51
|
Clark KC, Kwitek AE. Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021; 12:3045-3084. [PMID: 34964118 PMCID: PMC9373910 DOI: 10.1002/cphy.c210010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.
Collapse
Affiliation(s)
- Karen C Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
52
|
Zhang F, Cao H, Baranova A. Shared Genetic Liability and Causal Associations Between Major Depressive Disorder and Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:735136. [PMID: 34859065 PMCID: PMC8631916 DOI: 10.3389/fcvm.2021.735136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is phenotypically associated with cardiovascular diseases (CVD). We aim to investigate mechanisms underlying relationships between MDD and CVD in the context of shared genetic variations. Polygenic overlap analysis was used to test genetic correlation and to analyze shared genetic variations between MDD and seven cardiovascular outcomes (coronary artery disease (CAD), heart failure, atrial fibrillation, stroke, systolic blood pressure, diastolic blood pressure, and pulse pressure measurement). Mendelian randomization analysis was used to uncover causal relationships between MDD and cardiovascular traits. By cross-trait meta-analysis, we identified a set of genomic loci shared between the traits of MDD and stroke. Putative causal genes for MDD and stroke were prioritized by fine-mapping of transcriptome-wide associations. Polygenic overlap analysis pointed toward substantial genetic variation overlap between MDD and CVD. Mendelian randomization analysis indicated that genetic liability to MDD has a causal effect on CAD and stroke. Comparison of genome-wide genes shared by MDD and CVD suggests 20q12 as a pleiotropic region conferring risk for both MDD and CVD. Cross-trait meta-analyses and fine-mapping of transcriptome-wide association signals identified novel risk genes for MDD and stroke, including RPL31P12, BORSC7, PNPT11, and PGF. Many genetic variations associated with MDD and CVD outcomes are shared, thus, pointing that genetic liability to MDD may also confer risk for stroke and CAD. Presented results shed light on mechanistic connections between MDD and CVD phenotypes.
Collapse
Affiliation(s)
- Fuquan Zhang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China.,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
53
|
Kim M, Harmanci AO, Bossuat JP, Carpov S, Cheon JH, Chillotti I, Cho W, Froelicher D, Gama N, Georgieva M, Hong S, Hubaux JP, Kim D, Lauter K, Ma Y, Ohno-Machado L, Sofia H, Son Y, Song Y, Troncoso-Pastoriza J, Jiang X. Ultrafast homomorphic encryption models enable secure outsourcing of genotype imputation. Cell Syst 2021; 12:1108-1120.e4. [PMID: 34464590 PMCID: PMC9898842 DOI: 10.1016/j.cels.2021.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/21/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Genotype imputation is a fundamental step in genomic data analysis, where missing variant genotypes are predicted using the existing genotypes of nearby "tag" variants. Although researchers can outsource genotype imputation, privacy concerns may prohibit genetic data sharing with an untrusted imputation service. Here, we developed secure genotype imputation using efficient homomorphic encryption (HE) techniques. In HE-based methods, the genotype data are secure while it is in transit, at rest, and in analysis. It can only be decrypted by the owner. We compared secure imputation with three state-of-the-art non-secure methods and found that HE-based methods provide genetic data security with comparable accuracy for common variants. HE-based methods have time and memory requirements that are comparable or lower than those for the non-secure methods. Our results provide evidence that HE-based methods can practically perform resource-intensive computations for high-throughput genetic data analysis. The source code is freely available for download at https://github.com/K-miran/secure-imputation.
Collapse
Affiliation(s)
- Miran Kim
- Department of Computer Science and Engineering and Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Arif Ozgun Harmanci
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA.,Corresponding authors: ,
| | | | - Sergiu Carpov
- Inpher, EPFL Innovation Park Bàtiment A, 3rd Fl, 1015 Lausanne, Switzerland.,CEA, LIST, 91191 Gif-sur-Yvette Cedex, France
| | - Jung Hee Cheon
- Department of Mathematical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Crypto Lab Inc., Seoul, 08826, Republic of Korea
| | | | - Wonhee Cho
- Department of Mathematical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Nicolas Gama
- Inpher, EPFL Innovation Park Bàtiment A, 3rd Fl, 1015 Lausanne, Switzerland
| | - Mariya Georgieva
- Inpher, EPFL Innovation Park Bàtiment A, 3rd Fl, 1015 Lausanne, Switzerland
| | - Seungwan Hong
- Department of Mathematical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Duhyeong Kim
- Department of Mathematical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Yiping Ma
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lucila Ohno-Machado
- UCSD Health Department of Biomedical Informatics, University of California, San Diego, CA, 92093, USA
| | - Heidi Sofia
- National Institutes of Health (NIH) - National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | | | - Yongsoo Song
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Xiaoqian Jiang
- Center for Secure Artificial intelligence For hEalthcare (SAFE), School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA.,Corresponding authors: ,
| |
Collapse
|
54
|
Wang H, Noordam R, Cade BE, Schwander K, Winkler TW, Lee J, Sung YJ, Bentley AR, Manning AK, Aschard H, Kilpeläinen TO, Ilkov M, Brown MR, Horimoto AR, Richard M, Bartz TM, Vojinovic D, Lim E, Nierenberg JL, Liu Y, Chitrala K, Rankinen T, Musani SK, Franceschini N, Rauramaa R, Alver M, Zee PC, Harris SE, van der Most PJ, Nolte IM, Munroe PB, Palmer ND, Kühnel B, Weiss S, Wen W, Hall KA, Lyytikäinen LP, O'Connell J, Eiriksdottir G, Launer LJ, de Vries PS, Arking DE, Chen H, Boerwinkle E, Krieger JE, Schreiner PJ, Sidney S, Shikany JM, Rice K, Chen YDI, Gharib SA, Bis JC, Luik AI, Ikram MA, Uitterlinden AG, Amin N, Xu H, Levy D, He J, Lohman KK, Zonderman AB, Rice TK, Sims M, Wilson G, Sofer T, Rich SS, Palmas W, Yao J, Guo X, Rotter JI, Biermasz NR, Mook-Kanamori DO, Martin LW, Barac A, Wallace RB, Gottlieb DJ, Komulainen P, Heikkinen S, Mägi R, Milani L, Metspalu A, Starr JM, Milaneschi Y, Waken RJ, Gao C, Waldenberger M, Peters A, Strauch K, Meitinger T, Roenneberg T, Völker U, Dörr M, Shu XO, Mukherjee S, Hillman DR, Kähönen M, Wagenknecht LE, Gieger C, Grabe HJ, Zheng W, Palmer LJ, Lehtimäki T, Gudnason V, Morrison AC, Pereira AC, Fornage M, Psaty BM, van Duijn CM, Liu CT, Kelly TN, Evans MK, Bouchard C, Fox ER, Kooperberg C, Zhu X, Lakka TA, Esko T, North KE, Deary IJ, Snieder H, Penninx BWJH, Gauderman WJ, Rao DC, Redline S, van Heemst D. Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure. Mol Psychiatry 2021; 26:6293-6304. [PMID: 33859359 PMCID: PMC8517040 DOI: 10.1038/s41380-021-01087-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 Pjoint < 5 × 10-8), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (Pint < 5 × 10-8). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (Pint = 2 × 10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
Collapse
Affiliation(s)
- Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa K Manning
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andrea R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Melissa Richard
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jovia L Nierenberg
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute Duke University School of Medicine, Durham, NC, USA
| | - Kumaraswamynaidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Maris Alver
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Sarah E Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, London, UK
| | | | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelly A Hall
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel Levy
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Kurt K Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute Duke University School of Medicine, Durham, NC, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gregory Wilson
- JHS Graduate Training and Education Center, Jackson State University, Jackson, MS, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Walter Palmas
- Division of General Medicine, Department of Medicine, Columbia University, New York, NY, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nienke R Biermasz
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, Washington, DC, USA
| | - Robert B Wallace
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, HJ, The Netherlands
| | - R J Waken
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Till Roenneberg
- Institute and Polyclinic for Occupational-, Social- and Environmental Medicine, LMU Munich, Munich, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, SA, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David R Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hans J Grabe
- Department Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lyle J Palmer
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Departments of Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ervin R Fox
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ian J Deary
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, HJ, The Netherlands
| | - W James Gauderman
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
55
|
Hartiala JA, Hilser JR, Biswas S, Lusis AJ, Allayee H. Gene-Environment Interactions for Cardiovascular Disease. Curr Atheroscler Rep 2021; 23:75. [PMID: 34648097 PMCID: PMC8903169 DOI: 10.1007/s11883-021-00974-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW We provide an overview of recent findings with respect to gene-environment (GxE) interactions for cardiovascular disease (CVD) risk and discuss future opportunities for advancing the field. RECENT FINDINGS Over the last several years, GxE interactions for CVD have mostly been identified for smoking and coronary artery disease (CAD) or related risk factors. By comparison, there is more limited evidence for GxE interactions between CVD outcomes and other exposures, such as physical activity, air pollution, diet, and sex. The establishment of large consortia and population-based cohorts, in combination with new computational tools and mouse genetics platforms, can potentially overcome some of the limitations that have hindered human GxE interaction studies and reveal additional association signals for CVD-related traits. The identification of novel GxE interactions is likely to provide a better understanding of the pathogenesis and genetic liability of CVD, with significant implications for healthy lifestyles and therapeutic strategies.
Collapse
Affiliation(s)
- Jaana A Hartiala
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
| | - James R Hilser
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Subarna Biswas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Aldons J Lusis
- Department of Medicine, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA, 90095, USA
| | - Hooman Allayee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA, 90033, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
56
|
Meeks KAC, Bentley AR, Gouveia MH, Chen G, Zhou J, Lei L, Adeyemo AA, Doumatey AP, Rotimi CN. Genome-wide analyses of multiple obesity-related cytokines and hormones informs biology of cardiometabolic traits. Genome Med 2021; 13:156. [PMID: 34620218 PMCID: PMC8499470 DOI: 10.1186/s13073-021-00971-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A complex set of perturbations occur in cytokines and hormones in the etiopathogenesis of obesity and related cardiometabolic conditions such as type 2 diabetes (T2D). Evidence for the genetic regulation of these cytokines and hormones is limited, particularly in African-ancestry populations. In order to improve our understanding of the biology of cardiometabolic traits, we investigated the genetic architecture of a large panel of obesity- related cytokines and hormones among Africans with replication analyses in African Americans. METHODS We performed genome-wide association studies (GWAS) in 4432 continental Africans, enrolled from Ghana, Kenya, and Nigeria as part of the Africa America Diabetes Mellitus (AADM) study, for 13 obesity-related cytokines and hormones, including adipsin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), interleukin-1 receptor antagonist (IL1-RA), interleukin-6 (IL-6), interleukin-10 (IL-10), leptin, plasminogen activator inhibitor-1 (PAI-1), resistin, visfatin, insulin, glucagon, and ghrelin. Exact and local replication analyses were conducted in African Americans (n = 7990). The effects of sex, body mass index (BMI), and T2D on results were investigated through stratified analyses. RESULTS GWAS identified 39 significant (P value < 5 × 10-8) loci across all 13 traits. Notably, 14 loci were African-ancestry specific. In this first GWAS for adipsin and ghrelin, we detected 13 and 4 genome-wide significant loci respectively. Stratified analyses by sex, BMI, and T2D showed a strong effect of these variables on detected loci. Eight novel loci were successfully replicated: adipsin (3), GIP (1), GLP-1 (1), and insulin (3). Annotation of these loci revealed promising links between these adipocytokines and cardiometabolic outcomes as illustrated by rs201751833 for adipsin and blood pressure and locus rs759790 for insulin level and T2D in lean individuals. CONCLUSIONS Our study identified genetic variants underlying variation in multiple adipocytokines, including the first loci for adipsin and ghrelin. We identified population differences in variants associated with adipocytokines and highlight the importance of stratification for discovery of loci. The high number of African-specific loci detected emphasizes the need for GWAS in African-ancestry populations, as these loci could not have been detected in other populations. Overall, our work contributes to the understanding of the biology linking adipocytokines to cardiometabolic traits.
Collapse
Affiliation(s)
- Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Mateus H Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Lin Lei
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA.
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA.
| |
Collapse
|
57
|
Goulet D, O'Loughlin J, Sylvestre MP. Association of Genetic Variants With Body-Mass Index and Blood Pressure in Adolescents: A Replication Study. Front Genet 2021; 12:690335. [PMID: 34539733 PMCID: PMC8440872 DOI: 10.3389/fgene.2021.690335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The strong correlation between adiposity and blood pressure (BP) might be explained in part by shared genetic risk factors. A recent study identified three nucleotide variants [rs16933812 (PAX5), rs7638110 (MRPS22), and rs9930333 (FTO)] associated with both body mass index (BMI) and systolic blood pressure (SBP) in adolescents age 12-18years. We attempted to replicate these findings in a sample of adolescents of similar age. A total of 713 adolescents were genotyped and had anthropometric indicators and blood pressure measured at age 13, 15, 17, and 24years. Using linear mixed models, we assessed associations of these variants with BMI and SBP. In our data, rs9930333 (FTO) was associated with body mass index, but not systolic blood pressure. Neither rs16933812 (PAX5) nor rs7638110 (MRPS22) were associated with body mass index or systolic blood pressure. Although, differences in phenotypic definitions and in genetic architecture across populations may explain some of the discrepancy across studies, nucleotide variant selection in the initial study may have led to false-positive results that could not be replicated.
