51
|
Kolodziej J, Pintea B, Boström JP, Pleger B. Pain Relief-Related Structural Brain Alterations in Trigeminal Neuralgia Induced by Noninvasive Stereotactic Radiosurgery: A Pilot Study. Int J Radiat Oncol Biol Phys 2024; 120:130-136. [PMID: 38522767 DOI: 10.1016/j.ijrobp.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Trigeminal neuralgia (TN) is a chronic pain disorder defined by unilateral shock-like pain in at least one division of the trigeminal nerve. Although several studies have investigated structural brain plasticity in patients with TN, treatment-induced alterations remain largely uninvestigated. METHODS AND MATERIALS Combining T1-weighted magnetic resonance imaging with voxel-based morphometry and multiple-regression analyses, we assessed gray matter maps of patients with TN to investigate changes in gray matter volume (GMV) before and 6 months after stereotactic radiosurgery (SRS). RESULTS Comparison of pre- and post-SRS GMV of 25 patients with TN (16 women; mean age 67 years) did not yield any significant clusters, suggesting that the effect of SRS intervention itself on gray matter structure may be negligible. Regarding SRS-induced pain relief, we found a significant GMV increase in the left superior frontal gyrus associated with greater degree of pain relief (P = .024) and a trend toward an increase in GMV in the left dorsolateral prefrontal cortex (P = .097). CONCLUSIONS In this pilot study, we observed significant increases in GMV in the left superior frontal gyrus with SRS-induced improvements in pain and a trend toward an increase in GMV in the dorsolateral prefrontal cortex. Future studies are indicated to validate these findings and determine whether SRS-induced decrease in distracting pain events and subsequent increases in GMV result in improved functionality, decreased dependence on "top-down" control, and improved cognitive/executive balance with amelioration of pain events.
Collapse
Affiliation(s)
- Jonas Kolodziej
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Bogdan Pintea
- Department of Neurosurgery, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jan Patrick Boström
- Gamma Knife Zentrum Bochum, Department of Radiotherapy and Radio-Oncology, University Clinic Marien Hospital Herne, Bochum, Germany; Department of Radiosurgery and Stereotactic Radiotherapy, MediClinRobert Janker Clinic and MediClin MVZ Bonn, Bonn, Germany.
| | - Burkhard Pleger
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
52
|
Abe Y, Erchinger VJ, Ousdal OT, Oltedal L, Tanaka KF, Takamiya A. Neurobiological mechanisms of electroconvulsive therapy for depression: Insights into hippocampal volumetric increases from clinical and preclinical studies. J Neurochem 2024; 168:1738-1750. [PMID: 38238933 DOI: 10.1111/jnc.16054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 10/04/2024]
Abstract
Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy-resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT-related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT-related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT-induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Vera J Erchinger
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Olga Therese Ousdal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
53
|
Vickery S, Patil KR, Dahnke R, Hopkins WD, Sherwood CC, Caspers S, Eickhoff SB, Hoffstaedter F. The uniqueness of human vulnerability to brain aging in great ape evolution. SCIENCE ADVANCES 2024; 10:eado2733. [PMID: 39196942 PMCID: PMC11352902 DOI: 10.1126/sciadv.ado2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Aging is associated with progressive gray matter loss in the brain. This spatially specific, morphological change over the life span in humans is also found in chimpanzees, and the comparison between these great ape species provides a unique evolutionary perspective on human brain aging. Here, we present a data-driven, comparative framework to explore the relationship between gray matter atrophy with age and recent cerebral expansion in the phylogeny of chimpanzees and humans. In humans, we show a positive relationship between cerebral aging and cortical expansion, whereas no such relationship was found in chimpanzees. This human-specific association between strong aging effects and large relative cortical expansion is particularly present in higher-order cognitive regions of the ventral prefrontal cortex and supports the "last-in-first-out" hypothesis for brain maturation in recent evolutionary development of human faculties.
Collapse
Affiliation(s)
- Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Kaustubh R. Patil
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| |
Collapse
|
54
|
Yang H, Chen Y, Tao Q, Shi W, Tian Y, Wei Y, Li S, Zhang Y, Han S, Cheng J. Integrative molecular and structural neuroimaging analyses of the interaction between depression and age of onset: A multimodal magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111052. [PMID: 38871019 DOI: 10.1016/j.pnpbp.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Depression is a neurodevelopmental disorder that exhibits progressive gray matter volume (GMV) atrophy. Research indicates that brain development is influential in depression-induced GMV alterations. However, the interaction between depression and age of onset is not well understood by the underlying molecular and neuropathological mechanisms. Thus, 152 first-episode depression individuals and matched 130 healthy controls (HCs) were recruited to undergo T1-weighted high-resolution magnetic resonance imaging for this study. By two-way ANOVA, age and diagnosis were used as factors when analyzing the interaction of GMV in the participants. Then, spatial correlations between neurotransmitter maps and factor-related volume maps are established. Results illustrate a pronounced antagonistic interaction between depression and age of onset in the right insula, superior temporal gyrus, anterior cingulate gyrus, and orbitofrontal gyrus. Depression-caused reductions in GMV are mainly distributed in thalamic-limbic-cortical regions, regardless of age. For the main effect of age, adults exhibit brain atrophy in frontal, cerebellum, parietal, and temporal lobe structures. Cross-modal correlations showed that GMV changes in the interactive regions were linked with the serotonergic system and dopaminergic systems. Summarily, our results reveal the interaction between depression and age of onset in neurobiological mechanisms, which provide hints for future treatment of different ages of depression.
Collapse
Affiliation(s)
- Huiting Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| |
Collapse
|
55
|
Bai Y, Zhang B, Feng T. Neural basis responsible for effect of grit on procrastination: The interaction between the self-regulation and motivation neural pathways. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111037. [PMID: 38795822 DOI: 10.1016/j.pnpbp.2024.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Procrastination has a detrimental impact on academic performance, health, and subjective well-being. Previous studies indicated that grit was negatively related to procrastination. However, the underlying neural basis of this relationship remains unclear. To address this issue, we utilized voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) analysis to identify the neural substrates of how is grit linked to procrastination. Behavioral results showed that procrastination was negatively associated with grit. VBM analysis revealed that gray matter volume (GMV) in the left precuneus was positively associated with the consistency of interest (CI), a subcomponent of grit, while the right medial orbital frontal cortex (mOFC) was positively correlated with the perseverance of effort (PE), another subcomponent of grit. Moreover, the RSFC analysis indicated that both precuneus-medial superior frontal gyrus (mSFG) and precuneus-insula connectivity were positively related to CI, while the functional coupling of right mOFC with left anterior cingulate cortex (ACC) was positively related to PE. Importantly, the structural equation modeling (SEM) results were well suited for the influence of grit on procrastination via both self-regulation (mOFC-ACC) and motivation pathways (precuneus-mSFG, precuneus-insula). Together, these findings imply that self-regulation and motivation could be two neural circuits underlying the impact of grit on procrastination.
Collapse
Affiliation(s)
- Youling Bai
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Biying Zhang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, 400715, China.
| |
Collapse
|
56
|
Bonetti L, Fernández-Rubio G, Lumaca M, Carlomagno F, Risgaard Olsen E, Criscuolo A, Kotz SA, Vuust P, Brattico E, Kringelbach ML. Age-related neural changes underlying long-term recognition of musical sequences. Commun Biol 2024; 7:1036. [PMID: 39209979 PMCID: PMC11362492 DOI: 10.1038/s42003-024-06587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Aging is often associated with decline in brain processing power and neural predictive capabilities. To challenge this notion, we used magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to record the whole-brain activity of 39 older adults (over 60 years old) and 37 young adults (aged 18-25 years) during recognition of previously memorised and varied musical sequences. Results reveal that when recognising memorised sequences, the brain of older compared to young adults reshapes its functional organisation. In fact, it shows increased early activity in sensory regions such as the left auditory cortex (100 ms and 250 ms after each note), and only moderate decreased activity (350 ms) in medial temporal lobe and prefrontal regions. When processing the varied sequences, older adults show a marked reduction of the fast-scale functionality (250 ms after each note) of higher-order brain regions including hippocampus, ventromedial prefrontal and inferior temporal cortices, while no differences are observed in the auditory cortex. Accordingly, young outperform older adults in the recognition of novel sequences, while no behavioural differences are observed with regards to memorised ones. Our findings show age-related neural changes in predictive and memory processes, integrating existing theories on compensatory neural mechanisms in non-pathological aging.
Collapse
Affiliation(s)
- Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark.
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
- Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Francesco Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Emma Risgaard Olsen
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Antonio Criscuolo
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
57
|
Li J, Lam LCW, Lu H. Decoding MRI-informed brain age using mutual information. Insights Imaging 2024; 15:216. [PMID: 39186199 PMCID: PMC11347523 DOI: 10.1186/s13244-024-01791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE We aimed to develop a standardized method to investigate the relationship between estimated brain age and regional morphometric features, meeting the criteria for simplicity, generalization, and intuitive interpretability. METHODS We utilized T1-weighted magnetic resonance imaging (MRI) data from the Cambridge Centre for Ageing and Neuroscience project (N = 609) and employed a support vector regression method to train a brain age model. The pre-trained brain age model was applied to the dataset of the brain development project (N = 547). Kraskov (KSG) estimator was used to compute the mutual information (MI) value between brain age and regional morphometric features, including gray matter volume (GMV), white matter volume (WMV), cerebrospinal fluid (CSF) volume, and cortical thickness (CT). RESULTS Among four types of brain features, GMV had the highest MI value (8.71), peaking in the pre-central gyrus (0.69). CSF volume was ranked second (7.76), with the highest MI value in the cingulate (0.87). CT was ranked third (6.22), with the highest MI value in superior temporal gyrus (0.53). WMV had the lowest MI value (4.59), with the insula showing the highest MI value (0.53). For brain parenchyma, the volume of the superior frontal gyrus exhibited the highest MI value (0.80). CONCLUSION This is the first demonstration that MI value between estimated brain age and morphometric features may serve as a benchmark for assessing the regional contributions to estimated brain age. Our findings highlighted that both GMV and CSF are the key features that determined the estimated brain age, which may add value to existing computational models of brain age. CRITICAL RELEVANCE STATEMENT Mutual information (MI) analysis reveals gray matter volume (GMV) and cerebrospinal fluid (CSF) volume as pivotal in computing individuals' brain age. KEY POINTS Mutual information (MI) interprets estimated brain age with morphometric features. Gray matter volume in the pre-central gyrus has the highest MI value for estimated brain age. Cerebrospinal fluid volume in the cingulate has the highest MI value. Regarding brain parenchymal volume, the superior frontal gyrus has the highest MI value. The value of mutual information underscores the key brain regions related to brain age.
Collapse
Affiliation(s)
- Jing Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Linda Chiu Wa Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
58
|
Tisserand A, Blanc F, Muller C, Durand H, Demuynck C, Ravier A, Sanna L, de Sousa PL, Botzung A, Mondino M, Philippi N. Neuroimaging of autobiographical memory in dementia with Lewy bodies: a story of insula. Brain Commun 2024; 6:fcae272. [PMID: 39210911 PMCID: PMC11358644 DOI: 10.1093/braincomms/fcae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Although deficits in learning and retrieving new information are well characterized in dementia with Lewy bodies, autobiographical memory has never been explored in this disease. Yet, autobiographical memory impairments are a pervasive feature of dementia, well characterized in other neurodegenerative diseases. Moreover, autobiographical memory corresponds to an extension over time of the self, which we hypothesize is altered in dementia with Lewy bodies and impairment of which could be linked to the insular atrophy occurring from an early stage of the disease. In this study, we sought to characterize autobiographical memory impairments and explore their neural correlates in dementia with Lewy bodies, on the assumption that insular damage could impact the self, including its most elaborate components, such as autobiographical memory. Twenty patients with prodromal to mild dementia with Lewy bodies were selected to participate in this exploratory study along with 20 healthy control subjects. The Autobiographical Interview was used to assess autobiographical memory. Performances were compared between patients and control subjects, and an analysis across life periods and recall conditions was performed. 3D magnetic resonance images were acquired for all participants, and correlational analyses were performed in the patient group using voxel-based morphometry. The behavioural results of the Autobiographical Interview showed that autobiographical memory performances were significantly impaired in dementia with Lewy body patients compared to control subjects in a temporally ungraded manner, for both the free recall and the specific probe conditions (P < 0.0001), though with greater improvement after probing in the patient group. Furthermore, autobiographical memory impairments were correlated with grey matter volume within right insular cortex, temporoparietal junction, precuneus, putamen, left temporal cortex, bilateral parahippocampus and cerebellum, using a threshold of P = 0.005 uncorrected. The behavioural results confirm the existence of temporally ungraded autobiographical memory impairments in dementia with Lewy bodies, from the early stage of the disease. As we expected, neuroimaging analysis revealed a role for the insula and the precuneus in autobiographical memory retrieval, two regions associated with elementary aspects of the self, among other brain regions classically associated with autobiographical memory, such as medial temporal lobe and temporoparietal junction. Our findings provide important insights regarding the involvement of the insula in the self and suggest that insular damage could lead to a global collapse of the self, including its more elaborated components, such as autobiographical memory.
