51
|
Bayrak Ş, de Wael RV, Schaare HL, Hettwer MD, Caldairou B, Bernasconi A, Bernasconi N, Bernhardt BC, Valk SL. Heritability of hippocampal functional and microstructural organisation. Neuroimage 2022; 264:119656. [PMID: 36183945 DOI: 10.1016/j.neuroimage.2022.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
The hippocampus is a uniquely infolded allocortical structure in the medial temporal lobe that consists of the microstructurally and functionally distinct subregions: subiculum, cornu ammonis, and dentate gyrus. The hippocampus is a remarkably plastic region that is implicated in learning and memory. At the same time it has been shown that hippocampal subregion volumes are heritable, and that genetic expression varies along a posterior to anterior axis. Here, we studied how a heritable, stable, hippocampal organisation may support its flexible function in healthy adults. Leveraging the twin set-up of the Human Connectome Project with multimodal neuroimaging, we observed that the functional connectivity between hippocampus and cortex was heritable and that microstructure of the hippocampus genetically correlated with cortical microstructure. Moreover, both functional and microstructural organisation could be consistently captured by anterior-to-posterior and medial-to-lateral axes across individuals. However, heritability of functional, relative to microstructural, organisation was found reduced, suggesting individual variation in functional organisation may be explained by experience-driven factors. Last, we demonstrate that structure and function couple along an inherited macroscale organisation, suggesting an interplay of stability and plasticity within the hippocampus. Our study provides new insights on the heritability of the hippocampal of the structure and function within the hippocampal organisation.
Collapse
Affiliation(s)
- Şeyma Bayrak
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Meike D Hettwer
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
52
|
Doust C, Fontanillas P, Eising E, Gordon SD, Wang Z, Alagöz G, Molz B, Pourcain BS, Francks C, Marioni RE, Zhao J, Paracchini S, Talcott JB, Monaco AP, Stein JF, Gruen JR, Olson RK, Willcutt EG, DeFries JC, Pennington BF, Smith SD, Wright MJ, Martin NG, Auton A, Bates TC, Fisher SE, Luciano M. Discovery of 42 genome-wide significant loci associated with dyslexia. Nat Genet 2022; 54:1621-1629. [PMID: 36266505 PMCID: PMC9649434 DOI: 10.1038/s41588-022-01192-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 08/23/2022] [Indexed: 12/11/2022]
Abstract
Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
Collapse
Affiliation(s)
- Catherine Doust
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Scott D Gordon
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Zhengjun Wang
- School of Psychology, Shaanxi Normal University and Shaanxi Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | - Gökberk Alagöz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | | | | | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | | | - Joel B Talcott
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | | | - John F Stein
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Jeffrey R Gruen
- Departments of Pediatrics and Genetics, Yale Medical School, New Haven, CT, USA
| | - Richard K Olson
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Erik G Willcutt
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - John C DeFries
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | | | - Shelley D Smith
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Timothy C Bates
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
53
|
Lahti J, Tuominen S, Yang Q, Pergola G, Ahmad S, Amin N, Armstrong NJ, Beiser A, Bey K, Bis JC, Boerwinkle E, Bressler J, Campbell A, Campbell H, Chen Q, Corley J, Cox SR, Davies G, De Jager PL, Derks EM, Faul JD, Fitzpatrick AL, Fohner AE, Ford I, Fornage M, Gerring Z, Grabe HJ, Grodstein F, Gudnason V, Simonsick E, Holliday EG, Joshi PK, Kajantie E, Kaprio J, Karell P, Kleineidam L, Knol MJ, Kochan NA, Kwok JB, Leber M, Lam M, Lee T, Li S, Loukola A, Luck T, Marioni RE, Mather KA, Medland S, Mirza SS, Nalls MA, Nho K, O'Donnell A, Oldmeadow C, Painter J, Pattie A, Reppermund S, Risacher SL, Rose RJ, Sadashivaiah V, Scholz M, Satizabal CL, Schofield PW, Schraut KE, Scott RJ, Simino J, Smith AV, Smith JA, Stott DJ, Surakka I, Teumer A, Thalamuthu A, Trompet S, Turner ST, van der Lee SJ, Villringer A, Völker U, Wilson RS, Wittfeld K, Vuoksimaa E, Xia R, Yaffe K, Yu L, Zare H, Zhao W, Ames D, Attia J, Bennett DA, Brodaty H, Chasman DI, Goldman AL, Hayward C, Ikram MA, Jukema JW, Kardia SLR, Lencz T, Loeffler M, Mattay VS, Palotie A, Psaty BM, Ramirez A, et alLahti J, Tuominen S, Yang Q, Pergola G, Ahmad S, Amin N, Armstrong NJ, Beiser A, Bey K, Bis JC, Boerwinkle E, Bressler J, Campbell A, Campbell H, Chen Q, Corley J, Cox SR, Davies G, De Jager PL, Derks EM, Faul JD, Fitzpatrick AL, Fohner AE, Ford I, Fornage M, Gerring Z, Grabe HJ, Grodstein F, Gudnason V, Simonsick E, Holliday EG, Joshi PK, Kajantie E, Kaprio J, Karell P, Kleineidam L, Knol MJ, Kochan NA, Kwok JB, Leber M, Lam M, Lee T, Li S, Loukola A, Luck T, Marioni RE, Mather KA, Medland S, Mirza SS, Nalls MA, Nho K, O'Donnell A, Oldmeadow C, Painter J, Pattie A, Reppermund S, Risacher SL, Rose RJ, Sadashivaiah V, Scholz M, Satizabal CL, Schofield PW, Schraut KE, Scott RJ, Simino J, Smith AV, Smith JA, Stott DJ, Surakka I, Teumer A, Thalamuthu A, Trompet S, Turner ST, van der Lee SJ, Villringer A, Völker U, Wilson RS, Wittfeld K, Vuoksimaa E, Xia R, Yaffe K, Yu L, Zare H, Zhao W, Ames D, Attia J, Bennett DA, Brodaty H, Chasman DI, Goldman AL, Hayward C, Ikram MA, Jukema JW, Kardia SLR, Lencz T, Loeffler M, Mattay VS, Palotie A, Psaty BM, Ramirez A, Ridker PM, Riedel-Heller SG, Sachdev PS, Saykin AJ, Scherer M, Schofield PR, Sidney S, Starr JM, Trollor J, Ulrich W, Wagner M, Weir DR, Wilson JF, Wright MJ, Weinberger DR, Debette S, Eriksson JG, Mosley TH, Launer LJ, van Duijn CM, Deary IJ, Seshadri S, Räikkönen K. Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning. Mol Psychiatry 2022; 27:4419-4431. [PMID: 35974141 PMCID: PMC9734053 DOI: 10.1038/s41380-022-01710-8] [Show More Authors] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.
Collapse
Affiliation(s)
- Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
- Turku Institute of Advanced Studies, University of Turku, Turku, Finland.
| | - Samuli Tuominen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Qiong Yang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Murdoch University, Murdoch, WA, Australia
| | - Alexa Beiser
- Department of Biostatistics, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Janie Corley
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Eske M Derks
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Annette L Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Institute of Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zachary Gerring
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Francine Grodstein
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Harvard School of Public Health, Boston, MA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Assocation, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eleanor Simonsick
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Elizabeth G Holliday
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Institute of Social and Preventive Medicine, University of Lausanne, Lausanne, Switzerland
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Pauliina Karell
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - John B Kwok
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Markus Leber
- Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Max Lam
- Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Teresa Lee
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Shuo Li
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Anu Loukola
- Helsinki Biobank, University of Helsinki Central Hospital, Helsinki, Finland
| | - Tobias Luck
- Department of Economic and Social Sciences & Institute of Social Medicine, Rehabilitation Sciences and Healthcare Research, University of Applied Sciences Nordhausen, Nordhausen, Germany
- University of Leipzig, Leipzig, Germany
- LIFE Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Sunnybrook Health Sciences Centre, University of Toronto, Randwick, NSW, Australia
| | - Sarah Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Saira S Mirza
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrienne O'Donnell
- Department of Biostatistics, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Christopher Oldmeadow
- Clinical Research Design, IT and Statistical Support Unit, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Jodie Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alison Pattie
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard J Rose
- Department of Psychological & Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Vijay Sadashivaiah
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Claudia L Satizabal
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Peter W Schofield
- Neuropsychiatry Service, Hunter New England Local Health District, Charlestown, NSW, Australia
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Jeannette Simino
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Albert V Smith
- Icelandic Heart Assocation, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sven J van der Lee
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Rui Xia
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristine Yaffe
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Habil Zare
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas, San Antonio, TX, USA
- University of Texas Health Sciences Center, Houston, NA, US
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - David Ames
- National Ageing Research Institute, Parkville, Melbourne, VIC, Australia
- University of Melbourne, Academic Unit for Psychiatry of Old Age, St George's Hospital, Melbourne, VIC, Australia
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Clinical Research Design, IT and Statistical Support Unit, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Todd Lencz
- Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Food and Drug Administration, Washington, DC, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology and Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Heath Research Institute, Seattle, WA, USA
| | - Alfredo Ramirez
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin Scherer
- Institute of Primary Medical Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Stephen Sidney
- Kaiser Permanente Northern California, Division of Research, Oakland, CA, USA
| | - John M Starr
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Julian Trollor
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - William Ulrich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Michael Wagner
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Debette
- Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, University of Bordeaux, Bordeaux, France
- Bordeaux University Hospital (CHU Bordeaux), Department of Neurology, Bordeaux, France
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Helsinki, Singapore
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Public Health, Oxford University, Oxford, UK
| | - Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
54
|
Xu J, Guan X, Wen J, Zhang M, Xu X, for the Alzheimer’s Disease Neuroimaging Initiative. Polygenic hazard score modified the relationship between hippocampal subfield atrophy and episodic memory in older adults. Front Aging Neurosci 2022; 14:943702. [PMID: 36389062 PMCID: PMC9659745 DOI: 10.3389/fnagi.2022.943702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Understanding genetic influences on Alzheimer's disease (AD) may improve early identification. Polygenic hazard score (PHS) is associated with the age of AD onset and cognitive decline. It interacts with other risk factors, but the nature of such combined effects remains poorly understood. MATERIALS AND METHODS We examined the effect of genetic risk and hippocampal atrophy pattern on episodic memory in a sample of older adults ranging from cognitively normal to those diagnosed with AD using structural MRI. Participants included 51 memory unimpaired normal control (NC), 69 mild cognitive impairment (MCI), and 43 AD adults enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Hierarchical linear regression analyses examined the main and interaction effects of hippocampal subfield volumes and PHS, indicating genetic risk for AD, on a validated episodic memory composite score. Diagnosis-stratified models further assessed the role of PHS. RESULTS Polygenic hazard score moderated the relationship between right fimbria/hippocampus volume ratio and episodic memory, such that patients with high PHS and lower volume ratio had lower episodic memory composite scores [ΔF = 6.730, p = 0.011, ΔR 2 = 0.059]. This effect was also found among individuals with MCI [ΔF = 4.519, p = 0.038, ΔR 2 = 0.050]. In contrast, no interaction effects were present for those NC or AD individuals. A follow-up mediation analysis also indicated that the right fimbria/hippocampus volume ratio might mediate the link between PHS and episodic memory performance in the MCI group, whereas no mediation effects were present for those NC or AD individuals. CONCLUSION These findings suggest that the interaction between AD genetic risk and hippocampal subfield volume ratio increases memory impairment among older adults. Also, the results highlighted a potential pathway in which genetic risk affects memory by degrading hippocampal subfield volume ratio in cognitive decline subjects.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
55
|
Li Z, Chen X. Comprehensive analysis of shared genetic loci between hippocampal volume and schizophrenia. Psychiatry Res 2022; 316:114795. [PMID: 35987069 DOI: 10.1016/j.psychres.2022.114795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Schizophrenia and hippocampal volume exhibit a genetic correlation, but the underlying genetic mechanisms remain unclear. Here, we investigated the shared genetic variants in schizophrenia and hippocampal volume using the largest genome-wide association studies (GWASs) data. We identified three genetic loci associated with both schizophrenia and hippocampal volume. Functional annotation analysis suggested that shared genetic variants play a major role via the regulatory effect on gene expression. Expression pattern analyses showed that candidate genes have a spatiotemporal and cell-specific expression pattern across human brain development. These findings provided deeper insights into the genetic mechanisms underlying hippocampus and schizophrenia risk.
Collapse
Affiliation(s)
- Zongchang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaogang Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan 410011, China; China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
56
|
Mai H, Bao J, Thompson PM, Kim D, Shen L. Identifying genes associated with brain volumetric differences through tissue specific transcriptomic inference from GWAS summary data. BMC Bioinformatics 2022; 23:398. [PMID: 36171548 PMCID: PMC9520794 DOI: 10.1186/s12859-022-04947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Brain volume has been widely studied in the neuroimaging field, since it is an important and heritable trait associated with brain development, aging and various neurological and psychiatric disorders. Genome-wide association studies (GWAS) have successfully identified numerous associations between genetic variants such as single nucleotide polymorphisms and complex traits like brain volume. However, it is unclear how these genetic variations influence regional gene expression levels, which may subsequently lead to phenotypic changes. S-PrediXcan is a tissue-specific transcriptomic data analysis method that can be applied to bridge this gap. In this work, we perform an S-PrediXcan analysis on GWAS summary data from two large imaging genetics initiatives, the UK Biobank and Enhancing Neuroimaging Genetics through Meta Analysis, to identify tissue-specific transcriptomic effects on two closely related brain volume measures: total brain volume (TBV) and intracranial volume (ICV). RESULTS As a result of the analysis, we identified 10 genes that are highly associated with both TBV and ICV. Nine out of 10 genes were found to be associated with TBV in another study using a different gene-based association analysis. Moreover, most of our discovered genes were also found to be correlated with multiple cognitive and behavioral traits. Further analyses revealed the protein-protein interactions, associated molecular pathways and biological functions that offer insight into how these genes function and interact with others. CONCLUSIONS These results confirm that S-PrediXcan can identify genes with tissue-specific transcriptomic effects on complex traits. The analysis also suggested novel genes whose expression levels are related to brain volumetric traits. This provides important insights into the genetic mechanisms of the human brain.
