51
|
Marret G, Temam S, Kamal M, Even C, Delord JP, Hoffmann C, Dolivet G, Malard O, Fayette J, Capitain O, Vergez S, Geoffrois L, Rolland F, Zrounba P, Laccourreye L, Saada-Bouzid E, Aide N, Bénavent V, Klijianenko J, Lamy C, Girard E, Vacher S, Masliah-Planchon J, de Koning L, Puard V, Borcoman E, Jimenez M, Bièche I, Gal J, Le Tourneau C. Randomized phase II study of preoperative afatinib in untreated head and neck cancers: predictive and pharmacodynamic biomarkers of activity. Sci Rep 2023; 13:22524. [PMID: 38110561 PMCID: PMC10728082 DOI: 10.1038/s41598-023-49887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
There is no strong and reliable predictive biomarker in head and neck squamous cell carcinoma (HNSCC) for EGFR inhibitors. We aimed to identify predictive and pharmacodynamic biomarkers of efficacy of afatinib, a pan-HER tyrosine kinase inhibitor, in a window-of-opportunity trial (NCT01415674). Multi-omics analyses were carried out on pre-treatment biopsy and surgical specimen for biological assessment of afatinib activity. Sixty-one treatment-naïve and operable HNSCC patients were randomised to afatinib 40 mg/day for 21-28 days versus no treatment. Afatinib produced a high rate of metabolic response. Responders had a higher expression of pERK1/2 (P = 0.02) and lower expressions of pHER4 (P = 0.03) and pRB1 (P = 0.002) in pre-treatment biopsy compared to non-responders. At the cellular level, responders displayed an enrichment of tumor-infiltrating B cells under afatinib (P = 0.02). At the molecular level, NF-kappa B signaling was over-represented among upregulated genes in non-responders (P < 0.001; FDR = 0.01). Although exploratory, phosphoproteomics-based biomarkers deserve further investigations as predictors of afatinib efficacy.
Collapse
Affiliation(s)
- Grégoire Marret
- Department of Drug Development and Innovation (D3i), Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Stéphane Temam
- Department of Head and Neck Surgery, Gustave Roussy, Villejuif, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Caroline Even
- Head and Neck Oncology Department, Gustave Roussy, Villejuif, France
| | - Jean-Pierre Delord
- Department of Medical Oncology, Centre Claudius Régaud, Toulouse, France
| | | | - Gilles Dolivet
- Department of Head and Neck Surgery, Institut de Cancérologie de Lorraine, Nancy, France
| | - Olivier Malard
- Department of Head and Neck Surgery, Centre Hospitalier Universitaire, Nantes, France
| | - Jérôme Fayette
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Olivier Capitain
- Department of Medical Oncology, Centre Paul Papin, Angers, France
| | - Sébastien Vergez
- Department of Head and Neck Surgery, Institut Claudius Regaud, Toulouse, France
| | - Lionel Geoffrois
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy, France
| | - Frédéric Rolland
- Department of Medical Oncology, Centre René Gauducheau, Nantes, France
| | - Philippe Zrounba
- Department of Head and Neck Surgery, Centre Léon Bérard, Lyon, France
| | - Laurent Laccourreye
- Department of Head and Neck Surgery, Centre Hospitalier Universitaire, Angers, France
| | - Esma Saada-Bouzid
- Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
| | - Nicolas Aide
- Department of Nuclear Medicine, Centre François Baclesse, Caen, France
| | | | | | - Constance Lamy
- Department of Drug Development and Innovation (D3i), Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Elodie Girard
- Bioinformatics Core Facility, INSERM U900, Mines Paris Tech, Institut Curie, Paris, France
| | | | | | - Leanne de Koning
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Vincent Puard
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | | | - Ivan Bièche
- Genetics Department, Institut Curie, Paris, France
| | - Jocelyn Gal
- Department of Biostatistics, Centre Antoine Lacassagne, Nice, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, 26 Rue d'Ulm, 75005, Paris, France.
- INSERM U900, Institut Curie, Paris-Saclay University, Paris, France.
| |
Collapse
|
52
|
Manna D, Chidambaranathan Reghupaty S, Camarena MDC, Mendoza RG, Subler MA, Koblinski JE, Martin R, Dozmorov MG, Mukhopadhyay ND, Liu J, Qu X, Das SK, Lai Z, Windle JJ, Fisher PB, Sarkar D. Melanoma differentiation associated gene-9/syndecan binding protein promotes hepatocellular carcinoma. Hepatology 2023; 78:1727-1741. [PMID: 36120720 PMCID: PMC11261751 DOI: 10.1002/hep.32797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The oncogene Melanoma differentiation associated gene-9/syndecan binding protein (MDA-9/SDCBP) is overexpressed in many cancers, promoting aggressive, metastatic disease. However, the role of MDA-9 in regulating hepatocellular carcinoma (HCC) has not been well studied. APPROACH AND RESULTS To unravel the function of MDA-9 in HCC, we generated and characterized a transgenic mouse with hepatocyte-specific overexpression of MDA-9 (Alb/MDA-9). Compared with wild-type (WT) littermates, Alb/MDA-9 mice demonstrated significantly higher incidence of N-nitrosodiethylamine/phenobarbital-induced HCC, with marked activation and infiltration of macrophages. RNA sequencing (RNA-seq) in naive WT and Alb/MDA-9 hepatocytes identified activation of signaling pathways associated with invasion, angiogenesis, and inflammation, especially NF-κB and integrin-linked kinase signaling pathways. In nonparenchymal cells purified from naive livers, single-cell RNA-seq showed activation of Kupffer cells and macrophages in Alb/MDA-9 mice versus WT mice. A robust increase in the expression of Secreted phosphoprotein 1 (Spp1/osteopontin) was observed upon overexpression of MDA-9. Inhibition of NF-κB pathway blocked MDA-9-induced Spp1 induction, and knock down of Spp1 resulted in inhibition of MDA-9-induced macrophage migration, as well as angiogenesis. CONCLUSIONS Alb/MDA-9 is a mouse model with MDA-9 overexpression in any tissue type. Our findings unravel an HCC-promoting role of MDA-9 mediated by NF-κB and Spp1 and support the rationale of using MDA-9 inhibitors as a potential treatment for aggressive HCC.
Collapse
Affiliation(s)
- Debashri Manna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Maria Del Carmen Camarena
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rachel G. Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer E. Koblinski
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rebecca Martin
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nitai D. Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xufeng Qu
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Virginia Commonwealth University Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Virginia Commonwealth University Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Virginia Commonwealth University Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Virginia Commonwealth University Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
53
|
Hao J, Liu Y, Guo F, Fu G, Ning J, Ruan X, Zheng X, Gao M. Lnc-SNHG5 Promoted Hepatocellular Carcinoma Progression Through the RPS3-NFκB Pathway. Int J Gen Med 2023; 16:5651-5664. [PMID: 38059157 PMCID: PMC10697148 DOI: 10.2147/ijgm.s442937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Background We planned to explore the underlying mechanism and clinical significance of lnc-SNHG5 and RPS3 in hepatocellular carcinoma in this current study. Methods The expression of Lnc-SNHG5 and RPS3 in HCC tissues and several cell lines were affirmed, respectively, using UALCAN, TIMER, TCGA and RT-qPCR assay. Cell proliferation ability was detected by colony formation assay and CCK8 assay. Cell apoptosis was monitored by flow cytometry assay. Next, the RPS3 expression levels and the related proteins in NFκB pathway were examined using Western blot analysis. The role of lnc-SNHG5 and RPS3 in vivo was identified by subcutaneous tumor bearing experiment. Results Lnc-SNHG5 was significantly increased in hepatocellular carcinoma tissues and in hepatocellular carcinoma cells. Further investigation showed that up-regulated lnc-SNHG5 promoted cell viability and cell proliferation ability of SMMC-7721 cells by regulating the cell apoptosis, while down-regulation of lnc-SNHG5 revealed opposite results in QGY-7703 cells. In terms of mechanism, we found that lnc-SNHG5 interacted with RPS3. Lnc-SNHG5 regulated the NFκB pathway through RPS3 in vitro and in vivo. Conclusion This study suggested that lnc-SNHG5 expression was signally up-regulated in hepatocellular carcinoma, and lnc-SNHG5 promoted the malignant phenotypes in vitro and in vivo via directly regulating RPS3-NFκB pathway. Lnc-SNHG5 might be a target for molecular targeted therapy, a potential and novel diagnostic marker for HCC patients.
Collapse
Affiliation(s)
- Jie Hao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- Department of Breast and Thyroid Surgery, Tianjin Union Medical Center of Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center Nankai University, Tianjin, People’s Republic of China
| | - Yu Liu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Fengli Guo
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, People’s Republic of China
| | - Guiming Fu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- Thyroid-Otolaryngology Department, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Junya Ning
- Department of Breast and Thyroid Surgery, Tianjin Union Medical Center of Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center Nankai University, Tianjin, People’s Republic of China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- Department of Breast and Thyroid Surgery, Tianjin Union Medical Center of Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
54
|
Wang SH, Xia YJ, Yu J, He CY, Han JR, Bai JX. S100 Calcium-Binding Protein A8 Functions as a Tumor-Promoting Factor in Renal Cell Carcinoma via Activating NF-κB Signaling Pathway. J INVEST SURG 2023; 36:2241081. [PMID: 37527815 DOI: 10.1080/08941939.2023.2241081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/10/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC), arising from the renal tubular epithelium, is one of the most common types of genitourinary malignancies. Based on the Gene Expression Omnibus (GEO) database (GSE100666), S100 calcium-binding protein A8 (S100A8) was highly expressed in RCC tissues. S100A8, an inflammatory regulatory factor, has emerged as an important mediator associated with the occurrence and development of cancer. MATERIALS AND METHODS The Gene Expression Omnibus (GEO) database was used to identify the key genes and investigate the main signaling pathways in RCC. Human RCC samples and corresponding adjacent normal tissues were collected in our hospital. The expression of S100A8 in human RCC samples was detected using western blotting and immunohistochemical analysis. S100A8 overexpression or knockdown was mediated by using Lipofectamine 3000 in human renal cell carcinoma cell line 786-O and ACHN cells. Basic experiments, including MTT and cell apoptosis assays, were utilized for investigating the function of S100A8 in RCC. Furthermore, the levels of inflammation were also evaluated in 786-O and ACHN cells. RESULTS In the current study, we found that downregulation of S100A8 inhibited proliferation and promoted apoptosis in 786-O and ACHN RCC cells. Of note, S100A8 silencing downregulated the phosphorylation of NF-κB p65, thereby decreasing the levels of TNF-α, cleaved caspase1, and MMP9. By contrast, S100A8 upregulation could increase these expressions. CONCLUSION Overall, S100A8 knockdown restrained RCC malignant biological properties, which was associated with the deactivation of the NF-κB signaling pathway. This present study demonstrates new insights that S100A8 may be a potential therapeutic target in RCC.