Collapse
Affiliation(s)
- Alice Tisserand
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, 67000 Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, 67000 Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| | - Candice Muller
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| | - Hélène Durand
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| | - Alix Ravier
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| | - Léa Sanna
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Anne Botzung
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, 67000 Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, University Hospitals of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
59
|
Kleinerova J, McKenna MC, Finnegan M, Tacheva A, Garcia-Gallardo A, Mohammed R, Tan EL, Christidi F, Hardiman O, Hutchinson S, Bede P. Clinical, Cortical, Subcortical, and White Matter Features of Right Temporal Variant FTD. Brain Sci 2024; 14:806. [PMID: 39199498 PMCID: PMC11352857 DOI: 10.3390/brainsci14080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The distinct clinical and radiological characteristics of right temporal variant FTD have only been recently recognized. METHODS Eight patients with right temporal variant FTD were prospectively recruited and underwent a standardised neuropsychological assessment, clinical MRI, and quantitative neuroimaging. RESULTS Our voxelwise grey analyses captured bilateral anterior and mesial temporal grey matter atrophy with a clear right-sided predominance. Bilateral hippocampal involvement was also observed, as well as disease burden in the right insular and opercula regions. White matter integrity alterations were also bilateral in anterior temporal and sub-insular regions with a clear right-hemispheric predominance. Extra-temporal white matter alterations have also been observed in orbitofrontal and parietal regions. Significant bilateral but right-predominant thalamus, putamen, hippocampus, and amygdala atrophy was identified based on subcortical segmentation. The clinical profile of our patients was dominated by progressive indifference, decline in motivation, loss of interest in previously cherished activities, incremental social withdrawal, difficulty recognising people, progressive language deficits, increasingly rigid routines, and repetitive behaviours. CONCLUSIONS Right temporal variant FTD has an insidious onset and may be mistaken for depression at symptom onset. It manifests in a combination of apathy, language, and behavioural features. Quantitative MR imaging captures a characteristic bilateral but right-predominant temporal imaging signature with extra-temporal frontal and parietal involvement.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Martha Finnegan
- Department of Psychiatry, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Rayan Mohammed
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
60
|
Kalantari N, Daneault V, Blais H, André C, Sanchez E, Lina JM, Arbour C, Gilbert D, Carrier J, Gosselin N. Cerebral Gray Matter May Not Explain Sleep Slow-Wave Characteristics after Severe Brain Injury. J Neurosci 2024; 44:e1306232024. [PMID: 38844342 PMCID: PMC11308330 DOI: 10.1523/jneurosci.1306-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/09/2024] Open
Abstract
Sleep slow waves are the hallmark of deeper non-rapid eye movement sleep. It is generally assumed that gray matter properties predict slow-wave density, morphology, and spectral power in healthy adults. Here, we tested the association between gray matter volume (GMV) and slow-wave characteristics in 27 patients with moderate-to-severe traumatic brain injury (TBI, 32.0 ± 12.2 years old, eight women) and compared that with 32 healthy controls (29.2 ± 11.5 years old, nine women). Participants underwent overnight polysomnography and cerebral MRI with a 3 Tesla scanner. A whole-brain voxel-wise analysis was performed to compare GMV between groups. Slow-wave density, morphology, and spectral power (0.4-6 Hz) were computed, and GMV was extracted from the thalamus, cingulate, insula, precuneus, and orbitofrontal cortex to test the relationship between slow waves and gray matter in regions implicated in the generation and/or propagation of slow waves. Compared with controls, TBI patients had significantly lower frontal and temporal GMV and exhibited a subtle decrease in slow-wave frequency. Moreover, higher GMV in the orbitofrontal cortex, insula, cingulate cortex, and precuneus was associated with higher slow-wave frequency and slope, but only in healthy controls. Higher orbitofrontal GMV was also associated with higher slow-wave density in healthy participants. While we observed the expected associations between GMV and slow-wave characteristics in healthy controls, no such associations were observed in the TBI group despite lower GMV. This finding challenges the presumed role of GMV in slow-wave generation and morphology.
Collapse
Affiliation(s)
- Narges Kalantari
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Quebec H3C 1K3, Canada
| | - Caroline Arbour
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec H3T 1A8, Canada
| | - Danielle Gilbert
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec H3T 1A4, Canada
- Department of Radiology, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| |
Collapse
|
61
|
Rubbert C, Wolf L, Vach M, Ivan VL, Hedderich DM, Gaser C, Dahnke R, Caspers J. Normal cohorts in automated brain atrophy estimation: how many healthy subjects to include? Eur Radiol 2024; 34:5276-5286. [PMID: 38189981 PMCID: PMC11255074 DOI: 10.1007/s00330-023-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES This study investigates the influence of normal cohort (NC) size and the impact of different NCs on automated MRI-based brain atrophy estimation. METHODS A pooled NC of 3945 subjects (NCpool) was retrospectively created from five publicly available cohorts. Voxel-wise gray matter volume atrophy maps were calculated for 48 Alzheimer's disease (AD) patients (55-82 years) using veganbagel and dynamic normal templates with an increasing number of healthy subjects randomly drawn from NCpool (initially three, and finally 100 subjects). Over 100 repeats of the process, the mean over a voxel-wise standard deviation of gray matter z-scores was established and plotted against the number of subjects in the templates. The knee point of these curves was defined as the minimum number of subjects required for consistent brain atrophy estimation. Atrophy maps were calculated using each NC for AD patients and matched healthy controls (HC). Two readers rated the extent of mesiotemporal atrophy to discriminate AD/HC. RESULTS The maximum knee point was at 15 subjects. For 21 AD/21 HC, a sufficient number of subjects were available in each NC for validation. Readers agreed on the AD diagnosis in all cases (Kappa for the extent of atrophy, 0.98). No differences in diagnoses between NCs were observed (intraclass correlation coefficient, 0.91; Cochran's Q, p = 0.19). CONCLUSION At least 15 subjects should be included in age- and sex-specific normal templates for consistent brain atrophy estimation. In the study's context, qualitative interpretation of regional atrophy allows reliable AD diagnosis with a high inter-reader agreement, irrespective of the NC used. CLINICAL RELEVANCE STATEMENT The influence of normal cohorts (NCs) on automated brain atrophy estimation, typically comparing individual scans to NCs, remains largely unexplored. Our study establishes the minimum number of NC-subjects needed and demonstrates minimal impact of different NCs on regional atrophy estimation. KEY POINTS • Software-based brain atrophy estimation often relies on normal cohorts for comparisons. • At least 15 subjects must be included in an age- and sex-specific normal cohort. • Using different normal cohorts does not influence regional atrophy estimation.
Collapse
Affiliation(s)
- Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Luisa Wolf
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marius Vach
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vivien L Ivan
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, D-07745, Jena, Germany
- Department of Neurology, Jena University Hospital, D-07745, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
| | - Robert Dahnke
- Department of Psychiatry and Psychotherapy, Jena University Hospital, D-07745, Jena, Germany
- Department of Neurology, Jena University Hospital, D-07745, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000, Aarhus, Denmark
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
62
|
Wu Y, Vasung L, Calixto C, Gholipour A, Karimi D. Characterizing normal perinatal development of the human brain structural connectivity. Hum Brain Mapp 2024; 45:e26784. [PMID: 39031955 PMCID: PMC11259574 DOI: 10.1002/hbm.26784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024] Open
Abstract
Early brain development is characterized by the formation of a highly organized structural connectome, which underlies brain's cognitive abilities and influences its response to diseases and environmental factors. Hence, quantitative assessment of structural connectivity in the perinatal stage is useful for studying normal and abnormal neurodevelopment. However, estimation of the connectome from diffusion MRI data involves complex computations. For the perinatal period, these computations are further challenged by the rapid brain development, inherently low signal quality, imaging difficulties, and high inter-subject variability. These factors make it difficult to chart the normal development of the structural connectome. As a result, there is a lack of reliable normative baselines of structural connectivity metrics at this critical stage in brain development. In this study, we developed a computational method based on spatio-temporal averaging in the image space for determining such baselines. We used this method to analyze the structural connectivity between 33 and 44 postmenstrual weeks using data from 166 subjects. Our results unveiled clear and strong trends in the development of structural connectivity in the perinatal stage. We observed increases in measures of network integration and segregation, and widespread strengthening of the connections within and across brain lobes and hemispheres. We also observed asymmetry patterns that were consistent between different connection weighting approaches. Connection weighting based on fractional anisotropy and neurite density produced the most consistent results. Our proposed method also showed considerable agreement with an alternative technique based on connectome averaging. The new computational method and results of this study can be useful for assessing normal and abnormal development of the structural connectome early in life.
Collapse
Affiliation(s)
- Yihan Wu
- Computational Radiology Laboratory (CRL), Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Lana Vasung
- Department of Pediatrics at Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Camilo Calixto
- Computational Radiology Laboratory (CRL), Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Davood Karimi
- Computational Radiology Laboratory (CRL), Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
63
|
Virgincar RS, Wong AK, Barck KH, Webster JD, Hung J, Caplazi P, Choy MK, Forrest WF, Bell LC, de Crespigny AJ, Dunlap D, Jones C, Kim DE, Weimer RM, Shaw AS, Brightbill HD, Xie L. Diffusion tensor MRI is sensitive to fibrotic injury in a mouse model of oxalate-induced chronic kidney disease. Am J Physiol Renal Physiol 2024; 327:F235-F244. [PMID: 38867676 DOI: 10.1152/ajprenal.00099.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by inflammation and fibrosis in the kidney. Renal biopsies and estimated glomerular filtration rate (eGFR) remain the standard of care, but these endpoints have limitations in detecting the stage, progression, and spatial distribution of fibrotic pathology in the kidney. MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo both in clinical and preclinical studies. However, these imaging studies have not systematically identified fibrosis particularly deeper in the kidney where biopsy sampling is limited, or completed an extensive analysis of whole organ histology, blood biomarkers, and gene expression to evaluate the relative strengths and weaknesses of MRI for evaluating renal fibrosis. In this study, we performed DTI in the sodium oxalate mouse model of CKD. The DTI parameters fractional anisotropy, apparent diffusion coefficient, and axial diffusivity were compared between the control and oxalate groups with region of interest (ROI) analysis to determine changes in the cortex and medulla. In addition, voxel-based analysis (VBA) was implemented to systematically identify local regions of injury over the whole kidney. DTI parameters were found to be significantly different in the medulla by both ROI analysis and VBA, which also spatially matched with collagen III immunohistochemistry (IHC). The DTI parameters in this medullary region exhibited moderate to strong correlations with histology, blood biomarkers, hydroxyproline, and gene expression. Our results thus highlight the sensitivity of DTI to the heterogeneity of renal fibrosis and importance of whole kidney noninvasive imaging.NEW & NOTEWORTHY Chronic kidney disease (CKD) can be characterized by inflammation and fibrosis of the kidney. Although standard of care methods have been limited in scope, safety, and spatial distribution, MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo. In this study, we performed DTI in an oxalate mouse model of CKD to systematically identify local kidney injury. DTI parameters strongly correlated with histology, blood biomarkers, hydroxyproline, and gene expression.