Collapse
Affiliation(s)
- Hung Mai
- Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, USA
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingxuan Bao
- Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dokyoon Kim
- Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, USA
| | - Li Shen
- Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
57
|
Liu M, Yu C, Zhang Z, Song M, Sun X, Piálek J, Jacob J, Lu J, Cong L, Zhang H, Wang Y, Li G, Feng Z, Du Z, Wang M, Wan X, Wang D, Wang YL, Li H, Wang Z, Zhang B, Zhang Z. Whole-genome sequencing reveals the genetic mechanisms of domestication in classical inbred mice. Genome Biol 2022; 23:203. [PMID: 36163035 PMCID: PMC9511766 DOI: 10.1186/s13059-022-02772-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background The laboratory mouse was domesticated from the wild house mouse. Understanding the genetics underlying domestication in laboratory mice, especially in the widely used classical inbred mice, is vital for studies using mouse models. However, the genetic mechanism of laboratory mouse domestication remains unknown due to lack of adequate genomic sequences of wild mice. Results We analyze the genetic relationships by whole-genome resequencing of 36 wild mice and 36 inbred strains. All classical inbred mice cluster together distinctly from wild and wild-derived inbred mice. Using nucleotide diversity analysis, Fst, and XP-CLR, we identify 339 positively selected genes that are closely associated with nervous system function. Approximately one third of these positively selected genes are highly expressed in brain tissues, and genetic mouse models of 125 genes in the positively selected genes exhibit abnormal behavioral or nervous system phenotypes. These positively selected genes show a higher ratio of differential expression between wild and classical inbred mice compared with all genes, especially in the hippocampus and frontal lobe. Using a mutant mouse model, we find that the SNP rs27900929 (T>C) in gene Astn2 significantly reduces the tameness of mice and modifies the ratio of the two Astn2 (a/b) isoforms. Conclusion Our study indicates that classical inbred mice experienced high selection pressure during domestication under laboratory conditions. The analysis shows the positively selected genes are closely associated with behavior and the nervous system in mice. Tameness may be related to the Astn2 mutation and regulated by the ratio of the two Astn2 (a/b) isoforms. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02772-1.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,International Society of Zoological Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Yu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhichao Zhang
- Novogene Bioinformatics Institute, Beijing, China.,Glbizzia Biosciences, Beijing, China
| | - Mingjing Song
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuping Sun
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Jaroslav Piálek
- House Mouse Group, Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests / Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | - Jiqi Lu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongmao Zhang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yong Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Feng
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,International Society of Zoological Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
58
|
Tang B, Wang Y, Jiang X, Thambisetty M, Ferrucci L, Johnell K, Hägg S. Genetic Variation in Targets of Antidiabetic Drugs and Alzheimer Disease Risk: A Mendelian Randomization Study. Neurology 2022; 99:e650-e659. [PMID: 35654594 PMCID: PMC9484609 DOI: 10.1212/wnl.0000000000200771] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/08/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Previous studies have highlighted antidiabetic drugs as repurposing candidates for Alzheimer disease (AD), but the disease-modifying effects are still unclear. METHODS A 2-sample mendelian randomization study design was applied to examine the association between genetic variation in the targets of 4 antidiabetic drug classes and AD risk. Genetic summary statistics for blood glucose were analyzed using UK Biobank data of 326,885 participants, whereas summary statistics for AD were retrieved from previous genome-wide association studies comprising 24,087 clinically diagnosed AD cases and 55,058 controls. Positive control analysis on type 2 diabetes mellitus (T2DM), insulin secretion, insulin resistance, and obesity-related traits was conducted to validate the selection of instrumental variables. RESULTS In the positive control analysis, genetic variation in sulfonylurea targets was associated with higher insulin secretion, a lower risk of T2DM, and an increment in body mass index, waist circumference, and hip circumference, consistent with drug mechanistic actions and previous trial evidence. In the primary analysis, genetic variation in sulfonylurea targets was associated with a lower risk of AD (odds ratio [OR] = 0.38 per 1 mmol/L decrement in blood glucose, 95% CI 0.19-0.72, p = 0.0034). These results for sulfonylureas were largely unchanged in the sensitivity analysis using a genetic variant, rs757110, that has been validated to modulate the target proteins of sulfonylureas (OR = 0.35 per 1 mmol/L decrement in blood glucose, 95% CI 0.15-0.82, p = 0.016). An association between genetic variations in the glucagon-like peptide 1 (GLP-1) analogue target and a lower risk of AD was also observed (OR = 0.32 per 1 mmol/L decrement in blood glucose, 95% CI 0.13-0.79, p = 0.014). However, this result should be interpreted with caution because the positive control analyses for GLP-1 analogues did not comply with a weight-loss effect as shown in previous clinical trials. Results regarding other drug classes were inconclusive. DISCUSSION Genetic variation in sulfonylurea targets was associated with a lower risk of AD, and future studies are warranted to clarify the underlying mechanistic pathways between sulfonylureas and AD.
Collapse
Affiliation(s)
- Bowen Tang
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Yunzhang Wang
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Xia Jiang
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Madhav Thambisetty
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Luigi Ferrucci
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Kristina Johnell
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Sara Hägg
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging.
| |
Collapse
|
59
|
Janahi M, Aksman L, Schott JM, Mokrab Y, Altmann A. Nomograms of human hippocampal volume shifted by polygenic scores. eLife 2022; 11:e78232. [PMID: 35938915 PMCID: PMC9391046 DOI: 10.7554/elife.78232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Nomograms are important clinical tools applied widely in both developing and aging populations. They are generally constructed as normative models identifying cases as outliers to a distribution of healthy controls. Currently used normative models do not account for genetic heterogeneity. Hippocampal volume (HV) is a key endophenotype for many brain disorders. Here, we examine the impact of genetic adjustment on HV nomograms and the translational ability to detect dementia patients. Using imaging data from 35,686 healthy subjects aged 44-82 from the UK Biobank (UKB), we built HV nomograms using Gaussian process regression (GPR), which - compared to a previous method - extended the application age by 20 years, including dementia critical age ranges. Using HV polygenic scores (HV-PGS), we built genetically adjusted nomograms from participants stratified into the top and bottom 30% of HV-PGS. This shifted the nomograms in the expected directions by ~100 mm3 (2.3% of the average HV), which equates to 3 years of normal aging for a person aged ~65. Clinical impact of genetically adjusted nomograms was investigated by comparing 818 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database diagnosed as either cognitively normal (CN), having mild cognitive impairment (MCI) or Alzheimer's disease (AD) patients. While no significant change in the survival analysis was found for MCI-to-AD conversion, an average of 68% relative decrease was found in intra-diagnostic-group variance, highlighting the importance of genetic adjustment in untangling phenotypic heterogeneity.
Collapse
Affiliation(s)
- Mohammed Janahi
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
- Medical and Population Genomics Lab, Human Genetics Department, Research Branch, Sidra MedicineDohaQatar
| | - Leon Aksman
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Jonathan M Schott
- Dementia Research Centre (DRC), Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Younes Mokrab
- Medical and Population Genomics Lab, Human Genetics Department, Research Branch, Sidra MedicineDohaQatar
- Department of Genetic Medicine, Weill Cornell Medicine-QatarDohaQatar
| | - Andre Altmann
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| |
Collapse
|
60
|
Mohammed NBB, Antonopoulos A, Dell A, Haslam SM, Dimitroff CJ. The pleiotropic role of galectin-3 in melanoma progression: Unraveling the enigma. Adv Cancer Res 2022; 157:157-193. [PMID: 36725108 PMCID: PMC9895887 DOI: 10.1016/bs.acr.2022.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a highly aggressive skin cancer with poor outcomes associated with distant metastasis. Intrinsic properties of melanoma cells alongside the crosstalk between melanoma cells and surrounding microenvironment determine the tumor behavior. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has emerged as a major effector in cancer progression, including melanoma behavior. Data from melanoma models and patient studies reveal that Gal-3 expression is dysregulated, both intracellularly and extracellularly, throughout the stages of melanoma progression. This review summarizes the most recent data and hypotheses on Gal-3 and its tumor-modulating functions, highlighting its role in driving melanoma growth, invasion, and metastatic colonization. It also provides insight into potential Gal-3-targeted strategies for melanoma diagnosis and treatment.
Collapse
Affiliation(s)
- Norhan B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
61
|
Wingo TS, Liu Y, Gerasimov ES, Vattathil SM, Wynne ME, Liu J, Lori A, Faundez V, Bennett DA, Seyfried NT, Levey AI, Wingo AP. Shared mechanisms across the major psychiatric and neurodegenerative diseases. Nat Commun 2022; 13:4314. [PMID: 35882878 PMCID: PMC9325708 DOI: 10.1038/s41467-022-31873-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Several common psychiatric and neurodegenerative diseases share epidemiologic risk; however, whether they share pathophysiology is unclear and is the focus of our investigation. Using 25 GWAS results and LD score regression, we find eight significant genetic correlations between psychiatric and neurodegenerative diseases. We integrate the GWAS results with human brain transcriptomes (n = 888) and proteomes (n = 722) to identify cis- and trans- transcripts and proteins that are consistent with a pleiotropic or causal role in each disease, referred to as causal proteins for brevity. Within each disease group, we find many distinct and shared causal proteins. Remarkably, 30% (13 of 42) of the neurodegenerative disease causal proteins are shared with psychiatric disorders. Furthermore, we find 2.6-fold more protein-protein interactions among the psychiatric and neurodegenerative causal proteins than expected by chance. Together, our findings suggest these psychiatric and neurodegenerative diseases have shared genetic and molecular pathophysiology, which has important ramifications for early treatment and therapeutic development.
Collapse
Affiliation(s)
- Thomas S Wingo
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Yue Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Selina M Vattathil
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Meghan E Wynne
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
- Veterans Affairs Atlanta Health Care System, Decatur, GA, USA.
| |
Collapse
|
62
|
Yang XZ, Wan MY, Zhang DD, Dai Y, Pan ZA, Zhai FF, Han F, Liu JY, Zhou LX, Ni J, Yao M, Jin ZY, Cui LY, Zhang SY, Zhu YC. Investigating the Genetic Characteristics of Hippocampal Volume and Plasma β-Amyloid in a Chinese Community-Dwelling Population. Neurology 2022; 99:e234-e244. [PMID: 35623891 DOI: 10.1212/wnl.0000000000200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The genetic characteristics and correlations of hippocampal volume (HV) and plasma β-amyloid (Aβ), probable endophenotypes for dementia, remain to be explored in a Chinese community cohort. Using whole-exome sequencing (WES) and single nucleotide polymorphism (SNP) array genotyping, we sought to identify rare and common variants and genes influencing these 2 endophenotypes and calculate their heritability and genetic correlation. METHODS Association analyses with both WES and SNP array genotyping data were performed for HV and plasma Aβ with mixed-effect linear regression model adjusted for sex, age, and total intracranial volume or APOE ε4 while considering familial relatedness. We also performed gene-level analysis for common and gene burden analysis for rare variants. Heritability and genetic correlation were examined further. RESULTS A total of 1,261 participants from a Chinese community cohort were included and we identified 1 gene, PTPRT, for HV, with the top significant SNPs by whole genome-wide association study (GWAS). rs6030076 (p = 5.48 × 10-8, β = -0.092, SE 0.017) from WES and rs6030088 (p = 8.24 × 10-9, β = -105.22, SE 18.09) from SNP array data were both located in this gene. Gene burden analysis based on rare mutations detected 6 genes to be significantly associated with Aβ. The SNP-based heritability was 0.43 ± 0.13 for HV and 0.2-0.3 for plasma Aβ. The SNP-based genetic correlation between HV and plasma Aβ was negative. DISCUSSION In this study, we identified several SNPs and 1 gene, PTPRT, which were not reported in previous GWAS, associated with HV. The heritability and the genetic correlation gave an overview of HV and plasma Aβ. Our findings provide insights into the mechanisms behind the individual variances in these endophenotypes.