Collapse
Affiliation(s)
- Shu-Hui Wang
- Department of Integrated Traditional Chinese and Western Medicine and Geriatrics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yan-Jie Xia
- Department of Laboratory Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jing Yu
- Department of Endocrinology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Chun-Yan He
- Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jie-Ru Han
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ji-Xiang Bai
- Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
55
|
Qi D, Lu M, Xu P, Yao X, Chen Y, Gan L, Li Y, Cui Y, Tong X, Liu S, Zhao J, Liu N, Ye X. Transcription factor ETV4 promotes the development of hepatocellular carcinoma by driving hepatic TNF-α signaling. Cancer Commun (Lond) 2023; 43:1354-1372. [PMID: 37670477 PMCID: PMC10693303 DOI: 10.1002/cac2.12482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Hepatic inflammation is the major risk factor of hepatocellular carcinoma (HCC). However, the underlying mechanism by which hepatic inflammation progresses to HCC is poorly understood. This study was designed to investigate the role of ETS translocation variant 4 (ETV4) in linking hepatic inflammation to HCC. METHODS Quantitative real-time PCR and immunoblotting were used to detect the expression of ETV4 in HCC tissues and cell lines. RNA sequencing and luciferase reporter assays were performed to identify the target genes of ETV4. Hepatocyte-specific ETV4-knockout (ETV4fl/fl, alb-cre ) and transgenic (ETV4Hep-TG ) mice and diethylnitrosamine-carbon tetrachloride (DEN-CCL4 ) treatment experiments were applied to investigate the function of ETV4 in vivo. The Cancer Genome Atlas (TCGA) database mining and pathological analysis were carried out to determine the correlation of ETV4 with tumor necrosis factor-alpha (TNF-α) and mitogen-activated protein kinase 11 (MAPK11). RESULTS We revealed that ETV4 was highly expressed in HCC. High levels of ETV4 predicted a poor survival rate of HCC patients. Then we identified ETV4 as a transcription activator of TNF-α and MAPK11. ETV4 was positively correlated with TNF-α and MAPK11 in HCC patients. As expected, an increase in hepatic TNF-α secretion and macrophage accumulation were observed in the livers of ETV4Hep-TG mice. The protein levels of TNF-α, MAPK11, and CD68 were significantly higher in the livers of ETV4Hep-TG mice compared with wild type mice but lower in ETV4fl/fl, alb-cre mice compared with ETV4fl/fl mice as treated with DEN-CCL4 , indicating that ETV4 functioned as a driver of TNF-α/MAPK11 expression and macrophage accumulation during hepatic inflammation. Hepatocyte-specific knockout of ETV4 significantly prevented development of DEN-CCL4 -induced HCC, while transgenic expression of ETV4 promoted growth of HCC. CONCLUSIONS ETV4 promoted hepatic inflammation and HCC by activating transcription of TNF-α and MAPK11. Both the ETV4/TNF-α and ETV4/MAPK11 axes represented two potential therapeutic targets for highly associated hepatic inflammation and HCC. ETV4+TNF-α were potential prognostic markers for HCC patients.
Collapse
Affiliation(s)
- Dandan Qi
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Min Lu
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Pengfei Xu
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Xinli Yao
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yongchen Chen
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Lipeng Gan
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yong Li
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yahua Cui
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Xiaomei Tong
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Shuhong Liu
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Jingmin Zhao
- The Fifth Medical Center of Chinese People's Liberation Army General HospitalBeijingP. R. China
| | - Ningning Liu
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingP. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
56
|
Zhao DF. Value of C-Reactive Protein-Triglyceride Glucose Index in Predicting Cancer Mortality in the General Population: Results from National Health and Nutrition Examination Survey. Nutr Cancer 2023; 75:1934-1944. [PMID: 37873764 DOI: 10.1080/01635581.2023.2273577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Cancer is one of the leading causes of death. The current work aims to investigate the association between C-reactive protein-triglyceride glucose index (CTI) and the risk of incident cancer mortality and to evaluate the usefulness of CTI to refine the risk stratification of cancer mortality. METHODS The study enrolled 19,957 subjects from American National Health and Nutrition Examination Survey. CTI was defined as 0.412*Ln(CRP) + ln[T.G. (mg/dL) × FPG (mg/dL)/2]. Cox regression was performed to investigate the association. RESULTS During a follow-up of 215417.52 person-years, 736 subjects died due to malignant tumors, and the incidence of cancer mortality was 3.42 per 1,000 person-years. Kaplan-Meier curve revealed that the fourth quartile group had the lowest cancer mortality-free rate (Log-Rank p < 0.001). After full adjustment, each SD increase of CTI cast a 32.7% additional risk of incident cancer mortality. Furthermore, cancer mortality risk elevated proportionally with the increase of CTI. Finally, ROC and reclassification analyses supported the usefulness of CTI in improving the risk stratification of incident cancer mortality. CONCLUSION The study revealed a significant association between CTI and cancer mortality risk, suggesting the value of CTI in improving the risk stratification of incident cancer mortality. KEY MESAGESC-reactive protein-triglyceride glucose index (CTI) is positively associated with cancer mortality risk in the general population.The association was linear in the whole range of CTI.CTI could improve the risk prediction of cancer mortality in the general population.
Collapse
Affiliation(s)
- De-Feng Zhao
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
- The 105th Class, Clinical Medicine ("5 + 3" Integration), China Medical University, Shenyang, China
| |
Collapse
|
57
|
Hu Y, Hu X, Luo J, Huang J, Sun Y, Li H, Qiao Y, Wu H, Li J, Zhou L, Zheng S. Liver organoid culture methods. Cell Biosci 2023; 13:197. [PMID: 37915043 PMCID: PMC10619312 DOI: 10.1186/s13578-023-01136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Organoids, three-dimensional structures cultured in vitro, can recapitulate the microenvironment, complex architecture, and cellular functions of in vivo organs or tissues. In recent decades, liver organoids have been developed rapidly, and their applications in biomedicine, such as drug screening, disease modeling, and regenerative medicine, have been widely recognized. However, the lack of repeatability and consistency, including the lack of standardized culture conditions, has been a major obstacle to the development and clinical application of liver organoids. It is time-consuming for researchers to identify an appropriate medium component scheme, and the usage of some ingredients remains controversial. In this review, we summarized and compared different methods for liver organoid cultivation that have been published in recent years, focusing on controversial medium components and discussing their advantages and drawbacks. We aimed to provide an effective reference for the development and standardization of liver organoid cultivation.
Collapse
Affiliation(s)
- Yiqing Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiaoyi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jia Luo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jiacheng Huang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yaohan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Haoyu Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yinbiao Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianhui Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China
- The Organ Repair and Regeneration Medicine Institute of Hangzhou, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
58
|
Leslie J, Hunter JE, Collins A, Rushton A, Russell LG, Ramon‐Gil E, Laszczewska M, McCain M, Zaki MYW, Knox A, Seow Y, Sabater L, Geh D, Perkins ND, Reeves HL, Tiniakos D, Mann DA, Oakley F. c-Rel-dependent Chk2 signaling regulates the DNA damage response limiting hepatocarcinogenesis. Hepatology 2023; 78:1050-1063. [PMID: 36089330 PMCID: PMC10521790 DOI: 10.1002/hep.32781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. The NF-κB transcription factor family subunit c-Rel is typically protumorigenic; however, it has recently been reported as a tumor suppressor. Here, we investigated the role of c-Rel in HCC. APPROACH AND RESULTS Histological and transcriptional studies confirmed expression of c-Rel in human patients with HCC, but low c-Rel expression correlated with increased tumor cell proliferation and mutational burden and was associated with advanced disease. In vivo , global ( Rel-/- ) and epithelial specific ( RelAlb ) c-Rel knockout mice develop more tumors, with a higher proliferative rate and increased DNA damage, than wild-type (WT) controls 30 weeks after N-diethylnitrosamine injury. However, tumor burden was comparable when c-Rel was deleted in hepatocytes once tumors were established, suggesting c-Rel signaling is important for preventing HCC initiation after genotoxic injury, rather than for HCC progression. In vitro , Rel-/- hepatocytes were more susceptible to genotoxic injury than WT controls. ATM-CHK2 DNA damage response pathway proteins were suppressed in Rel-/- hepatocytes following genotoxic injury, suggesting that c-Rel is required for effective DNA repair. To determine if c-Rel inhibition sensitizes cancer cells to chemotherapy, by preventing repair of chemotherapy-induced DNA damage, thus increasing tumor cell death, we administered single or combination doxorubicin and IT-603 (c-Rel inhibitor) therapy in an orthotopic HCC model. Indeed, combination therapy was more efficacious than doxorubicin alone. CONCLUSION Hepatocyte c-Rel signaling limits genotoxic injury and subsequent HCC burden. Inhibiting c-Rel as an adjuvant therapy increased the effectiveness of DNA damaging agents and reduced HCC growth.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Jill E. Hunter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Amelia Rushton
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Lauren G. Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Erik Ramon‐Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Maja Laszczewska
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Misti McCain
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Marco Y. W. Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Yixin Seow
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Laura Sabater
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Newcastle‐upon‐Tyne, UK
| | - Neil D. Perkins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Helen L. Reeves
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Newcastle‐upon‐Tyne, UK
| | - Dina Tiniakos
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| |
Collapse
|
59
|
Zamani F, Khalighfard S, Kalhori MR, Poorkhani A, Amiriani T, Hosseinzadeh P, Esmati E, Alemrajabi M, Nikoofar A, Safarnezhad Tameshkel F, Alizadeh AM. Expanding CYLD protein in NF-κβ/TNF-α signaling pathway in response to Lactobacillus acidophilus in non-metastatic rectal cancer patients. Med Oncol 2023; 40:302. [PMID: 37725175 DOI: 10.1007/s12032-023-02170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023]
Abstract
The CYLD gene is a tumor suppressor, reduced in many cancers. Here, we aimed to investigate CYLD protein level and NF-κβ/TNF-α signaling pathway in rectal cancer patients with Lactobacillus acidophilus (L. acidophilus) consumption. One hundred ten patients with non-metastatic rectal cancer were randomly divided into L. acidophilus probiotic (500 mg, three times daily) and placebo groups for 13 weeks. The expression of CYLD, TNF-α, and NF-κB proteins and the genes involved in the NF-κβ/TNF-α pathway were evaluated using ELISA and qPCR techniques. The survival rate was measured after five years. Unlike the placebo group, the results showed a significant increase in the expression of CYLD protein and tumor suppressor genes, including FOXP3, ROR-γ, Caspase3, GATA3, T-bet, and a considerable decrease in the expression of NF-ҝβ and TNF-α proteins and oncogenes, including STAT3, 4, 5, 6, and SMAD 3, in the probiotic group. A higher overall survival rate was seen after L. acidophilus consumption compared to the placebo group (P < 0.05). L. acidophilus consumption can reduce inflammation factors by affecting CYLD protein and its downstream signaling pathways. A schematic plot of probiotic consumption Effects on the CYLD protein in regulating the NF-ĸβ signaling pathway in colorectal cancer. NF-ĸβ can be activated by canonical and noncanonical pathways, which rely on IκB degradation and p100 processing, respectively. In the canonical NF-κβ pathway, dimmers, such as p65/p50, are maintained in the cytoplasm by interacting with an IκBα protein. The binding of a ligand to a cell-surface receptor activates TRAF2, which triggers an IKK complex, containing -α, -β, -g, which phosphorylates IKK-β. It then phosphorylates IκB-α, leading to K48-ubiquitination and degradation of this protein. The p65/p50 protein freely enters the nucleus to turn on target genes. The non-canonical pathway is primarily involved in p100/RelB activation. It differs from the classical pathway in that only certain receptor signals activate this pathway. It proceeds through an IKK complex that contains two IKK-α subunits but not NEMO. Several materials including peptidoglycan, phorbol, myristate, acetate, and gram-positive bacteria such as probiotics inhibit NF-κB by inducing CYLD. This protein can block the canonical and noncanonical NF-κβ pathways by removing Lys-63 ubiquitinated chains from activated TRAFs, RIP, NEMO, and IKK (α, β, and γ). Moreover, TNF-α induces apoptosis by binding caspase-3 to FADD.