Collapse
Affiliation(s)
- Danick Goulet
- École de santé publique, Université de Montréal, Montréal, QC, Canada
| | - Jennifer O'Loughlin
- École de santé publique, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Pierre Sylvestre
- École de santé publique, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| |
Collapse
|
58
|
Zhu X. Mendelian randomization and pleiotropy analysis. QUANTITATIVE BIOLOGY 2021; 9:122-132. [PMID: 34386270 PMCID: PMC8356909 DOI: 10.1007/s40484-020-0216-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mendelian randomization (MR) analysis has become popular in inferring and estimating the causality of an exposure on an outcome due to the success of genome wide association studies. Many statistical approaches have been developed and each of these methods require specific assumptions. RESULTS In this article, we review the pros and cons of these methods. We use an example of high-density lipoprotein cholesterol on coronary artery disease to illuminate the challenges in Mendelian randomization investigation. CONCLUSION The current available MR approaches allow us to study causality among risk factors and outcomes. However, novel approaches are desirable for overcoming multiple source confounding of risk factors and an outcome in MR analysis.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
59
|
Franceschini N, Morris AP. Genetics of kidney traits in worldwide populations: the Continental Origins and Genetic Epidemiology Network (COGENT) Kidney Consortium. Kidney Int 2021; 98:35-41. [PMID: 32571486 DOI: 10.1016/j.kint.2020.02.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Andrew P Morris
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
60
|
de las Fuentes L, Sung YJ, Noordam R, Winkler T, Feitosa MF, Schwander K, Bentley AR, Brown MR, Guo X, Manning A, Chasman DI, Aschard H, Bartz TM, Bielak LF, Campbell A, Cheng CY, Dorajoo R, Hartwig FP, Horimoto ARVR, Li C, Li-Gao R, Liu Y, Marten J, Musani SK, Ntalla I, Rankinen T, Richard M, Sim X, Smith AV, Tajuddin SM, Tayo BO, Vojinovic D, Warren HR, Xuan D, Alver M, Boissel M, Chai JF, Chen X, Christensen K, Divers J, Evangelou E, Gao C, Girotto G, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Rueedi R, Shu XO, Snieder H, Sofer T, Takeuchi F, Verweij N, Ware EB, Weiss S, Yanek LR, Amin N, Arking DE, Arnett DK, Bergmann S, Boerwinkle E, Brody JA, Broeckel U, Brumat M, Burke G, Cabrera CP, Canouil M, Chee ML, Chen YDI, Cocca M, Connell J, de Silva HJ, de Vries PS, Eiriksdottir G, Faul JD, Fisher V, Forrester T, Fox EF, Friedlander Y, Gao H, Gigante B, Giulianini F, Gu CC, Gu D, Harris TB, He J, Heikkinen S, Heng CK, Hunt S, Ikram MA, Irvin MR, Kähönen M, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Kraja AT, Krieger JE, Langefeld CD, Li Y, Liang J, Liewald DCM, Liu CT, Liu J, Lohman KK, Mägi R, McKenzie CA, Meitinger T, Metspalu A, Milaneschi Y, Milani L, Mook-Kanamori DO, Nalls MA, Nelson CP, Norris JM, O'Connell J, Ogunniyi A, Padmanabhan S, Palmer ND, Pedersen NL, Perls T, Peters A, Petersmann A, Peyser PA, Polasek O, Porteous DJ, Raffel LJ, Rice TK, Rotter JI, Rudan I, Rueda-Ochoa OL, Sabanayagam C, Salako BL, Schreiner PJ, Shikany JM, Sidney SS, Sims M, Sitlani CM, Smith JA, Starr JM, Strauch K, Swertz MA, Teumer A, Tham YC, Uitterlinden AG, Vaidya D, van der Ende MY, Waldenberger M, Wang L, Wang YX, Wei WB, Weir DR, Wen W, Yao J, Yu B, Yu C, Yuan JM, Zhao W, Zonderman AB, Becker DM, Bowden DW, Deary IJ, Dörr M, Esko T, Freedman BI, Froguel P, Gasparini P, Gieger C, Jonas JB, Kammerer CM, Kato N, Lakka TA, Leander K, Lehtimäki T, Magnusson PKE, Marques-Vidal P, Penninx BWJH, Samani NJ, van der Harst P, Wagenknecht LE, Wu T, Zheng W, Zhu X, Bouchard C, Cooper RS, Correa A, Evans MK, Gudnason V, Hayward C, Horta BL, Kelly TN, Kritchevsky SB, Levy D, Palmas WR, Pereira AC, Province MM, Psaty BM, Ridker PM, Rotimi CN, Tai ES, van Dam RM, van Duijn CM, Wong TY, Rice K, Gauderman WJ, Morrison AC, North KE, Kardia SLR, Caulfield MJ, Elliott P, Munroe PB, Franks PW, Rao DC, Fornage M. Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci. Mol Psychiatry 2021; 26:2111-2125. [PMID: 32372009 PMCID: PMC7641978 DOI: 10.1038/s41380-020-0719-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, 63110, USA.
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Thomas Winkler
- Department of Genetic Epidemiology, University of Regensburg, 93051, Regensburg, Germany
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Alisa Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, 75724, France
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
| | - Fernando P Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, 96020-220, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - A R V R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, 30602, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 70808, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Icelandic Heart Association, Kopavogur, 201, Iceland
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Deng Xuan
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, Southern Denmark University, Odense, 5000, Denmark
| | - Jasmin Divers
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Giorgia Girotto
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - Sarah E Harris
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang-Chi Hsu
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Mathematics and Statistics, University of Minnesota, Duluth, MN, 55812, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Ilja M Nolte
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, 9700RB, The Netherlands
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Skåne, 205 02, Sweden
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Muhammad Riaz
- College of Medicine, Biological Sciences and Psychology, Health Sciences, The Infant Mortality and Morbidity Studies (TIMMS), Leicester, LE1 7RH, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, 9700RB, The Netherlands
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 9713GZ, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, 40536, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Marco Brumat
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
| | - Gregory Burke
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
| | - Miao Li Chee
- Statistics Unit, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Massimiliano Cocca
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - John Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Virginia Fisher
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, JMAAW15, Jamaica
| | - Ervin F Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, 91120, Israel
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Bruna Gigante
- Cardiovascular Unit, Bioclinicum, Department of Medicine, Karolinska Hospital, Stockholm, 17164, Sweden
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, 18288, Sweden
| | | | - Chi Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dongfeng Gu
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiang He
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70211, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70211, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119228, Singapore
| | - Steven Hunt
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84108, USA
- Weill Cornell Medicine in Qatar, Doha, Qatar
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marguerite R Irvin
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - J E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Carl D Langefeld
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David C M Liewald
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Kurt K Lohman
- Public Health Sciences, Biostatistics and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Colin A McKenzie
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, JMAAW15, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, 80333, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, 1081 BT, The Netherlands
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Mike A Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20895, USA
- Data Tecnica International, Glen Echo, MD, 20812, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Jill M Norris
- Department of Epidemiology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adesola Ogunniyi
- Department of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | | | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Thomas Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 85764, Neuherberg, Germany
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
- University Hospital Split, Split, Croatia
- Psychiatric Hospital "Sveti Ivan", Zagreb, Croatia
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Leslie J Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, 92868, USA
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | | | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | | | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 25249, USA
| | - Stephen S Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, EH8 9AZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universitat Munchen, 80539, Munich, Germany
| | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9700RB, The Netherlands
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Yih Chung Tham
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dhananjay Vaidya
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - M Yldau van der Ende
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 85764, Neuherberg, Germany
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, , University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Donald W Bowden
- Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA, 02142, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-, Salem, NC, 27157, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
- Department of Genomics of Common Disease, Imperial College London, London, W12 0NN, UK
| | - Paolo Gasparini
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), 85764, Neuherberg, Germany
| | - Jost Bruno Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, 68167, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Capital Medical University, 100730, Beijing, China
| | - Candace M Kammerer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70211, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70211, Finland
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, 1081 BT, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Ultrecht, The Netherlands
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bernardo L Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, 96020-220, Brazil
| | - Tanika N Kelly
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Stephen B Kritchevsky
- Sticht Center for Health Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Daniel Levy
- NHLBI Framingham Heart Study, Framingham, MA, 01702, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Walter R Palmas
- Division of General Medicine, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - A C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Michael M Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Paul M Ridker
- Harvard Medical School, Boston, MA, 02115, USA
- Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tien Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kari E North
- Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC, 27514, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Skåne, 205 02, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Västerbotten, 901 85, Sweden
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 70808, USA
| |
Collapse
|
61
|
Xu H, Schwander K, Brown MR, Wang W, Waken RJ, Boerwinkle E, Cupples LA, de las Fuentes L, van Heemst D, Osazuwa-Peters O, de Vries PS, van Dijk KW, Sung YJ, Zhang X, Morrison AC, Rao DC, Noordam R, Liu CT. Lifestyle Risk Score: handling missingness of individual lifestyle components in meta-analysis of gene-by-lifestyle interactions. Eur J Hum Genet 2021; 29:839-850. [PMID: 33500576 PMCID: PMC8110957 DOI: 10.1038/s41431-021-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
Recent studies consider lifestyle risk score (LRS), an aggregation of multiple lifestyle exposures, in identifying association of gene-lifestyle interaction with disease traits. However, not all cohorts have data on all lifestyle factors, leading to increased heterogeneity in the environmental exposure in collaborative meta-analyses. We compared and evaluated four approaches (Naïve, Safe, Complete and Moderator Approaches) to handle the missingness in LRS-stratified meta-analyses under various scenarios. Compared to "benchmark" results with all lifestyle factors available for all cohorts, the Complete Approach, which included only cohorts with all lifestyle components, was underpowered due to lower sample size, and the Naïve Approach, which utilized all available data and ignored the missingness, was slightly inflated. The Safe Approach, which used all data in LRS-exposed group and only included cohorts with all lifestyle factors available in the LRS-unexposed group, and the Moderator Approach, which handled missingness via moderator meta-regression, were both slightly conservative and yielded almost identical p values. We also evaluated the performance of the Safe Approach under different scenarios. We observed that the larger the proportion of cohorts without missingness included, the more accurate the results compared to "benchmark" results. In conclusion, we generally recommend the Safe Approach, a straightforward and non-inflated approach, to handle heterogeneity among cohorts in the LRS based genome-wide interaction meta-analyses.
Collapse
Affiliation(s)
- Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas School of Public health, Houston, TX, USA
| | - Wenyi Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - R J Waken
- Field and Environmental Data Science, Benson Hill Inc, St. Louis, MO, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas School of Public health, Houston, TX, USA
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI and Boston University Framingham Heart Study, Framingham, MA, USA
| | - Lisa de las Fuentes
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas School of Public health, Houston, TX, USA
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoyu Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas School of Public health, Houston, TX, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
62
|
Looking for Sunshine: Genetic Predisposition to Sun Seeking in 265,000 Individuals of European Ancestry. J Invest Dermatol 2021; 141:779-786. [DOI: 10.1016/j.jid.2020.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/04/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022]
|
63
|
Janyasupab P, Suratanee A, Plaimas K. Network diffusion with centrality measures to identify disease-related genes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2909-2929. [PMID: 33892577 DOI: 10.3934/mbe.2021147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Disease-related gene prioritization is one of the most well-established pharmaceutical techniques used to identify genes that are important to a biological process relevant to a disease. In identifying these essential genes, the network diffusion (ND) approach is a widely used technique applied in gene prioritization. However, there is still a large number of candidate genes that need to be evaluated experimentally. Therefore, it would be of great value to develop a new strategy to improve the precision of the prioritization. Given the efficiency and simplicity of centrality measures in capturing a gene that might be important to the network structure, herein, we propose a technique that extends the scope of ND through a centrality measure to identify new disease-related genes. Five common centrality measures with different aspects were examined for integration in the traditional ND model. A total of 40 diseases were used to test our developed approach and to find new genes that might be related to a disease. Results indicated that the best measure to combine with the diffusion is closeness centrality. The novel candidate genes identified by the model for all 40 diseases were provided along with supporting evidence. In conclusion, the integration of network centrality in ND is a simple but effective technique to discover more precise disease-related genes, which is extremely useful for biomedical science.
Collapse
Affiliation(s)
- Panisa Janyasupab
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichat Suratanee
- Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
64
|
Gouveia MH, Bentley AR, Leonard H, Meeks KAC, Ekoru K, Chen G, Nalls MA, Simonsick EM, Tarazona-Santos E, Lima-Costa MF, Adeyemo A, Shriner D, Rotimi CN. Trans-ethnic meta-analysis identifies new loci associated with longitudinal blood pressure traits. Sci Rep 2021; 11:4075. [PMID: 33603002 PMCID: PMC7893038 DOI: 10.1038/s41598-021-83450-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified thousands of genetic loci associated with cross-sectional blood pressure (BP) traits; however, GWAS based on longitudinal BP have been underexplored. We performed ethnic-specific and trans-ethnic GWAS meta-analysis using longitudinal and cross-sectional BP data of 33,720 individuals from five cohorts in the US and one in Brazil. In addition to identifying several known loci, we identified thirteen novel loci with nine based on longitudinal and four on cross-sectional BP traits. Most of the novel loci were ethnic- or study-specific, with the majority identified in African Americans (AA). Four of these discoveries showed additional evidence of association in independent datasets, including an intergenic variant (rs4060030, p = 7.3 × 10–9) with reported regulatory function. We observed a high correlation between the meta-analysis results for baseline and longitudinal average BP (rho = 0.48). BP trajectory results were more correlated with those of average BP (rho = 0.35) than baseline BP(rho = 0.18). Heritability estimates trended higher for longitudinal traits than for cross-sectional traits, providing evidence for different genetic architectures. Furthermore, the longitudinal data identified up to 20% more BP known associations than did cross-sectional data. Our analyses of longitudinal BP data in diverse ethnic groups identified novel BP loci associated with BP trajectory, indicating a need for further longitudinal GWAS on BP and other age-related traits.
Collapse
Affiliation(s)
- Mateus H Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Data Tecnica International, Glen Echo, MD, 20812, USA
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenneth Ekoru
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Data Tecnica International, Glen Echo, MD, 20812, USA
| | - Eleanor M Simonsick
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A/Room 4047, Bethesda, MD, 20814, USA.
