51
|
Zhao R, Yang J, Zhai Y, Zhang H, Zhou Y, Hong L, Yuan D, Xia R, Liu Y, Pan J, Shafi S, Shi G, Zhang R, Luo D, Yuan J, Pan D, Peng C, Li S, Sun M. Nucleophosmin 1 promotes mucosal immunity by supporting mitochondrial oxidative phosphorylation and ILC3 activity. Nat Immunol 2024; 25:1565-1579. [PMID: 39103576 PMCID: PMC11362010 DOI: 10.1038/s41590-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Nucleophosmin 1 (NPM1) is commonly mutated in myelodysplastic syndrome (MDS) and acute myeloid leukemia. Concurrent inflammatory bowel diseases (IBD) and MDS are common, indicating a close relationship between IBD and MDS. Here we examined the function of NPM1 in IBD and colitis-associated colorectal cancer (CAC). NPM1 expression was reduced in patients with IBD. Npm1+/- mice were more susceptible to acute colitis and experimentally induced CAC than littermate controls. Npm1 deficiency impaired the function of interleukin-22 (IL-22)-producing group three innate lymphoid cells (ILC3s). Mice lacking Npm1 in ILC3s exhibited decreased IL-22 production and accelerated development of colitis. NPM1 was important for mitochondrial biogenesis and metabolism by oxidative phosphorylation in ILC3s. Further experiments revealed that NPM1 cooperates with p65 to promote mitochondrial transcription factor A (TFAM) transcription in ILC3s. Overexpression of Npm1 in mice enhanced ILC3 function and reduced the severity of dextran sulfate sodium-induced colitis. Thus, our findings indicate that NPM1 in ILC3s protects against IBD by regulating mitochondrial metabolism through a p65-TFAM axis.
Collapse
Affiliation(s)
- Rongchuan Zhao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiao Yang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Hong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Yuanshuai Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Hong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruilong Xia
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Yanxiang Liu
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jinlin Pan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shaheryar Shafi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guohua Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dingsan Luo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Jinyun Yuan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Dejing Pan
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| | - Minxuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
52
|
Su X, Zhao L, Zhang H, Wang D, Sun J, Shen L. Sirtuin 6 inhibits group 3 innate lymphoid cell function and gut immunity by suppressing IL-22 production. Front Immunol 2024; 15:1402834. [PMID: 39253083 PMCID: PMC11381250 DOI: 10.3389/fimmu.2024.1402834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Group 3 innate lymphoid cells (ILC3s) are enriched in the intestinal mucosa and play important roles in host defense against infection and inflammatory diseases. Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD+)- dependent deacetylase and has been shown to control intestinal epithelial cell differentiation and survival. However, the role of SIRT6 in ILC3s remains unknown. Methods To investigate the role of SIRT6 in gut ILC3s, we generated SIRT6 conditional knockout mice by crossing Rorccre and Sirt6flox/flox mice. Cell number and cytokine production was examined using flow cytometry. Citrobacter rodentium infection and dextran sodium sulfate-induced colitis models were used to determine the role of SIRT6 in gut defense. RT-qPCR, flow cytometry and immunohistochemistry were used to assess the intestinal inflammatory responses. Results Here we show that SIRT6 inhibits IL-22 expression in intestinal ILC3s in a cell-intrinsic manner. Deletion of SIRT6 in ILC3s does not affect the cell numbers of total ILC3s and subsets, but results in increased IL-22 production. Furthermore, ablation of SIRT6 in ILC3s protects mice against Citrobacter rodentium infection and dextran sodium sulfate-induced colitis. Our results suggest that SIRT6 may play a role in ILC3 function by regulating gut immune responses against bacterial infection and inflammation. Discussion Our finding provided insight into the relation of epigenetic regulators with IL-22 production and supplied a new perspective for a potential strategy against inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiaohui Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linfeng Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huasheng Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongdi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiping Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
53
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
54
|
Wang W, Ma L, Liu B, Ouyang L. The role of trained immunity in sepsis. Front Immunol 2024; 15:1449986. [PMID: 39221248 PMCID: PMC11363069 DOI: 10.3389/fimmu.2024.1449986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction syndrome caused by dysregulated host response to infection, characterized by a systemic inflammatory response to infection. The use of antibiotics, fluid resuscitation, and organ support therapy has limited prognostic benefit in patients with sepsis, and its incidence is not diminishing, which is attracting increased attention in medicine. Sepsis remains one of the most debilitating and expensive illnesses. One of the main reasons of septic mortality is now understood to be disruption of immune homeostasis. Immunotherapy is revolutionizing the treatment of illnesses in which dysregulated immune responses play a significant role. This "trained immunity", which is a potent defense against infection regardless of the type of bacteria, fungus, or virus, is attributed to the discovery that the innate immune cells possess immune memory via metabolic and epigenetic reprogramming. Here we reviewed the immunotherapy of innate immune cells in sepsis, the features of trained immunity, and the relationship between trained immunity and sepsis.
Collapse
Affiliation(s)
| | | | | | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
55
|
Wang H, Chen Q, Liu Q, Luo C. Master regulator: p53's pivotal role in steering NK-cell tumor patrol. Front Immunol 2024; 15:1428653. [PMID: 39185404 PMCID: PMC11344261 DOI: 10.3389/fimmu.2024.1428653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
The p53 protein, encoded by TP53, is a tumor suppressor that plays a critical role in regulating apoptosis, cell cycle regulation, and angiogenesis in tumor cells via controlling various downstream signals. Natural killer (NK) cell-mediated immune surveillance is a vital self-defense mechanism against cancer and other diseases, with NK cell activity regulated by various mechanisms. Among these, p53 plays a significant role in immune regulation by maintaining the homeostasis and functionality of NK cells. It enhances the transcriptional activity of NK cell-activating ligands and downregulates inhibitory ligands to boost NK cell activation and tumor-killing efficacy. Additionally, p53 influences NK cell cytotoxicity by promoting apoptosis, autophagy, and ferroptosis in different tumor cells. p53 is involved in the regulation of NK cell activity and effector functions through multiple pathways. p53 also plays a pivotal role in the tumor microenvironment (TME), regulating the activity of NK cells. NK cells are critical components of the TME and are capable of directly killing tumor cells. And p53 mutates in numerous cancers, with the most common alteration being a missense mutation. These mutations are commonly associated with poor survival rates in patients with cancer. This review details p53's role in NK cell tumor immunosurveillance, summarizing how p53 enhances NK cell recognition and tumor destruction. We also explore the potential applications of p53 in tumor immunotherapy, discussing strategies for modulating p53 to enhance NK cell function and improve the efficacy of tumor immunotherapy, along with the associated challenges. Understanding the interaction between p53 and NK cells within the TME is crucial for advancing NK cell-based immunotherapy and developing p53-related novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
56
|
Trocchia M, Ventrici A, Modestino L, Cristinziano L, Ferrara AL, Palestra F, Loffredo S, Capone M, Madonna G, Romanelli M, Ascierto PA, Galdiero MR. Innate Immune Cells in Melanoma: Implications for Immunotherapy. Int J Mol Sci 2024; 25:8523. [PMID: 39126091 PMCID: PMC11313504 DOI: 10.3390/ijms25158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.