Collapse
Affiliation(s)
- Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Payam Hosseinzadeh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Esmati
- Radiotherapy Department, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alemrajabi
- Surgery Department, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Nikoofar
- Radiotherapy Department, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Wang G, Liu X, Liu H, Zhang X, Shao Y, Jia X. A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma. Sci Rep 2023; 13:15345. [PMID: 37714937 PMCID: PMC10504370 DOI: 10.1038/s41598-023-41998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA-miRNA-lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
Collapse
Affiliation(s)
- Guoyu Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xue Liu
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
61
|
Khanolkar A, Liu G, Simpson Schneider BM. Defining the Basal and Immunomodulatory Mediator-Induced Phosphoprotein Signature in Pediatric B Cell Acute Lymphoblastic Leukemia (B-ALL) Diagnostic Samples. Int J Mol Sci 2023; 24:13937. [PMID: 37762241 PMCID: PMC10531382 DOI: 10.3390/ijms241813937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
It is theorized that dysregulated immune responses to infectious insults contribute to the development of pediatric B-ALL. In this context, our understanding of the immunomodulatory-mediator-induced signaling responses of leukemic blasts in pediatric B-ALL diagnostic samples is rather limited. Hence, in this study, we defined the signaling landscape of leukemic blasts, as well as normal mature B cells and T cells residing in diagnostic samples from 63 pediatric B-ALL patients. These samples were interrogated with a range of immunomodulatory-mediators within 24 h of collection, and phosflow analyses of downstream proximal signaling nodes were performed. Our data reveal evidence of basal hyperphosphorylation across a broad swath of these signaling nodes in leukemic blasts in contrast to normal mature B cells and T cells in the same sample. We also detected similarities in the phosphoprotein signature between blasts and mature B cells in response to IFNγ and IL-2 treatment, but significant divergence in the phosphoprotein signature was observed between blasts and mature B cells in response to IL-4, IL-7, IL-10, IL-21 and CD40 ligand treatment. Our results demonstrate the existence of both symmetry and asymmetry in the phosphoprotein signature between leukemic and non-leukemic cells in pediatric B-ALL diagnostic samples.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Guorong Liu
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | | |
Collapse
|
62
|
Gao Y, Lin J, Ye C, Guo S, Jiang C. Microbial transformations of bile acids and their receptors in the regulation of metabolic dysfunction-associated steatotic liver disease. LIVER RESEARCH 2023; 7:165-176. [PMID: 39958385 PMCID: PMC11792070 DOI: 10.1016/j.livres.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 01/03/2025]
Abstract
Bile acids (BAs) play important roles in the digestion of dietary fats and molecular signal transduction, and modulation of the BA composition usually affects the progression of metabolic diseases. While the liver produces primary BAs, the gut microbiota modifies these products into various forms that greatly increase their diversity and biological functions. Mechanistically, BAs can regulate their own metabolism and transport as well as other key aspects of metabolic processes via dedicated BA receptors. Disruption of BA transport and homeostasis leads to the progression of liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). Here, we summarize the microbial transformations of BAs and their downstream signaling in the development of metabolic diseases and present new insights into novel therapeutic strategies targeting BA pathways that may contribute to these diseases.
Collapse
Affiliation(s)
- Yuhua Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Siqi Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
63
|
Lee J, Kim SY. [Obesity and Colorectal Cancer]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:63-72. [PMID: 37621241 DOI: 10.4166/kjg.2023.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
The prevalence of obesity has increased significantly worldwide, and this trend is likely to continue in the coming years. There is substantial evidence that obesity plays a crucial role in the development of colorectal cancer. Epidemiological data have consistently demonstrated a correlation between obesity and colorectal cancer. Insulin resistance, hyperinsulinemia, chronic inflammation, altered levels of growth factors, adipocytokines, and various hormones are plausible biological mechanisms. In addition, obesity has been shown to have an impact on recurrence, treatment success, and overall survival. There are some reports, although the evidence is not conclusive, that weight loss and lifestyle changes such as dietary modification and physical activity can reduce the risk of colorectal cancer. The understanding that obesity is a potentially modifiable risk factor that can affect the incidence and prognosis of colorectal cancer is crucial knowledge that can have an impact on the prevention and treatment of the condition.
Collapse
Affiliation(s)
- Jundeok Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Su Young Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
64
|
Sarfraz M, Khan A, Batiha GES, Akhtar MF, Saleem A, Ajiboye BO, Kamal M, Ali A, Alotaibi NM, Aaghaz S, Siddique MI, Imran M. Nanotechnology-Based Drug Delivery Approaches of Mangiferin: Promises, Reality and Challenges in Cancer Chemotherapy. Cancers (Basel) 2023; 15:4194. [PMID: 37627222 PMCID: PMC10453289 DOI: 10.3390/cancers15164194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Mangiferin (MGF), a xanthone derived from Mangifera indica L., initially employed as a nutraceutical, is now being explored extensively for its anticancer potential. Scientists across the globe have explored this bioactive for managing a variety of cancers using validated in vitro and in vivo models. The in vitro anticancer potential of this biomolecule on well-established breast cancer cell lines such as MDA-MB-23, BEAS-2B cells and MCF-7 is closer to many approved synthetic anticancer agents. However, the solubility and bioavailability of this xanthone are the main challenges, and its oral bioavailability is reported to be less than 2%, and its aqueous solubility is also 0.111 mg/mL. Nano-drug delivery systems have attempted to deliver the drugs at the desired site at a desired rate in desired amounts. Many researchers have explored various nanotechnology-based approaches to provide effective and safe delivery of mangiferin for cancer therapy. Nanoparticles were used as carriers to encapsulate mangiferin, protecting it from degradation and facilitating its delivery to cancer cells. They have attempted to enhance the bioavailability, safety and efficacy of this very bioactive using drug delivery approaches. The present review focuses on the origin and structure elucidation of mangiferin and its derivatives and the benefits of this bioactive. The review also offers insight into the delivery-related challenges of mangiferin and its applications in nanosized forms against cancer. The use of a relatively new deep-learning approach to solve the pharmacokinetic issues of this bioactive has also been discussed. The review also critically analyzes the future hope for mangiferin as a therapeutic agent for cancer management.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore 54000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad 38000, Pakistan
| | - Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye 371104, Ekiti State, Nigeria;
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nawaf M. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| |
Collapse
|
65
|
Shree Harini K, Ezhilarasan D. Wnt/beta-catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary Pancreat Dis Int 2023; 22:333-345. [PMID: 36448560 DOI: 10.1016/j.hbpd.2022.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern associated with significant morbidity and mortality. NAFLD is a spectrum of diseases originating from simple steatosis, progressing through nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis that may lead to hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is mediated by the triglyceride accumulation followed by proinflammatory cytokines expression leading to inflammation, oxidative stress, and mitochondrial dysfunction denoted as "two-hit hypothesis", advancing with a "third hit" of insufficient hepatocyte proliferation, leading to the increase in hepatic progenitor cells contributing to fibrosis and HCC. Wnt/β-catenin signaling is responsible for normal liver development, regeneration, hepatic metabolic zonation, ammonia and drug detoxification, hepatobiliary development, etc., maintaining the overall liver homeostasis. The key regulators of canonical Wnt signaling such as LRP6, Wnt1, Wnt3a, β-catenin, GSK-3β, and APC are abnormally regulated in NAFLD. Many experimental studies have shown the aberrated Wnt/β-catenin signaling during the NAFLD progression and NASH to hepatic fibrosis and HCC. Therefore, in this review, we have emphasized the role of Wnt/β-catenin signaling and its modulators that can potentially aid in the inhibition of NAFLD.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
66
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
67
|
Abdalla MMI. Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World J Gastroenterol 2023; 29:4271-4288. [PMID: 37545641 PMCID: PMC10401662 DOI: 10.3748/wjg.v29.i27.4271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is a major contributor to cancer-related fatalities across the globe. Diabetes has been identified as a significant risk factor for HCC, with recent research indicating that the hormone resistin could be involved in the onset and advancement of HCC in diabetic individuals. Resistin is a hormone that is known to be involved in inflammation and insulin resistance. Patients with HCC have been observed to exhibit increased resistin levels, which could be correlated with more severe disease stages and unfavourable prognoses. Nevertheless, the exact processes through which resistin influences the development and progression of HCC in diabetic patients remain unclear. This article aims to examine the existing literature on the possible use of resistin levels as a biomarker for HCC development and monitoring. Furthermore, it reviews the possible pathways of HCC initiation due to elevated resistin and offers new perspectives on comprehending the fundamental mechanisms of HCC in diabetic patients. Gaining a better understanding of these processes may yield valuable insights into HCC’s development and progression, as well as identify possible avenues for prevention and therapy.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
68
|
Han S, Bao X, Zou Y, Wang L, Li Y, Yang L, Liao A, Zhang X, Jiang X, Liang D, Dai Y, Zheng QC, Yu Z, Guo J. d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. SCIENCE ADVANCES 2023; 9:eadg2697. [PMID: 37467325 PMCID: PMC10355835 DOI: 10.1126/sciadv.adg2697] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The polarization of tumor-associated macrophages (TAMs) from M2 to M1 phenotype demonstrates great potential for remodeling the immunosuppressive tumor microenvironment (TME) of hepatocellular carcinoma (HCC). d-lactate (DL; a gut microbiome metabolite) acts as an endogenous immunomodulatory agent that enhances Kupffer cells for clearance of pathogens. In this study, the potential of DL for transformation of M2 TAMs to M1 was confirmed, and the mechanisms underlying such polarization were mainly due to the modulation of phosphatidylinositol 3-kinase/protein kinase B pathway. A poly(lactide-co-glycolide) nanoparticle (NP) was used to load DL, and the DL-loaded NP was modified with HCC membrane and M2 macrophage-binding peptide (M2pep), forming a nanoformulation (DL@NP-M-M2pep). DL@NP-M-M2pep transformed M2 TAMs to M1 and remodeled the immunosuppressive TME in HCC mice, promoting the efficacy of anti-CD47 antibody for long-term animal survival. These findings reveal a potential TAM modulatory function of DL and provide a combinatorial strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xueying Bao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xuemei Zhang
- Department of Hepatopathy, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Di Liang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Qing-Chuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
69
|
Su YY, Liu YL, Huang HC, Lin CC. Ensemble learning model for identifying the hallmark genes of NFκB/TNF signaling pathway in cancers. J Transl Med 2023; 21:485. [PMID: 37475016 PMCID: PMC10357720 DOI: 10.1186/s12967-023-04355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off-target effects, making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple models are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy. METHODS In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling pathway and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We also performed functional analysis, survival analysis, and a case study of triple-negative breast cancer to demonstrate our model's potential in translational cancer medicine. RESULTS Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The downstream analysis showed that the identified genes are typically involved in the canonical NFκB-regulated pathways, particularly in adaptive immunity, anti-apoptosis, and cellular response to cytokine stimuli. These genes were found to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients with a specific cancer subtype, triple-negative breast cancer (TNBC), which is known to be influenced by NFκB-regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation was identified that accurately predicts TNBC patients and poor short-term survival in non-TNBC patients, providing a potential avenue for developing precision medicine for cancer subtypes. CONCLUSIONS In conclusion, our approach enables the discovery of genes in NFκB-regulated pathways in response to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, providing valuable insights for discovering more precise and targeted cancer therapeutics.