Collapse
Affiliation(s)
- Xin-Zhuang Yang
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-Yao Wan
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ding-Ding Zhang
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Dai
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zi-Ang Pan
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei-Fei Zhai
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Han
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yi Liu
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Zhou
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yao
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Zhu
- From the Department of Neurology (X.-Z.Y., M.-Y.W., D.-D.Z., Y.D., Z.-A.P., F.-F.Z., F.H., J.-Y.L., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.), Medical Research Center (X.-Z.Y., D.-D.Z.), and Departments of Radiology (Z.-Y.J.) and Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
63
|
Kim P, Park J, Lee DJ, Mizuno S, Shinohara M, Hong CP, Jeong Y, Yun R, Park H, Park S, Yang KM, Lee MJ, Jang SP, Kim HY, Lee SJ, Song SU, Park KS, Tanaka M, Ohshima H, Cho JW, Sugiyama F, Takahashi S, Jung HS, Kim SJ. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat Commun 2022; 13:3960. [PMID: 35803931 PMCID: PMC9270402 DOI: 10.1038/s41467-022-31697-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) differentiation into different lineages is precisely controlled by signaling pathways. Given that protein kinases play a crucial role in signal transduction, here we show that Microtubule Associated Serine/Threonine Kinase Family Member 4 (Mast4) serves as an important mediator of TGF-β and Wnt signal transduction in regulating chondro-osteogenic differentiation of MSCs. Suppression of Mast4 by TGF-β1 led to increased Sox9 stability by blocking Mast4-induced Sox9 serine 494 phosphorylation and subsequent proteasomal degradation, ultimately enhancing chondrogenesis of MSCs. On the other hand, Mast4 protein, which stability was enhanced by Wnt-mediated inhibition of GSK-3β and subsequent Smurf1 recruitment, promoted β-catenin nuclear localization and Runx2 activity, increasing osteogenesis of MSCs. Consistently, Mast4-/- mice demonstrated excessive cartilage synthesis, while exhibiting osteoporotic phenotype. Interestingly, Mast4 depletion in MSCs facilitated cartilage formation and regeneration in vivo. Altogether, our findings uncover essential roles of Mast4 in determining the fate of MSC development into cartilage or bone.
Collapse
Affiliation(s)
- Pyunggang Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Kyunggi-do, Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
- Amoris Bio Inc, Seoul, 06668, Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
| | | | - Yealeen Jeong
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Rebecca Yun
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Hyeyeon Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | | | - Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | | | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
- NGeneS Inc., Ansan-si, 15495, Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sun U Song
- Research Institute, SCM Lifescience Inc., Incheon, Korea
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Kyunggi-do, Korea
| | - Mikako Tanaka
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
- Division of Dental Laboratory Technology, Meirin College, Niigata, 950-2086, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Jin Won Cho
- Department of Systems Biology and Glycosylation Network Research Center, Yonsei University, Seoul, Korea
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea.
- Medpacto Inc., Seoul, 06668, Korea.
- TheragenEtex Co., Gyeonggi-do, Korea.
| |
Collapse
|
64
|
Genetic Specificity of Hippocampal Subfield Volumes, Relative to Hippocampal Formation, Identified in 2148 Young Adult Twins and Siblings. Twin Res Hum Genet 2022; 25:129-139. [PMID: 35791873 DOI: 10.1017/thg.2022.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The hippocampus is a complex brain structure with key roles in cognitive and emotional processing and with subregion abnormalities associated with a range of disorders and psychopathologies. Here we combine data from two large independent young adult twin/sibling cohorts to obtain the most accurate estimates to date of genetic covariation between hippocampal subfield volumes and the hippocampus as a single volume. The combined sample included 2148 individuals, comprising 1073 individuals from 627 families (mean age = 22.3 years) from the Queensland Twin IMaging (QTIM) Study, and 1075 individuals from 454 families (mean age = 28.8 years) from the Human Connectome Project (HCP). Hippocampal subfields were segmented using FreeSurfer version 6.0 (CA4 and dentate gyrus were phenotypically and genetically indistinguishable and were summed to a single volume). Multivariate twin modeling was conducted in OpenMx to decompose variance into genetic and environmental sources. Bivariate analyses of hippocampal formation and each subfield volume showed that 10%-72% of subfield genetic variance was independent of the hippocampal formation, with greatest specificity found for the smaller volumes; for example, CA2/3 with 42% of genetic variance being independent of the hippocampus; fissure (63%); fimbria (72%); hippocampus-amygdala transition area (41%); parasubiculum (62%). In terms of genetic influence, whole hippocampal volume is a good proxy for the largest hippocampal subfields, but a poor substitute for the smaller subfields. Additive genetic sources accounted for 49%-77% of total variance for each of the subfields in the combined sample multivariate analysis. In addition, the multivariate analyses were sufficiently powered to identify common environmental influences (replicated in QTIM and HCP for the molecular layer and CA4/dentate gyrus, and accounting for 7%-16% of total variance for 8 of 10 subfields in the combined sample). This provides the clearest indication yet from a twin study that factors such as home environment may influence hippocampal volumes (albeit, with caveats).
Collapse
|
65
|
Bahrami S, Nordengen K, Shadrin AA, Frei O, van der Meer D, Dale AM, Westlye LT, Andreassen OA, Kaufmann T. Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nat Commun 2022; 13:3436. [PMID: 35705537 PMCID: PMC9200849 DOI: 10.1038/s41467-022-31086-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Despite its major role in complex human functions across the lifespan, most notably navigation, learning and memory, much of the genetic architecture of the hippocampal formation is currently unexplored. Here, through multivariate genome-wide association analysis in volumetric data from 35,411 white British individuals, we reveal 177 unique genetic loci with distributed associations across the hippocampal formation. We identify genetic overlap with eight brain disorders with typical onset at different stages of life, where common genes suggest partly age- and disorder-independent mechanisms underlying hippocampal pathology.
Collapse
Affiliation(s)
- Shahram Bahrami
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Anders M Dale
- Department of Radiology, School of Medicine, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
66
|
Systemic inflammatory markers in relation to cognitive function and measures of brain atrophy: a Mendelian randomization study. GeroScience 2022; 44:2259-2270. [PMID: 35689786 PMCID: PMC9616983 DOI: 10.1007/s11357-022-00602-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/07/2022] Open
Abstract
Observational studies have implied associations between multiple cytokines and cognitive decline, anti-inflammatory drugs however did not yield any protective effects on cognitive decline. We aimed to assess the associations of systemic inflammation, as measured by multiple cytokine and growth factor, with cognitive performance and brain atrophy using two-sample Mendelian randomization (MR). Independent genetic instruments (p < 5e − 8 and p < 5e − 6) for 41 systemic inflammatory markers were retrieved from a genome-wide association study conducted in 8293 Finnish participants. Summary statistics for gene-outcome associations were obtained for cognitive performance (N = 257,841) and for brain atrophy measures of cerebral cortical surface area and thickness (N = 51,665) and hippocampal volume (N = 33,536). To rule out the heterogeneity in the cognitive performance, we additionally included three domains: the fluid intelligence score (N = 108,818), prospective memory result (N = 111,099), and reaction time (N = 330,069). Main results were computed by inverse-variance weighting; sensitivity analyses taking pleiotropy and invalid instruments into account were performed by using weighted-median estimator, MR-Egger, and MR PRESSO. After correcting for multiple testing using false discovery rate, only genetically predicted (with p < 5e − 6 threshold) per-SD (standard deviation) higher IL-8 was associated with − 0.103 (− 0.155, − 0.051, padjusted = 0.004) mm3 smaller hippocampal volume and higher intelligence fluid score [β: 0.103 SD (95% CI: 0.042, 0.165), padjusted = 0.041]. Sensitivity analyses generally showed similar results, and no pleiotropic effect, heterogeneity, or possible reverse causation was detected. Our results suggested a possible causal association of high IL-8 levels with better cognitive performance but smaller hippocampal volume among the general healthy population, highlighting the complex role of inflammation in dementia-related phenotypes. Further research is needed to elucidate mechanisms underlying these associations.
Collapse
|
67
|
Le Grand Q, Satizabal CL, Sargurupremraj M, Mishra A, Soumaré A, Laurent A, Crivello F, Tsuchida A, Shin J, Macalli M, Singh B, Beiser AS, DeCarli C, Fletcher E, Paus T, Lathrop M, Adams HHH, Bis JC, Seshadri S, Tzourio C, Mazoyer B, Debette S. Genomic Studies Across the Lifespan Point to Early Mechanisms Determining Subcortical Volumes. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:616-628. [PMID: 34700051 PMCID: PMC9395126 DOI: 10.1016/j.bpsc.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Subcortical brain structures play a key role in pathological processes of age-related neurodegenerative disorders. Mounting evidence also suggests that early-life factors may have an impact on the development of common late-life neurological diseases, including genetic factors that can influence both brain maturation and neurodegeneration. METHODS Using large population-based brain imaging datasets across the lifespan (N ≤ 40,628), we aimed to 1) estimate the heritability of subcortical volumes in young (18-35 years), middle (35-65 years), and older (65+ years) age, and their genetic correlation across age groups; 2) identify whether genetic loci associated with subcortical volumes in older persons also show associations in early adulthood, and explore underlying genes using transcriptome-wide association studies; and 3) explore their association with neurological phenotypes. RESULTS Heritability of subcortical volumes consistently decreased with increasing age. Genetic risk scores for smaller caudate nucleus, putamen, and hippocampus volume in older adults were associated with smaller volumes in young adults. Individually, 10 loci associated with subcortical volumes in older adults also showed associations in young adults. Within these loci, transcriptome-wide association studies showed that expression of several genes in brain tissues (especially MYLK2 and TUFM) was associated with subcortical volumes in both age groups. One risk variant for smaller caudate nucleus volume (TUFM locus) was associated with lower cognitive performance. Genetically predicted Alzheimer's disease was associated with smaller subcortical volumes in middle and older age. CONCLUSIONS Our findings provide novel insights into the genetic determinants of subcortical volumes across the lifespan. More studies are needed to decipher the underlying biology and clinical impact.
Collapse
Affiliation(s)
- Quentin Le Grand
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas; Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas; Framingham Heart Study, Framingham, Massachusetts; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Muralidharan Sargurupremraj
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Aicha Soumaré
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Alexandre Laurent
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France
| | - Fabrice Crivello
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France
| | - Ami Tsuchida
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France
| | - Jean Shin
- Department of Physiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Department of Nutritional Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mélissa Macalli
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Baljeet Singh
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California Davis, Davis, California
| | - Alexa S Beiser
- Framingham Heart Study, Framingham, Massachusetts; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California Davis, Davis, California
| | - Evan Fletcher
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California Davis, Davis, California
| | - Tomas Paus
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Centre Hospitalier Universitaire Sainte-Justine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Mark Lathrop
- McGill Genome Center, McGill University, Montreal, Quebec, Canada
| | - Hieab H H Adams
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas; Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas; Framingham Heart Study, Framingham, Massachusetts; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France; Bordeaux University Hospital, Department of Medical Informatics, Bordeaux, France
| | - Bernard Mazoyer
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; Bordeaux University Hospital, Department of Neuroradiology, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France; Bordeaux University Hospital, Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux, France.
| |
Collapse
|
68
|
Wang G, Wu W, Xu Y, Yang Z, Xiao B, Long L. Imaging Genetics in Epilepsy: Current Knowledge and New Perspectives. Front Mol Neurosci 2022; 15:891621. [PMID: 35706428 PMCID: PMC9189397 DOI: 10.3389/fnmol.2022.891621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a neurological network disease with genetics playing a much greater role than was previously appreciated. Unfortunately, the relationship between genetic basis and imaging phenotype is by no means simple. Imaging genetics integrates multidimensional datasets within a unified framework, providing a unique opportunity to pursue a global vision for epilepsy. This review delineates the current knowledge of underlying genetic mechanisms for brain networks in different epilepsy syndromes, particularly from a neural developmental perspective. Further, endophenotypes and their potential value are discussed. Finally, we highlight current challenges and provide perspectives for the future development of imaging genetics in epilepsy.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yuchen Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuanyi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- *Correspondence: Lili Long
| |
Collapse
|
69
|
De Stefano N, Battaglini M, Pareto D, Cortese R, Zhang J, Oesingmann N, Prados F, Rocca MA, Valsasina P, Vrenken H, Gandini Wheeler-Kingshott CAM, Filippi M, Barkhof F, Rovira À. MAGNIMS recommendations for harmonization of MRI data in MS multicenter studies. Neuroimage Clin 2022; 34:102972. [PMID: 35245791 PMCID: PMC8892169 DOI: 10.1016/j.nicl.2022.102972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
Sharing data from cooperative studies is essential to develop new biomarkers in MS. Differences in MRI acquisition, analysis, storage represent a substantial constraint. We review the state of the art and developments in the harmonization of MRI. We provide recommendations to harmonize large MRI datasets in the MS field.