Collapse
Affiliation(s)
- Rohan S Virgincar
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Aaron K Wong
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Kai H Barck
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Joshua D Webster
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Jeffrey Hung
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Patrick Caplazi
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Man Kin Choy
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - William F Forrest
- Bioinformatics, Genentech, South San Francisco, California, United States
| | - Laura C Bell
- Clinical Imaging Group, Genentech, South San Francisco, California, United States
| | - Alex J de Crespigny
- Clinical Imaging Group, Genentech, South San Francisco, California, United States
| | - Debra Dunlap
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Charles Jones
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Dong Eun Kim
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Robby M Weimer
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Andrey S Shaw
- Research Biology, Genentech, South San Francisco, California, United States
| | - Hans D Brightbill
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Luke Xie
- Translational Imaging, Genentech, South San Francisco, California, United States
| |
Collapse
|
64
|
Arenaza‐Urquijo EM, Boyle R, Casaletto K, Anstey KJ, Vila‐Castelar C, Colverson A, Palpatzis E, Eissman JM, Kheng Siang Ng T, Raghavan S, Akinci M, Vonk JMJ, Machado LS, Zanwar PP, Shrestha HL, Wagner M, Tamburin S, Sohrabi HR, Loi S, Bartrés‐Faz D, Dubal DB, Vemuri P, Okonkwo O, Hohman TJ, Ewers M, Buckley RF, for the Reserve, Resilience and Protective Factors Professional Interest Area, Sex and Gender Professional Interest area and the ADDRESS! Special Interest Group. Sex and gender differences in cognitive resilience to aging and Alzheimer's disease. Alzheimers Dement 2024; 20:5695-5719. [PMID: 38967222 PMCID: PMC11350140 DOI: 10.1002/alz.13844] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Sex and gender-biological and social constructs-significantly impact the prevalence of protective and risk factors, influencing the burden of Alzheimer's disease (AD; amyloid beta and tau) and other pathologies (e.g., cerebrovascular disease) which ultimately shape cognitive trajectories. Understanding the interplay of these factors is central to understanding resilience and resistance mechanisms explaining maintained cognitive function and reduced pathology accumulation in aging and AD. In this narrative review, the ADDRESS! Special Interest Group (Alzheimer's Association) adopted a multidisciplinary approach to provide the foundations and recommendations for future research into sex- and gender-specific drivers of resilience, including a sex/gender-oriented review of risk factors, genetics, AD and non-AD pathologies, brain structure and function, and animal research. We urge the field to adopt a sex/gender-aware approach to resilience to advance our understanding of the intricate interplay of biological and social determinants and consider sex/gender-specific resilience throughout disease stages. HIGHLIGHTS: Sex differences in resilience to cognitive decline vary by age and cognitive status. Initial evidence supports sex-specific distinctions in brain pathology. Findings suggest sex differences in the impact of pathology on cognition. There is a sex-specific change in resilience in the transition to clinical stages. Gender and sex factors warrant study: modifiable, immune, inflammatory, and vascular.
Collapse
Affiliation(s)
- Eider M. Arenaza‐Urquijo
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Rory Boyle
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kaitlin Casaletto
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kaarin J. Anstey
- University of New South Wales Ageing Futures InstituteSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Psychology, University of New South WalesSidneyNew South WalesAustralia
| | | | - Aaron Colverson
- University of Florida Center for Arts in Medicine Interdisciplinary Research LabUniversity of Florida, Center of Arts in MedicineGainesvilleFloridaUSA
| | - Eleni Palpatzis
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jaclyn M. Eissman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ted Kheng Siang Ng
- Rush Institute for Healthy Aging and Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Muge Akinci
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jet M. J. Vonk
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luiza S. Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, FarroupilhaPorto AlegreBrazil
| | - Preeti P. Zanwar
- Jefferson College of Population Health, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- The Network on Life Course and Health Dynamics and Disparities, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Maude Wagner
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealth Future InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Psychology, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha Loi
- Neuropsychiatry Centre, Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
| | - David Bartrés‐Faz
- Department of MedicineFaculty of Medicine and Health Sciences & Institut de NeurociènciesUniversity of BarcelonaBarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques (IDIBAPS)BarcelonaBarcelonaSpain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de BarcelonaBadalonaBarcelonaSpain
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Biomedical and Neurosciences Graduate ProgramsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Ozioma Okonkwo
- Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Ewers
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig Maximilians Universität (LMU)MunichGermany
- German Center for Neurodegenerative Diseases (DZNE, Munich)MunichGermany
| | - Rachel F. Buckley
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
65
|
Karnik R, Vohra A, Khatri M, Dalvi N, Vyas HS, Shah H, Gohil S, Kanojiya S, Devkar R. Diet/photoperiod mediated changes in cerebellar clock genes causes locomotor shifts and imperative changes in BDNF-TrkB pathway. Neurosci Lett 2024; 835:137843. [PMID: 38821201 DOI: 10.1016/j.neulet.2024.137843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neuropsychological studies report anxiety and depression like symptoms in patients suffering from lifestyle disorder but its impact on locomotor function lacks clarity. Our study investigates locomotor deficits resulting due to perturbations in cerebellum of high fat diet (HFD), chronodisruption (CD) or a combination (HCD) model of lifestyle disorder. Significant downregulation in levels of cerebellar clock genes (Bmal-1, Clock, Per 1 and Per 2) and Bdnf-Trkb pathway genes (Bdnf, TrkB and Syn1 levels) were recorded. Further, locomotor deficits were observed in all the three experimental groups as evidenced by actimeter test, pole test and wire hanging test. Nuclear pyknosis of Purkinje cells, their derangement and inflammation were the hallmark of cerebellar tissue of all the three experimental groups. Taken together, this study generates important links between cerebellar clock oscillations, locomotor function and Bdnf-TrkB signaling.
Collapse
Affiliation(s)
- Rhydham Karnik
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Dr. Vikram Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Aliasgar Vohra
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Department of Neurology, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Mahamadtezib Khatri
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Nilay Dalvi
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Hitarthi S Vyas
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Helly Shah
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Dr. Vikram Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Sujitsinh Gohil
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Smit Kanojiya
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Dr. Vikram Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Ranjitsinh Devkar
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Dr. Vikram Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India.
| |
Collapse
|
66
|
Zheng Z, Liu Y, Wang Z, Yin H, Zhang D, Yang J. Evaluating age-and gender-related changes in brain volumes in normal adult using synthetic magnetic resonance imaging. Brain Behav 2024; 14:e3619. [PMID: 38970221 PMCID: PMC11226539 DOI: 10.1002/brb3.3619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE Normal aging is associated with brain volume change, and brain segmentation can be performed within an acceptable scan time using synthetic magnetic resonance imaging (MRI). This study aimed to investigate the brain volume changes in healthy adult according to age and gender, and provide age- and gender-specific reference values using synthetic MRI. METHODS A total of 300 healthy adults (141 males, median age 48; 159 females, median age 50) were underwent synthetic MRI on 3.0 T. Brain parenchymal volume (BPV), gray matter volume (GMV), white matter volume (WMV), myelin volume (MYV), and cerebrospinal fluid volume (CSFV) were calculated using synthetic MRI software. These volumes were normalized by intracranial volume to normalized GMV (nGMV), normalized WMV (nWMV), normalized MYV (nMYV), normalized BPV (nBPV), and normalized CSFV (nCSFV). The normalized brain volumes were plotted against age in both males and females, and a curve fitting model that best explained the age dependence of brain volume was identified. The normalized brain volumes were compared between different age and gender groups. RESULTS The approximate curves of nGMV, nWMV, nCSFV, nBPV, and nMYV were best fitted by quadratic curves. The nBPV decreased monotonously through all ages in both males and females, while the changes of nCSFV showed the opposite trend. The nWMV and nMYV in both males and females increased gradually and then decrease with age. In early adulthood (20s), nWMV and nMYV in males were lower and peaked later than that in females (p < .005). The nGMV in both males and females decreased in the early adulthood until the 30s and then remains stable. A significant decline in nWMV, nBPV, and nMYV was noted in the 60s (Turkey test, p < .05). CONCLUSIONS Our study provides age- and gender-specific reference values of brain volumes using synthetic MRI, which could be objective tools for discriminating brain disorders from healthy brains.
Collapse
Affiliation(s)
- Zuofeng Zheng
- Department of RadiologyBeijing ChuiYangLiu HospitalBeijingChina
| | - Yawen Liu
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhenchang Wang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongxia Yin
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Dongpo Zhang
- Department of RadiologyBeijing ChuiYangLiu HospitalBeijingChina
| | - Jiafei Yang
- Department of RadiologyBeijing ChuiYangLiu HospitalBeijingChina
| |
Collapse
|
67
|
Attaallah B, Petitet P, Zambellas R, Toniolo S, Maio MR, Ganse-Dumrath A, Irani SR, Manohar SG, Husain M. The role of the human hippocampus in decision-making under uncertainty. Nat Hum Behav 2024; 8:1366-1382. [PMID: 38684870 PMCID: PMC11272595 DOI: 10.1038/s41562-024-01855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
The role of the hippocampus in decision-making is beginning to be more understood. Because of its prospective and inferential functions, we hypothesized that it might be required specifically when decisions involve the evaluation of uncertain values. A group of individuals with autoimmune limbic encephalitis-a condition known to focally affect the hippocampus-were tested on how they evaluate reward against uncertainty compared to reward against another key attribute: physical effort. Across four experiments requiring participants to make trade-offs between reward, uncertainty and effort, patients with acute limbic encephalitis demonstrated blunted sensitivity to reward and effort whenever uncertainty was considered, despite demonstrating intact uncertainty sensitivity. By contrast, the valuation of these two attributes (reward and effort) was intact on uncertainty-free tasks. Reduced sensitivity to changes in reward under uncertainty correlated with the severity of hippocampal damage. Together, these findings provide evidence for a context-sensitive role of the hippocampus in value-based decision-making, apparent specifically under conditions of uncertainty.
Collapse
Affiliation(s)
- Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Pierre Petitet
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Rhea Zambellas
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Akke Ganse-Dumrath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
68
|
Freund P, Boller V, Emmenegger TM, Akbar M, Hupp M, Pfender N, Wheeler‐Kingshott CAMG, Cohen‐Adad J, Fehlings MG, Curt A, Seif M. Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging. Eur J Neurol 2024; 31:e16297. [PMID: 38713645 PMCID: PMC11235710 DOI: 10.1111/ene.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND PURPOSE Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of clinical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study. METHODS We applied voxelwise analysis with a probabilistic brain/spinal cord template embedded in statistical parametric mappin (SPM-BSC) to process multi parametric mapping (MPM) including effective transverse relaxation rate (R2*), longitudinal relaxation rate (R1), and magnetization transfer (MT), which are indirectly sensitive to iron and myelin content. Regression analysis was conducted to establish associations between neurodegeneration and clinical impairment. Thirty-eight DCM patients (mean age ± SD = 58.45 ± 11.47 years) and 38 healthy controls (mean age ± SD = 41.18 ± 12.75 years) were recruited at University Hospital Balgrist, Switzerland and Toronto Western Hospital, Canada. RESULTS Remote atrophy was observed in the cervical cord (p = 0.002) and in the left thalamus (0.026) of the DCM group. R1 was decreased in the periaqueductal grey matter (p = 0.014), thalamus (p = 0.001), corpus callosum (p = 0.0001), and cranial corticospinal tract (p = 0.03). R2* was increased in the primary somatosensory cortices (p = 0.008). Sensory impairments were associated with increased iron-sensitive R2* in the thalamus and periaqueductal grey matter in DCM. CONCLUSIONS Simultaneous assessment of the spinal cord and brain revealed DCM-induced demyelination, iron deposition, and atrophy. The extent of remote neurodegeneration was associated with sensory impairment, highlighting the intricate and expansive nature of microstructural neurodegeneration in DCM, reaching beyond the stenosis level.
Collapse
Affiliation(s)
- Patrick Freund
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Viveka Boller
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Tim M. Emmenegger
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Muhammad Akbar
- Spine Program Division of NeurosurgeryUniversity of Toronto and Toronto Western HospitalTorontoOntarioCanada
| | - Markus Hupp
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Nikolai Pfender
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Claudia Angela Michela Gandini Wheeler‐Kingshott
- NMR Research Unit, Queen Square MS CentreUniversity College London (UCL) Queen Square Institute of Neurology, Faculty of Brain SciencesLondonUK
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Digital Neuroscience Research UnitIRCCS Mondino FoundationPaviaItaly
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique MontrealMontrealQuebecCanada
- Functional Neuroimaging Unit, CRIUGMUniversity of MontrealMontrealQuebecCanada
| | - Michael G. Fehlings
- Spine Program Division of NeurosurgeryUniversity of Toronto and Toronto Western HospitalTorontoOntarioCanada
| | - Armin Curt
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Maryam Seif
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
69
|
Liu YS, Baxi M, Madan CR, Zhan K, Makris N, Rosene DL, Killiany RJ, Cetin-Karayumak S, Pasternak O, Kubicki M, Cao B. Brain age of rhesus macaques over the lifespan. Neurobiol Aging 2024; 139:73-81. [PMID: 38643691 DOI: 10.1016/j.neurobiolaging.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024]
Abstract
Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R2 of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.