Collapse
Affiliation(s)
- Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ling Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
70
|
Yamada K, Tanaka T, Kai K, Matsufuji S, Ito K, Kitajima Y, Manabe T, Noshiro H. Suppression of NASH-Related HCC by Farnesyltransferase Inhibitor through Inhibition of Inflammation and Hypoxia-Inducible Factor-1α Expression. Int J Mol Sci 2023; 24:11546. [PMID: 37511305 PMCID: PMC10380354 DOI: 10.3390/ijms241411546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory processes play major roles in carcinogenesis and the progression of hepatocellular carcinoma (HCC) derived from non-alcoholic steatohepatitis (NASH). But, there are no therapies for NASH-related HCC, especially focusing on these critical steps. Previous studies have reported that farnesyltransferase inhibitors (FTIs) have anti-inflammatory and anti-tumor effects. However, the influence of FTIs on NASH-related HCC has not been elucidated. In hepatoblastoma and HCC cell lines, HepG2, Hep3B, and Huh-7, we confirmed the expression of hypoxia-inducible factor (HIF)-1α, an accelerator of tumor aggressiveness and the inflammatory response. We established NASH-related HCC models under inflammation and free fatty acid burden and confirmed that HIF-1α expression was increased under both conditions. Tipifarnib, which is an FTI, strongly suppressed increased HIF-1α, inhibited cell proliferation, and induced apoptosis. Simultaneously, intracellular interleukin-6 as an inflammation marker was increased under both conditions and significantly suppressed by tipifarnib. Additionally, tipifarnib suppressed the expression of phosphorylated nuclear factor-κB and transforming growth factor-β. Finally, in a NASH-related HCC mouse model burdened with diethylnitrosamine and a high-fat diet, tipifarnib significantly reduced tumor nodule formation in association with decreased serum interleukin-6. In conclusion, tipifarnib has anti-tumor and anti-inflammatory effects in a NASH-related HCC model and may be a promising new agent to treat this disease.
Collapse
Affiliation(s)
- Kohei Yamada
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Shohei Matsufuji
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Kotaro Ito
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Yoshihiko Kitajima
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
- Department of Surgery, National Hospital Organization Higashisaga Hospital, Saga 849-0101, Japan
| | - Tatsuya Manabe
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| |
Collapse
|
71
|
Du YN, Teng JM, Zhou TH, Du BY, Cai W. Meteorin-like protein overexpression ameliorates fulminant hepatitis in mice by inhibiting chemokine-dependent immune cell infiltration. Acta Pharmacol Sin 2023; 44:1404-1415. [PMID: 36721008 PMCID: PMC10310738 DOI: 10.1038/s41401-022-01049-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/02/2023]
Abstract
Myokines, which are recently identified cytokines secreted by skeletal muscle in response to stimulation, are crucial for the maintenance of liver function. Fulminant hepatitis (FH) is a life-threatening pathological condition with severe hepatic dysfunction. In this study, we investigated the role of meteorin-like (METRNL), a new myokine, in the pathogenesis of FH. We compared serum samples and liver tissues from FH patients and healthy controls and found that hepatic and serum METRNL levels were significantly increased in FH patients, and serum METRNL levels were related to disease severity in FH patients. We then established a concanavalin A-induced FH model in METRNL-overexpressing and control mice. We found that hepatic METRNL levels in FH mice were significantly increased, and METRNL in the liver was mainly derived from macrophages. In the cultured mouse macrophage line (RAW264.7 cells) and mouse primary peritoneal macrophages (PMs), METRNL overexpression significantly inhibited the release of the proinflammatory cytokines TNF and IL-1β. In METRNL-overexpressing mice, concanavalin A-induced liver injury was significantly ameliorated. Moreover, METRNL overexpression significantly reduced chemokine-dependent inflammatory cell infiltration into the liver. METRNL overexpression also suppressed liver CD4+ T cell differentiation into Th 1 cells and inhibited the secretion of Th 1 cytokines. Taken together, these data suggest that METRNL overexpression effectively ameliorates FH. Therefore, METRNL may serve as a potential biomarker and therapeutic target for FH.
Collapse
Affiliation(s)
- Ya-Nan Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia-Ming Teng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tian-Hui Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing-Ying Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
72
|
Sahin TK, Bilir B, Kucuk O. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy. Crit Rev Food Sci Nutr 2023; 63:2494-2508. [DOI: https:/doi.org/10.1080/10408398.2021.1976721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Birdal Bilir
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
73
|
Huang WC, Jayakumar T, Sheu JR, Hsia CW, Hsia CH, Yen TL, Chang CC. Mechanisms of glabridin inhibition of integrin α IIbβ 3 inside-out signals and NF-κB activation in human platelets. Chin Med 2023; 18:71. [PMID: 37301823 DOI: 10.1186/s13020-023-00779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Platelets play a crucial role in cardiovascular diseases (CVDs) and are activated by endogenous agonists like collagen. These agonists initiate signal transduction through specific platelet receptors, resulting in platelet aggregation. Glabridin, a prenylated isoflavonoid found in licorice root, is known for its significance in metabolic abnormalities. Glabridin has been observed to inhibit collagen-induced platelet aggregation, but the precise mechanisms, specifically concerning NF-κB activation and integrin αIIbβ3 signaling, are not yet fully understood. METHODS In this study, platelet suspensions were prepared from healthy human blood donors, and the aggregation ability was observed using a lumi-aggregometer. The inhibitory mechanisms of glabridin in human platelets were evaluated through immunoblotting and confocal microscopy. The anti-thrombotic effects of glabridin were assessed by histological analysis of lung sections in acute pulmonary thromboembolism and by examining fluorescein-induced platelet plug formation in mesenteric microvessels in mice. RESULTS Glabridin inhibited integrin αIIbβ3 inside-out signals such as Lyn, Fyn, Syk, and integrin β3 activation and NF-κB-mediated signal events, with similar potency to classical inhibitors BAY11-7082 and Ro106-9920. Glabridin and BAY11-7082 inhibited IKK, IκBα, and p65 phosphorylation and reversed IκBα degradation, while Ro106-9920 only reduced p65 phosphorylation and reversed IκBα degradation. BAY11-7082 reduced Lyn, Fyn, Syk, integrin β3, phospholipase Cγ2 and protein kinase C activation. Glabridin reduced platelet plug formation in mesenteric microvessels and occluded vessels in thromboembolic lungs of mice. CONCLUSION Our study revealed a new pathway for activating integrin αIIbβ3 inside-out signals and NF-κB, which contributes to the antiplatelet aggregation effect of glabridin. Glabridin could be a valuable prophylactic or clinical treatment option for CVDs.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 106, Taiwan
| | - Chao-Chien Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Cardiovascular Center, Cathay General Hospital, Taipei, 106, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
74
|
Luo Y, Xiao JH. Inflammatory auxo-action in the stem cell division theory of cancer. PeerJ 2023; 11:e15444. [PMID: 37309372 PMCID: PMC10257902 DOI: 10.7717/peerj.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/01/2023] [Indexed: 06/14/2023] Open
Abstract
Acute inflammation is a beneficial response to the changes caused by pathogens or injuries that can eliminate the source of damage and restore homeostasis in damaged tissues. However, chronic inflammation causes malignant transformation and carcinogenic effects of cells through continuous exposure to pro-inflammatory cytokines and activation of inflammatory signaling pathways. According to the theory of stem cell division, the essential properties of stem cells, including long life span and self-renewal, make them vulnerable to accumulating genetic changes that can lead to cancer. Inflammation drives quiescent stem cells to enter the cell cycle and perform tissue repair functions. However, as cancer likely originates from DNA mutations that accumulate over time via normal stem cell division, inflammation may promote cancer development, even before the stem cells become cancerous. Numerous studies have reported that the mechanisms of inflammation in cancer formation and metastasis are diverse and complex; however, few studies have reviewed how inflammation affects cancer formation from the stem cell source. Based on the stem cell division theory of cancer, this review summarizes how inflammation affects normal stem cells, cancer stem cells, and cancer cells. We conclude that chronic inflammation leads to persistent stem cells activation, which can accumulate DNA damage and ultimately promote cancer. Additionally, inflammation not only facilitates the progression of stem cells into cancer cells, but also plays a positive role in cancer metastasis.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
75
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
76
|
Gui W, Hole MJ, Molinaro A, Edlund K, Jørgensen KK, Su H, Begher-Tibbe B, Gaßler N, Schneider CV, Muthukumarasamy U, Mohs A, Liao L, Jaeger J, Mertens CJ, Bergheim I, Strowig T, Hengstler JG, Hov JR, Marschall HU, Trautwein C, Schneider KM. Colitis ameliorates cholestatic liver disease via suppression of bile acid synthesis. Nat Commun 2023; 14:3304. [PMID: 37280200 DOI: 10.1038/s41467-023-38840-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of the biliary tree. The majority of PSC patients suffer from concomitant inflammatory bowel disease (IBD), which has been suggested to promote disease development and progression. However, the molecular mechanisms by which intestinal inflammation may aggravate cholestatic liver disease remain incompletely understood. Here, we employ an IBD-PSC mouse model to investigate the impact of colitis on bile acid metabolism and cholestatic liver injury. Unexpectedly, intestinal inflammation and barrier impairment improve acute cholestatic liver injury and result in reduced liver fibrosis in a chronic colitis model. This phenotype is independent of colitis-induced alterations of microbial bile acid metabolism but mediated via hepatocellular NF-κB activation by lipopolysaccharide (LPS), which suppresses bile acid metabolism in-vitro and in-vivo. This study identifies a colitis-triggered protective circuit suppressing cholestatic liver disease and encourages multi-organ treatment strategies for PSC.
