and link these to the host response in a mouse model of a LPS-induced lethal SIRS. Acute SIRS had no effect on the microbiome in the large intestine but induced a rapid dysbiosis in the small intestine, which resembled the microbiome alterations commonly observed in SIRS patients. Later in the disease progression, a dysbiosis of the respiratory microbiome was observed, which was associated with the MMP9 expression in the lungs. Although similar bacteria were increased in both the lung and the small intestine, no evidence for a gut-lung translocation was observed. Gut dysbiosis is commonly observed in diseases involving inflammation in the gut. However, whether the inflammatory response associated with SIRS and sepsis can directly cause gut dysbiosis was still unclear. In the current study we provide evidence that a LPS-induced SIRS can directly cause dysbiosis of the small intestinal and respiratory microbiome.
Collapse
|
832
|
Cortés A, Martin J, Rosa BA, Stark KA, Clare S, McCarthy C, Harcourt K, Brandt C, Tolley C, Lawley TD, Mitreva M, Berriman M, Rinaldi G, Cantacessi C. The gut microbial metabolic capacity of microbiome-humanized vs. wild type rodents reveals a likely dual role of intestinal bacteria in hepato-intestinal schistosomiasis. PLoS Negl Trop Dis 2022; 16:e0010878. [PMID: 36279280 PMCID: PMC9633004 DOI: 10.1371/journal.pntd.0010878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/03/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence shows that the host gut microbiota might be involved in the immunological cascade that culminates with the formation of tissue granulomas underlying the pathophysiology of hepato-intestinal schistosomiasis. In this study, we investigated the impact of Schistosoma mansoni infection on the gut microbial composition and functional potential of both wild type and microbiome-humanized mice. In spite of substantial differences in microbiome composition at baseline, selected pathways were consistently affected by parasite infection. The gut microbiomes of infected mice of both lines displayed, amongst other features, enhanced capacity for tryptophan and butyrate production, which might be linked to the activation of mechanisms aimed to prevent excessive injuries caused by migrating parasite eggs. Complementing data from previous studies, our findings suggest that the host gut microbiome might play a dual role in the pathophysiology of schistosomiasis, where intestinal bacteria may contribute to egg-associated pathology while, in turn, protect the host from uncontrolled tissue damage.
Collapse
Affiliation(s)
- Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, València, Spain
| | - John Martin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Klara A. Stark
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Clare
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Catherine McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cordelia Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charlotte Tolley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Trevor D. Lawley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
833
|
Combined IgE neutralization and Bifidobacterium longum supplementation reduces the allergic response in models of food allergy. Nat Commun 2022; 13:5669. [PMID: 36167830 PMCID: PMC9515155 DOI: 10.1038/s41467-022-33176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
IgE is central to the development of allergic diseases, and its neutralization alleviates allergic symptoms. However, most of these antibodies are based on IgG1, which is associated with an increased risk of fragment crystallizable-mediated side effects. Moreover, omalizumab, an anti-IgE antibody approved for therapeutic use, has limited benefits for patients with high IgE levels. Here, we assess a fusion protein with extracellular domain of high affinity IgE receptor, FcεRIα, linked to a IgD/IgG4 hybrid Fc domain we term IgETRAP, to reduce the risk of IgG1 Fc-mediated side effects. IgETRAP shows enhanced IgE binding affinity compared to omalizumab. We also see an enhanced therapeutic effect of IgETRAP in food allergy models when combined with Bifidobacterium longum, which results in mast cell number and free IgE levels. The combination of IgETRAP and B. longum may therefore represent a potent treatment for allergic patients with high IgE levels. IgE is a critical component of the allergic response and therapeutic targeting can alleviate symptomology. Here the authors propose the combined use of Bifidobacterium longum and a FcεRIα extracellular domain linked to a IgD/IgG4 hybrid Fc domain fusion protein called IgETRAP and show reduction of mast cell and IgE levels in models of food allergy.
Collapse
|
834
|
Kayani MUR, Yu K, Qiu Y, Yu X, Chen L, Huang L. Longitudinal analysis of exposure to a low concentration of oxytetracycline on the zebrafish gut microbiome. Front Microbiol 2022; 13:985065. [PMID: 36212820 PMCID: PMC9536460 DOI: 10.3389/fmicb.2022.985065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Oxytetracycline, a widely produced and administered antibiotic, is uncontrollably released in low concentrations in various types of environments. However, the impact of exposure to such low concentrations of antibiotics on the host remains poorly understood. In this study, we exposed zebrafish to a low concentration (5,000 ng/L) of oxytetracycline for 1 month, collected samples longitudinally (Baseline, and Days 3, 6, 9, 12, 24, and 30), and elucidated the impact of exposure on microbial composition, antibiotic resistance genes, mobile genetic elements, and phospholipid metabolism pathway through comparison of the sequenced data with respective sequence databases. We identified Pseudomonas aeruginosa, a well-known pathogen, to be significantly positively associated with the duration of oxytetracycline exposure (Adjusted P = 5.829e-03). Several tetracycline resistance genes (e.g., tetE) not only showed significantly higher abundance in the exposed samples but were also positively associated with the duration of exposure (Adjusted P = 1.114e-02). Furthermore, in the exposed group, the relative abundance of genes involved in phospholipid metabolism had also decreased. Lastly, we characterized the impact of exposure on zebrafish intestinal structure and found that the goblet cell counts were decreased (~82%) after exposure. Overall, our results show that a low concentration of oxytetracycline can increase the abundance of pathogenic bacteria and lower the abundance of key metabolic pathways in the zebrafish gut microbiome that can render them prone to bacterial infections and health-associated complications.