Collapse
Affiliation(s)
- Yang S Liu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Madhura Baxi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kevin Zhan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nikolaos Makris
- Department of Psychiatry, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada; Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
70
|
Lee W, Lee S, Park Y, Kim GE, Bae JB, Han JW, Kim KW. Construction and validation of a brain magnetic resonance imaging template for normal older Koreans. BMC Neurol 2024; 24:222. [PMID: 38943101 PMCID: PMC11212263 DOI: 10.1186/s12883-024-03735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Spatial normalization to a standardized brain template is a crucial step in magnetic resonance imaging (MRI) studies. Brain templates made from sufficient sample size have low brain variability, improving the accuracy of spatial normalization. Using population-specific template improves accuracy of spatial normalization because brain morphology varies according to ethnicity and age. METHODS We constructed a brain template of normal Korean elderly (KNE200) using MRI scans 100 male and 100 female aged over 60 years old with normal cognition. We compared the deformation after spatial normalization of the KNE200 template to that of the KNE96, constructed from 96 cognitively normal elderly Koreans and to that of the brain template (OCF), constructed from 434 non-demented older Caucasians to examine the effect of sample size and ethnicity on the accuracy of brain template, respectively. We spatially normalized the MRI scans of elderly Koreans and quantified the amount of deformations associated with spatial normalization using the magnitude of displacement and volumetric changes of voxels. RESULTS The KNE200 yielded significantly less displacement and volumetric change in the parahippocampal gyrus, medial and posterior orbital gyrus, fusiform gyrus, gyrus rectus, cerebellum and vermis than the KNE96. The KNE200 also yielded much less displacement in the cerebellum, vermis, hippocampus, parahippocampal gyrus and thalamus and much less volumetric change in the cerebellum, vermis, hippocampus and parahippocampal gyrus than the OCF. CONCLUSION KNE200 had the better accuracy than the KNE96 due to the larger sample size and was far accurate than the template constructed from elderly Caucasians in elderly Koreans.
Collapse
Grants
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- HI09C1379 [A092077] Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- MSIT; 2018-2-00861 Institute for Information and Communications Technology Promotion
- Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea
Collapse
Affiliation(s)
- Wheesung Lee
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Subin Lee
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Yeseung Park
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Grace Eun Kim
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
71
|
Heij J, van der Zwaag W, Knapen T, Caan MWA, Forstman B, Veltman DJ, van Wingen G, Aghajani M. Quantitative MRI at 7-Tesla reveals novel frontocortical myeloarchitecture anomalies in major depressive disorder. Transl Psychiatry 2024; 14:262. [PMID: 38902245 PMCID: PMC11190139 DOI: 10.1038/s41398-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Whereas meta-analytical data highlight abnormal frontocortical macrostructure (thickness/surface area/volume) in Major Depressive Disorder (MDD), the underlying microstructural processes remain uncharted, due to the use of conventional MRI scanners and acquisition techniques. We uniquely combined Ultra-High Field MRI at 7.0 Tesla with Quantitative Imaging to map intracortical myelin (proxied by longitudinal relaxation time T1) and iron concentration (proxied by transverse relaxation time T2*), microstructural processes deemed particularly germane to cortical macrostructure. Informed by meta-analytical evidence, we focused specifically on orbitofrontal and rostral anterior cingulate cortices among adult MDD patients (N = 48) and matched healthy controls (HC; N = 10). Analyses probed the association of MDD diagnosis and clinical profile (severity, medication use, comorbid anxiety disorders, childhood trauma) with aforementioned microstructural properties. MDD diagnosis (p's < 0.05, Cohen's D = 0.55-0.66) and symptom severity (p's < 0.01, r = 0.271-0.267) both related to decreased intracortical myelination (higher T1 values) within the lateral orbitofrontal cortex, a region tightly coupled to processing negative affect and feelings of sadness in MDD. No relations were found with local iron concentrations. These findings allow uniquely fine-grained insights on frontocortical microstructure in MDD, and cautiously point to intracortical demyelination as a possible driver of macroscale cortical disintegrity in MDD.
Collapse
Affiliation(s)
- Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Forstman
- Department of Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Institute of Education and Child Studies, Section Forensic Family & Youth Care, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
72
|
Pang Y, Cai Y, Xia Z, Gao X. Predicting brain age using Tri-UNet and various MRI scale features. Sci Rep 2024; 14:13742. [PMID: 38877107 PMCID: PMC11178849 DOI: 10.1038/s41598-024-63998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
In the process of human aging, significant age-related changes occur in brain tissue. To assist individuals in assessing the degree of brain aging, screening for disease risks, and further diagnosing age-related diseases, it is crucial to develop an accurate method for predicting brain age. This paper proposes a multi-scale feature fusion method called Tri-UNet based on the U-Net network structure, as well as a brain region information fusion method based on multi-channel input networks. These methods address the issue of insufficient image feature learning in brain neuroimaging data. They can effectively utilize features at different scales of MRI and fully leverage feature information from different regions of the brain. In the end, experiments were conducted on the Cam-CAN dataset, resulting in a minimum Mean Absolute Error (MAE) of 7.46. The results demonstrate that this method provides a new approach to feature learning at different scales in brain age prediction tasks, contributing to the advancement of the field and holding significance for practical applications in the context of elderly education.
Collapse
Affiliation(s)
- Yu Pang
- School of Science, Jilin Institute of Chemical Technology, Jilin, 130000, China.
| | - Yihuai Cai
- School of Science, Jilin Institute of Chemical Technology, Jilin, 130000, China.
| | - Zonghui Xia
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, 430079, China
| | - Xujie Gao
- School of Information Science and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
73
|
Huo Z, Zhang R, Chen Z, Xu J, Xu T, Feng T. The neural substrates responsible for punishment sensitivity association with procrastination: Left putamen connectivity with left middle temporal gyrus. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110982. [PMID: 38387807 DOI: 10.1016/j.pnpbp.2024.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Procrastination has adverse consequences across cultural contexts. Behavioral research found a positive correlation between punishment sensitivity and procrastination. However, little is known about the neural substrates underlying the association between them. We employed voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to address this issue with two independent samples. In Sample 1, behavioral results found that punishment sensitivity was positively related to procrastination. The VBM analysis showed that punishment sensitivity was negatively correlated with gray matter volume in left putamen. Subsequently, the RSFC results revealed that left putamen - left middle temporal gyrus (MTG) connectivity was positively associated with punishment sensitivity. More crucially, mediation analysis indicated that left putamen - left MTG connectivity mediated the relationship between punishment sensitivity and procrastination. The aforementioned results were validated in Sample 2. Altogether, left putamen - left MTG connectivity might be the neural signature of the association between punishment sensitivity and procrastination.
Collapse
Affiliation(s)
- Zhenzhen Huo
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyi Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Army Medical University, China
| | - Junye Xu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| |
Collapse
|
74
|
Küppers V, Bi H, Nicolaisen-Sobesky E, Hoffstaedter F, Yeo BT, Drzezga A, Eickhoff SB, Tahmasian M. Lower motor performance is linked with poor sleep quality, depressive symptoms, and grey matter volume alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597666. [PMID: 38895316 PMCID: PMC11185664 DOI: 10.1101/2024.06.07.597666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Motor performance (MP) is essential for functional independence and well-being, particularly in later life. However, the relationship between behavioural aspects such as sleep quality and depressive symptoms, which contribute to MP, and the underlying structural brain substrates of their interplay remains unclear. This study used three population-based cohorts of younger and older adults (n=1,950) from the Human Connectome Project-Young Adult (HCP-YA), HCP-Aging (HCP-A), and enhanced Nathan Kline Institute-Rockland sample (eNKI-RS). Several canonical correlation analyses were computed within a machine learning framework to assess the associations between each of the three domains (sleep quality, depressive symptoms, grey matter volume (GMV)) and MP. The HCP-YA analyses showed progressively stronger associations between MP and each domain: depressive symptoms (unexpectedly positive, r=0.13, SD=0.06), sleep quality (r=0.17, SD=0.05), and GMV (r=0.19, SD=0.06). Combining sleep and depressive symptoms significantly improved the canonical correlations (r=0.25, SD=0.05), while the addition of GMV exhibited no further increase (r=0.23, SD=0.06). In young adults, better sleep quality, mild depressive symptoms, and GMV of several brain regions were associated with better MP. This was conceptually replicated in young adults from the eNKI-RS cohort. In HCP-Aging, better sleep quality, fewer depressive symptoms, and increased GMV were associated with MP. Robust multivariate associations were observed between sleep quality, depressive symptoms and GMV with MP, as well as age-related variations in these factors. Future studies should further explore these associations and consider interventions targeting sleep and mental health to test the potential effects on MP across the lifespan.
Collapse
Affiliation(s)
- Vincent Küppers
- Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Hanwen Bi
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Eliana Nicolaisen-Sobesky
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - B.T. Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
- Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Research Centre Jülich, Jülich, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Masoud Tahmasian
- Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
75
|
Diez I, Ortiz-Terán L, Ng TSC, Albers MW, Marshall G, Orwig W, Kim CM, Bueichekú E, Montal V, Olofsson J, Vannini P, El Fahkri G, Sperling R, Johnson K, Jacobs HIL, Sepulcre J. Tau propagation in the brain olfactory circuits is associated with smell perception changes in aging. Nat Commun 2024; 15:4809. [PMID: 38844444 PMCID: PMC11156945 DOI: 10.1038/s41467-024-48462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.
Collapse
Affiliation(s)
- Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Laura Ortiz-Terán
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- UMASS Memorial Medical Center, UMASS Chan Medical School, Worcester, MA, USA
| | - Thomas S C Ng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gad Marshall
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William Orwig
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard University, Department of Psychology, Cambridge, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Montal
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Jonas Olofsson
- Stockholm University, Department of Psychology, Stockholm, Sweden
| | - Patrizia Vannini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fahkri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
76
|
Arif Y, Son JJ, Okelberry HJ, Johnson HJ, Willett MP, Wiesman AI, Wilson TW. Modulation of movement-related oscillatory signatures by cognitive interference in healthy aging. GeroScience 2024; 46:3021-3034. [PMID: 38175521 PMCID: PMC11009213 DOI: 10.1007/s11357-023-01057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Age-related changes in the neurophysiology underlying motor control are well documented, but whether these changes are specific to motor function or more broadly reflect age-related alterations in fronto-parietal circuitry serving attention and other higher-level processes remains unknown. Herein, we collected high-density magnetoencephalography (MEG) in 72 healthy adults (age 28-63 years) as they completed an adapted version of the multi-source interference task that involved two subtypes of cognitive interference (i.e., flanker and Simon) and their integration (i.e., multi-source). All MEG data were examined for age-related changes in neural oscillatory activity using a whole-brain beamforming approach. Our primary findings indicated robust behavioral differences in task performance based on the type of interference, as well as stronger beta oscillations with increasing age in the right dorsolateral prefrontal cortices (flanker and multi-source conditions), left parietal (flanker and Simon), and medial parietal regions (multi-source). Overall, these data indicate that healthy aging is associated with alterations in higher-order association cortices that are critical for attention and motor control in the context of cognitive interference.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA.