There is an increasing need of sharing harmonized data from large, cooperative studies as this is essential to develop new diagnostic and prognostic biomarkers. In the field of multiple sclerosis (MS), the issue has become of paramount importance due to the need to translate into the clinical setting some of the most recent MRI achievements. However, differences in MRI acquisition parameters, image analysis and data storage across sites, with their potential bias, represent a substantial constraint. This review focuses on the state of the art, recent technical advances, and desirable future developments of the harmonization of acquisition, analysis and storage of large-scale multicentre MRI data of MS cohorts. Huge efforts are currently being made to achieve all the requirements needed to provide harmonized MRI datasets in the MS field, as proper management of large imaging datasets is one of our greatest opportunities and challenges in the coming years. Recommendations based on these achievements will be provided here. Despite the advances that have been made, the complexity of these tasks requires further research by specialized academical centres, with dedicated technical and human resources. Such collective efforts involving different professional figures are of crucial importance to offer to MS patients a personalised management while minimizing consumption of resources.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Jian Zhang
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, United Kingdom; e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hugo Vrenken
- Amsterdam Neuroscience, MS Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Brain MRI 3T Research Center, C. Mondino National Neurological Institute, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, United Kingdom; Amsterdam Neuroscience, MS Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
70
|
Zavaliangos‐Petropulu A, Lo B, Donnelly MR, Schweighofer N, Lohse K, Jahanshad N, Barisano G, Banaj N, Borich MR, Boyd LA, Buetefisch CM, Byblow WD, Cassidy JM, Charalambous CC, Conforto AB, DiCarlo JA, Dula AN, Egorova‐Brumley N, Etherton MR, Feng W, Fercho KA, Geranmayeh F, Hanlon CA, Hayward KS, Hordacre B, Kautz SA, Khlif MS, Kim H, Kuceyeski A, Lin DJ, Liu J, Lotze M, MacIntosh BJ, Margetis JL, Mohamed FB, Piras F, Ramos‐Murguialday A, Revill KP, Roberts PS, Robertson AD, Schambra HM, Seo NJ, Shiroishi MS, Stinear CM, Soekadar SR, Spalletta G, Taga M, Tang WK, Thielman GT, Vecchio D, Ward NS, Westlye LT, Werden E, Winstein C, Wittenberg GF, Wolf SL, Wong KA, Yu C, Brodtmann A, Cramer SC, Thompson PM, Liew S. Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. J Am Heart Assoc 2022; 11:e025109. [PMID: 35574963 PMCID: PMC9238563 DOI: 10.1161/jaha.121.025109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Background Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper-limb sensorimotor impairment. We investigated associations between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results Cross-sectional T1-weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA-UE (Fugl-Meyer Assessment of Upper Extremity). Robust mixed-effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; β=0.16) but not contralesional (P=0.96; β=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; β=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; β=-0.26) and contralesional (P=0.006; β=-0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; β=-0.21) and extent of sensorimotor damage (P=0.003; β=-0.15). Conclusions The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.
Collapse
Affiliation(s)
- Artemis Zavaliangos‐Petropulu
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCA
| | - Bethany Lo
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - Miranda R. Donnelly
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - Nicolas Schweighofer
- Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - Keith Lohse
- Physical Therapy and NeurologyWashington University School of Medicine in Saint LouisMO
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Giuseppe Barisano
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCA
| | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Michael R. Borich
- Division of Physical TherapyDepartment of Rehabilitation MedicineEmory University School of MedicineAtlantaGA
| | - Lara A. Boyd
- Department of Physical TherapyUniversity of British ColumbiaVancouverCanada
| | | | - Winston D. Byblow
- Department of Exercise Sciences, and Centre for Brain ResearchUniversity of AucklandNew Zealand
| | - Jessica M. Cassidy
- Department of Allied Health SciencesUniversity of North Carolina at Chapel HillNC
| | - Charalambos C. Charalambous
- Department of Basic and Clinical SciencesUniversity of Nicosia Medical SchoolNicosiaCyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE)NicosiaCyprus
| | - Adriana B. Conforto
- Hospital das ClínicasSão Paulo UniversitySão PauloBrazil
- Hospital Israelita Albert EinsteinSão PauloBrazil
| | - Julie A. DiCarlo
- Center for Neurotechnology and Neurorecovery (CNTR)Massachusetts General HospitalBostonMA
| | - Adrienne N. Dula
- Department of NeurologyDell Medical SchoolUniversity of Texas at AustinTX
| | | | - Mark R. Etherton
- Department of NeurologyJ. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMA
| | - Wuwei Feng
- Department of NeurologyDuke University School of MedicineDurhamNC
| | - Kelene A. Fercho
- Basic Biomedical SciencesUniversity of South DakotaVermillionSD
- Federal Aviation AdministrationCivil Aerospace Medical InstituteOklahoma CityOK
| | | | | | - Kathryn S. Hayward
- Departments of Physiotherapy and Medicine, University of MelbourneHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in HealthAllied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Steven A. Kautz
- Ralph H Johnson Veterans Affairs Medical CenterCharlestonSC
- Department of Health Sciences & ResearchMedical University of South CarolinaCharlestonSC
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
| | - Hosung Kim
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Amy Kuceyeski
- Department of RadiologyWeill Cornell MedicineNew YorkNY
| | - David J. Lin
- Center for Neurotechnology and Neurorecovery (CNTR)Massachusetts General HospitalBostonMA
| | - Jingchun Liu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Martin Lotze
- Functional ImagingInstitute for Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGermany
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
| | - John L. Margetis
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - Feroze B. Mohamed
- Department of RadiologyJefferson Integrated MR CenterThomas Jefferson UniversityPhiladelphiaPA
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Ander Ramos‐Murguialday
- Institute of Medical Psychology and Behavioral NeurobiologyUniversity of TübingenGermany
- Health DivisionTECNALIASan SebastianSpain
| | | | - Pamela S. Roberts
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
- Department of Physical Medicine and RehabilitationCedars‐SinaiLos AngelesCA
| | - Andrew D. Robertson
- Department of Kinesiology and Health SciencesUniversity of WaterlooOntarioCanada
| | - Heidi M. Schambra
- Departments of Neurology & Rehabilitation MedicineNYU LangoneNew YorkNY
| | - Na Jin Seo
- Ralph H Johnson Veterans Affairs Medical CenterCharlestonSC
- Department of Rehabilitation SciencesDepartment of Health Science and ResearchMedical University of South CarolinaCharlestonSC
| | - Mark S. Shiroishi
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of RadiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | | | - Surjo R. Soekadar
- Clinical Neurotechnology LaboratoryDepartment of Psychiatry and Neurosciences (CCM)Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Myriam Taga
- NYU Langone Department of NeurologyNew YorkNY
| | - Wai Kwong Tang
- Department of PsychiatryThe Chinese University of Hong KongChina
| | - Gregory T. Thielman
- Department of Physical Therapy and NeuroscienceUniversity of the SciencesPhiladelphiaPA
| | - Daniela Vecchio
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Nick S. Ward
- University College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloNorway
- Department of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
- Melbourne Dementia Research CenterUniversity of MelbourneVictoriaAustralia
| | - Carolee Winstein
- Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - George F. Wittenberg
- Department of NeurologyUniversity of PittsburghPA
- Department of Veterans AffairsGeriatrics Research Educational & Clinical CenterVeterans Affairs Pittsburgh Healthcare System (VAPHS)PittsburghPA
| | - Steven L. Wolf
- Division of Physical TherapyDepartment of Rehabilitation MedicineEmory University School of MedicineAtlantaGA
- Department of MedicineEmory University School of MedicineAtlantaGA
| | - Kristin A. Wong
- Department of Physical Medicine & RehabilitationDell Medical SchoolUniversity of Texas at AustinTX
| | - Chunshui Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
| | - Steven C. Cramer
- Department of NeurologyUniversity of California Los AngelesDavid Geffen School of MedicineLos AngelesCA
- California Rehabilitation HospitalLos AngelesCA
| | - Paul M. Thompson
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Sook‐Lei Liew
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
- Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCA
| |
Collapse
|
71
|
Brouwer RM, Klein M, Grasby KL, Schnack HG, Jahanshad N, Teeuw J, Thomopoulos SI, Sprooten E, Franz CE, Gogtay N, Kremen WS, Panizzon MS, Olde Loohuis LM, Whelan CD, Aghajani M, Alloza C, Alnæs D, Artiges E, Ayesa-Arriola R, Barker GJ, Bastin ME, Blok E, Bøen E, Breukelaar IA, Bright JK, Buimer EEL, Bülow R, Cannon DM, Ciufolini S, Crossley NA, Damatac CG, Dazzan P, de Mol CL, de Zwarte SMC, Desrivières S, Díaz-Caneja CM, Doan NT, Dohm K, Fröhner JH, Goltermann J, Grigis A, Grotegerd D, Han LKM, Harris MA, Hartman CA, Heany SJ, Heindel W, Heslenfeld DJ, Hohmann S, Ittermann B, Jansen PR, Janssen J, Jia T, Jiang J, Jockwitz C, Karali T, Keeser D, Koevoets MGJC, Lenroot RK, Malchow B, Mandl RCW, Medel V, Meinert S, Morgan CA, Mühleisen TW, Nabulsi L, Opel N, de la Foz VOG, Overs BJ, Paillère Martinot ML, Redlich R, Marques TR, Repple J, Roberts G, Roshchupkin GV, Setiaman N, Shumskaya E, Stein F, Sudre G, Takahashi S, Thalamuthu A, Tordesillas-Gutiérrez D, van der Lugt A, van Haren NEM, Wardlaw JM, Wen W, Westeneng HJ, Wittfeld K, Zhu AH, Zugman A, Armstrong NJ, Bonfiglio G, Bralten J, Dalvie S, Davies G, Di Forti M, Ding L, Donohoe G, Forstner AJ, Gonzalez-Peñas J, et alBrouwer RM, Klein M, Grasby KL, Schnack HG, Jahanshad N, Teeuw J, Thomopoulos SI, Sprooten E, Franz CE, Gogtay N, Kremen WS, Panizzon MS, Olde Loohuis LM, Whelan CD, Aghajani M, Alloza C, Alnæs D, Artiges E, Ayesa-Arriola R, Barker GJ, Bastin ME, Blok E, Bøen E, Breukelaar IA, Bright JK, Buimer EEL, Bülow R, Cannon DM, Ciufolini S, Crossley NA, Damatac CG, Dazzan P, de Mol CL, de Zwarte SMC, Desrivières S, Díaz-Caneja CM, Doan NT, Dohm K, Fröhner JH, Goltermann J, Grigis A, Grotegerd D, Han LKM, Harris MA, Hartman CA, Heany SJ, Heindel W, Heslenfeld DJ, Hohmann S, Ittermann B, Jansen PR, Janssen J, Jia T, Jiang J, Jockwitz C, Karali T, Keeser D, Koevoets MGJC, Lenroot RK, Malchow B, Mandl RCW, Medel V, Meinert S, Morgan CA, Mühleisen TW, Nabulsi L, Opel N, de la Foz VOG, Overs BJ, Paillère Martinot ML, Redlich R, Marques TR, Repple J, Roberts G, Roshchupkin GV, Setiaman N, Shumskaya E, Stein F, Sudre G, Takahashi S, Thalamuthu A, Tordesillas-Gutiérrez D, van der Lugt A, van Haren NEM, Wardlaw JM, Wen W, Westeneng HJ, Wittfeld K, Zhu AH, Zugman A, Armstrong NJ, Bonfiglio G, Bralten J, Dalvie S, Davies G, Di Forti M, Ding L, Donohoe G, Forstner AJ, Gonzalez-Peñas J, Guimaraes JPOFT, Homuth G, Hottenga JJ, Knol MJ, Kwok JBJ, Le Hellard S, Mather KA, Milaneschi Y, Morris DW, Nöthen MM, Papiol S, Rietschel M, Santoro ML, Steen VM, Stein JL, Streit F, Tankard RM, Teumer A, van 't Ent D, van der Meer D, van Eijk KR, Vassos E, Vázquez-Bourgon J, Witt SH, Adams HHH, Agartz I, Ames D, Amunts K, Andreassen OA, Arango C, Banaschewski T, Baune BT, Belangero SI, Bokde ALW, Boomsma DI, Bressan RA, Brodaty H, Buitelaar JK, Cahn W, Caspers S, Cichon S, Crespo-Facorro B, Cox SR, Dannlowski U, Elvsåshagen T, Espeseth T, Falkai PG, Fisher SE, Flor H, Fullerton JM, Garavan H, Gowland PA, Grabe HJ, Hahn T, Heinz A, Hillegers M, Hoare J, Hoekstra PJ, Ikram MA, Jackowski AP, Jansen A, Jönsson EG, Kahn RS, Kircher T, Korgaonkar MS, Krug A, Lemaitre H, Malt UF, Martinot JL, McDonald C, Mitchell PB, Muetzel RL, Murray RM, Nees F, Nenadić I, Oosterlaan J, Ophoff RA, Pan PM, Penninx BWJH, Poustka L, Sachdev PS, Salum GA, Schofield PR, Schumann G, Shaw P, Sim K, Smolka MN, Stein DJ, Trollor JN, van den Berg LH, Veldink JH, Walter H, Westlye LT, Whelan R, White T, Wright MJ, Medland SE, Franke B, Thompson PM, Hulshoff Pol HE. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat Neurosci 2022; 25:421-432. [PMID: 35383335 PMCID: PMC10040206 DOI: 10.1038/s41593-022-01042-4] [Show More Authors] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/28/2022] [Indexed: 02/08/2023]
Abstract
Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.