Collapse
Affiliation(s)
- Masood ur Rehman Kayani
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Yu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yushu Qiu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisu Huang
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
835
|
Li Q, Vehik K, Li C, Triplett E, Roesch L, Hu YJ, Krischer J. A robust and transformation-free joint model with matching and regularization for metagenomic trajectory and disease onset. BMC Genomics 2022; 23:661. [PMID: 36123651 PMCID: PMC9484160 DOI: 10.1186/s12864-022-08890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND To identify operational taxonomy units (OTUs) signaling disease onset in an observational study, a powerful strategy was selecting participants by matched sets and profiling temporal metagenomes, followed by trajectory analysis. Existing trajectory analyses modeled individual OTU or microbial community without adjusting for the within-community correlation and matched-set-specific latent factors. RESULTS We proposed a joint model with matching and regularization (JMR) to detect OTU-specific trajectory predictive of host disease status. The between- and within-matched-sets heterogeneity in OTU relative abundance and disease risk were modeled by nested random effects. The inherent negative correlation in microbiota composition was adjusted by incorporating and regularizing the top-correlated taxa as longitudinal covariate, pre-selected by Bray-Curtis distance and elastic net regression. We designed a simulation pipeline to generate true biomarkers for disease onset and the pseudo biomarkers caused by compositionality. We demonstrated that JMR effectively controlled the false discovery and pseudo biomarkers in a simulation study generating temporal high-dimensional metagenomic counts with random intercept or slope. Application of the competing methods in the simulated data and the TEDDY cohort showed that JMR outperformed the other methods and identified important taxa in infants' fecal samples with dynamics preceding host disease status. CONCLUSION Our method JMR is a robust framework that models taxon-specific trajectory and host disease status for matched participants without transformation of relative abundance, improving the power of detecting disease-associated microbial features in certain scenarios. JMR is available in R package mtradeR at https://github.com/qianli10000/mtradeR.
Collapse
Affiliation(s)
- Qian Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, 38105, TN, USA.
| | - Kendra Vehik
- Health Informatics Institute, University of South Florida, Tampa, 33620, FL, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, 38105, TN, USA
| | - Eric Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611, FL, USA
| | - Luiz Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611, FL, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, 30322, GA, USA
| | - Jeffrey Krischer
- Health Informatics Institute, University of South Florida, Tampa, 33620, FL, USA
| |
Collapse
|
836
|
Intercontinental Gut Microbiome Variances in IBD. Int J Mol Sci 2022; 23:ijms231810868. [PMID: 36142786 PMCID: PMC9506019 DOI: 10.3390/ijms231810868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of biomarkers for inflammatory bowel disease (IBD) diagnosis would be relevant in a generalized context. However, intercontinental investigation on these microbial biomarkers remains scarce. We examined taxonomic microbiome variations in IBD using published DNA shotgun metagenomic data. For this purpose, we used sequenced data from our previous Spanish Crohn’s disease (CD) and ulcerative colitis (UC) cohort, downloaded sequence data from a Chinese CD cohort, and downloaded taxonomic and functional profiling tables from a USA CD and UC cohort. At the global level, geographical location and disease phenotype were the main explanatory covariates of microbiome variations. In healthy controls (HC) and UC, geography turned out to be the most important factor, while disease intestinal location was the most important one in CD. Disease severity correlated with lower alpha-diversity in UC but not in CD. Across geography, alpha-diversity was significantly different independently of health status, except for CD. Despite recruitment from different countries and with different disease severity scores, CD patients may harbor a very similar microbial taxonomic profile. Our study pointed out that geographic location, disease activity status, and other environmental factors are important contributing factors in microbiota changes in IBD. We therefore strongly recommend taking these factors into consideration for future IBD studies to obtain globally valid and reproducible biomarkers.