Collapse
Affiliation(s)
- Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
| | - Leonardo Cristinziano
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| |
Collapse
|
57
|
Weijie Z, Meng Z, Chunxiao W, Lingjie M, Anguo Z, Yan Z, Xinran C, Yanjiao X, Li S. Obesity-induced chronic low-grade inflammation in adipose tissue: A pathway to Alzheimer's disease. Ageing Res Rev 2024; 99:102402. [PMID: 38977081 DOI: 10.1016/j.arr.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive impairment worldwide. Overweight and obesity are strongly associated with comorbidities, such as hypertension, diabetes, and insulin resistance (IR), which contribute substantially to the development of AD and subsequent morbidity and mortality. Adipose tissue (AT) is a highly dynamic organ composed of a diverse array of cell types, which can be classified based on their anatomic localization or cellular composition. The expansion and remodeling of AT in the context of obesity involves immunometabolic and functional shifts steered by the intertwined actions of multiple immune cells and cytokine signaling within AT, which contribute to the development of metabolic disorders, IR, and systemic markers of chronic low-grade inflammation. Chronic low-grade inflammation, a prolonged, low-dose stimulation by specific immunogens that can progress from localized sites and affect multiple organs throughout the body, leads to neurodystrophy, increased apoptosis, and disruption of homeostasis, manifesting as brain atrophy and AD-related pathology. In this review, we sought to elucidate the mechanisms by which AT contributes to the onset and progression of AD in obesity through the mediation of chronic low-grade inflammation, particularly focusing on the roles of adipokines and AT-resident immune cells.
Collapse
Affiliation(s)
- Zhai Weijie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wei Chunxiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Lingjie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Anguo
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000 China
| | - Zhang Yan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Cui Xinran
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xu Yanjiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Sun Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
58
|
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024; 20:530-540. [PMID: 38658669 DOI: 10.1038/s41581-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hypertension is a leading risk factor for morbidity and mortality worldwide. Despite current anti-hypertensive therapies, most individuals with hypertension fail to achieve adequate blood pressure control. Moreover, even with adequate control, a residual risk of cardiovascular events and associated organ damage remains. These findings suggest that current treatment modalities are not addressing a key element of the underlying pathology. Emerging evidence implicates immune cells as key mediators in the development and progression of hypertension. In this Review, we discuss our current understanding of the diverse roles of innate and adaptive immune cells in hypertension, highlighting key findings from human and rodent studies. We explore mechanisms by which these immune cells promote hypertensive pathophysiology, shedding light on their multifaceted involvement. In addition, we highlight advances in our understanding of autoimmunity, HIV and immune checkpoints that provide valuable insight into mechanisms of chronic and dysregulated inflammation in hypertension.
Collapse
Affiliation(s)
- Bianca A Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Matthew R Alexander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
59
|
Dodhiawala PB, Cichocki F. Striking a balance: the Goldilocks effect of CD8α expression on NK cells. J Clin Invest 2024; 134:e182905. [PMID: 39087476 PMCID: PMC11290960 DOI: 10.1172/jci182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
NK cells are cytotoxic innate immune cells involved in antitumor immunity, and they provide a treatment option for patients with acute myeloid leukemia (AML). In this issue of the JCI, Cubitt et al. investigated the role of CD8α, a coreceptor present on approximately 40% of human NK cells. IL-15 stimulation of CD8α- NK cells induced CD8α expression via the RUNX3 transcription factor, driving formation of a unique induced CD8α (iCD8α+) population. iCD8α+ NK cells displayed higher proliferation, metabolic activity, and antitumor cytotoxic function compared with preexisting CD8α+ and CD8α- subsets. Therefore, CD8α expression can be used to define a potential dynamic spectrum of NK cell expansion and function. Because these cells exhibit enhanced tumor control, they may be used to improve in NK cell therapies for patients with AML.
Collapse
MESH Headings
- Humans
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/genetics
- Core Binding Factor Alpha 3 Subunit/genetics
- Core Binding Factor Alpha 3 Subunit/metabolism
- Core Binding Factor Alpha 3 Subunit/immunology
- Interleukin-15/immunology
- Interleukin-15/metabolism
- Interleukin-15/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
Collapse
|
60
|
Szereday L, Nagy DU, Vastag F, Mezosi L, Meggyes M. Immunological Profiling of CD8 + and CD8 - NK Cell Subpopulations and Immune Checkpoint Alterations in Early-Onset Preeclampsia and Healthy Pregnancy. Int J Mol Sci 2024; 25:8378. [PMID: 39125946 PMCID: PMC11313567 DOI: 10.3390/ijms25158378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Despite the numerous studies on the clinical aspects of early-onset preeclampsia, our understanding of the immunological consequences of inadequate placenta development remains incomplete. The Th1-predominance characteristic of early-onset preeclampsia significantly impacts maternal immunotolerance, and the role of immune checkpoint molecules in these mechanisms is yet to be fully elucidated. Our study aims to fill these crucial knowledge gaps. A total of 34 pregnant women diagnosed with early-onset preeclampsia and 34 healthy pregnant women were enrolled in this study. A mononuclear cell fragment from the venous blood was separated and frozen. The CD8+ and CD8- NK cell subpopulations were identified and compared to their immune checkpoint molecule expressions using multicolor flow cytometry. The serum CD226 levels were measured by ELISA. Based on our measures, the frequency of the CD8- subpopulation was significantly higher than that of the CD8+ counterpart in both the NKdim and NKbright subsets. Significantly lower CD226 surface expressions were detected in the preeclamptic group compared to healthy women in all the investigated subpopulations. However, while no difference was observed in the level of the soluble CD226 molecule between the two groups, the CD112 and CD155 surface expressions were significantly different. Our study's findings underscore the significant role of the CD8+ and CD8- NK subpopulations in the Th1-dominated immune environment. This deepens our understanding of early-onset preeclampsia and suggests that each subpopulation could contribute to the compensation mechanisms and the restoration of the immunological balance in this condition, a crucial step toward developing effective interventions.
Collapse
Affiliation(s)
- Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (L.S.); (L.M.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, D-06108 Halle (Saale), Germany;
| | - Fanni Vastag
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Livia Mezosi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (L.S.); (L.M.)
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (L.S.); (L.M.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| |
Collapse
|
61
|
Xing Z, Li X, He J, Chen Y, Zhu L, Zhang X, Huang Z, Tang J, Guo Y, He Y. OLFM4 modulates intestinal inflammation by promoting IL-22 +ILC3 in the gut. Commun Biol 2024; 7:914. [PMID: 39075283 PMCID: PMC11286877 DOI: 10.1038/s42003-024-06601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play key roles in intestinal inflammation. Olfactomedin 4 (OLFM4) is highly expressed in the colon and has a potential role in dextran sodium sulfate-induced colitis. However, the detailed mechanisms underlying the effects of OLFM4 on ILC3-mediated colitis remain unclear. In this study, we identify OLFM4 as a positive regulator of IL-22+ILC3. OLFM4 expression in colonic ILC3s increases substantially during intestinal inflammation in humans and mice. Compared to littermate controls, OLFM4-deficient (OLFM4-/-) mice are more susceptible to bacterial infection and display greater resistance to anti-CD40 induced innate colitis, together with impaired IL-22 production by ILC3, and ILC3s from OLFM4-/-mice are defective in pathogen resistance. Besides, mice with OLFM4 deficiency in the RORγt compartment exhibit the same trend as in OLFM4-/-mice, including colonic inflammation and IL-22 production. Mechanistically, the decrease in IL-22+ILC3 caused by OLFM4 deficiency involves the apoptosis signal-regulating kinase 1 (ASK1)- p38 MAPK signaling-dependent downregulation of RAR-related orphan receptor gamma (RORγt) protein. The OLFM4-metadherin (MTDH) complex upregulates p38/RORγt signaling, which is necessary for IL-22+ILC3 activation. The findings indicate that OLFM4 is a novel regulator of IL-22+ILC3 and essential for modulating intestinal inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Zhe Xing
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Yimin Chen
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaogang Zhang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China.