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
77
|
Malik MA, Weber AM, Lang D, Vanderwal T, Zwicker JG. Changes in cortical grey matter volume with Cognitive Orientation to daily Occupational Performance intervention in children with developmental coordination disorder. Front Hum Neurosci 2024; 18:1316117. [PMID: 38841123 PMCID: PMC11150831 DOI: 10.3389/fnhum.2024.1316117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Cognitive Orientation to daily Occupational Performance (CO-OP) is a cognitive-based, task-specific intervention recommended for children with developmental coordination disorder (DCD). We recently showed structural and functional brain changes after CO-OP, including increased cerebellar grey matter. This study aimed to determine whether CO-OP intervention induced changes in cortical grey matter volume in children with DCD, and if these changes were associated with improvements in motor performance and movement quality. Methods This study is part of a randomized waitlist-control trial (ClinicalTrials.gov ID: NCT02597751). Children with DCD (N = 78) were randomized to either a treatment or waitlist group and underwent three MRIs over 6 months. The treatment group received intervention (once weekly for 10 weeks) between the first and second scan; the waitlist group received intervention between the second and third scan. Cortical grey matter volume was measured using voxel-based morphometry (VBM). Behavioral outcome measures included the Performance Quality Rating Scale (PQRS) and Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). Of the 78 children, 58 were excluded (mostly due to insufficient data quality), leaving a final N = 20 for analyses. Due to the small sample size, we combined both groups to examine treatment effects. Cortical grey matter volume differences were assessed using a repeated measures ANOVA, controlling for total intracranial volume. Regression analyses examined the relationship of grey matter volume changes to BOT-2 (motor performance) and PQRS (movement quality). Results After CO-OP, children had significantly decreased grey matter in the right superior frontal gyrus and middle/posterior cingulate gyri. We found no significant associations of grey matter volume changes with PQRS or BOT-2 scores. Conclusion Decreased cortical grey matter volume generally reflects greater brain maturity. Decreases in grey matter volume after CO-OP intervention were in regions associated with self-regulation and motor control, consistent with our other studies. Decreased grey matter volume may be due to focal increases in synaptic pruning, perhaps as a result of strengthening networks in the brain via the repeated learning and actions in therapy. Findings from this study add to the growing body of literature demonstrating positive neuroplastic changes in the brain after CO-OP intervention.
Collapse
Affiliation(s)
- Myrah Anum Malik
- Graduate Programs in Rehabilitation Science, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Mark Weber
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Donna Lang
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Tamara Vanderwal
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jill G. Zwicker
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Occupational Science and Occupational Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
78
|
Escalante YY, Adams JN, Yassa MA, Janssen N. Age-related constraints on the spatial geometry of the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594753. [PMID: 38798452 PMCID: PMC11118588 DOI: 10.1101/2024.05.17.594753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Age-related structural brain changes may be better captured by assessing complex spatial geometric differences rather than isolated changes to individual regions. We applied a novel analytic method to quantify age-related changes to the spatial anatomy of the brain by measuring expansion and compression of global brain shape and the distance between cross-hemisphere homologous regions. To test how global brain shape and regional distances are affected by aging, we analyzed 2,603 structural MRIs (range: 30-97 years). Increasing age was associated with global shape expansion across inferior-anterior gradients, global compression across superior-posterior gradients, and regional expansion between frontotemporal homologues. Specific patterns of global and regional expansion and compression were further associated with clinical impairment and distinctly related to deficits in various cognitive domains. These findings suggest that changes to the complex spatial anatomy and geometry of the aging brain may be associated with reduced efficiency and cognitive dysfunction in older adults.
Collapse
|
79
|
Malik M, Weber A, Lang D, Vanderwal T, Zwicker JG. Cortical grey matter volume differences in children with developmental coordination disorder compared to typically developing children. Front Hum Neurosci 2024; 18:1276057. [PMID: 38826616 PMCID: PMC11140146 DOI: 10.3389/fnhum.2024.1276057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/08/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction The cause of Developmental Coordination Disorder (DCD) is unknown, but neuroimaging evidence suggests that DCD may be related to altered brain development. Children with DCD show less structural and functional connectivity compared to typically developing (TD) children, but few studies have examined cortical volume in children with DCD. The purpose of this study was to investigate cortical grey matter volume using voxel-based morphometry (VBM) in children with DCD compared to TD children. Methods This cross-sectional study was part of a larger randomized-controlled trial (ClinicalTrials.gov ID: NCT02597751) that involved various MRI scans of children with/without DCD. This paper focuses on the anatomical scans, performing VBM of cortical grey matter volume in 30 children with DCD and 12 TD children. Preprocessing and VBM data analysis were conducted using the Computational Anatomy Tool Box-12 and a study-specific brain template. Differences between DCD and TD groups were assessed using a one-way ANOVA, controlling for total intracranial volume. Regression analyses examined if motor and/or attentional difficulties predicted grey matter volume. We used threshold-free cluster enhancement (5,000 permutations) and set an alpha level of 0.05. Due to the small sample size, we did not correct for multiple comparisons. Results Compared to the TD group, children with DCD had significantly greater grey matter in the left superior frontal gyrus. Lower motor scores (meaning greater impairment) were related to greater grey matter volume in left superior frontal gyrus, frontal pole, and right middle frontal gyrus. Greater grey matter volume was also significantly correlated with higher scores on the Conners 3 ADHD Index in the left superior frontal gyrus, superior parietal lobe, and precuneus. These results indicate that greater grey matter volume in these regions is associated with poorer motor and attentional skills. Discussion Greater grey matter volume in the left superior frontal gyrus in children with DCD may be a result of delayed or absent healthy cortical thinning, potentially due to altered synaptic pruning as seen in other neurodevelopmental disorders. These findings provide further support for the hypothesis that DCD is related to altered brain development.
Collapse
Affiliation(s)
- Myrah Malik
- Graduate Programs in Rehabilitation Science, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Weber
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Donna Lang
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Tamara Vanderwal
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jill G. Zwicker
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
80
|
Zhao X, Zhang R, Feng T. The vmPFC-IPL functional connectivity as the neural basis of future self-continuity impacted procrastination: the mediating role of anticipated positive outcomes. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:11. [PMID: 38724963 PMCID: PMC11083830 DOI: 10.1186/s12993-024-00236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Procrastination is universally acknowledged as a problematic behavior with wide-ranging consequences impacting various facets of individuals' lives, including academic achievement, social accomplishments, and mental health. Although previous research has indicated that future self-continuity is robustly negatively correlated with procrastination, it remains unknown about the neural mechanisms underlying the impact of future self-continuity on procrastination. To address this issue, we employed a free construction approach to collect individuals' episodic future thinking (EFT) thoughts regarding specific procrastination tasks. Next, we conducted voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) analysis to explore the neural substrates underlying future self-continuity. Behavior results revealed that future self-continuity was significantly negatively correlated with procrastination, and positively correlated with anticipated positive outcome. The VBM analysis showed a positive association between future self-continuity and gray matter volumes in the right ventromedial prefrontal cortex (vmPFC). Furthermore, the RSFC results indicated that the functional connectivity between the right vmPFC and the left inferior parietal lobule (IPL) was positively correlated with future self-continuity. More importantly, the mediation analysis demonstrated that anticipated positive outcome can completely mediate the relationship between the vmPFC-IPL functional connectivity and procrastination. These findings suggested that vmPFC-IPL functional connectivity might prompt anticipated positive outcome about the task and thereby reduce procrastination, which provides a new perspective to understand the relationship between future self-continuity and procrastination.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Faculty of Psychology, Southwest University, No. 2, Tian Sheng RD., Beibei, Chongqing, 400715, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, No. 2, Tian Sheng RD., Beibei, Chongqing, 400715, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, No. 2, Tian Sheng RD., Beibei, Chongqing, 400715, China.
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| |
Collapse
|
81
|
Vallejo-Azar MN, Arenaza B, Elizalde Acevedo B, Alba-Ferrara L, Samengo I, Bendersky M, Gonzalez PN. Hemispheric asymmetries in cortical grey matter of gyri and sulci in modern human populations from South America. J Anat 2024; 244:815-830. [PMID: 38183319 PMCID: PMC11021627 DOI: 10.1111/joa.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
Structural asymmetries of brain regions associated with lateralised functions have been extensively studied. However, there are fewer morphometric analyses of asymmetries of the gyri and sulci of the entire cortex. The current study assessed cortical asymmetries in a sample of healthy adults (N = 175) from an admixed population from South America. Grey matter volume and surface area of 66 gyri and sulci were quantified on T1 magnetic resonance images. The departure from zero of the differences between left and right hemispheres (L-R), a measure of directional asymmetry (DA), the variance of L-R, and an index of fluctuating asymmetry (FA) were evaluated for each region. Significant departures from perfect symmetry were found for most cortical gyri and sulci. Regions showed leftward asymmetry at the population level in the frontal lobe and superior lateral parts of the parietal lobe. Rightward asymmetry was found in the inferior parietal, occipital, frontopolar, and orbital regions, and the cingulate (anterior, middle, and posterior-ventral). Despite this general pattern, several sulci showed the opposite DA compared to the neighbouring gyri, which remarks the need to consider the neurobiological differences in gyral and sulcal development in the study of structural asymmetries. The results also confirm the absence of DA in most parts of the inferior frontal gyrus and the precentral region. This study contributes with data on populations underrepresented in the databases used in neurosciences. Among its findings, there is agreement with previous results obtained in populations of different ancestry and some discrepancies in the middle frontal and medial parietal regions. A significant DA not reported previously was found for the volume of long and short insular gyri and the central sulcus of the insula, frontomarginal, transverse frontopolar, paracentral, and middle and posterior parts of the cingulate gyrus and sulcus, gyrus rectus, occipital pole, and olfactory sulcus, as well as for the volume and area of the transverse collateral sulcus and suborbital sulcus. Also, several parcels displayed significant variability in the left-right differences, which can be partially attributable to developmental instability, a source of FA. Moreover, a few gyri and sulci displayed ideal FA with non-significant departures from perfect symmetry, such as subcentral and posterior cingulate gyri and sulci, inferior frontal and fusiform gyri, and the calcarine, transverse collateral, precentral, and orbital sulci. Overall, these results show that asymmetries are ubiquitous in the cerebral cortex.
Collapse
Affiliation(s)
- Mariana N Vallejo-Azar
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| | - Bautista Arenaza
- Department of Medical Physics and Instituto Balseiro, Centro Atómico Bariloche, CONICET, Bariloche, Argentina
| | - Bautista Elizalde Acevedo
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Bariloche, Argentina
| | - Lucía Alba-Ferrara
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| | - Inés Samengo
- Department of Medical Physics and Instituto Balseiro, Centro Atómico Bariloche, CONICET, Bariloche, Argentina
| | - Mariana Bendersky
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula N Gonzalez
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| |
Collapse
|
82
|
Tisserand A, Blanc F, Mondino M, Muller C, Durand H, Demuynck C, Loureiro de Sousa P, Ravier A, Sanna L, Botzung A, Philippi N. Who am I with my Lewy bodies? The insula as a core region of the self-concept networks. Alzheimers Res Ther 2024; 16:85. [PMID: 38641653 PMCID: PMC11027417 DOI: 10.1186/s13195-024-01447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/01/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is characterized by insular atrophy, which occurs at the early stage of the disease. Damage to the insula has been associated with disorders reflecting impairments of the most fundamental components of the self, such as anosognosia, which is a frequently reported symptom in patients with Lewy bodies (LB). The purpose of this study was to investigate modifications of the self-concept (SC), another component of the self, and to identify neuroanatomical correlates, in prodromal to mild DLB. METHODS Twenty patients with prodromal to mild DLB were selected to participate in this exploratory study along with 20 healthy control subjects matched in terms of age, gender, and level of education. The Twenty Statements Test (TST) was used to assess the SC. Behavioral performances were compared between LB patients and control subjects. Three-dimensional magnetic resonance images (MRI) were acquired for all participants and correlational analyses were performed using voxel-based morphometry (VBM) in whole brain and using a mask for the insula. RESULTS The behavioral results on the TST showed significantly impaired performances in LB patients in comparison with control subjects (p < .0001). Correlational analyses using VBM revealed positive correlations between the TST and grey matter volume within insular cortex, right supplementary motor area, bilateral inferior temporal gyri, right inferior frontal gyrus, and left lingual gyrus, using a threshold of p = .001 uncorrected, including total intracranial volume (TIV), age, and MMSE as nuisance covariates. Additionally, correlational analysis using a mask for the insula revealed positive correlation with grey matter volume within bilateral insular cortex, using a threshold of p = .005. CONCLUSIONS The behavioral results confirm the existence of SC impairments in LB patients from the prodromal stage of the disease, compared to matched healthy controls. As we expected, VBM analyses revealed involvement of the insula, among that of other brain regions, already known to be involved in other self-components. While this study is exploratory, our findings provide important insights regarding the involvement of the insula within the self, confirming the insula as a core region of the self-networks, including for high-order self-representations such as the SC.