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A/Room 4047, Bethesda, MD, 20814, USA.
| |
Collapse
|
65
|
Sun D, Richard MA, Musani SK, Sung YJ, Winkler TW, Schwander K, Chai JF, Guo X, Kilpeläinen TO, Vojinovic D, Aschard H, Bartz TM, Bielak LF, Brown MR, Chitrala K, Hartwig FP, Horimoto AR, Liu Y, Manning AK, Noordam R, Smith AV, Harris SE, Kühnel B, Lyytikäinen LP, Nolte IM, Rauramaa R, van der Most PJ, Wang R, Ware EB, Weiss S, Wen W, Yanek LR, Arking DE, Arnett DK, Barac A, Boerwinkle E, Broeckel U, Chakravarti A, Chen YDI, Cupples LA, Davigulus ML, de las Fuentes L, de Mutsert R, de Vries PS, Delaney JA, Diez Roux AV, Dörr M, Faul JD, Fretts AM, Gallo LC, Grabe HJ, Gu CC, Harris TB, Hartman CC, Heikkinen S, Ikram MA, Isasi C, Johnson WC, Jonas JB, Kaplan RC, Komulainen P, Krieger JE, Levy D, Liu J, Lohman K, Luik AI, Martin LW, Meitinger T, Milaneschi Y, O’Connell JR, Palmas WR, Peters A, Peyser PA, Pulkki-Råback L, Raffel LJ, Reiner AP, Rice K, Robinson JG, Rosendaal FR, Schmidt CO, Schreiner PJ, Schwettmann L, Shikany JM, Shu XO, Sidney S, Sims M, Smith JA, Sotoodehnia N, Strauch K, Tai ES, Taylor KD, Uitterlinden AG, van Duijn CM, Waldenberger M, Wee HL, Wei WB, Wilson G, Xuan D, Yao J, Zeng D, Zhao W, Zhu X, Zonderman AB, Becker DM, Deary IJ, Gieger C, Lakka TA, Lehtimäki T, North KE, Oldehinkel AJ, Penninx BW, Snieder H, Wang YX, Weir DR, Zheng W, Evans MK, Gauderman WJ, Gudnason V, Horta BL, Liu CT, Mook-Kanamori DO, Morrison AC, Pereira AC, Psaty BM, Amin N, Fox ER, Kooperberg C, Sim X, Bierut L, Rotter JI, Kardia SL, Franceschini N, Rao DC, Fornage M. Multi-Ancestry Genome-wide Association Study Accounting for Gene-Psychosocial Factor Interactions Identifies Novel Loci for Blood Pressure Traits. HGG ADVANCES 2021; 2:100013. [PMID: 34734193 PMCID: PMC8562625 DOI: 10.1016/j.xhgg.2020.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p value <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (PLCL2), synaptic function and neurotransmission (LIN7A, PFIA2), as well as genes previously implicated in neuropsychiatric or stress-related disorders (FSTL5, CHODL). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.
Collapse
Affiliation(s)
- Daokun Sun
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Melissa A. Richard
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Solomon K. Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas W. Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93040, Germany
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Département de Génomes et Génétique, Institut Pasteur, Paris 75015, France
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Michael R. Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kumaraswamy Chitrala
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Fernando P. Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas RS 96010-610, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK
| | - Andrea R.V.R. Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden 2311 EZ, the Netherlands
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48108, USA
- Icelandic Heart Association, Kopavogur 201, Iceland
| | - Sarah E. Harris
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33101, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33101, Finland
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio 70100, Finland
| | - Peter J. van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Rujia Wang
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17489, Germany
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald 17475, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa R. Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dan E. Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donna K. Arnett
- Dean’s Office, University of Kentucky College of Public Health, Lexington, KY 40563, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, Washington, DC 20010, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA
| | - Martha L. Davigulus
- Division of Minority Health, Department of Epidemiology, University of Illinois, Chicago, IL, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2311 EZ, the Netherlands
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Ana V. Diez Roux
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA 19104, USA
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald 17475, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald 17489, Germany
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Amanda M. Fretts
- Cardiovascular Health Research Unit, Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA 98195, USA
| | - Linda C. Gallo
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Hans Jörgen Grabe
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald 17475, Germany
- Department Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17489, Germany
| | - C. Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catharina C.A. Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Sami Heikkinen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio 70100, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus 70100, Finland
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Carmen Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jost Bruno Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim 68167, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Capital Medical University, Beijing, China
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY 10461, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio 70100, Finland
| | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Daniel Levy
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA
- Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Lifelines Cohort Study
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93040, Germany
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119228, Singapore
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Département de Génomes et Génétique, Institut Pasteur, Paris 75015, France
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas RS 96010-610, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 01246-903, Brazil
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden 2311 EZ, the Netherlands
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48108, USA
- Icelandic Heart Association, Kopavogur 201, Iceland
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33101, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33101, Finland
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio 70100, Finland
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17489, Germany
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald 17475, Germany
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Dean’s Office, University of Kentucky College of Public Health, Lexington, KY 40563, USA
- MedStar Heart and Vascular Institute, Washington, DC 20010, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA
- Division of Minority Health, Department of Epidemiology, University of Illinois, Chicago, IL, USA
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2311 EZ, the Netherlands
- College of Pharmacy, University of Manitoba, Winnipeg MB R3E 0T5, Canada
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA 19104, USA
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald 17489, Germany
- Cardiovascular Health Research Unit, Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
- Department Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17489, Germany
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio 70100, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus 70100, Finland
- Department of Neurology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim 68167, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Capital Medical University, Beijing, China
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, Boston University, Boston, MA 02118, USA
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138632, Singapore
- Division of Cardiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam 1081 HV, the Netherlands
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of General Medicine, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Neuherberg 85764, Germany
- Faculty of Medicine, Department of Psychology and Logopedics, University of Helsinki, Helsinki 0100, Finland
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, Irvine, CA 92697, USA
- Departments of Epidemiology and Medicine, University of Iowa, Iowa City, IA 52242, USA
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17489, Germany
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA 94612, USA
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA 98195, USA
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universitat Munchen, Munich, 80539 Germany
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich 85764, Germany
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Jackson Heart Study, School of Public Health, Jackson State University, Jackson, MS 39217, USA
- Department of Biostatistics, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC 27599, USA
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21201, USA
- German Center for Diabetes Research (DZD e.V.), Neuherberg 85764, Germany
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio 70211, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70211, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere 33100, Finland
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27516, USA
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA 90007, USA
- Faculty of Medicine, University of Iceland, Reykjavik 102, Iceland
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden 2311 EZ, the Netherlands
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138632, Singapore
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Annemarie I. Luik
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Lisa W. Martin
- Division of Cardiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam 1081 HV, the Netherlands
| | - Jeff R. O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Walter R. Palmas
- Division of General Medicine, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Neuherberg 85764, Germany
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Laura Pulkki-Råback
- Faculty of Medicine, Department of Psychology and Logopedics, University of Helsinki, Helsinki 0100, Finland
| | - Leslie J. Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, Irvine, CA 92697, USA
| | - Alex P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jennifer G. Robinson
- Departments of Epidemiology and Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2311 EZ, the Netherlands
| | - Carsten Oliver Schmidt
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald 17475, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17489, Germany
| | - Pamela J. Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lars Schwettmann
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - James M. Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao-ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA 94612, USA
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universitat Munchen, Munich, 80539 Germany
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich 85764, Germany
| | - Hwee-Lin Wee
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gregory Wilson
- Jackson Heart Study, School of Public Health, Jackson State University, Jackson, MS 39217, USA
| | - Deng Xuan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan B. Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21201, USA
| | - Diane M. Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ian J. Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg 85764, Germany
| | - Timo A. Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio 70100, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio 70211, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70211, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33101, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere 33100, Finland
| | - Kari E. North
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27516, USA
| | - Albertine J. Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Brenda W.J.H. Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam 1081 HV, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michele K. Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - W. James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur 201, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik 102, Iceland
| | - Bernardo L. Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas RS 96010-610, Brazil
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2311 EZ, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden 2311 EZ, the Netherlands
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Ervin R. Fox
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27516, USA
| | - Dabeeru C. Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
66
|
Magavern EF, Warren HR, Ng FL, Cabrera CP, Munroe PB, Caulfield MJ. An Academic Clinician's Road Map to Hypertension Genomics: Recent Advances and Future Directions MMXX. Hypertension 2021; 77:284-295. [PMID: 33390048 DOI: 10.1161/hypertensionaha.120.14535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At the dawn of the new decade, it is judicious to reflect on the boom of knowledge about polygenic risk for essential hypertension supplied by the wealth of genome-wide association studies. Hypertension continues to account for significant cardiovascular morbidity and mortality, with increasing prevalence anticipated. Here, we overview recent advances in the use of big data to understand polygenic hypertension, as well as opportunities for future innovation to translate this windfall of knowledge into clinical benefit.
Collapse
Affiliation(s)
- Emma F Magavern
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Helen R Warren
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Fu L Ng
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Claudia P Cabrera
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Patricia B Munroe
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Mark J Caulfield
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
67
|
Aznaourova M, Schmerer N, Schmeck B, Schulte LN. Disease-Causing Mutations and Rearrangements in Long Non-coding RNA Gene Loci. Front Genet 2020; 11:527484. [PMID: 33329688 PMCID: PMC7735109 DOI: 10.3389/fgene.2020.527484] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
The classic understanding of molecular disease-mechanisms is largely based on protein-centric models. During the past decade however, genetic studies have identified numerous disease-loci in the human genome that do not encode proteins. Such non-coding DNA variants increasingly gain attention in diagnostics and personalized medicine. Of particular interest are long non-coding RNA (lncRNA) genes, which generate transcripts longer than 200 nucleotides that are not translated into proteins. While most of the estimated ~20,000 lncRNAs currently remain of unknown function, a growing number of genetic studies link lncRNA gene aberrations with the development of human diseases, including diabetes, AIDS, inflammatory bowel disease, or cancer. This suggests that the protein-centric view of human diseases does not capture the full complexity of molecular patho-mechanisms, with important consequences for molecular diagnostics and therapy. This review illustrates well-documented lncRNA gene aberrations causatively linked to human diseases and discusses potential lessons for molecular disease models, diagnostics, and therapy.
Collapse
Affiliation(s)
- Marina Aznaourova
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Nils Schmerer
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
68
|
Steinthorsdottir V, McGinnis R, Williams NO, Stefansdottir L, Thorleifsson G, Shooter S, Fadista J, Sigurdsson JK, Auro KM, Berezina G, Borges MC, Bumpstead S, Bybjerg-Grauholm J, Colgiu I, Dolby VA, Dudbridge F, Engel SM, Franklin CS, Frigge ML, Frisbaek Y, Geirsson RT, Geller F, Gretarsdottir S, Gudbjartsson DF, Harmon Q, Hougaard DM, Hegay T, Helgadottir A, Hjartardottir S, Jääskeläinen T, Johannsdottir H, Jonsdottir I, Juliusdottir T, Kalsheker N, Kasimov A, Kemp JP, Kivinen K, Klungsøyr K, Lee WK, Melbye M, Miedzybrodska Z, Moffett A, Najmutdinova D, Nishanova F, Olafsdottir T, Perola M, Pipkin FB, Poston L, Prescott G, Saevarsdottir S, Salimbayeva D, Scaife PJ, Skotte L, Staines-Urias E, Stefansson OA, Sørensen KM, Thomsen LCV, Tragante V, Trogstad L, Simpson NAB, Aripova T, Casas JP, Dominiczak AF, Walker JJ, Thorsteinsdottir U, Iversen AC, Feenstra B, Lawlor DA, Boyd HA, Magnus P, Laivuori H, Zakhidova N, Svyatova G, Stefansson K, Morgan L. Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nat Commun 2020; 11:5976. [PMID: 33239696 PMCID: PMC7688949 DOI: 10.1038/s41467-020-19733-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia is a serious complication of pregnancy, affecting both maternal and fetal health. In genome-wide association meta-analysis of European and Central Asian mothers, we identify sequence variants that associate with preeclampsia in the maternal genome at ZNF831/20q13 and FTO/16q12. These are previously established variants for blood pressure (BP) and the FTO variant has also been associated with body mass index (BMI). Further analysis of BP variants establishes that variants at MECOM/3q26, FGF5/4q21 and SH2B3/12q24 also associate with preeclampsia through the maternal genome. We further show that a polygenic risk score for hypertension associates with preeclampsia. However, comparison with gestational hypertension indicates that additional factors modify the risk of preeclampsia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | | | - Kirsi M Auro
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Galina Berezina
- Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan
| | - Maria-Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | | | - Vivien A Dolby
- Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, UK
| | - Frank Dudbridge
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Yr Frisbaek
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | - Reynir T Geirsson
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Quaker Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David Michael Hougaard
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Tatyana Hegay
- Institute of immunology and human genomics, Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | | | - Sigrun Hjartardottir
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Noor Kalsheker
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Abdumadjit Kasimov
- Institute of immunology and human genomics, Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | - John P Kemp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Katja Kivinen
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Kari Klungsøyr
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Wai K Lee
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Zosia Miedzybrodska
- Division of Applied Medicine, School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Dilbar Najmutdinova
- Republic Specialized Scientific Practical Medical Centre of Obstetrics and Gynecology, Tashkent, Uzbekistan
| | - Firuza Nishanova
- Republic Specialized Scientific Practical Medical Centre of Obstetrics and Gynecology, Tashkent, Uzbekistan
| | - Thorunn Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Lucilla Poston
- Department of Women and Children's Health, King's College London, London, UK
| | - Gordon Prescott
- Division of Applied Medicine, School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Aberdeen, UK
- Lancashire Clinical Trials Unit, University of Central Lancashire, Preston, UK
| | | | - Damilya Salimbayeva
- Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan
| | | | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Eleonora Staines-Urias
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Liv Cecilie Vestrheim Thomsen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vinicius Tragante
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Lill Trogstad
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Nigel A B Simpson
- Division of Womens and Children's Health, School of Medicine, University of Leeds, Leeds, UK
| | - Tamara Aripova
- Institute of immunology and human genomics, Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | - Juan P Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - James J Walker
- Leeds Institute of Medical Research (LIMR), School of Medicine, University of Leeds, Leeds, UK
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ann-Charlotte Iversen
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Heather Allison Boyd
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Nodira Zakhidova
- Institute of immunology and human genomics, Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | - Gulnara Svyatova
- Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Linda Morgan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
69
|
Kim W, Prokopenko D, Sakornsakolpat P, Hobbs BD, Lutz SM, Hokanson JE, Wain LV, Melbourne CA, Shrine N, Tobin MD, Silverman EK, Cho MH, Beaty TH. Genome-Wide Gene-by-Smoking Interaction Study of Chronic Obstructive Pulmonary Disease. Am J Epidemiol 2020; 190:875-885. [PMID: 33106845 PMCID: PMC8096488 DOI: 10.1093/aje/kwaa227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023] Open
Abstract
Risk of chronic obstructive pulmonary disease (COPD) is determined by both cigarette smoking and genetic susceptibility, but little is known about gene-by-smoking interactions. We performed a genome-wide association analysis of 179,689 controls and 21,077 COPD cases from UK Biobank subjects of European ancestry recruited from 2006 to 2010, considering genetic main effects and gene-by-smoking interaction effects simultaneously (2-degrees-of-freedom (df) test) as well as interaction effects alone (1-df interaction test). We sought to replicate significant results in COPDGene (United States, 2008-2010) and SpiroMeta Consortium (multiple countries, 1947-2015) data. We considered 2 smoking variables: 1) ever/never and 2) current/noncurrent. In the 1-df test, we identified 1 genome-wide significant locus on 15q25.1 (cholinergic receptor nicotinic β4 subunit, or CHRNB4) for ever- and current smoking and identified PI*Z allele (rs28929474) of serpin family A member 1 (SERPINA1) for ever-smoking and 3q26.2 (MDS1 and EVI1 complex locus, or MECOM) for current smoking in an analysis of previously reported COPD loci. In the 2-df test, most of the significant signals were also significant for genetic marginal effects, aside from 16q22.1 (sphingomyelin phosphodiesterase 3, or SMPD3) and 19q13.2 (Egl-9 family hypoxia inducible factor 2, or EGLN2). The significant effects at 15q25.1 and 19q13.2 loci, both previously described in prior genome-wide association studies of COPD or smoking, were replicated in COPDGene and SpiroMeta. We identified interaction effects at previously reported COPD loci; however, we failed to identify novel susceptibility loci.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Terri H Beaty
- Correspondence to Dr. Terri H. Beaty, Department of Epidemiology, Johns Hopkins School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 (e-mail: )
| |
Collapse
|
70
|
Wang B, Wu T, Neale MC, Verweij R, Liu G, Su S, Snieder H. Genetic and Environmental Influences on Blood Pressure and Body Mass Index in the National Academy of Sciences-National Research Council World War II Veteran Twin Registry. Hypertension 2020; 76:1428-1434. [PMID: 32981367 PMCID: PMC7535104 DOI: 10.1161/hypertensionaha.120.15232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplemental Digital Content is available in the text. Blood pressure (BP) and obesity phenotypes may covary due to shared genetic or environmental factors or both. Furthermore, it is possible that the heritability of BP differs according to obesity status—a form of G×E interaction. This hypothesis has never been tested in White twins. The present study included 15 924 White male twin pairs aged between 15 and 33 years from the National Academy of Sciences–National Research Council World War II Veteran Twin Registry. Systolic and diastolic BPs, as well as height and weight, were measured at the induction physical examination. Body mass index (BMI) was used as the index of general obesity. Quantitative genetic modeling was performed using Mx software. Univariate analysis showed that narrow sense heritabilities (95% CI) for systolic BP, diastolic BP, height, and BMI were 0.401 (0.381–0.420), 0.297 (0.280–0.320), 0.866 (0.836–0.897), and 0.639 (0.614–0.664), respectively. Positive phenotypic correlations of BMI with systolic BP (r=0.13) and diastolic BP (r=0.08) were largely due to genetic factors (70% and 86%, respectively). The gene-BMI interaction analysis did not show any support for a modifying effect of BMI on genetic and environmental influences of systolic BP and diastolic BP. Our results suggest that correlations between BP and BMI are mainly explained by common genes influencing both. Higher BMI levels have no influence on the penetrance of genetic vulnerability to elevated BP. These conclusions may prove valuable for gene-finding studies.