| |
Collapse
|
62
|
Ren G, Zhang Y, Liu J, Cheng W, Wu D, Han M, Zeng Y, Zhao X, Hu L, Zeng M, Gurram RK, Hu X, Zhou B, Hou Z, Zhu J, Jin W, Zhong C. Decreased GATA3 levels cause changed mouse cutaneous innate lymphoid cell fate, facilitating hair follicle recycling. Dev Cell 2024; 59:1809-1823.e6. [PMID: 38723629 PMCID: PMC11265981 DOI: 10.1016/j.devcel.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024]
Abstract
In mice, skin-resident type 2 innate lymphoid cells (ILC2s) exhibit some ILC3-like characteristics. However, the underlying mechanism remains elusive. Here, we observed lower expression of the ILC2 master regulator GATA3 specifically in cutaneous ILC2s (cILC2s) compared with canonical ILC2s, in line with its functionally divergent role in transcriptional control in cILC2s. Decreased levels of GATA3 enabled the expansion of RORγt fate-mapped (RORγtfm+) cILC2s after postnatal days, displaying certain similarities to ILC3s. Single-cell trajectory analysis showed a sequential promotion of the RORγtfm+ cILC2 divergency by RORγt and GATA3. Notably, during hair follicle recycling, these RORγtfm+ cILC2s accumulated around the hair follicle dermal papilla (DP) region to facilitate the process. Mechanistically, we found that GATA3-mediated integrin α3β1 upregulation on RORγtfm+ cILC2s was required for their positioning around the DP. Overall, our study demonstrates a distinct regulatory role of GATA3 in cILC2s, particularly in promoting the divergence of RORγtfm+ cILC2s to facilitate hair follicle recycling.
Collapse
Affiliation(s)
- Guanqun Ren
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yime Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jiamin Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenwen Cheng
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Di Wu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mengwei Han
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yanyu Zeng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Xingyu Zhao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Luni Hu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Min Zeng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Xiaole Hu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bo Zhou
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Wenfei Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China.
| |
Collapse
|
63
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
64
|
Qin M, Fang Y, Zheng Q, Peng M, Wang L, Sang X, Cao G. Tissue microenvironment induces tissue specificity of ILC2. Cell Death Discov 2024; 10:324. [PMID: 39013890 PMCID: PMC11252336 DOI: 10.1038/s41420-024-02096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Type 2 innate lymphoid cells were found to be members of the innate immune cell family, which is involved in innate and adaptive immunity to resist the invasion of foreign antigens and induce allergic reactions caused by allergens. The advancement of ILC2 research has pointed out that ILC2s have a high degree of diversity, challenging the notion of their homogeneity as a cellular population. An increasing number of studies indicate that ILC2 is a cell population with tissue specificity which can be induced by the tissue microenvironment. In addition, crosstalk between tissues can change ILC2 functions of migration and activation. Here, we emphasize that ILC2 undergoes adaptive changes under the regulation of the tissue microenvironment and distant tissues, thereby coordinating the organization's operation. In addition, ILC2 alterations induced by the tissue microenvironment are not limited to the ILC2 cell population, and ILC2 can also transdifferentiate into another class of ILC cell population (ILC1 or ILC3). In this review, we summarized the tissue-specific effects of ILC2 by tissue microenvironment and focused on the function of ILC2 in inter-tissue crosstalk. Lastly, we discussed the transdifferentiations of ILC2 caused by the abnormal change in tissue environment.
Collapse
Affiliation(s)
- Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
65
|
Alqathama A. Natural products as promising modulators of breast cancer immunotherapy. Front Immunol 2024; 15:1410300. [PMID: 39050852 PMCID: PMC11266008 DOI: 10.3389/fimmu.2024.1410300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and is considered a major global health challenge worldwide due to its high incidence and mortality rates. Treatment strategies for BC is wide-ranging and include surgery, radiotherapy, chemotherapy, targeted hormonal therapy and immunotherapy. Immunotherapy has gained popularity recently and is often integrated as a component of personalized cancer care because it aims to strengthen the immune system and enable it to recognize and eradicate transformed cells. It has fewer side-effects and lower toxicity than other treatment strategies, such as chemotherapy. Many natural products are being investigated for a wide range of therapeutic pharmacological properties, such as immune system modulation and activity against infection, auto-immune disease, and cancer. This review presents an overview of the major immune response-related pathways in BC, followed by detailed explanation of how natural compounds can act as immunomodulatory agents against biomolecular targets. Research has been carried out on many forms of natural products, including extracts, isolated entities, synthetic derivatives, nanoparticles, and combinations of natural compounds. Findings have shown significant regulatory effects on immune cells and immune cytokines that lead to immunogenic cancer cell death, as well as upregulation of macrophages and CD+8 T cells, and increased natural killer cell and dendritic cell activity. Natural products have also been found to inhibit some immuno-suppressive cells such as Treg and myeloid-derived suppressor cells, and to decrease immunosuppressive factors such as TGF-β and IL-10. Also, some natural compounds have been found to target and hinder immune checkpoints such as PD-L1.
Collapse
Affiliation(s)
- Aljawharah Alqathama
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
66
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
67
|
Niu L, Wang H, Luo G, Zhou J, Hu Z, Yan B. Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mech Dis 2024; 16:e1643. [PMID: 38351551 DOI: 10.1002/wsbm.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/13/2024]
Abstract
Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Geyang Luo
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jing Zhou
- Department of Pathology, Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Zhidong Hu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
68
|
Liu Y, Hu Y, Li B, Su R, Han Z, Jin B, Li T, Zheng X, Han Y. Innate lymphoid cell subsets in the pathogenesis of primary biliary cholangitis. J Gastroenterol Hepatol 2024; 39:1431-1441. [PMID: 38606537 DOI: 10.1111/jgh.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND AIM Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by destructive lymphocytic cholangitis and specific anti-mitochondrial antibodies. Innate lymphoid cells (ILCs) have been reported to play a role in liver homeostasis and autoimmunity. METHODS We evaluated the features of peripheral ILC1s and ILC3 in patients with PBC and hepatic ILC1 and ILC3 in two different PBC mouse models (dominant-negative transforming growth factor-beta receptor II [dnTGFβRII] and 2-octynoic acid-bovine serum albumin [2OA-BSA]). RESULTS A total of 115 patients and 18 healthy controls were enrolled in the study. Decreased circulating ILC1/3s were observed in early-stage PBC patients, and the numbers of ILC1/3s were negatively correlated with specific parameters and the proportion of T-helper (Th) 1 and Th17 cells. Reduced numbers of ILC1s were observed in PBC mouse models with different etiologies. ILC1-deficient mice had more severe hepatic inflammation after inducing the 2OA-BSA model. Continuous low-dose injections of lipopolysaccharide (LPS) reduced ILC1 levels in mice, consistent with the lower level of ILC1s in PBC patients with high LPS (> 50 ng/mL), and aggravated hepatic lymphocyte infiltration. CONCLUSION Patients with PBC had decreased ILC1s, which were negatively correlated with CD4+ T cells. Deficient ILC1 populations led to disease exacerbations in mice. Our results indicated that ILC1s may participate in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Yansheng Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Bo Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Rui Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zheyi Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ting Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ying Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
69
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
70
|
Kemp F, Braverman EL, Byersdorfer CA. Fatty acid oxidation in immune function. Front Immunol 2024; 15:1420336. [PMID: 39007133 PMCID: PMC11240245 DOI: 10.3389/fimmu.2024.1420336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular metabolism is a crucial determinant of immune cell fate and function. Extensive studies have demonstrated that metabolic decisions influence immune cell activation, differentiation, and cellular capacity, in the process impacting an organism's ability to stave off infection or recover from injury. Conversely, metabolic dysregulation can contribute to the severity of multiple disease conditions including autoimmunity, alloimmunity, and cancer. Emerging data also demonstrate that metabolic cues and profiles can influence the success or failure of adoptive cellular therapies. Importantly, immunometabolism is not one size fits all; and different immune cell types, and even subdivisions within distinct cell populations utilize different metabolic pathways to optimize function. Metabolic preference can also change depending on the microenvironment in which cells are activated. For this reason, understanding the metabolic requirements of different subsets of immune cells is critical to therapeutically modulating different disease states or maximizing cellular function for downstream applications. Fatty acid oxidation (FAO), in particular, plays multiple roles in immune cells, providing both pro- and anti-inflammatory effects. Herein, we review the major metabolic pathways available to immune cells, then focus more closely on the role of FAO in different immune cell subsets. Understanding how and why FAO is utilized by different immune cells will allow for the design of optimal therapeutic interventions targeting this pathway.