Collapse
Affiliation(s)
- Alice Tisserand
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France.
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France.
| | - Frédéric Blanc
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Mary Mondino
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France
| | - Candice Muller
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Hélène Durand
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Catherine Demuynck
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Paulo Loureiro de Sousa
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France
| | - Alix Ravier
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Léa Sanna
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Anne Botzung
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Nathalie Philippi
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| |
Collapse
|
83
|
Lacey C, Paterson T, Gawryluk JR, for the Alzheimer’s Disease Neuroimaging Initiative. Impact of APOE-ε alleles on brain structure and cognitive function in healthy older adults: A VBM and DTI replication study. PLoS One 2024; 19:e0292576. [PMID: 38635499 PMCID: PMC11025752 DOI: 10.1371/journal.pone.0292576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/22/2023] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The Apolipoprotein E (APOE) gene has been established in the Alzheimer's disease (AD) literature to impact brain structure and function and may also show congruent effects in healthy older adults, although findings in this population are much less consistent. The current study aimed to replicate and expand the multimodal approach employed by Honea et al. Structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and neuropsychological measures were used to investigate the impact of APOE-ε status on grey matter structure, white matter integrity, and cognitive functioning. METHODS Data were obtained from the Alzheimer's Disease Initiative Phase 3 (ADNI3) database. Baseline MRI, DTI and cognitive composite scores for memory (ADNI-Mem) and executive function (ADNI-EF) were acquired from 116 healthy controls. Participants were grouped according to APOE allele presence (APOE-ε2+ N = 17, APOE-ε3ε3 N = 64, APOE-ε4+ N = 35). Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) were used to compare grey matter volume (GMV) and white matter integrity, respectively, between APOE-ε2+ and APOE-ε3ε3 controls, and again between APOE-ε4+ and APOE-ε3ε3 controls. Multivariate analysis of covariance (MANCOVA) was used to examine the effects of APOE polymorphism on memory and EF across all APOE groups with age, sex and education as regressors of no interest. Cognitive scores were correlated (Pearson r) with imaging metrics within groups. RESULTS No significant differences were seen across groups, within groups in MRI metrics, or cognitive performance (p>0.05, corrected for multiple comparisons). CONCLUSIONS The current study partially replicated and extended previous findings from an earlier multimodal study (Honea 2009). Future studies should clarify APOE mechanisms in healthy ageing by adding other imaging, cognitive, and lifestyle metrics and longitudinal design in larger sample sizes.
Collapse
Affiliation(s)
- Colleen Lacey
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| | - Theone Paterson
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| | - Jodie R. Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | |
Collapse
|
84
|
Liu Y, Wang H, Sha G, Cao Y, Chen Y, Chen Y, Zhang J, Chai C, Fan Q, Xia S. The covariant structural and functional neuro-correlates of cognitive impairments in patients with end-stage renal diseases. Front Neurosci 2024; 18:1374948. [PMID: 38686326 PMCID: PMC11056510 DOI: 10.3389/fnins.2024.1374948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Cognitive impairment (CI) is a common complication of end-stage renal disease (ESRD) that is associated with structural and functional changes in the brain. However, whether a joint structural and functional alteration pattern exists that is related to CI in ESRD is unclear. Methods In this study, instead of looking at brain structure and function separately, we aim to investigate the covariant characteristics of both functional and structural aspects. Specifically, we took the fusion analysis approach, namely, multimodal canonical correlation analysis and joint independent component analysis (mCCA+jICA), to jointly study the discriminative features in gray matter volume (GMV) measured by T1-weighted (T1w) MRI, fractional anisotropy (FA) in white matter measured by diffusion MRI, and the amplitude of low-frequency fluctuation (ALFF) measured by blood oxygenation-level-dependent (BOLD) MRI in 78 ESRD patients versus 64 healthy controls (HCs), followed by a mediation effect analysis to explore the relationship between neuroimaging findings, cognitive impairments and uremic toxins. Results Two joint group-discriminative independent components (ICs) were found to show covariant abnormalities across FA, GMV, and ALFF (all p < 0.05). The most dominant joint IC revealed associative patterns of alterations of GMV (in the precentral gyrus, occipital lobe, temporal lobe, parahippocampal gyrus, and hippocampus), alterations of ALFF (in the precuneus, superior parietal gyrus, and superior occipital gyrus), and of white matter FA (in the corticospinal tract and inferior frontal occipital fasciculus). Another significant IC revealed associative alterations of GMV (in the dorsolateral prefrontal and orbitofrontal cortex) and FA (in the forceps minor). Moreover, the brain changes identified by FA and GMV in the above-mentioned brain regions were found to mediate the negative correlation between serum phosphate and mini-mental state examination (MMSE) scores (all p < 0.05). Conclusion The mCCA+jICA method was demonstrated to be capable of revealing covariant abnormalities across neuronal features of different types in ESRD patients as contrasted to HCs, and joint brain changes may play an important role in mediating the relationship between serum toxins and CIs in ESRD. Our results show the mCCA+jICA fusion analysis approach may provide new insights into similar neurobiological studies.
Collapse
Affiliation(s)
- Yuefan Liu
- Department of Biomedical Engineering, Medical College, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Huiying Wang
- Department of Radiology, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Guanchen Sha
- Department of Biomedical Engineering, Medical College, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Yutong Cao
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Intelligent Medical Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuanyuan Chen
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Intelligent Medical Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jingyi Zhang
- Department of Radiology, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Chao Chai
- Department of Radiology, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Qiuyun Fan
- Department of Biomedical Engineering, Medical College, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Intelligent Medical Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Xia
- Department of Radiology, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| |
Collapse
|
85
|
Rajagopalan V, Pioro EP. Differing patterns of cortical grey matter pathology identified by multifractal analysis in UMN-predominant ALS patients with and without corticospinal tract hyperintensity. J Neurol Sci 2024; 459:122945. [PMID: 38564847 DOI: 10.1016/j.jns.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The pathological hallmarks of amyotrophic lateral sclerosis (ALS) are degeneration of the primary motor cortex grey matter (GM) and corticospinal tract (CST) resulting in upper motor neuron (UMN) dysfunction. Conventional brain magnetic resonance imaging (MRI) shows abnormal CST hyperintensity in some UMN-predominant ALS patients (ALS-CST+) but not in others (ALS-CST-). In addition to the CST differences, we aimed to determine whether GM degeneration differs between ALS-CST+ and ALS-CST- patients by cortical thickness (CT), voxel-based morphometry (VBM) and fractal dimension analyses. We hypothesized that MRI multifractal (MF) measures could differentiate between neurologic controls (n = 14) and UMN-predominant ALS patients as well as between patient subgroups (ALS-CST+, n = 21 vs ALS-CST-, n = 27). No significant differences were observed in CT or GM VBM in any brain regions between patients and controls or between ALS subgroups. MF analyses were performed separately on GM of the whole brain, of frontal, parietal, occipital, and temporal lobes as well as of cerebellum. Estimating MF measures D (Q = 0), D (Q = 1), D (Q = 2), Δf, Δα of frontal lobe GM classified neurologic controls, ALS-CST+ and ALS-CST- groups with 98% accuracy and > 95% in F1, recall, precision and specificity scores. Classification accuracy was only 74% when using whole brain MF measures and < 70% for other brain lobes. We demonstrate that MF analysis can distinguish UMN-predominant ALS subgroups based on GM changes, which the more commonly used quantitative approaches of CT and VBM cannot.
Collapse
Affiliation(s)
- Venkateswaran Rajagopalan
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Erik P Pioro
- Neuromuscular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Medicine (Neurology), University of British Columbia, Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
86
|
Kämpe R, Paul ER, Östman L, Heilig M, Howard DM, Hamilton JP. Contributions of Polygenic Risk and Disease Status to Gray Matter Abnormalities in Major Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:437-446. [PMID: 38142967 DOI: 10.1016/j.bpsc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Gray matter (GM) abnormalities in depression are potentially attributable to some combination of trait, state, and illness history factors. Here, we sought to determine the contributions of polygenic risk for depression, depressive disease status, and the interaction of these factors to these GM abnormalities. METHODS We conducted a cross-sectional comparison using a 2 × 3 factorial design examining effects of polygenic risk for depression (lower vs. upper quartile) and depression status (never depressed, currently depressed, or remitted depression) on regional GM concentration and GM volume. Participants were a subset of magnetic resonance imaging-scanned UK Biobank participants comprising 2682 people (876 men, 1806 women) algorithmically matched on 16 potential confounders. RESULTS In women but not men, we observed that elevated polygenic risk for depression was associated with reduced cerebellar GM volume. This deficit occurred in salience and dorsal attention network regions of the cerebellum and was associated with poorer performance on tests of attention and executive function but not fluid intelligence. Moreover, in women with current depression compared to both women with remitted depression and women who never had depression, we observed GM reductions in ventral and medial prefrontal, insular, and medial temporal regions. These state-related abnormalities remained when accounting for antidepressant medication status. CONCLUSIONS Neuroanatomical deficits attributed broadly to major depression are more likely due to an aggregation of independent factors. Polygenic risk for depression accounted for cerebellar structural abnormalities that themselves accounted for cognitive deficits observed in this disorder. Medial and ventral prefrontal, insular, and temporal cortex deficits constituted a much larger proportion of the aggregate deficit and were attributable to the depressed state.
Collapse
Affiliation(s)
- Robin Kämpe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping, Sweden
| | - Elisabeth R Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping, Sweden
| | - Lars Östman
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping, Sweden; Department of Psychiatry in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping, Sweden; Department of Psychiatry in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - J Paul Hamilton
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| |
Collapse
|
87
|
Varga Z, Keller J, Robinson SD, Serranova T, Nepozitek J, Zogala D, Trnka J, Ruzicka E, Sonka K, Dusek P. Whole brain pattern of iron accumulation in REM sleep behavior disorder. Hum Brain Mapp 2024; 45:e26675. [PMID: 38590155 PMCID: PMC11002348 DOI: 10.1002/hbm.26675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.
Collapse
Affiliation(s)
- Zsoka Varga
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Jiri Keller
- Radiodiagnostic DepartmentNa Homolce HospitalPragueCzech Republic
| | - Simon Daniel Robinson
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaAustria
| | - Tereza Serranova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - David Zogala
- Department of Nuclear Medicine, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Jiri Trnka
- Department of Nuclear Medicine, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
- Department of Radiology, First Faculty of MedicineCharles University and General University Hospital in PragueCzech Republic
| |
Collapse
|
88
|
Cao C, Li Y, Hu F, Gao X. Modeling refined differences of cortical folding patterns via spatial, morphological, and temporal fusion representations. Cereb Cortex 2024; 34:bhae146. [PMID: 38602743 DOI: 10.1093/cercor/bhae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
The gyrus, a pivotal cortical folding pattern, is essential for integrating brain structure-function. This study focuses on 2-Hinge and 3-Hinge folds, characterized by the gyral convergence from various directions. Existing voxel-level studies may not adequately capture the precise spatial relationships within cortical folding patterns, especially when relying solely on local cortical characteristics due to their variable shapes and homogeneous frequency-specific features. To overcome these challenges, we introduced a novel model that combines spatial distribution, morphological structure, and functional magnetic resonance imaging data. We utilized spatio-morphological residual representations to enhance and extract subtle variations in cortical spatial distribution and morphological structure during blood oxygenation, integrating these with functional magnetic resonance imaging embeddings using self-attention for spatio-morphological-temporal representations. Testing these representations for identifying cortical folding patterns, including sulci, gyri, 2-Hinge, and 2-Hinge folds, and evaluating the impact of phenotypic data (e.g. stimulus) on recognition, our experimental results demonstrate the model's superior performance, revealing significant differences in cortical folding patterns under various stimulus. These differences are also evident in the characteristics of sulci and gyri folds between genders, with 3-Hinge showing more variations. Our findings indicate that our representations of cortical folding patterns could serve as biomarkers for understanding brain structure-function correlations.
