801
|
Andrade BGN, Bressani FA, Cuadrat RRC, Cardoso TF, Malheiros JM, de Oliveira PSN, Petrini J, Mourão GB, Coutinho LL, Reecy JM, Koltes JE, Neto AZ, R de Medeiros S, Berndt A, Palhares JCP, Afli H, Regitano LCA. Stool and Ruminal Microbiome Components Associated With Methane Emission and Feed Efficiency in Nelore Beef Cattle. Front Genet 2022; 13:812828. [PMID: 35656319 PMCID: PMC9152269 DOI: 10.3389/fgene.2022.812828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
Background: The impact of extreme changes in weather patterns on the economy and human welfare is one of the biggest challenges our civilization faces. From anthropogenic contributions to climate change, reducing the impact of farming activities is a priority since it is responsible for up to 18% of global greenhouse gas emissions. To this end, we tested whether ruminal and stool microbiome components could be used as biomarkers for methane emission and feed efficiency in bovine by studying 52 Brazilian Nelore bulls belonging to two feed intervention treatment groups, that is, conventional and by-product-based diets. Results: We identified a total of 5,693 amplicon sequence variants (ASVs) in the Nelore bulls’ microbiomes. A Differential abundance analysis with the ANCOM approach identified 30 bacterial and 15 archaeal ASVs as differentially abundant (DA) among treatment groups. An association analysis using Maaslin2 software and a linear mixed model indicated that bacterial ASVs are linked to the host’s residual methane emission (RCH4) and residual feed intake (RFI) phenotype variation, suggesting their potential as targets for interventions or biomarkers. Conclusion: The feed composition induced significant differences in both abundance and richness of ruminal and stool microbial populations in ruminants of the Nelore breed. The industrial by-product-based dietary treatment applied to our experimental groups influenced the microbiome diversity of bacteria and archaea but not of protozoa. ASVs were associated with RCH4 emission and RFI in ruminal and stool microbiomes. While ruminal ASVs were expected to influence CH4 emission and RFI, the relationship of stool taxa, such as Alistipes and Rikenellaceae (gut group RC9), with these traits was not reported before and might be associated with host health due to their link to anti-inflammatory compounds. Overall, the ASVs associated here have the potential to be used as biomarkers for these complex phenotypes.
Collapse
Affiliation(s)
- Bruno G N Andrade
- Embrapa Southeast Livestock, São Carlos, Brazil.,Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | | | - Rafael R C Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | | | | | | | - Juliana Petrini
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Gerson B Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | | | | | | | - Haithem Afli
- Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | | |
Collapse
|
802
|
Kang H, You HJ, Lee G, Lee SH, Yoo T, Choi M, Joo SK, Park JH, Chang MS, Lee DH, Kim W, Ko G. Interaction effect between NAFLD severity and high carbohydrate diet on gut microbiome alteration and hepatic de novo lipogenesis. Gut Microbes 2022; 14:2078612. [PMID: 35634707 PMCID: PMC9154801 DOI: 10.1080/19490976.2022.2078612] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with high carbohydrate (HC) intake. We investigated whether the relationship between carbohydrate intake and NAFLD is mediated by interactions between gut microbial modulation, impaired insulin response, and hepatic de novo lipogenesis (DNL). Stool samples were collected from 204 Korean subjects with biopsy-proven NAFLD (n = 129) and without NAFLD (n = 75). The gut microbiome profiles were analyzed using 16S rRNA amplicon sequencing. Study subjects were grouped by the NAFLD activity score (NAS) and percentage energy intake from dietary carbohydrate. Hepatic DNL-related transcripts were also analyzed (n = 90). Data from the Korean healthy twin cohort (n = 682), a large sample of individuals without NAFLD, were used for comparison and validation. A HC diet rather than a low carbohydrate diet was associated with the altered gut microbiome diversity according to the NAS. Unlike individuals from the twin cohort without NAFLD, the abundances of Enterobacteriaceae and Ruminococcaceae were significantly different among the NAS subgroups in NAFLD subjects who consumed an HC diet. The addition of these two microbial families, along with Veillonellaceae, significantly improved the diagnostic performance of the predictive model, which was based on the body mass index, age, and sex to predict nonalcoholic steatohepatitis in the HC group. In the HC group, two crucial regulators of DNL (SIRT1 and SREBF2) were differentially expressed among the NAS subgroups. In particular, kernel causality analysis revealed a causal effect of the abundance of Enterobacteriaceae on SREBF2 upregulation and of the surrogate markers of insulin resistance on NAFLD activity in the HC group. Consuming an HC diet is associated with alteration in the gut microbiome, impaired glucose homeostasis, and upregulation of hepatic DNL genes, altogether contributing to NAFLD pathogenesis.
Collapse
Affiliation(s)
- Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Hyun Ju You
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Republic of Korea,Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Seung Hyun Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Taekyung Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Hyeon Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea,CONTACT Won Kim Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul07061, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Republic of Korea,Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea,KoBioLabs Inc, Seoul, Republic of Korea,GwangPyo Ko Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | | |
Collapse
|
803
|
Bajaj JS, Fagan A, McGeorge S, Sterling RK, Rogal S, Sikaroodi M, Gillevet PM. Area Deprivation Index and Gut-Brain Axis in Cirrhosis. Clin Transl Gastroenterol 2022; 13:e00495. [PMID: 35537854 PMCID: PMC9236605 DOI: 10.14309/ctg.0000000000000495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Neighborhood deprivation has been associated with chronic diseases and with gut microbial alterations. Although cirrhosis is associated with gut microbiome changes and hepatic encephalopathy (HE), their association is unclear. METHODS Demographics and cirrhosis details (model for end-stage liver disease [MELD], prior HE, and medications) were recorded from outpatients with cirrhosis. Area deprivation index (ADI), which ranks neighborhoods by socioeconomic disadvantage, was recorded as state decile and national percentile (high = worse for both) and dichotomized on the median. Patients underwent cognitive testing to diagnose minimal HE (MHE). Stool microbiota was analyzed using 16S ribosomal RNA for α/β-diversity. Multivariable analysis was used to evaluate the factors independently associated with MHE. RESULTS A total of 321 people with cirrhosis (60 years, 78% men, 75% non-Hispanic White, 24% non-Hispanic African American, 4% Hispanic) were included. 45% had prior HE and 56% MHE. For ADI, the national percentile was 49.1 ± 21.8 while the state decile was 6.1 ± 2.3. ADI was not associated with race, ethnicity, MELD, or HE-related variables on regression. Regarding microbiota, α-diversity was lower in MHE and prior HE patients but similar across ADI rankings. Low vs high ADIs were associated with different β-diversity in univariable but not multivariable analyses. Multivariable analyses showed positive associations with MELD, prior HE, and lactate producers ( Lactobacillus and Lacticaseibacillus ) and negative associations with short-chain fatty acid producers ( Blautia , Lachnoclostridium , and Anaerobutyricum ) with MHE. DISCUSSION Cirrhosis-related variables may be more influential in determining gut microbiome composition and cognitive impairment than ADI. Therefore, the focus should be on improving cirrhosis care, regardless of ADI, but studies evaluating other measures of social determinants are needed in cirrhosis.
Collapse
Affiliation(s)
- Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Sara McGeorge
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Richard K. Sterling
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Shari Rogal
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
804
|
Composition and Functional Potential of the Human Mammary Microbiota Prior to and Following Breast Tumor Diagnosis. mSystems 2022; 7:e0148921. [PMID: 35642922 PMCID: PMC9239270 DOI: 10.1128/msystems.01489-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbiota studies have reported changes in the microbial composition of the breast upon cancer development. However, results are inconsistent and limited to the later phases of cancer development (after diagnosis). We analyzed and compared the resident bacterial taxa of histologically normal breast tissue (healthy, H, n = 49) with those of tissues donated prior to (prediagnostic, PD, n = 15) and after (adjacent normal, AN, n = 49, and tumor, T, n = 46) breast cancer diagnosis (n total = 159). DNA was isolated from tissue samples and submitted for Illumina MiSeq paired-end sequencing of the V3-V4 region of the 16S gene. To infer bacterial function in breast cancer, we predicted the functional bacteriome from the 16S sequencing data using PICRUSt2. Bacterial compositional analysis revealed an intermediary taxonomic signature in the PD tissue relative to that of the H tissue, represented by shifts in Bacillaceae, Burkholderiaceae, Corynebacteriaceae, Streptococcaceae, and Staphylococcaceae. This compositional signature was enhanced in the AN and T tissues. We also identified significant metabolic reprogramming of the microbiota of the PD, AN, and T tissue compared with the H tissue. Further, preliminary correlation analysis between host transcriptome profiling and microbial taxa and genes in H and PD tissues identified altered associations between the human host and mammary microbiota in PD tissue compared with H tissue. These findings suggest that compositional shifts in bacterial abundance and metabolic reprogramming of the breast tissue microbiota are early events in breast cancer development that are potentially linked with cancer susceptibility. IMPORTANCE The goal of this study was to determine the role of resident breast tissue bacteria in breast cancer development. We analyzed breast tissue bacteria in healthy breast tissue and breast tissue donated prior to (precancerous) and after (postcancerous) breast cancer diagnosis. Compared to healthy tissue, the precancerous and postcancerous breast tissues demonstrated differences in the amounts of breast tissue bacteria. In addition, breast tissue bacteria exhibit different functions in pre-cancerous and post-cancerous breast tissues relative to healthy tissue. These differences in function are further emphasized by altered associations of the breast tissue bacteria with gene expression in the human host prior to cancer development. Collectively, these analyses identified shifts in bacterial abundance and metabolic function (dysbiosis) prior to breast tumor diagnosis. This dysbiosis may serve as a therapeutic target in breast cancer prevention.
Collapse
|
805
|
Leske M, Bottacini F, Afli H, Andrade BGN. BiGAMi: Bi-Objective Genetic Algorithm Fitness Function for Feature Selection on Microbiome Datasets. Methods Protoc 2022; 5:42. [PMID: 35645350 PMCID: PMC9149982 DOI: 10.3390/mps5030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
The relationship between the host and the microbiome, or the assemblage of microorganisms (including bacteria, archaea, fungi, and viruses), has been proven crucial for its health and disease development. The high dimensionality of microbiome datasets has often been addressed as a major difficulty for data analysis, such as the use of machine-learning (ML) and deep-learning (DL) models. Here, we present BiGAMi, a bi-objective genetic algorithm fitness function for feature selection in microbial datasets to train high-performing phenotype classifiers. The proposed fitness function allowed us to build classifiers that outperformed the baseline performance estimated by the original studies by using as few as 0.04% to 2.32% features of the original dataset. In 35 out of 42 performance comparisons between BiGAMi and other feature selection methods evaluated here (sequential forward selection, SelectKBest, and GARS), BiGAMi achieved its results by selecting 6-93% fewer features. This study showed that the application of a bi-objective GA fitness function against microbiome datasets succeeded in selecting small subsets of bacteria whose contribution to understood diseases and the host state was already experimentally proven. Applying this feature selection approach to novel diseases is expected to quickly reveal the microbes most relevant to a specific condition.
Collapse
Affiliation(s)
- Mike Leske
- Department of Computer Sciences, Munster Technological University, MTU/ADAPT, T12 P928 Cork, Ireland;
| | - Francesca Bottacini
- Department of Biological Sciences, Munster Technological University, MTU, T12 P928 Cork, Ireland;
| | - Haithem Afli
- Department of Computer Sciences, Munster Technological University, MTU/ADAPT, T12 P928 Cork, Ireland;
| | - Bruno G. N. Andrade
- Department of Computer Sciences, Munster Technological University, MTU/ADAPT, T12 P928 Cork, Ireland;
| |
Collapse
|
806
|
Gut Microbial Stability is Associated with Greater Endurance Performance in Athletes Undertaking Dietary Periodization. mSystems 2022; 7:e0012922. [PMID: 35579384 PMCID: PMC9238380 DOI: 10.1128/msystems.00129-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dietary manipulation with high-protein or high-carbohydrate content are frequently employed during elite athletic training, aiming to enhance athletic performance. Such interventions are likely to impact upon gut microbial content. This study explored the impact of acute high-protein or high-carbohydrate diets on measured endurance performance and associated gut microbial community changes. In a cohort of well-matched, highly trained endurance runners, we measured performance outcomes, as well as gut bacterial, viral (FVP), and bacteriophage (IV) communities in a double-blind, repeated-measures design randomized control trial (RCT) to explore the impact of dietary intervention with either high-protein or high-carbohydrate content. High-dietary carbohydrate improved time-trial performance by +6.5% (P < 0.03) and was associated with expansion of Ruminococcus and Collinsella bacterial spp. Conversely, high dietary protein led to a reduction in performance by −23.3% (P = 0.001). This impact was accompanied by significantly reduced diversity (IV: P = 0.04) and altered composition (IV and FVP: P = 0.02) of the gut phageome as well as enrichment of both free and inducible Sk1virus and Leuconostoc bacterial populations. Greatest performance during dietary modification was observed in participants with less substantial shifts in community composition. Gut microbial stability during acute dietary periodization was associated with greater athletic performance in this highly trained, well-matched cohort. Athletes, and those supporting them, should be mindful of the potential consequences of dietary manipulation on gut flora and implications for performance, and periodize appropriately. IMPORTANCE Dietary periodization is employed to improve endurance exercise performance but may impact on gut microbial communities. Bacteriophage are implicated in bacterial cell homeostasis and have been identified as biomarkers of disequilibrium in the gut ecosystem possibly brought about through dietary periodization. We find high-carbohydrate and high-protein diets to have opposing impacts on endurance performance in highly trained athlete populations. Reduced performance is linked with disturbance of microbial stasis in the gut. We demonstrate bacteriophage communities are the most sensitive component of the gut microbiota to increased gut stress following dietary manipulation. Athletes undertaking dietary periodization should be aware of potential negative impacts of drastic changes to dietary composition on gut microbial stasis and, in turn, endurance performance.
