51
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
52
|
Leandro J, Khamrui S, Wang H, Suebsuwong C, Nemeria NS, Huynh K, Moustakim M, Secor C, Wang M, Dodatko T, Stauffer B, Wilson CG, Yu C, Arkin MR, Jordan F, Sanchez R, DeVita RJ, Lazarus MB, Houten SM. Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex. ACS Chem Biol 2020; 15:2041-2047. [PMID: 32633484 DOI: 10.1021/acschembio.0c00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DHTKD1 is the E1 component of the 2-oxoadipate dehydrogenase complex, which is an enzyme involved in the catabolism of (hydroxy-)lysine and tryptophan. Mutations in DHTKD1 have been associated with 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth disease type 2Q and eosinophilic esophagitis, but the pathophysiology of these clinically distinct disorders remains elusive. Here, we report the identification of adipoylphosphonic acid and tenatoprazole as DHTKD1 inhibitors using targeted and high throughput screening, respectively. We furthermore elucidate the DHTKD1 crystal structure with thiamin diphosphate bound at 2.25 Å. We also report the impact of 10 disease-associated missense mutations on DHTKD1. Whereas the majority of the DHTKD1 variants displayed impaired folding or reduced thermal stability in combination with absent or reduced enzyme activity, three variants showed no abnormalities. Our work provides chemical and structural tools for further understanding of the function of DHTKD1 and its role in several human pathologies.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hui Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Khoi Huynh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Moses Moustakim
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - May Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Brandon Stauffer
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Christopher G. Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
53
|
Burke PEP, Campos CBDL, Costa LDF, Quiles MG. A biochemical network modeling of a whole-cell. Sci Rep 2020; 10:13303. [PMID: 32764598 PMCID: PMC7411072 DOI: 10.1038/s41598-020-70145-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 07/23/2020] [Indexed: 01/18/2023] Open
Abstract
All cellular processes can be ultimately understood in terms of respective fundamental biochemical interactions between molecules, which can be modeled as networks. Very often, these molecules are shared by more than one process, therefore interconnecting them. Despite this effect, cellular processes are usually described by separate networks with heterogeneous levels of detail, such as metabolic, protein-protein interaction, and transcription regulation networks. Aiming at obtaining a unified representation of cellular processes, we describe in this work an integrative framework that draws concepts from rule-based modeling. In order to probe the capabilities of the framework, we used an organism-specific database and genomic information to model the whole-cell biochemical network of the Mycoplasma genitalium organism. This modeling accounted for 15 cellular processes and resulted in a single component network, indicating that all processes are somehow interconnected. The topological analysis of the network showed structural consistency with biological networks in the literature. In order to validate the network, we estimated gene essentiality by simulating gene deletions and compared the results with experimental data available in the literature. We could classify 212 genes as essential, being 95% of them consistent with experimental results. Although we adopted a relatively simple organism as a case study, we suggest that the presented framework has the potential for paving the way to more integrated studies of whole organisms leading to a systemic analysis of cells on a broader scale. The modeling of other organisms using this framework could provide useful large-scale models for different fields of research such as bioengineering, network biology, and synthetic biology, and also provide novel tools for medical and industrial applications.
Collapse
Affiliation(s)
- Paulo E P Burke
- University of São Paulo, Bioinformatics Graduate Program, São Carlos, SP, Brazil.
| | - Claudia B de L Campos
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - Luciano da F Costa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Marcos G Quiles
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| |
Collapse
|
54
|
Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nat Commun 2020; 11:2695. [PMID: 32483258 PMCID: PMC7264154 DOI: 10.1038/s41467-020-16537-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are metabolic disorders influenced by lifestyle and genetic factors that are characterized by insulin resistance in skeletal muscle, a prominent site of glucose disposal. Numerous genetic variants have been associated with obesity and T2D, of which the majority are located in non-coding DNA regions. This suggests that most variants mediate their effect by altering the activity of gene-regulatory elements, including enhancers. Here, we map skeletal muscle genomic enhancer elements that are dynamically regulated after exposure to the free fatty acid palmitate or the inflammatory cytokine TNFα. By overlapping enhancer positions with the location of disease-associated genetic variants, and resolving long-range chromatin interactions between enhancers and gene promoters, we identify target genes involved in metabolic dysfunction in skeletal muscle. The majority of these genes also associate with altered whole-body metabolic phenotypes in the murine BXD genetic reference population. Thus, our combined genomic investigations identified genes that are involved in skeletal muscle metabolism. Obesity and type 2 diabetes (T2D) are metabolic disorders characterized by insulin resistance in skeletal muscle. Here, the authors map skeletal muscle enhancer elements dynamically regulated after exposure to free fatty acid palmitate or inflammatory cytokine TNFα and identify target genes involved in metabolic dysfunction in skeletal muscle.
Collapse
|
55
|
Bar-Ziv R, Bolas T, Dillin A. Systemic effects of mitochondrial stress. EMBO Rep 2020; 21:e50094. [PMID: 32449292 DOI: 10.15252/embr.202050094] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Multicellular organisms are complex biological systems, composed of specialized tissues that require coordination of the metabolic and fitness state of each component. In the cells composing the tissues, one central organelle is the mitochondrion, a compartment essential for many energetic and fundamental biological processes. Beyond serving these functions, mitochondria have emerged as signaling hubs in biological systems, capable of inducing changes to the cell they are in, to cells in distal tissues through secreted factors, and to overall animal physiology. Here, we describe our current understanding of these communication mechanisms in the context of mitochondrial stress. We focus on cellular mechanisms that deal with perturbations to the mitochondrial proteome and outline recent advances in understanding how local perturbations can affect distal tissues and animal physiology in model organisms. Finally, we discuss recent findings of these responses associated with metabolic and age-associated diseases in mammalian systems, and how they may be employed as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Raz Bar-Ziv
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Theodore Bolas
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
56
|
Hu X, Go YM, Jones DP. Omics Integration for Mitochondria Systems Biology. Antioxid Redox Signal 2020; 32:853-872. [PMID: 31891667 PMCID: PMC7074923 DOI: 10.1089/ars.2019.8006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Significance: Elucidation of the central importance of mitophagy in homeostasis of cells and organisms emphasizes that mitochondrial functions extend far beyond short-term needs for energy production. In mitochondria systems biology, the mitochondrial genome, proteome, and metabolome operate as a functional network in coordination of cell activities. Organization occurs through subnetworks that are interconnected by membrane potential, transport activities, allosteric and cooperative interactions, redox signaling mechanisms, rheostatic control by post-translational modifications, and metal ion homeostasis. These subnetworks enable use of varied energy precursors, defense against environmental stressors, and macromolecular rewiring to titrate energy production, biosynthesis, and detoxification according to cell-specific needs. Rewiring mechanisms, termed mitochondrial reprogramming, enhance fitness to respond to metabolic resources and challenges from the environment. Maladaptive responses can cause cell death. Maladaptive rewiring can cause disease. In cancer, adaptive rewiring can interfere with effective treatment. Recent Advances: Many recent advances have been facilitated by the development of new omics tools, which create opportunities to use data-driven analysis of omics data to address these complex adaptive and maladaptive mechanisms of mitochondrial reprogramming in human disease. Critical Issues: Application of omics integration to model systems reveals a critical role for metal ion homeostasis broadly impacting mitochondrial reprogramming. Importantly, data show that trans-omics associations are more robust and biologically relevant than single omics associations. Future Directions: Application of omics integration to mitophagy research creates new opportunities to link the complex, interactive functions of mitochondrial form and function in mitochondria systems biology.
Collapse
Affiliation(s)
- Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
57
|
Berdous D, Berney X, Sanchez-Archidona AR, Jan M, Roujeau C, Lopez-Mejia IC, Mynatt R, Thorens B. A genetic screen identifies Crat as a regulator of pancreatic beta-cell insulin secretion. Mol Metab 2020; 37:100993. [PMID: 32298772 PMCID: PMC7225740 DOI: 10.1016/j.molmet.2020.100993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022] Open
Abstract
Objectives Glucose-stimulated insulin secretion is a critical function in the regulation of glucose homeostasis, and its deregulation is associated with the development of type 2 diabetes. Here, we performed a genetic screen using islets isolated from the BXD panel of advanced recombinant inbred (RI) lines of mice to search for novel regulators of insulin production and secretion. Methods Pancreatic islets were isolated from 36 RI BXD lines and insulin secretion was measured following exposure to 2.8 or 16.7 mM glucose with or without exendin-4. Islets from the same RI lines were used for RNA extraction and transcript profiling. Quantitative trait loci (QTL) mapping was performed for each secretion condition and combined with transcriptome data to prioritize candidate regulatory genes within the identified QTL regions. Functional studies were performed by mRNA silencing or overexpression in MIN6B1 cells and by studying mice and islets with beta-cell-specific gene inactivation. Results Insulin secretion under the 16.7 mM glucose plus exendin-4 condition was mapped significantly to a chromosome 2 QTL. Within this QTL, RNA-Seq data prioritized Crat (carnitine O-acetyl transferase) as a strong candidate regulator of the insulin secretion trait. Silencing Crat expression in MIN6B1 cells reduced insulin content and insulin secretion by ∼30%. Conversely, Crat overexpression enhanced insulin content and secretion by ∼30%. When islets from mice with beta-cell-specific Crat inactivation were exposed to high glucose, they displayed a 30% reduction of insulin content as compared to control islets. We further showed that decreased Crat expression in both MIN6B1 cells and pancreatic islets reduced the oxygen consumption rate in a glucose concentration-dependent manner. Conclusions We identified Crat as a regulator of insulin secretion whose action is mediated by an effect on total cellular insulin content; this effect also depends on the genetic background of the RI mouse lines. These data also show that in the presence of the stimulatory conditions used the insulin secretion rate is directly related to the insulin content. A QTL analysis in BXD mice identifies Crat as a regulator of insulin secretion. Crat regulates insulin content in MIN6B1 cells and pancreatic islets. Crat regulates glucose oxidation in MIN6B1 cells and pancreatic islets. Crat links glucose metabolism to the control of beta-cell insulin content. Insulin content limits insulin secretion in response to high glucose and exendin-4 level.