Collapse
Affiliation(s)
- Bin Wang
- From the Department of Epidemiology, University of Groningen, University Medical Center Groningen, the Netherlands (B.W., T.W., R.V., G.L., H.S.)
| | - Ting Wu
- From the Department of Epidemiology, University of Groningen, University Medical Center Groningen, the Netherlands (B.W., T.W., R.V., G.L., H.S.)
| | - Michael C Neale
- Department of Human and Molecular Genetics (M.C.N.), Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond.,Department of Psychiatry (M.C.N.), Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond
| | - Renske Verweij
- From the Department of Epidemiology, University of Groningen, University Medical Center Groningen, the Netherlands (B.W., T.W., R.V., G.L., H.S.)
| | - Gaifen Liu
- From the Department of Epidemiology, University of Groningen, University Medical Center Groningen, the Netherlands (B.W., T.W., R.V., G.L., H.S.).,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (G.L.)
| | - Shaoyong Su
- Georgia Prevention Institute, Medical College of Georgia, Augusta University (S.S., H.S.)
| | - Harold Snieder
- From the Department of Epidemiology, University of Groningen, University Medical Center Groningen, the Netherlands (B.W., T.W., R.V., G.L., H.S.).,Georgia Prevention Institute, Medical College of Georgia, Augusta University (S.S., H.S.)
| |
Collapse
|
71
|
Association of single nucleotide polymorphisms of MTHFR, TCN2, RNF213 with susceptibility to hypertension and blood pressure. Biosci Rep 2020; 39:221446. [PMID: 31815282 PMCID: PMC6923352 DOI: 10.1042/bsr20191454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/28/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022] Open
Abstract
Methylenetetrahydrofolate reductase gene (MTHFR), transcobalaminII (TCN2) and ring finger protein 213 (RNF213) are related to homocysteine (Hcy) level and are of great significance for hypertension. We aimed to evaluate the associations of MTHFR (rs1801133, rs1801131, rs9651118), TCN2 (rs117353193) and RNF213 (rs9916351) with hypertension and blood pressure (BP). A total of 953 patients with hypertension and 1103 controls were enrolled. Genotyping was performed by Taqman. Logistic regression analysis indicated that A allele of TCN2 rs117353193 under the dominant model had a significantly protective effect (P=0.045) after adjustment, which showed that AA+GA genotype has a lower risk than GG. Additionally, the average diastolic BP (DBP) (P=0.044) and mean arterial pressure (MAP) (P=0.035) levels were significantly different between genotypes of RNF213 rs9916351. Further pairwise comparison showed that the average systolic BP (SBP) level of the TT genotype carriers were significantly higher than in CC (P=0.024), and the average DBP and MAP levels of the TT genotype carriers were higher than in CT (P=0.044, P=0.012, respectively) and CC (P=0.048, P=0.010, respectively). In the recessive model, the average SBP (P=0.043), DBP (P=0.018) and MAP (P=0.017) levels with the TT genotype carriers were significantly higher than in CT+CC. Multiple linear regression analysis suggested that RNF213 rs9916351 in the recessive model had significant effects on SBP (P=0.025), DBP (P=0.017) and MAP (P=0.010) as a risk factor. However, no associations were observed between MTHFR and hypertension. TCN2 rs117353193 might serve as a protective factor in hypertension, and RNF213 rs9916351 might be a risk factor that is linked to increase BP level in Northeast Chinese population.
Collapse
|
72
|
Osazuwa-Peters OL, Waken RJ, Schwander KL, Sung YJ, de Vries PS, Hartz SM, Chasman DI, Morrison AC, Bierut LJ, Xiong C, de las Fuentes L, Rao DC. Identifying blood pressure loci whose effects are modulated by multiple lifestyle exposures. Genet Epidemiol 2020; 44:629-641. [PMID: 32227373 PMCID: PMC7717887 DOI: 10.1002/gepi.22292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/30/2019] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
Although multiple lifestyle exposures simultaneously impact blood pressure (BP) and cardiovascular health, most analysis so far has considered each single lifestyle exposure (e.g., smoking) at a time. Here, we exploit gene-multiple lifestyle exposure interactions to find novel BP loci. For each of 6,254 Framingham Heart Study participants, we computed lifestyle risk score (LRS) value by aggregating the risk of four lifestyle exposures (smoking, alcohol, education, and physical activity) on BP. Using the LRS, we performed genome-wide gene-environment interaction analysis in systolic and diastolic BP using the joint 2 degree of freedom (DF) and 1 DF interaction tests. We identified one genome-wide significant (p < 5 × 10-8 ) and 11 suggestive (p < 1 × 10-6 ) loci. Gene-environment analysis using single lifestyle exposures identified only one of the 12 loci. Nine of the 12 BP loci detected were novel. Loci detected by the LRS were located within or nearby genes with biologically plausible roles in the pathophysiology of hypertension, including KALRN, VIPR2, SNX1, and DAPK2. Our results suggest that simultaneous consideration of multiple lifestyle exposures in gene-environment interaction analysis can identify additional loci missed by single lifestyle approaches.
Collapse
Affiliation(s)
| | - R J Waken
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Karen L Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel I Chasman
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, Missouri
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
73
|
Lin WY, Huang CC, Liu YL, Tsai SJ, Kuo PH. Polygenic approaches to detect gene-environment interactions when external information is unavailable. Brief Bioinform 2020; 20:2236-2252. [PMID: 30219835 PMCID: PMC6954453 DOI: 10.1093/bib/bby086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
The exploration of 'gene-environment interactions' (G × E) is important for disease prediction and prevention. The scientific community usually uses external information to construct a genetic risk score (GRS), and then tests the interaction between this GRS and an environmental factor (E). However, external genome-wide association studies (GWAS) are not always available, especially for non-Caucasian ethnicity. Although GRS is an analysis tool to detect G × E in GWAS, its performance remains unclear when there is no external information. Our 'adaptive combination of Bayes factors method' (ADABF) can aggregate G × E signals and test the significance of G × E by a polygenic test. We here explore a powerful polygenic approach for G × E when external information is unavailable, by comparing our ADABF with the GRS based on marginal effects of SNPs (GRS-M) and GRS based on SNP × E interactions (GRS-I). ADABF is the most powerful method in the absence of SNP main effects, whereas GRS-M is generally the best test when single-nucleotide polymorphisms main effects exist. GRS-I is the least powerful test due to its data-splitting strategy. Furthermore, we apply these methods to Taiwan Biobank data. ADABF and GRS-M identified gene × alcohol and gene × smoking interactions on blood pressure (BP). BP-increasing alleles elevate more BP in drinkers (smokers) than in nondrinkers (nonsmokers). This work provides guidance to choose a polygenic approach to detect G × E when external information is unavailable.
Collapse
Affiliation(s)
- Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Chieh Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, TaipeiVeterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
74
|
Manning AK, Goustin AS, Kleinbrink EL, Thepsuwan P, Cai J, Ju D, Leong A, Udler MS, Brown JB, Goodarzi MO, Rotter JI, Sladek R, Meigs JB, Lipovich L. A Long Non-coding RNA, LOC157273, Is an Effector Transcript at the Chromosome 8p23.1- PPP1R3B Metabolic Traits and Type 2 Diabetes Risk Locus. Front Genet 2020; 11:615. [PMID: 32754192 PMCID: PMC7367044 DOI: 10.3389/fgene.2020.00615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS Causal transcripts at genomic loci associated with type 2 diabetes (T2D) are mostly unknown. The chr8p23.1 variant rs4841132, associated with an insulin-resistant diabetes risk phenotype, lies in the second exon of a long non-coding RNA (lncRNA) gene, LOC157273, located 175 kilobases from PPP1R3B, which encodes a key protein regulating insulin-mediated hepatic glycogen storage in humans. We hypothesized that LOC157273 regulates expression of PPP1R3B in human hepatocytes. METHODS We tested our hypothesis using Stellaris fluorescent in situ hybridization to assess subcellular localization of LOC157273; small interfering RNA (siRNA) knockdown of LOC157273, followed by RT-PCR to quantify LOC157273 and PPP1R3B expression; RNA-seq to quantify the whole-transcriptome gene expression response to LOC157273 knockdown; and an insulin-stimulated assay to measure hepatocyte glycogen deposition before and after knockdown. RESULTS We found that siRNA knockdown decreased LOC157273 transcript levels by approximately 80%, increased PPP1R3B mRNA levels by 1.7-fold, and increased glycogen deposition by >50% in primary human hepatocytes. An A/G heterozygous carrier (vs. three G/G carriers) had reduced LOC157273 abundance due to reduced transcription of the A allele and increased PPP1R3B expression and glycogen deposition. CONCLUSION We show that the lncRNA LOC157273 is a negative regulator of PPP1R3B expression and glycogen deposition in human hepatocytes and a causal transcript at an insulin-resistant T2D risk locus.
Collapse
Affiliation(s)
- Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Anton Scott Goustin
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
| | - Erica L. Kleinbrink
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
| | - Juan Cai
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
| | - Donghong Ju
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute at Wayne State University, Detroit, MI, United States
| | - Aaron Leong
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Miriam S. Udler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, United States
| | - James Bentley Brown
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Computational Biosciences Group, Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Robert Sladek
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada
| | - James B. Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Leonard Lipovich
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, United States
- Department of Neurology, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
75
|
Laville V, Majarian T, de Vries PS, Bentley AR, Feitosa MF, Sung YJ, Rao DC, Manning A, Aschard H. Deriving stratified effects from joint models investigating gene-environment interactions. BMC Bioinformatics 2020; 21:251. [PMID: 32552674 PMCID: PMC7302007 DOI: 10.1186/s12859-020-03569-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/28/2020] [Indexed: 11/12/2022] Open
Abstract
Background Models including an interaction term and performing a joint test of SNP and/or interaction effect are often used to discover Gene-Environment (GxE) interactions. When the environmental exposure is a binary variable, analyses from exposure-stratified models which consist of estimating genetic effect in unexposed and exposed individuals separately can be of interest. In large-scale consortia focusing on GxE interactions in which only the joint test has been performed, it may be challenging to get summary statistics from both exposure-stratified and marginal (i.e not accounting for interaction) models. Results In this work, we developed a simple framework to estimate summary statistics in each stratum of a binary exposure and in the marginal model using summary statistics from the “joint” model. We performed simulation studies to assess our estimators’ accuracy and examined potential sources of bias, such as correlation between genotype and exposure and differing phenotypic variances within exposure strata. Results from these simulations highlight the high theoretical accuracy of our estimators and yield insights into the impact of potential sources of bias. We then applied our methods to real data and demonstrate our estimators’ retained accuracy after filtering SNPs by sample size to mitigate potential bias. Conclusions These analyses demonstrated the accuracy of our method in estimating both stratified and marginal summary statistics from a joint model of gene-environment interaction. In addition to facilitating the interpretation of GxE screenings, this work could be used to guide further functional analyses. We provide a user-friendly Python script to apply this strategy to real datasets. The Python script and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/j2s.