Collapse
Affiliation(s)
| | | | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
71
|
Kurokawa M, Goya T, Kohjima M, Tanaka M, Iwabuchi S, Shichino S, Ueha S, Hioki T, Aoyagi T, Takahashi M, Imoto K, Tashiro S, Suzuki H, Kato M, Hashimoto S, Matsuda H, Matsushima K, Ogawa Y. Microcirculatory disturbance in acute liver injury is triggered by IFNγ-CD40 axis. J Inflamm (Lond) 2024; 21:23. [PMID: 38907339 PMCID: PMC11191181 DOI: 10.1186/s12950-024-00387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/15/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a life-threatening disorder that progresses from self-limiting acute liver injury (ALI). Microcirculatory disturbance characterized by sinusoidal hypercoagulation and subsequent massive hypoxic hepatocyte damage have been proposed to be the mechanism by which ALI deteriorates to ALF; however, the precise molecular pathway of the sinusoidal hypercoagulation remains unknown. Here, we analyzed ALI patients and mice models to uncover the pathogenesis of ALI with microcirculatory disturbance. METHODS We conducted a single-center retrospective study for ALI and blood samples and liver tissues were analyzed to evaluate the microcirculatory disturbance in ALI patients (n = 120). Single-cell RNA sequencing analysis (scRNA-seq) was applied to the liver from the concanavalin A (Con A)‑induced mouse model of ALI. Interferon-gamma (IFNγ) and tumor necrosis factor-alpha knockout mice, and primary human liver sinusoidal endothelial cells (LSECs) were used to assess the mechanism of microcirculatory disturbance. RESULTS The serum IFNγ concentrations were significantly higher in ALI patients with microcirculatory disturbance than in patients without microcirculatory disturbance, and the IFNγ was upregulated in the Con A mouse model which presented microcirculatory disturbance. Hepatic IFNγ expression was increased as early as 1 hour after Con A treatment prior to sinusoidal hypercoagulation and hypoxic liver damage. scRNA-seq revealed that IFNγ was upregulated in innate lymphoid cells and stimulated hepatic vascular endothelial cells at the early stage of liver injury. In IFNγ knockout mice treated with Con A, the sinusoidal hypercoagulation and liver damage were remarkably attenuated, concomitant with the complete inhibition of CD40 and tissue factor (TF) upregulation in vascular endothelial cells. By ligand-receptor analysis, CD40-CD40 ligand interaction was identified in vascular endothelial cells. In human LSECs, IFNγ upregulated CD40 expression and TF was further induced by increased CD40-CD40 ligand interaction. Consistent with these findings, hepatic CD40 expression was significantly elevated in human ALI patients with microcirculatory disturbance. CONCLUSION We identified the critical role of the IFNγ-CD40 axis as the molecular mechanism of microcirculatory disturbance in ALI. This finding may provide novel insights into the pathogenesis of ALI and potentially contribute to the emergence of new therapeutic strategies for ALI patients.
Collapse
Affiliation(s)
- Miho Kurokawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Gastroenterology and Hepatology, NHO Fukuokahigashi Medical Center, 1-1-1 Chidori, Koga, 811-3195, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Gastroenterology, NHO Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan.
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, 641-8509, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Tomonobu Hioki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomomi Aoyagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motoi Takahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Imoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shigeki Tashiro
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideo Suzuki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jounan-ku, Fukuoka, 814-0198, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, 641-8509, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita-shi, 565-0871, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
72
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
73
|
Liang Z, Tang Z, Zhu C, Li F, Chen S, Han X, Zheng R, Hu X, Lin R, Pei Q, Yin C, Wang J, Tang C, Cao N, Zhao J, Wang R, Li X, Luo N, Wen Q, Yu J, Li J, Xia X, Zheng X, Wang X, Huang N, Zhong Z, Mo C, Chen P, Wang Y, Fan J, Guo Y, Zhong H, Liu J, Peng Z, Mao H, Shi GP, Bonventre JV, Chen W, Zhou Y. Intestinal CXCR6 + ILC3s migrate to the kidney and exacerbate renal fibrosis via IL-23 receptor signaling enhanced by PD-1 expression. Immunity 2024; 57:1306-1323.e8. [PMID: 38815582 PMCID: PMC11539045 DOI: 10.1016/j.immuni.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.
Collapse
Affiliation(s)
- Zhou Liang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ziwen Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Changjian Zhu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Feng Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Shuaijiabin Chen
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Han
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruilin Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xinrong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruoni Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Qiaoqiao Pei
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Changjun Yin
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ji Wang
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ce Tang
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Nan Cao
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Rong Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xiaoyan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Qiong Wen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jianbo Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xi Xia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xunhua Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xin Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Chengqiang Mo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Yun Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Haojie Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jiaqi Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
74
|
Wang L, Villafuerte Gálvez JA, Lee C, Wu S, Kelly CP, Chen X, Cao Y. Understanding host immune responses in Clostridioides difficile infection: Implications for pathogenesis and immunotherapy. IMETA 2024; 3:e200. [PMID: 38898983 PMCID: PMC11183162 DOI: 10.1002/imt2.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/21/2024]
Abstract
Clostridioides difficile (C. difficile) is the predominant causative agent of nosocomial diarrhea worldwide. Infection with C. difficile occurs due to the secretion of large glycosylating toxin proteins, which can lead to toxic megacolon or mortality in susceptible hosts. A critical aspect of C. difficile's biology is its ability to persist asymptomatically within the human host. Individuals harboring asymptomatic colonization or experiencing a single episode of C. difficile infection (CDI) without recurrence exhibit heightened immune responses compared to symptomatic counterparts. The significance of these immune responses cannot be overstated, as they play critical roles in the development, progression, prognosis, and outcomes of CDI. Nonetheless, our current comprehension of the immune responses implicated in CDI remains limited. Therefore, further investigation is imperative to elucidate their underlying mechanisms. This review explores recent advancements in comprehending CDI pathogenesis and how the host immune system response influences disease progression and severity, aiming to enhance our capacity to develop immunotherapy-based treatments for CDI.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Javier A. Villafuerte Gálvez
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Christina Lee
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Shengru Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Ciaran P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Yangchun Cao
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
75
|
Ye Q, Huang S, Wang Y, Chen S, Yang H, Tan W, Wu Z, Wang A, Chen Y. Wogonin improves colitis by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155425. [PMID: 38518634 DOI: 10.1016/j.phymed.2024.155425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.
Collapse
Affiliation(s)
- Qiujuan Ye
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shaowei Huang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ying Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Shuze Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Huiping Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Weihao Tan
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zaoxuan Wu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Anjiang Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China.
| |
Collapse
|
76
|
Zhuo J, Wang C, Kai Y, Xu Y, Cheng K. The role of autophagy regulated by the PI3K/AKT/mTOR pathway and innate lymphoid cells in eosinophilic chronic sinusitis with nasal polyps. Immun Inflamm Dis 2024; 12:e1310. [PMID: 38888464 PMCID: PMC11184929 DOI: 10.1002/iid3.1310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The PI3K/Akt/mTOR pathway and autophagy are important physiological processes. But their roles in eCRSwNP remains controversial. METHODS In this study, we used the eCRSwNP mouse model, PI3K/Akt/mTOR pathway inhibitors, and autophagy inhibitors and activators to investigate the regulatory effects of the PI3K/Akt/mTOR pathway on autophagy, and their effects on eosinophilic inflammation, and tissue remodeling. The role of ILC2s in eCRSwNP was also studied, and the relationship between ILC2s and autophagy was preliminarily determined. RESULTS Our results show that eosinophilic inflammation in eCRSwNP mice could be inhibited by promoting the autophagy; otherwise, eosinophilic inflammation could be promoted. Meanwhile, inhibition of the PI3K/Akt/mTOR pathway can further promote autophagy and inhibit eosinophilic inflammation. Meanwhile, inhibiting the PI3K/Akt/mTOR pathway and promoting autophagy can reduce the number of ILC2s and the severity of tissue remodeling in the nasal polyps of eCRSwNP mice. CONCLUSIONS We conclude that the PI3K/Akt/mTOR pathway plays roles in eosinophilic inflammation and tissue remodeling of eCRSwNP, in part by regulating the level of autophagy. The downregulation of autophagy is a pathogenesis of eCRSwNP; therefore, the recovery of normal autophagy levels might be a new target for eCRSwNP therapy. Furthermore, autophagy might inhibit eosinophilic inflammation and tissue remodeling, in part by reducing the number of ILC2s.