Collapse
|
837
|
Daamen AR, Bachali P, Bonham CA, Somerville L, Sturek JM, Grammer AC, Kadl A, Lipsky PE. COVID-19 patients exhibit unique transcriptional signatures indicative of disease severity. Front Immunol 2022; 13:989556. [PMID: 36189236 PMCID: PMC9522616 DOI: 10.3389/fimmu.2022.989556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 manifests a spectrum of respiratory symptoms, with the more severe often requiring hospitalization. To identify markers for disease progression, we analyzed longitudinal gene expression data from patients with confirmed SARS-CoV-2 infection admitted to the intensive care unit (ICU) for acute hypoxic respiratory failure (AHRF) as well as other ICU patients with or without AHRF and correlated results of gene set enrichment analysis with clinical features. The results were then compared with a second dataset of COVID-19 patients separated by disease stage and severity. Transcriptomic analysis revealed that enrichment of plasma cells (PCs) was characteristic of all COVID-19 patients whereas enrichment of interferon (IFN) and neutrophil gene signatures was specific to patients requiring hospitalization. Furthermore, gene expression results were used to divide AHRF COVID-19 patients into 2 groups with differences in immune profiles and clinical features indicative of severe disease. Thus, transcriptomic analysis reveals gene signatures unique to COVID-19 patients and provides opportunities for identification of the most at-risk individuals.
Collapse
Affiliation(s)
| | | | - Catherine A. Bonham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
| | - Lindsay Somerville
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Sturek
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
| | | | - Alexandra Kadl
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
838
|
Innocente G, Patuzzi I, Furlanello T, Di Camillo B, Bargelloni L, Giron MC, Facchin S, Savarino E, Azzolin M, Simionati B. Machine Learning and Canine Chronic Enteropathies: A New Approach to Investigate FMT Effects. Vet Sci 2022; 9:vetsci9090502. [PMID: 36136718 PMCID: PMC9505216 DOI: 10.3390/vetsci9090502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) represents a very promising approach to decreasing disease activity in canine chronic enteropathies (CE). However, the relationship between remission mechanisms and microbiome changes has not been elucidated yet. The main objective of this study was to report the clinical effects of oral freeze-dried FMT in CE dogs, comparing the fecal microbiomes of three groups: pre-FMT CE-affected dogs, post-FMT dogs, and healthy dogs. Diversity analysis, differential abundance analysis, and machine learning algorithms were applied to investigate the differences in microbiome composition between healthy and pre-FMT samples, while Canine Chronic Enteropathy Clinical Activity Index (CCECAI) changes and microbial diversity metrics were used to evaluate FMT effects. In the healthy/pre-FMT comparison, significant differences were noted in alpha and beta diversity and a list of differentially abundant taxa was identified, while machine learning algorithms predicted sample categories with 0.97 (random forest) and 0.87 (sPLS-DA) accuracy. Clinical signs of improvement were observed in 74% (20/27) of CE-affected dogs, together with a statistically significant decrease in CCECAI (median value from 5 to 2 median). Alpha and beta diversity variations between pre- and post-FMT were observed for each receiver, with a high heterogeneity in the response. This highlighted the necessity for further research on a larger dataset that could identify different healing patterns of microbiome changes.
Collapse
Affiliation(s)
- Giada Innocente
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
| | - Ilaria Patuzzi
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
| | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy
| | - Maria Cecilia Giron
- Department of Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sonia Facchin
- Department of Surgery, Oncological and Gastrointestinal Science, University of Padova, 35121 Padova, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncological and Gastrointestinal Science, University of Padova, 35121 Padova, Italy
| | - Mirko Azzolin
- Ospedale Veterinario San Francesco, 31038 Castagnole, Italy
| | - Barbara Simionati
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
- Department of Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
839
|
Bai X, Sun Y, Li Y, Li M, Cao Z, Huang Z, Zhang F, Yan P, Wang L, Luo J, Wu J, Fan D, Chen H, Zhi M, Lan P, Zeng Z, Wu X, Miao Y, Zuo T. Landscape of the gut archaeome in association with geography, ethnicity, urbanization, and diet in the Chinese population. MICROBIOME 2022; 10:147. [PMID: 36100953 PMCID: PMC9469561 DOI: 10.1186/s40168-022-01335-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/26/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The human gut is home to a largely underexplored microbiome component, the archaeome. Little is known of the impact of geography, urbanization, ethnicity, and diet on the gut archaeome in association with host health. We aim to delineate the variation of the human gut archaeome in healthy individuals and its association with environmental factors and host homeostasis. METHODS Using metagenomic sequencing, we characterized the fecal archaeomes of 792 healthy adult subjects from 5 regions in China, spanning 6 ethnicities (Han, Zang, Miao, Bai, Dai, and Hani), consisting of both urban and rural residents for each ethnicity. In addition, we sampled 119 host variables (including lifestyle, diet, and blood parameters) and interrogated the influences of those factors, individually and combined, on gut archaeome variations. RESULTS Population geography had the strongest impact on the gut archaeome composition, followed by urbanization, dietary habit, and ethnicity. Overall, the metadata had a cumulative effect size of 11.0% on gut archaeome variation. Urbanization decreased both the α-diversity (intrinsic microbial diversity) and the β-diversity (inter-individual dissimilarities) of the gut archaeome, and the archaea-to-bacteria ratios in feces, whereas rural residents were enriched for Methanobrevibacter smithii in feces. Consumption of buttered milk tea (a characteristic diet of the rural Zang population) was associated with increased abundance of M. smithii. M. smithii was at the central hub of archaeal-bacterial interactions in the gut microecology, where it was positively correlated with the abundances of a multitude of short chain fatty acid (SCFA)-producing bacteria (including Roseburia faecis, Collinsella aerofaciens, and Prevotella copri). Moreover, a decreased abundance of M. smithii was associated with increased human blood levels of cholinesterase in the urban population, coinciding with the increasing prevalence of noncommunicable diseases (such as dementia) during urbanization. CONCLUSIONS Our data highlight marked contributions of environmental and host factors (geography, urbanization, ethnicity, and habitual diets) to gut archaeome variations across healthy individuals, and underscore the impact of urbanization on the gut archaeome in association with host health in modern society. Video Abstract.