Collapse
Affiliation(s)
- Vincent Laville
- Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France.
| | - Timothy Majarian
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mary F Feitosa
- Division of Biostatistics, Department of Genetics, Washington University School of Medecine, St. Louis, MO, 63110, USA
| | - Yun J Sung
- Division of Biostatistics, Department of Genetics, Washington University School of Medecine, St. Louis, MO, 63110, USA
| | - D C Rao
- Division of Biostatistics, Department of Genetics, Washington University School of Medecine, St. Louis, MO, 63110, USA
| | - Alisa Manning
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hugues Aschard
- Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France. .,Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | | |
Collapse
|
76
|
Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, Huffman JE, Assimes TL, Lorenz K, Zhu X, Hilliard AT, Judy RL, Huang J, Lee KM, Klarin D, Pyarajan S, Danesh J, Melander O, Rasheed A, Mallick NH, Hameed S, Qureshi IH, Afzal MN, Malik U, Jalal A, Abbas S, Sheng X, Gao L, Kaestner KH, Susztak K, Sun YV, DuVall SL, Cho K, Lee JS, Gaziano JM, Phillips LS, Meigs JB, Reaven PD, Wilson PW, Edwards TL, Rader DJ, Damrauer SM, O'Donnell CJ, Tsao PS, Chang KM, Voight BF, Saleheen D. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 2020; 52:680-691. [PMID: 32541925 PMCID: PMC7343592 DOI: 10.1038/s41588-020-0637-y] [Citation(s) in RCA: 400] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
We investigated type 2 diabetes (T2D) genetic susceptibility via multi-ethnic meta-analysis of 228,499 cases and 1,178,783 controls in the Million Veteran Program, DIAMANTE, Biobank Japan, and other studies. We report 568 associations, including 286 autosomal, 7 X chromosomal, and 25 identified in ancestry-specific analyses that were previously unreported. Transcriptome-wide association analysis detected 3,568 T2D-associations with genetically predicted gene expression in 687 novel genes; of these, 54 are known to interact with FDA-approved drugs. A polygenic risk score was strongly associated with increased risk of T2D-related retinopathy and modestly associated with chronic kidney disease (CKD), peripheral artery disease (PAD), and neuropathy. We investigated the genetic etiology of T2D-related vascular outcomes in MVP and observed statistical SNP-T2D interactions at 13 variants, including coronary heart disease, CKD, PAD, and neuropathy. These findings may help to identify potential therapeutic targets for T2D and genomic pathways that link T2D to vascular outcomes.
Collapse
Affiliation(s)
- Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob M Keaton
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,College of Nursing and Health Sciences, University of Massachusetts, Lowell, MA, USA
| | - Donald R Miller
- Edith Nourse Rogers Memorial VA Hospital, Bedford, MA, USA.,Center for Population Health, University of Massachusetts, Lowell, MA, USA
| | - Jin Zhou
- Phoenix VA Health Care System, Phoenix, AZ, USA.,Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kimberly Lorenz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Statistics, Stanford University, Stanford, CA, USA
| | - Austin T Hilliard
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Renae L Judy
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jie Huang
- VA Boston Healthcare System, Boston, MA, USA.,Department of Global Health, Peking University School of Public Health, Beijing, China
| | - Kyung M Lee
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Derek Klarin
- VA Boston Healthcare System, Boston, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Vascular Surgery and Endovascular Therapy, University of Florida School of Medicine, Gainesville, FL, USA
| | - Saiju Pyarajan
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | | | - Shahid Hameed
- Punjab Institute of Cardiology, Lahore, Punjab, Pakistan
| | - Irshad H Qureshi
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Muhammad Naeem Afzal
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Uzma Malik
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Anjum Jalal
- Department of Cardiology, Faisalabad Institute of Cardiology, Faisalabad, Punjab, Pakistan
| | - Shahid Abbas
- Department of Cardiology, Faisalabad Institute of Cardiology, Faisalabad, Punjab, Pakistan
| | - Xin Sheng
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Long Gao
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan V Sun
- Atlanta VA Medical Center, Decatur, GA, USA.,Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Scott L DuVall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Jennifer S Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, GA, USA.,Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA.,College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Peter W Wilson
- Atlanta VA Medical Center, Decatur, GA, USA.,Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Nashville VA Medical Center, Nashville, TN, USA
| | - Daniel J Rader
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA. .,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan. .,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
77
|
Wang Z, Chen H, Bartz TM, Bielak LF, Chasman DI, Feitosa MF, Franceschini N, Guo X, Lim E, Noordam R, Richard MA, Wang H, Cade B, Cupples LA, de Vries PS, Giulanini F, Lee J, Lemaitre RN, Martin LW, Reiner AP, Rich SS, Schreiner PJ, Sidney S, Sitlani CM, Smith JA, Willems van Dijk K, Yao J, Zhao W, Fornage M, Kardia SLR, Kooperberg C, Liu CT, Mook-Kanamori DO, Province MA, Psaty BM, Redline S, Ridker PM, Rotter JI, Boerwinkle E, Morrison AC. Role of Rare and Low-Frequency Variants in Gene-Alcohol Interactions on Plasma Lipid Levels. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002772. [PMID: 32510982 DOI: 10.1161/circgen.119.002772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alcohol intake influences plasma lipid levels, and such effects may be moderated by genetic variants. We aimed to characterize the role of aggregated rare and low-frequency protein-coding variants in gene by alcohol consumption interactions associated with fasting plasma lipid levels. METHODS In the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, fasting plasma triglycerides and high- and low-density lipoprotein cholesterol were measured in 34 153 individuals with European ancestry from 5 discovery studies and 32 277 individuals from 6 replication studies. Rare and low-frequency functional protein-coding variants (minor allele frequency, ≤5%) measured by an exome array were aggregated by genes and evaluated by a gene-environment interaction test and a joint test of genetic main and gene-environment interaction effects. Two dichotomous self-reported alcohol consumption variables, current drinker, defined as any recurrent drinking behavior, and regular drinker, defined as the subset of current drinkers who consume at least 2 drinks per week, were considered. RESULTS We discovered and replicated 21 gene-lipid associations at 13 known lipid loci through the joint test. Eight loci (PCSK9, LPA, LPL, LIPG, ANGPTL4, APOB, APOC3, and CD300LG) remained significant after conditioning on the common index single-nucleotide polymorphism identified by previous genome-wide association studies, suggesting an independent role for rare and low-frequency variants at these loci. One significant gene-alcohol interaction on triglycerides in a novel locus was significantly discovered (P=6.65×10-6 for the interaction test) and replicated at nominal significance level (P=0.013) in SMC5. CONCLUSIONS In conclusion, this study applied new gene-based statistical approaches and suggested that rare and low-frequency genetic variants interacted with alcohol consumption on lipid levels.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX
| | - Han Chen
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Biostatistics and Medicine (T.M.B.), University of Washington, Seattle, WA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health (L.F.B., J.A.S., W.Z., S.L.R.K.), University of Michigan, Ann Arbor, MI
| | - Daniel I Chasman
- Division of Preventive Medicine (D.I.C., F.G.), Brigham and Women's Hospital, Boston, MA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO (M.F.F., M.A.P.)
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (N.F.)
| | - Xiuqing Guo
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G., J.Y., J.I.R.)
| | - Elise Lim
- Biostatistics Department, Boston University School of Public Health, MA (E.L., L.A.C., C.-T.L.)
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine (R.N.), Leiden University Medical Center, the Netherlands
| | - Melissa A Richard
- Brown Foundation Institute of Molecular Medicine (M.A.R., M.F.), University of Texas Health Science Center at Houston, Houston, TX
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine (H.W., B.C., J.L., S.R., P.M.R.), Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA (D.I.C., H.W., B.C., J.L., S.R., P.M.R.)
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Department of Medicine (H.W., B.C., J.L., S.R., P.M.R.), Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA (D.I.C., H.W., B.C., J.L., S.R., P.M.R.)
| | - L Adrienne Cupples
- Biostatistics Department, Boston University School of Public Health, MA (E.L., L.A.C., C.-T.L.).,NHLBI Framingham Heart Study, MA (L.A.C.)
| | - Paul S de Vries
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX
| | - Franco Giulanini
- Division of Preventive Medicine (D.I.C., F.G.), Brigham and Women's Hospital, Boston, MA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Department of Medicine (H.W., B.C., J.L., S.R., P.M.R.), Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA (D.I.C., H.W., B.C., J.L., S.R., P.M.R.)
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine (R.N.L., C.M.S.), University of Washington, Seattle, WA
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, DC (L.W.M.)
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (A.P.R., C.K.)
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville (S.S.R.)
| | - Pamela J Schreiner
- Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis (P.J.S.)
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland (S.S.)
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine (R.N.L., C.M.S.), University of Washington, Seattle, WA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health (L.F.B., J.A.S., W.Z., S.L.R.K.), University of Michigan, Ann Arbor, MI.,Institute for Social Research, Survey Research Center (J.A.S.), University of Michigan, Ann Arbor, MI
| | - Ko Willems van Dijk
- Department of Human Genetics (K.W.v.D.), Leiden University Medical Center, the Netherlands.,Division of Endocrinology, Department of Internal Medicine (K.W.v.D.), Leiden University Medical Center, the Netherlands
| | - Jie Yao
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G., J.Y., J.I.R.)
| | - Wei Zhao
- Department of Epidemiology, School of Public Health (L.F.B., J.A.S., W.Z., S.L.R.K.), University of Michigan, Ann Arbor, MI
| | - Myriam Fornage
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX.,Brown Foundation Institute of Molecular Medicine (M.A.R., M.F.), University of Texas Health Science Center at Houston, Houston, TX
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health (L.F.B., J.A.S., W.Z., S.L.R.K.), University of Michigan, Ann Arbor, MI
| | - Charles Kooperberg
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX
| | - Ching-Ti Liu
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology (D.O.M.-K.), Leiden University Medical Center, the Netherlands.,Department of Public Health and Primary Care (D.O.M.-K.), Leiden University Medical Center, the Netherlands
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO (M.F.F., M.A.P.)
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services (B.M.P.), University of Washington, Seattle, WA.,Kaiser Permanente Washington Health Research Institute, Seattle, WA (B.M.P.)
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine (H.W., B.C., J.L., S.R., P.M.R.), Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA (D.I.C., H.W., B.C., J.L., S.R., P.M.R.)
| | - Paul M Ridker
- Division of Sleep and Circadian Disorders, Department of Medicine (H.W., B.C., J.L., S.R., P.M.R.), Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA (D.I.C., H.W., B.C., J.L., S.R., P.M.R.)
| | - Jerome I Rotter
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G., J.Y., J.I.R.)
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX (E.B.)
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX
| | -
- Department of Epidemiology, Human Genetics Center, Human Genetics and Environmental Sciences, School of Public Health (Z.W., H.C., P.S.d.V., M.F., E.B., A.C.M.), University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
78
|
Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, Kieboom BCT, Klaver CCW, de Knegt RJ, Luik AI, Nijsten TEC, Peeters RP, van Rooij FJA, Stricker BH, Uitterlinden AG, Vernooij MW, Voortman T. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol 2020; 35:483-517. [PMID: 32367290 PMCID: PMC7250962 DOI: 10.1007/s10654-020-00640-5] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
The Rotterdam Study is an ongoing prospective cohort study that started in 1990 in the city of Rotterdam, The Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. The study focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The findings of the Rotterdam Study have been presented in over 1700 research articles and reports. This article provides an update on the rationale and design of the study. It also presents a summary of the major findings from the preceding 3 years and outlines developments for the coming period.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
79
|
Bonilla C, Novaes Baccarini L. Genetic Epidemiology in Latin America: Identifying Strong Genetic Proxies for Complex Disease Risk Factors. Genes (Basel) 2020; 11:E507. [PMID: 32375401 PMCID: PMC7288659 DOI: 10.3390/genes11050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Epidemiology seeks to determine the causal effects of exposures on outcomes related to the health and wellbeing of populations. Observational studies, one of the most commonly used designs in epidemiology, can be biased due to confounding and reverse causation, which makes it difficult to establish causal relationships. In recent times, genetically informed methods, like Mendelian randomization (MR), have been developed in an attempt to overcome these disadvantages. MR relies on the association of genetic variants with outcomes of interest, where the genetic variants are proxies or instruments for modifiable exposures. Because genotypes are sorted independently and at random at the time of conception, they are less prone to confounding and reverse causation. Implementation of MR depends on, among other things, a strong association of the genetic variants with the exposure, which has usually been defined via genome-wide association studies (GWAS). Because GWAS have been most often carried out in European populations, the limited identification of strong instruments in other populations poses a major problem for the application of MR in Latin America. We suggest potential solutions that can be realized with the resources at hand and others that will have to wait for increased funding and access to technology.