Collapse
Affiliation(s)
- Jin‐Jing Zhuo
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Chen Wang
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yi‐Long Kai
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Ying‐Ying Xu
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Ke‐Jia Cheng
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
77
|
Hu ST, Zhou G, Zhang J. Implications of innate lymphoid cells in oral diseases. Int Immunopharmacol 2024; 133:112122. [PMID: 38663313 DOI: 10.1016/j.intimp.2024.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Innate lymphoid cells (ILCs), as newly discovered antigen-independent innate immune cells, respond promptly to stimuli by secreting effector cytokines to exert effector functions similar to those of T cells. ILCs predominantly reside at mucosal sites and play critical roles in defending against infections, maintaining mucosal homeostasis, regulating inflammatory and immune responses, and participating in tumorigenesis. Recently, there has been a growing interest in the role of ILCs in oral diseases. This review outlines the classifications and the major characteristics of ILCs, and then comprehensively expatiates the research on ILCs in oral cancer, primary Sjogren's syndrome, periodontal diseases, oral lichen planus, oral candidiasis, Behcet's disease, and pemphigus vulgaris, aiming at summarising the implications of ILCs in oral diseases and providing new ideas for further research.
Collapse
Affiliation(s)
- Si-Ting Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
78
|
Liu C, Yan Z, Zhang X, Xia T, Ashaolu JO, Olatunji OJ, Ashaolu TJ. Food-derived bioactive peptides potentiating therapeutic intervention in rheumatoid arthritis. Heliyon 2024; 10:e31104. [PMID: 38778960 PMCID: PMC11109807 DOI: 10.1016/j.heliyon.2024.e31104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the joints of the human body and is projected to have a prevalence age-standardized rate of 1.5 million new cases worldwide by 2030. Several conventional and non-conventional preventive and therapeutic interventions have been suggested but they have their side effects including nausea, abdominal pain, liver damage, ulcers, heightened blood pressure, coagulation, and bleeding. Interestingly, several food-derived peptides (FDPs) from both plant and animal sources are increasingly gaining a reputation for their potential in the management or therapy of RA with little or no side effects. In this review, the concept of inflammation, its major types (acute and chronic), and RA identified as a chronic type were discussed based on its pathogenesis and pathophysiology. The conventional treatment options for RA were briefly outlined as the backdrop of introducing the FDPs that potentiate therapeutic effects in the management of RA.
Collapse
Affiliation(s)
- Chunhong Liu
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Zheng Yan
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Taibao Xia
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Joseph Opeoluwa Ashaolu
- Department of Public Health, Faculty of Basic Medical Sciences, Redeemers University, PMB 230, Ede, Osun State, Nigeria
| | | | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
79
|
Li HY, Yan WX, Li J, Ye J, Wu ZG, Hou ZK, Chen B. Global research status and trends of enteric glia: a bibliometric analysis. Front Pharmacol 2024; 15:1403767. [PMID: 38855748 PMCID: PMC11157232 DOI: 10.3389/fphar.2024.1403767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Enteric glia are essential components of the enteric nervous system. Previously believed to have a passive structural function, mounting evidence now suggests that these cells are indispensable for maintaining gastrointestinal homeostasis and exert pivotal influences on both wellbeing and pathological conditions. This study aimed to investigate the global status, research hotspots, and future directions of enteric glia. Methods The literature on enteric glia research was acquired from the Web of Science Core Collection. VOSviewer software (v1.6.19) was employed to visually represent co-operation networks among countries, institutions, and authors. The co-occurrence analysis of keywords and co-citation analysis of references were conducted using CiteSpace (v6.1.R6). Simultaneously, cluster analysis and burst detection of keywords and references were performed. Results A total of 514 publications from 36 countries were reviewed. The United States was identified as the most influential country. The top-ranked institutions were University of Nantes and Michigan State University. Michel Neunlist was the most cited author. "Purinergic signaling" was the largest co-cited reference cluster, while "enteric glial cells (EGCs)" was the cluster with the highest number of co-occurring keywords. As the keyword with the highest burst strength, Crohns disease was a hot topic in the early research on enteric glia. The burst detection of keywords revealed that inflammation, intestinal motility, and gut microbiota may be the research frontiers. Conclusion This study provides a comprehensive bibliometric analysis of enteric glia research. EGCs have emerged as a crucial link between neurons and immune cells, attracting significant research attention in neurogastroenterology. Their fundamental and translational studies on inflammation, intestinal motility, and gut microbiota may promote the treatment of some gastrointestinal and parenteral disorders.
Collapse
Affiliation(s)
- Huai-Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wei-Xin Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jia Li
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Ye
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhi-Guo Wu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng-Kun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
80
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
81
|
Chen Y, Fan W, Zhao Y, Liu M, Hu L, Zhang W. Progress in the Regulation of Immune Cells in the Tumor Microenvironment by Bioactive Compounds of Traditional Chinese Medicine. Molecules 2024; 29:2374. [PMID: 38792234 PMCID: PMC11124165 DOI: 10.3390/molecules29102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.
Collapse
Affiliation(s)
- Yuqian Chen
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Wenshuang Fan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
| | - Yanyan Zhao
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Meijun Liu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Linlin Hu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| |
Collapse
|
82
|
Mehanna N, Pradhan A, Kaur R, Kontopoulos T, Rosati B, Carlson D, Cheung NK, Xu H, Bean J, Hsu K, Le Luduec JB, Vorkas CK. Loss of circulating CD8α + NK cells during human Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.588542. [PMID: 38659858 PMCID: PMC11042275 DOI: 10.1101/2024.04.16.588542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Natural Killer (NK) cells can recognize and kill Mtb-infected cells in vitro, however their role after natural human exposure has not been well-studied. To identify Mtb-responsive NK cell populations, we analyzed the peripheral blood of healthy household contacts of active Tuberculosis (TB) cases and source community donors in an endemic region of Port-au-Prince, Haiti by flow cytometry. We observed higher CD8α expression on NK cells in putative resistors (IGRA- contacts) with a progressive loss of these circulating cells during household-associated latent infection and disease. In vitro assays and CITE-seq analysis of CD8α+ NK cells demonstrated enhanced maturity, cytotoxic gene expression, and response to cytokine stimulation relative to CD8α- NK cells. CD8α+ NK cells also displayed dynamic surface expression dependent on MHC I in contrast to conventional CD8+ T cells. Together, these results support a specialized role for CD8α+ NK cell populations during Mtb infection correlating with disease resistance.