Collapse
Affiliation(s)
- Chunhong Cao
- The MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, 411005 Xiangtan, China
| | - Yongquan Li
- The MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, 411005 Xiangtan, China
| | - Fang Hu
- The Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, 423043 Chenzhou, China
| | - Xieping Gao
- The Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, 410081 Changsha, China
| |
Collapse
|
89
|
Manuello J, Min J, McCarthy P, Alfaro-Almagro F, Lee S, Smith S, Elliott LT, Winkler AM, Douaud G. The effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease. Nat Commun 2024; 15:2576. [PMID: 38538590 PMCID: PMC10973379 DOI: 10.1038/s41467-024-46344-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/22/2024] [Indexed: 11/03/2024] Open
Abstract
We have previously identified a network of higher-order brain regions particularly vulnerable to the ageing process, schizophrenia and Alzheimer's disease. However, it remains unknown what the genetic influences on this fragile brain network are, and whether it can be altered by the most common modifiable risk factors for dementia. Here, in ~40,000 UK Biobank participants, we first show significant genome-wide associations between this brain network and seven genetic clusters implicated in cardiovascular deaths, schizophrenia, Alzheimer's and Parkinson's disease, and with the two antigens of the XG blood group located in the pseudoautosomal region of the sex chromosomes. We further reveal that the most deleterious modifiable risk factors for this vulnerable brain network are diabetes, nitrogen dioxide - a proxy for traffic-related air pollution - and alcohol intake frequency. The extent of these associations was uncovered by examining these modifiable risk factors in a single model to assess the unique contribution of each on the vulnerable brain network, above and beyond the dominating effects of age and sex. These results provide a comprehensive picture of the role played by genetic and modifiable risk factors on these fragile parts of the brain.
Collapse
Affiliation(s)
- Jordi Manuello
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Joosung Min
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Paul McCarthy
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Fidel Alfaro-Almagro
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Soojin Lee
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Pacific Parkinson's Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Stephen Smith
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Anderson M Winkler
- National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Gwenaëlle Douaud
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
90
|
Schnaufer L, Gschaidmeier A, Heimgärtner M, Driever PH, Hauser TK, Wilke M, Lidzba K, Staudt M. Atypical language organization following perinatal infarctions of the left hemisphere is associated with structural changes in right-hemispheric grey matter. Dev Med Child Neurol 2024; 66:353-361. [PMID: 37691416 DOI: 10.1111/dmcn.15751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
AIM To assess how atypical language organization after early left-hemispheric brain lesions affects grey matter in the contralesional hemisphere. METHOD This was a cross-sectional study with between-group comparisons of 14 patients (six female, 8-26 years) with perinatal left-hemispheric brain lesions (two arterial ischemic strokes, 11 periventricular haemorrhagic infarctions, one without classification) and 14 typically developing age-matched controls (TDC) with functional magnetic resonance imaging (fMRI) documented left-hemispheric language organization (six female, 8-28 years). MRI data were analysed with SPM12, CAT12, and custom scripts. Language lateralization indices were determined by fMRI within a prefrontal mask and right-hemispheric grey matter group differences by voxel-based morphometry (VBM). RESULTS FMRI revealed left-dominance in seven patients with typical language organization (TYP) and right-dominance in seven patients with atypical language organization (ATYP) of 14 patients. VBM analysis of all patients versus controls showed grey matter reductions in the middle temporal gyrus of patients. A comparison between the two patient subgroups revealed an increase of grey matter in the middle frontal gyrus in the ATYP group. Voxel-based regression analysis confirmed that grey matter increases in the middle frontal gyrus were correlated with atypical language organization. INTERPRETATION Compatible with a non-specific lesion effect, we found areas of grey matter reduction in patients as compared to TDC. The grey matter increase in the middle frontal gyrus seems to reflect a specific compensatory effect in patients with atypical language organization. WHAT THIS PAPER ADDS Perinatal stroke leads to decreased grey matter in the contralesional hemisphere. Atypical language organization is associated with grey matter increases in contralesional language areas.
Collapse
Affiliation(s)
- Lukas Schnaufer
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Experimental Paediatric Neuroimaging, Children's Hospital and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Alisa Gschaidmeier
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Germany
| | - Magdalena Heimgärtner
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Pablo Hernáiz Driever
- Department of Paediatric Oncology and Haematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Tübingen, Germany
| | - Marko Wilke
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Experimental Paediatric Neuroimaging, Children's Hospital and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Karen Lidzba
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Division of Neuropaediatrics, Development and Rehabilitation, University Children's Hospital Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Martin Staudt
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Centre for Paediatric Palliative Care, University Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
91
|
Wang Z, Zhang Q. Ageing of grammatical advance planning in spoken sentence production: an eye movement study. PSYCHOLOGICAL RESEARCH 2024; 88:652-669. [PMID: 37561202 DOI: 10.1007/s00426-023-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
This study used an image-description paradigm with concurrent eye movement recordings to investigate differences of grammatical advance planning between young and older speakers in spoken sentence production. Participants were asked to produce sentences with simple or complex initial phrase structures (IPS) in Experiment 1 while producing individual words in Experiment 2. Young and older speakers showed comparable speaking latencies in sentence production task, whereas older speakers showed longer latencies than young speakers in word production task. Eye movement data showed that compared with young speakers, older speakers had higher fixation percentage on object 1, lower percentage of gaze shift from object 1 to 2, and lower fixation percentage on object 2 in simple IPS sentences, while they showed similar fixation percentage on object 1, similar percentage of gaze shift from object 1 to 2, and lower fixation percentage on object 2 in complex IPS sentences, indicating a decline of grammatical encoding scope presenting on eye movement patterns. Meanwhile, speech analysis showed that older speakers presented longer utterance duration, slower speech rate, and longer and more frequently occurred pauses in articulation, indicating a decline of speech articulation in older speakers. Thus, our study suggests that older speakers experience an ageing effect in the sentences with complex initial phrases due to limited cognitive resources.
Collapse
Affiliation(s)
- Zhiyun Wang
- Department of Psychology, Renmin University of China, 59 Zhongguancun Street, Haidian District, Beijing, 100872, People's Republic of China
| | - Qingfang Zhang
- Department of Psychology, Renmin University of China, 59 Zhongguancun Street, Haidian District, Beijing, 100872, People's Republic of China.
| |
Collapse
|
92
|
Hatanaka S, Sasai H, Shida T, Osuka Y, Kojima N, Ohta T, Abe T, Yamashita M, Obuchi SP, Ishizaki T, Fujiwara Y, Awata S, Toba K. Association between dynapenia and cognitive decline in community-dwelling older Japanese adults: The IRIDE Cohort Study. Geriatr Gerontol Int 2024; 24 Suppl 1:123-129. [PMID: 38116709 DOI: 10.1111/ggi.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
AIM Muscle mass and strength correlate with cognitive function; however, it remains unclear whether dynapenia (i.e., muscle weakness with preserved muscle mass) is relevant. This study aimed to explore whether dynapenia is associated with global cognitive function in community-dwelling older Japanese adults. METHODS This cross-sectional study used data from the Integrated Research Initiative for Living Well with Dementia Cohort Study, which pooled data from five community-based geriatric cohorts. Dynapenia was defined as muscle weakness without muscle mass loss according to the Asian Working Group for Sarcopenia criteria. Cognitive function was assessed using the Mini-Mental State Examination (MMSE). An ordered logistic regression analysis was conducted with dynapenia as the exposure and with cognitive decline stages, defined as an MMSE score of 27-30 for normal cognition, 24-26 for possible cognitive decline, and <24 for cognitive decline, as the outcome, stratified by sex and adjusted for age, muscle mass, education, alcohol consumption, smoking habits, living alone, and non-communicable diseases. RESULTS We analyzed data for 3338 participants (2162 female) with preserved muscle mass. Of these, 449 (13.5%) had dynapenia, and 79 (2.4%) exhibited cognitive decline. Multivariate odds ratios (95% confidence interval) for cognitive decline among those with dynapenia, compared with those without dynapenia, were 1.51 (1.02-2.24) for males and 2.08 (1.51-2.86) for females. CONCLUSIONS Muscle weakness is associated with cognitive decline, even in individuals with preserved muscle mass. Further studies are needed to better understand the association between muscle weakness and cognitive decline over time in order to develop dementia prevention strategies for those with dynapenia. Geriatr Gerontol Int 2024; 24: 123-129.
Collapse
Affiliation(s)
- Sho Hatanaka
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Hiroyuki Sasai
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Takashi Shida
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Yosuke Osuka
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
- Department of Frailty Research, Center for Gerontology and Social Science Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Narumi Kojima
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Takahisa Ohta
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Takumi Abe
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Mari Yamashita
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Shuichi P Obuchi
- Human Care Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Tatsuro Ishizaki
- Human Care Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Yoshinori Fujiwara
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Shuichi Awata
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Kenji Toba
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| |
Collapse
|
93
|
Niu L, Song X, Li Q, Peng L, Dai H, Zhang J, Chen K, Lee TMC, Zhang R. Age-related positive emotional reactivity decline associated with the anterior insula based resting-state functional connectivity. Hum Brain Mapp 2024; 45:e26621. [PMID: 38339823 PMCID: PMC10858337 DOI: 10.1002/hbm.26621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Recent studies have suggested that emotional reactivity changes with age, but the neural basis is still unclear. The insula may be critical for the emotional reactivity. The current study examined how ageing affects emotional reactivity using the emotional reactivity task data from a human sample (Cambridge Center for Age and Neuroscience, N = 243, age 18-88 years). The resting-state magnetic resonance measurements from the same sample were used to investigate the potential mechanisms of the insula. In the initial analysis, we conducted partial correlation assessments to examine the associations between emotional reactivity and age, as well as between the gray matter volume (GMV) of the insula and age. Our results revealed that emotional reactivity, especially positive emotional reactivity, decreased with age and that the GMV of the insula was negatively correlated with age. Subsequently, the bilateral insula was divided into six subregions to calculate the whole brain resting-state functional connectivity (rsFC). The mediating effect of the rsFC on age and emotional reactivity was then calculated. The results showed that the rsFC of the left anterior insula (AI) with the right hippocampus, and the rsFCs of the right AI with the striatum and the thalamus were mediated the relationship between positive emotional reactivity and age. Our findings suggest that attenuating emotional reactivity with age may be a strategic adaptation fostering emotional stability and diminishing emotional vulnerability. Meanwhile, the findings implicate a key role for the AI in the changes in positive emotional reactivity with age.
Collapse
Affiliation(s)
- Lijing Niu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
- State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Laboratory of Neuropsychology and Human NeuroscienceThe University of Hong KongHong KongSARChina
| | - Qian Li
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Lanxin Peng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Haowei Dai
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Jiayuan Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Keyin Chen
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Laboratory of Neuropsychology and Human NeuroscienceThe University of Hong KongHong KongSARChina
- Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong‐Macao Greater Bay AreaGuangzhouChina
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
- Department of Psychiatry, Zhujiang HospitalSouthern Medical UniversityGuangzhouPR China
| |
Collapse
|
94
|
Orr ME, Kotkowski E, Ramirez P, Bair-Kelps D, Liu Q, Brenner C, Schmidt MS, Fox PT, Larbi A, Tan C, Wong G, Gelfond J, Frost B, Espinoza S, Musi N, Powers B. A randomized placebo-controlled trial of nicotinamide riboside in older adults with mild cognitive impairment. GeroScience 2024; 46:665-682. [PMID: 37994989 PMCID: PMC10828186 DOI: 10.1007/s11357-023-00999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023] Open
Abstract
Nicotinamide riboside (NR) increases blood levels of NAD+, a cofactor central to energy metabolism, and improves brain function in some rodent models of neurodegeneration. We conducted a placebo-controlled randomized pilot study with the primary objective of determining safety of NR in older adults with mild cognitive impairment (MCI). Twenty subjects with MCI were randomized to receive placebo or NR using dose escalation to achieve, and maintain, a final dose of 1 g/day over a 10-week study duration. The primary outcome was post-treatment change from baseline measures of cognition (Montreal Cognitive Assessment, MoCA). Predefined secondary outcomes included post-treatment changes in cerebral blood flow (CBF); blood NAD+ levels; and additional neurocognitive, psychometric, and physical performance tests. DNA methylation was assessed in peripheral blood mononuclear cells (PBMCs) as an exploratory outcome. The target NR dose was safely achieved as evidenced by a 2.6-fold increase in blood NAD+ in the NR group (p < 0.001, 95% CI [17.77, 43.49]) with no between-group difference in adverse event reporting. MoCA and other neurocognitive and psychometric metrics remained stable throughout the study. NR reduced CBF in the default mode network (DMN) with greatest differences observed in the left inferior parietal lobe (IPL) (DMN p = 0.013, μ = 0.92, 95% CI [0.23, 1.62]; left IPL p = 0.009, μ = 1.66, 95% CI [0.5, 2.82]). Walking speed in the placebo group significantly improved across the study duration suggestive of a practice effect but did not change in the NR group (p = 0.0402 and p = 0.4698, respectively). Other secondary outcome measures remained stable. Global methylation analyses indicated a modest NR-associated increase in DNA methylation and concomitant reduction in epigenetic age as measured by PhenoAge and GrimAge epigenetic clock analyses. In summary, NR significantly increased blood NAD+ concentrations in older adults with MCI. NR was well tolerated and did not alter cognition. While CBF was reduced by NR treatment, statistical significance would not have withstood multiple comparisons correction. A larger trial of longer duration is needed to determine the potential of NR as a strategy to improve cognition and alter CBF in older adults with MCI. ClinicalTrials.gov NCT02942888.