Collapse
Affiliation(s)
- Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands.
| | - Marieke Klein
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hugo G Schnack
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Utrecht Institute of Linguistics OTS, Utrecht University, Utrecht, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Jalmar Teeuw
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Emma Sprooten
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carol E Franz
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Nitin Gogtay
- American Psychiatric Association, Washington, DC, USA
| | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Matthew S Panizzon
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Moji Aghajani
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, Leiden, The Netherlands
| | - Clara Alloza
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Dag Alnæs
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eric Artiges
- INSERM U1299 Trajectoires Développementales en Psychiatrie, Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, Université Paris Cité, CNRS UMR 9010; Centre Borelli, Gif-sur-Yvette, France
| | - Rosa Ayesa-Arriola
- Valdecilla Biomedical Research Institute (IDIVAL), Marqués de Valdecilla University Hospital (HUMV), School of Medicine, University of Cantabria, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Santander, Spain
- Universidad de Cantabria, Santander, Spain
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark E Bastin
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Elisabet Blok
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erlend Bøen
- Psychosomatic and CL Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Isabella A Breukelaar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Joanna K Bright
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Elizabeth E L Buimer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Dara M Cannon
- Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christienne G Damatac
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Casper L de Mol
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sonja M C de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Juliane H Fröhner
- Section of Systems Neuroscience, Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Antoine Grigis
- Université Paris-Saclay, CEA, Neurospin, Gif-sur-Yvette, France
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Laura K M Han
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mathew A Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
| | - Sarah J Heany
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Walter Heindel
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Dirk J Heslenfeld
- Departments of Experimental and Clinical Psychology, Amsterdam, The Netherlands
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | | | - Philip R Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Human Genetics, VUmc, Amsterdam UMC, Amsterdam, The Netherlands
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Tianye Jia
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Science and Technology for Brain-Inspired Intelligence and MoE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology and Neuroscience, SGDP Centre, King's College London, London, UK
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Temmuz Karali
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital LMU, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital LMU, Munich, Germany
- Munich Center for Neurosciences (MCN) - Brain & Mind, Planegg-Martinsried, Germany
| | - Martijn G J C Koevoets
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- School of Psychiatry and Behavioral Sciences, School of Medicine, University of New Mexico, Albuquerque, NM, USA
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - René C W Mandl
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Vicente Medel
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Catherine A Morgan
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand - Rangahau Roro Aotearoa, Auckland, New Zealand
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Nabulsi
- Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Víctor Ortiz-García de la Foz
- Valdecilla Biomedical Research Institute (IDIVAL), Marqués de Valdecilla University Hospital (HUMV), School of Medicine, University of Cantabria, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Santander, Spain
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | | | - Marie-Laure Paillère Martinot
- INSERM U1299 Trajectoires Développementales en Psychiatrie, Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, Université Paris Cité, CNRS UMR 9010; Centre Borelli, Gif-sur-Yvette, France
- APHP, Sorbonne Université, Pitie-Salpetriere Hospital, Department of Child and Adolescent Psychiatry, Paris, France
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychology, University of Halle, Halle, Germany
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nikita Setiaman
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elena Shumskaya
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Gustavo Sudre
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Diana Tordesillas-Gutiérrez
- Department of Radiology, IDIVAL, Marqués de Valdecilla University Hospital, Santander, Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria (UC-CSIC), Santander, Spain
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Neeltje E M van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joanna M Wardlaw
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences and UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Henk-Jan Westeneng
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Andre Zugman
- Laboratory of Integrative Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), CNPq, São Paulo, Brazil
| | | | - Gaia Bonfiglio
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Gail Davies
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Linda Ding
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Centre for Human Genetics, Philipps-University Marburg, Marburg, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Javier Gonzalez-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Joao P O F T Guimaraes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jouke-Jan Hottenga
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - John B J Kwok
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephanie Le Hellard
- NORMENT Centre of Excellence, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Derek W Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Sergi Papiol
- CIBERSAM, Biomedical Research Network on Mental Health Area, Santander, Spain
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital LMU, Munich, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marcos L Santoro
- Laboratory of Integrative Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), CNPq, São Paulo, Brazil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Vidar M Steen
- NORMENT Centre of Excellence, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fabian Streit
- Department of Genetic Epidemiology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rick M Tankard
- Mathematics and Statistics, Curtin University, Perth, WA, Australia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dennis van 't Ent
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Dennis van der Meer
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kristel R van Eijk
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Javier Vázquez-Bourgon
- Valdecilla Biomedical Research Institute (IDIVAL), Marqués de Valdecilla University Hospital (HUMV), School of Medicine, University of Cantabria, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Santander, Spain
- Universidad de Cantabria, Santander, Spain
| | - Stephanie H Witt
- Department of Genetic Epidemiology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hieab H H Adams
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Ingrid Agartz
- NORMENT Centre, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - David Ames
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Parkville, VIC, Australia
- National Ageing Research Institute, Parkville, VIC, Australia
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Melbourne, Melbourne VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Sintia I Belangero
- Laboratory of Integrative Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), CNPq, São Paulo, Brazil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Arun L W Bokde
- Discipline of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Rodrigo A Bressan
- Laboratory of Integrative Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), CNPq, São Paulo, Brazil
- Instituto Ame Sua Mente, São Paulo, Brazil
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Altrecht Science, Altrecht Mental Health Institute, Utrecht, The Netherlands
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Benedicto Crespo-Facorro
- CIBERSAM, Biomedical Research Network on Mental Health Area, Santander, Spain
- Department of Psychiatry, Virgen del Rocio University Hospital, School of Medicine, University of Seville, IBIS, Seville, Spain
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Torbjørn Elvsåshagen
- NORMENT Centre, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Peter G Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Hans J Grabe
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | | | - Manon Hillegers
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jacqueline Hoare
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- Faculty of Health, Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry & Accare Child Study Center, Groningen, The Netherlands
| | - Mohammad A Ikram
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrea P Jackowski
- Laboratory of Integrative Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), CNPq, São Paulo, Brazil
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Erik G Jönsson
- NORMENT Centre, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- VISN 2 Mental Illness Research, Education & Clinical Center (MIRECC), James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Herve Lemaitre
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Ulrik F Malt
- Unit for Psychosomatic Medicine and C-L Psychiatry, University of Oslo, Oslo, Norway
| | - Jean-Luc Martinot
- INSERM U1299 Trajectoires Développementales en Psychiatrie, Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, Université Paris Cité, CNRS UMR 9010; Centre Borelli, Gif-sur-Yvette, France
| | - Colm McDonald
- Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Jaap Oosterlaan
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
- Vrije Universiteit, Clinical Neuropsychology Section, Amsterdam, The Netherlands
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Pedro M Pan
- Laboratory of Integrative Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), CNPq, São Paulo, Brazil
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, University Medical Center Goettingen, Göttingen, Germany
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, NSW, Australia
| | - Giovanni A Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), CNPq, São Paulo, Brazil
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gunter Schumann
- Center for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
- PONS Centre, Department of Psychiatry and Clinical Neuroscience, CCM, Charite University Medicine, Berlin, Germany
| | - Philip Shaw
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD, USA
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Henrik Walter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute for Health, Berlin, Germany
| | - Lars T Westlye
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Robert Whelan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
- Department of Psychology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
72
|
Chambers T, Escott-Price V, Legge S, Baker E, Singh KD, Walters JTR, Caseras X, Anney RJL. Genetic common variants associated with cerebellar volume and their overlap with mental disorders: a study on 33,265 individuals from the UK-Biobank. Mol Psychiatry 2022; 27:2282-2290. [PMID: 35079123 PMCID: PMC9126806 DOI: 10.1038/s41380-022-01443-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Interest in the cerebellum is expanding given evidence of its contributions to cognition and emotion, and dysfunction in various psychopathologies. However, research into its genetic architecture and shared influences with liability for mental disorders is lacking. We conducted a genome-wide association study (GWAS) of total cerebellar volume and underlying cerebellar lobe volumes in 33,265 UK-Biobank participants. Total cerebellar volume was heritable (h2SNP = 50.6%), showing moderate genetic homogeneity across lobes (h2SNP from 35.4% to 57.1%; mean genetic correlation between lobes rg ≈ 0.44). We identified 33 GWAS signals associated with total cerebellar volume, of which 6 are known to alter protein-coding gene structure, while a further five mapped to genomic regions known to alter cerebellar tissue gene expression. Use of summary data-based Mendelian randomisation further prioritised genes whose change in expression appears to mediate the SNP-trait association. In total, we highlight 21 unique genes of greatest interest for follow-up analyses. Using LD-regression, we report significant genetic correlations between total cerebellar volume and brainstem, pallidum and thalamus volumes. While the same approach did not result in significant correlations with psychiatric phenotypes, we report enrichment of schizophrenia, bipolar disorder and autism spectrum disorder associated signals within total cerebellar GWAS results via conditional and conjunctional-FDR analysis. Via these methods and GWAS catalogue, we identify which of our cerebellar genomic regions also associate with psychiatric traits. Our results provide important insights into the common allele architecture of cerebellar volume and its overlap with other brain volumes and psychiatric phenotypes.
Collapse
Affiliation(s)
- Tom Chambers
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Sophie Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Emily Baker
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| | - Richard J L Anney
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
73
|
Homann J, Osburg T, Ohlei O, Dobricic V, Deecke L, Bos I, Vandenberghe R, Gabel S, Scheltens P, Teunissen CE, Engelborghs S, Frisoni G, Blin O, Richardson JC, Bordet R, Lleó A, Alcolea D, Popp J, Clark C, Peyratout G, Martinez-Lage P, Tainta M, Dobson RJB, Legido-Quigley C, Sleegers K, Van Broeckhoven C, Wittig M, Franke A, Lill CM, Blennow K, Zetterberg H, Lovestone S, Streffer J, ten Kate M, Vos SJB, Barkhof F, Visser PJ, Bertram L. Genome-Wide Association Study of Alzheimer's Disease Brain Imaging Biomarkers and Neuropsychological Phenotypes in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Dataset. Front Aging Neurosci 2022; 14:840651. [PMID: 35386118 PMCID: PMC8979334 DOI: 10.3389/fnagi.2022.840651] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disease with an increasing prevalence in industrialized, aging populations. AD susceptibility has an established genetic basis which has been the focus of a large number of genome-wide association studies (GWAS) published over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e., case vs. control classification, as outcome phenotypes, without the use of biomarkers. An alternative and potentially more powerful study design is afforded by using quantitative AD-related phenotypes as GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized genotype and phenotype data from n = 931 individuals collected under the auspices of the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study to perform a total of 19 separate GWAS analyses. As outcomes we used five magnetic resonance imaging (MRI) traits and seven cognitive performance traits. For the latter, longitudinal data from at least two timepoints were available in addition to cross-sectional assessments at baseline. Our GWAS analyses revealed several genome-wide significant associations for the neuropsychological performance measures, in particular those assayed longitudinally. Among the most noteworthy signals were associations in or near EHBP1 (EH domain binding protein 1; on chromosome 2p15) and CEP112 (centrosomal protein 112; 17q24.1) with delayed recall as well as SMOC2 (SPARC related modular calcium binding 2; 6p27) with immediate recall in a memory performance test. On the X chromosome, which is often excluded in other GWAS, we identified a genome-wide significant signal near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; Xp21.3). While polygenic score (PGS) analyses showed the expected strong associations with SNPs highlighted in relevant previous GWAS on hippocampal volume and cognitive function, they did not show noteworthy associations with recent AD risk GWAS findings. In summary, our study highlights the power of using quantitative endophenotypes as outcome traits in AD-related GWAS analyses and nominates several new loci not previously implicated in cognitive decline.
Collapse
Affiliation(s)
- Jan Homann
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Tim Osburg
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Laura Deecke
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospital Leuven, Leuven, Belgium
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Center for Neurosciences, Universitair Ziekenhuis Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Giovanni Frisoni
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- Institut Neurosciences Timone, AIX Marseille University, Marseille, France
| | - Jill C. Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Regis Bordet
- Lille Neuroscience and Cognition, University of Lille, Inserm, CHU Lille, Lille, France
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de Sant Pau, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Memory Unit, Neurology Department, Hospital de Sant Pau, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Christopher Clark
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Gwendoline Peyratout
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pablo Martinez-Lage
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Mikel Tainta
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Richard J. B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom
- Health Data Research UK London, University College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Cristina Legido-Quigley
- Steno Diabetes Center, Copenhagen, Denmark
- King’s College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Kristel Sleegers
- Complex Genetics of Alzheimer’s Disease Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina M. Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Janssen R&D, LLC. Beerse, Belgium
| | - Mara ten Kate
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, United Kingdom
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
74
|
Qiu B, Zhong Z, Righter S, Xu Y, Wang J, Deng R, Wang C, Williams KE, Ma YY, Tsechpenakis G, Liang T, Yong W. FKBP51 modulates hippocampal size and function in post-translational regulation of Parkin. Cell Mol Life Sci 2022; 79:175. [PMID: 35244772 PMCID: PMC11072506 DOI: 10.1007/s00018-022-04167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing, 100032, China
| | - Shawn Righter
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gavriil Tsechpenakis
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
75
|
Rabinowitz JA, Campos AI, Ong JS, García-Marín LM, Alcauter S, Mitchell BL, Grasby KL, Cuéllar-Partida G, Gillespie NA, Huhn AS, Martin NG, Thompson PM, Medland SE, Maher BS, Rentería ME. Shared Genetic Etiology between Cortical Brain Morphology and Tobacco, Alcohol, and Cannabis Use. Cereb Cortex 2022; 32:796-807. [PMID: 34379727 PMCID: PMC8841600 DOI: 10.1093/cercor/bhab243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified genetic variants associated with brain morphology and substance use behaviors (SUB). However, the genetic overlap between brain structure and SUB has not been well characterized. We leveraged GWAS summary data of 71 brain imaging measures and alcohol, tobacco, and cannabis use to investigate their genetic overlap using linkage disequilibrium score regression. We used genomic structural equation modeling to model a "common SUB genetic factor" and investigated its genetic overlap with brain structure. Furthermore, we estimated SUB polygenic risk scores (PRS) and examined whether they predicted brain imaging traits using the Adolescent Behavior and Cognitive Development (ABCD) study. We identified 8 significant negative genetic correlations, including between (1) alcoholic drinks per week and average cortical thickness, and (2) intracranial volume with age of smoking initiation. We observed 5 positive genetic correlations, including those between (1) insula surface area and lifetime cannabis use, and (2) the common SUB genetic factor and pericalcarine surface area. SUB PRS were associated with brain structure variation in ABCD. Our findings highlight a shared genetic etiology between cortical brain morphology and SUB and suggest that genetic variants associated with SUB may be causally related to brain structure differences.