Collapse
Affiliation(s)
- Carolina Bonilla
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246, Brazil
| | | |
Collapse
|
80
|
Liu Z, Shriner D, Hansen NF, Rotimi CN, Mullikin JC. Admixture mapping identifies genetic regions associated with blood pressure phenotypes in African Americans. PLoS One 2020; 15:e0232048. [PMID: 32315356 PMCID: PMC7173845 DOI: 10.1371/journal.pone.0232048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/06/2020] [Indexed: 01/11/2023] Open
Abstract
Hypertension occurs at a higher rate in African Americans than in European Americans. Based on the assumption that causal variants are more frequently found on DNA segments inherited from the ancestral population with higher disease risk, we employed admixture mapping to identify genetic loci with excess local African ancestry associated with blood pressure. Chromosomal regions 1q21.2–21.3, 4p15.1, 19q12 and 20p13 were significantly associated with diastolic blood pressure (β = 5.28, -7.94, -6.82 and 5.89, P-value = 6.39E-04, 2.07E-04, 6.56E-05 and 5.04E-04, respectively); 1q21.2–21.3 and 19q12 were also significantly associated with mean arterial pressure (β = 5.86 and -6.40, P-value = 5.32E-04 and 6.37E-04, respectively). We further selected SNPs that had large allele frequency differences within these regions and tested their association with blood pressure. SNP rs4815428 was significantly associated with diastolic blood pressure after Bonferroni correction (β = -2.42, P-value = 9.57E-04), and it partially explained the admixture mapping signal at 20p13. SNPs rs771205 (β = -1.99, P-value = 3.37E-03), rs3126067, rs2184953 and rs58001094 (the latter three exhibit strong linkage disequilibrium, β = -2.3, P-value = 1.4E-03) were identified to be significantly associated with mean arterial pressure, and together they fully explained the admixture signal at 1q21.2–21.3. Although no SNP at 4p15.1 showed large ancestral allele frequency differences in our dataset, we detected association at low-frequency African-specific variants that mapped predominantly to the gene PCDH7, which is most highly expressed in aorta. Our results suggest that these regions may harbor genetic variants that contribute to the different prevalence of hypertension.
Collapse
Affiliation(s)
- Zhi Liu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy F. Hansen
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James C. Mullikin
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | | |
Collapse
|
81
|
Workalemahu T, Ouidir M, Shrestha D, Wu J, Grantz KL, Tekola-Ayele F. Differential DNA Methylation in Placenta Associated With Maternal Blood Pressure During Pregnancy. Hypertension 2020; 75:1117-1124. [PMID: 32078381 PMCID: PMC7122078 DOI: 10.1161/hypertensionaha.119.14509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abnormal blood pressure during pregnancy is associated with impaired fetal growth, predisposing the offspring to cardiometabolic abnormalities over the life-course. Placental DNA methylation may be the regulatory pathway through which maternal blood pressure influences fetal and adult health outcomes. Epigenome-wide association study of 301 participants with placenta sample examined associations between DNA methylation and millimetre of mercury increases in systolic and diastolic blood pressure in each trimester. Findings were further examined using gene expression, gene pathway, and functional annotation analyses. Cytosine-(phosphate)-guanine (CpGs) known to be associated with cardiometabolic traits were evaluated. Increased maternal systolic and diastolic blood pressure were associated with methylation of 3 CpGs in the first, 6 CpGs in the second, and 15 CpGs in the third trimester at 5% false discovery rate (P values ranging from 6.6×10-15 to 2.3×10-7). Several CpGs were enriched in pathways including cardiovascular-metabolic development (P=1.0×10-45). Increased systolic and diastolic blood pressure were associated with increased CpG methylation and gene expression at COL12A1, a collagen family gene known for regulatory functions in the heart. Out of 304 previously reported CpGs known to be associated with cardiometabolic traits, 36 placental CpGs were associated with systolic and diastolic blood pressure in our data. The present study provides the first evidence for associations between placental DNA methylation and increased maternal blood pressure during pregnancy at genes implicated in cardiometabolic diseases. Identification of blood pressure-associated methylated sites in the placenta may provide clues to early origins of cardiometabolic dysfunction and inform guidelines for early prevention. Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00912132.
Collapse
Affiliation(s)
- Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L. Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
82
|
Hatchell KE, Lu Q, Mares JA, Michos ED, Wood AC, Engelman CD. Multi-ethnic analysis shows genetic risk and environmental predictors interact to influence 25(OH)D concentration and optimal vitamin D intake. Genet Epidemiol 2020; 44:208-217. [PMID: 31830327 PMCID: PMC7028464 DOI: 10.1002/gepi.22272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
25-Hydroxyvitamin D (25(OH)D) concentration is a complex trait with genetic and environmental predictors that may determine how much vitamin D exposure is required to reach optimal concentration. Interactions between continuous measures of a polygenic score (PGS) and vitamin D intake (PGS*intake) or available ultraviolet (UV) radiation (PGS*UV) were evaluated in individuals of African (n = 1,099) or European (n = 8,569) ancestries. Interaction terms and joint effects (main and interaction terms) were tested using one-degree of freedom (1-DF) and 2-DF models, respectively. Models controlled for age, sex, body mass index, cohort, and dietary intake/available UV. In addition, in participants achieving Institute of Medicine (IOM) vitamin D intake recommendations, 25(OH)D was evaluated by level PGS. The 2-DF PGS*intake, 1-DF PGS*UV, and 2-DF PGS*UV results were statistically significant in participants of European ancestry (p = 3.3 × 10-18 , p = 2.1 × 10-2 , and p = 2.4 × 10-19 , respectively), but not in those of African ancestry. In European-ancestry participants reaching IOM vitamin D intake guidelines, the percent of participants achieving adequate 25(OH)D ( >20 ng/ml) increased as genetic risk decreased (72% vs. 89% in highest vs. lowest risk; p = .018). Available UV radiation and vitamin D intake interact with genetics to influence 25(OH)D. Individuals with higher genetic risk may require more vitamin D exposure to maintain optimal 25(OH)D concentrations.
Collapse
Affiliation(s)
- Kathryn E. Hatchell
- Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Julie A. Mares
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Erin D. Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| |
Collapse
|
83
|
Bentley AR, Callier SL, Rotimi CN. Evaluating the promise of inclusion of African ancestry populations in genomics. NPJ Genom Med 2020; 5:5. [PMID: 32140257 PMCID: PMC7042246 DOI: 10.1038/s41525-019-0111-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
The lack of representation of diverse ancestral backgrounds in genomic research is well-known, and the resultant scientific and ethical limitations are becoming increasingly appreciated. The paucity of data on individuals with African ancestry is especially noteworthy as Africa is the birthplace of modern humans and harbors the greatest genetic diversity. It is expected that greater representation of those with African ancestry in genomic research will bring novel insights into human biology, and lead to improvements in clinical care and improved understanding of health disparities. Now that major efforts have been undertaken to address this failing, is there evidence of these anticipated advances? Here, we evaluate the promise of including diverse individuals in genomic research in the context of recent literature on individuals of African ancestry. In addition, we discuss progress and achievements on related technological challenges and diversity among scientists conducting genomic research.
Collapse
Affiliation(s)
- Amy R. Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Shawneequa L. Callier
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
- Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC USA
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
84
|
Boua PR, Brandenburg JT, Choudhury A, Hazelhurst S, Sengupta D, Agongo G, Nonterah EA, Oduro AR, Tinto H, Mathew CG, Sorgho H, Ramsay M. Novel and Known Gene-Smoking Interactions With cIMT Identified as Potential Drivers for Atherosclerosis Risk in West-African Populations of the AWI-Gen Study. Front Genet 2020; 10:1354. [PMID: 32117412 PMCID: PMC7025492 DOI: 10.3389/fgene.2019.01354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction Atherosclerosis is a key contributor to the burden of cardiovascular diseases (CVDs) and many epidemiological studies have reported on the effect of smoking on carotid intima-media thickness (cIMT) and its subsequent effect on CVD risk. Gene-environment interaction studies have contributed towards understanding some of the missing heritability of genome-wide association studies. Gene-smoking interactions on cIMT have been studied in non-African populations (European, Latino-American, and African American) but no comparable African research has been reported. Our aim was to investigate smoking-SNP interactions on cIMT in two West African populations by genome-wide analysis. Materials and methods Only male participants from Burkina Faso (Nanoro = 993) and Ghana (Navrongo = 783) were included, as smoking was extremely rare among women. Phenotype and genotype data underwent stringent QC and genotype imputation was performed using the Sanger African Imputation Panel. Smoking prevalence among men was 13.3% in Nanoro and 42.5% in Navrongo. We analyzed gene-smoking interactions with PLINK after adjusting for covariates: age and 6 PCs (Model 1); age, BMI, blood pressure, fasting glucose, cholesterol levels, MVPA, and 6 PCs (Model 2). All analyses were performed at site level and for the combined data set. Results In Nanoro, we identified new gene-smoking interaction variants for cIMT within the previously described RCBTB1 region (rs112017404, rs144170770, and rs4941649) (Model 1: p = 1.35E-07; Model 2: p = 3.08E-08). In the combined sample, two novel intergenic interacting variants were identified, rs1192824 in the regulatory region of TBC1D8 (p = 5.90E-09) and rs77461169 (p = 4.48E-06) located in an upstream region of open chromatin. In silico functional analysis suggests the involvement of genes implicated in biological processes related to cell or biological adhesion and regulatory processes in gene-smoking interactions with cIMT (as evidenced by chromatin interactions and eQTLs). Discussion This is the first gene-smoking interaction study for cIMT, as a risk factor for atherosclerosis, in sub-Saharan African populations. In addition to replicating previously known signals for RCBTB1, we identified two novel genomic regions (TBC1D8, near BCHE) involved in this gene-environment interaction.
Collapse
Affiliation(s)
- Palwende Romuald Boua
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso.,Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhriti Sengupta
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Engelbert A Nonterah
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Abraham R Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Christopher G Mathew
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Michèle Ramsay
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
85
|
Reyes-Caballero H, Park B, Loube J, Sanchez I, Vinayachandran V, Choi Y, Woo J, Edwards J, Brinkman MC, Sussan T, Mitzner W, Biswal S. Immune modulation by chronic exposure to waterpipe smoke and immediate-early gene regulation in murine lungs. Tob Control 2019; 29:s80-s89. [PMID: 31852817 DOI: 10.1136/tobaccocontrol-2019-054965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We investigated the effects of chronic waterpipe (WP) smoke on pulmonary function and immune response in a murine model using a research-grade WP and the effects of acute exposure on the regulation of immediate-early genes (IEGs). METHODS WP smoke was generated using three WP smoke puffing regimens based on the Beirut regimen. WP smoke samples generated under these puffing regimens were quantified for nicotine concentration. Mice were chronically exposed for 6 months followed by assessment of pulmonary function and airway inflammation. Transcriptomic analysis using RNAseq was conducted after acute exposure to characterise the IEG response. These biomarkers were then compared with those generated after exposure to dry smoke (without water added to the WP bowl). RESULTS We determined that nicotine composition in WP smoke ranged from 0.4 to 2.5 mg per puffing session. The lung immune response was sensitive to the incremental severity of chronic exposure, with modest decreases in airway inflammatory cells and chemokine levels compared with air-exposed controls. Pulmonary function was unmodified by chronic WP exposure. Acute WP exposure was found to activate the immune response and identified known and novel IEG as potential biomarkers of WP exposure. CONCLUSION Chronic exposure to WP smoke leads to immune suppression without significant changes to pulmonary function. Transcriptomic analysis of the lung after acute exposure to WP smoke showed activation of the immune response and revealed IEGs that are common to WP and dry smoke, as well as pools of IEGs unique to each exposure, identifying potential biomarkers specific to WP exposure.
Collapse
Affiliation(s)
- Hermes Reyes-Caballero
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bongsoo Park
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey Loube
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ian Sanchez
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vinesh Vinayachandran
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Youngshim Choi
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Juhyung Woo
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin Edwards
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Thomas Sussan
- Toxicology Directorate, US Army Public Health Command, Aberdeen Proving Ground, Maryland, USA
| | - Wayne Mitzner
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shyam Biswal
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
86
|
Lupo PJ, Mitchell LE, Jenkins MM. Genome-wide association studies of structural birth defects: A review and commentary. Birth Defects Res 2019; 111:1329-1342. [PMID: 31654503 DOI: 10.1002/bdr2.1606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND While there is strong evidence that genetic risk factors play an important role in the etiologies of structural birth defects, compared to other diseases, there have been relatively few genome-wide association studies (GWAS) of these conditions. We reviewed the current landscape of GWAS conducted for birth defects, noting novel insights, and future directions. METHODS This article reviews the literature with regard to GWAS of structural birth defects. Key defects included in this review include oral clefts, congenital heart defects (CHDs), biliary atresia, pyloric stenosis, hypospadias, craniosynostosis, and clubfoot. Additionally, other issues related to GWAS are considered, including the assessment of polygenic risk scores and issues related to genetic ancestry, as well as utilizing genome-wide single nucleotide polymorphism array data to evaluate gene-environment interactions and Mendelian randomization. RESULTS For some birth defects, including oral clefts and CHDs, several novel susceptibility loci have been identified and replicated through GWAS, including 8q24 for oral clefts, DGKK for hypospadias, and 4p16 for CHDs. Relatively common birth defects for which there are currently no published GWAS include neural tube defects, anotia/microtia, anophthalmia/microphthalmia, gastroschisis, and omphalocele. CONCLUSIONS Overall, GWAS have been successful in identifying several novel susceptibility genes and genomic regions for structural birth defects. These findings have provided new insights into the etiologies of these phenotypes. However, GWAS have been underutilized for understanding the genetic etiologies of several birth defects.