Collapse
|
807
|
Dahan E, Martin VM, Yassour M. EasyMap - An Interactive Web Tool for Evaluating and Comparing Associations of Clinical Variables and Microbiome Composition. Front Cell Infect Microbiol 2022; 12:854164. [PMID: 35646745 PMCID: PMC9136407 DOI: 10.3389/fcimb.2022.854164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
One of the most common tasks in microbiome studies is comparing microbial profiles across various groups of people (e.g., sick vs. healthy). Routinely, researchers use multivariate linear regression models to address these challenges, such as linear regression packages, MaAsLin2, LEfSe, etc. In many cases, it is unclear which metadata variables should be included in the linear model, as many human-associated variables are correlated with one another. Thus, multiple models are often tested, each including a different set of variables, however the challenge of selecting the metadata variables in the final model remains. Here, we present EasyMap, an interactive online tool allowing for (1) running multiple multivariate linear regression models, on the same features and metadata; (2) visualizing the associations between microbial features and clinical metadata found in each model; and (3) comparing across the various models to identify the critical metadata variables and select the optimal model. EasyMap provides a side-by-side visualization of association results across the various models, each with additional metadata variables, enabling us to evaluate the impact of each metadata variable on the associated feature. EasyMap’s interface enables filtering associations by significance, focusing on specific microbes and finding the robust associations that are found across multiple models. While EasyMap was designed to analyze microbiome data, it can handle any other tabular data with numeric features and metadata variables. EasyMap takes the common task of multivariate linear regression to the next level, with an intuitive and simple user interface, allowing for wide comparisons of multiple models to identify the robust microbial feature associations. EasyMap is available at http://yassour.rcs.huji.ac.il/easymap.
Collapse
Affiliation(s)
- Ehud Dahan
- Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Victoria M. Martin
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Moran Yassour
- Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Computer Science & Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Moran Yassour,
| |
Collapse
|
808
|
Mallick H, An L, Chen M, Wang P, Zhao N. Editorial: Methods for Single-Cell and Microbiome Sequencing Data. Front Genet 2022; 13:920191. [PMID: 35734426 PMCID: PMC9208326 DOI: 10.3389/fgene.2022.920191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Himel Mallick
- Biostatistics and Research Decision Sciences, Merck & Co.Inc., Rahway, NJ, United States
| | - Lingling An
- Interdisciplinary Program in Statistics and Data Science, The University of Arizona, Tucson, AZ, United States
- Department of Epidemiology and Biostatistics, The University of Arizona, Tucson, AZ, United States
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, United States
| | - Mengjie Chen
- Department of Human Genetics and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Pei Wang
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
809
|
Massara P, Spiegel-Feld C, Hamilton J, Maguire JL, Birken C, Bandsma R, Comelli EM. Association between gut MIcrobiota, GROWth and Diet in peripubertal children from the TARGet Kids! cohort (The MiGrowD) study: protocol for studying gut microbiota at a community-based primary healthcare setting. BMJ Open 2022; 12:e057989. [PMID: 35534076 PMCID: PMC9086606 DOI: 10.1136/bmjopen-2021-057989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION The gut microbiota interacts with diet to affect body health throughout the life cycle. Critical periods of growth, such as infancy and puberty, are characterised by microbiota remodelling and changes in dietary habits. While the relationship between gut microbiota and growth in early life has been studied, our understanding of this relationship during puberty remains limited. Here, we describe the MIcrobiota, GROWth and Diet in peripubertal children (The MiGrowD) study, which aims to assess the tripartite growth-gut microbiota-diet relationship at puberty. METHODS AND ANALYSIS The MiGrowD study will be a cross-sectional, community-based study involving children 8-12 years participating in the TARGet Kids! COHORT TARGet Kids! is a primary healthcare practice-based research network in Canada. Children will be asked to provide a stool sample, complete two non-consecutive 24-hour dietary recalls and a pubertal self-assessment based on Tanner Stages. Anthropometry will also be conducted. The primary outcome is the association between gut microbiota composition and longitudinal growth from birth until entry into the study. Anthropometrics data from birth will be from the data collected prospectively through TARGet Kids!. Body mass index z-scores will be calculated according to WHO. The secondary outcome is the association between gut microbiota, diet and pubertal stage. ETHICS AND DISSEMINATION Ethics approval has been obtained by the Hospital for Sick Children and St. Michael's Hospital-Unity Health, and the University of Toronto. Results will be disseminated in the public and academic sector, including participants, TARGet Kids! primary healthcare physicians teams, scientists via participation in the TARGet Kids! science and physician meetings, conferences and publications in peer-reviewed journals. The MiGrowD study results will help researchers understand the relationships underlying growth, gut microbiota and pubertal maturation in children.
Collapse
Affiliation(s)
- Paraskevi Massara
- Department of Nutritional Sciences, University of Toronto, Temerty Faculty of Medicine, Ontario, Toronto, Canada
- Translational Medicine Program, The Hospital for Sick Children, Ontario, Toronto, Canada
| | - Carolyn Spiegel-Feld
- Translational Medicine Program, The Hospital for Sick Children, Ontario, Toronto, Canada
| | - Jill Hamilton
- Department of Pediatrics, University of Toronto, Temerty Faculty of Medicine, Ontario, Toronto, Canada
- Division of Endocrinology, The Hospital for Sick Children, Ontario, Toronto, Canada
| | - Jonathon L Maguire
- Department of Nutritional Sciences, University of Toronto, Temerty Faculty of Medicine, Ontario, Toronto, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Ontario, Toronto, Canada
| | - Catherine Birken
- Department of Nutritional Sciences, University of Toronto, Temerty Faculty of Medicine, Ontario, Toronto, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Joannah and Brian Lawson Center for Child Nutrition, University of Toronto, Ontario, Toronto, Canada
- Pediatric Outcomes Research Team, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robert Bandsma
- Department of Nutritional Sciences, University of Toronto, Temerty Faculty of Medicine, Ontario, Toronto, Canada
- Translational Medicine Program, The Hospital for Sick Children, Ontario, Toronto, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Temerty Faculty of Medicine, Ontario, Toronto, Canada
- Joannah and Brian Lawson Center for Child Nutrition, University of Toronto, Ontario, Toronto, Canada
| |
Collapse
|
810
|
Miltiadous O, Waters NR, Andrlová H, Dai A, Nguyen CL, Burgos da Silva M, Lindner S, Slingerland J, Giardina P, Clurman A, Armijo GK, Gomes ALC, Lakkaraja M, Maslak P, Scordo M, Shouval R, Staffas A, O'Reilly R, Taur Y, Prockop S, Boelens JJ, Giralt S, Perales MA, Devlin SM, Peled JU, Markey KA, van den Brink MRM. Early intestinal microbial features are associated with CD4 T-cell recovery after allogeneic hematopoietic transplant. Blood 2022; 139:2758-2769. [PMID: 35061893 PMCID: PMC9074404 DOI: 10.1182/blood.2021014255] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
Low intestinal microbial diversity is associated with poor outcomes after allogeneic hematopoietic cell transplantation (HCT). Using 16S rRNA sequencing of 2067 stool samples and flow cytometry data from 2370 peripheral blood samples drawn from 894 patients who underwent allogeneic HCT, we have linked features of the early post-HCT microbiome with subsequent immune cell recovery. We examined lymphocyte recovery and microbiota features in recipients of both unmodified and CD34-selected allografts. We observed that fecal microbial diversity was an independent predictor of CD4 T-cell count 3 months after HCT in recipients of a CD34-selected allograft, who are dependent on de novo lymphopoiesis for their immune recovery. In multivariate models using clinical factors and microbiota features, we consistently observed that increased fecal relative abundance of genus Staphylococcus during the early posttransplant period was associated with worse CD4 T-cell recovery. Our observations suggest that the intestinal bacteria, or the factors they produce, can affect early lymphopoiesis and the homeostasis of allograft-derived T cells after transplantation.
Collapse
Affiliation(s)
- Oriana Miltiadous
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas R Waters
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Chi L Nguyen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Marina Burgos da Silva
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Sarah Lindner
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - John Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Paul Giardina
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Annelie Clurman
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Gabriel K Armijo
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Antonio L C Gomes
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - Madhavi Lakkaraja
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Peter Maslak
- Immunology Laboratory Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Michael Scordo
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Roni Shouval
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anna Staffas
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
- Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Richard O'Reilly
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Taur
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan Prockop
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jaap Jan Boelens
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sergio Giralt
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Miguel-Angel Perales
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sean M Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan U Peled
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kate A Markey
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA; and
- Division of Medical Oncology, University of Washington, Seattle, WA
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
811
|
Mesnage R, Bowyer RCE, El Balkhi S, Saint-Marcoux F, Gardere A, Ducarmon QR, Geelen AR, Zwittink RD, Tsoukalas D, Sarandi E, Paramera EI, Spector T, Steves CJ, Antoniou MN. Impacts of dietary exposure to pesticides on faecal microbiome metabolism in adult twins. Environ Health 2022; 21:46. [PMID: 35501856 PMCID: PMC9063241 DOI: 10.1186/s12940-022-00860-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/27/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Dietary habits have a profound influence on the metabolic activity of gut microorganisms and their influence on health. Concerns have been raised as to whether the consumption of foodstuffs contaminated with pesticides can contribute to the development of chronic disease by affecting the gut microbiome. We performed the first pesticide biomonitoring survey of the British population, and subsequently used the results to perform the first pesticide association study on gut microbiome composition and function from the TwinsUK registry. METHODS Dietary exposure of 186 common insecticide, herbicide, or fungicide residues and the faecal microbiome in 65 twin pairs in the UK was investigated. We evaluated if dietary habits, geographic location, or the rural/urban environment, are associated with the excretion of pesticide residues. The composition and metabolic activity of faecal microbiota was evaluated using shotgun metagenomics and metabolomics respectively. We performed a targeted urine metabolomics analysis in order to evaluate whether pesticide urinary excretion was also associated with physiological changes. RESULTS Pyrethroid and/or organophosphorus insecticide residues were found in all urine samples, while the herbicide glyphosate was found in 53% of individuals. Food frequency questionnaires showed that residues from organophosphates were higher with increased consumption of fruit and vegetables. A total of 34 associations between pesticide residue concentrations and faecal metabolite concentrations were detected. Glyphosate excretion was positively associated with an overall increased bacterial species richness, as well as to fatty acid metabolites and phosphate levels. The insecticide metabolite Br2CA, reflecting deltamethrin exposure, was positively associated with the phytoestrogens enterodiol and enterolactone, and negatively associated with some N-methyl amino acids. Urine metabolomics performed on a subset of samples did not reveal associations with the excretion of pesticide residues. CONCLUSIONS The consumption of conventionally grown fruit and vegetables leads to higher ingestion of pesticides with unknown long-term health consequences. Our results highlight the need for future dietary intervention studies to understand effects of pesticide exposure on the gut microbiome and possible health consequences.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | - Ruth C E Bowyer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Souleiman El Balkhi
- Service de pharmacologie, toxicologie et pharmacovigilance, UF Toxicologie analytique environnementale et santé au travail, CHU de Limoges, Limoges, France
| | - Franck Saint-Marcoux
- Service de pharmacologie, toxicologie et pharmacovigilance, UF Toxicologie analytique environnementale et santé au travail, CHU de Limoges, Limoges, France
| | - Arnaud Gardere
- Service de pharmacologie, toxicologie et pharmacovigilance, UF Toxicologie analytique environnementale et santé au travail, CHU de Limoges, Limoges, France
| | - Quinten Raymond Ducarmon
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anoecim Robecca Geelen
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Daniëlle Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dimitris Tsoukalas
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674, Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674, Athens, Greece
| | | | - Timothy Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
812
|
Hu S, Mok J, Gowans M, Ong DEH, Hartono JL, Lee JWJ. Oral Microbiome of Crohn's Disease Patients With and Without Oral Manifestations. J Crohns Colitis 2022; 16:1628-1636. [PMID: 35511486 PMCID: PMC9624293 DOI: 10.1093/ecco-jcc/jjac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/03/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Microbiome dysbiosis is associated with inflammatory destruction in Crohn's disease [CD]. Although gut microbiome dysbiosis is well established in CD, the oral microbiome is comparatively under-studied. This study aims to characterize the oral microbiome of CD patients with/without oral manifestations. METHODS Patients with CD were recruited with age-, gender- and race-matched controls. Potential confounders such as dental caries and periodontal condition were recorded. The oral microbiome was collected using saliva samples. Microbial DNA was extracted and sequenced using shotgun sequencing. Metagenomic taxonomic and functional profiles were generated and analysed. RESULTS The study recruited 41 patients with CD and 24 healthy controls. Within the CD subjects, 39.0% had oral manifestations with the majority presenting with cobblestoning and/or oral ulcers. Principal coordinate analysis demonstrated distinct oral microbiome profiles between subjects with and without CD, with four key variables responsible for overall oral microbiome variance: [1] diagnosis of CD, [2] concomitant use of steroids, [3] concomitant use of azathioprine and 4] presence of oral ulcers. Thirty-two significant differentially abundant microbial species were identified, with the majority associated with the diagnosis of CD. A predictive model based on differences in the oral microbiome found that the oral microbiome has strong discriminatory function to distinguish subjects with and without CD [AUROC 0.84]. Functional analysis found that an increased representation of microbial enzymes [n = 5] in the butyrate pathway was positively associated with the presence of oral ulcers. CONCLUSIONS The oral microbiome can aid in the diagnosis of CD and its composition was associated with oral manifestations.