Collapse
Affiliation(s)
- Jill A Rabinowitz
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Adrian I Campos
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jue-Sheng Ong
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Luis M García-Marín
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sarael Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Brittany L Mitchell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Katrina L Grasby
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Gabriel Cuéllar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Andrew S Huhn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas G Martin
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Sarah E Medland
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Brion S Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| |
Collapse
|
76
|
Rao S, Tian L, Cao H, Baranova A, Zhang F. Involvement of the long intergenic non-coding RNA LINC00461 in schizophrenia. BMC Psychiatry 2022; 22:59. [PMID: 35081922 PMCID: PMC8790831 DOI: 10.1186/s12888-022-03718-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE LINC00461 is a highly conserved intergenic non-protein coding RNA that was implicated in schizophrenia at the genome-wide level. We aim to explore potential mechanisms underlying the involvement of LINC00461 in schizophrenia. METHODS We performed a meta-analysis to investigate the association of LINC00461 rs410216 with schizophrenia, and evaluate the effects of the rs410216 on hippocampal volume and function using the functional magnetic resonance imaging (fMRI) analysis. We utilized the GTEx dataset to profile the expression distribution of LINC00461 across different brain regions, and to investigate the potential impact of the risk SNPs on the expression of LINC00461 and other nearby genes. We compared blood expression levels of LINC00461 between schizophrenia patients and controls. RESULTS Here we show that single-nucleotide polymorphisms (SNPs) located in regulatory elements spanning the LINC00461 region are significantly associated with schizophrenia (index SNP rs410216, Pmeta = 1.43E-05); subjects carrying the risk allele of rs410216 showed decreased hippocampal volume. However, no significant association of the rs410216 variant with hippocampal activation was observed. Moreover, the expression level of LINC00461 mRNA was significantly lower in first-onset schizophrenia patients, and the risk allele also predicts a lower transcriptional level of LINC00461 in the hippocampus. CONCLUSION Together, these convergent lines of evidence implicate inadequate LINC00461 expression in the hippocampus in the development of schizophrenia, providing novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- grid.461843.cState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Lin Tian
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hongbao Cao
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA
| | - Ancha Baranova
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA ,grid.415876.9Research Centre for Medical Genetics, Moscow, 115478 Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
77
|
Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro‐de‐Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng L, Alda M, Almeida J, Alnæs D, Alonso‐Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, del Mar Bonnin C, Brambilla P, Canales‐Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives‐Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López‐Jaramillo C, Machado‐Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda‐Zapata JA, Poletti S, Polosan M, Pomarol‐Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, et alChing CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro‐de‐Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng L, Alda M, Almeida J, Alnæs D, Alonso‐Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, del Mar Bonnin C, Brambilla P, Canales‐Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives‐Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López‐Jaramillo C, Machado‐Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda‐Zapata JA, Poletti S, Polosan M, Pomarol‐Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, Soares JC, Stäblein M, Stein DJ, Tamnes CK, Thomaidis GV, Upegui CV, Veltman DJ, Wessa M, Westlye LT, Whalley HC, Wolf DH, Wu M, Yatham LN, Zarate CA, Thompson PM, Andreassen OA, ENIGMA Bipolar Disorder Working Group. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum Brain Mapp 2022; 43:56-82. [PMID: 32725849 PMCID: PMC8675426 DOI: 10.1002/hbm.25098] [Show More Authors] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
Collapse
Affiliation(s)
- Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | - Abraham Nunes
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christoph Abé
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Center for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Rachel M. Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Lisa T. Eyler
- Department of PsychiatryUniversity of CaliforniaLa JollaCaliforniaUSA
- Desert‐Pacific MIRECCVA San Diego HealthcareSan DiegoCaliforniaUSA
| | - Pauline Favre
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
- Neurospin, CEA Paris‐Saclay, team UNIACTGif‐sur‐YvetteFrance
| | - Tomas Hajek
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
- National Institute of Mental HealthKlecanyCzech Republic
| | - Unn K. Haukvik
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
| | - Josselin Houenou
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
- Neurospin, CEA Paris‐Saclay, team UNIACTGif‐sur‐YvetteFrance
- APHPMondor University Hospitals, DMU IMPACTCréteilFrance
| | - Mikael Landén
- Department of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Tristram A. Lett
- Department for Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany
- Department of Neurology with Experimental NeurologyCharité Universitätsmedizin BerlinBerlinGermany
| | - Colm McDonald
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Yash Patel
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Melissa E. Pauling
- Desert‐Pacific MIRECCVA San Diego HealthcareSan DiegoCaliforniaUSA
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Joaquim Radua
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Marcio G. Soeiro‐de‐Souza
- Mood Disorders Unit (GRUDA), Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil
| | - Giulia Tronchin
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry/PsychologyErasmus Medical CenterRotterdamThe Netherlands
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Henrik Walter
- Department for Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany
| | - Ling‐Li Zeng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| | - Martin Alda
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | - Jorge Almeida
- Dell Medical SchoolThe University of Texas at AustinAustinTexasUSA
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
| | - Silvia Alonso‐Lana
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Cara Altimus
- Milken Institute Center for Strategic PhilanthropyWashingtonDistrict of ColumbiaUSA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Medical FacultyTechnische Universität DresdenDresdenGermany
| | - Bernhard T. Baune
- Department of PsychiatryUniversity of MünsterMünsterGermany
- Department of PsychiatryThe University of MelbourneMelbourneVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Francesco Benedetti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Michael Berk
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- IMPACT Institute – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon HealthDeakin UniversityGeelongVictoriaAustralia
| | - Amy C. Bilderbeck
- The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of MelbourneOrygenMelbourneVictoriaAustralia
- P1vital LtdWallingfordUK
| | | | - Erlend Bøen
- Mood Disorders Research ProgramYale School of MedicineNew HavenConnecticutUSA
| | - Irene Bollettini
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Caterina del Mar Bonnin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Paolo Brambilla
- Psychosomatic and CL PsychiatryOslo University HospitalOsloNorway
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Erick J. Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
- Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne and Melbourne HealthMelbourneVictoriaAustralia
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Udo Dannlowski
- Department of PsychiatryUniversity of MünsterMünsterGermany
| | | | - Ana M. Díaz‐Zuluaga
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
| | - Danai Dima
- Department of Psychology, School of Social Sciences and ArtsCity, University of LondonLondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
- Department of NeurologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Scott C. Fears
- Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
- Greater Los Angeles Veterans AdministrationLos AngelesCaliforniaUSA
| | - Sophia Frangou
- Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Janice M. Fullerton
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jose M. Goikolea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Melissa J. Green
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Oliver Gruber
- Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Chantal Henry
- Department of PsychiatryService Hospitalo‐Universitaire, GHU Paris Psychiatrie & NeurosciencesParisFrance
- Université de ParisParisFrance
| | - Fleur M. Howells
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | | | - Andreas Jansen
- Core‐Facility Brainimaging, Faculty of MedicineUniversity of MarburgMarburgGermany
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Tilo T. J. Kircher
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Bernd Kramer
- Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Beny Lafer
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloSPBrazil
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
- Mood Disorders ProgramHospital Universitario Trastorno del ÁnimoMedellínColombia
| | - Rodrigo Machado‐Vieira
- Experimental Therapeutics and Molecular Pathophysiology Program, Department of PsychiatryUTHealth, University of TexasHoustonTexasUSA
| | - Bradley J. MacIntosh
- Hurvitz Brain SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Elisa M. T. Melloni
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Philip B. Mitchell
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Igor Nenadic
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Fabiano Nery
- University of CincinnatiCincinnatiOhioUSA
- Universidade de São PauloSão PauloSPBrazil
| | | | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
- Department of PsychiatryErasmus Medical Center, Erasmus UniversityRotterdamThe Netherlands
| | - Miho Ota
- Department of Mental Disorder ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | | | - Daniel L. Pham
- Milken Institute Center for Strategic PhilanthropyWashingtonDistrict of ColumbiaUSA
| | - Mary L. Phillips
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Sara Poletti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Mircea Polosan
- University of Grenoble AlpesCHU Grenoble AlpesGrenobleFrance
- INSERM U1216 ‐ Grenoble Institut des NeurosciencesLa TroncheFrance
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Arnaud Pouchon
- University of Grenoble AlpesCHU Grenoble AlpesGrenobleFrance
| | - Yann Quidé
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Maria M. Rive
- Department of PsychiatryAmsterdam UMC, location AMCAmsterdamThe Netherlands
| | - Gloria Roberts
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Henricus G. Ruhe
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Aart H. Schene
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jair C. Soares
- Center of Excellent on Mood DisordersUTHealth HoustonHoustonTexasUSA
- Department of Psychiatry and Behavioral SciencesUTHealth HoustonHoustonTexasUSA
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Dan J. Stein
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- SAMRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Georgios V. Thomaidis
- Papanikolaou General HospitalThessalonikiGreece
- Laboratory of Mechanics and MaterialsSchool of Engineering, Aristotle UniversityThessalonikiGreece
| | - Cristian Vargas Upegui
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMCAmsterdamThe Netherlands
| | - Michèle Wessa
- Department of Neuropsychology and Clinical PsychologyJohannes Gutenberg‐University MainzMainzGermany
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and AddictionOslo University HospitalOsloNorway
| | | | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Mon‐Ju Wu
- Department of Psychiatry and Behavioral SciencesUTHealth HoustonHoustonTexasUSA
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Carlos A. Zarate
- Chief Experimental Therapeutics & Pathophysiology BranchBethesdaMarylandUSA
- Intramural Research ProgramNational Institute of Mental HealthBethesdaMarylandUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | | |
Collapse
|
78
|
Paschou P, Jin Y, Müller-Vahl K, Möller HE, Rizzo R, Hoekstra PJ, Roessner V, Mol Debes N, Worbe Y, Hartmann A, Mir P, Cath D, Neuner I, Eichele H, Zhang C, Lewandowska K, Munchau A, Verrel J, Musil R, Silk TJ, Hanlon CA, Bihun ED, Brandt V, Dietrich A, Forde N, Ganos C, Greene DJ, Chu C, Grothe MJ, Hershey T, Janik P, Koller JM, Martin-Rodriguez JF, Müller K, Palmucci S, Prato A, Ramkiran S, Saia F, Szejko N, Torrecuso R, Tumer Z, Uhlmann A, Veselinovic T, Wolańczyk T, Zouki JJ, Jain P, Topaloudi A, Kaka M, Yang Z, Drineas P, Thomopoulos SI, White T, Veltman DJ, Schmaal L, Stein DJ, Buitelaar J, Franke B, van den Heuvel O, Jahanshad N, Thompson PM, Black KJ. Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration. Front Psychiatry 2022; 13:958688. [PMID: 36072455 PMCID: PMC9443935 DOI: 10.3389/fpsyt.2022.958688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.
Collapse
Affiliation(s)
- Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Yin Jin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Hannover University Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renata Rizzo
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Nanette Mol Debes
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Yulia Worbe
- Department of Neurophysiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Danielle Cath
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Chencheng Zhang
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | | | - Alexander Munchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Tim J Silk
- Deakin University, Geelong, VIC, Australia
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily D Bihun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Andrea Dietrich
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Natalie Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christos Ganos
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Chunguang Chu
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Juan Francisco Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Karsten Müller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Adriana Prato
- Child and Adolescent Neurology and Psychiatric Section, Department of Clinical and Experimental Medicine, Catania University, Catania, Italy
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Federica Saia
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zeynep Tumer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Tanja Veselinovic
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany
| | - Tomasz Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Pritesh Jain
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mary Kaka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Petros Drineas
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sophia I Thomopoulos
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dan J Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jan Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Barbara Franke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Odile van den Heuvel
- Department Psychiatry, Department Anatomy and Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
79
|
Sønderby IE, Ching CRK, Thomopoulos SI, van der Meer D, Sun D, Villalon‐Reina JE, Agartz I, Amunts K, Arango C, Armstrong NJ, Ayesa‐Arriola R, Bakker G, Bassett AS, Boomsma DI, Bülow R, Butcher NJ, Calhoun VD, Caspers S, Chow EWC, Cichon S, Ciufolini S, Craig MC, Crespo‐Facorro B, Cunningham AC, Dale AM, Dazzan P, de Zubicaray GI, Djurovic S, Doherty JL, Donohoe G, Draganski B, Durdle CA, Ehrlich S, Emanuel BS, Espeseth T, Fisher SE, Ge T, Glahn DC, Grabe HJ, Gur RE, Gutman BA, Haavik J, Håberg AK, Hansen LA, Hashimoto R, Hibar DP, Holmes AJ, Hottenga J, Hulshoff Pol HE, Jalbrzikowski M, Knowles EEM, Kushan L, Linden DEJ, Liu J, Lundervold AJ, Martin‐Brevet S, Martínez K, Mather KA, Mathias SR, McDonald‐McGinn DM, McRae AF, Medland SE, Moberget T, Modenato C, Monereo Sánchez J, Moreau CA, Mühleisen TW, Paus T, Pausova Z, Prieto C, Ragothaman A, Reinbold CS, Reis Marques T, Repetto GM, Reymond A, Roalf DR, Rodriguez‐Herreros B, Rucker JJ, Sachdev PS, Schmitt JE, Schofield PR, Silva AI, Stefansson H, Stein DJ, Tamnes CK, Tordesillas‐Gutiérrez D, Ulfarsson MO, Vajdi A, van 't Ent D, van den Bree MBM, Vassos E, Vázquez‐Bourgon J, Vila‐Rodriguez F, Walters GB, Wen W, Westlye LT, Wittfeld K, Zackai EH, Stefánsson K, Jacquemont S, et alSønderby IE, Ching CRK, Thomopoulos SI, van der Meer D, Sun D, Villalon‐Reina JE, Agartz I, Amunts K, Arango C, Armstrong NJ, Ayesa‐Arriola R, Bakker G, Bassett AS, Boomsma DI, Bülow R, Butcher NJ, Calhoun VD, Caspers S, Chow EWC, Cichon S, Ciufolini S, Craig MC, Crespo‐Facorro B, Cunningham AC, Dale AM, Dazzan P, de Zubicaray GI, Djurovic S, Doherty JL, Donohoe G, Draganski B, Durdle CA, Ehrlich S, Emanuel BS, Espeseth T, Fisher SE, Ge T, Glahn DC, Grabe HJ, Gur RE, Gutman BA, Haavik J, Håberg AK, Hansen LA, Hashimoto R, Hibar DP, Holmes AJ, Hottenga J, Hulshoff Pol HE, Jalbrzikowski M, Knowles EEM, Kushan L, Linden DEJ, Liu J, Lundervold AJ, Martin‐Brevet S, Martínez K, Mather KA, Mathias SR, McDonald‐McGinn DM, McRae AF, Medland SE, Moberget T, Modenato C, Monereo Sánchez J, Moreau CA, Mühleisen TW, Paus T, Pausova Z, Prieto C, Ragothaman A, Reinbold CS, Reis Marques T, Repetto GM, Reymond A, Roalf DR, Rodriguez‐Herreros B, Rucker JJ, Sachdev PS, Schmitt JE, Schofield PR, Silva AI, Stefansson H, Stein DJ, Tamnes CK, Tordesillas‐Gutiérrez D, Ulfarsson MO, Vajdi A, van 't Ent D, van den Bree MBM, Vassos E, Vázquez‐Bourgon J, Vila‐Rodriguez F, Walters GB, Wen W, Westlye LT, Wittfeld K, Zackai EH, Stefánsson K, Jacquemont S, Thompson PM, Bearden CE, Andreassen OA. Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. Hum Brain Mapp 2022; 43:300-328. [PMID: 33615640 PMCID: PMC8675420 DOI: 10.1002/hbm.25354] [Show More Authors] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.