Collapse
Affiliation(s)
- Dassine Berdous
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Ana Rodriguez Sanchez-Archidona
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Maxime Jan
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Clara Roujeau
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Isabel C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Randall Mynatt
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
58
|
Santra T, Herrero A, Rodriguez J, von Kriegsheim A, Iglesias-Martinez LF, Schwarzl T, Higgins D, Aye TT, Heck AJR, Calvo F, Agudo-Ibáñez L, Crespo P, Matallanas D, Kolch W. An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Rep 2020; 26:3100-3115.e7. [PMID: 30865897 DOI: 10.1016/j.celrep.2019.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/16/2018] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Modern omics technologies allow us to obtain global information on different types of biological networks. However, integrating these different types of analyses into a coherent framework for a comprehensive biological interpretation remains challenging. Here, we present a conceptual framework that integrates protein interaction, phosphoproteomics, and transcriptomics data. Applying this method to analyze HRAS signaling from different subcellular compartments shows that spatially defined networks contribute specific functions to HRAS signaling. Changes in HRAS protein interactions at different sites lead to different kinase activation patterns that differentially regulate gene transcription. HRAS-mediated signaling is the strongest from the cell membrane, but it regulates the largest number of genes from the endoplasmic reticulum. The integrated networks provide a topologically and functionally resolved view of HRAS signaling. They reveal distinct HRAS functions including the control of cell migration from the endoplasmic reticulum and TP53-dependent cell survival when signaling from the Golgi apparatus.
Collapse
Affiliation(s)
- Tapesh Santra
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Des Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Ireland
| | - Thin-Thin Aye
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
| | - Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Ireland.
| |
Collapse
|
59
|
Choi MJ, Jung SB, Lee SE, Kang SG, Lee JH, Ryu MJ, Chung HK, Chang JY, Kim YK, Hong HJ, Kim H, Kim HJ, Lee CH, Mardinoglu A, Yi HS, Shong M. An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models. Diabetologia 2020; 63:837-852. [PMID: 31925461 DOI: 10.1007/s00125-019-05082-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Mitochondrial oxidative phosphorylation (OxPhos) is essential for energy production and survival. However, the tissue-specific and systemic metabolic effects of OxPhos function in adipocytes remain incompletely understood. METHODS We used adipocyte-specific Crif1 (also known as Gadd45gip1) knockout (AdKO) mice with decreased adipocyte OxPhos function. AdKO mice fed a normal chow or high-fat diet were evaluated for glucose homeostasis, weight gain and energy expenditure (EE). RNA sequencing of adipose tissues was used to identify the key mitokines affected in AdKO mice, which included fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). For in vitro analysis, doxycycline was used to pharmacologically decrease OxPhos in 3T3L1 adipocytes. To identify the effects of GDF15 and FGF21 on the metabolic phenotype of AdKO mice, we generated AdKO mice with global Gdf15 knockout (AdGKO) or global Fgf21 knockout (AdFKO). RESULTS Under high-fat diet conditions, AdKO mice were resistant to weight gain and exhibited higher EE and improved glucose tolerance. In vitro pharmacological and in vivo genetic inhibition of OxPhos in adipocytes significantly upregulated mitochondrial unfolded protein response-related genes and secretion of mitokines such as GDF15 and FGF21. We evaluated the metabolic phenotypes of AdGKO and AdFKO mice, revealing that GDF15 and FGF21 differentially regulated energy homeostasis in AdKO mice. Both mitokines had beneficial effects on obesity and insulin resistance in the context of decreased adipocyte OxPhos, but only GDF15 regulated EE in AdKO mice. CONCLUSIONS/INTERPRETATION The present study demonstrated that the adipose tissue adaptive mitochondrial stress response affected systemic energy homeostasis via cell-autonomous and non-cell-autonomous pathways. We identified novel roles for adipose OxPhos and adipo-mitokines in the regulation of systemic glucose homeostasis and EE, which facilitated adaptation of an organism to local mitochondrial stress.
Collapse
Affiliation(s)
- Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Hyun Jung Hong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Chul-Ho Lee
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea.
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea.
| |
Collapse
|
60
|
Bludau I, Aebersold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat Rev Mol Cell Biol 2020; 21:327-340. [PMID: 32235894 DOI: 10.1038/s41580-020-0231-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The ability of living systems to adapt to changing conditions originates from their capacity to change their molecular constitution. This is achieved by multiple mechanisms that modulate the quantitative composition and the diversity of the molecular inventory. Molecular diversification is particularly pronounced on the proteome level, at which multiple proteoforms derived from the same gene can in turn combinatorially form different protein complexes, thus expanding the repertoire of functional modules in the cell. The study of molecular and modular diversity and their involvement in responses to changing conditions has only recently become possible through the development of new 'omics'-based screening technologies. This Review explores our current knowledge of the mechanisms regulating functional diversification along the axis of gene expression, with a focus on the proteome and interactome. We explore the interdependence between different molecular levels and how this contributes to functional diversity. Finally, we highlight several recent techniques for studying molecular diversity, with specific focus on mass spectrometry-based analysis of the proteome and its organization into functional modules, and examine future directions for this rapidly growing field.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland. .,Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
61
|
Piirsalu M, Taalberg E, Lilleväli K, Tian L, Zilmer M, Vasar E. Treatment With Lipopolysaccharide Induces Distinct Changes in Metabolite Profile and Body Weight in 129Sv and Bl6 Mouse Strains. Front Pharmacol 2020; 11:371. [PMID: 32292347 PMCID: PMC7118216 DOI: 10.3389/fphar.2020.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
Mouse strains differ significantly in their behaviors and responses to pathogenic and pharmacological agents. This study seeks to characterize behavioral and metabolomic profiles of two widely used mouse lines, 129S6/SvEvTac (129Sv) and C57BL/6NTac (Bl6), to acute administration of lipopolysaccharide (LPS). LPS caused a significant suppression of locomotor activity and a decline in body weight (BW) in both strains within 24 h. However, the BW loss was more pronounced in Bl6 than in 129Sv. Comparison of strains revealed clear differences between their metabolomic profiles. According to the general linear model analysis (GLM), the 1.5 h LPS challenge in Bl6 caused a decrease of propionylcarnitine (C3), glucogenic amino acids, and acetylornithine (Ac-Orn), whereas the response of 129Sv included decreased concentrations of short-chain acylcarnitines (SCACs), citrulline, and elevation of glycerophospholipid (PCaa C42:0) and sphingolipid [SM(OH)C16:1]. 24 h after LPS administration, robust alterations in lipid profile were observed in both strains. LPS treatment caused elevation of sphingolipids, phosphatidylcholine diacyls (PCaa) as well as a decrease in lysophosphatidylcholines (LysoPC). However, the number of elevated PCaa and sphingolipids was considerably higher in 129Sv. In addition to lipids, 24 h LPS challenge in Bl6 mice induced increased levels of kynurenine (KYN), putrescine and decreased levels of citrulline, hexoses, Ac-Orn, and PC acyl-alkyl (PCae 38:2) as well as severe BW loss. In contrast, the 24 h LPS challenge in 129Sv mice induced increased levels of KYN, long-chain acylcarnitines (LCACs) and decreased levels of citrulline as well as moderate BW loss. Altogether, our study revealed both similarities and differences in response to LPS in Bl6 and 129Sv strains. For major differences, Bl6 mice showed stronger reduction of BW 24 h after LPS treatment, accompanied by significantly reduced levels of hexoses, the ratio between LysoPC16:1/LysoPC16:0, and elevated levels of neuroprotective putrescine. In 129Sv mice, the BW loss was milder, accompanied by increased levels of hydroxylated LCACs, probably reflecting shifts in oxidative metabolism of fatty acids. One may suggest that LPS caused stronger hypometabolic state in the Bl6 mice than in the 129Sv strain. Altogether, this study confirms that Bl6 and 129Sv mice display vastly distinct adaptation capacities independent from the nature of stressful challenge.
Collapse
Affiliation(s)
- Maria Piirsalu
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Egon Taalberg
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.,Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Li Tian
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mihkel Zilmer
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.,Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
62
|
Brial F, Alzaid F, Sonomura K, Kamatani Y, Meneyrol K, Le Lay A, Péan N, Hedjazi L, Sato TA, Venteclef N, Magnan C, Lathrop M, Dumas ME, Matsuda F, Zalloua P, Gauguier D. The Natural Metabolite 4-Cresol Improves Glucose Homeostasis and Enhances β-Cell Function. Cell Rep 2020; 30:2306-2320.e5. [PMID: 32075738 DOI: 10.1016/j.celrep.2020.01.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 02/09/2023] Open
Abstract
Exposure to natural metabolites contributes to the risk of cardiometabolic diseases (CMDs). Through metabolome profiling, we identify the inverse correlation between serum concentrations of 4-cresol and type 2 diabetes. The chronic administration of non-toxic doses of 4-cresol in complementary preclinical models of CMD reduces adiposity, glucose intolerance, and liver triglycerides, enhances insulin secretion in vivo, stimulates islet density and size, and pancreatic β-cell proliferation, and increases vascularization, suggesting activated islet enlargement. In vivo insulin sensitivity is not affected by 4-cresol. The incubation of mouse isolated islets with 4-cresol results in enhanced insulin secretion, insulin content, and β-cell proliferation of a magnitude similar to that induced by GLP-1. In both CMD models and isolated islets, 4-cresol is associated with the downregulated expression of the kinase DYRK1A, which may mediate its biological effects. Our findings identify 4-cresol as an effective regulator of β-cell function, which opens up perspectives for therapeutic applications in syndromes of insulin deficiency.