Collapse
Affiliation(s)
- Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, 575 Patterson Ave, Winston-Salem, NC, 27101, USA.
- Salisbury VA Medical Center, Salisbury, NC, 28144, USA.
| | - Eithan Kotkowski
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Darcy Bair-Kelps
- Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Qianqian Liu
- Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Charles Brenner
- Department of Diabetes & Cancer Metabolism, City of Hope, Duarte, CA, 91010, USA
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Glenn Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Jonathan Gelfond
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sara Espinoza
- Center for Translational Geroscience, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicolas Musi
- Center for Translational Geroscience, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Becky Powers
- Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Medicine, Division of Geriatrics, Gerontology, and Palliative Medicine, University of Texas Health Science Center San Antonio, San Antonio, USA
| |
Collapse
|
95
|
Murdaugh DL, Milner D, Cardenas CE, Heinzman KA, Cooper CA, Tabb JN, Bhatia S, McDonald AM. Volumetric brain assessment of long-term head and neck cancer survivors. Radiother Oncol 2024; 191:110068. [PMID: 38142935 PMCID: PMC10922648 DOI: 10.1016/j.radonc.2023.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Radiation therapy (RT) for locally advanced head and neck cancer (HNC) often exposes subcortical brain structures to radiation. We performed this study to assess region-specific brain volumetrics in a population of long term HNC survivors. METHODS AND MATERIALS Forty HNC survivors were enrolled at a mean of 6.4 years from completion of RT. Patients underwent a research MRI protocol that included a 3D T1- weighted whole-brain scan on a 3 Tesla MRI scanner. Voxel based morphometry was performed using the Computational Anatomy Toolbox with the Neuromorphometrics atlas. Healthy controls from the Human Connectome Project were used as a comparison cohort. Study participants also completed a comprehensive neurocognitive assessment. RESULTS The final study cohort consisted of 38 participants after excluding 2 participants due to image quality. HNC survivors displayed widespread reduction in gray matter (GM) brain region volumes that included bilateral medial frontal cortex, temporal lobe, hippocampus, supplemental motor area, and cerebellum. Greater radiation exposure was associated with reduced GM volume in the left ventral diencephalon (r = -0.512, p = 0.003). Associations between cognition and regional GM volumes were identified for motor coordination and bilateral cerebellum (left, r = 0.444, p = 0.009; right, r = 0.372, p = 0.030), confrontation naming and left amygdala (r = 0.382, p = 0.026), verbal memory and bilateral thalamus (left, r = 0.435, p = 0.010; right, r = 0.424, p = 0.012), right amygdala (r = 0.339, p = 0.050), and right putamen (r = 0.364, p = 0.034). CONCLUSIONS Reductions in GM were observed within this cohort of primarily non-nasopharyngeal HNC survivors as compared to a control sample. GM volumes were associated with performance in multiple cognitive domains. Results of this exploratory study support the need for investigation of anatomic brain changes as an important translational corollary to cognitive problems among HNC survivors.
Collapse
Affiliation(s)
- Donna L Murdaugh
- University of Alabama at Birmingham, Department of Radiation Oncology, United States; University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States; University of Alabama at Birmingham, Department of Pediatrics, United States
| | - Desmin Milner
- University of Alabama at Birmingham, Department of Radiology, United States
| | - Carlos E Cardenas
- University of Alabama at Birmingham, Department of Radiation Oncology, United States
| | - Katherine A Heinzman
- University of Alabama at Birmingham, Department of Radiation Oncology, United States; University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States
| | - Courtney A Cooper
- University of Alabama at Birmingham, Department of Radiation Oncology, United States; University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States
| | - Jazmyne N Tabb
- Brookwood Baptist Medical Center, Birmingham, AL, United States
| | - Smita Bhatia
- University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States; University of Alabama at Birmingham, Department of Pediatrics, United States
| | - Andrew M McDonald
- University of Alabama at Birmingham, Department of Radiation Oncology, United States; University of Alabama at Birmingham, Institute for Cancer Outcomes and Survivorship, United States.
| |
Collapse
|
96
|
Eisenstein T, Furman-Haran E, Tal A. Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight. Nat Commun 2024; 15:906. [PMID: 38291029 PMCID: PMC10828487 DOI: 10.1038/s41467-024-44979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Consolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight. Furthermore, Glutamatergic and GABAergic modifications were differentially associated with different facets of motor memory consolidation. Our results point to unique and distinct roles of Glutamate and GABA in motor memory consolidation processes in the human brain across timescales and mechanistic levels, tying short-term changes on the neurochemical level to overnight changes in macroscale structure, function, and behavior.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
97
|
Haaf R, Brandi ML, Albantakis L, Lahnakoski JM, Henco L, Schilbach L. Peripheral oxytocin levels are linked to hypothalamic gray matter volume in autistic adults: a cross-sectional secondary data analysis. Sci Rep 2024; 14:1380. [PMID: 38228703 PMCID: PMC10791615 DOI: 10.1038/s41598-023-50770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Oxytocin (OXT) is known to modulate social behavior and cognition and has been discussed as pathophysiological and therapeutic factor for autism spectrum disorder (ASD). An accumulating body of evidence indicates the hypothalamus to be of particular importance with regard to the underlying neurobiology. Here we used a region of interest voxel-based morphometry (VBM) approach to investigate hypothalamic gray matter volume (GMV) in autistic (n = 29, age 36.03 ± 11.0) and non-autistic adults (n = 27, age 30.96 ± 11.2). Peripheral plasma OXT levels and the autism spectrum quotient (AQ) were used for correlation analyses. Results showed no differences in hypothalamic GMV in autistic compared to non-autistic adults but suggested a differential association between hypothalamic GMV and OXT levels, such that a positive association was found for the ASD group. In addition, hypothalamic GMV showed a positive association with autistic traits in the ASD group. Bearing in mind the limitations such as a relatively small sample size, a wide age range and a high rate of psychopharmacological treatment in the ASD sample, these results provide new preliminary evidence for a potentially important role of the HTH in ASD and its relationship to the OXT system, but also point towards the importance of interindividual differences.
Collapse
Affiliation(s)
- Raoul Haaf
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.
- Graduate School, Technical University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| | - Marie-Luise Brandi
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Albantakis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Juha M Lahnakoski
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurosciences and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Henco
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
98
|
Neher P, Hirjak D, Maier-Hein K. Radiomic tractometry reveals tract-specific imaging biomarkers in white matter. Nat Commun 2024; 15:303. [PMID: 38182594 PMCID: PMC10770385 DOI: 10.1038/s41467-023-44591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
Tract-specific microstructural analysis of the brain's white matter (WM) using diffusion MRI has been a driver for neuroscientific discovery with a wide range of applications. Tractometry enables localized tissue analysis along tracts but relies on bare summary statistics and reduces complex image information along a tract to few scalar values, and so may miss valuable information. This hampers the applicability of tractometry for predictive modelling. Radiomics is a promising method based on the analysis of numerous quantitative image features beyond what can be visually perceived, but has not yet been used for tract-specific analysis of white matter. Here we introduce radiomic tractometry (RadTract) and show that introducing rich radiomics-based feature sets into the world of tractometry enables improved predictive modelling while retaining the localization capability of tractometry. We demonstrate its value in a series of clinical populations, showcasing its performance in diagnosing disease subgroups in different datasets, as well as estimation of demographic and clinical parameters. We propose that RadTract could spark the establishment of a new generation of tract-specific imaging biomarkers with benefits for a range of applications from basic neuroscience to medical research.
Collapse
Affiliation(s)
- Peter Neher
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Im Neuenheimer Feld 223, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany.
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Klaus Maier-Hein
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Im Neuenheimer Feld 223, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and the university medical center Heidelberg, Heidelberg, Germany
| |
Collapse
|
99
|
Cui Z, Meng L, Zhang Q, Lou J, Lin Y, Sun Y. White and Gray Matter Abnormalities in Young Adult Females with Dependent Personality Disorder: A Diffusion-Tensor Imaging and Voxel-Based Morphometry Study. Brain Topogr 2024; 37:102-115. [PMID: 37831323 DOI: 10.1007/s10548-023-01013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
We applied diffusion-tensor imaging (DTI) including measurements of fractional anisotropy (FA), a parameter of neuronal fiber integrity, mean diffusivity (MD), a parameter of brain tissue integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to provide a basis to improve our understanding of the neurobiological basis of dependent personality disorder (DPD). DTI was performed on young girls with DPD (N = 17) and young female healthy controls (N = 17). Tract-based spatial statistics (TBSS) were used to examine microstructural characteristics. Gray matter volume differences between the two groups were investigated using voxel-based morphometry (VBM). The Pearson correlation analysis was utilized to examine the relationship between distinct brain areas of white matter and gray matter and the Dy score on the MMPI. The DPD had significantly higher fractional anisotropy (FA) values than the HC group in the right retrolenticular part of the internal capsule, right external capsule, the corpus callosum, right posterior thalamic radiation (include optic radiation), right cerebral peduncle (p < 0.05), which was strongly positively correlated with the Dy score of MMPI. The volume of gray matter in the right postcentral gyrus and left cuneus in DPD was significantly increased (p < 0.05), which was strongly positively correlated with the Dy score of MMPI (r1,2= 0.467,0.353; p1,2 = 0.005,0.04). Our results provide new insights into the changes in the brain structure in DPD, which suggests that alterations in the brain structure might implicate the pathophysiology of DPD. Possible visual and somatosensory association with motor nerve circuits in DPD.
Collapse
Affiliation(s)
- Zhixia Cui
- Weifang Mental Health Center, Weifang, Shandong, China
| | | | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jing Lou
- Beijing Normal University, Beijing, China
| | - Yuan Lin
- First Clinical Department, Dalian Medical University, Dalian, China
| | - Yueji Sun
- Department of Psychiatry and Behavioral Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
100
|
Seidenbecher S, Schöne M, Kaufmann J, Schiltz K, Bogerts B, Frodl T. Neuroanatomical correlates of aggressiveness: a case-control voxel- and surface-based morphometric study. Brain Struct Funct 2024; 229:31-46. [PMID: 37819409 PMCID: PMC10827843 DOI: 10.1007/s00429-023-02715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Aggression occurs across the population ranging on a symptom continuum. Most previous studies have used magnetic resonance imaging in clinical/forensic samples, which is associated with several confounding factors. The present study examined structural brain characteristics in two healthy samples differing only in their propensity for aggressive behavior. Voxel- and surface-based morphometry (SBM) analyses were performed on 29 male martial artists and 32 age-matched male controls. Martial artists had significantly increased mean gray matter volume in two frontal (left superior frontal gyrus and bilateral anterior cingulate cortex) and one parietal (bilateral posterior cingulate gyrus and precuneus) brain clusters compared to controls (whole brain: p < 0.001, cluster level: family-wise error (FWE)-corrected). SBM analyses revealed a trend for greater gyrification indices in martial artists compared to controls in the left lateral orbital frontal cortex and the left pars orbitalis (whole brain: p < 0.001, cluster level: FWE-corrected). The results indicate brain structural differences between martial artists and controls in frontal and parietal brain areas critical for emotion processing/inhibition of emotions as well as empathic processes. The present study highlights the importance of studying healthy subjects with a propensity for aggressive behavior in future structural MRI research on aggression.
Collapse
Affiliation(s)
- Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Maria Schöne
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Kolja Schiltz
- Department of Forensic Psychiatry, Psychiatric Hospital of the Ludwig-Maximilians-University, Munich, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Salus-Institute, Salus gGmbH, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|