Collapse
Affiliation(s)
- Ida E. Sønderby
- Department of Medical GeneticsOslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Christopher R. K. Ching
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Mental HealthVeterans Affairs Greater Los Angeles Healthcare System, Los AngelesCaliforniaUSA
| | - Julio E. Villalon‐Reina
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Ingrid Agartz
- NORMENT, Institute of Clinical PsychiatryUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Rosa Ayesa‐Arriola
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
| | - Geor Bakker
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamThe Netherlands
| | - Anne S. Bassett
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General HospitalUniversity Health NetworkTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health (APH) Research InstituteAmsterdam UMCAmsterdamThe Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Nancy J. Butcher
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Child Health Evaluative SciencesThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute for Anatomy IMedical Faculty & University Hospital Düsseldorf, University of DüsseldorfDüsseldorfGermany
| | - Eva W. C. Chow
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Simone Ciufolini
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Michael C. Craig
- Department of Forensic and Neurodevelopmental SciencesThe Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | | | - Adam C. Cunningham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Anders M. Dale
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Paola Dazzan
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Greig I. de Zubicaray
- Faculty of HealthQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Srdjan Djurovic
- Department of Medical GeneticsOslo University HospitalOsloNorway
- NORMENT, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Joanne L. Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Gary Donohoe
- Center for Neuroimaging, Genetics and GenomicsSchool of Psychology, NUI GalwayGalwayIreland
| | - Bogdan Draganski
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- Neurology DepartmentMax‐Planck Institute for Human Brain and Cognitive SciencesLeipzigGermany
| | - Courtney A. Durdle
- MIND Institute and Department of Psychiatry and Behavioral SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU DresdenDresdenGermany
| | - Beverly S. Emanuel
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas Espeseth
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychologyBjørknes CollegeOsloNorway
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics UnitCenter for Genomic Medicine, Massachusetts General HospitalBostonMassachusettsUSA
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David C. Glahn
- Tommy Fuss Center for Neuropsychiatric Disease ResearchBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Hans J. Grabe
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Youth Suicide Prevention, Intervention and Research CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Boris A. Gutman
- Medical Imaging Research Center, Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Jan Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - Asta K. Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Radiology and Nuclear MedicineSt. Olavs HospitalTrondheimNorway
| | - Laura A. Hansen
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ryota Hashimoto
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryTokyoJapan
- Department of PsychiatryOsaka University Graduate School of MedicineOsakaJapan
| | - Derrek P. Hibar
- Personalized Healthcare AnalyticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Avram J. Holmes
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Jouke‐Jan Hottenga
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Emma E. M. Knowles
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - David E. J. Linden
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
| | - Jingyu Liu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
- Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Astri J. Lundervold
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Sandra Martin‐Brevet
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
| | - Kenia Martínez
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Facultad de PsicologíaUniversidad Autónoma de MadridMadridSpain
| | - Karen A. Mather
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Samuel R. Mathias
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Donna M. McDonald‐McGinn
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Human Genetics and 22q and You CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Allan F. McRae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Torgeir Moberget
- Department of Psychology, Faculty of Social SciencesUniversity of OsloOsloNorway
| | - Claudia Modenato
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- University of LausanneLausanneSwitzerland
| | - Jennifer Monereo Sánchez
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Clara A. Moreau
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
| | - Thomas W. Mühleisen
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Zdenka Pausova
- Translational Medicine, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Carlos Prieto
- Bioinformatics Service, NucleusUniversity of SalamancaSalamancaSpain
| | | | - Céline S. Reinbold
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Centre for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloOsloNorway
| | - Tiago Reis Marques
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith HospitalImperial College LondonLondonUnited Kingdom
| | - Gabriela M. Repetto
- Center for Genetics and GenomicsFacultad de Medicina, Clinica Alemana Universidad del DesarrolloSantiagoChile
| | - Alexandre Reymond
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - David R. Roalf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - James J. Rucker
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalSydneyNew South WalesAustralia
| | - James E. Schmitt
- Department of Radiology and PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Ana I. Silva
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | | | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Diana Tordesillas‐Gutiérrez
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Neuroimaging Unit, Technological FacilitiesValdecilla Biomedical Research Institute (IDIVAL), SantanderSpain
| | - Magnus O. Ulfarsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of Electrical and Computer EngineeringUniversity of Iceland, ReykjavikIceland
| | - Ariana Vajdi
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dennis van 't Ent
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Marianne B. M. van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Javier Vázquez‐Bourgon
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
- School of MedicineUniversity of CantabriaSantanderSpain
| | - Fidel Vila‐Rodriguez
- Department of PsychiatryThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - G. Bragi Walters
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lars T. Westlye
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Elaine H. Zackai
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kári Stefánsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
- Department of PediatricsUniversity of Montreal, MontrealQCCanada
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Center for Neurobehavioral GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| |
Collapse
|
80
|
Zavaliangos‐Petropulu A, Tubi MA, Haddad E, Zhu A, Braskie MN, Jahanshad N, Thompson PM, Liew S. Testing a convolutional neural network-based hippocampal segmentation method in a stroke population. Hum Brain Mapp 2022; 43:234-243. [PMID: 33067842 PMCID: PMC8675423 DOI: 10.1002/hbm.25210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022] Open
Abstract
As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas-based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network-based hippocampal segmentation method, does not rely solely on a single atlas-based approach and thus may be better suited for stroke populations. Here, we compared quality control and the accuracy of segmentations generated by Hippodeep and two well-accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed using a stringent protocol for visual inspection of the segmentations, and accuracy was measured as volumetric correlation with manual segmentations. Hippodeep performed significantly better than both FreeSurfer methods in terms of quality control. All three automated segmentation methods had good correlation with manual segmentations and no one method was significantly more correlated than the others. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy.
Collapse
Affiliation(s)
- Artemis Zavaliangos‐Petropulu
- Neural Plasticity and Neurorehabilitation LaboratoryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsKeck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meral A. Tubi
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsKeck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Elizabeth Haddad
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsKeck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Alyssa Zhu
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsKeck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meredith N. Braskie
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsKeck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsKeck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsKeck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Sook‐Lei Liew
- Neural Plasticity and Neurorehabilitation LaboratoryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsKeck School of Medicine of USCMarina del ReyCaliforniaUSA
- Chan Division of Occupational Science and Occupational TherapyOstrow School of Dentistry, University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
81
|
Matoba N, Love MI, Stein JL. Evaluating brain structure traits as endophenotypes using polygenicity and discoverability. Hum Brain Mapp 2022; 43:329-340. [PMID: 33098356 PMCID: PMC8675430 DOI: 10.1002/hbm.25257] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022] Open
Abstract
Human brain structure traits have been hypothesized to be broad endophenotypes for neuropsychiatric disorders, implying that brain structure traits are comparatively "closer to the underlying biology." Genome-wide association studies from large sample sizes allow for the comparison of common variant genetic architectures between traits to test the evidence supporting this claim. Endophenotypes, compared to neuropsychiatric disorders, are hypothesized to have less polygenicity, with greater effect size of each susceptible SNP, requiring smaller sample sizes to discover them. Here, we compare polygenicity and discoverability of brain structure traits, neuropsychiatric disorders, and other traits (91 in total) to directly test this hypothesis. We found reduced polygenicity (FDR = 0.01) and increased discoverability (FDR = 3.68 × 10-9 ) of cortical brain structure traits, as compared to aggregated estimates of multiple neuropsychiatric disorders. We predict that ~8 M individuals will be required to explain the full heritability of cortical surface area by genome-wide significant SNPs, whereas sample sizes over 20 M will be required to explain the full heritability of depression. In conclusion, our findings are consistent with brain structure satisfying the higher power criterion of endophenotypes.
Collapse
Affiliation(s)
- Nana Matoba
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- UNC Neuroscience CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Michael I. Love
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jason L. Stein
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- UNC Neuroscience CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
82
|
Hoogman M, van Rooij D, Klein M, Boedhoe P, Ilioska I, Li T, Patel Y, Postema MC, Zhang‐James Y, Anagnostou E, Arango C, Auzias G, Banaschewski T, Bau CHD, Behrmann M, Bellgrove MA, Brandeis D, Brem S, Busatto GF, Calderoni S, Calvo R, Castellanos FX, Coghill D, Conzelmann A, Daly E, Deruelle C, Dinstein I, Durston S, Ecker C, Ehrlich S, Epstein JN, Fair DA, Fitzgerald J, Freitag CM, Frodl T, Gallagher L, Grevet EH, Haavik J, Hoekstra PJ, Janssen J, Karkashadze G, King JA, Konrad K, Kuntsi J, Lazaro L, Lerch JP, Lesch K, Louza MR, Luna B, Mattos P, McGrath J, Muratori F, Murphy C, Nigg JT, Oberwelland‐Weiss E, O'Gorman Tuura RL, O'Hearn K, Oosterlaan J, Parellada M, Pauli P, Plessen KJ, Ramos‐Quiroga JA, Reif A, Reneman L, Retico A, Rosa PGP, Rubia K, Shaw P, Silk TJ, Tamm L, Vilarroya O, Walitza S, Jahanshad N, Faraone SV, Francks C, van den Heuvel OA, Paus T, Thompson PM, Buitelaar JK, Franke B. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure. Hum Brain Mapp 2022; 43:37-55. [PMID: 32420680 PMCID: PMC8675410 DOI: 10.1002/hbm.25029] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.