Collapse
Affiliation(s)
- Shijia Hu
- Faculty of Dentistry, National University of Singapore, Singapore
| | - John Mok
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Michelle Gowans
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - David E H Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Juanda Leo Hartono
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jonathan Wei Jie Lee
- Corresponding author: Jonathan Wei Jie Lee, Division of Gastroenterology & Hepatology, National University Hospital, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore.
| |
Collapse
|
813
|
Maqsood R, Skidmore PT, Holland LA, Au JL, Khan AK, Wu LI, Ma N, Begnel ER, Chohan BH, Adhiambo J, John-Stewart G, Kiarie J, Kinuthia J, Chung MH, Richardson BA, Slyker J, Lehman DA, Lim ES. Dynamic Changes in Breast Milk Microbiome in the Early Postpartum Period of Kenyan Women Living with HIV Are Influenced by Antibiotics but Not Antiretrovirals. Microbiol Spectr 2022; 10:e0208021. [PMID: 35384692 PMCID: PMC9045247 DOI: 10.1128/spectrum.02080-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Shared bacteria between maternal breast milk and infant stool, infers that transfer of maternal breast milk microbiota through breastfeeding seeds the establishment of the infant gut microbiome. Whether combination antiretroviral therapy (cART) impacts the breast milk microbiota in women living with HIV is unknown. Since current standard of care for people living with HIV includes cART, it has been difficult to evaluate the impact of cART on the microbiome. Here, we performed a next-generation sequencing retrospective study from pre-ART era clinical trials in Nairobi, Kenya (between 2003-2006 before cART was standard of care) that tested the effects of ART regimens to prevent mother-to-child HIV transmission. Kenyan women living with HIV were randomized to receive either no ART during breastfeeding (n = 24) or cART (zidovudine, nevirapine, lamivudine; n = 25) postpartum. Using linear mixed-effects models, we found that alpha diversity and beta diversity of the breast milk bacterial microbiome changed significantly over time during the first 4 weeks postpartum (alpha diversity P < 0.0007; beta diversity P = 0.005). There was no statistically significant difference in diversity, richness, and composition of the bacterial microbiome between cART-exposed and cART-unexposed women. In contrast, antibiotic use influenced the change of beta diversity of the bacterial microbiome over time. Our results indicate that while early postpartum time predicts breast milk microbiome composition, cART does not substantially alter the breast milk microbiota in women living with HIV. Hence, cART has minimal impact on the breast milk microbiome compared to antibiotics use. IMPORTANCE Breastfeeding has important benefits for long-term infant health, particularly in establishing and shaping the infant gut microbiome. However, the impact of combination antiretroviral therapy exposure and antibiotics on the breast milk microbiome in women living with HIV is not known. Here, in a longitudinal retrospective study of Kenyan women living with HIV from the pre-antiretroviral therapy era, we found that antibiotic use significantly influenced breast milk microbiome beta diversity, but antiretrovirals exposure did not substantially alter the microbiome. Given the protective role of breastfeeding in maternal-infant health, these findings fill an important knowledge gap of the impact of combination antiretroviral therapy on the microbiome of women living with HIV.
Collapse
Affiliation(s)
- Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Peter T. Skidmore
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Joshua L. Au
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Adam K. Khan
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Lily I. Wu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ningxin Ma
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Emily R. Begnel
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Judith Adhiambo
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - James Kiarie
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - John Kinuthia
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Michael H. Chung
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Barbra A. Richardson
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dara A. Lehman
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
814
|
Supplementation with SCFAs Re-Establishes Microbiota Composition and Attenuates Hyperalgesia and Pain in a Mouse Model of NTG-Induced Migraine. Int J Mol Sci 2022; 23:ijms23094847. [PMID: 35563235 PMCID: PMC9100093 DOI: 10.3390/ijms23094847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Migraine is a common brain-disorder that affects 15% of the population. Converging evidence shows that migraine is associated with gastrointestinal disorders. However, the mechanisms underlying the interaction between the gut and brain in patients with migraine are not clear. In this study, we evaluated the role of the short-chain fatty acids (SCFAs) as sodium propionate (SP) and sodium butyrate (SB) on microbiota profile and intestinal permeability in a mouse model of migraine induced by nitroglycerine (NTG). The mice were orally administered SB and SP at the dose of 10, 30 and 100 mg/kg, 5 min after NTG intraperitoneal injections. Behavioral tests were used to evaluate migraine-like pain. Histological and molecular analyses were performed on the intestine. The composition of the intestinal microbiota was extracted from frozen fecal samples and sequenced with an Illumina MiSeq System. Our results demonstrated that the SP and SB treatments attenuated hyperalgesia and pain following NTG injection. Moreover, SP and SB reduced histological damage in the intestine and restored intestinal permeability and the intestinal microbiota profile. These results provide corroborating evidence that SB and SP exert a protective effect on central sensitization induced by NTG through a modulation of intestinal microbiota, suggesting the potential application of SCFAs as novel supportive therapies for intestinal disfunction associated with migraine.
Collapse
|
815
|
Oyarzun I, Le Nevé B, Yañez F, Xie Z, Pichaud M, Serrano-Gómez G, Roca J, Veiga P, Azpiroz F, Tap J, Manichanh C. Human gut metatranscriptome changes induced by a fermented milk product are associated with improved tolerance to a flatulogenic diet. Comput Struct Biotechnol J 2022; 20:1632-1641. [PMID: 35465165 PMCID: PMC9014321 DOI: 10.1016/j.csbj.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
Healthy plant-based diets rich in fermentable residues may induce gas-related symptoms, possibly mediated by the gut microbiota. We previously showed that consumption of a fermented milk product (FMP) containing Bifidobacterium animalis subsp. lactis CNCM I-2494 and lactic acid bacteria improved gastrointestinal (GI) comfort in response to a flatulogenic dietary challenge in healthy individuals. To study the effects of the FMP on gut microbiota activity from those participants, we conducted a metatranscriptomic analysis of fecal samples (n = 262), which were collected during the ingestion of a habitual diet and two series of a 3-day high-residue challenge diet, before and following 28-days of FMP consumption. Most of the FMP species were detected or found enriched upon consumption of the product. FMP mitigated the effect of a flatulogenic diet on gas-related symptoms in several ways. First, FMP consumption was associated with the depletion of gas-producing bacteria and increased hydrogen to methane conversion. It also led to the upregulation of activities such as replication and downregulation of functions related to motility and chemotaxis. Furthermore, upon FMP intake, metabolic activities such as carbohydrate metabolism, attributed to B. animalis and S. thermophilus, were enriched; these activities were coincidentally found to be negatively associated with several GI symptoms. Finally, a more connected microbial ecosystem or mutualistic relationship among microbes was found in responders to the FMP intervention. Taken together, these findings suggest that consumption of the FMP improved the tolerance of a flatulogenic diet through active interactions with the resident gut microbiota.
Collapse
Affiliation(s)
- Iñigo Oyarzun
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | | - Francisca Yañez
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Zixuan Xie
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | | | | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | | | - Fernando Azpiroz
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Julien Tap
- Danone Nutricia Research, Palaiseau, France
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
816
|
Kaelin EA, Rodriguez C, Hall-Moore C, Hoffmann JA, Linneman LA, Ndao IM, Warner BB, Tarr PI, Holtz LR, Lim ES. Longitudinal gut virome analysis identifies specific viral signatures that precede necrotizing enterocolitis onset in preterm infants. Nat Microbiol 2022; 7:653-662. [PMID: 35449461 PMCID: PMC9064801 DOI: 10.1038/s41564-022-01096-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
Abstract
Necrotizing enterocolitis (NEC) is a serious consequence of preterm birth and is often associated with gut bacterial microbiome alterations. However, little is known about the development of the gut virome in preterm infants, or its role in NEC. Here, using metagenomic sequencing, we characterized the DNA gut virome of 9 preterm infants who developed NEC and 14 gestational age-matched preterm infants who did not. Infants were sampled longitudinally before NEC onset over the first 11 weeks of life. We observed substantial interindividual variation in the gut virome between unrelated preterm infants, while intraindividual variation over time was significantly less. We identified viral and bacterial signatures in the gut that preceded NEC onset. Specifically, we observed a convergence towards reduced viral beta diversity over the 10 d before NEC onset, which was driven by specific viral signatures and accompanied by specific viral-bacterial interactions. Our results indicate that bacterial and viral perturbations precede the sudden onset of NEC. These findings suggest that early life virome signatures in preterm infants may be implicated in NEC.
Collapse
Affiliation(s)
- Emily A Kaelin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Cynthia Rodriguez
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Julie A Hoffmann
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Laura A Linneman
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Lori R Holtz
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
| | - Efrem S Lim
- School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
817
|
A Low Glycemic Index Mediterranean Diet Combined with Aerobic Physical Activity Rearranges the Gut Microbiota Signature in NAFLD Patients. Nutrients 2022; 14:nu14091773. [PMID: 35565740 PMCID: PMC9101735 DOI: 10.3390/nu14091773] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, and its prevalence worldwide is increasing. Several studies support the pathophysiological role of the gut–liver axis, where specific signal pathways are finely tuned by intestinal microbiota both in the onset and progression of NAFLD. In the present study, we investigate the impact of different lifestyle interventions on the gut microbiota composition in 109 NAFLD patients randomly allocated to six lifestyle intervention groups: Low Glycemic Index Mediterranean Diet (LGIMD), aerobic activity program (ATFIS_1), combined activity program (ATFIS_2), LGIMD plus ATFIS_1 or ATFIS2 and Control Diet based on CREA-AN (INRAN). The relative abundances of microbial taxa at all taxonomic levels were explored in all the intervention groups and used to cluster samples based on a statistical approach, relying both on the discriminant analysis of principal components (DAPCs) and on a linear regression model. Our analyses reveal important differences when physical activity and the Mediterranean diet are merged as treatment and allow us to identify the most statistically significant taxa linked with liver protection. These findings agree with the decreased ‘controlled attenuation parameter’ (CAP) detected in the LGIMD-ATFIS_1 group, measured using FibroScan®. In conclusion, our study demonstrates the synergistic effect of lifestyle interventions (diet and/or physical activity programs) on the gut microbiota composition in NAFLD patients.
Collapse
|
818
|
Hua X, Cao Y, Morgan DM, Miller K, Chin SM, Bellavance D, Khalili H. Longitudinal analysis of the impact of oral contraceptive use on the gut microbiome. J Med Microbiol 2022; 71. [PMID: 35452382 DOI: 10.1099/jmm.0.001512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Evidence has linked exogenous and endogenous sex hormones with the human microbiome.Hypothesis/Gap statement. The longitudinal effects of oral contraceptives (OC) on the human gut microbiome have not previously been studied.Aim. We sought to examine the longitudinal impact of OC use on the taxonomic composition and metabolic functions of the gut microbiota and endogenous sex steroid hormones after initiation of OC use.Methodology. We recruited ten healthy women who provided blood and stool samples prior to OC use, 1 month and 6 months after starting OC. We measured serum levels of sex hormones, including estradiol, progesterone, sex hormone-binding globulin (SHBG), and total testosterone. Shotgun metagenomic sequencing was performed on DNA extracted from faecal samples. Species and metabolic pathway abundances were determined using MetaPhlAn2 and HUMAnN2. Multivariate association with linear models was used to identify microbial species and metabolic pathways associated with OC use and endogenous levels of sex hormones.Results. The percentage variance of the microbial community explained by individual factors ranged from 9.9 % for age to 2.7 % for time since initiation of OC use. We observed no changes in the diversity or composition of the gut microbiome following OC initiation. However, the relative abundance of the biosynthesis pathways of peptidoglycan, amino acids (lysine, threonine, methionine, and tryptophan), and the NAD salvage pathway increased after OC initiation. In addition, serum levels of estradiol and SHBG were positively associated with Eubacterium ramulus, a flavonoid-degrading bacterium. Similarly, microbes involving biosynthesis of l-lysine, l-threonine, and l-methionine were significantly associated with lower estradiol, SHBG, and higher levels of total testosterone.Conclusion. Our study provides the first piece of evidence supporting the association between exogenous and endogenous sex hormones and gut microbiome composition and function.