Collapse
Affiliation(s)
- Francois Brial
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | - Fawaz Alzaid
- Sorbonne Université, Université Paris Descartes, INSERM UMR_S 1138, Cordeliers Research Centre, 75006 Paris, France
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Life Science Research Center, Technology Research Laboratory, Shimadzu, Kyoto 604-8511, Japan
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kelly Meneyrol
- Université de Paris, Unit of Functional and Adaptive Biology, UMR 8251, CNRS, 4 rue Marie Andrée Lagroua Weill-Halle, 75013 Paris, France
| | - Aurélie Le Lay
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | - Noémie Péan
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | | | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu, Kyoto 604-8511, Japan
| | - Nicolas Venteclef
- Sorbonne Université, Université Paris Descartes, INSERM UMR_S 1138, Cordeliers Research Centre, 75006 Paris, France
| | - Christophe Magnan
- Université de Paris, Unit of Functional and Adaptive Biology, UMR 8251, CNRS, 4 rue Marie Andrée Lagroua Weill-Halle, 75013 Paris, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| | - Marc-Emmanuel Dumas
- Imperial College London, Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Pierre Zalloua
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon.
| | - Dominique Gauguier
- Université de Paris, INSERM UMR 1124, 75006 Paris, France; Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
63
|
Mouse Systems Genetics as a Prelude to Precision Medicine. Trends Genet 2020; 36:259-272. [PMID: 32037011 DOI: 10.1016/j.tig.2020.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Mouse models have been instrumental in understanding human disease biology and proposing possible new treatments. The precise control of the environment and genetic composition of mice allows more rigorous observations, but limits the generalizability and translatability of the results into human applications. In the era of precision medicine, strategies using mouse models have to be revisited to effectively emulate human populations. Systems genetics is one promising paradigm that may promote the transition to novel precision medicine strategies. Here, we review the state-of-the-art resources and discuss how mouse systems genetics helps to understand human diseases and to advance the development of precision medicine, with an emphasis on the existing resources and strategies.
Collapse
|
64
|
Artiukhov AV, Grabarska A, Gumbarewicz E, Aleshin VA, Kähne T, Obata T, Kazantsev AV, Lukashev NV, Stepulak A, Fernie AR, Bunik VI. Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues. Sci Rep 2020; 10:1886. [PMID: 32024885 PMCID: PMC7002488 DOI: 10.1038/s41598-020-58701-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid β-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of β-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Vasily A Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, George W. Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
65
|
Moreira RJ, Castro É, Oliveira TE, Belchior T, Peixoto AS, Chaves-Filho AB, Moreno MF, Lima JD, Yoshinaga M, Miyamoto S, Morais MRPT, Zorn TMT, Cogliati B, Iwai LK, Palmisano G, Cabral FJ, Festuccia W. Lipoatrophy-Associated Insulin Resistance and Hepatic Steatosis are Attenuated by Intake of Diet Rich in Omega 3 Fatty Acids. Mol Nutr Food Res 2020; 64:e1900833. [PMID: 31978277 DOI: 10.1002/mnfr.201900833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Indexed: 02/06/2023]
Abstract
SCOPE Glucose homeostasis and progression of nonalcoholic fatty liver disease (NAFLD) and hepatomegaly in severe lipoatrophic mice and their modulation by intake of a diet rich in omega 3 (n-3) fatty acids (HFO) are evaluated. METHODS AND RESULTS Severe lipoatrophic mice induced by PPAR-γ deletion exclusively in adipocytes (A-PPARγ KO) and littermate controls (A-PPARγ WT) are evaluated for glucose homeostasis and liver mass, proteomics, lipidomics, inflammation, and fibrosis. Lipoatrophic mice are heavier than controls, severely glucose intolerant, and hyperinsulinemic, and develop NAFLD characterized by increased liver glycogen, triacylglycerol, and diacylglycerol contents, mitotic index, apoptosis, inflammation, steatosis score, fibrosis, and fatty acid synthase (FAS) content and activity. Lipoatrophic mice also display liver enrichment with monounsaturated in detriment of polyunsaturated fatty acids including n-3 fatty acids, and increased content of cardiolipin, a tetracyl phospholipid exclusively found at the mitochondria inner membrane. Administration of a high-fat diet rich in n-3 fatty acids (HFO) to lipoatrophic mice enriches liver with n-3 fatty acids, reduces hepatic steatosis, FAS content and activity, apoptosis, inflammation, and improves glucose homeostasis. CONCLUSION Diet enrichment with n-3 fatty acids improves glucose homeostasis and reduces liver steatosis and inflammation without affecting hepatomegaly in severe lipoatrophic mice.
Collapse
Affiliation(s)
- Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Marcos Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Mychel R P T Morais
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Telma M T Zorn
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508010, Brazil
| | - Leo K Iwai
- Special Laboratory of Applied Toxicology, Center of Toxins, Immune-response and Cell Signaling (LETA/ CeTICS), Butantan Institute, São Paulo, 05503400, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | | | - William Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| |
Collapse
|
66
|
Khan S, Ince-Dunn G, Suomalainen A, Elo LL. Integrative omics approaches provide biological and clinical insights: examples from mitochondrial diseases. J Clin Invest 2020; 130:20-28. [PMID: 31895050 PMCID: PMC6934214 DOI: 10.1172/jci129202] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-throughput technologies for genomics, transcriptomics, proteomics, and metabolomics, and integrative analysis of these data, enable new, systems-level insights into disease pathogenesis. Mitochondrial diseases are an excellent target for hypothesis-generating omics approaches, as the disease group is mechanistically exceptionally complex. Although the genetic background in mitochondrial diseases is in either the nuclear or the mitochondrial genome, the typical downstream effect is dysfunction of the mitochondrial respiratory chain. However, the clinical manifestations show unprecedented variability, including either systemic or tissue-specific effects across multiple organ systems, with mild to severe symptoms, and occurring at any age. So far, the omics approaches have provided mechanistic understanding of tissue-specificity and potential treatment options for mitochondrial diseases, such as metabolome remodeling. However, no curative treatments exist, suggesting that novel approaches are needed. In this Review, we discuss omics approaches and discoveries with the potential to elucidate mechanisms of and therapies for mitochondrial diseases.
Collapse
Affiliation(s)
- Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Gulayse Ince-Dunn
- Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUSlab, Helsinki, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
67
|
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Mol Cell Proteomics 2020; 19:31-49. [PMID: 31744855 PMCID: PMC6944237 DOI: 10.1074/mcp.r119.001743] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
The science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Qing Ma
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Ian Mongrain
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington, 98109
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
68
|
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine; Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
69
|
Ashbrook DG, Cahill S, Hager R. A Cross-Species Systems Genetics Analysis Links APBB1IP as a Candidate for Schizophrenia and Prepulse Inhibition. Front Behav Neurosci 2019; 13:266. [PMID: 31920576 PMCID: PMC6914690 DOI: 10.3389/fnbeh.2019.00266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Prepulse inhibition (PPI) of the startle response is a highly conserved form of sensorimotor gating, disruption of which is found in schizophrenia patients and their unaffected first-degree relatives. PPI can be measured in many species, and shows considerable phenotypic variation between and within rodent models. This makes PPI a useful endophenotype. Genome-wide association studies (GWAS) have been carried out to identify genetic variants underlying schizophrenia, and these suggest that schizophrenia is highly polygenic. GWAS have been unable to account for the high heritability of schizophrenia seen in family studies, partly because of the low power of GWAS due to multiple comparisons. By contrast, complementary mouse model linkage studies often have high statistical power to detect variants for behavioral traits but lower resolution, producing loci that include tens or hundreds of genes. To capitalize on the advantages of both GWAS and genetic mouse models, our study uses a cross-species approach to identify novel genes associated with PPI regulation, which thus may contribute to the PPI deficits seen in schizophrenia. Results: Using experimental data from the recombinant inbred (RI) mouse panel BXD, we identified two significant loci affecting PPI. These genomic regions contain genetic variants which influence PPI in mice and are therefore candidates that may be influencing aspects of schizophrenia in humans. We next investigated these regions in whole-genome data from the Psychiatric Genomics Consortium (PGC) schizophrenia GWAS and identify one novel candidate gene (ABPP1IP) that was significantly associated with PPI in mice and risk of schizophrenia in humans. A systems genetics approach demonstrates that APBB1IP coexpresses with several other genes related to schizophrenia in several brain regions. Gene coexpression and enrichment analysis shows clear links between APBB1IP and the immune system. Conclusion: The combination of human GWAS and mouse quantitative trait loci (QTL) from some of the largest study systems available has enabled us to identify a novel gene, APBB1IP, which influences schizophrenia in humans and PPI in mice.