Collapse
Affiliation(s)
- Xiaowu Bai
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Yue Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Zhirui Cao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyu Huang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Zhang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Yan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Lan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Jing Wu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China
| | - Dejun Fan
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongxia Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Zhi
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong Zeng
- Department of Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China.
| | - Xiaojian Wu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China.
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
840
|
Short- and Long-Term Effects of a Prebiotic Intervention with Polyphenols Extracted from European Black Elderberry—Sustained Expansion of Akkermansia spp. J Pers Med 2022; 12:jpm12091479. [PMID: 36143265 PMCID: PMC9504334 DOI: 10.3390/jpm12091479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background: The intestinal microbiome has emerged as a central factor in human physiology and its alteration has been associated with disease. Therefore, great hopes are placed in microbiota-modulating strategies. Among various approaches, prebiotics, substrates with selective metabolization conferring a health benefit to the host, are promising candidates. Herein, we studied the prebiotic properties of a purified extract from European black elderberries, with a high and standardized content of polyphenols and anthocyanins. (2) Methods: The ELDERGUT trial represents a 9-week longitudinal intervention study divided into 3 distinct phases, namely a baseline, an intervention and a washout period, three weeks each. The intervention consisted of capsules containing 300 mg elderberry extract taken twice a day. Patient-reported outcomes and biosamples were collected weekly. Microbiome composition was assessed using 16S amplicon metagenomics. (3) Results: The supplementation was well tolerated. Microbiome trajectories were highly individualized with a profound shift in diversity indices immediately upon initiation and after termination of the compound. This was accompanied by corresponding changes in species abundance over time. Of particular interest, the relative abundance of Akkermansia spp. continued to increase in a subset of participants even beyond the supplementation period. Associations with participant metadata were detected.
Collapse
|
841
|
Cappellato M, Baruzzo G, Di Camillo B. Investigating differential abundance methods in microbiome data: A benchmark study. PLoS Comput Biol 2022; 18:e1010467. [PMID: 36074761 PMCID: PMC9488820 DOI: 10.1371/journal.pcbi.1010467] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/20/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
The development of increasingly efficient and cost-effective high throughput DNA sequencing techniques has enhanced the possibility of studying complex microbial systems. Recently, researchers have shown great interest in studying the microorganisms that characterise different ecological niches. Differential abundance analysis aims to find the differences in the abundance of each taxa between two classes of subjects or samples, assigning a significance value to each comparison. Several bioinformatic methods have been specifically developed, taking into account the challenges of microbiome data, such as sparsity, the different sequencing depth constraint between samples and compositionality. Differential abundance analysis has led to important conclusions in different fields, from health to the environment. However, the lack of a known biological truth makes it difficult to validate the results obtained. In this work we exploit metaSPARSim, a microbial sequencing count data simulator, to simulate data with differential abundance features between experimental groups. We perform a complete comparison of recently developed and established methods on a common benchmark with great effort to the reliability of both the simulated scenarios and the evaluation metrics. The performance overview includes the investigation of numerous scenarios, studying the effect on methods’ results on the main covariates such as sample size, percentage of differentially abundant features, sequencing depth, feature variability, normalisation approach and ecological niches. Mainly, we find that methods show a good control of the type I error and, generally, also of the false discovery rate at high sample size, while recall seem to depend on the dataset and sample size. The Microbiota is the set of microorganisms that characterize an ecological environment or niche. Several studies have shown that the microbiota is involved in various biological mechanisms that affect the health or balance of the host organism or the ecosystem. New discoveries and insights have been possible thanks to the increasingly efficient sequencing technologies together with the development of bioinformatic computational methods. One of the most interesting analyses in this landscape is the identification of microorganisms that show significant different abundances when two groups of subjects are analysed. Although many computational methods have been developed, it is still unclear which one has the best performance. Therefore, we exploited a simulator of microbiome data to build a simulation framework that allowed us to carry out an extensive benchmarking of the known tools of differential abundance analysis. Our work is not only a starting point to guide analysts in the choice of tools, but also a first step towards a robust, reliable and fair simulation framework.