Collapse
Affiliation(s)
- Nezar Mehanna
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Atul Pradhan
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Rimanpreet Kaur
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Theodota Kontopoulos
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Barbara Rosati
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - David Carlson
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Nai-Kong Cheung
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Hong Xu
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - James Bean
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Katherine Hsu
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jean-Benoit Le Luduec
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Charles Kyriakos Vorkas
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
83
|
Bao B, Wang Y, Boudreau P, Song X, Wu M, Chen X, Patik I, Tang Y, Ouahed J, Ringel A, Barends J, Wu C, Balskus E, Thiagarajah J, Liu J, Wessels MR, Lencer WI, Kasper DL, An D, Horwitz BH, Snapper SB. Bacterial Sphingolipids Exacerbate Colitis by Inhibiting ILC3-derived IL-22 Production. Cell Mol Gastroenterol Hepatol 2024; 18:101350. [PMID: 38704148 PMCID: PMC11222953 DOI: 10.1016/j.jcmgh.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND & AIMS Gut bacterial sphingolipids, primarily produced by Bacteroidetes, have dual roles as bacterial virulence factors and regulators of the host mucosal immune system, including regulatory T cells and invariant natural killer T cells. Patients with inflammatory bowel disease display altered sphingolipids profiles in fecal samples. However, how bacterial sphingolipids modulate mucosal homeostasis and regulate intestinal inflammation remains unclear. METHODS We used dextran sodium sulfate (DSS)-induced colitis in mice monocolonized with Bacteroides fragilis strains expressing or lacking sphingolipids to assess the influence of bacterial sphingolipids on intestinal inflammation using transcriptional, protein, and cellular analyses. Colonic explant and organoid were used to study the function of bacterial sphingolipids. Host mucosal immune cells and cytokines were profiled and characterized using flow cytometry, enzyme-linked immunosorbent assay, and Western blot, and cytokine function in vivo was investigated by monoclonal antibody injection. RESULTS B fragilis sphingolipids exacerbated intestinal inflammation. Mice monocolonized with B fragilis lacking sphingolipids exhibited less severe DSS-induced colitis. This amelioration of colitis was associated with increased production of interleukin (IL)-22 by ILC3. Mice colonized with B fragilis lacking sphingolipids following DSS treatment showed enhanced epithelial STAT3 activity, intestinal cell proliferation, and antimicrobial peptide production. Protection against DSS colitis associated with B fragilis lacking sphingolipids was reversed on IL22 blockade. Furthermore, bacterial sphingolipids restricted epithelial IL18 production following DSS treatment and interfered with IL22 production by a subset of ILC3 cells expressing both IL18R and major histocompatibility complex class II. CONCLUSIONS B fragilis-derived sphingolipids exacerbate mucosal inflammation by impeding epithelial IL18 expression and concomitantly suppressing the production of IL22 by ILC3 cells.
Collapse
Affiliation(s)
- Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China.
| | - Youyuan Wang
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Pavl Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, Massachusetts; Shanghai Institute of Biochemistry and Cell Biology, CAS, Shanghai, China
| | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Xi Chen
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Izabel Patik
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amit Ringel
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jared Barends
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Jay Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jian Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Wayne Isaac Lencer
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Dingding An
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Bruce Harold Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
84
|
Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol 2024; 153:1169-1180. [PMID: 38369030 PMCID: PMC11070312 DOI: 10.1016/j.jaci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Collapse
Affiliation(s)
- Elizabeth Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Allen Discovery Center for Neuroimmune Interactions, New York, NY; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
85
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
86
|
Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue-resident type 1 innate lymphoid cells and killer innate-like T cells. Immunol Rev 2024; 323:150-163. [PMID: 38506480 PMCID: PMC11102320 DOI: 10.1111/imr.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert M. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily R. Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
87
|
Cheng L, Niu J, Cheng Y, Liu J, Shi M, Huang S, Ding X, Li S. Risk Factors for Systemic Inflammatory Response Syndrome After Percutaneous Transhepatic Cholangioscopic Lithotripsy. J Inflamm Res 2024; 17:2575-2587. [PMID: 38686361 PMCID: PMC11057514 DOI: 10.2147/jir.s453653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Background There is a lack of validated predictive models for the occurrence of systemic inflammatory response syndrome (SIRS) after percutaneous transhepatic cholangioscopic lithotripsy (PTCSL) for the treatment of hepatolithiasis. This is the first study to estimate the incidence of SIRS after PTCSL. Methods A retrospective analysis of 284 PTCSL sessions for the treatment of hepatolithiasis at our institution between January 2019 and January 2023 was performed. The development of SIRS after PTCSL was the primary study endpoint. Independent risk factors for SIRS after PTCSL were identified using univariate and multivariate logistic regression analyses. A nomogram prediction model was constructed using these independent risk factors, and the predictive value was assessed using receiver operating characteristic (ROC) curves. Results The incidence of SIRS after PTCSL was 20.77%. According to multivariate analysis, the number of PTCSL sessions (odds ratio [OR]=0.399, 95% confidence interval [CI]=0.202-0.786, p=0.008), stone location (OR=2.194, 95% CI=1.107-4.347, p=0.024), intraoperative use of norepinephrine (OR=0.301, 95% CI=0.131-0.689, p=0.004), intraoperative puncture (OR=3.476, 95% CI=1.749-6.906, P<0.001), preoperative gamma-glutamyltransferase (OR=1.002, 95% CI=1.001-1.004, p=0.009), and preoperative total lymphocyte count (OR=1.820, 95% CI=1.110-2.985, p=0.018) were found to be independent risk factors for the development of SIRS after PTCSL. These six independent risk factors were used to construct a nomogram prediction model, which showed satisfactory accuracy with an area under the ROC curve of 0.776 (95% CI: 0.702-0.850). Conclusion The number of PTCSL sessions, stone location, intraoperative use of norepinephrine, intraoperative puncture, preoperative gamma-glutamyltransferase, and preoperative total lymphocyte count may predict the occurrence of SIRS after PTCSL. This prediction model may help clinicians identify high-risk patients in advance.
Collapse
Affiliation(s)
- Lve Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Junwei Niu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jie Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mengjia Shi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shijia Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiong Ding
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
88
|
Marafini I, Monteleone I, Laudisi F, Monteleone G. Aryl Hydrocarbon Receptor Signalling in the Control of Gut Inflammation. Int J Mol Sci 2024; 25:4527. [PMID: 38674118 PMCID: PMC11050475 DOI: 10.3390/ijms25084527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR), a transcription factor activated by many natural and synthetic ligands, represents an important mediator of the interplay between the environment and the host's immune responses. In a healthy gut, AHR activation promotes tolerogenic signals, which help maintain mucosal homeostasis. AHR expression is defective in the inflamed gut of patients with inflammatory bowel diseases (IBD), where decreased AHR signaling is supposed to contribute to amplifying the gut tissue's destructive immune-inflammatory responses. We here review the evidence supporting the role of AHR in controlling the "physiological" intestinal inflammation and summarize the data about the therapeutic effects of AHR activators, both in preclinical mouse models of colitis and in patients with IBD.