Collapse
Affiliation(s)
- David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Stephanie Cahill
- Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
70
|
Hepatic gene expression explains primary drug toxicity in bipolar disorder. Transl Psychiatry 2019; 9:331. [PMID: 31819046 PMCID: PMC6901567 DOI: 10.1038/s41398-019-0666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
In bipolar disorder (BPD), long-term psychotropic drug treatment is often necessary to prevent relapse or recurrence. Nevertheless, adverse drug effects including disturbances in hepatic metabolism are observed and still poorly understood. Here, the association between hepatic gene expression and histopathological changes of the liver was investigated. By the use of microarrays (Affymetrix U133 plus2.0), a genome-wide expression study was performed on BPD patients with psychotropic drug treatment (n = 29) compared to unaffected controls (n = 20) and validated by quantitative real-time PCR. WebGestalt was used to identify over-represented functional pathways of the Reactome database. Association analyses between histopathological changes and differentially expressed genes comprised in the over-represented functional pathways were performed using regression analyses, from which feature-expression heatmaps were drawn. The majority of identified genes were underexpressed and involved in energy supply, metabolism of lipids and proteins, and the innate immune system. Positive associations were found for genes involved in all pathways and degenerative changes. The strongest negative association was observed between genes involved in energy supply and hepatic activity, as well as inflammation. In summary, we found a possible association between gene expression involved in various biological pathways and histopathological changes of the liver in BPD. Further, we found support for the probable primary toxic effect of psychotropic drugs on hepatic injury in BPD. Even if the safety of psychotropic drugs improves, adverse effects especially on hepatic function should not be underestimated.
Collapse
|
71
|
Li H, Rukina D, David FPA, Li TY, Oh CM, Gao AW, Katsyuba E, Bou Sleiman M, Komljenovic A, Huang Q, Williams RW, Robinson-Rechavi M, Schoonjans K, Morgenthaler S, Auwerx J. Identifying gene function and module connections by the integration of multispecies expression compendia. Genome Res 2019; 29:2034-2045. [PMID: 31754022 PMCID: PMC6886503 DOI: 10.1101/gr.251983.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
The functions of many eukaryotic genes are still poorly understood. Here, we developed and validated a new method, termed GeneBridge, which is based on two linked approaches to impute gene function and bridge genes with biological processes. First, Gene-Module Association Determination (G-MAD) allows the annotation of gene function. Second, Module-Module Association Determination (M-MAD) allows predicting connectivity among modules. We applied the GeneBridge tools to large-scale multispecies expression compendia—1700 data sets with over 300,000 samples from human, mouse, rat, fly, worm, and yeast—collected in this study. G-MAD identifies novel functions of genes—for example, DDT in mitochondrial respiration and WDFY4 in T cell activation—and also suggests novel components for modules, such as for cholesterol biosynthesis. By applying G-MAD on data sets from respective tissues, tissue-specific functions of genes were identified—for instance, the roles of EHHADH in liver and kidney, as well as SLC6A1 in brain and liver. Using M-MAD, we identified a list of module-module associations, such as those between mitochondria and proteasome, mitochondria and histone demethylation, as well as ribosomes and lipid biosynthesis. The GeneBridge tools together with the expression compendia are available as an open resource, which will facilitate the identification of connections linking genes, modules, phenotypes, and diseases.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Daria Rukina
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Fabrice P A David
- Gene Expression Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.,SV-IT, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Chang-Myung Oh
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Arwen W Gao
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Andrea Komljenovic
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Qingyao Huang
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee, Memphis, Tennessee 38163, USA
| | - Marc Robinson-Rechavi
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Stephan Morgenthaler
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
72
|
Venkatesh S, Suzuki CK. Cell stress management by the mitochondrial LonP1 protease - Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion 2019; 51:46-61. [PMID: 31756517 DOI: 10.1016/j.mito.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial LonP1 is an essential stress response protease that mediates mitochondrial proteostasis, metabolism and bioenergetics. Homozygous and compound heterozygous variants in the LONP1 gene encoding the LonP1 protease have recently been shown to cause a diverse spectrum of human pathologies, ranging from classical mitochondrial disease phenotypes, profound neurologic impairment and multi-organ dysfunctions, some of which are uncommon to mitochondrial disorders. In this review, we focus primarily on human LonP1 and discuss findings, which demonstrate its multidimensional roles in maintaining mitochondrial proteostasis and adapting cells to metabolic flux and stress during normal physiology and disease processes. We also discuss emerging roles of LonP1 in responding to developmental, oncogenic and cardiac stress.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
73
|
Proteomic, metabolic and immunological changes in Biomphalaria glabrata infected with Schistosoma mansoni. Int J Parasitol 2019; 49:1049-1060. [PMID: 31726057 DOI: 10.1016/j.ijpara.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022]
Abstract
Mansonic schistosomiasis is a neglected disease transmitted by Biomphalaria spp. snails. Understanding what happens inside the intermediate host is important to develop more efficient ways of reducing schistosomiasis prevalence. Our purpose was to characterize metabolic and immunological changes in Biomphalaria glabrata 24 h after exposure to Schistosoma mansoni. For this purpose, proteins were extracted from snails' whole tissue with Tris-Urea buffer and digested with tripsin. Mass spectrometry was performed and analyzed with MaxQuant and Perseus software. Also, the hemolymph of five snails 24 h post exposure was collected, and the numbers of hemocytes, levels of urea, uric acid, nitric oxide, calcium, glycogen and alanine and aspartate aminotransferases activities were assessed. Snails were also dissected for measurement of glycogen content in the cephalopodal region and gonoda-digestive gland complex. Globin domain proteins were found to be up-regulated; also the number of circulating hemocytes was significantly higher after 24 h of exposure to the parasite. NO levels were higher 24 h post exposure. Several proteins associated with energy metabolism were found to be up-regulated. Glycogen analysis showed a significant decrease in the gonad-digestive gland complex glycogen content. We found several proteins which seem to be associated with the host immune response, most of which were up-regulated, however some were down-regulated, which may represent an important clue in understanding B. glabrata - S. mansoni compatibility.
Collapse
|
74
|
Abstract
Throughout the animal kingdom, mitochondria are the only organelles that retain their own genome and the transcription and translation machineries that are all essential for energy harvesting. Mitochondria have developed a complex communication network, allowing them to stay in tune with cellular needs and nuclear transcriptional programs and to alleviate mitochondrial dysfunction. Here, we review recent findings on the wide array of mechanisms that contribute to these mitocellular communication networks, spanning from well-studied messenger molecules to mitonuclear genetic interactions. Based on these observations and developments, we advocate a broad and inclusive view on mitocellular interactions, which can have profound impacts on physiological, pathological, and evolutionary processes.
Collapse
Affiliation(s)
- Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sébastien Herzig
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
75
|
Kustatscher G, Grabowski P, Schrader TA, Passmore JB, Schrader M, Rappsilber J. Co-regulation map of the human proteome enables identification of protein functions. Nat Biotechnol 2019; 37:1361-1371. [PMID: 31690884 DOI: 10.1038/s41587-019-0298-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/27/2019] [Indexed: 01/07/2023]
Abstract
Assigning functions to the vast array of proteins present in eukaryotic cells remains challenging. To identify relationships between proteins, and thereby enable functional annotation of proteins, we determined changes in abundance of 10,323 human proteins in response to 294 biological perturbations using isotope-labeling mass spectrometry. We applied the machine learning algorithm treeClust to reveal functional associations between co-regulated human proteins from ProteomeHD, a compilation of our own data and datasets from the Proteomics Identifications database. This produced a co-regulation map of the human proteome. Co-regulation was able to capture relationships between proteins that do not physically interact or colocalize. For example, co-regulation of the peroxisomal membrane protein PEX11β with mitochondrial respiration factors led us to discover an organelle interface between peroxisomes and mitochondria in mammalian cells. We also predicted the functions of microproteins that are difficult to study with traditional methods. The co-regulation map can be explored at www.proteomeHD.net .
Collapse
Affiliation(s)
- Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Piotr Grabowski
- Division of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Data Sciences and Artificial Intelligence, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK. .,Division of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
76
|
Okada H, Yagi R, Gardeux V, Deplancke B, Hafen E. Sex-dependent and sex-independent regulatory systems of size variation in natural populations. Mol Syst Biol 2019; 15:e9012. [PMID: 31777173 PMCID: PMC6878047 DOI: 10.15252/msb.20199012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022] Open
Abstract
Size of organs/organisms is a polygenic trait. Many of the growth-regulatory genes constitute conserved growth signaling pathways. However, how these multiple genes are orchestrated at the systems level to attain the natural variation in size including sexual size dimorphism is mostly unknown. Here we take a multi-layered systems omics approach to study size variation in the Drosophila wing. We show that expression levels of many critical growth regulators such as Wnt and TGFβ pathway components significantly differ between sexes but not between lines exhibiting size differences within each sex, suggesting a primary role of these regulators in sexual size dimorphism. Only a few growth genes including a receptor of steroid hormone ecdysone exhibit association with between-line size differences. In contrast, we find that between-line size variation is largely regulated by genes with a diverse range of cellular functions, most of which have never been implicated in growth. In addition, we show that expression quantitative trait loci (eQTLs) linked to these novel growth regulators accurately predict population-wide, between-line wing size variation. In summary, our study unveils differential gene regulatory systems that control wing size variation between and within sexes.