Collapse
Affiliation(s)
- Xinwei Hua
- Department of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Cardiology, Peking University Third Hospital, Beijing, PR China
| | - Yueming Cao
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - David M Morgan
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA
| | - Kaia Miller
- Duke University School of Medicine, Durham, NC, USA
| | - Samantha M Chin
- Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle Bellavance
- Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hamed Khalili
- Department of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Clinical Epidemiology Unit, Karolinska Institutet, Solna, Sweden.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
819
|
Sorbie A, Delgado Jiménez R, Benakis C. Increasing transparency and reproducibility in stroke-microbiota research: A toolbox for microbiota analysis. iScience 2022; 25:103998. [PMID: 35310944 PMCID: PMC8931359 DOI: 10.1016/j.isci.2022.103998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
Homeostasis of gut microbiota is crucial in maintaining human health. Alterations, or "dysbiosis," are increasingly implicated in human diseases, such as cancer, inflammatory bowel diseases, and, more recently, neurological disorders. In ischemic stroke patients, gut microbial profiles are markedly different compared to healthy controls, whereas manipulation of microbiota in animal models of stroke modulates outcome, further implicating microbiota in stroke pathobiology. Despite this, evidence for the involvement of specific microbes or microbial products and microbial signatures have yet to be identified, likely owing to differences in methodology, data analysis, and confounding variables between different studies. Here, we provide a set of guidelines to enable researchers to conduct high-quality, reproducible, and transparent microbiota studies, focusing on 16S rRNA sequencing in the emerging subfield of the stroke-microbiota. In doing so, we aim to facilitate novel and reproducible associations between the microbiota and brain diseases, including stroke, and translation into clinical practice.
Collapse
Affiliation(s)
- Adam Sorbie
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität, Feodor-Lynen-Straße 81377, Munich, Germany
| | - Rosa Delgado Jiménez
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität, Feodor-Lynen-Straße 81377, Munich, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität, Feodor-Lynen-Straße 81377, Munich, Germany
| |
Collapse
|
820
|
Zhou H, He K, Chen J, Zhang X. LinDA: linear models for differential abundance analysis of microbiome compositional data. Genome Biol 2022; 23:95. [PMID: 35421994 PMCID: PMC9012043 DOI: 10.1186/s13059-022-02655-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Differential abundance analysis is at the core of statistical analysis of microbiome data. The compositional nature of microbiome sequencing data makes false positive control challenging. Here, we show that the compositional effects can be addressed by a simple, yet highly flexible and scalable, approach. The proposed method, LinDA, only requires fitting linear regression models on the centered log-ratio transformed data, and correcting the bias due to compositional effects. We show that LinDA enjoys asymptotic FDR control and can be extended to mixed-effect models for correlated microbiome data. Using simulations and real examples, we demonstrate the effectiveness of LinDA.
Collapse
Affiliation(s)
- Huijuan Zhou
- Shanghai University of Finance and Economics, Shanghai, 200437 China
- Texas A&M University, College Station, 77843 USA
- Renmin University of China, Beijing, 100872 China
| | - Kejun He
- Renmin University of China, Beijing, 100872 China
| | | | | |
Collapse
|
821
|
Fecal DNA Virome Is Associated with the Development of Colorectal Neoplasia in a Murine Model of Colorectal Cancer. Pathogens 2022; 11:pathogens11040457. [PMID: 35456132 PMCID: PMC9025118 DOI: 10.3390/pathogens11040457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/31/2022] Open
Abstract
Alteration of the gut virome has been associated with colorectal cancer (CRC); however, when and how the alteration takes place has not been studied. Here, we employ a longitudinal study in mice to characterize the gut virome alteration in azoxymethane (AOM)-induced colorectal neoplasia and identify important viruses associated with tumor growth. The number and size of the tumors increased as the mice aged in the AOM treated group, as compared to the control group. Tumors were first observed in the AOM group at week 12. We observed a significantly lower alpha diversity and shift in viral profile when tumors first appeared. In addition, we identified novel viruses from the genera Brunovirus, Hpunavirus that are positively associated with tumor growth and enriched at a late time point in AOM group, whereas members from Lubbockvirus show a negative correlation with tumor growth. Moreover, network analysis revealed two clusters of viruses in the AOM virome, a group that is positively correlated with tumor growth and another that is negatively correlated with tumor growth, all of which are bacteriophages. Our findings suggest that the gut virome changes along with tumor formation and provides strong evidence of a potential role for bacteriophage in the development of colorectal neoplasia.
Collapse
|
822
|
Kheirandish P, Petri RM, Sener-Aydemir A, Schwartz-Zimmermann HE, Berthiller F, Zebeli Q, Pacífico C. Characterization of Microbial Intolerances and Ruminal Dysbiosis Towards Different Dietary Carbohydrate Sources Using an in vitro Model. J Appl Microbiol 2022; 133:458-476. [PMID: 35396778 PMCID: PMC9545568 DOI: 10.1111/jam.15573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to characterize the critical points for determining the development of dysbiosis associated with feed intolerances and ruminal acidosis. METHODS AND RESULTS A metabologenomics approach was used to characterize dynamic microbial and metabolomics shifts using the rumen simulation technique (RUSITEC) by feeding native cornstarch (ST), chemically-modified cornstarch (CMS), or sucrose (SU). SU and CMS elicited the most drastic changes as rapidly as 4 h after feeding. This was accompanied by a swift accumulation of D-lactate, and the decline of benzoic and malonic acid. A consistent increase in Bifidobacterium and Lactobacillus as well as a decrease in fibrolytic bacteria was observed for both CMS and ST after 24 h, indicating intolerances within the fiber degrading populations. However, an increase in Lactobacillus was already evident in SU after 8 h. An inverse relationship between Fibrobacter and Bifidobacterium was observed in ST. In fact, Fibrobacter was positively correlated with several short-chain fatty acids (SCFA), while Lactobacillus was positively correlated with lactic acid, hexoses, hexose-phosphates, pentose phosphate pathway (PENTOSE-P-PWY) and heterolactic fermentation (P122-PWY). CONCLUSIONS The feeding of sucrose and modified starches, followed by native cornstarch, had a strong disruptive effect in the ruminal microbial community. Feed intolerances were shown to develop at different rates based on the availability of glucose for ruminal microorganisms. SIGNIFICANCE OF THE STUDY These results can be used to establish patterns of early dysbiosis (biomarkers) and develop strategies for preventing undesirable shifts in the ruminal microbial ecosystem.
Collapse
Affiliation(s)
- Parisa Kheirandish
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Renee Maxine Petri
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Canada
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Heidi Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
823
|
Aguilar-Lopez M, Wetzel C, MacDonald A, Ho TTB, Donovan SM. Metagenomic profile of the fecal microbiome of preterm infants consuming mother's own milk with bovine milk-based fortifier or infant formula: a cross-sectional study. Am J Clin Nutr 2022; 116:435-445. [PMID: 35383822 PMCID: PMC9638768 DOI: 10.1093/ajcn/nqac081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Preterm (PT) infants harbor a different gut microbiome than full-term infants. Multiple factors affect gut microbial colonization of PT infants, including low gestational age, high rates of Cesarean section, exposure to antibiotics, and diet. Human milk, whether it's mother's own milk (MOM) or donor human milk, is the preferred feeding mode for PT infants but needs to be fortified to achieve adequate nutrient content. Infant formulas are introduced at later stages if human milk is insufficient or unavailable. How these dietary exposures affect the gut microbiome of PT infants is poorly understood. OBJECTIVES The goal of this study was to evaluate the metagenomic potential of the fecal microbiome of PT infants consuming MOM with bovine milk-based fortifier compared with PT formula alone. METHODS Forty-two stool samples, from 27 infants consuming MOM or formula (21 samples in each group) were included. Twelve infants had repeated sampling (2-3 samples). Shotgun genomic DNA sequencing was performed and analyzed using MetaPhlAn and HUMAnN2. Multivariate regression analysis, adjusting by the repeated sampling, was used to identify the features that differed between PT infants consuming MOM compared with formula. RESULTS The primary function of the fecal microbiome of PT infants was characterized by a high abundance of biosynthesis pathways. A set of core features was identified; these belonged to pathways for amino acid metabolism and vitamin K-2 biosynthesis. Five pathways significantly differed between the MOM and formula group. Pathways for fatty acid and carbohydrate degradation were significantly higher in the MOM group. Taxonomically, members of the phylum Actinobacteria and the genus Bifidobacterium were higher in PT infants exposed to MOM. CONCLUSIONS This study provides insight into the influence of feeding MOM compared with infant formula on the structure and function of the fecal microbiome of PT infants.
Collapse
Affiliation(s)
- Miriam Aguilar-Lopez
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | - Thao T B Ho
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
824
|
Wu F, Liu YZ, Ling B. MTD: a unique pipeline for host and meta-transcriptome joint and integrative analyses of RNA-seq data. Brief Bioinform 2022; 23:6563416. [PMID: 35380623 PMCID: PMC9116375 DOI: 10.1093/bib/bbac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ribonucleic acid (RNA)-seq data contain not only host transcriptomes but also nonhost information that comprises transcripts from active microbiota in the host cells. Therefore, joint and integrative analyses of both host and meta-transcriptome can reveal gene expression of the microbial community in a given sample as well as the correlative and interactive dynamics of the host response to the microbiome. However, there are no convenient tools that can systemically analyze host-microbiota interactions through simultaneously quantifying the host and meta-transcriptome in the same sample at the tissue and the single-cell level. This poses a challenge for interested researchers with limited expertise in bioinformatics. Here, we developed a software pipeline that can comprehensively and synergistically analyze and correlate the host and meta-transcriptome in a single sample using bulk and single-cell RNA-seq data. This pipeline, named meta-transcriptome detector (MTD), can extensively identify and quantify microbiome, including viruses, bacteria, protozoa, fungi, plasmids and vectors, in the host cells and correlate the microbiome with the host transcriptome. MTD is easy to install and run, involving only a few lines of simple commands. It offers researchers with unique genomics insights into host responses to microorganisms.
Collapse
Affiliation(s)
- Fei Wu
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA.,Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yao-Zhong Liu
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Binhua Ling
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| |
Collapse
|
825
|
Yousaf NY, Wu G, Melis M, Mastinu M, Contini C, Cabras T, Tomassini Barbarossa I, Zhao L, Lam YY, Tepper BJ. Daily Exposure to a Cranberry Polyphenol Oral Rinse Alters the Oral Microbiome but Not Taste Perception in PROP Taster Status Classified Individuals. Nutrients 2022; 14:nu14071492. [PMID: 35406108 PMCID: PMC9002539 DOI: 10.3390/nu14071492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Diet and salivary proteins influence the composition of the oral microbiome, and recent data suggest that TAS2R38 bitter taste genetics may also play a role. We investigated the effects of daily exposure to a cranberry polyphenol oral rinse on taste perception, salivary proteins, and oral microbiota. 6-n-Propylthiouracil (PROP) super-tasters (ST, n = 10) and non-tasters (NT, n = 10) rinsed with 30 mL of 0.75 g/L cranberry polyphenol extract (CPE) in spring water, twice daily for 11 days while consuming their habitual diets. The 16S rRNA gene sequencing showed that the NT oral microbiome composition was different than that of STs at baseline (p = 0.012) but not after the intervention (p = 0.525). Principal coordinates analysis using unweighted UniFrac distance showed that CPE modified microbiome composition in NTs (p = 0.023) but not in STs (p = 0.096). The intervention also altered specific salivary protein levels (α-amylase, MUC-5B, and selected S-type Cystatins) with no changes in sensory perception. Correlation networks between oral microbiota, salivary proteins, and sensory ratings showed that the ST microbiome had a more complex relationship with salivary proteins, particularly proline-rich proteins, than that in NTs. These findings show that CPE modulated the oral microbiome of NTs to be similar to that of STs, which could have implications for oral health.
Collapse
Affiliation(s)
- Neeta Y. Yousaf
- Department of Food Science & Center for Sensory Sciences & Innovation, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Guojun Wu
- Department of Biochemistry and Microbiology, Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (L.Z.)
| | - Melania Melis
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.M.); (M.M.); (I.T.B.)
| | - Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.M.); (M.M.); (I.T.B.)
| | - Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.C.); (T.C.)
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.C.); (T.C.)
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.M.); (M.M.); (I.T.B.)
| | - Liping Zhao
- Department of Biochemistry and Microbiology, Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (L.Z.)
| | - Yan Y. Lam
- Department of Biochemistry and Microbiology, Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (L.Z.)
- Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Correspondence: (Y.Y.L.); (B.J.T.); Tel.: +1-852-3411-2922 (Y.Y.L.); +1-848-932-5417 (B.J.T.)
| | - Beverly J. Tepper
- Department of Food Science & Center for Sensory Sciences & Innovation, Rutgers University, New Brunswick, NJ 08901, USA;
- Correspondence: (Y.Y.L.); (B.J.T.); Tel.: +1-852-3411-2922 (Y.Y.L.); +1-848-932-5417 (B.J.T.)
| |
Collapse
|
826
|
Medel-Matus JS, Lagishetty V, Santana-Gomez C, Shin D, Mowrey W, Staba RJ, Galanopoulou AS, Sankar R, Jacobs JP, Mazarati AM. Susceptibility to epilepsy after traumatic brain injury is associated with preexistent gut microbiome profile. Epilepsia 2022; 63:1835-1848. [PMID: 35366338 DOI: 10.1111/epi.17248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We examined whether post-traumatic epilepsy (PTE) is associated with measurable perturbations in gut microbiome. METHODS Adult Sprague-Dawley rats were subjected to Lateral Fluid Percussion Injury (LFPI). PTE was examined 7 months after LFPI, during a 4-week continuous video-EEG monitoring. 16S ribosomal ribonucleic acid gene sequencing was performed in fecal samples collected before LFPI/sham-LFPI and 1 week, 1 and 7 months thereafter. Longitudinal analyses of alpha diversity, beta diversity, and differential microbial abundance were performed. Short-chain fatty acids (SCFA) were measured in fecal samples collected before LFPI by Liquid Chromatography with Tandem Mass Spectrometry. RESULTS Alpha diversity changed over time in both LFPI and sham-LFPI subjects; no association was observed between alpha diversity and LFPI, the severity of post-LFPI neuromotor impairments, and PTE. LFPI produced significant changes in beta diversity and selective changes in microbial abundances associated with the severity of neuromotor impairments. No association between LFPI-dependent microbial perturbations and PTE was detected. PTE was associated with beta diversity irrespective of timepoint vis-à-vis LFPI, including at baseline. Preexistent fecal microbial abundances of four amplicon sequence variants belonging to the Lachnospiraceae family (three enriched and one depleted) predicted the risk of PTE with area under the curve (AUC) of 0.73. Global SCFA content was associated with the increased risk of PTE with AUC of 0.722, and with 2-Methylbutyric (depleted), valeric (depleted), isobutyric (enriched) and isovaleric (enriched) acids being most important factors (AUC of 0.717). When the analyses of baseline microbial and SCFA compositions were combined, AUC to predict PTE increased to 0.78. SIGNIFICANCE While LFPI produces no perturbations in the gut microbiome that are associated with PTE, the risk of PTE can be stratified based on preexistent microbial abundances and SCFA content.
Collapse
Affiliation(s)
- Jesus-Servando Medel-Matus
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA
| | - Venu Lagishetty
- Department of Medicine, DGSOM UCLA.,Microbiome Center, DGSOM UCLA
| | | | - Don Shin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA
| | - Wenzhu Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Aristea S Galanopoulou
- Saul Korey Department of Neurology, Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raman Sankar
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA.,Department of Neurology, DGSOM UCLA.,Children's Discovery and Innovation Institute, DGSOM UCLA
| | - Jonathan P Jacobs
- Department of Medicine, DGSOM UCLA.,Microbiome Center, DGSOM UCLA.,Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Andrey M Mazarati
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (DGSOM UCLA), Los Angeles, CA, USA.,Microbiome Center, DGSOM UCLA.,Children's Discovery and Innovation Institute, DGSOM UCLA
| |
Collapse
|
827
|
Strain identification and quantitative analysis in microbial communities. J Mol Biol 2022; 434:167582. [DOI: 10.1016/j.jmb.2022.167582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
|
828
|
Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm. Nat Ecol Evol 2022; 6:405-417. [PMID: 35256809 DOI: 10.1038/s41559-022-01686-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Identifying factors that influence how ectothermic animals respond physiologically to changing temperatures is of high importance given current threats of global climate change. Host-associated microbial communities impact animal physiology and have been shown to influence host thermal tolerance in invertebrate systems. However, the role of commensal microbiota in the thermal tolerance of ectothermic vertebrates is unknown. Here we show that experimentally manipulating the tadpole microbiome through environmental water sterilization reduces the host's acute thermal tolerance to both heat and cold, alters the thermal sensitivity of locomotor performance, and reduces animal survival under prolonged heat stress. We show that these tadpoles have reduced activities of mitochondrial enzymes and altered metabolic rates compared with tadpoles colonized with unmanipulated microbiota, which could underlie differences in thermal phenotypes. These results demonstrate a strong link between the microbiota of an ectothermic vertebrate and the host's thermal tolerance, performance and fitness. It may therefore be important to consider host-associated microbial communities when predicting species' responses to climate change.
Collapse
|
829
|
Mahalak KK, Bobokalonov J, Firrman J, Williams R, Evans B, Fanelli B, Soares JW, Kobori M, Liu L. Analysis of the Ability of Capsaicin to Modulate the Human Gut Microbiota In Vitro. Nutrients 2022; 14:nu14061283. [PMID: 35334939 PMCID: PMC8950947 DOI: 10.3390/nu14061283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
Previous studies on capsaicin, the bioactive compound in chili peppers, have shown that it may have a beneficial effect in vivo when part of a regular diet. These positive health benefits, including an anti-inflammatory potential and protective effects against obesity, are often attributed to the gut microbial community response to capsaicin. However, there is no consensus on the mechanism behind the protective effect of capsaicin. In this study, we used an in vitro model of the human gut microbiota to determine how regular consumption of capsaicin impacts the gut microbiota. Using a combination of NextGen sequencing and metabolomics, we found that regular capsaicin treatment changed the structure of the gut microbial community by increasing diversity and certain SCFA abundances, particularly butanoic acid. Through this study, we determined that the addition of capsaicin to the in vitro cultures of the human gut microbiome resulted in increased diversity of the microbial community and an increase in butanoic acid. These changes may be responsible for the health benefits associated with CAP consumption.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
- Correspondence: ; Tel.: +1-215-836-6922
| | - Jamshed Bobokalonov
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| | - Russell Williams
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; (R.W.); (B.E.)
| | - Bradley Evans
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; (R.W.); (B.E.)
| | - Brian Fanelli
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA;
| | - Jason W. Soares
- Soldier Effectiveness Directorate, US Army Combat Capabilities Development Command Soldier Center, Middlesex, MA 01760, USA;
| | - Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan;
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| |
Collapse
|
830
|
Mancabelli L, Milani C, Fontana F, Lugli GA, Tarracchini C, Turroni F, van Sinderen D, Ventura M. Mapping bacterial diversity and metabolic functionality of the human respiratory tract microbiome. J Oral Microbiol 2022; 14:2051336. [PMID: 35309410 PMCID: PMC8933033 DOI: 10.1080/20002297.2022.2051336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Background The Human Respiratory Tract (HRT) is colonized by various microbial taxa, known as HRT microbiota, in a manner that is indicative of mutualistic interaction between such microorganisms and their host. Aim To investigate the microbial composition of the HRT and its possible correlation with the different compartments of the respiratory tract. Methods In the current study, we performed an in-depth meta-analysis of 849 HRT samples from public shotgun metagenomic datasets obtained through several distinct collection methods. Results The statistical robustness provided by this meta-analysis allowed the identification of 13 possible HRT-specific Community State Types (CSTs), which appear to be specific to each anatomical region of the respiratory tract. Furthermore, functional characterization of the metagenomic datasets revealed specific microbial metabolic features correlating with the different compartments of the respiratory tract. Conclusion The meta-analysis here performed suggested that the variable presence of certain bacterial species seems to be linked to a location-related abundance gradient in the HRT and seems to be characterized by a specific microbial metabolic capability.
Collapse
Affiliation(s)
- Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma, Italy
| |
Collapse
|
831
|
Soriano S, Curry K, Sadrameli SS, Wang Q, Nute M, Reeves E, Kabir R, Wiese J, Criswell A, Schodrof S, Britz GW, Gadhia R, Podell K, Treangen T, Villapol S. Alterations to the gut microbiome after sport-related concussion in a collegiate football players cohort: A pilot study. Brain Behav Immun Health 2022; 21:100438. [PMID: 35284846 PMCID: PMC8914332 DOI: 10.1016/j.bbih.2022.100438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023] Open
Abstract
Concussions, both single and repetitive, cause brain and body alterations in athletes during contact sports. The role of the brain-gut connection and changes in the microbiota have not been well established after sports-related concussions or repetitive subconcussive impacts. We recruited 33 Division I Collegiate football players and collected blood, stool, and saliva samples at three time points throughout the athletic season: mid-season, following the last competitive game (post-season), and after a resting period in the off-season. Additional samples were collected from four athletes that suffered from a concussion. 16S rRNA sequencing of the gut microbiome revealed a decrease in abundance for two bacterial species, Eubacterium rectale, and Anaerostipes hadrus, after a diagnosed concussion. No significant differences were found regarding the salivary microbiome. Serum biomarker analysis shows an increase in GFAP blood levels in athletes during the competitive season. Additionally, S100β and SAA blood levels were positively correlated with the abundance of Eubacterium rectale species among the group of athletes that did not suffer a diagnosed concussion during the sports season. These findings provide initial evidence that detecting changes in the gut microbiome may help to improve concussion diagnosis following head injury. A longitudinal study following college football athletes across a sports season. Nanopore 16S rRNA sequencing of gut microbiome reveals changes after head injury. Serum biomarker GFAP increased during the competitive period of the season. S100β and SAA blood levels were positively correlated with Eubacterium rectale. Gut microbiota is suggested as a future biomarker for diagnosis following head injury.
Collapse
Affiliation(s)
- Sirena Soriano
- Department of Neurosurgery, Houston, TX, USA.,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Kristen Curry
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Qi Wang
- Department of Computer Science, Rice University, Houston, TX, USA.,Systems, Synthetic and Physical Biology Program, Rice University, TX, USA
| | - Michael Nute
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Elizabeth Reeves
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Rasadul Kabir
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Jonathan Wiese
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Amber Criswell
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Sarah Schodrof
- Department of Athletics, Rice University, Houston, TX, USA
| | - Gavin W Britz
- Department of Neurosurgery, Houston, TX, USA.,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Rajan Gadhia
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Kenneth Podell
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Todd Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Sonia Villapol
- Department of Neurosurgery, Houston, TX, USA.,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.,Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, NY, USA
| |
Collapse
|
832
|
Sim CK, Kashaf SS, Stacy A, Proctor DM, Almeida A, Bouladoux N, Chen M, Finn RD, Belkaid Y, Conlan S, Segre JA. A mouse model of occult intestinal colonization demonstrating antibiotic-induced outgrowth of carbapenem-resistant Enterobacteriaceae. MICROBIOME 2022; 10:43. [PMID: 35272717 PMCID: PMC8908617 DOI: 10.1186/s40168-021-01207-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/06/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND The human intestinal microbiome is a complex community that contributes to host health and disease. In addition to normal microbiota, pathogens like carbapenem-resistant Enterobacteriaceae may be asymptomatically present. When these bacteria are present at very low levels, they are often undetectable in hospital surveillance cultures, known as occult or subclinical colonization. Through the receipt of antibiotics, these subclinical pathogens can increase to sufficiently high levels to become detectable, in a process called outgrowth. However, little is known about the interaction between gut microbiota and Enterobacteriaceae during occult colonization and outgrowth. RESULTS We developed a clinically relevant mouse model for studying occult colonization. Conventional wild-type mice without antibiotic pre-treatment were exposed to Klebsiella pneumoniae but rapidly tested negative for colonization. This occult colonization was found to perturb the microbiome as detected by both 16S rRNA amplicon and shotgun metagenomic sequencing. Outgrowth of occult K. pneumoniae was induced either by a four-antibiotic cocktail or by individual receipt of ampicillin, vancomycin, or azithromycin, which all reduced overall microbial diversity. Notably, vancomycin was shown to trigger K. pneumoniae outgrowth in only a subset of exposed animals (outgrowth-susceptible). To identify factors that underlie outgrowth susceptibility, we analyzed microbiome-encoded gene functions and were able to classify outgrowth-susceptible microbiomes using pathways associated with mRNA stability. Lastly, an evolutionary approach illuminated the importance of xylose metabolism in K. pneumoniae colonization, supporting xylose abundance as a second susceptibility indicator. We showed that our model is generalizable to other pathogens, including carbapenem-resistant Escherichia coli and Enterobacter cloacae. CONCLUSIONS Our modeling of occult colonization and outgrowth could help the development of strategies to mitigate the risk of subsequent infection and transmission in medical facilities and the wider community. This study suggests that microbiota mRNA and small-molecule metabolites may be used to predict outgrowth-susceptibility. Video Abstract.
Collapse
Affiliation(s)
- Choon K Sim
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Present address: Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
- NIAID Microbiome Program, NIH, Bethesda, MD, 20892, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, NIH, Bethesda, MD, 20892, USA
| | - Diana M Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Alexandre Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
- NIAID Microbiome Program, NIH, Bethesda, MD, 20892, USA
| | - Mark Chen
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
- NIAID Microbiome Program, NIH, Bethesda, MD, 20892, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
833
|
Lee KA, Thomas AM, Bolte LA, Björk JR, de Ruijter LK, Armanini F, Asnicar F, Blanco-Miguez A, Board R, Calbet-Llopart N, Derosa L, Dhomen N, Brooks K, Harland M, Harries M, Leeming ER, Lorigan P, Manghi P, Marais R, Newton-Bishop J, Nezi L, Pinto F, Potrony M, Puig S, Serra-Bellver P, Shaw HM, Tamburini S, Valpione S, Vijay A, Waldron L, Zitvogel L, Zolfo M, de Vries EGE, Nathan P, Fehrmann RSN, Bataille V, Hospers GAP, Spector TD, Weersma RK, Segata N. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat Med 2022; 28:535-544. [PMID: 35228751 PMCID: PMC8938272 DOI: 10.1038/s41591-022-01695-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
The composition of the gut microbiome has been associated with clinical responses to immune checkpoint inhibitor (ICI) treatment, but there is limited consensus on the specific microbiome characteristics linked to the clinical benefits of ICIs. We performed shotgun metagenomic sequencing of stool samples collected before ICI initiation from five observational cohorts recruiting ICI-naive patients with advanced cutaneous melanoma (n = 165). Integrating the dataset with 147 metagenomic samples from previously published studies, we found that the gut microbiome has a relevant, but cohort-dependent, association with the response to ICIs. A machine learning analysis confirmed the link between the microbiome and overall response rates (ORRs) and progression-free survival (PFS) with ICIs but also revealed limited reproducibility of microbiome-based signatures across cohorts. Accordingly, a panel of species, including Bifidobacterium pseudocatenulatum, Roseburia spp. and Akkermansia muciniphila, associated with responders was identified, but no single species could be regarded as a fully consistent biomarker across studies. Overall, the role of the human gut microbiome in ICI response appears more complex than previously thought, extending beyond differing microbial species simply present or absent in responders and nonresponders. Future studies should adopt larger sample sizes and take into account the complex interplay of clinical factors with the gut microbiome over the treatment course.