Collapse
Affiliation(s)
- Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
87
|
Genetic risk of Spontaneous intracerebral hemorrhage: Systematic review and future directions. J Neurol Sci 2019; 407:116526. [PMID: 31669726 DOI: 10.1016/j.jns.2019.116526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although highly heritable, few genes have been linked to spontaneous intracerebral hemorrhage (SICH), which does not currently have any evidence-based disease-modifying therapy. Individuals of African ancestry are especially susceptible to SICH, even more so for indigenous Africans. We systematically reviewed the genetic variants associated with SICH and examined opportunities for rapidly advancing SICH genomic research for precision medicine. METHOD We searched the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) Genome Wide Association Study (GWAS) catalog and PubMed for original research articles on genetic variants associated with SICH as of 15 June 2019 using the PRISMA guideline. RESULTS Eight hundred and sixty-four articles were identified using pre-specified search criteria, of which 64 met the study inclusion criteria. Among eligible articles, only 9 utilized GWAS approach while the rest were candidate gene studies. Thirty-eight genetic loci were found to be variously associated with the risk of SICH, hematoma volume, functional outcome and mortality, out of which 8 were from GWAS including APOE, CR1, KCNK17, 1q22, CETP, STYK1, COL4A2 and 17p12. None of the studies included indigenous Africans. CONCLUSION Given this limited information on the genetic contributors to SICH, more genomic studies are needed to provide additional insights into the pathophysiology of SICH, and develop targeted preventive and therapeutic strategies. This call for additional investigation of the pathogenesis of SICH is likely to yield more discoveries in the unexplored indigenous African populations which also have a greater predilection.
Collapse
|
88
|
Bertoldi AD, Barros FC, Hallal PRC, Mielke GI, Oliveira PD, Maia MFS, Horta BL, Gonçalves H, Barros AJD, Tovo-Rodrigues L, Murray J, Victora CG. Trends and inequalities in maternal and child health in a Brazilian city: methodology and sociodemographic description of four population-based birth cohort studies, 1982-2015. Int J Epidemiol 2019; 48:i4-i15. [PMID: 30883654 PMCID: PMC6422064 DOI: 10.1093/ije/dyy170] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Few low-middle-income countries have data from comparable birth cohort studies spanning over time. We report on the methods used by the Pelotas cohorts (1982, 1993, 2004 and 2015) and describe time trends in sociodemographic characteristics of the participant families. Methods During the four study years, all maternity hospitals in the city were visited daily, and all urban women giving birth were enrolled. Data on socioeconomic and demographic characteristics were collected using standardized questionnaires, including data on maternal and paternal skin colour, age and schooling, maternal marital status, family income and household characteristics. The analyses included comparisons of time trends and of socioeconomic and ethnic group inequalities. Results Despite a near 50% increase in the city’s population between 1982 and 2015, the total number of births declined from 6011 to 4387. The proportion of mothers aged ≥35 years increased from 9.9% to 14.8%, and average maternal schooling from 6.5 [standard deviation (SD) 4.2] to 10.1 (SD 4.0) years. Treated water was available in 95.3% of households in 1982 and 99.3% in 2015. Three-quarters of the families had a refrigerator in 1982, compared with 98.3% in 2015. Absolute income-related inequalities in maternal schooling, household crowding, household appliances and access to treated water were markedly reduced between 1982 and 2015. Maternal skin colour was associated with inequalities in age at childbearing and schooling, as well as with household characteristics. Conclusions During the 33-year period, there were positive changes in social and environmental determinants of health, including income, education, fertility and characteristics of the home environment. Socioeconomic inequality was also reduced.
Collapse
Affiliation(s)
| | - Fernando C Barros
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Pedro R C Hallal
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Gregore I Mielke
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Paula D Oliveira
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Maria Fatima S Maia
- Institute of Human Sciences and Information, Federal University of Rio Grande, Rio Grande, Brazil
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Helen Gonçalves
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Aluísio J D Barros
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Joseph Murray
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Cesar G Victora
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | | |
Collapse
|
89
|
Sung YJ, de las Fuentes L, Winkler TW, Chasman DI, Bentley AR, Kraja AT, Ntalla I, Warren HR, Guo X, Schwander K, Manning AK, Brown MR, Aschard H, Feitosa MF, Franceschini N, Lu Y, Cheng CY, Sim X, Vojinovic D, Marten J, Musani SK, Kilpeläinen TO, Richard MA, Aslibekyan S, Bartz TM, Dorajoo R, Li C, Liu Y, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Jackson AU, Kammerer CM, Kasturiratne A, Komulainen P, Kühnel B, Leander K, Lee WJ, Lin KH, Luan J, Lyytikäinen LP, McKenzie CA, Nelson CP, Noordam R, Scott RA, Sheu WHH, Stančáková A, Takeuchi F, van der Most PJ, Varga TV, Waken RJ, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking DE, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cade B, Campbell A, Canouil M, Chakravarti A, Cocca M, Collins FS, Connell JM, de Mutsert R, de Silva HJ, Dörr M, Duan Q, Eaton CB, Ehret G, Evangelou E, Faul JD, Forouhi NG, Franco OH, Friedlander Y, Gao H, Gigante B, Gu CC, Gupta P, Hagenaars SP, Harris TB, He J, Heikkinen S, Heng CK, Hofman A, Howard BV, Hunt SC, Irvin MR, Jia Y, Katsuya T, Kaufman J, Kerrison ND, Khor CC, Koh WP, Koistinen HA, Kooperberg CB, Krieger JE, Kubo M, Kutalik Z, Kuusisto J, Lakka TA, Langefeld CD, Langenberg C, Launer LJ, Lee JH, Lehne B, Levy D, Lewis CE, Li Y, Lim SH, Liu CT, Liu J, Liu J, Liu Y, Loh M, Lohman KK, Louie T, Mägi R, Matsuda K, Meitinger T, Metspalu A, Milani L, Momozawa Y, Mosley, Jr TH, Nalls MA, Nasri U, O'Connell JR, Ogunniyi A, Palmas WR, Palmer ND, Pankow JS, Pedersen NL, Peters A, Peyser PA, Polasek O, Porteous D, Raitakari OT, Renström F, Rice TK, Ridker PM, Robino A, Robinson JG, Rose LM, Rudan I, Sabanayagam C, Salako BL, Sandow K, Schmidt CO, Schreiner PJ, Scott WR, Sever P, Sims M, Sitlani CM, Smith BH, Smith JA, Snieder H, Starr JM, Strauch K, Tang H, Taylor KD, Teo YY, Tham YC, Uitterlinden AG, Waldenberger M, Wang L, Wang YX, Wei WB, Wilson G, Wojczynski MK, Xiang YB, Yao J, Yuan JM, Zonderman AB, Becker DM, Boehnke M, Bowden DW, Chambers JC, Chen YDI, Weir DR, de Faire U, Deary IJ, Esko T, Farrall M, Forrester T, Freedman BI, Froguel P, Gasparini P, Gieger C, Horta BL, Hung YJ, Jonas JB, Kato N, Kooner JS, Laakso M, Lehtimäki T, Liang KW, Magnusson PKE, Oldehinkel AJ, Pereira AC, Perls T, Rauramaa R, Redline S, Rettig R, Samani NJ, Scott J, Shu XO, van der Harst P, Wagenknecht LE, Wareham NJ, Watkins H, Wickremasinghe AR, Wu T, Kamatani Y, Laurie CC, Bouchard C, Cooper RS, Evans MK, Gudnason V, Hixson J, Kardia SLR, Kritchevsky SB, Psaty BM, van Dam RM, Arnett DK, Mook-Kanamori DO, Fornage M, Fox ER, Hayward C, van Duijn CM, Tai ES, Wong TY, Loos RJF, Reiner AP, Rotimi CN, Bierut LJ, Zhu X, Cupples LA, Province MA, Rotter JI, Franks PW, Rice K, Elliott P, Caulfield MJ, Gauderman WJ, Munroe PB, Rao DC, Morrison AC. A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure. Hum Mol Genet 2019; 28:2615-2633. [PMID: 31127295 PMCID: PMC6644157 DOI: 10.1093/hmg/ddz070] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
Collapse
Affiliation(s)
- Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Daniel I Chasman
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - Xiuqing Guo
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alisa K Manning
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nora Franceschini
- Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Yingchang Lu
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa A Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, USA
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yanhua Zhou
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marzyeh Amini
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Jasmin Divers
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ilaria Gandin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Fernando P Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Meian He
- Lab Genetics and Molecular Cardiology, Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, CA, USA
| | - Andrea R V R Horimoto
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Fang-Chi Hsu
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anne U Jackson
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Candace M Kammerer
- Department of Public Health, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Anuradhani Kasturiratne
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Pirjo Komulainen
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Brigitte Kühnel
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Medical Research, Taichung Veterans General Hospital, Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Wen-Jane Lee
- Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Keng-Hung Lin
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Jian’an Luan
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center—Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Colin A McKenzie
- School of Public Health, Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Raymond Noordam
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert A Scott
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Wayne H H Sheu
- Endocrinology and Metabolism, Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Robert J Waken
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Heming Wang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yajuan Wang
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Erin B Ware
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Ernst Moritz Arndt University Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lisa R Yanek
- General Internal Medicine, GeneSTAR Research Program, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weihua Zhang
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing Hua Zhao
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Saima Afaq
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Tamuno Alfred
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Erwin P Bottinger
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John M Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland, UK
| | - Renée de Mutsert
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Charles B Eaton
- Department of Family Medicine and Epidemiology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Georg Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiology, Department of Specialties of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Evangelos Evangelou
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nita G Forouhi
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - He Gao
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Bruna Gigante
- Medical Research, Taichung Veterans General Hospital, Department of Social Work, Tunghai University, Taichung, Taiwan
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Preeti Gupta
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Saskia P Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Psychology, The University of Edinburgh, Edinburgh, UK
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jiang He
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sami Heikkinen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat—National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA
- Center for Clinical and Translational Sciences and Department of Medicine, Georgetown–Howard Universities, Washington, DC, USA
| | - Steven C Hunt
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Marguerite R Irvin
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yucheng Jia
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Joel Kaufman
- Epidemiology, Occupational and Environmental Medicine Program, University of Washington, Seattle, WA, USA
| | - Nicola D Kerrison
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Health Services and Systems Research, Duke–NUS Medical School, Singapore, Singapore
| | - Heikki A Koistinen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki Finland
| | - Charles B Kooperberg
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Jose E Krieger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zoltan Kutalik
- Institute of Social Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Timo A Lakka
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Carl D Langefeld
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Joseph H Lee
- Sergievsky Center, College of Physicians and Surgeons, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Benjamin Lehne
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Daniel Levy
- NHLBI Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cora E Lewis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Sing Hui Lim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jingmin Liu
- WHI CCC, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yeheng Liu
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marie Loh
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore
| | - Kurt K Lohman
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Koichi Matsuda
- Laboratory for Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ubaydah Nasri
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeff R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ozren Polasek
- Department of Public Health, Department of Medicine, University of Split, Split, Croatia
- Psychiatric Hospital ‘Sveti Ivan’, Zagreb, Croatia
- Gen-info Ltd, Zagreb, Croatia
| | - David Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Västerbotten, Sweden
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul M Ridker
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Trieste, Italy
| | - Jennifer G Robinson
- Department of Epidemiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Lynda M Rose
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | | | - Kevin Sandow
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carsten O Schmidt
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - William R Scott
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, USA
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Hua Tang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kent D Taylor
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gregory Wilson
- Jackson Heart Study, School of Public Health, Jackson State University, Jackson, MS, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jie Yao
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Diane M Becker
- General Internal Medicine, GeneSTAR Research Program, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Donald W Bowden
- Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John C Chambers
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Yii-Der Ida Chen
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Ulf de Faire
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Psychology, The University of Edinburgh, Edinburgh, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Barry I Freedman
- Nephrology, Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Bernardo Lessa Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Yi-Jen Hung
- Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taipei, Taiwan
| | - Jost Bruno Jonas
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center—Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kae-Woei Liang
- School of Medicine, National Yang-ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Alexandre C Pereira
- Lab Genetics and Molecular Cardiology, Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, CA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Thomas Perls
- Geriatrics Section, Boston University Medical Center, Boston, MA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rainer Rettig
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Institute of Physiology, University of Medicine Greifswald, Greifswald, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Tangchun Wu
- School of Public Health, Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - James Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Donna K Arnett
- Dean’s Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - Dennis O Mook-Kanamori
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ervin R Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Health Services and Systems Research, Duke–NUS Medical School, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruth J F Loos
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, The Mindich Child Health and Development Institute, New York, NY, USA
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - L Adrienne Cupples
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jerome I Rotter
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Harvard T. H. Chan School of Public Health, Department of Nutrition, Harvard University, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Västerbotten, Sweden
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul Elliott
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
90
|
Ganeff IMM, Bos MM, van Heemst D, Noordam R. BMI-associated gene variants in FTO and cardiometabolic and brain disease: obesity or pleiotropy? Physiol Genomics 2019; 51:311-322. [PMID: 31199196 DOI: 10.1152/physiolgenomics.00040.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity is a causal risk factor for the development of age-related disease conditions, which includes Type 2 diabetes mellitus, cardiovascular disease, and dementia. In genome-wide association studies, genetic variation in FTO is strongly associated with obesity and has been described across different ethnic backgrounds and life stages. To date, much work has been devoted on determining the biological mechanisms via which FTO affects body weight regulation and ultimately contributes to age-related cardiometabolic and brain disease. The main hypotheses of the involved biological mechanisms include the involvement of FTO in habitual food intake and energy expenditure. In this narrative review, our overall aim is to provide an overview on how FTO gene variants could increase the risk of developing age-related disease conditions. Specifically, we will discuss the state of the literature based on the different hypotheses how FTO regulates body weight and ultimately contributes to cardiometabolic disease and brain disease.