Collapse
Affiliation(s)
- Hirokazu Okada
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Ryohei Yagi
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and GeneticsInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and GeneticsInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Ernst Hafen
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| |
Collapse
|
77
|
Diet modulates cecum bacterial diversity and physiological phenotypes across the BXD mouse genetic reference population. PLoS One 2019; 14:e0224100. [PMID: 31634382 PMCID: PMC6802831 DOI: 10.1371/journal.pone.0224100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/05/2019] [Indexed: 12/02/2022] Open
Abstract
The BXD family has become one of the preeminent genetic reference populations to understand the genetic and environmental control of phenotypic variation. Here we evaluate the responses to different levels of fat in the diet using both chow diet (CD, 13–18% fat) and a high-fat diet (HFD, 45–60% fat). We studied cohorts of BXD strains, both inbred parents C57BL/6J and DBA/2J (commonly known as B6 and D2, respectively), as well as B6D2 and D2B6 reciprocal F1 hybrids. The comparative impact of genetic and dietary factors was analyzed by profiling a range of phenotypes, most prominently their cecum bacterial composition. The parents of the BXDs and F1 hybrids express limited differences in terms of weight and body fat gain on CD. In contrast, the strain differences on HFD are substantial for percent body fat, with DBA/2J accumulating 12.5% more fat than C57BL/6J (P < 0.0001). The F1 hybrids born to DBA/2J dams (D2B6F1) have 10.6% more body fat (P < 0.001) than those born to C57BL/6J dams. Sequence analysis of the cecum microbiota reveals important differences in bacterial composition among BXD family members with a substantial shift in composition caused by HFD. Relative to CD, the HFD induces a decline in diversity at the phylum level with a substantial increase in Firmicutes (+13.8%) and a reduction in Actinobacteria (-7.9%). In the majority of BXD strains, the HFD also increases cecal sIgA (P < 0.0001)—an important component of the adaptive immunity response against microbial pathogens. Host genetics modulates variation in cecum bacterial composition at the genus level in CD, with significant quantitative trait loci (QTLs) for Oscillibacter mapped to Chr 3 (18.7–19.2 Mb, LRS = 21.4) and for Bifidobacterium mapped to Chr 6 (89.21–89.37 Mb, LRS = 19.4). Introduction of HFD served as an environmental suppressor of these QTLs due to a reduction in the contribution of both genera (P < 0.001). Relations among liver metabolites and cecum bacterial composition were predominant in CD cohort, but these correlations do not persist following the shift to HFD. Overall, these findings demonstrate the important impact of environmental/dietary manipulation on the relationships between host genetics, gastrointestinal bacterial composition, immunological parameters, and metabolites—knowledge that will help in the understanding of the causal sources of metabolic disorders.
Collapse
|
78
|
Abstract
Multi-omics multi-tissue data are used to interpret genome-wide association study results from mice to identify key driver genes of non-alcoholic fatty liver disease. Non-alcoholic fatty liver disease (NAFLD) is the accumulation of fat (steatosis) in the liver due to causes other than excessive alcohol consumption. The disease may progress to more severe forms of liver diseases, including non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. In this issue of Cell Systems, Krishnan et al. (2018) reveal mechanisms underlying NAFLD by generating multi-omics data using liver and adipose tissues obtained from the Hybrid Mouse Diversity Panel, consisting of 113 mouse strains with various degrees of NAFLD. The study identified key driver genes of NAFLD that can be used in the development of efficient treatment strategies and illustrates the potential utility of systematic analysis of multi-layer biological networks.
Collapse
Affiliation(s)
- Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
79
|
Pharaoh G, Sataranatarajan K, Street K, Hill S, Gregston J, Ahn B, Kinter C, Kinter M, Van Remmen H. Metabolic and Stress Response Changes Precede Disease Onset in the Spinal Cord of Mutant SOD1 ALS Mice. Front Neurosci 2019; 13:487. [PMID: 31213966 PMCID: PMC6554287 DOI: 10.3389/fnins.2019.00487] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Many Amyotrophic Lateral Sclerosis (ALS) patients experience hypermetabolism, or an increase in measured vs. calculated metabolic rate. The cause of hypermetabolism and the effects on neuronal metabolism in ALS are currently unknown, but the efficacy of dietary interventions shows promise for metabolism as an ALS therapeutic target. The goal of this study is to measure changes in metabolic pathways as a function of disease progression in spinal cords of the SOD1G93A mouse model of ALS. We conducted a comprehensive assessment of protein expression for metabolic pathways, antioxidants, chaperones, and proteases in lumbar spinal cord from male SOD1G93A mice at pre-onset, onset, and end-stages of the disease using targeted proteomic analysis. These results reveal that protein content of metabolic proteins including proteins involved in glycolysis, β-oxidation, and mitochondrial metabolism is altered in SOD1G93A mouse spinal cord well before disease onset. The changes in mitochondrial metabolism proteins are associated with decreased maximal respiration and glycolytic flux in SOD1G93A dermal fibroblasts and increased hydrogen peroxide and lipid hydroperoxide production in mitochondria from sciatic nerve and gastrocnemius muscle fibers at end stage of disease. Consistent with redox dysregulation, expression of the glutathione antioxidant system is decreased, and peroxiredoxins and catalase expression are increased. In addition, stress response proteases and chaperones, including those involved in the mitochondrial unfolded protein response (UPRmt), are induced before disease onset. In summary, we report that metabolic and stress response changes occur in SOD1G93A lumbar spinal cord before motor symptom onset, and are primarily caused by SOD1G93A expression and do not vary greatly as a function of disease course.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | | | - Kaitlyn Street
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Shauna Hill
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jake Gregston
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Caroline Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States.,Oklahoma City VA Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
80
|
Biology is the root of variability: cautionary tales in Caenorhabditis elegans biology. Biochem Soc Trans 2019; 47:887-896. [PMID: 31127069 DOI: 10.1042/bst20190001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Abstract
Reproducibility is critical for the standardization, interpretation, and progression of research. However, many factors increase variability and reduce reproducibility. In Caenorhabditis elegans research, there are many possible causes of variability that may explain why experimental outcomes sometimes differ between laboratories and between experiments. Factors contributing to experimental variability include the genetic background of both C. elegans and its bacterial diet, differences in media composition, intergenerational and transgenerational effects that may be carried over for generations, and the use of chemicals or reagents that may have unexpected consequences. This review summarizes sources of variability in C. elegans research and serves to identify laboratory practices that could influence reproducibility.
Collapse
|
81
|
Mogilenko DA, Haas JT, L'homme L, Fleury S, Quemener S, Levavasseur M, Becquart C, Wartelle J, Bogomolova A, Pineau L, Molendi-Coste O, Lancel S, Dehondt H, Gheeraert C, Melchior A, Dewas C, Nikitin A, Pic S, Rabhi N, Annicotte JS, Oyadomari S, Velasco-Hernandez T, Cammenga J, Foretz M, Viollet B, Vukovic M, Villacreces A, Kranc K, Carmeliet P, Marot G, Boulter A, Tavernier S, Berod L, Longhi MP, Paget C, Janssens S, Staumont-Sallé D, Aksoy E, Staels B, Dombrowicz D. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell 2019; 177:1201-1216.e19. [PMID: 31031005 DOI: 10.1016/j.cell.2019.03.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/27/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023]
Abstract
Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.
Collapse
Affiliation(s)
- Denis A Mogilenko
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Joel T Haas
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Laurent L'homme
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Sébastien Fleury
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Sandrine Quemener
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Matthieu Levavasseur
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Coralie Becquart
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Julien Wartelle
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Alexandra Bogomolova
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Laurent Pineau
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Olivier Molendi-Coste
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Steve Lancel
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Hélène Dehondt
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Celine Gheeraert
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Aurelie Melchior
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Cédric Dewas
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Artemii Nikitin
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Samuel Pic
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Nabil Rabhi
- University of Lille, EGID, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199, 59019 Lille, France
| | - Jean-Sébastien Annicotte
- University of Lille, EGID, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199, 59019 Lille, France
| | - Seiichi Oyadomari
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Talia Velasco-Hernandez
- Department of Hematology, Institute for Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Jörg Cammenga
- Department of Hematology, Institute for Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Marc Foretz
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France
| | - Benoit Viollet
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France
| | - Milica Vukovic
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Arnaud Villacreces
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kamil Kranc
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, 3000 Belgium
| | - Guillemette Marot
- Université Lille, MODAL Team, Inria Lille-Nord Europe, 59650 Villeneuve-d'Ascq, France
| | - Alexis Boulter
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Simon Tavernier
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research and Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Maria P Longhi
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christophe Paget
- Université de Tours, INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37041 Tours, France
| | - Sophie Janssens
- ER Stress and Inflammation, VIB Center for Inflammation Research, and Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium
| | - Delphine Staumont-Sallé
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Ezra Aksoy
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Bart Staels
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - David Dombrowicz
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France.
| |
Collapse
|
82
|
Topf U, Uszczynska-Ratajczak B, Chacinska A. Mitochondrial stress-dependent regulation of cellular protein synthesis. J Cell Sci 2019; 132:132/8/jcs226258. [DOI: 10.1242/jcs.226258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT
The production of newly synthesized proteins is vital for all cellular functions and is a determinant of cell growth and proliferation. The synthesis of polypeptide chains from mRNA molecules requires sophisticated machineries and mechanisms that need to be tightly regulated, and adjustable to current needs of the cell. Failures in the regulation of translation contribute to the loss of protein homeostasis, which can have deleterious effects on cellular function and organismal health. Unsurprisingly, the regulation of translation appears to be a crucial element in stress response mechanisms. This review provides an overview of mechanisms that modulate cytosolic protein synthesis upon cellular stress, with a focus on the attenuation of translation in response to mitochondrial stress. We then highlight links between mitochondrion-derived reactive oxygen species and the attenuation of reversible cytosolic translation through the oxidation of ribosomal proteins at their cysteine residues. We also discuss emerging concepts of how cellular mechanisms to stress are adapted, including the existence of alternative ribosomes and stress granules, and the regulation of co-translational import upon organelle stress.