Collapse
Affiliation(s)
- Marco Cappellato
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
842
|
Laia NL, Barko PC, Sullivan DR, McMichael MA, Williams DA, Reinhart JM. Longitudinal analysis of the rectal microbiome in dogs with diabetes mellitus after initiation of insulin therapy. PLoS One 2022; 17:e0273792. [PMID: 36067170 PMCID: PMC9447884 DOI: 10.1371/journal.pone.0273792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
There have been numerous studies in humans and rodents substantiating the role of the gastrointestinal microbiome in the pathogenesis and progression of both type 1 and type 2 diabetes mellitus. Diabetes mellitus is a common endocrinopathy in dogs; however, little is known about the composition of the gut microbiome during the development and treatment of diabetes in this species. The objective of this pilot study was to characterize the gastrointestinal microbiome of dogs with diabetes mellitus at the time of diagnosis and over the first 12 weeks of insulin therapy and identify associations with glycemic control. Rectal swabs and serum for fructosamine measurement were collected from 6 newly diagnosed diabetic dogs at 2-week intervals for 12 weeks. Rectal samples were sequenced using 16S, ITS, and archaeal primers. Measures of alpha and beta diversity were assessed for changes over time; associations between absolute sequence variant (ASV) relative abundances and time and fructosamine concentration were identified using a microbiome-specific, multivariate linear effects model. No statistically significant changes over time were noted in alpha diversity and samples significantly grouped by dog rather than by time in the beta diversity analysis. However, multiple ASVs were negatively (Clostridium sensu stricto 1, Romboutsia, Collinsella) and positively (Streptococcus, Bacteroides, Ruminococcus gauveauii, Peptoclostridium) associated with time and two ASVs were positively associated with fructosamine (Enterococcus, Escherichia-Shigella). These changes in gastrointestinal microbial composition warrant further investigation of how they may relate to diabetes mellitus progression or control in dogs.
Collapse
Affiliation(s)
- Nicole L. Laia
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Patrick C. Barko
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Drew R. Sullivan
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Maureen A. McMichael
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - David A. Williams
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jennifer M. Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
843
|
Kaiyrlykyzy A, Kozhakhmetov S, Babenko D, Zholdasbekova G, Alzhanova D, Olzhayev F, Baibulatova A, Kushugulova AR, Askarova S. Study of gut microbiota alterations in Alzheimer's dementia patients from Kazakhstan. Sci Rep 2022; 12:15115. [PMID: 36068280 PMCID: PMC9448737 DOI: 10.1038/s41598-022-19393-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
We have investigated the diversity and composition of gut microbiotas isolated from AD (Alzheimer's disease) patients (n = 41) and healthy seniors (n = 43) from Nur-Sultan city (Kazakhstan). The composition of the gut microbiota was characterized by 16S ribosomal RNA sequencing. Our results demonstrated significant differences in bacterial abundance at phylum, class, order, and genus levels in AD patients compared to healthy aged individuals. Relative abundance analysis has revealed increased amount of taxa belonging to Acidobacteriota, Verrucomicrobiota, Planctomycetota and Synergistota phyla in AD patients. Among bacterial genera, microbiotas of AD participants were characterized by a decreased amount of Bifidobacterium, Clostridia bacterium, Castellaniella, Erysipelotrichaceae UCG-003, Roseburia, Tuzzerella, Lactobacillaceae and Monoglobus. Differential abundance analysis determined enriched genera of Christensenellaceae R-7 group, Prevotella, Alloprevotella, Eubacterium coprostanoligenes group, Ruminococcus, Flavobacterium, Ohtaekwangia, Akkermansia, Bacteroides sp. Marseille-P3166 in AD patients, whereas Levilactobacillus, Lactiplantibacillus, Tyzzerella, Eubacterium siraeum group, Monoglobus, Bacteroides, Erysipelotrichaceae UCG-003, Veillonella, Faecalibacterium, Roseburia, Haemophilus were depleted. We have also found correlations between some bacteria taxa and blood serum biochemical parameters. Adiponectin was correlated with Acidimicrobiia, Faecalibacterium, Actinobacteria, Oscillospiraceae, Prevotella and Christensenellaceae R-7. The Christensenellaceae R-7 group and Acidobacteriota were correlated with total bilirubin, while Firmicutes, Acidobacteriales bacterium, Castellaniella alcaligenes, Lachnospiraceae, Christensenellaceae and Klebsiella pneumoniae were correlated with the level of CRP in the blood of AD patients. In addition, we report the correlations found between disease severity and certain fecal bacteria. This is the first reported study demonstrating gut microbiota alterations in AD in the Central Asian region.