Collapse
Affiliation(s)
- Karla A Lee
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Laura A Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Laura Kist de Ruijter
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | - Ruth Board
- Department of Oncology, Lancashire Teaching Hospitals NHS Trust, Preston, UK
| | - Neus Calbet-Llopart
- Dermatology Department, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Lisa Derosa
- U1015 INSERM, University Paris Saclay, Gustave Roussy Cancer Center and Oncobiome Network, Villejuif-Grand-Paris, France
| | - Nathalie Dhomen
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Kelly Brooks
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Mark Harland
- Division of Haematology and Immunology, Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Mark Harries
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS and University of Barcelona, Barcelona, Spain
- Department of Medical Oncology, Guys Cancer Centre, Guys and St Thomas's NHS Trust, London, UK
| | - Emily R Leeming
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Richard Marais
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Luigi Nezi
- European Institute of Oncology (Istituto Europeo di Oncologia, IRCSS), Milan, Italy
| | | | - Miriam Potrony
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS and University of Barcelona, Barcelona, Spain
| | - Susana Puig
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS and University of Barcelona, Barcelona, Spain
| | | | - Heather M Shaw
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Sabrina Tamburini
- European Institute of Oncology (Istituto Europeo di Oncologia, IRCSS), Milan, Italy
| | - Sara Valpione
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Amrita Vijay
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Rheumatology & Orthopaedics Division, School of Medicine, University of Nottingham, Nottingham, UK
| | - Levi Waldron
- Department CIBIO, University of Trento, Trento, Italy
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Laurence Zitvogel
- U1015 INSERM, University Paris Saclay, Gustave Roussy Cancer Center and Oncobiome Network, Villejuif-Grand-Paris, France
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Paul Nathan
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS and University of Barcelona, Barcelona, Spain
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Véronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, Mount Vernon Cancer Centre, Northwood, UK
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- European Institute of Oncology (Istituto Europeo di Oncologia, IRCSS), Milan, Italy.
| |
Collapse
|
834
|
Gehrig JL, Portik DM, Driscoll MD, Jackson E, Chakraborty S, Gratalo D, Ashby M, Valladares R. Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb Genom 2022; 8:000794. [PMID: 35302439 PMCID: PMC9176275 DOI: 10.1099/mgen.0.000794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A long-standing challenge in human microbiome research is achieving the taxonomic and functional resolution needed to generate testable hypotheses about the gut microbiota's impact on health and disease. With a growing number of live microbial interventions in clinical development, this challenge is renewed by a need to understand the pharmacokinetics and pharmacodynamics of therapeutic candidates. While short-read sequencing of the bacterial 16S rRNA gene has been the standard for microbiota profiling, recent improvements in the fidelity of long-read sequencing underscores the need for a re-evaluation of the value of distinct microbiome-sequencing approaches. We leveraged samples from participants enrolled in a phase 1b clinical trial of a novel live biotherapeutic product to perform a comparative analysis of short-read and long-read amplicon and metagenomic sequencing approaches to assess their utility for generating clinical microbiome data. Across all methods, overall community taxonomic profiles were comparable and relationships between samples were conserved. Comparison of ubiquitous short-read 16S rRNA amplicon profiling to long-read profiling of the 16S-ITS-23S rRNA amplicon showed that only the latter provided strain-level community resolution and insight into novel taxa. All methods identified an active ingredient strain in treated study participants, though detection confidence was higher for long-read methods. Read coverage from both metagenomic methods provided evidence of active-ingredient strain replication in some treated participants. Compared to short-read metagenomics, approximately twice the proportion of long reads were assigned functional annotations. Finally, compositionally similar bacterial metagenome-assembled genomes (MAGs) were recovered from short-read and long-read metagenomic methods, although a greater number and more complete MAGs were recovered from long reads. Despite higher costs, both amplicon and metagenomic long-read approaches yielded added microbiome data value in the form of higher confidence taxonomic and functional resolution and improved recovery of microbial genomes compared to traditional short-read methodologies.
Collapse
Affiliation(s)
| | | | | | - Eric Jackson
- Shoreline Biome, 400 Farmington Ave, Farmington, CT 06032, USA
| | | | - Dawn Gratalo
- Shoreline Biome, 400 Farmington Ave, Farmington, CT 06032, USA
| | - Meredith Ashby
- Pacific Biosciences, 1305 O’Brien Dr, Menlo Park, CA 93025, USA
| | - Ricardo Valladares
- Siolta Therapeutics, 930 Brittan Ave, San Carlos, CA 94070, USA
- *Correspondence: Ricardo Valladares,
| |
Collapse
|
835
|
Paik D, Yao L, Zhang Y, Bae S, D'Agostino GD, Zhang M, Kim E, Franzosa EA, Avila-Pacheco J, Bisanz JE, Rakowski CK, Vlamakis H, Xavier RJ, Turnbaugh PJ, Longman RS, Krout MR, Clish CB, Rastinejad F, Huttenhower C, Huh JR, Devlin AS. Human gut bacteria produce Τ Η17-modulating bile acid metabolites. Nature 2022; 603:907-912. [PMID: 35296854 PMCID: PMC9132548 DOI: 10.1038/s41586-022-04480-z] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/27/2022] [Indexed: 01/14/2023]
Abstract
The microbiota modulates gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17A (TH17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits TH17 cell differentiation1. Although it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown, and it was unclear whether 3-oxoLCA and other immunomodulatory bile acids are associated with inflammatory pathologies in humans. Here we identify human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Similar to 3-oxoLCA, isoLCA suppressed TH17 cell differentiation by inhibiting retinoic acid receptor-related orphan nuclear receptor-γt, a key TH17-cell-promoting transcription factor. The levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase genes that are required for their biosynthesis were significantly reduced in patients with inflammatory bowel disease. Moreover, the levels of these bile acids were inversely correlated with the expression of TH17-cell-associated genes. Overall, our data suggest that bacterially produced bile acids inhibit TH17 cell function, an activity that may be relevant to the pathophysiology of inflammatory disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sena Bae
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Minghao Zhang
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Jordan E Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Randy S Longman
- Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, USA
| | - Michael R Krout
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
836
|
Habitual Dietary Fiber Intake, Fecal Microbiota, and Hemoglobin A1c Level in Chinese Patients with Type 2 Diabetes. Nutrients 2022; 14:nu14051003. [PMID: 35267978 PMCID: PMC8912884 DOI: 10.3390/nu14051003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
High-fiber diet interventions have been proven to be beneficial for gut microbiota and glycemic control in diabetes patients. However, the effect of a low level of fiber in habitual diets remains unclear. This study aims to examine the associations of habitual dietary fiber intake with gut microbiome profiles among Chinese diabetes patients and identify differential taxa that mediated associations of dietary fiber with HbA1c level. Two cross-sectional studies and one longitudinal study were designed based on two follow-up surveys in a randomized trial conducted during 2015−2017. The study included 356 and 310 participants in the first and second follow-ups, respectively, with 293 participants in common in both surveys. Dietary fiber intake was calculated based on a 3-day 24-h diet recall at each survey and was classified into a lower or a higher group according to the levels taken based on the two surveys using 7.2 g/day as a cut-off value. HbA1c was assayed to assess glycemic status using a cut-off point of 7.0% and 8.0%. Microbiome was profiled by 16S rRNA sequencing. A high habitual dietary fiber intake was associated with a decrease in α-diversity in both the cross-sectional and longitudinal analyses. At the first follow−up, phylum Firmicutes and Fusobacteria were negatively associated with a higher dietary fiber intake (p < 0.05, Q < 0.15); at the second follow-up, genus Adlercreutzia, Prevotella, Ruminococcus, and Desulfovibrio were less abundant in patients taking higher dietary fiber (p < 0.05, Q < 0.15); genus Desulfovibrio and Ruminococcaceae (Unknown), two identified differential taxa by HbA1c level, were negatively associated with dietary fiber intake in both the cross-sectional and longitudinal analyses, and mediated the dietary fiber-HbA1c associations among patients taking dietary fiber ≥ 7.2 g/day (mediation effect β [95%CI]: −0.019 [−0.043, −0.003], p = 0.018 and −0.019 [−0.046, −0.003], p = 0.016). Our results suggest that habitual dietary fiber intake has a beneficial effect on gut microbiota in Chinese diabetes patients. Further studies are needed to confirm our results.
Collapse
|
837
|
Tamburini FB, Maghini D, Oduaran OH, Brewster R, Hulley MR, Sahibdeen V, Norris SA, Tollman S, Kahn K, Wagner RG, Wade AN, Wafawanaka F, Gómez-Olivé FX, Twine R, Lombard Z, Hazelhurst S, Bhatt AS. Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa. Nat Commun 2022; 13:926. [PMID: 35194028 PMCID: PMC8863827 DOI: 10.1038/s41467-021-27917-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human gut microbiome research focuses on populations living in high-income countries and to a lesser extent, non-urban agriculturalist and hunter-gatherer societies. The scarcity of research between these extremes limits our understanding of how the gut microbiota relates to health and disease in the majority of the world's population. Here, we evaluate gut microbiome composition in transitioning South African populations using short- and long-read sequencing. We analyze stool from adult females living in rural Bushbuckridge (n = 118) or urban Soweto (n = 51) and find that these microbiomes are taxonomically intermediate between those of individuals living in high-income countries and traditional communities. We demonstrate that reference collections are incomplete for characterizing microbiomes of individuals living outside high-income countries, yielding artificially low beta diversity measurements, and generate complete genomes of undescribed taxa, including Treponema, Lentisphaerae, and Succinatimonas. Our results suggest that the gut microbiome of South Africans does not conform to a simple "western-nonwestern" axis and contains undescribed microbial diversity.
Collapse
Affiliation(s)
| | - Dylan Maghini
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Ryan Brewster
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Michaella R Hulley
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, School of Pathology, Faculty of Health Sciences, National Health Laboratory Service & University of the Witwatersrand, Johannesburg, South Africa
| | - Venesa Sahibdeen
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, National Health Laboratory Service & University of the Witwatersrand, Johannesburg, South Africa
| | - Shane A Norris
- SAMRC Developmental Pathways for Health Research Unit, Department of Paediatrics, University of the Witwatersrand, Johannesburg, South Africa.,School of Human Development and Health, University of Southampton, Southampton, UK
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,INDEPTH Network, East Legon, Accra, Ghana
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,INDEPTH Network, East Legon, Accra, Ghana
| | - Ryan G Wagner
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,INDEPTH Network, East Legon, Accra, Ghana
| | - Alisha N Wade
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,INDEPTH Network, East Legon, Accra, Ghana
| | - Rhian Twine
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, National Health Laboratory Service & University of the Witwatersrand, Johannesburg, South Africa
| | | | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa. .,School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA. .,School of Medicine, Stanford University, Stanford, CA, USA. .,Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA.
| |
Collapse
|
838
|
Kathrani A, Yen S, Swann JR, Hall EJ. The effect of a hydrolyzed protein diet on the fecal microbiota in cats with chronic enteropathy. Sci Rep 2022; 12:2746. [PMID: 35177696 PMCID: PMC8854717 DOI: 10.1038/s41598-022-06576-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
The effect of a hydrolyzed protein diet on the fecal microbiota has not been studied in feline chronic enteropathy (CE). Our study aimed to (1) compare the fecal microbiota of cats with CE to control cats with no gastrointestinal signs and (2) determine the effect of a hydrolyzed protein diet on the fecal microbiota of cats with CE and whether this differs between dietary responders and non-responders. The fecal microbiome of cats with CE (n = 36) showed decreased α-diversity in terms of genus richness (P = 0.04) and increased β-diversity in terms of Bray-Curtis Dissimilarity (P < 0.001) compared to control cats (n = 14). Clostridium was the only genera significantly over-represented in cats with CE compared to control cats (adjusted P < 0.1). After 6-weeks of feeding the diet, fifteen cats were classified as responders and 18 as non-responders, based on clinical signs. At the genus level, α-diversity was increased in non-responders versus responders at diagnosis, but decreased after dietary intervention in both groups (P < 0.05). At the family level, non-responders became increasingly dissimilar after dietary intervention (P = 0.012). In general, the abundance of bacteria decreased with feeding a hydrolyzed diet, with the genera most significantly affected being more frequently observed in non-responders. Bifidobacterium was the only genus that increased significantly in abundance post-diet and this effect was observed in both responders and non-responders. Both Oscillibacter and Desulfovibrionaceae_unclassified were most abundant in non-responders at diagnosis but were rarely observed post diet in neither responders nor non-responders. Cats with CE had similar microbiota changes to those described in human inflammatory bowel disease. Whether the presence of Oscillibacter and Desulfovibrionaceae_unclassified are indicators of non-response to the diet at diagnosis requires further investigation. Despite the hydrolyzed diet reducing α-diversity in all cats with CE, this did not resolve gastrointestinal signs in some cats. However, responders metabolized the diet in a similar manner, reflected by sustained β-diversity, while the microbiome of non-responders became increasingly dissimilar compared to diagnosis at the family level. Therefore, the microbiome may not be as tightly regulated in cats with CE that are non-responders and therefore, these cats would require additional therapy for remission of clinical signs.