Collapse
Affiliation(s)
- Ingeborg M M Ganeff
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maxime M Bos
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
91
|
Osazuwa-Peters OL, Schwander K, Waken RJ, de las Fuentes L, Kilpeläinen TO, Loos RJF, Racette SB, Sung YJ, Rao DC. The Promise of Selecting Individuals from the Extremes of Exposure in the Analysis of Gene-Physical Activity Interactions. Hum Hered 2019; 83:315-332. [PMID: 31167214 PMCID: PMC6662918 DOI: 10.1159/000499711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dichotomization using the lower quartile as cutoff is commonly used for harmonizing heterogeneous physical activity (PA) measures across studies. However, this may create misclassification and hinder discovery of new loci. OBJECTIVES This study aimed to evaluate the performance of selecting individuals from the extremes of the exposure (SIEE) as an alternative approach to reduce such misclassification. METHOD For systolic and diastolic blood pressure in the Framingham Heart Study, we performed a genome-wide association study with gene-PA interaction analysis using three PA variables derived by SIEE and two other dichotomization approaches. We compared number of loci detected and overlap with loci found using a quantitative PA variable. In addition, we performed simulation studies to assess bias, false discovery rates (FDR), and power under synergistic/antagonistic genetic effects in exposure groups and in the presence/absence of measurement error. RESULTS In the empirical analysis, SIEE's performance was neither the best nor the worst. In most simulation scenarios, SIEE was consistently outperformed in terms of FDR and power. Particularly, in a scenario characterized by antagonistic effects and measurement error, SIEE had the least bias and highest power. CONCLUSION SIEE's promise appears limited to detecting loci with antagonistic effects. Further studies are needed to evaluate SIEE's full advantage.
Collapse
Affiliation(s)
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - R J Waken
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruth J F Loos
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Mindich Child Health and Development Institute, New York, New York, USA
| | - Susan B Racette
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
92
|
Hollister BM, Farber-Eger E, Aldrich MC, Crawford DC. A Social Determinant of Health May Modify Genetic Associations for Blood Pressure: Evidence From a SNP by Education Interaction in an African American Population. Front Genet 2019; 10:428. [PMID: 31134134 PMCID: PMC6523518 DOI: 10.3389/fgene.2019.00428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
African Americans experience the highest burden of hypertension in the United States compared with other groups. Genetic contributions to this complex condition are now emerging in this as well as other populations through large-scale genome-wide association studies (GWAS) and meta-analyses. Despite these recent discovery efforts, relatively few large-scale studies of blood pressure have considered the joint influence of genetics and social determinants of health despite extensive evidence supporting their impact on hypertension. To identify these expected interactions, we accessed a subset of the Vanderbilt University Medical Center (VUMC) biorepository linked to de-identified electronic health records (EHRs) of adult African Americans genotyped using the Illumina Metabochip (n = 2,577). To examine potential interactions between education, a recognized social determinant of health, and genetic variants contributing to blood pressure, we used linear regression models to investigate two-way interactions for systolic and diastolic blood pressure (DBP). We identified a two-way interaction between rs6687976 and education affecting DBP (p = 0.052). Individuals homozygous for the minor allele and having less than a high school education had higher DBP compared with (1) individuals homozygous for the minor allele and high school education or greater and (2) individuals not homozygous for the minor allele and less than a high school education. To our knowledge, this is the first EHR -based study to suggest a gene-environment interaction for blood pressure in African Americans, supporting the hypothesis that genetic contributions to hypertension may be modulated by social factors.
Collapse
Affiliation(s)
- Brittany M Hollister
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eric Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dana C Crawford
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
93
|
He KY, Li X, Kelly TN, Liang J, Cade BE, Assimes TL, Becker LC, Beitelshees AL, Bress AP, Chang YPC, Chen YDI, de Vries PS, Fox ER, Franceschini N, Furniss A, Gao Y, Guo X, Haessler J, Hwang SJ, Irvin MR, Kalyani RR, Liu CT, Liu C, Martin LW, Montasser ME, Muntner PM, Mwasongwe S, Palmas W, Reiner AP, Shimbo D, Smith JA, Snively BM, Yanek LR, Boerwinkle E, Correa A, Cupples LA, He J, Kardia SLR, Kooperberg C, Mathias RA, Mitchell BD, Psaty BM, Vasan RS, Rao DC, Rich SS, Rotter JI, Wilson JG, Chakravarti A, Morrison AC, Levy D, Arnett DK, Redline S, Zhu X. Leveraging linkage evidence to identify low-frequency and rare variants on 16p13 associated with blood pressure using TOPMed whole genome sequencing data. Hum Genet 2019; 138:199-210. [PMID: 30671673 PMCID: PMC6404531 DOI: 10.1007/s00439-019-01975-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023]
Abstract
In this study, we investigated low-frequency and rare variants associated with blood pressure (BP) by focusing on a linkage region on chromosome 16p13. We used whole genome sequencing (WGS) data obtained through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program on 395 Cleveland Family Study (CFS) European Americans (CFS-EA). By analyzing functional coding variants and non-coding rare variants with CADD score > 10 residing within the chromosomal region in families with linkage evidence, we observed 25 genes with nominal statistical evidence (burden or SKAT p < 0.05). One of the genes is RBFOX1, an evolutionarily conserved RNA-binding protein that regulates tissue-specific alternative splicing that we previously reported to be associated with BP using exome array data in CFS. After follow-up analysis of the 25 genes in ten independent TOPMed studies with individuals of European, African, and East Asian ancestry, and Hispanics (N = 29,988), we identified variants in SLX4 (p = 2.19 × 10-4) to be significantly associated with BP traits when accounting for multiple testing. We also replicated the associations previously reported for RBFOX1 (p = 0.007). Follow-up analysis with GTEx eQTL data shows SLX4 variants are associated with gene expression in coronary artery, multiple brain tissues, and right atrial appendage of the heart. Our study demonstrates that linkage analysis of family data can provide an efficient approach for detecting rare variants associated with complex traits in WGS data.
Collapse
Affiliation(s)
- Karen Y He
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Lewis C Becker
- GeneSTAR Research Program, Divisions of Cardiology and General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amber L Beitelshees
- Program for Personalized and Genomic Medicine, Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Adam P Bress
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Yen-Pei Christy Chang
- Program for Personalized and Genomic Medicine, Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yii-Der Ida Chen
- Departments of Pediatrics and Medicine, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Paul S de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ervin R Fox
- Division of Cardiovascular Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Nora Franceschini
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, 27599, USA
| | - Anna Furniss
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Yan Gao
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Xiuqing Guo
- Departments of Pediatrics and Medicine, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Shih-Jen Hwang
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Marguerite Ryan Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AB, 35294, USA
| | - Rita R Kalyani
- GeneSTAR Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ching-Ti Liu
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Chunyu Liu
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Lisa Warsinger Martin
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC, 20052, USA
| | - May E Montasser
- Program for Personalized and Genomic Medicine, Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Paul M Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AB, 35294, USA
| | | | - Walter Palmas
- Division of General Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Daichi Shimbo
- Division of General Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Beverly M Snively
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adolfo Correa
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - L Adrienne Cupples
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Divisions of Allergy and Clinical Immunology and General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Braxton D Mitchell
- Program for Personalized and Genomic Medicine, Division of Endocrinology Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Geriatrics Research and Education Clinical Center, Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, 98195, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Ramachandran S Vasan
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jerome I Rotter
- Departments of Pediatrics and Medicine, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Aravinda Chakravarti
- Department of Medicine, Center for Human Genetics and Genomics, New York University Langone Health, New York, NY, 10016, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Daniel Levy
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Donna K Arnett
- University of Kentucky College of Public Health, Lexington, KY, 40508, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
94
|
Lin WY, Huang CC, Liu YL, Tsai SJ, Kuo PH. Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests. Front Genet 2019; 9:715. [PMID: 30693016 PMCID: PMC6339974 DOI: 10.3389/fgene.2018.00715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
The identification of gene-environment interactions (G × E) may eventually guide health-related choices and medical interventions for complex diseases. More powerful methods must be developed to identify G × E. The “adaptive combination of Bayes factors method” (ADABF) has been proposed as a powerful genome-wide polygenic approach to detect G × E. In this work, we evaluate its performance when serving as a gene-based G × E test. We compare ADABF with six tests including the “Set-Based gene-EnviRonment InterAction test” (SBERIA), “gene-environment set association test” (GESAT), etc. With extensive simulations, SBERIA and ADABF are found to be more powerful than other G × E tests. However, SBERIA suffers from a power loss when 50% SNP main effects are in the same direction with the SNP × E interaction effects while 50% are in the opposite direction. We further applied these seven G × E methods to the Taiwan Biobank data to explore gene× alcohol interactions on blood pressure levels. The ADAMTS7P1 gene at chromosome 15q25.2 was detected to interact with alcohol consumption on diastolic blood pressure (p = 9.5 × 10−7, according to the GESAT test). At this gene, the P-values provided by other six tests all reached the suggestive significance level (p < 5 × 10−5). Regarding the computation time required for a genome-wide G × E analysis, SBERIA is the fastest method, followed by ADABF. Considering the validity, power performance, robustness, and computation time, ADABF is recommended for genome-wide G × E analyses.
Collapse
Affiliation(s)
- Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Chieh Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
95
|
Giral H, Landmesser U, Kratzer A. Into the Wild: GWAS Exploration of Non-coding RNAs. Front Cardiovasc Med 2018; 5:181. [PMID: 30619888 PMCID: PMC6304420 DOI: 10.3389/fcvm.2018.00181] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023] Open
Abstract
Genome-wide association studies (GWAS) have proven a fundamental tool to identify common variants associated to complex traits, thus contributing to unveil the genetic components of human disease. Besides, the advent of GWAS contributed to expose unexpected findings that urged to redefine the framework of population genetics. First, loci identified by GWAS had small effect sizes and could only explain a fraction of the predicted heritability of the traits under study. Second, the majority of GWAS hits mapped within non-coding regions (such as intergenic or intronic regions) where new functional RNA species (such as lncRNAs or circRNAs) have started to emerge. Bigger cohorts, meta-analysis and technical improvements in genotyping allowed identification of an increased number of genetic variants associated to coronary artery disease (CAD) and cardiometabolic traits. The challenge remains to infer causal mechanisms by which these variants influence cardiovascular disease development. A tendency to assign potential causal variants preferentially to coding genes close to lead variants contributed to disregard the role of non-coding elements. In recent years, in parallel to an increased knowledge of the non-coding genome, new studies started to characterize disease-associated variants located within non-coding RNA regions. The upcoming of databases integrating single-nucleotide polymorphisms (SNPs) and non-coding RNAs together with novel technologies will hopefully facilitate the discovery of causal non-coding variants associated to disease. This review attempts to summarize the current knowledge of genetic variation within non-coding regions with a focus on long non-coding RNAs that have widespread impact in cardiometabolic diseases.
Collapse
Affiliation(s)
- Hector Giral
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
96
|
Speth RC, D'Ambra M, Ji H, Sandberg K. A heartfelt message, estrogen replacement therapy: use it or lose it. Am J Physiol Heart Circ Physiol 2018; 315:H1765-H1778. [PMID: 30216118 PMCID: PMC6336974 DOI: 10.1152/ajpheart.00041.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
The issue of cardiovascular and cognitive health in women is complex. During the premenopausal phase of life, women have healthy blood pressure levels that are lower than those of age-matched men, and they have less cardiovascular disease. However, in the postmenopausal stage of life, blood pressure in women increases, and they are increasingly susceptible to cardiovascular disease, cognitive impairments, and dementia, exceeding the incidence in men. The major difference between pre- and postmenopausal women is the loss of estrogen. Thus, it seemed logical that postmenopausal estrogen replacement therapy, with or without progestin, generally referred to as menopausal hormone treatment (MHT), would prevent these adverse sequelae. However, despite initially promising results, a major randomized clinical trial refuted the benefits of MHT, leading to its falling from favor. However, reappraisal of this study in the framework of a "critical window," or "timing hypothesis," has changed our perspective on the benefit-to-risk ratio of MHT, and this review discusses the historical, current, and future approaches to MHT.
Collapse
Affiliation(s)
- Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida
- Department of Pharmacology and Physiology, College of Medicine, Georgetown University , Washington, District of Columbia
| | | | - Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
97
|
Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat Commun 2018; 9:5052. [PMID: 30487518 PMCID: PMC6261994 DOI: 10.1038/s41467-018-07345-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/29/2018] [Indexed: 01/11/2023] Open
Abstract
Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP. Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, the authors perform discovery GWAS for BP in East Asians and meta-analysis in East Asians and Europeans and report ancestry-specific BP SNPs and selection signals.
Collapse
|
98
|
Abstract
Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits, and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic contributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge. Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mechanisms at GWAS loci-including multiple signals, multiple variants, and/or multiple genes-and the implications these complexities hold for experimental study design and interpretation of GWAS mechanisms.
Collapse
Affiliation(s)
- Maren E Cannon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
99
|
Ng FL, Warren HR, Caulfield MJ. Hypertension genomics and cardiovascular prevention. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:291. [PMID: 30211179 DOI: 10.21037/atm.2018.06.34] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypertension continues to be a major risk factor for global mortality, and recent genome-wide association studies (GWAS) have expanded in size, leading to the identification of further genetic loci influencing blood pressure. In light of the new knowledge from the largest cardiovascular GWAS to date, we review the potential impact of genomics on discovering potential drug targets, risk stratification with genetic risk scores, drug selection with pharmacogenetics, and exploring insights provided by gene-environment interactions.
Collapse
Affiliation(s)
- Fu Liang Ng
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| | - Helen R Warren
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| |
Collapse
|
100
|
Abstract
Purpose of Review This review highlights recent findings regarding genetics of coronary artery calcification (CAC), a marker of subclinical atherosclerosis burden, that is a precursor of clinical coronary artery disease. Recent findings CAC quantity is heritable. Genome wide association studies of common single nucleotide polymorphisms have identified genomic regions explaining ~2.4% of CAC heritability. Low frequency and rare variants explain additional variation in CAC. Evidence suggests that there may be different genetic etiologies for variation in CAC progression than for cross-sectional measures of CAC. Studies integrating multiple -omics data are providing new insights into the pathobiology of subclinical coronary atherosclerosis. Summary The future is promising for innovative studies utilizing whole genome sequencing data as well as other -omics such as epigenomic modifications of genes and gene expression. These studies may provide multiple sources of data pointing to the same gene or pathway, thus providing greater confidence in findings.
Collapse
Affiliation(s)
- Lawrence F Bielak
- University of Michigan, Department of Epidemiology, School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Patricia A Peyser
- University of Michigan, Department of Epidemiology, School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| |
Collapse
|