Collapse
Affiliation(s)
- Aiym Kaiyrlykyzy
- Laboratory of Bioengineering and Regenerative Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Graduate School of Public Health, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Society of Human Microbiome Researchers, Nur-Sultan, Kazakhstan
| | - Dmitriy Babenko
- Medical University Karaganda, Karagandy, Kazakhstan.,Innovative Center ArtScience, Nur-Sultan, Kazakhstan
| | | | - Dinara Alzhanova
- Department of Neurology, Medical University Astana, Nur-Sultan, Kazakhstan
| | - Farkhad Olzhayev
- Laboratory of Bioengineering and Regenerative Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Aida Baibulatova
- Laboratory of Bioengineering and Regenerative Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Almagul R Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan. .,Kazakhstan Society of Human Microbiome Researchers, Nur-Sultan, Kazakhstan.
| | - Sholpan Askarova
- Laboratory of Bioengineering and Regenerative Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.
| |
Collapse
|
844
|
Chen YL, Huang KC, Wu JH, Liu T, Chen JW, Xie JY, Chen MY, Wu LW, Tung CL. Microbiome dysbiosis inhibits carcinogen-induced murine oral tumorigenesis. J Cancer 2022; 13:3051-3060. [PMID: 36046649 PMCID: PMC9414028 DOI: 10.7150/jca.75947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Oral cancer is one of the most common cancers worldwide and ranks fourth for the mortality rate of cancers in males in Taiwan. The oral microbiota is the microbial community in the oral cavity, which is essential for maintaining oral health, but the relationship between oral tumorigenesis and the oral microbiota remains to be clarified. This study evaluated the effect of microbiome dysbiosis on oral carcinogenesis in mice, and the impact of the microbiome and its metabolic pathways on regulating oral carcinogenesis. We found that antibiotics treatment decreases carcinogen-induced oral epithelial malignant transformation. Microbiome analysis based on 16S rRNA gene sequencing revealed that the species richness of fecal specimens was significantly reduced in antibiotic-treated mice, while that in the salivary specimens was not decreased accordingly. Differences in bacterial composition, including Lactobacillus animalis abundance, in the salivary samples of cancer-bearing mice was dramatically decreased. L. animalis was the bacterial species that increased the most in the saliva of antibiotic-treated mice, suggesting that L. animalis may be negatively associated with oral carcinogenesis. In functional analysis, the microbiome in the saliva of the tumor-bearing group showed greater potential for polyamine biosynthesis. Immunochemical staining proved that spermine oxidase, an effective polyamine oxidase, was upregulated in mouse oral cancer lesions. In conclusion, oral microbiome dysbiosis may alter polyamine metabolic pathways and reduce carcinogen-induced malignant transformation of the oral epithelium.
Collapse
Affiliation(s)
- Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chih Huang
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiung-Wen Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Yan Xie
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Yen Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Liang Tung
- Department of Oral Maxillo-Facial Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60080, Taiwan
| |
Collapse
|
845
|
Callahan N, Hattar M, Barbour T, Adami GR, Kawar N. Oral microbial taxa associated with risk for SARS-CoV-2 infection. FRONTIERS IN ORAL HEALTH 2022; 3:886341. [PMID: 36118052 PMCID: PMC9478458 DOI: 10.3389/froh.2022.886341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hypothesis and objective The oral and digestive tract microbial ecosystem has sparked interest because of its impact on various systemic diseases and conditions. The oral cavity serves not only as a reservoir for many potentially virulent microbiota but also as an important entry point and portal to the human body system. This is especially significant in the transmissibility of the virulent current pandemic virus SARS-CoV-2. The oral and digestive microbiome influences the inflammatory burden and effectiveness of the immune system and serves as a marker of activity of these host processes. The host immune response plays a role in infection susceptibility, including SARS-CoV-2. The purpose of this study is to investigate the role of specific salivary oral microbiome in susceptibility to SARS-CoV-2 infection. Methods and results One hundred six subjects of known medical and dental history who consented to provide saliva samples between January 2017 and December 2019 were included in this study. Sixteen had become COVID-19 positive based on the PCR test by 3/01/2021. A comparison of oral microbiome bacteria taxa profiles based on 16S rRNA sequencing revealed differences between the two groups in this pilot study. Conclusions These bacteria taxa may be markers of increased susceptibility to SARS-CoV-2 infection in the unvaccinated population.