Collapse
Affiliation(s)
- Irene Marafini
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Federica Laudisi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Giovanni Monteleone
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
89
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
90
|
Flayer CH, Linderholm AL, Ge MQ, Juarez M, Franzi L, Tham T, Teuber M, Liao SY, Schivo M, Kuhn B, Zeki A, Haczku A. COPD with elevated sputum group 2 innate lymphoid cells is characterized by severe disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.21.23298837. [PMID: 38045302 PMCID: PMC10690341 DOI: 10.1101/2023.11.21.23298837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rationale Pulmonary innate immune cells play a central role in the initiation and perpetuation of chronic obstructive pulmonary disease (COPD), however the precise mechanisms that orchestrate the development and severity of COPD are poorly understood. Objectives We hypothesized that the recently described family of innate lymphoid cells (ILCs) play an important role in COPD. Methods Subjects with COPD and healthy controls were clinically evaluated, and their sputum samples were assessed by flow cytometry. A mouse model of spontaneous COPD [genetically deficient in surfactant protein-D (SP-D -/- )] and ozone (O 3 ) exposure were used to examine the mechanism by which lack of functional SP-D may skew ILC2s to produce IL-17A in combination with IL-5 and IL-13, leading to a mixed inflammatory profile and more severe disease. Measurements and Main Results COPD was characterized by poor spirometry, sputum inflammation, and the emergence of sputum GATA3 + ILCs (ILC2s), but not T-bet + ILCs (ILC1s) nor RORγt + ILCs (ILC3s). COPD subjects with elevated sputum ILC2s (the ILC2 high group) had worse spirometry and sputum neutrophilia and eosinophilia than healthy and ILC2 low subjects. This was associated with the presence of dual-positive IL-5 + IL-17A + and IL-13 + IL-17A + ILCs and nonfunctional SP-D in the sputum in ILC2 high subjects. SP-D -/- mice showed spontaneous airway neutrophilia. Lack of SP-D in the mouse lung licensed ILC2s to produce IL-17A, which was dose-dependently inhibited by recombinant SP-D. SP-D -/- mice showed enhanced susceptibility to O 3 -induced airway neutrophilia, which was associated with the emergence of inflammatory IL-13 + IL-17A + ILCs. Conclusions We report that the presence of sputum ILC2s predicts the severity of COPD, and unravel a novel pathway of IL-17A plasticity in lung ILC2s, prevented by the immunomodulatory protein SP-D.
Collapse
|
91
|
Berber E, Mulik S, Rouse BT. Meeting the Challenge of Controlling Viral Immunopathology. Int J Mol Sci 2024; 25:3935. [PMID: 38612744 PMCID: PMC11011832 DOI: 10.3390/ijms25073935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The mission of this review is to identify immune-damaging participants involved in antiviral immunoinflammatory lesions. We argue these could be targeted and their activity changed selectively by maneuvers that, at the same time, may not diminish the impact of components that help resolve lesions. Ideally, we need to identify therapeutic approaches that can reverse ongoing lesions that lack unwanted side effects and are affordable to use. By understanding the delicate balance between immune responses that cause tissue damage and those that aid in resolution, novel strategies can be developed to target detrimental immune components while preserving the beneficial ones. Some strategies involve rebalancing the participation of immune components using various approaches, such as removing or blocking proinflammatory T cell products, expanding regulatory cells, restoring lost protective cell function, using monoclonal antibodies (moAb) to counteract inhibitory molecules, and exploiting metabolic differences between inflammatory and immuno-protective responses. These strategies can help reverse ongoing viral infections. We explain various approaches, from model studies and some clinical evidence, that achieve innate and adaptive immune rebalancing, offering insights into potential applications for controlling chronic viral-induced lesions.
Collapse
Affiliation(s)
- Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
92
|
Zhao R, Hong L, Shi G, Ye H, Lou X, Zhou X, Yao J, Shi X, An J, Sun M. Mineralocorticoid promotes intestinal inflammation through receptor dependent IL17 production in ILC3s. Int Immunopharmacol 2024; 130:111678. [PMID: 38368773 DOI: 10.1016/j.intimp.2024.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Aldosterone is a key mineralocorticoid involved in regulating the concentration of blood electrolytes and physiological volume balance. Activation of mineralocorticoid receptor (MR) has been recently reported to participate in adaptive and innate immune responses under inflammation. Here, we evaluated the role of aldosterone and MR in inflammation bowel diseases (IBD). Aldosterone elevated in the colon of DSS-induced colitis mice. Aldosterone addition induced IL17 production and ROS/RNS level in group 3 innate lymphoid cells (ILC3s) and exacerbated intestinal injury. A selective mineralocorticoid receptor antagonism, eplerenone, inhibited IL17-producing ILC3s and its ROS/RNS production, protected mice from DSS-induced colitis. Mice lacking Nr3c2 (MR coding gene) in ILC3s exhibited decreased IL17 and ROS/RNS production, which alleviated colitis and colitis-associated colorectal cancer (CAC). Further experiments revealed that MR could directly bind to IL17A promoter and facilitate its transcription, which could be enhanced by aldosterone. Thus, our findings demonstrated the critical role of aldosterone-MR-IL17 signaling in ILC3s and gut homeostasis, indicating the therapeutic strategy of eplerenone in IBD clinical trial.
Collapse
Affiliation(s)
- Rongchuan Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Lei Hong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China; Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China
| | - Guohua Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Hong Ye
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Xinqi Lou
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China
| | - Xinying Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Jinyu Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Xiaohua Shi
- Digestive Department, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
93
|
Trasciatti S, Grizzi F. Vitamin D and celiac disease. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:249-270. [PMID: 38777415 DOI: 10.1016/bs.afnr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Celiac disease (CD) is an immune-mediated condition affecting the small intestine. Its reported global prevalence falls within the range of 0.7% to 1.4%. Notably, historically, higher rates, reaching 1% in Western Ireland, have been documented. Recent research has even revealed prevalence rates as elevated as 2% in northern Europe. These findings underscore the urgency for swift and cost-effective diagnosis, especially in individuals identified through screening efforts. At present, the diagnosis of CD relies on a multifaceted approach involving positive serological markers such as IgA anti-tissue transglutaminase (anti-TTG) and anti-endomysial antibodies (anti-EMA). These serological findings are assessed in conjunction with classical histological alterations, as outlined in the Marsh classification. CD is an inflammatory condition triggered by the consumption of gluten, resulting from intricate interactions between genetic, immunological, and environmental factors. CD is linked to malabsorption, leading to nutritional deficiencies. Individuals with CD are required to adhere to a gluten-free diet, which itself can lead to nutrient deficiencies. One such deficiency includes vitamin D, and there is substantial experimental evidence supporting the notion of a bidirectional relationship between CD and vitamin D status. A low level of vitamin D has a detrimental impact on the clinical course of the disease. Here we summarize the key characteristics of CD and explore the prominent roles of vitamin D in individuals with CD.
Collapse
Affiliation(s)
| | - Fabio Grizzi
- Head Histology Core, Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
94
|
Saranchova I, Xia CW, Besoiu S, Finkel PL, Ellis SLS, Kari S, Munro L, Pfeifer CG, Fazli L, Gleave ME, Jefferies WA. A novel type-2 innate lymphoid cell-based immunotherapy for cancer. Front Immunol 2024; 15:1317522. [PMID: 38524132 PMCID: PMC10958781 DOI: 10.3389/fimmu.2024.1317522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cell-based cancer immunotherapy has achieved significant advancements, providing a source of hope for cancer patients. Notwithstanding the considerable progress in cell-based immunotherapy, the persistently low response rates and the exorbitant costs associated with their implementation still present a formidable challenge in clinical settings. In the landscape of cell-based cancer immunotherapies, an uncharted territory involves Type 2 innate lymphoid cells (ILC2s) and interleukin-33 (IL-33) which promotes ILC2 functionality, recognized for their inherent ability to enhance immune responses. Recent discoveries regarding their role in actuating cytolytic T lymphocyte responses, including curbing tumor growth rates and hindering metastasis, have added a new dimension to our understanding of the IL-33/ILC2 axis. These recent insights may hold significant promise for ILC2 cell-based immunotherapy. Nevertheless, the prospect of adoptively transferring ILC2s to confer immune protection against tumors has yet to be investigated. The present study addresses this hypothesis, revealing that ILC2s isolated from the lungs of tumor-bearing mice, and tumor infiltrating ILC2s when adoptively transferred after tumor establishment at a ratio of one ILC2 per sixty tumor cells, leads to an influx of tumor infiltrating CD4+ and CD8+ T lymphocytes as well as tumor infiltrating eosinophils resulting in a remarkable reduction in tumor growth. Moreover, we find that post-adoptive transfer of ILC2s, the number of tumor infiltrating ILC2s is inversely proportional to tumor size. Finally, we find corollaries of the IL-33/ILC2 axis enhancing the infiltration of eosinophils in human prostate carcinomas patients' expressing high levels of IL-33 versus those expressing low levels of IL-33. Our results underscore the heightened efficacy of adoptively transferred ILC2s compared to alternative approaches, revealing an approximately one hundred fifty-fold superiority on a cell-per-cell basis over CAR T-cells in the specific targeting and elimination of tumors within the same experimental model. Overall, this study demonstrates the functional significance of ILC2s in cancer immunosurveillance and provides the proof of concept of the potential utility of ILC2 cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Clara Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Besoiu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Pablo L. Finkel
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin E. Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
95
|
Wu Z, Lin X, Yuan G, Li N, Xu R. Innate lymphoid cells: New players in osteoimmunology. Eur J Immunol 2024; 54:e2350381. [PMID: 38234001 DOI: 10.1002/eji.202350381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Innate lymphoid cells (ILCs) are the most recently identified immune cell types existing in lymphoid and nonlymphoid organs. Albeit they lack the expression of antigen receptors, ILCs play vital roles in innate immune responses by producing multiple effector cytokines. The ILC family includes conventional natural killer cells and cytokine-producing ILCs, which are divided into group 1, group 2, and group 3 ILCs based on their effector cytokines and developmental requirements. Emerging evidence has indicated that ILCs are essential immune regulators of bone homeostasis, playing a critical role in osteoimmunology. In this mini-review, we discuss recent advances in the understanding of ILC functions in bone homeostasis under physiological and pathological conditions, with an emphasis on the communication between ILCs and bone cells including osteoclasts and osteoblasts, as well as the underlying immunoregulatory networks involving ILC-derived cytokines and growth factors. This review also discusses future research directions and the potential of targeting ILCs for the treatment of inflammation-associated bone disorders.