Collapse
Affiliation(s)
- Wenfang Gui
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Mikal Jacob Hole
- Norwegian PSC Research Center, Section of Gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Antonio Molinaro
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, 44139, Germany
| | - Kristin K Jørgensen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Huan Su
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, 44139, Germany
| | - Nikolaus Gaßler
- Institute for Legal Medicine, Section Pathology, University Hospital, Jena, 07747, Germany
| | - Carolin V Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Uthayakumar Muthukumarasamy
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, 97080, Germany
| | - Antje Mohs
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Lijun Liao
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Julius Jaeger
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Christian J Mertens
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, A-1090, Austria
| | - Till Strowig
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, 97080, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, 44139, Germany
| | - Johannes R Hov
- Norwegian PSC Research Center, Section of Gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| | - Kai Markus Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| |
Collapse
|
77
|
Zou Q, Feng L, Cai X, Qian Y, Xu L. Esophageal microflora in esophageal diseases. Front Cell Infect Microbiol 2023; 13:1145791. [PMID: 37274313 PMCID: PMC10235470 DOI: 10.3389/fcimb.2023.1145791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
With the development of endoscopic technology, an increasing number of patients with esophageal disease are being diagnosed, although the underlying pathogenesis of many esophageal diseases remains unclear. In recent years, a large number of studies have demonstrated that the occurrence and development of various intestinal diseases were related to intestinal flora. As a result, researchers have shifted their focus towards investigating esophageal flora to better understand the pathogenesis, early diagnosis, and treatment of esophageal diseases. This paper reviewed the normal esophageal flora and the changes of esophageal flora under different esophageal disease states. It was observed that there are distinct differences in the composition of esophageal microflora among Gastroesophageal Reflux, Barrett's esophagus, eosinophilic esophagitis and normal esophagus. The normal esophageal flora was dominated by gram-positive bacteria, particularly Streptococcus, while the esophageal flora under esophagitis was dominated by gram-negative bacteria. Furthermore, the diversity of esophageal flora is significantly decreased in patients with esophageal cancer. Several potential microbial biomarkers for esophageal cancer have been identified, among which Fusobacterium nucleatum showed a close association with esophageal squamous cell carcinoma's pathological stage and clinical stage.
Collapse
|
78
|
Papadakos SP, Arvanitakis K, Stergiou IE, Lekakis V, Davakis S, Christodoulou MI, Germanidis G, Theocharis S. The Role of TLR4 in the Immunotherapy of Hepatocellular Carcinoma: Can We Teach an Old Dog New Tricks? Cancers (Basel) 2023; 15:2795. [PMID: 37345131 DOI: 10.3390/cancers15102795] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Immunotherapy has emerged as the mainstay treatment option for unresectable HCC. Toll-like receptor 4 (TLR4) plays a crucial role in the innate immune response by recognizing and responding primarily to bacterial lipopolysaccharides. In addition to its role in the innate immune system, TLR4 has also been implicated in adaptive immunity, including specific anti-tumor immune responses. In particular, the TLR4 signaling pathway seems to be involved in the regulation of several cancer hallmarks, such as the continuous activation of cellular pathways that promote cell division and growth, the inhibition of programmed cell death, the promotion of several invasion and metastatic mechanisms, epithelial-to-mesenchymal transition, angiogenesis, drug resistance, and epigenetic modifications. Emerging evidence further suggests that TLR4 signaling holds promise as a potential immunotherapeutic target in HCC. The aim of this review was to explore the multilayer aspects of the TLR4 signaling pathway, regarding its role in liver diseases and HCC, as well as its potential utilization as an immunotherapy target for HCC.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasileios Lekakis
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Spyridon Davakis
- First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
79
|
Zhang N, Xu W, Yan Y, Chen M, Li H, Chen L. Cembrane diterpenoids: Chemistry and pharmacological activities. PHYTOCHEMISTRY 2023; 212:113703. [PMID: 37164145 DOI: 10.1016/j.phytochem.2023.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Cembrane diterpenoids (cembranoids), characterized by a 14-membered carbon ring and wide variety of functional groups, found in marine and terrestrial organisms. Many studies have shown that cembrane diterpenoids have cytotoxic and anti-inflammatory activities and are widely used in the development of new drugs. This review covered publications from 2011 to 2022 and classified the cembrane-type diterpenoids into isopropyl (ene) type, γ-lactone or unsaturated five-membered ring, δ-lactone or unsaturated six-membered ring, ε-lactone or unsaturated seven-membered ring, and other cembrane diterpenes. In addition, the biological activity and structure-activity relationship were summarized. This will provide guidance for new cembrane-type diterpenes as lead compounds to explore their potential application for treating cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Na Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yushu Yan
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengjie Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
80
|
Yarmolinsky J, Robinson JW, Mariosa D, Karhunen V, Huang J, Dimou N, Murphy N, Burrows K, Bouras E, Smith-Byrne K, Lewis SJ, Galesloot TE, Kiemeney LA, Vermeulen S, Martin P, Albanes D, Hou L, Newcomb PA, White E, Wolk A, Wu AH, Marchand LL, Phipps AI, Buchanan DD, Zhao SS, Gill D, Chanock SJ, Purdue MP, Smith GD, Brennan P, Herzig KH, Jarvelin MR, Dehghan A, Johansson M, Gunter MJ, Tsilidis KK, Martin RM. Association between circulating inflammatory markers and adult cancer risk: a Mendelian randomization analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.04.23289196. [PMID: 37205426 PMCID: PMC10187459 DOI: 10.1101/2023.05.04.23289196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Tumour-promoting inflammation is a "hallmark" of cancer and conventional epidemiological studies have reported links between various inflammatory markers and cancer risk. The causal nature of these relationships and, thus, the suitability of these markers as intervention targets for cancer prevention is unclear. Methods We meta-analysed 6 genome-wide association studies of circulating inflammatory markers comprising 59,969 participants of European ancestry. We then used combined cis-Mendelian randomization and colocalisation analysis to evaluate the causal role of 66 circulating inflammatory markers in risk of 30 adult cancers in 338,162 cancer cases and up to 824,556 controls. Genetic instruments for inflammatory markers were constructed using genome-wide significant (P < 5.0 x 10-8) cis-acting SNPs (i.e. in or ±250 kb from the gene encoding the relevant protein) in weak linkage disequilibrium (LD, r2 < 0.10). Effect estimates were generated using inverse-variance weighted random-effects models and standard errors were inflated to account for weak LD between variants with reference to the 1000 Genomes Phase 3 CEU panel. A false discovery rate (FDR)-corrected P-value ("q-value") < 0.05 was used as a threshold to define "strong evidence" to support associations and 0.05 ≤ q-value < 0.20 to define "suggestive evidence". A colocalisation posterior probability (PPH4) > 70% was employed to indicate support for shared causal variants across inflammatory markers and cancer outcomes. Results We found strong evidence to support an association of genetically-proxied circulating pro-adrenomedullin concentrations with increased breast cancer risk (OR 1.19, 95% CI 1.10-1.29, q-value=0.033, PPH4=84.3%) and suggestive evidence to support associations of interleukin-23 receptor concentrations with increased pancreatic cancer risk (OR 1.42, 95% CI 1.20-1.69, q-value=0.055, PPH4=73.9%), prothrombin concentrations with decreased basal cell carcinoma risk (OR 0.66, 95% CI 0.53-0.81, q-value=0.067, PPH4=81.8%), macrophage migration inhibitory factor concentrations with increased bladder cancer risk (OR 1.14, 95% CI 1.05-1.23, q-value=0.072, PPH4=76.1%), and interleukin-1 receptor-like 1 concentrations with decreased triple-negative breast cancer risk (OR 0.92, 95% CI 0.88-0.97, q-value=0.15), PPH4=85.6%). For 22 of 30 cancer outcomes examined, there was little evidence (q-value ≥ 0.20) that any of the 66 circulating inflammatory markers examined were associated with cancer risk. Conclusion Our comprehensive joint Mendelian randomization and colocalisation analysis of the role of circulating inflammatory markers in cancer risk identified potential roles for 5 circulating inflammatory markers in risk of 5 site-specific cancers. Contrary to reports from some prior conventional epidemiological studies, we found little evidence of association of circulating inflammatory markers with the majority of site-specific cancers evaluated.