Collapse
Affiliation(s)
- Nicholas Callahan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Meryana Hattar
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thawab Barbour
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Guy R. Adami
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Guy R. Adami
| | - Nadia Kawar
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
846
|
Alterations of the Composition and Neurometabolic Profile of Human Gut Microbiota in Major Depressive Disorder. Biomedicines 2022; 10:biomedicines10092162. [PMID: 36140263 PMCID: PMC9496097 DOI: 10.3390/biomedicines10092162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is among the most prevalent mental disorders worldwide. Factors causing the pathogenesis of MDD include gut microbiota (GM), which interacts with the host through the gut–brain axis. In previous studies of GM in MDD patients, 16S rRNA sequencing was used, which provided information about composition but not about function. In our study, we analyzed whole metagenome sequencing data to assess changes in both the composition and functional profile of GM. We looked at the GM of 36 MDD patients, compared with that of 38 healthy volunteers. Comparative taxonomic analysis showed decreased abundances of Faecalibacterium prausnitzii, Roseburia hominis, and Roseburia intestinalis, and elevated abundances of Escherichia coli and Ruthenibacterium lactatiformans in the GM of MDD patients. We observed decreased levels of bacterial genes encoding key enzymes involved in the production of arginine, asparagine, glutamate, glutamine, melatonin, acetic, butyric and conjugated linoleic acids, and spermidine in MDD patients. These genes produced signature pairs with Faecalibacterium prausntizii and correlated with decreased levels of this species in the GM of MDD patients. These results show the potential impact of the identified biomarker bacteria and their metabolites on the pathogenesis of MDD, and should be confirmed in future metabolomic studies.
Collapse
|
847
|
Convergent dysbiosis of gastric mucosa and fluid microbiome during stomach carcinogenesis. Gastric Cancer 2022; 25:837-849. [PMID: 35661945 DOI: 10.1007/s10120-022-01302-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/30/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND A complex microbiota in the gastric mucosa (GM) has been unveiled recently and its dysbiosis is identified to be associated with gastric cancer (GC). However, the microbial composition in gastric fluid (GF) and its correlation with GM during gastric carcinogenesis are unclear. METHODS We obtained GM and GF samples from 180 patients, including 61 superficial gastritis (SG), 55 intestinal metaplasia (IM) and 64 GC and performed 16S rRNA gene sequencing analysis. The concentration of gastric acid and metabolite nitrite has been measured. RESULTS Overall, the composition of microbiome in GM was distinct from GF with less diversity, and both were influenced by H. pylori infection. The structure of microbiota changed differentially in GM and GF across histological stages of GC, accompanied with decreased gastric acid and increased carcinogenic nitrite. The classifiers of GC based on microbial markers were identified in both GM and GF, including Lactobacillus, Veillonella, Gemella, and were further validated in an independent cohort with good performance. Interestingly, paired comparison between GM and GF showed that their compositional distinction remarkably dwindled from SG to GC, with some GF-enriched bacteria significantly increased in GM. Moreover, stronger interaction network between microbes of GM and GF was observed in GC compared to SG. CONCLUSION Our results, for the first time, revealed a comprehensive profile of both GM and GF microbiomes during the development of GC. The convergent microbial characteristics between GM and GF in GC suggest that the colonization of carcinogenic microbes in GM might derive from GF.
Collapse
|
848
|
Grey MJ, De Luca H, Ward DV, Kreulen IA, Bugda Gwilt K, Foley SE, Thiagarajah JR, McCormick BA, Turner JR, Lencer WI. The epithelial-specific ER stress sensor ERN2/IRE1β enables host-microbiota crosstalk to affect colon goblet cell development. J Clin Invest 2022; 132:e153519. [PMID: 35727638 PMCID: PMC9435652 DOI: 10.1172/jci153519] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial cells lining mucosal surfaces of the gastrointestinal and respiratory tracts uniquely express ERN2/IRE1β, a paralogue of the most evolutionarily conserved endoplasmic reticulum stress sensor, ERN1/IRE1α. How ERN2 functions at the host-environment interface and why a second paralogue evolved remain incompletely understood. Using conventionally raised and germ-free Ern2-/- mice, we found that ERN2 was required for microbiota-induced goblet cell maturation and mucus barrier assembly in the colon. This occurred only after colonization of the alimentary tract with normal gut microflora, which induced Ern2 expression. ERN2 acted by splicing Xbp1 mRNA to expand ER function and prevent ER stress in goblet cells. Although ERN1 can also splice Xbp1 mRNA, it did not act redundantly to ERN2 in this context. By regulating assembly of the colon mucus layer, ERN2 further shaped the composition of the gut microbiota. Mice lacking Ern2 had a dysbiotic microbial community that failed to induce goblet cell development and increased susceptibility to colitis when transferred into germ-free WT mice. These results show that ERN2 evolved at mucosal surfaces to mediate crosstalk between gut microbes and the colonic epithelium required for normal homeostasis and host defense.