Collapse
Affiliation(s)
- Ulrike Topf
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | | | - Agnieszka Chacinska
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- ReMedy International Research Agenda Unit, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| |
Collapse
|
83
|
Romanov N, Kuhn M, Aebersold R, Ori A, Beck M, Bork P. Disentangling Genetic and Environmental Effects on the Proteotypes of Individuals. Cell 2019; 177:1308-1318.e10. [PMID: 31031010 PMCID: PMC6988111 DOI: 10.1016/j.cell.2019.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/18/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Proteotypes, like genotypes, have been found to vary between individuals in several studies, but consistent molecular functional traits across studies remain to be quantified. In a meta-analysis of 11 proteomics datasets from humans and mice, we use co-variation of proteins in known functional modules across datasets and individuals to obtain a consensus landscape of proteotype variation. We find that individuals differ considerably in both protein complex abundances and stoichiometry. We disentangle genetic and environmental factors impacting these metrics, with genetic sex and specific diets together explaining 13.5% and 11.6% of the observed variation of complex abundance and stoichiometry, respectively. Sex-specific differences, for example, include various proteins and complexes, where the respective genes are not located on sex-specific chromosomes. Diet-specific differences, added to the individual genetic backgrounds, might become a starting point for personalized proteotype modulation toward desired features. Benchmarking of datasets on human and mouse proteotypes Consistent co-variation landscape of functional modules across individuals Protein complexes vary in their stoichiometry across individuals Quantifying effects of genetic sex and specific diets on complexes
Collapse
Affiliation(s)
- Natalie Romanov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
84
|
Leandro J, Violante S, Argmann CA, Hagen J, Dodatko T, Bender A, Zhang W, Williams EG, Bachmann AM, Auwerx J, Yu C, Houten SM. Mild inborn errors of metabolism in commonly used inbred mouse strains. Mol Genet Metab 2019; 126:388-396. [PMID: 30709776 PMCID: PMC6535113 DOI: 10.1016/j.ymgme.2019.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
Inbred mouse strains are a cornerstone of translational research but paradoxically many strains carry mild inborn errors of metabolism. For example, α-aminoadipic acidemia and branched-chain ketoacid dehydrogenase deficiency are known in C57BL/6J mice. Using RNA sequencing, we now reveal the causal variants in Dhtkd1 and Bckdhb, and the molecular mechanism underlying these metabolic defects. C57BL/6J mice have decreased Dhtkd1 mRNA expression due to a solitary long terminal repeat (LTR) in intron 4 of Dhtkd1. This LTR harbors an alternate splice donor site leading to a partial splicing defect and as a consequence decreased total and functional Dhtkd1 mRNA, decreased DHTKD1 protein and α-aminoadipic acidemia. Similarly, C57BL/6J mice have decreased Bckdhb mRNA expression due to an LTR retrotransposon in intron 1 of Bckdhb. This transposable element encodes an alternative exon 1 causing aberrant splicing, decreased total and functional Bckdhb mRNA and decreased BCKDHB protein. Using a targeted metabolomics screen, we also reveal elevated plasma C5-carnitine in 129 substrains. This biochemical phenotype resembles isovaleric acidemia and is caused by an exonic splice mutation in Ivd leading to partial skipping of exon 10 and IVD protein deficiency. In summary, this study identifies three causal variants underlying mild inborn errors of metabolism in commonly used inbred mouse strains.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Sara Violante
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA; Mount Sinai Genomics, Inc, One Gustave L Levy Place #1497, New York, NY 10029, USA
| | - Carmen A Argmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Jacob Hagen
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Aaron Bender
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Wei Zhang
- Mount Sinai Genomics, Inc, One Gustave L Levy Place #1497, New York, NY 10029, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Alexis M Bachmann
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA; Mount Sinai Genomics, Inc, One Gustave L Levy Place #1497, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| |
Collapse
|
85
|
Roy S, Zaman KI, Williams RW, Homayouni R. Evaluation of Sirtuin-3 probe quality and co-expressed genes using literature cohesion. BMC Bioinformatics 2019; 20:104. [PMID: 30871457 PMCID: PMC6419539 DOI: 10.1186/s12859-019-2621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gene co-expression studies can provide important insights into molecular and cellular signaling pathways. The GeneNetwork database is a unique resource for co-expression analysis using data from a variety of tissues across genetically distinct inbred mice. However, extraction of biologically meaningful co-expressed gene sets is challenging due to variability in microarray platforms, probe quality, normalization methods, and confounding biological factors. In this study, we tested whether literature derived functional cohesion could be used as an objective metric in lieu of 'ground truth' to evaluate the quality of probes and microarray datasets. RESULTS We examined Sirtuin-3 (Sirt3) co-expressed gene sets extracted from either liver or brain tissues of BXD recombinant inbred mice in the GeneNetwork database. Depending on the microarray platform, there were as many as 26 probes that targeted different regions of Sirt3 primary transcript. Co-expressed gene sets (ranging from 100-1000 genes) associated with each Sirt3 probe were evaluated using the previously developed literature-derived cohesion p-value (LPv) and benchmarked against 'gold standards' derived from proteomic studies or Gene Ontology classifications. We found that the maximal F-measure was obtained at an average window size of 535 genes. Using set size of 500 genes, the Pearson correlations between LPv and F-measure as well as between LPv and mitochondrial gene enrichment p-values were 0.90 and 0.93, respectively. Importantly, we found that the LPv approach can distinguish high quality Sirt3 probes. Analysis of the most functionally cohesive Sirt3 co-expressed gene set revealed core metabolic pathways that were shared between hippocampus and liver as well as distinct pathways which were unique to each tissue. These results are consistent with other studies that suggest Sirt3 is a key metabolic regulator and has distinct functions in energy-producing vs. energy-demanding tissues. CONCLUSIONS Our results provide proof-of-concept that literature cohesion analysis is useful for evaluating the quality of probes and microarray datasets, particularly when experimentally derived gold standards are unavailable. Our approach would enable researchers to rapidly identify biologically meaningful co-expressed gene sets and facilitate discovery from high throughput genomic data.
Collapse
Affiliation(s)
- Sujoy Roy
- Bioinformatics Program, University of Memphis, Memphis, 38152 USA
- Center for Translational Informatics, University of Memphis, Memphis, 38152 USA
| | - Kazi I. Zaman
- Bioinformatics Program, University of Memphis, Memphis, 38152 USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, 38163 USA
| | - Ramin Homayouni
- Bioinformatics Program, University of Memphis, Memphis, 38152 USA
- Center for Translational Informatics, University of Memphis, Memphis, 38152 USA
- Department of Biology, University of Memphis, Memphis, 38152 USA
| |
Collapse
|
86
|
Parker BL, Calkin AC, Seldin MM, Keating MF, Tarling EJ, Yang P, Moody SC, Liu Y, Zerenturk EJ, Needham EJ, Miller ML, Clifford BL, Morand P, Watt MJ, Meex RCR, Peng KY, Lee R, Jayawardana K, Pan C, Mellett NA, Weir JM, Lazarus R, Lusis AJ, Meikle PJ, James DE, de Aguiar Vallim TQ, Drew BG. An integrative systems genetic analysis of mammalian lipid metabolism. Nature 2019; 567:187-193. [PMID: 30814737 PMCID: PMC6656374 DOI: 10.1038/s41586-019-0984-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022]
Abstract
Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.
Collapse
Affiliation(s)
- Benjamin L Parker
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Anna C Calkin
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
- Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Marcus M Seldin
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael F Keating
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia
- Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Elizabeth J Tarling
- Department of Medicine, Division of Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah C Moody
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Yingying Liu
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Eser J Zerenturk
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Elise J Needham
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew L Miller
- Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Bethan L Clifford
- Department of Medicine, Division of Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Pauline Morand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ruth C R Meex
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Kang-Yu Peng
- Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Kaushala Jayawardana
- Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Calvin Pan
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Jacquelyn M Weir
- Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Ross Lazarus
- Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Aldons J Lusis
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - David E James
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Brian G Drew
- Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia.
- Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
87
|
Maldonado EM, Taha F, Rahman J, Rahman S. Systems Biology Approaches Toward Understanding Primary Mitochondrial Diseases. Front Genet 2019; 10:19. [PMID: 30774647 PMCID: PMC6367241 DOI: 10.3389/fgene.2019.00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Primary mitochondrial diseases form one of the most common and severe groups of genetic disease, with a birth prevalence of at least 1 in 5000. These disorders are multi-genic and multi-phenotypic (even within the same gene defect) and span the entire age range from prenatal to late adult onset. Mitochondrial disease typically affects one or multiple high-energy demanding organs, and is frequently fatal in early life. Unfortunately, to date there are no known curative therapies, mostly owing to the rarity and heterogeneity of individual mitochondrial diseases, leading to diagnostic odysseys and difficulties in clinical trial design. This review aims to discuss recent advances and challenges of systems approaches for the study of primary mitochondrial diseases. Although there has been an explosion in the generation of omics data, few studies have progressed toward the integration of multiple levels of omics. It is evident that the integration of different types of data to create a more complete representation of biology remains challenging, perhaps due to the scarcity of available integrative tools and the complexity inherent in their use. In addition, "bottom-up" systems approaches have been adopted for use in the iterative cycle of systems biology: from data generation to model prediction and validation. Primary mitochondrial diseases, owing to their complex nature, will most likely benefit from a multidisciplinary approach encompassing clinical, molecular and computational studies integrated together by systems biology to elucidate underlying pathomechanisms for better diagnostics and therapeutic discovery. Just as next generation sequencing has rapidly increased diagnostic rates from approximately 5% up to 60% over two decades, more recent advancing technologies are encouraging; the generation of multi-omics, the integration of multiple types of data, and the ability to predict perturbations will, ultimately, be translated into improved patient care.