Collapse
Affiliation(s)
- James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jamie W Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniela Mariosa
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ville Karhunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Karl Smith-Byrne
- The Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Sita Vermeulen
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, California, USA
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA 22
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomic Group, Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, Victoria, Australia
- Genetic Medicine and Family Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Faculty of Biological Medicine and Health, University of Manchester, Manchester, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center and Oulu University Hospital, University of Oulu, Finland
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Marjo-Riitta Jarvelin
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Dementia Research Institute, Imperial College London, London, UK
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| |
Collapse
|
81
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
82
|
Wang YK, Ma N, Xu S, Huang JY, Ni QZ, Cao HJ, Zheng QW, Zhu B, Xia J, Zhang FK, Ding XF, Qiu XS, Chen TW, Wang K, Chen W, Li ZG, Cheng SQ, Xie D, Li JJ. PPDPF suppresses the development of hepatocellular carcinoma through TRIM21-mediated ubiquitination of RIPK1. Cell Rep 2023; 42:112340. [PMID: 37027301 DOI: 10.1016/j.celrep.2023.112340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/13/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Pancreatic progenitor cell differentiation and proliferation factor (PPDPF) has been reported to play a role in tumorigenesis. However, its function in hepatocellular carcinoma (HCC) remains poorly understood. In this study, we report that PPDPF is significantly downregulated in HCC and the decreased PPDPF expression indicates poor prognosis. In the dimethylnitrosamine (DEN)-induced HCC mouse model, hepatocyte-specific depletion of Ppdpf promotes hepatocarcinogenesis, and reintroduction of PPDPF into liver-specific Ppdpf knockout (LKO) mice inhibits the accelerated HCC development. Mechanistic study shows that PPDPF regulates nuclear factor κB (NF-κB) signaling through modulation of RIPK1 ubiquitination. PPDPF interacts with RIPK1 and facilitates K63-linked ubiquitination of RIPK1 via recruiting the E3 ligase TRIM21, which catalyzes K63-linked ubiquitination of RIPK1 at K140. In addition, liver-specific overexpression of PPDPF activates NF-κB signaling and attenuates apoptosis and compensatory proliferation in mice, which significantly suppresses HCC development. This work identifies PPDPF as a regulator of NF-κB signaling and provides a potential therapeutic candidate for HCC.
Collapse
Affiliation(s)
- Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Sheng Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Yi Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Wen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji Xia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng-Kun Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu-Fen Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Song Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian-Wei Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| |
Collapse
|
83
|
Lin JP, Huang MH, Sun ZT, Chen L, Lei YH, Huang YQ, Qi M, Fan SR, Chen SG, Chung CW, Chan MC, Liu JS, Hu M, Chen MF, Ye WC, Chen YY, Deng LJ. Periplocin inhibits hepatocellular carcinoma progression and reduces the recruitment of MDSCs through AKT/NF-κB pathway. Life Sci 2023; 324:121715. [PMID: 37100377 DOI: 10.1016/j.lfs.2023.121715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
AIMS We aimed to evaluate the effect of periplocin on inhibiting hepatocellular carcinoma (HCC) and further determine its mechanisms. MAIN METHODS Cytotoxic activity of periplocin against HCC cells was tested by CCK-8 and colony formation assays. The antitumor effects of periplocin were evaluated in human HCC SK-HEP-1 xenograft and murine HCC Hepa 1-6 allograft mouse models. Flow cytometry was used to measure cell cycle distribution, apopotosis, and the number of myeloid-derived suppressor cells (MDSCs). Hoechst 33258 dye was applied to observe the nuclear morphology. Network pharmacology was performed to predict possible signaling pathways. Drug affinity responsive target stability assay (DARTS) was used to evaluate AKT binding of periplocin. Western blotting, immunohistochemistry, and immunofluorescence were used to examine the protein expression levels. KEY FINDING Periplocin inhibited cell viability with IC50 values from 50 nM to 300 nM in human HCC cells. Periplocin disrupted cell cycle distribution and promoted cell apoptosis. Moreover, AKT was predicted as the target of periplocin by network pharmacology, which was confirmed by that AKT/NF-κB signaling was inhibited in periplocin-treated HCC cells. Periplocin also inhibited the expression of CXCL1 and CXCL3, leading to decreased accumulation of MDSCs in HCC tumors. SIGNIFICANCE These findings reveal the function of periplocin in inhibiting HCC progression by G2/M arrest, apoptosis and suppression of MDSCs accumulation through blockade of the AKT/NF-κB pathway. Our study further suggests that periplocin has the potential to be developed as an effective therapeutic agent for HCC.
Collapse
Affiliation(s)
- Jia-Peng Lin
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China
| | - Mao-Hua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China
| | - Zhi-Ting Sun
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Yu-He Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Yu-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China
| | - Shu-Ran Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China
| | - Shou-Guo Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China
| | - Chi-Wing Chung
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China
| | - Mei-Ching Chan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, PR China
| | - Min Hu
- Department of Hepatobiliary Surgery, Jinan University First Affiliated Hospital, Guangzhou, PR China
| | - Min-Feng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China
| | - Yue-Yue Chen
- Affiliated Jiangmen TCM Hospital of Jinan University, Jiangmen, PR China.
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China.
| |
Collapse
|
84
|
Wang WF, Zhong HJ, Cheng S, Fu D, Zhao Y, Cai HM, Xiong J, Zhao WL. A nuclear NKRF interacting long noncoding RNA controls EBV eradication and suppresses tumor progression in natural killer/T-cell lymphoma. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166722. [PMID: 37084822 DOI: 10.1016/j.bbadis.2023.166722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are differentially expressed in EBV-infected cells and play an essential role in tumor progression. Molecular pathogenesis of lincRNAs in EBV-driven natural killer T cell lymphoma (NKTCL) remains unclear. Here we investigated the ncRNA profile using high-throughput RNA sequencing data of 439 lymphoma samples and screened out LINC00486, whose downregulation was further validated by quantitative real-time polymerase chain reaction in EBV-encoded RNA (EBER)-positive lymphoma, particularly NKTCL. Both in vitro and in vivo studies revealed the tumor suppressive function of LINC00486 through inhibiting tumor cell growth and inducing G0/G1 cell cycle arrest. As mechanism of action, LINC00486 specifically interacted with NKRF to abrogate its binding with phosphorylated p65, activated NF-κB/TNF-α signaling and subsequently enhanced EBV eradication. Solute carrier family 1 member 1 (SLC1A1), upregulated and mediated the glutamine-addiction and tumor progression in NKTCL, was negatively correlated with the expression of NKRF. NKRF specifically bound to the promoter and transcriptionally downregulated the expression of SLC1A1, as evidenced by Chromatin Immunoprecipitation (ChIP) and luciferase assay. Collectively, LINC00486 functioned as a tumor suppressor and counteracted EBV infection in NKTCL. Our study improved the knowledge of EBV-driven oncogenesis in NKTCL and provided the clinical rationale of EBV eradication in anti-cancer treatment.
Collapse
Affiliation(s)
- Wen-Fang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Man Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
85
|
Zhao J, He R, Zhong H, Liu S, Liu X, Hussain M, Sun P. A cold-water extracted polysaccharide-protein complex from Grifola frondosa exhibited anti-tumor activity via TLR4-NF-κB signaling activation and gut microbiota modification in H22 tumor-bearing mice. Int J Biol Macromol 2023; 239:124291. [PMID: 37028620 DOI: 10.1016/j.ijbiomac.2023.124291] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Grifola frondosa polysaccharide-protein complex (G. frondosa PPC) is a polymer which consists of polysaccharides and proteins/peptides linked by covalent bonds. In our previous ex vivo research, it has been demonstrated that a cold-water extracted G. frondosa PPC has stronger antitumor activity than a G. frondosa PPC extracted from boiling water. The main purpose of the current study was to further evaluate the anti-hepatocellular carcinoma and gut microbiota regulation effects of two PPCs isolated from G. frondosa at 4 °C (GFG-4) and 100 °C (GFG-100) in vivo. The results exhibited that GFG-4 remarkably upregulated the expression of related proteins in TLR4-NF-κB and apoptosis pathway, thereby inhibiting the development of H22 tumors. Additionally, GFG-4 increased the abundance of norank_f__Muribaculaceae and Bacillus and reduced the abundance of Lactobacillus. Short chain fatty acids (SCFAs) analysis suggested that GFG-4 promoted SCFAs production, particularly butyric acid. Conclusively, the present experiments revealed GFG-4 has the potential of anti-hepatocellular carcinoma growth via activating TLR4-NF-κB pathway and regulating gut microbiota. Therefore, G. frondosa PPCs could be considered as safe and effective natural ingredient for treatment of hepatocellular carcinoma. The present study also provides a theoretical foundation for the regulation of gut microbiota by G. frondosa PPCs.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| |
Collapse
|
86
|
Bapat AS, O'Connor CH, Schwertfeger KL. Targeting the NF-κB pathway enhances responsiveness of mammary tumors to JAK inhibitors. Sci Rep 2023; 13:5349. [PMID: 37005447 PMCID: PMC10067805 DOI: 10.1038/s41598-023-32321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Interactions between tumor cells and the tumor microenvironment are critical for tumor growth, progression, and response to therapy. Effective targeting of oncogenic signaling pathways in tumors requires an understanding of how these therapies impact both tumor cells and cells within the tumor microenvironment. One such pathway is the janus kinase (JAK)/signal transducer and activator or transcription (STAT) pathway, which is activated in both breast cancer cells and in tumor associated macrophages. This study demonstrates that exposure of macrophages to JAK inhibitors leads to activation of NF-κB signaling, which results in increased expression of genes known to be associated with therapeutic resistance. Furthermore, inhibition of the NF-κB pathway improves the ability of ruxolitinib to reduce mammary tumor growth in vivo. Thus, the impact of the tumor microenvironment is an important consideration in studying breast cancer and understanding such mechanisms of resistance is critical to development of effective targeted therapies.