Collapse
Affiliation(s)
- Aarti Kathrani
- Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK.
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Department of Surgery and Cancer, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| | - Edward J Hall
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 5DU, UK
| |
Collapse
|
839
|
Wang DD, Qi Q, Wang Z, Usyk M, Sotres-Alvarez D, Mattei J, Tamez M, Gellman MD, Daviglus M, Hu FB, Stampfer MJ, Huttenhower C, Knight R, Burk RD, Kaplan RC. The Gut Microbiome Modifies the Association Between a Mediterranean Diet and Diabetes in USA Hispanic/ Latino Population. J Clin Endocrinol Metab 2022; 107:e924-e934. [PMID: 34747479 PMCID: PMC8851916 DOI: 10.1210/clinem/dgab815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 01/02/2023]
Abstract
CONTEXT The interrelationships among the gut microbiome, the Mediterranean diet (MedDiet), and a clinical endpoint of diabetes is unknown. OBJECTIVE To identify gut microbial features of a MedDiet and examine whether the association between MedDiet and diabetes varies across individuals with different gut microbial profiles. METHODS This study included 543 diabetic, 805 prediabetic, and 394 normoglycemic participants from a cohort study of USA Hispanic/Latino men and women. Fecal samples were profiled using 16S rRNA gene sequencing. Adherence to MedDiet was evaluated by an index based on 2 24-hour dietary recalls. RESULTS A greater MedDiet adherence was associated with higher abundances of major dietary fiber metabolizers (e.g., Faecalibacterium prausnitzii, false-discovery-rate-adjusted P [q] = 0.01), and lower abundances of biochemical specialists (e.g., Parabacteroides, q = 0.04). The gut microbiomes of participants with greater MedDiet adherence were enriched for functions involved in dietary fiber degradation but depleted for those related to sulfur reduction and lactose and galactose degradation. The associations between MedDiet adherence and diabetes prevalence were significantly stronger among participants with depleted abundance of Prevotella (pinteraction = 0.03 for diabetes, 0.02 for prediabetes/diabetes, and 0.02 for prediabetes). A 1-SD deviation increment in the MedDiet index was associated with 24% (odds ratio [OR] 0.76; 95% CI, 0.59-0.98) and 7% (OR 0.93; 95% CI, 0.72-1.20) lower odds of diabetes in Prevotella noncarriers and carriers, respectively. CONCLUSION Adherence to MedDiet is associated with diverse gut microorganisms and microbial functions. The inverse association between the MedDiet and diabetes prevalence varies significantly depending on gut microbial composition.
Collapse
Affiliation(s)
- Dong D Wang
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Correspondence: Robert C. Kaplan, PhD, Professor, Department of Epidemiology & Population Health, Dorothy and William Manealoff Foundation and Molly Rosen Chair in Social Medicine, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Belfer Building, Room 1315, Bronx, NY 10461, USA. ; or Dong D. Wang, MD, ScD, Assistant Professor, The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 3rd Floor, 181 Longwood Avenue, Boston, MA 02115, USA. E-mail:
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mykhaylo Usyk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniela Sotres-Alvarez
- Department of Biostatistics, Collaborative Studies Coordinator Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josiemer Mattei
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha Tamez
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc D Gellman
- Department of Psychology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Martha Daviglus
- Institute of Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Frank B Hu
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Meir J Stampfer
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
840
|
Abstract
Cognitive impairment (CI) is among the most common non-motor symptoms of Parkinson’s disease (PD), with a substantially negative impact on patient management and outcome. The development and progression of CI exhibits high interindividual variability, which requires better diagnostic and monitoring strategies. PD patients often display sweating disorders resulting from autonomic dysfunction, which has been associated with CI. Because the axillary microbiota is known to change with humidity level and sweat composition, we hypothesized that the axillary microbiota of PD patients shifts in association with CI progression, and thus can be used as a proxy for classification of CI stages in PD. We compared the axillary microbiota compositions of 103 PD patients (55 PD patients with dementia [PDD] and 48 PD patients with mild cognitive impairment [PD-MCI]) and 26 cognitively normal healthy controls (HC). We found that axillary microbiota profiles differentiate HC, PD-MCI, and PDD groups based on differential ranking analysis, and detected an increasing trend in the log ratio of Corynebacterium to Anaerococcus in progression from HC to PDD. In addition, phylogenetic factorization revealed that the depletion of the Anaerococcus, Peptoniphilus, and W5053 genera is associated with PD-MCI and PDD. Moreover, functional predictions suggested significant increases in myo-inositol degradation, ergothioneine biosynthesis, propionate biosynthesis, menaquinone biosynthesis, and the proportion of aerobic bacteria and biofilm formation capacity, in parallel to increasing CI. Our results suggest that alterations in axillary microbiota are associated with CI in PD. Thus, axillary microbiota has the potential to be exploited as a noninvasive tool in the development of novel strategies. IMPORTANCE Parkinson's disease (PD) is the second most common neurodegenerative disease. Cognitive impairment (CI) in PD has significant negative impacts on life quality of patients. The emergence and progression of cognitive impairment shows high variability among PD patients, and thus requires better diagnostic and monitoring strategies. Recent findings indicate a close link between autonomic dysfunction and cognitive impairment. Since thermoregulatory dysfunction and skin changes are among the main manifestations of autonomic dysfunction in PD, we hypothesized that alterations in the axillary microbiota may be useful for tracking cognitive impairment stages in PD. To our knowledge, this the first study characterizing the axillary microbiota of PD patients and exploring its association with cognitive impairment stages in PD. Future studies should include larger cohorts and multicenter studies to validate our results and investigate potential biological mechanisms.
Collapse
|
841
|
Sun T, Li M, Yu X, Liang D, Xie G, Sang C, Jia W, Chen T. 3MCor: an integrative web server for metabolome-microbiome-metadata correlation analysis. Bioinformatics 2022; 38:1378-1384. [PMID: 34874987 DOI: 10.1093/bioinformatics/btab818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION The metabolome and microbiome disorders are highly associated with human health, and there are great demands for dual-omics interaction analysis. Here, we designed and developed an integrative platform, 3MCor, for metabolome and microbiome correlation analysis under the instruction of phenotype and with the consideration of confounders. RESULTS Many traditional and novel correlation analysis methods were integrated for intra- and inter-correlation analysis. Three inter-correlation pipelines are provided for global, hierarchical and pairwise analysis. The incorporated network analysis function is conducive to rapid identification of network clusters and key nodes from a complicated correlation network. Complete numerical results (csv files) and rich figures (pdf files) will be generated in minutes. To our knowledge, 3MCor is the first platform developed specifically for the correlation analysis of metabolome and microbiome. Its functions were compared with corresponding modules of existing omics data analysis platforms. A real-world dataset was used to demonstrate its simple and flexible operation, comprehensive outputs and distinctive contribution to dual-omics studies. AVAILABILITYAND IMPLEMENTATION 3MCor is available at http://3mcor.cn and the backend R script is available at https://github.com/chentianlu/3MCorServer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tao Sun
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dandan Liang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong 518109, China
| | - Chao Sang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
842
|
Cheng Y, Selma-Royo M, Cao X, Calatayud M, Qi Q, Zhou J, Zeng L, Garcia-Mantrana I, Collado MC, Han B. Influence of Geographical Location on Maternal-Infant Microbiota: Study in Two Populations From Asia and Europe. Front Cell Infect Microbiol 2022; 11:663513. [PMID: 35186776 PMCID: PMC8855098 DOI: 10.3389/fcimb.2021.663513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Early gut microbial colonization is driven by many factors, including mode of birth, breastfeeding, and other environmental conditions. Characters of maternal-neonatal microbiota were analyzed from two distinct populations in similar latitude but different continents (Oriental Asia and Europe). A total number of 120 healthy families from China (n=60) and Spain (n=60) were included. Maternal and neonatal microbiota profiles were obtained at birth by 16S rRNA gene profiling. Clinical records were collected. Geographical location influenced maternal-neonatal microbiota. Indeed, neonatal and maternal cores composed by nine genera each one were found independently of location. Geographical location was the most important variable that impact the overall structure of maternal and neoantal microbiota. For neonates, delivery mode effect on neonatal microbial community could modulate how the other perinatal factors, as geographical location or maternal BMI, impact the neoantal initial seeding. Furthermore, lower maternal pre-pregnancy BMI was associated with higher abundance of Faecalibacterium in maternal microbiota and members from Lachnospiraceae family in both mothers and infants. At genus-level, Chinese maternal-neonate dyads possessed higher number of phylogenetic shared microbiota than that of Spanish dyads. Bifidobacterium and Escherichia/Shigella were the genera most shared between dyads in the two groups highlighting their importance in neonatal colonization and mother-infant transmission. Our data showed that early gut microbiota establishment and development is affected by interaction of complex variables, where environment would be a critical factor.
Collapse
Affiliation(s)
- Yue Cheng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Xin Cao
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Marta Calatayud
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Qi Qi
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lingxia Zeng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Izaskun Garcia-Mantrana
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
843
|
Liu NN, Jiao N, Tan JC, Wang Z, Wu D, Wang AJ, Chen J, Tao L, Zhou C, Fang W, Cheong IH, Pan W, Liao W, Kozlakidis Z, Heeschen C, Moore GG, Zhu L, Chen X, Zhang G, Zhu R, Wang H. Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol 2022; 7:238-250. [PMID: 35087227 PMCID: PMC8813618 DOI: 10.1038/s41564-021-01030-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Despite recent progress in our understanding of the association between the gut microbiome and colorectal cancer (CRC), multi-kingdom gut microbiome dysbiosis in CRC across cohorts is unexplored. We investigated four-kingdom microbiota alterations using CRC metagenomic datasets of 1,368 samples from 8 distinct geographical cohorts. Integrated analysis identified 20 archaeal, 27 bacterial, 20 fungal and 21 viral species for each single-kingdom diagnostic model. However, our data revealed superior diagnostic accuracy for models constructed with multi-kingdom markers, in particular the addition of fungal species. Specifically, 16 multi-kingdom markers including 11 bacterial, 4 fungal and 1 archaeal feature, achieved good performance in diagnosing patients with CRC (area under the receiver operating characteristic curve (AUROC) = 0.83) and maintained accuracy across 3 independent cohorts. Coabundance analysis of the ecological network revealed associations between bacterial and fungal species, such as Talaromyces islandicus and Clostridium saccharobutylicum. Using metagenome shotgun sequencing data, the predictive power of the microbial functional potential was explored and elevated D-amino acid metabolism and butanoate metabolism were observed in CRC. Interestingly, the diagnostic model based on functional EggNOG genes achieved high accuracy (AUROC = 0.86). Collectively, our findings uncovered CRC-associated microbiota common across cohorts and demonstrate the applicability of multi-kingdom and functional markers as CRC diagnostic tools and, potentially, as therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Jiao
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziliang Wang
- Clinical Medicine Transformation Center and Office of Academic Research, Shanghai Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Dingfeng Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Bioinformatics Division, GloriousMed Clinical Laboratory Co., Ltd, Shanghai, China
| | - An-Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Tao
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenfen Zhou
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Io Hong Cheong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Christopher Heeschen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| | - Guoqing Zhang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Ruixin Zhu
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China.
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Bioinformatics Division, GloriousMed Clinical Laboratory Co., Ltd, Shanghai, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
844
|
de Steenhuijsen Piters WAA, Watson RL, de Koff EM, Hasrat R, Arp K, Chu MLJN, de Groot PCM, van Houten MA, Sanders EAM, Bogaert D. Early-life viral infections are associated with disadvantageous immune and microbiota profiles and recurrent respiratory infections. Nat Microbiol 2022; 7:224-237. [PMID: 35058634 DOI: 10.1038/s41564-021-01043-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The respiratory tract is populated by a specialized microbial ecosystem, which is seeded during and directly following birth. Perturbed development of the respiratory microbial community in early-life has been associated with higher susceptibility to respiratory tract infections (RTIs). Given a consistent gap in time between first signs of aberrant microbial maturation and the observation of the first RTIs, we hypothesized that early-life host-microbe cross-talk plays a role in this process. We therefore investigated viral presence, gene expression profiles and nasopharyngeal microbiota from birth until 12 months of age in 114 healthy infants. We show that the strongest dynamics in gene expression profiles occurred within the first days of life, mostly involving Toll-like receptor (TLR) and inflammasome signalling. These gene expression dynamics coincided with rapid microbial niche differentiation. Early asymptomatic viral infection co-occurred with stronger interferon activity, which was related to specific microbiota dynamics following, including early enrichment of Moraxella and Haemophilus spp. These microbial trajectories were in turn related to a higher number of subsequent (viral) RTIs over the first year of life. Using a multi-omic approach, we found evidence for species-specific host-microbe interactions related to consecutive susceptibility to RTIs. Although further work will be needed to confirm causality of our findings, together these data indicate that early-life viral encounters could impact subsequent host-microbe cross-talk, which is linked to later-life infections.