Collapse
Affiliation(s)
- Michael J. Grey
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Heidi De Luca
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Irini A.M. Kreulen
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sage E. Foley
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jerrold R. Turner
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I. Lencer
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
849
|
Gilley SP, Ruebel ML, Sims C, Zhong Y, Turner D, Lan RS, Pack LM, Piccolo BD, Chintapalli SV, Abraham A, Bode L, Andres A, Shankar K. Associations between maternal obesity and offspring gut microbiome in the first year of life. Pediatr Obes 2022; 17:e12921. [PMID: 35478493 PMCID: PMC9641193 DOI: 10.1111/ijpo.12921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Maternal obesity is an important determinant of offspring obesity risk, which may be mediated via changes in the infant microbiome. OBJECTIVES We examined infant faecal microbiome, short-chain fatty acids (SCFA), and maternal human milk oligosaccharides (HMO) in mothers with overweight/obese body mass index (BMI) (OW) compared with normal weight (NW) (Clinicaltrials.gov NCT01131117). METHODS Infant stool samples at 1, 6, and 12 months were analysed by 16S rRNA sequencing. Maternal (BODPOD) and infant (quantitative nuclear magnetic resonance [QMR]) adiposity were measured. HMOs at 2 months postpartum and faecal SCFAs at 1 month were also assessed. Statistical analyses included multivariable and mixed linear models for assessment of microbiome diversity, composition, and associations of taxonomic abundance with metabolic and anthropometric variables. RESULTS At 1 month, offspring of women with obesity had lower abundance of SCFA-producing bacteria (including Ruminococcus and Turicibacter) and lower faecal butyric acid levels. Lachnospiraceae abundance was lower in OW group at 6 months, and infant fat mass was negatively associated with the levels of Sutterella. Gradient boosting machine models indicated that higher α-diversity and specific microbial taxa at 1 month predicted elevated adiposity at 12 months with overall accuracy of 76.5%. Associations between maternal HMO concentrations and infant bacterial taxa differed between NW and OW groups. CONCLUSIONS Elevated maternal BMI is associated with relative depletion of butyrate-producing microbes and faecal butyrate in the early infant faecal microbiome. Overall microbial richness may aid in prediction of elevated adiposity in later infancy.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Meghan L Ruebel
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Clark Sims
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ying Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Donald Turner
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Renny S Lan
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lindsay M Pack
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ann Abraham
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
850
|
Holman DB, Kommadath A, Tingley JP, Abbott DW. Novel Insights into the Pig Gut Microbiome Using Metagenome-Assembled Genomes. Microbiol Spectr 2022; 10:e0238022. [PMID: 35880887 PMCID: PMC9431278 DOI: 10.1128/spectrum.02380-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Pigs are among the most numerous and intensively farmed food-producing animals in the world. The gut microbiome plays an important role in the health and performance of swine and changes rapidly after weaning. Here, fecal samples were collected from pigs at 7 different times points from 7 to 140 days of age. These swine fecal metagenomes were used to assemble 1,150 dereplicated metagenome-assembled genomes (MAGs) that were at least 90% complete and had less than 5% contamination. These MAGs represented 472 archaeal and bacterial species, and the most widely distributed MAGs were the uncultured species Collinsella sp002391315, Sodaliphilus sp004557565, and Prevotella sp000434975. Weaning was associated with a decrease in the relative abundance of 69 MAGs (e.g., Escherichia coli) and an increase in the relative abundance of 140 MAGs (e.g., Clostridium sp000435835, Oliverpabstia intestinalis). Genes encoding for the production of the short-chain fatty acids acetate, butyrate, and propionate were identified in 68.5%, 18.8%, and 8.3% of the MAGs, respectively. Carbohydrate-active enzymes associated with the degradation of arabinose oligosaccharides and mixed-linkage glucans were predicted to be most prevalent among the MAGs. Antimicrobial resistance genes were detected in 327 MAGs, including 59 MAGs with tetracycline resistance genes commonly associated with pigs, such as tet(44), tet(Q), and tet(W). Overall, 82% of the MAGs were assigned to species that lack cultured representatives indicating that a large portion of the swine gut microbiome is still poorly characterized. The results here also demonstrate the value of MAGs in adding genomic context to gut microbiomes. IMPORTANCE Many of the bacterial strains found in the mammalian gut are difficult to culture and isolate due to their various growth and nutrient requirements that are frequently unknown. Here, we assembled strain-level genomes from short metagenomic sequences, so-called metagenome-assembled genomes (MAGs), that were derived from fecal samples collected from pigs at multiple time points. The genomic context of a number of antimicrobial resistance genes commonly detected in swine was also determined. In addition, our study connected taxonomy with potential metabolic functions such as carbohydrate degradation and short-chain fatty acid production.
Collapse
Affiliation(s)
- Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Arun Kommadath
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Jeffrey P. Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|