Collapse
Affiliation(s)
- Aditi S Bapat
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Christine H O'Connor
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
87
|
Wang S, Kuai Y, Lin S, Li L, Gu Q, Zhang X, Li X, He Y, Chen S, Xia X, Ruan Z, Lin C, Ding Y, Zhang Q, Qi C, Li J, He X, Pathak JL, Zhou W, Liu S, Wang L, Zheng L. NF-κB Activator 1 downregulation in macrophages activates STAT3 to promote adenoma-adenocarcinoma transition and immunosuppression in colorectal cancer. BMC Med 2023; 21:115. [PMID: 36978108 PMCID: PMC10053426 DOI: 10.1186/s12916-023-02791-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Adenoma-adenocarcinoma transition is a key feature of colorectal cancer (CRC) occurrence and is closely regulated by tumor-associated macrophages (TAMs) and CD8+ T cells. Here, we investigated the effect of the NF-κB activator 1 (Act1) downregulation of macrophages in the adenoma-adenocarcinoma transition. METHODS This study used spontaneous adenoma-developing ApcMin/+, macrophage-specific Act1-knockdown (anti-Act1), and ApcMin/+; anti-Act1 (AA) mice. Histological analysis was performed on CRC tissues of patients and mice. CRC patients' data retrieved from the TCGA dataset were analyzed. Primary cell isolation, co-culture system, RNA-seq, and fluorescence-activated cell sorting (FACS) were used. RESULTS By TCGA and TISIDB analysis, the downregulation of Act1 expression in tumor tissues of CRC patients negatively correlated with accumulated CD68+ macrophages in the tumor. Relative expression of EMT markers in the tumor enriched ACT1lowCD68+ macrophages of CRC patients. AA mice showed adenoma-adenocarcinoma transition, TAMs recruitment, and CD8+ T cell infiltration in the tumor. Macrophages depletion in AA mice reversed adenocarcinoma, reduced tumor amounts, and suppressed CD8+ T cell infiltration. Besides, macrophage depletion or anti-CD8a effectively inhibited metastatic nodules in the lung metastasis mouse model of anti-Act1 mice. CRC cells induced activation of IL-6/STAT3 and IFN-γ/NF-κB signaling and the expressions of CXCL9/10, IL-6, and PD-L1 in anti-Act1 macrophages. Anti-Act1 macrophages facilitated epithelial-mesenchymal-transition and CRC cells' migration via CXCL9/10-CXCR3-axis. Furthermore, anti-Act1 macrophages promoted exhaustive PD1+ Tim3+ CD8+ T cell formation. Anti-PD-L1 treatment repressed adenoma-adenocarcinoma transition in AA mice. Silencing STAT3 in anti-Act1 macrophages reduced CXCL9/10 and PD-L1 expression and correspondingly inhibited epithelial-mesenchymal-transition and CRC cells' migration. CONCLUSIONS Act1 downregulation in macrophages activates STAT3 that promotes adenoma-adenocarcinoma transition via CXCL9/10-CXCR3-axis in CRC cells and PD-1/PD-L1-axis in CD8+ T cells.
Collapse
Affiliation(s)
- Shunyi Wang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Yihe Kuai
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Simin Lin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Quliang Gu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Xiaohan Zhang
- Hospital of Guangdong Provincial Hospital of Traditional Chinese Medicine, Zhuhai, 519015, China
| | - Xiaoming Li
- Department of Pathology, People's Hospital of Shenzhen Bao an District, Shenzhen, 518101, China
| | - Yajun He
- Department of Pathology, People's Hospital of Shenzhen Bao an District, Shenzhen, 518101, China
| | - Sishuo Chen
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Xiaoru Xia
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Zhang Ruan
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Caixia Lin
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Yi Ding
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Qianqian Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Cuiling Qi
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Jiangchao Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Xiaodong He
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong, 510182, Guangzhou, China
| | - Weijie Zhou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Side Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lijing Wang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China.
| | - Lingyun Zheng
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, P. R. China.
| |
Collapse
|
88
|
Colacci A, Corvi R, Ohmori K, Paparella M, Serra S, Da Rocha Carrico I, Vasseur P, Jacobs MN. The Cell Transformation Assay: A Historical Assessment of Current Knowledge of Applications in an Integrated Approach to Testing and Assessment for Non-Genotoxic Carcinogens. Int J Mol Sci 2023; 24:ijms24065659. [PMID: 36982734 PMCID: PMC10057754 DOI: 10.3390/ijms24065659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.
Collapse
Affiliation(s)
- Annamaria Colacci
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
- Correspondence:
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy
| | - Kyomi Ohmori
- Chemical Division, Kanagawa Prefectural Institute of Public Health, Chigasaki 253-0087, Japan
- Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, A-6020 Innbruck, Austria
| | - Stefania Serra
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
| | | | - Paule Vasseur
- Universite de Lorraine, CNRS UMR 7360 LIEC, Laboratoire Interdisciplinaire des Environnements Continentaux, 57070 Metz, France
| | - Miriam Naomi Jacobs
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton OX11 0RQ, UK
| |
Collapse
|
89
|
Chen P, Bi F, Tan W, Jian L, Yu X. A novel immune-related model to predict prognosis and responsiveness to checkpoint and angiogenesis blockade therapy in advanced renal cancer. Front Oncol 2023; 13:1127448. [PMID: 36998443 PMCID: PMC10043594 DOI: 10.3389/fonc.2023.1127448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundImmune checkpoint blockade (ICB) and anti-angiogenic drug combination has prolonged the survival of patients with advanced renal cell carcinoma (RCC). However, not all patients receive clinical benefits from this intervention. In this study, we aimed to establish a promising immune-related prognostic model to stratify the patients responding to ICB and anti-angiogenic drug combination and facilitate the development of personalized therapies for patients with RCC.Materials and methodsBased on clinical annotations and RNA-sequencing (RNA-seq) data of 407 patients with advanced RCC from the IMmotion151 cohort, nine immune-associated differentially expressed genes (DEGs) between responders and non-responders to atezolizumab (anti-programmed death-ligand 1 antibody) plus bevacizumab (anti-vascular endothelial growth factor antibody) treatment were identified via weighted gene co-expression network analysis. We also conducted single-sample gene set enrichment analysis to develop a novel immune-related risk score (IRS) model and further estimate the prognosis of patients with RCC by predicting their sensitivity to chemotherapy and responsiveness to immunotherapy. IRS model was further validated using the JAVELIN Renal 101 cohort, the E-MTAB-3218 cohort, the IMvigor210 and GSE78220 cohort. Predictive significance of the IRS model for advanced RCC was assessed using receiver operating characteristic curves.ResultsThe IRS model was constructed using nine immune-associated DEGs: SPINK5, SEMA3E, ROBO2, BMP5, ORM1, CRP, CTSE, PMCH and CCL3L1. Advanced RCC patients with high IRS had a high risk of undesirable clinical outcomes (hazard ratio = 1.91; 95% confidence interval = 1.43–2.55; P < 0.0001). Transcriptome analysis revealed that the IRS-low group exhibited significantly high expression levels of CD8+ T effectors, antigen-processing machinery, and immune checkpoints, whereas the epithelial–mesenchymal transition pathway was enriched in the IRS-high group. IRS model effectively differentiated the responders from non-responders to ICB combined with angiogenesis blockade therapy or immunotherapy alone, with area under the curve values of 0.822 in the IMmotion151 cohort, 0.751 in the JAVELIN Renal 101 cohort, and 0.776 in the E-MTAB-3218 cohort.ConclusionIRS model is a reliable and robust immune signature that can be used for patient selection to optimize the efficacy of ICB plus anti-angiogenic drug therapies in patients with advanced RCC.
Collapse
|
90
|
Yavuz M, Sabour Takanlou L, Biray Avcı Ç, Demircan T. A Selective Androgen Receptor Modulator, S4, Displays Robust Anti-cancer Activity on Hepatocellular Cancer Cells by Negatively Regulating PI3K/AKT/mTOR Signaling Pathway. Gene 2023; 869:147390. [PMID: 36990257 DOI: 10.1016/j.gene.2023.147390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem that often correlates with poor prognosis. Due to the insufficient therapy options with limited benefits, it is crucial to identify new therapeutic approaches to overcome HCC. One of the vital signaling pathways in organ homeostasis and male sexual development is Androgen Receptor (AR) signaling. Its activity affects several genes that contribute to cancer characteristics and have essential roles in cell cycle progression, proliferation, angiogenesis, and metastasis. AR signaling has been shown to be misregulated in many cancers, including HCC, suggesting that it might contribute to hepatocarcinogenesis. Targeting AR signaling using anti-androgens, AR inhibitors, or AR-degrading molecules is a powerful and promising strategy to defeat HCC. In this study, AR signaling was targeted by a novel Selective Androgen Receptor Modulator (SARM), S4, in HCC cells to evaluate its potential anti-cancer effect. To date, S4 activity in cancer has not been demonstrated, and our data unrevealed that S4 significantly impaired HCC growth, migration, proliferation, and induced apoptosis through inhibiting PI3K/AKT/mTOR signaling. Since PI3K/AKT/mTOR signaling is frequently activated in HCC and contributes to its aggressiveness and poor prognosis, its negative regulation by the downregulation of critical components via S4 was a prominent finding. Further studies are necessary to investigate the S4 action mechanism and anti-tumorigenic capacity in in-vivo.
Collapse
|
91
|
Segal BH, Giridharan T, Suzuki S, Khan ANH, Zsiros E, Emmons TR, Yaffe MB, Gankema AAF, Hoogeboom M, Goetschalckx I, Matlung HL, Kuijpers TW. Neutrophil interactions with T cells, platelets, endothelial cells, and of course tumor cells. Immunol Rev 2023; 314:13-35. [PMID: 36527200 PMCID: PMC10174640 DOI: 10.1111/imr.13178] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tiffany R Emmons
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela A F Gankema
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogeboom
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital Amsterdam University Medical Center (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
92
|
Huang J, Qin F, Lai X, Yang T, Yu J, Wei C, Wei L, Li J. Exploring heterogeneity of tumor immune cells and adrenal cells in aldosterone-producing adenomas using single-cell RNA-seq and investigating differences by sex. Heliyon 2023; 9:e14357. [PMID: 36942259 PMCID: PMC10024085 DOI: 10.1016/j.heliyon.2023.e14357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The mechanism behind the higher incidence of aldosterone-producing adenoma (APA) in women compared to men is not yet understood. In this study, we utilized single-cell RNA sequencing (scRNA-seq) to investigate the immune cell infiltration and adrenal cell characteristics in APA. Our findings revealed a high presence of immune cells in the tumor microenvironment, with macrophages and T lymphocytes being the most prevalent. Comparison of infiltrating cells between males and females showed that female CD8+T cells had stronger cytotoxic and inflammation-related functions, while female myeloid cells had more enrichment in inflammatory pathways. Additionally, we found that female adrenal cells had greater upregulation of immune-related and antigen presentation pathways. Furthermore, our analysis revealed that zona glomerulosa (ZG) cells had a higher capability for aldosterone synthesis. These results provide a deeper understanding of the APA microenvironment in patients of different sexes and offer new insights into the onset of APA.