Collapse
Affiliation(s)
- Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
96
|
Katirci E, Kendirci-Katirci R, Korgun ET. Are innate lymphoid cells friend or foe in human pregnancy? Am J Reprod Immunol 2024; 91:e13834. [PMID: 38500395 DOI: 10.1111/aji.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Innate lymphoid cells (ILCs) are involved in the innate immune system because they lack specific antigen receptors and lineage markers. ILCs also display phenotypic and characteristic features of adaptive immune cells. Therefore, ILCs are functional in essential interactions between adaptive and innate immunity. ILCs are found in both lymphoid and nonlymphoid tissues and migrate to the area of inflammation during the inflammatory process. ILCs respond to pathogens by producing a variety of cytokines and are involved in the barrier defense of antigens and in many immunological processes such as allergic events. Recent research has shown that ILCs are functional during human pregnancy and have been suggested to be essential for the healthy progression of pregnancy. In this review, we focus on the role of ILCs in human pregnancy by discussing the relationship between ILCs and the pregnancy microenvironment, specifically summarizing the role of ILCs in physiological and pathological pregnancies.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Remziye Kendirci-Katirci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
97
|
Bamorovat M, Sharifi I, Shafiei Bafti M, Agha Kuchak Afshari S, Aflatoonian MR, Karamoozian A, Jafarzadeh A, Amirzadeh R, Khosravi A, Babaei Z, Safa F, Sharifi F, Heshmatkhah A. Cutaneous Leishmaniasis Hampers COVID-19: A Controlled Cross-Sectional Study in High-Burden Endemic Areas of Iran. J Epidemiol Glob Health 2024; 14:142-153. [PMID: 38190050 PMCID: PMC11043327 DOI: 10.1007/s44197-023-00179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION Emerging infectious diseases such as SARS-CoV-2 can cause pandemics and create a critical risk for humans. In a previous pilot study, we reported that the immunological responses induced by cutaneous leishmaniasis (CL) could decrease the incidence and severity of COVID-19. In this large-scale case-control study, we assessed the possible relationship between mortality and morbidity of COVID-19 in healed CL persons suffering scars compared to cases without CL history. METHODS This controlled cross-sectional study was conducted between July 2020 and December 2022 in the endemic and high-burden areas of CL in southeastern Iran. In the study, 1400 previous CL cases with scars and 1,521,329 subjects who had no previous CL were analyzed. We used R 4.0.2 to analyze the data. Firth's bias reduction approach corresponding to the penalization of likelihood logistic regression by Jeffreys was also employed to influence the variables in the dataset. Also, a Bayesian ordinal logistic regression model was performed to explore the COVID-19 severity in both case and referent groups. RESULTS The occurrence and severity rate of COVID-19 in CL scar cases are significantly less than in the non-CL control group, while in the CL scar subjects, patients with critical conditions and mortality were not observed. The morbidity (OR = 0.11, CI 0.06-0.20 and P < 0.001) and severity of COVID-19 in previous cases with CL scars were significantly diminished than that in the control group (credible interval - 2.57, - 1.62). CONCLUSIONS The results represented a durable negative relationship between cured CL and COVID-19 incidence and severity. Additional studies seem necessary and should be designed to further validate the true impact and underlying mechanistic action of CL on COVID-19.
Collapse
Affiliation(s)
- Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Shafiei Bafti
- Institute for Studies in Medicine History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
- Deputy for Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Ali Karamoozian
- Research Center for Modeling in Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Kerman University of Medical Sciences, Kerman, Iran
| | - Raheleh Amirzadeh
- Research Center for Social Determinants of Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzane Safa
- Deputy for Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Amireh Heshmatkhah
- Dadbin Health Clinic, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
98
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
99
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Innate lymphoid cells (ILCs) in teleosts against data on ILCs in humans. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109415. [PMID: 38296004 DOI: 10.1016/j.fsi.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
It is assumed that cells corresponding to innate lymphoid cells (ILCs) in humans, in addition to lymphoid tissue inducer cells (LTi), are also found in teleosts. In this systematic group of organisms, however, they are a poorly understood cell population. In contrast to the data on ILCs in humans, which also remain incomplete despite advanced research, in teleosts, these cells require much more attention. ILCs in teleosts have been presented as cells that may be evolutionary precursors of NK cells or ILCs identified in mammals, including humans. It is a highly heterogeneous group of cells in both humans and fish and their properties, as revealed by studies in humans, are most likely to remain strictly dependent on the location of these cells and the physiological state of the individual from which they originate. They form a bridge between innate and adaptive immunity. The premise of this paper is to review the current knowledge of ILCs in teleosts, taking into account data on similar cells in humans. A review of the knowledge concerning these particular cells, elements of innate immunity mechanisms as equivalent to, or perhaps dominant over, adaptive immunity mechanisms in teleosts, as presented, may inspire the need for further research.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
100
|
Cheng M, Li J, Song J, Song H, Chen Y, Tang H, Wei H, Sun R, Tian Z, Wang X, Peng H. RORα is required for expansion and memory maintenance of ILC1s via a lymph node-liver axis. Cell Rep 2024; 43:113786. [PMID: 38363684 DOI: 10.1016/j.celrep.2024.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Type 1 innate lymphoid cells (ILC1s) possess adaptive immune features, which confer antigen-specific memory responses against haptens and viruses. However, the transcriptional regulation of memory ILC1 responses is currently not known. We show that retinoic acid receptor-related orphan receptor alpha (RORα) has high expression in memory ILC1s in murine contact hypersensitivity (CHS) models. RORα deficiency diminishes ILC1-mediated CHS responses significantly but has no effect on memory T cell-mediated CHS responses. During sensitization, RORα promotes sensitized-ILC1 expansion by suppressing expression of cell-cycle repressors in draining lymph nodes. RORα programs gene-expression patterns related to cell survival and is required for the long-term maintenance of memory ILC1s in the liver. Our findings reveal RORα to be a key transcriptional factor for sensitized-ILC1 expansion and long-term maintenance of memory ILC1s.
Collapse
Affiliation(s)
- Ming Cheng
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiarui Li
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiaxi Song
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Song
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Chen
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Tang
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhigang Tian
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xianwei Wang
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Hui Peng
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|