Collapse
Affiliation(s)
- Elaina M. Maldonado
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Fatma Taha
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joyeeta Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
88
|
Jiang LG, Li B, Liu SX, Wang HW, Li CP, Song SH, Beatty M, Zastrow-Hayes G, Yang XH, Qin F, He Y. Characterization of Proteome Variation During Modern Maize Breeding. Mol Cell Proteomics 2019; 18:263-276. [PMID: 30409858 PMCID: PMC6356080 DOI: 10.1074/mcp.ra118.001021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
The success of modern maize breeding has been demonstrated by remarkable increases in productivity with tremendous modification of agricultural phenotypes over the last century. Although the underlying genetic changes of the maize adaptation from tropical to temperate regions have been extensively studied, our knowledge is limited regarding the accordance of protein and mRNA expression levels accompanying such adaptation. Here we conducted an integrative analysis of proteomic and transcriptomic changes in a maize association panel. The minimum extent of correlation between protein and RNA levels suggests that variation in mRNA expression is often not indicative of protein expression at a population scale. This is corroborated by the observation that mRNA- and protein-based coexpression networks are relatively independent of each other, and many pQTLs arise without the presence of corresponding eQTLs. Importantly, compared with transcriptome, the subtypes categorized by the proteome show a markedly high accuracy to resemble the genomic subpopulation. These findings suggest that proteome evolved under a greater evolutionary constraint than transcriptome during maize adaptation from tropical to temperate regions. Overall, the integrated multi-omics analysis provides a functional context to interpret gene expression variation during modern maize breeding.
Collapse
Affiliation(s)
- Lu-Guang Jiang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Bo Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Sheng-Xue Liu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Hong-Wei Wang
- Agricultural College, Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Hubei 434000, China
| | - Cui-Ping Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Hui Song
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | - Xiao-Hong Yang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Feng Qin
- College of Biological Sciences, China Agricultural University, Beijing 100094, China;.
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China;.
| |
Collapse
|
89
|
|
90
|
Fine AD, Ball RL, Fujiwara Y, Handel MA, Carter GW. Uncoupling of transcriptomic and cytological differentiation in mouse spermatocytes with impaired meiosis. Mol Biol Cell 2019; 30:717-728. [PMID: 30649999 PMCID: PMC6589690 DOI: 10.1091/mbc.e18-10-0681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell differentiation is driven by changes in gene expression that manifest as changes in cellular phenotype or function. Altered cellular phenotypes, stemming from genetic mutations or other perturbations, are widely assumed to directly correspond to changes in the transcriptome and vice versa. Here, we exploited the cytologically well-defined Prdm9 mutant mouse as a model of developmental arrest to test whether parallel programs of cellular differentiation and gene expression are tightly coordinated, or can be disassociated. By comparing cytological phenotype markers and transcriptomes in wild-type and mutant spermatocytes, we identified multiple instances of cellular and molecular uncoupling in Prdm9–/– mutants. Most notably, although Prdm9–/– germ cells undergo cytological arrest in a late-leptotene/zygotene stage, they nevertheless develop gene expression signatures characteristic of later developmental substages. These findings suggest that transcriptomic changes may not reliably map to cellular phenotypes in developmentally perturbed systems.
Collapse
Affiliation(s)
- Alexander D Fine
- The Jackson Laboratory, Bar Harbor, ME 04609.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111
| | | | | | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, ME 04609.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Gregory W Carter
- The Jackson Laboratory, Bar Harbor, ME 04609.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111
| |
Collapse
|
91
|
Borna NN, Kishita Y, Kohda M, Lim SC, Shimura M, Wu Y, Mogushi K, Yatsuka Y, Harashima H, Hisatomi Y, Fushimi T, Ichimoto K, Murayama K, Ohtake A, Okazaki Y. Mitochondrial ribosomal protein PTCD3 mutations cause oxidative phosphorylation defects with Leigh syndrome. Neurogenetics 2019; 20:9-25. [PMID: 30607703 DOI: 10.1007/s10048-018-0561-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
Pentatricopeptide repeat domain proteins are a large family of RNA-binding proteins involved in mitochondrial RNA editing, stability, and translation. Mitochondrial translation machinery defects are an expanding group of genetic diseases in humans. We describe a patient who presented with low birth weight, mental retardation, and optic atrophy. Brain MRI showed abnormal bilateral signals at the basal ganglia and brainstem, and the patient was diagnosed as Leigh syndrome. Exome sequencing revealed two potentially loss-of-function variants [c.415-2A>G, and c.1747_1748insCT (p.Phe583Serfs*3)] in PTCD3 (also known as MRPS39). PTCD3, a member of the pentatricopeptide repeat domain protein family, is a component of the small mitoribosomal subunit. The patient had marked decreases in mitochondrial complex I and IV levels and activities, oxygen consumption and ATP biosynthesis, and generalized mitochondrial translation defects in fibroblasts. Quantitative proteomic analysis revealed decreased levels of the small mitoribosomal subunits. Complementation experiments rescued oxidative phosphorylation complex I and IV levels and activities, ATP biosynthesis, and MT-RNR1 rRNA transcript level, providing functional validation of the pathogenicity of identified variants. This is the first report of an association of PTCD3 mutations with Leigh syndrome along with combined oxidative phosphorylation deficiencies caused by defects in the mitochondrial translation machinery.
Collapse
Affiliation(s)
- Nurun Nahar Borna
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masakazu Kohda
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Sze Chern Lim
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, 266-0007, Japan
| | - Yibo Wu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaoru Mogushi
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroko Harashima
- Department of Pediatrics, Saitama Medical University, Moroyama, Saitama, 350-0495, Japan
| | - Yuichiro Hisatomi
- Department of Pediatrics, Kumamoto City Hospital, Higashi-ku, Kumamoto, 862-8505, Japan
| | - Takuya Fushimi
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, 266-0007, Japan
| | - Keiko Ichimoto
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, 266-0007, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, 266-0007, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Moroyama, Saitama, 350-0495, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
92
|
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
93
|
Dahlmans D, Houzelle A, Andreux P, Wang X, Jörgensen JA, Moullan N, Daemen S, Kersten S, Auwerx J, Hoeks J. MicroRNA-382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells. J Cell Physiol 2018; 234:6601-6610. [PMID: 30417335 PMCID: PMC6344277 DOI: 10.1002/jcp.27401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the current study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR‐382‐5p and identified pathways affected by its silencing using microarrays, investigated protein expression, and studied cellular respiration. Silencing of miRNA‐382‐5p significantly increased the expression of several genes involved in mitochondrial dynamics and biogenesis. Conventional microarray analysis in C2C12 myotubes silenced for miRNA‐382‐5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35‐fold, p < 0.01) and an induction of HSP60 protein (1.31‐fold,
p < 0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR‐382‐5p reduced basal oxygen consumption rate by 14% (
p < 0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR‐382‐5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Alexandre Houzelle
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Pénélope Andreux
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xu Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johanna A Jörgensen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Norman Moullan
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sabine Daemen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Sander Kersten
- Division of Human Nutrition, Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| |
Collapse
|
94
|
Conrad T, Kniemeyer O, Henkel SG, Krüger T, Mattern DJ, Valiante V, Guthke R, Jacobsen ID, Brakhage AA, Vlaic S, Linde J. Module-detection approaches for the integration of multilevel omics data highlight the comprehensive response of Aspergillus fumigatus to caspofungin. BMC SYSTEMS BIOLOGY 2018; 12:88. [PMID: 30342519 PMCID: PMC6195963 DOI: 10.1186/s12918-018-0620-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Background Omics data provide deep insights into overall biological processes of organisms. However, integration of data from different molecular levels such as transcriptomics and proteomics, still remains challenging. Analyzing lists of differentially abundant molecules from diverse molecular levels often results in a small overlap mainly due to different regulatory mechanisms, temporal scales, and/or inherent properties of measurement methods. Module-detecting algorithms identifying sets of closely related proteins from protein-protein interaction networks (PPINs) are promising approaches for a better data integration. Results Here, we made use of transcriptome, proteome and secretome data from the human pathogenic fungus Aspergillus fumigatus challenged with the antifungal drug caspofungin. Caspofungin targets the fungal cell wall which leads to a compensatory stress response. We analyzed the omics data using two different approaches: First, we applied a simple, classical approach by comparing lists of differentially expressed genes (DEGs), differentially synthesized proteins (DSyPs) and differentially secreted proteins (DSePs); second, we used a recently published module-detecting approach, ModuleDiscoverer, to identify regulatory modules from PPINs in conjunction with the experimental data. Our results demonstrate that regulatory modules show a notably higher overlap between the different molecular levels and time points than the classical approach. The additional structural information provided by regulatory modules allows for topological analyses. As a result, we detected a significant association of omics data with distinct biological processes such as regulation of kinase activity, transport mechanisms or amino acid metabolism. We also found a previously unreported increased production of the secondary metabolite fumagillin by A. fumigatus upon exposure to caspofungin. Furthermore, a topology-based analysis of potential key factors contributing to drug-caused side effects identified the highly conserved protein polyubiquitin as a central regulator. Interestingly, polyubiquitin UbiD neither belonged to the groups of DEGs, DSyPs nor DSePs but most likely strongly influenced their levels. Conclusion Module-detecting approaches support the effective integration of multilevel omics data and provide a deep insight into complex biological relationships connecting these levels. They facilitate the identification of potential key players in the organism’s stress response which cannot be detected by commonly used approaches comparing lists of differentially abundant molecules. Electronic supplementary material The online version of this article (10.1186/s12918-018-0620-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Conrad
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
| | - O Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | | | - T Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - D J Mattern
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Present address: PerkinElmer Inc., Rodgau, Germany
| | - V Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - R Guthke
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - I D Jacobsen
- Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - A A Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - S Vlaic
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - J Linde
- Research Group PiDOMICs, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute for Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health - Friedrich Loeffler Institute, Jena, Germany
| |
Collapse
|
95
|
Crisol BM, Veiga CB, Lenhare L, Braga RR, Silva VR, da Silva AS, Cintra DE, Moura LP, Pauli JR, Ropelle ER. Nicotinamide riboside induces a thermogenic response in lean mice. Life Sci 2018; 211:1-7. [DOI: 10.1016/j.lfs.2018.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
|
96
|
Shi J, Wang X, Zhu H, Jiang H, Wang D, Nesvizhskii A, Zhu HJ. Determining Allele-Specific Protein Expression (ASPE) Using a Novel Quantitative Concatamer Based Proteomics Method. J Proteome Res 2018; 17:3606-3612. [PMID: 30141943 DOI: 10.1021/acs.jproteome.8b00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Measuring allele-specific expression (ASE) is a powerful approach for identifying cis-regulatory genetic variants. Here, we developed a novel targeted proteomics method for the quantification of allele-specific protein expression (ASPE) based on scheduled parallel reaction monitoring (PRM) with a heavy stable isotope-labeled quantitative concatamer (QconCAT) internal protein standard. This strategy was applied to the determination of the ASPE of UGT2B15 in human livers using the common UGT2B15 nonsynonymous variant rs1902023 (i.e., Y85D) as the marker to differentiate expressions from the two alleles. The QconCAT standard contains both the wild-type tryptic peptide and the Y85D mutant peptide at a ratio of 1:1 to ensure accurate measurement of the ASPE of UGT2B15. The results from 18 UGT2B15 Y85D heterozygotes revealed that the ratios between the wild-type Y allele and the mutant D allele varied from 0.60 to 1.46, indicating the presence of cis-regulatory variants. In addition, we observed no significant correlations between the ASPE and mRNA ASE of UGT2B15, suggesting the involvement of different cis-acting variants in regulating the transcription and translation processes of the gene. This novel ASPE approach provides a powerful tool for capturing cis-genetic variants involved in post-transcription processes, an important yet understudied area of research.