Collapse
Affiliation(s)
- Jing Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fei Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Lai
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Tingting Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jie Yu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chaoping Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lixia Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jianling Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Mobile Post-doctoral Stations of Guangxi Medical University, Nanning, Guangxi 530021, China
- Corresponding author. Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
93
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
94
|
Li C, Geng C. GLIS Family Zinc Finger 3 Promotes Triple-Negative Breast Cancer Progression by Inducing Cell Proliferation, Migration and Invasion, and Activating the NF-κB Signaling Pathway. Biol Pharm Bull 2023; 46:209-218. [PMID: 36724950 DOI: 10.1248/bpb.b22-00595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Triple-negative breast cancer (TNBC) puts a great threat to women's health. GLIS family zinc finger 3 (GLIS3) belongs to the GLI transcription factor family and acts as a critical factor in cancer progression. Nevertheless, the part of GLIS3 played in TNBC is not known. Immunohistochemical (IHC) staining analysis displayed that GLIS3 was highly expressed in TNBC tissues. The effect of GLIS3 on the malignant phenotype of TNBC was tested in two different cell lines according to GLIS3 regulation. Upregulation of GLIS3 promoted the proliferation, migration, and invasion of TNBC cell lines, whereas the knockdown of GLIS3 suppressed these tumor activities. Inhibition of GLIS3 induced TNBC cell apoptosis. Furthermore, study as immunofluorescence and electrophoretic mobility shift assay confirmed that the nuclear factor-κB (NF-κB) signaling pathway activated by GLIS3 played an important role in TNBC cells' malignant phenotype. In conclusion, the present work demonstrated that GLIS3 acts as a crucial element in TNBC progression via activating the NF-κB signaling pathway. Accordingly, above mentioned findings indicated that modulation of GLIS3 expression is a potential tactic to interfere with the progression of TNBC.
Collapse
Affiliation(s)
- Chenhao Li
- Diagnostic and Therapeutic Center for Breast Disease, The Fourth Hospital of Hebei Medical University.,The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital
| | - Cuizhi Geng
- Diagnostic and Therapeutic Center for Breast Disease, The Fourth Hospital of Hebei Medical University.,Key Laboratory of Molecular Medicine of Breast Cancer in Hebei
| |
Collapse
|
95
|
Cytarabine and dexamethasone-PAMAM dendrimer di-conjugate sensitizes human acute myeloid leukemia cells to apoptotic cell death. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
96
|
Guan X, Li M, Bai Y, Feng Y, Li G, Wei W, Fu M, Li H, Wang C, Jie J, Meng H, Wu X, Deng Q, Li F, Yang H, Zhang X, He M, Guo H. Associations of mitochondrial DNA copy number with incident risks of gastrointestinal cancers: A prospective case-cohort study. Mol Carcinog 2023; 62:224-235. [PMID: 36250641 DOI: 10.1002/mc.23478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023]
Abstract
Epidemiological investigations implied that mitochondrial DNA copy number (mtDNAcn) variations could trigger predisposition to multiple cancers, but evidence regarding gastrointestinal cancers (GICs) was still uncertain. We conducted a case-cohort study within the prospective Dongfeng-Tongji cohort, including incident cases of colorectal cancer (CRC, n = 278), gastric cancer (GC, n = 138), and esophageal cancer (EC, n = 72) as well as a random subcohort (n = 1173), who were followed up from baseline to the end of 2018. We determined baseline blood mtDNAcn and associations of mtDNAcn with the GICs risks were estimated by using weighted Cox proportional hazards models. Significant U-shaped associations were observed between mtDNAcn and GICs risks. Compared to subjects within the second quartile (Q2) mtDNAcn subgroup, those within the 1st (Q1), 3rd (Q3), and 4th (Q4) quartile subgroups showed increased risks of CRC (hazard ratio [HR] [95% confidence interval, CI] = 2.27 [1.47-3.52], 1.65 [1.04-2.62], and 2.81 [1.85-4.28], respectively) and total GICs (HR [95%CI] = 1.84 [1.30-2.60], 1.47 [1.03-2.10], and 2.51 [1.82-3.47], respectively], and those within Q4 subgroup presented elevated GC and EC risks (HR [95% CI] = 2.16 [1.31-3.54] and 2.38 [1.13-5.02], respectively). Similar associations of mtDNAcn with CRC and total GICs risks remained in stratified analyzes by age, gender, smoking, and drinking status. This prospective case-cohort study showed U-shaped associations between mtDNAcn and GICs risks, but further research works are needed to uncover underlying biological mechanisms.
Collapse
Affiliation(s)
- Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Deng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangqing Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation, Hubei University of Medicine, Shiyan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
97
|
Zou YW, Ren ZG, Sun Y, Liu ZG, Hu XB, Wang HY, Yu ZJ. The latest research progress on minimally invasive treatments for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2023; 22:54-63. [PMID: 36041973 DOI: 10.1016/j.hbpd.2022.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. Due to the high prevalence of hepatitis B virus (HBV) infection in China, the incidence of HCC in China is high, and liver cirrhosis caused by chronic hepatitis also brings great challenges to treatment. This paper reviewed the latest research progress on minimally invasive treatments for HCC, including percutaneous thermal ablation and new nonthermal ablation techniques, and introduced the principles, advantages, and clinical applications of various therapeutic methods in detail. DATA SOURCES The data of treatments for HCC were systematically collected from the PubMed, ScienceDirect, American Chemical Society and Web of Science databases published in English, using "minimally invasive" and "hepatocellular carcinoma" or "liver cancer" as the keywords. RESULTS Percutaneous thermal ablation is still a first-line strategy for the minimally invasive treatment of HCC. The effect of microwave ablation (MWA) on downgrading treatment before liver transplantation is better than that of radiofrequency ablation (RFA), while RFA is more widely used in the clinical practice. High-intensity focused ultrasound (HIFU) is mainly used for the palliative treatment of advanced liver cancer. Electrochemotherapy (ECT) delivers chemotherapeutic drugs to the target cells while reducing the blood supply around HCC. Irreversible electroporation (IRE) uses a microsecond-pulsed electric field that induces apoptosis and necrosis and triggers a systemic immune response. The nanosecond pulsed electric field (nsPEF) has achieved a good response in the ablation of mice with HCC, but it has not been reported in China for the treatment of human HCC. CONCLUSIONS A variety of minimally invasive treatments provide a sufficient survival advantage for HCC patients. Nonthermal ablation will lead to a new wave with its unique advantage of antitumor recurrence and metastasis.
Collapse
Affiliation(s)
- Ya-Wen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, 2959 Yuhangtang Road, Hangzhou 310000, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, 2959 Yuhangtang Road, Hangzhou 310000, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, 2959 Yuhangtang Road, Hangzhou 310000, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhen-Guo Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, 2959 Yuhangtang Road, Hangzhou 310000, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiao-Bo Hu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hai-Yu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zu-Jiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
98
|
Liu L, Xia Z, Zhang Y, Su J, Sun L, Zhang L. Liver-specific deficiency of TMEM30A develops spontaneous hepatocellular carcinoma. Gastroenterol Rep (Oxf) 2023; 11:goad003. [PMID: 36727113 PMCID: PMC9881118 DOI: 10.1093/gastro/goad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Affiliation(s)
| | | | | | - Jingjing Su
- Laboratory of Applied Pharmacology and Department of Pharmacology, College of Pharmacy, Weifang Medical University, Weifang, Shandong, P. R. China
| | - Leimin Sun
- Corresponding authors. Lingling Zhang, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China. Tel: +86-18042319386; ; Leimin Sun, Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China. Tel: +86-18867961095;
| | - Lingling Zhang
- Corresponding authors. Lingling Zhang, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China. Tel: +86-18042319386; ; Leimin Sun, Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China. Tel: +86-18867961095;
| |
Collapse
|
99
|
Su Y, Choi HS, Choi JH, Kim HS, Jang YS, Seo JW. 7 S,15 R-Dihydroxy-16 S,17 S-epoxy-docosapentaenoic Acid Overcomes Chemoresistance of 5-Fluorouracil by Suppressing the Infiltration of Tumor-Associated Macrophages and Inhibiting the Activation of Cancer Stem Cells in a Colorectal Cancer Xenograft Model. Mar Drugs 2023; 21:md21020080. [PMID: 36827121 PMCID: PMC9967312 DOI: 10.3390/md21020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Although the tumor bulk is initially reduced by 5-fluorouracil (5-FU), chemoresistance developed due to prolonged chemotherapy in colorectal cancer (CRC). The enrichment of cancer stem cells (CSCs) and the infiltration of tumor-associated macrophages (TAMs) contribute to chemoresistance and poor outcomes. A docosahexaenoic acid derivative developed by our group, 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), exerts antitumor effects against TAMs infiltration and CSCs enrichment in our previous study. The current study aimed to investigate whether diHEP-DPA was able to overcome chemoresistance to 5-FU in CRCs, together with the potential synergistic mechanisms in a CT26-BALB/c mouse model. Our results suggested that although 5-FU inhibited tumor growth, 5-FU enriched CSCs via the WNT/β-catenin signaling pathway, resulting in chemoresistance in CRCs. However, we revealed that 5-FU promoted the infiltration of TAMs via the NF-kB signaling pathway and improved epithelial-mesenchymal transition (EMT) via the signal transducer and activator of the transcription 3 (STAT3) signaling pathway; these traits were believed to contribute to CSC activation. Furthermore, supplementation with diHEP-DPA could overcome drug resistance by decreasing the CSCs, suppressing the infiltration of TAMs, and inhibiting EMT progression. Additionally, the combinatorial treatment of diHEP-DPA and 5-FU effectively enhanced phagocytosis by blocking the CD47/signal regulatory protein alpha (SIRPα) axis. These findings present that diHEP-DPA is a potential therapeutic supplement to improve drug outcomes and suppress chemoresistance associated with the current 5-FU-based therapies for colorectal cancer.
Collapse
Affiliation(s)
- Yan Su
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
- Department of Bioactive Material Sciences, The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Hack Sun Choi
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Jong Hyun Choi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon-si 34141, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences, The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Correspondence: (Y.-S.J.); (J.-W.S.); Tel.: +82-63-570-5160 (J.-W.S.)
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
- Correspondence: (Y.-S.J.); (J.-W.S.); Tel.: +82-63-570-5160 (J.-W.S.)
| |
Collapse
|
100
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|