Collapse
Affiliation(s)
- Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rebecca L Watson
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emma M de Koff
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, the Netherlands
| | - Raiza Hasrat
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Pieter C M de Groot
- Department of Obstetrics and Gynaecology, Spaarne Gasthuis, Hoofddorp and Haarlem, the Netherlands
| | - Marlies A van Houten
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, the Netherlands
- Department of Paediatrics, Spaarne Gasthuis, Hoofddorp and Haarlem, the Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands.
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
845
|
Fishbein SR, Robinson JI, Hink T, Reske KA, Newcomer EP, Burnham CAD, Henderson JP, Dubberke ER, Dantas G. Multi-omics investigation of Clostridioides difficile-colonized patients reveals pathogen and commensal correlates of C. difficile pathogenesis. eLife 2022; 11:72801. [PMID: 35083969 PMCID: PMC8794467 DOI: 10.7554/elife.72801] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) imposes a substantial burden on the health care system in the United States. Understanding the biological basis for the spectrum of C. difficile-related disease manifestations is imperative to improving treatment and prevention of CDI. Here, we investigate the correlates of asymptomatic C. difficile colonization using a multi-omics approach. We compared the fecal microbiome and metabolome profiles of patients with CDI versus asymptomatically colonized patients, integrating clinical and pathogen factors into our analysis. We found that CDI patients were more likely to be colonized by strains with the binary toxin (CDT) locus or strains of ribotype 027, which are often hypervirulent. We find that microbiomes of asymptomatically colonized patients are significantly enriched for species in the class Clostridia relative to those of symptomatic patients. Relative to CDI microbiomes, asymptomatically colonized patient microbiomes were enriched with sucrose degradation pathways encoded by commensal Clostridia, in addition to glycoside hydrolases putatively involved in starch and sucrose degradation. Fecal metabolomics corroborates the carbohydrate degradation signature: we identify carbohydrate compounds enriched in asymptomatically colonized patients relative to CDI patients. Further, we reveal that across C. difficile isolates, the carbohydrates sucrose, rhamnose, and lactulose do not serve as robust growth substrates in vitro, consistent with their enriched detection in our metagenomic and metabolite profiling of asymptomatically colonized individuals. We conclude that pathogen genetic variation may be strongly related to disease outcome. More interestingly, we hypothesize that in asymptomatically colonized individuals, carbohydrate metabolism by other commensal Clostridia may prevent CDI by inhibiting C. difficile proliferation. These insights into C. difficile colonization and putative commensal competition suggest novel avenues to develop probiotic or prebiotic therapeutics against CDI.
Collapse
Affiliation(s)
- Skye Rs Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - John I Robinson
- Center for Women's Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, United States
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, United States
| | - Kimberly A Reske
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, United States
| | - Erin P Newcomer
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States.,Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Jeffrey P Henderson
- Center for Women's Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, United States
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, United States
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
846
|
Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, Jones CMA, Wright RJ, Dhanani AS, Comeau AM, Langille MGI. Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun 2022; 13:342. [PMID: 35039521 PMCID: PMC8763921 DOI: 10.1038/s41467-022-28034-z] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Identifying differentially abundant microbes is a common goal of microbiome studies. Multiple methods are used interchangeably for this purpose in the literature. Yet, there are few large-scale studies systematically exploring the appropriateness of using these tools interchangeably, and the scale and significance of the differences between them. Here, we compare the performance of 14 differential abundance testing methods on 38 16S rRNA gene datasets with two sample groups. We test for differences in amplicon sequence variants and operational taxonomic units (ASVs) between these groups. Our findings confirm that these tools identified drastically different numbers and sets of significant ASVs, and that results depend on data pre-processing. For many tools the number of features identified correlate with aspects of the data, such as sample size, sequencing depth, and effect size of community differences. ALDEx2 and ANCOM-II produce the most consistent results across studies and agree best with the intersect of results from different approaches. Nevertheless, we recommend that researchers should use a consensus approach based on multiple differential abundance methods to help ensure robust biological interpretations. Many microbiome differential abundance methods are available, but it lacks systematic comparison among them. Here, the authors compare the performance of 14 differential abundance testing methods on 38 16S rRNA gene datasets with two sample groups, and show ALDEx2 and ANCOM-II produce the most consistent results.
Collapse
Affiliation(s)
- Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| | - Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Molly G Hayes
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
| | - Jocelyn MacDonald
- Department of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Dhwani K Desai
- Integrated Microbiome Resource, Dalhousie University, Halifax, NS, Canada
| | - Nicole Allward
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada
| | - Casey M A Jones
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Robyn J Wright
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Akhilesh S Dhanani
- Integrated Microbiome Resource, Dalhousie University, Halifax, NS, Canada
| | - André M Comeau
- Integrated Microbiome Resource, Dalhousie University, Halifax, NS, Canada
| | - Morgan G I Langille
- Integrated Microbiome Resource, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
847
|
Li Y, Gajardo K, Jaramillo-Torres A, Kortner TM, Krogdahl Å. Consistent changes in the intestinal microbiota of Atlantic salmon fed insect meal diets. Anim Microbiome 2022; 4:8. [PMID: 35012688 PMCID: PMC8750867 DOI: 10.1186/s42523-021-00159-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Being part of fish's natural diets, insects have become a practical alternative feed ingredient for aquaculture. While nutritional values of insects have been extensively studied in various fish species, their impact on the fish microbiota remains to be fully explored. In an 8-week freshwater feeding trial, Atlantic salmon (Salmo salar) were fed either a commercially relevant reference diet or an insect meal diet wherein black soldier fly (Hermetia illucens) larvae meal comprised 60% of total ingredients. Microbiota of digesta and mucosa origin from the proximal and distal intestine were collected and profiled along with feed and water samples. RESULTS The insect meal diet markedly modulated the salmon intestinal microbiota. Salmon fed the insect meal diet showed similar or lower alpha-diversity indices in the digesta but higher alpha-diversity indices in the mucosa. A group of bacterial genera, dominated by members of the Bacillaceae family, was enriched in salmon fed the insect meal diet, which confirms our previous findings in a seawater feeding trial. We also found that microbiota in the intestine closely resembled that of the feeds but was distinct from the water microbiota. Notably, bacterial genera associated with the diet effects were also present in the feeds. CONCLUSIONS We conclude that salmon fed the insect meal diets show consistent changes in the intestinal microbiota. The next challenge is to evaluate the extent to which these alterations are attributable to feed microbiota and dietary nutrients, and what these changes mean for fish physiology and health.
Collapse
Affiliation(s)
- Yanxian Li
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | - Karina Gajardo
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Alexander Jaramillo-Torres
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
848
|
Yoon LS, Jacobs JP, Hoehner J, Pereira A, Gana JC, Corvalán C, Michels KB. The Association Between Breast Density and Gut Microbiota Composition at 2 Years Post-Menarche: A Cross-Sectional Study of Adolescents in Santiago, Chile. Front Cell Infect Microbiol 2022; 11:794610. [PMID: 34976871 PMCID: PMC8718921 DOI: 10.3389/fcimb.2021.794610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome has been linked to breast cancer via immune, inflammatory, and hormonal mechanisms. We examined the relation between adolescent breast density and gut microbial composition and function in a cohort of Chilean girls. This cross-sectional study included 218 female participants in the Growth and Obesity Cohort Study who were 2 years post-menarche. We measured absolute breast fibroglandular volume (aFGV) and derived percent FGV (%FGV) using dual energy X-ray absorptiometry. All participants provided a fecal sample. The gut microbiome was characterized using 16S ribosomal RNA sequencing of the V3-V4 hypervariable region. We examined alpha diversity and beta diversity across terciles of %FGV and aFGV. We used MaAsLin2 for multivariable general linear modeling to assess differential taxa and predicted metabolic pathway abundance (MetaCyc) between %FGV and aFGV terciles. All models were adjusted for potential confounding variables and corrected for multiple comparisons. The mean %FGV and aFGV was 49.5% and 217.0 cm3, respectively, among study participants. Similar median alpha diversity levels were found across %FGV and aFGV terciles when measured by the Shannon diversity index (%FGV T1: 4.0, T2: 3.9, T3: 4.1; aFGV T1: 4.0, T2: 4.0, T3: 4.1). %FGV was associated with differences in beta diversity (R2 =0.012, p=0.02). No genera were differentially abundant when comparing %FGV nor aFGV terciles after adjusting for potential confounders (q > 0.56 for all genera). We found no associations between predicted MetaCyc pathway abundance and %FGV and aFGV. Overall, breast density measured at 2 years post-menarche was not associated with composition and predicted function of the gut microbiome among adolescent Chilean girls.
Collapse
Affiliation(s)
- Lara S Yoon
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, United States
| | - Jonathan P Jacobs
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, United States.,Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.,Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | | | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Juan Cristóbal Gana
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Corvalán
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, United States.,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
849
|
Huang YE, Shen X, Yin D, Lan S, Lu Y, Zhou P, Ma L, Zhang Y, Sheng Y, Zhang Y, Li M, Hu F, Chen J, Li P, El-Omar EM, Zheng H. Disrupted establishment of anaerobe and facultative anaerobe balance in preterm infants with extrauterine growth restriction. Front Pediatr 2022; 10:935458. [PMID: 36147811 PMCID: PMC9486202 DOI: 10.3389/fped.2022.935458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Extrauterine growth restriction (EUGR) in preterm birth infants could have long-term adverse impacts on health. Less is known about the gut microbiota regarding its establishment in early life and its role in long-term growth in preterm birth infants. METHODS A prospective, longitudinal observational study was conducted with 67 preterm infants in a level III neonatal intensive care unit. Clinical information was obtained from medical records, and fecal samples were collected weekly during hospitalization and processed for 16S rRNA gene sequencing. RESULTS The bacterial profiles from the weekly sampling of preterm infants demonstrated that the early-life gut microbiota was clustered into the following four stages in chronological order: stage 1: 0-4 days, stage 2: 1-2 weeks, stage 3: 3-7 weeks, and stage 4: 8-10 weeks. The development of gut microbiota showed latency at stage 4 in EUGR infants compared with that in non-EUGR infants, which resulted from their consistently high level of facultative anaerobes, including Enterobacteriaceae and Staphylococcus, and lack of obligate anaerobes, including Clostridium and Veillonella. In the 2-year follow-up, infants with a high level of obligate anaerobes-to-facultative anaerobes ratio at stage 4 had a lower risk of long-term growth restriction at the margin of statistical significance. CONCLUSION The results of this study indicate that the development of gut microbiota in the early life of EUGR infants is delayed compared with that of non-EUGR infants. The obligate-to-facultative anaerobes ratio could be an indicator of the maturity of gut microbiota development and associated with the risk of long-term growth restriction in preterm infants.
Collapse
Affiliation(s)
- Yi-E Huang
- Department of Hospital Infection Control, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xintian Shen
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Dingding Yin
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Shanwei Lan
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China.,The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yongxue Lu
- Department of Neonatology, The First People's Hospital of Foshan, Foshan, China
| | - Ping Zhou
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Liya Ma
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Yinlan Zhang
- Department of Hospital Infection Control, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Yuhui Sheng
- Department of Hospital Infection Control, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Youjun Zhang
- Department of Hospital Infection Control, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Mengna Li
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Fei Hu
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Jiaqi Chen
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Pan Li
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW, Australia
| | - Emad M El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW, Australia
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China.,UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
850
|
Vitamin D Supplementation in Exclusively Breastfed Infants Is Associated with Alterations in the Fecal Microbiome. Nutrients 2022; 14:nu14010202. [PMID: 35011077 PMCID: PMC8747039 DOI: 10.3390/nu14010202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Breastfeeding and introduction of solid food are the two major components of infant feeding practices that influence gut microbiota composition in early infancy. However, it is unclear whether additional factors influence the microbiota of infants either exclusively breastfed or not breastfed. We obtained 194 fecal samples from infants at 3–9 months of age, extracted DNA, and sequenced the V4 region of the 16S rRNA gene. Feeding practices and clinical information were collected by questionnaire and abstraction of birth certificates. The gut microbiota of infants who were exclusively breastfed displayed significantly lower Shannon diversity (p-adjust < 0.001) and different gut microbiota composition compared to infants who were not breastfed (p-value = 0.001). Among the exclusively breastfed infants, recipients of vitamin D supplements displayed significantly lower Shannon diversity (p-adjust = 0.007), and different gut microbiota composition structure than non-supplemented, breastfed infants (p-value = 0.02). MaAslin analysis identified microbial taxa that associated with breastfeeding and vitamin D supplementation. Breastfeeding and infant vitamin D supplement intake play an important role in shaping infant gut microbiota.
Collapse
|