Collapse
Affiliation(s)
- Jian Shi
- Department of Clinical Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xinwen Wang
- Department of Clinical Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Huaijun Zhu
- Department of Clinical Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Department of Pharmacy , Drum Tower Hospital Affiliated to Medical School of Nanjing University , Nanjing , Jiangsu , China
| | | | - Danxin Wang
- Department of Cancer Biology and Genetics, Center for Pharmacogenomics, School of Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | | | - Hao-Jie Zhu
- Department of Clinical Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
97
|
Gan Z, Fu T, Kelly DP, Vega RB. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 2018; 28:969-980. [PMID: 30108290 DOI: 10.1038/s41422-018-0078-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle fitness and plasticity is an important determinant of human health and disease. Mitochondria are essential for maintaining skeletal muscle energy homeostasis by adaptive re-programming to meet the demands imposed by a myriad of physiologic or pathophysiological stresses. Skeletal muscle mitochondrial dysfunction has been implicated in the pathogenesis of many diseases, including muscular dystrophy, atrophy, type 2 diabetes, and aging-related sarcopenia. Notably, exercise counteracts the effects of many chronic diseases on skeletal muscle mitochondrial function. Recent studies have revealed a finely tuned regulatory network that orchestrates skeletal muscle mitochondrial biogenesis and function in response to exercise and in disease states. In addition, increasing evidence suggests that mitochondria also serve to "communicate" with the nucleus and mediate adaptive genomic re-programming. Here we review the current state of knowledge relevant to the dynamic remodeling of skeletal muscle mitochondria in response to exercise and in disease states.
Collapse
Affiliation(s)
- Zhenji Gan
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China.
| | - Tingting Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Rick B Vega
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, 32804, USA.
| |
Collapse
|
98
|
van Loon NM, Ottenhoff R, Kooijman S, Moeton M, Scheij S, Roscam Abbing RL, Gijbels MJ, Levels JH, Sorrentino V, Berbée JF, Rensen PC, Zelcer N. Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice. Arterioscler Thromb Vasc Biol 2018; 38:1785-1795. [PMID: 29903737 PMCID: PMC6092113 DOI: 10.1161/atvbaha.118.311168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
Objective- The E3 ubiquitin ligase IDOL (inducible degrader of the LDLR [LDL (low-density lipoprotein) receptor]) is a post-transcriptional regulator of LDLR abundance. Model systems and human genetics support a role for IDOL in regulating circulating LDL levels. Whether IDOL plays a broader metabolic role and affects development of metabolic syndrome-associated comorbidities is unknown. Approach and Results- We studied WT (wild type) and Idol(-/-) (Idol-KO) mice in 2 models: physiological aging and diet-induced obesity. In both models, deletion of Idol protected mice from metabolic dysfunction. On a Western-type diet, Idol loss resulted in decreased circulating levels of cholesterol, triglycerides, glucose, and insulin. This was accompanied by protection from weight gain in short- and long-term dietary challenges, which could be attributed to reduced hepatosteatosis and fat mass in Idol-KO mice. Although feeding and intestinal fat uptake were unchanged in Idol-KO mice, their brown adipose tissue was protected from lipid accumulation and had elevated expression of UCP1 (uncoupling protein 1) and TH (tyrosine hydroxylase). Indirect calorimetry indicated a marked increase in locomotion and suggested a trend toward increased cumulative energy expenditure and fat oxidation. An increase in in vivo clearance of reconstituted lipoprotein particles in Idol-KO mice may sustain this energetic demand. In the BXD mouse genetic reference population, hepatic Idol expression correlates with multiple metabolic parameters, thus providing support for findings in the Idol-KO mice. Conclusions- Our study uncovers an unrecognized role for Idol in regulation of whole body metabolism in physiological aging and on a Western-type diet. These findings support Idol inhibition as a therapeutic strategy to target multiple metabolic syndrome-associated comorbidities.
Collapse
Affiliation(s)
- Nienke M. van Loon
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Roelof Ottenhoff
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Sander Kooijman
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Martina Moeton
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Saskia Scheij
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | | | - Marion J.J. Gijbels
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
- Department of Molecular Genetics (M.J.J.G.)
| | | | - Vincenzo Sorrentino
- CARIM, Maastricht University, The Netherlands; and Laboratory for Integrative and Systems Physiology, EPFL, Lausanne, Switzerland (V.S.)
| | - Jimmy F.P. Berbée
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Patrick C.N. Rensen
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Noam Zelcer
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| |
Collapse
|
99
|
Diessler S, Jan M, Emmenegger Y, Guex N, Middleton B, Skene DJ, Ibberson M, Burdet F, Götz L, Pagni M, Sankar M, Liechti R, Hor CN, Xenarios I, Franken P. A systems genetics resource and analysis of sleep regulation in the mouse. PLoS Biol 2018; 16:e2005750. [PMID: 30091978 PMCID: PMC6085075 DOI: 10.1371/journal.pbio.2005750] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022] Open
Abstract
Sleep is essential for optimal brain functioning and health, but the biological substrates through which sleep delivers these beneficial effects remain largely unknown. We used a systems genetics approach in the BXD genetic reference population (GRP) of mice and assembled a comprehensive experimental knowledge base comprising a deep "sleep-wake" phenome, central and peripheral transcriptomes, and plasma metabolome data, collected under undisturbed baseline conditions and after sleep deprivation (SD). We present analytical tools to interactively interrogate the database, visualize the molecular networks altered by sleep loss, and prioritize candidate genes. We found that a one-time, short disruption of sleep already extensively reshaped the systems genetics landscape by altering 60%-78% of the transcriptomes and the metabolome, with numerous genetic loci affecting the magnitude and direction of change. Systems genetics integrative analyses drawing on all levels of organization imply α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and fatty acid turnover as substrates of the negative effects of insufficient sleep. Our analyses demonstrate that genetic heterogeneity and the effects of insufficient sleep itself on the transcriptome and metabolome are far more widespread than previously reported.
Collapse
Affiliation(s)
- Shanaz Diessler
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Maxime Jan
- Center for Integrative Genomics, University of Lausanne, Switzerland
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Nicolas Guex
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benita Middleton
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Debra J. Skene
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Mark Ibberson
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Frederic Burdet
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lou Götz
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martial Sankar
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Robin Liechti
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Charlotte N. Hor
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne, Switzerland
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Switzerland
| |
Collapse
|
100
|
Plubell DL, Fenton AM, Wilmarth PA, Bergstrom P, Zhao Y, Minnier J, Heinecke JW, Yang X, Pamir N. GM-CSF driven myeloid cells in adipose tissue link weight gain and insulin resistance via formation of 2-aminoadipate. Sci Rep 2018; 8:11485. [PMID: 30065264 PMCID: PMC6068153 DOI: 10.1038/s41598-018-29250-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
In a GM-CSF driven myeloid cell deficient mouse model (Csf2−/−) that has preserved insulin sensitivity despite increased adiposity, we used unbiased three-dimensional integration of proteome profiles, metabolic profiles, and gene regulatory networks to understand adipose tissue proteome-wide changes and their metabolic implications. Multi-dimensional liquid chromatography mass spectrometry and extended multiplex mass labeling was used to analyze proteomes of epididymal adipose tissues isolated from Csf2+/+ and Csf2−/− mice that were fed low fat, high fat, or high fat plus cholesterol diets for 8 weeks. The metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, phospholipids, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet for both genotypes, while mice lacking Csf2 were protected from insulin resistance. Regardless of diet, 30 mostly mitochondrial, branch chain amino acids (BCAA), and lysine metabolism proteins were altered between Csf2−/− and Csf2+/+ mice (FDR < 0.05). Lack of GM-CSF driven myeloid cells lead to reduced adipose tissue 2-oxoglutarate dehydrogenase complex (DHTKD1) levels and subsequent increase in plasma 2-aminoadipate (2-AA) levels, both of which are reported to correlate with insulin resistance. Tissue DHTKD1 levels were >4-fold upregulated and plasma 2-AA levels were >2 fold reduced in Csf2−/− mice (p < 0.05). GM-CSF driven myeloid cells link peripheral insulin sensitivity to adiposity via lysine metabolism involving DHTKD1/2-AA axis in a diet independent manner.
Collapse
Affiliation(s)
- Deanna L Plubell
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexandra M Fenton
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Paige Bergstrom
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jessica Minnier
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|