Collapse
Affiliation(s)
- Martine Hoogman
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| | - Marieke Klein
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of PsychiatryUniversity Medical Center Utrecht, UMC Utrecht Brain CenterUtrechtThe Netherlands
| | - Premika Boedhoe
- Department of Psychiatry, Department of Anatomy & NeurosciencesAmsterdam Neuroscience, Amsterdam UMC Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Iva Ilioska
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| | - Ting Li
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Yash Patel
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Merel C. Postema
- Department of Language & GeneticsMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Yanli Zhang‐James
- Department of Psychiatry and behavioral sciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Evdokia Anagnostou
- Department of Pediatrics University of TorontoHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
- School of Medicine, Universidad ComplutenseMadridSpain
| | | | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and PsychotherapyCentral Institute of Mental Health, Mannheim, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Claiton H. D. Bau
- Department of Genetics, Institute of BiosciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Developmental Psychiatry Program, Experimental Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Marlene Behrmann
- Department of Psychology and Neuroscience InstituteCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and PsychotherapyCentral Institute of Mental Health, Mannheim, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
- Department of Child and Adolescent Psychiatry and PsychotherapyPsychiatric Hospital, University of ZurichZurichSwitzerland
- The Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and PsychotherapyPsychiatric Hospital, University of ZurichZurichSwitzerland
- The Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Geraldo F. Busatto
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloBrazil
| | - Sara Calderoni
- Department of Developmental NeuroscienceIRCCS Fondazione Stella MarisPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of Child and Adolescent Psychiatry and PsychologyHospital ClínicBarcelonaSpain
| | - Rosa Calvo
- IDIBAPSBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
- Department of MedicineUniversity of BarcelonaBarcelonaSpain
- Department of Child and Adolescent PsychiatryHassenfeld Children's Hospital at NYU LangoneNew YorkNew YorkUSA
| | - Francisco X. Castellanos
- Department of Child and Adolescent PsychiatryHassenfeld Children's Hospital at NYU LangoneNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - David Coghill
- Department of Paediatrics and PsychiatryUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital of Psychiatry and PsychotherapyTübingenGermany
- PFH – Private University of Applied Sciences, Department of Psychology (Clinical Psychology II)GöttingenGermany
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental ScienceInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | | | - Ilan Dinstein
- Department of PsychologyBen Gurion UniversityBeer ShevaIsrael
| | - Sarah Durston
- NICHE lab, Deptartment of PsychiatryUMC Utrecht Brain CenterUtrechtThe Netherlands
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental ScienceInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyAutism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany
| | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of MedicineTechnischen Universität DresdenDresdenGermany
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of MedicineTechnischen Universität DresdenDresdenGermany
| | - Jeffery N. Epstein
- Division of Behavioral Medicine and Clinical PsychologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Damien A. Fair
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | | | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyAutism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany
| | - Thomas Frodl
- Department of Psychiatry, School of MedicineTrinity College DublinDublinIreland
- Department of Psychiatry and PsychotherapyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Disorders (DZNE)MagdeburgGermany
| | - Louise Gallagher
- Department of Psychiatry, School of MedicineTrinity College DublinDublinIreland
| | - Eugenio H. Grevet
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Developmental Psychiatry Program, Experimental Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Department of Psychiatry, Faculty of Medical ScienceUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - Pieter J. Hoekstra
- Department of Child and Adolescent PsychiatryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Joost Janssen
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
| | - Georgii Karkashadze
- Scientific research institute of Pediatrics and child health of Central clinical Hospital RAoSMoscowRussia
| | - Joseph A. King
- Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of MedicineTechnischen Universität DresdenDresdenGermany
| | - Kerstin Konrad
- Child Neuropsychology SectionUniversity Hospital RWTH AachenAachenGermany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM‐11), Institute for Neuroscience and MedicineResearch Center JülichJulichGermany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and PsychologyHospital ClínicBarcelonaSpain
- IDIBAPSBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
- Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department for Clinical NeurosciencesUniversity of OxfordUK
- The Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Klaus‐Peter Lesch
- Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
- Laboratory of Psychiatric NeurobiologyInstitute of Molecular Medicine, I.M. Sechenov First Moscow State Medical UniversityMoscowRussia
- Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS)Maastricht UniversityMaastrichtThe Netherlands
| | - Mario R. Louza
- Department and Institute of Psychiatry, Faculty of MedicineUniversity of Sao PauloSao PauloBrazil
| | - Beatriz Luna
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Paulo Mattos
- D'Or Institute for Research and EducationRio de JaneiroBrazil
- Federal University of Rio de JaneiroRio de JaneiroBrazil
| | - Jane McGrath
- Department of Psychiatry, School of MedicineTrinity College DublinDublinIreland
| | - Filippo Muratori
- Department of Developmental NeuroscienceIRCCS Fondazione Stella MarisPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Clodagh Murphy
- Department of Forensic and Neurodevelopmental ScienceInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Joel T. Nigg
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Eileen Oberwelland‐Weiss
- JARA Institute Molecular Neuroscience and Neuroimaging (INM‐11), Institute for Neuroscience and MedicineResearch Center JülichJulichGermany
- Translational Neuroscience, Child and Adolescent PsychiatryUniversity Hospital RWTH AachenAachenGermany
| | - Ruth L. O'Gorman Tuura
- Center for MR ResearchUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP)ZurichSwitzerland
| | - Kirsten O'Hearn
- Department of physiology and pharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jaap Oosterlaan
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Emma Children's Hospital Amsterdam Medical CenterAmsterdamThe Netherlands
| | - Mara Parellada
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
- School of MedicineUniversidad ComplutenseMadridSpain
| | - Paul Pauli
- Department of Biological PsychologyClinical Psychology and PsychotherapyWürzburgGermany
| | - Kerstin J. Plessen
- Child and Adolescent Mental Health CentreCopenhagenDenmark
- Division of Child and Adolescent Psychiatry, Department of PsychiatryUniversity Hospital LausanneSwitzerland
| | - J. Antoni Ramos‐Quiroga
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
- Department of PsychiatryHospital Universitari Vall d'HebronBarcelonaSpain
- Group of Psychiatry, Addictions and Mental HealthVall d'Hebron Research InstituteBarcelonaSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autonoma de BarcelonaBarcelonaSpain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital FrankfurtFrankfurtGermany
| | - Liesbeth Reneman
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
- Brain Imaging CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
| | | | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloBrazil
| | - Katya Rubia
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Philip Shaw
- National Human Genome Research InstituteBethesdaMarylandUSA
- National Institute of Mental HealthBethesdaMarylandUSA
| | - Tim J. Silk
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Deakin UniversitySchool of PsychologyGeelongAustralia
| | - Leanne Tamm
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Oscar Vilarroya
- Department of Psychiatry and Forensic MedicineUniversitat Autonoma de BarcelonaBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and PsychotherapyPsychiatric Hospital, University of ZurichZurichSwitzerland
- The Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Neda Jahanshad
- Imaging Genetics CenterStevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Stephen V. Faraone
- Department of Psychiatry and of Neuroscience and PhysiologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Clyde Francks
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Language & GeneticsMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Odile A. van den Heuvel
- Department of Psychiatry, Department of Anatomy & NeurosciencesAmsterdam Neuroscience, Amsterdam UMC Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology & PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Paul M. Thompson
- Imaging Genetics CenterStevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Karakter child and adolescent psychiatry University CenterNijmegenThe Netherlands
| | - Barbara Franke
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
83
|
Zugman A, Harrewijn A, Cardinale EM, Zwiebel H, Freitag GF, Werwath KE, Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Hilbert K, Cardoner N, Porta‐Casteràs D, Gosnell S, Salas R, Blair KS, Blair JR, Hammoud MZ, Milad M, Burkhouse K, Phan KL, Schroeder HK, Strawn JR, Beesdo‐Baum K, Thomopoulos SI, Grabe HJ, Van der Auwera S, Wittfeld K, Nielsen JA, Buckner R, Smoller JW, Mwangi B, Soares JC, Wu M, Zunta‐Soares GB, Jackowski AP, Pan PM, Salum GA, Assaf M, Diefenbach GJ, Brambilla P, Maggioni E, Hofmann D, Straube T, Andreescu C, Berta R, Tamburo E, Price R, Manfro GG, Critchley HD, Makovac E, Mancini M, Meeten F, Ottaviani C, Agosta F, Canu E, Cividini C, Filippi M, Kostić M, Munjiza A, Filippi CA, Leibenluft E, Alberton BAV, Balderston NL, Ernst M, Grillon C, Mujica‐Parodi LR, van Nieuwenhuizen H, Fonzo GA, Paulus MP, Stein MB, Gur RE, Gur RC, Kaczkurkin AN, Larsen B, Satterthwaite TD, Harper J, Myers M, Perino MT, Yu Q, Sylvester CM, Veltman DJ, Lueken U, Van der Wee NJA, Stein DJ, Jahanshad N, Thompson PM, Pine DS, Winkler AM. Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group. Hum Brain Mapp 2022; 43:255-277. [PMID: 32596977 PMCID: PMC8675407 DOI: 10.1002/hbm.25096] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022] Open
Abstract
The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.
Collapse
Affiliation(s)
- André Zugman
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Anita Harrewijn
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Elise M. Cardinale
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Hannah Zwiebel
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Gabrielle F. Freitag
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Katy E. Werwath
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Janna M. Bas‐Hoogendam
- Leiden University Medical Center, Department of PsychiatryLeidenThe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)LeidenThe Netherlands
- Leiden University, Institute of Psychology, Developmental and Educational PsychologyLeidenThe Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Moji Aghajani
- Department. of PsychiatryAmsterdam UMC/VUMCAmsterdamThe Netherlands
- GGZ InGeestDepartment of Research & InnovationAmsterdamThe Netherlands
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Narcis Cardoner
- Department of Mental HealthUniversity Hospital Parc Taulí‐I3PTBarcelonaSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud MentalCarlos III Health InstituteMadridSpain
| | - Daniel Porta‐Casteràs
- Department of Mental HealthUniversity Hospital Parc Taulí‐I3PTBarcelonaSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud MentalCarlos III Health InstituteMadridSpain
| | - Savannah Gosnell
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | - Karina S. Blair
- Center for Neurobehavioral ResearchBoys Town National Research HospitalBoys TownNebraskaUSA
| | - James R. Blair
- Center for Neurobehavioral ResearchBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Mira Z. Hammoud
- Department of PsychiatryNew York UniversityNew YorkNew YorkUSA
| | - Mohammed Milad
- Department of PsychiatryNew York UniversityNew YorkNew YorkUSA
| | - Katie Burkhouse
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - K. Luan Phan
- Department of Psychiatry and Behavioral HealthThe Ohio State UniversityColumbusOhioUSA
| | - Heidi K. Schroeder
- Department of Psychiatry & Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Jeffrey R. Strawn
- Department of Psychiatry & Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Katja Beesdo‐Baum
- Behavioral EpidemiologyInstitute of Clinical Psychology and Psychotherapy, Technische Universität DresdenDresdenGermany
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Hans J. Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Sandra Van der Auwera
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Jared A. Nielsen
- Department of PsychologyHarvard UniversityCambridgeMassachusettsUSA
- Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
| | - Randy Buckner
- Department of PsychologyHarvard UniversityCambridgeMassachusettsUSA
- Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Jordan W. Smoller
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Benson Mwangi
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Jair C. Soares
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Mon‐Ju Wu
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Giovana B. Zunta‐Soares
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Andrea P. Jackowski
- LiNC, Department of PsychiatryFederal University of São PauloSão PauloSão PauloBrazil
| | - Pedro M. Pan
- LiNC, Department of PsychiatryFederal University of São PauloSão PauloSão PauloBrazil
| | - Giovanni A. Salum
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - Michal Assaf
- Olin Neuropsychiatry Research CenterInstitute of Living, Hartford HospitalHartfordConnecticutUSA
- Department of PsychiatryYale School of MedicineNew HavenConnecticutUSA
| | - Gretchen J. Diefenbach
- Anxiety Disorders CenterInstitute of Living, Hartford HospitalHartfordConnecticutUSA
- Yale School of MedicineNew HavenConnecticutUSA
| | - Paolo Brambilla
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Eleonora Maggioni
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of MuensterMuensterGermany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of MuensterMuensterGermany
| | - Carmen Andreescu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rachel Berta
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Erica Tamburo
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rebecca Price
- Department of Psychiatry & PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gisele G. Manfro
- Anxiety Disorder ProgramHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Department of PsychiatryFederal University of Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - Hugo D. Critchley
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUK
| | - Elena Makovac
- Centre for Neuroimaging ScienceKings College LondonLondonUK
| | - Matteo Mancini
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUK
| | | | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Camilla Cividini
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
- Neurology and Neurophysiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Milutin Kostić
- Institute of Mental Health, University of BelgradeBelgradeSerbia
- Department of Psychiatry, School of MedicineUniversity of BelgradeBelgradeSerbia
| | - Ana Munjiza
- Institute of Mental Health, University of BelgradeBelgradeSerbia
| | - Courtney A. Filippi
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Ellen Leibenluft
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Bianca A. V. Alberton
- Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do ParanáCuritibaPuerto RicoBrazil
| | - Nicholas L. Balderston
- Center for Neuromodulation in Depression and StressUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Monique Ernst
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Christian Grillon
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | | | | | - Gregory A. Fonzo
- Department of PsychiatryThe University of Texas at Austin Dell Medical SchoolAustinTexasUSA
| | | | - Murray B. Stein
- Department of Psychiatry & Family Medicine and Public HealthUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Bart Larsen
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Jennifer Harper
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | - Michael Myers
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | | | - Qiongru Yu
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | | | - Dick J. Veltman
- Department. of PsychiatryAmsterdam UMC/VUMCAmsterdamThe Netherlands
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Nic J. A. Van der Wee
- Leiden University Medical Center, Department of PsychiatryLeidenThe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)LeidenThe Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- SAMRC Unite on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Daniel S. Pine
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Anderson M. Winkler
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
84
|
Weber CJ, Carrillo MC, Jagust W, Jack CR, Shaw LM, Trojanowski JQ, Saykin AJ, Beckett LA, Sur C, Rao NP, Mendez PC, Black SE, Li K, Iwatsubo T, Chang C, Sosa AL, Rowe CC, Perrin RJ, Morris JC, Healan AM, Hall SE, Weiner MW. The Worldwide Alzheimer's Disease Neuroimaging Initiative: ADNI-3 updates and global perspectives. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12226. [PMID: 35005206 PMCID: PMC8719344 DOI: 10.1002/trc2.12226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022]
Abstract
The Worldwide Alzheimer's Disease Neuroimaging Initiative (WW-ADNI) is a collaborative effort to investigate imaging and biofluid markers that can inform Alzheimer's disease treatment trials. It is a public-private partnership that spans North America, Argentina, Australia, Canada, China, Japan, Korea, Mexico, and Taiwan. In 2004, ADNI researchers began a naturalistic, longitudinal study that continues today around the globe. Through several successive phases (ADNI-1, ADNI-GO, ADNI-2, and ADNI-3), the study has fueled amyloid and tau phenotyping and refined neuroimaging methodologies. WW-ADNI researchers have successfully standardized analyses and openly share data without embargo, providing a rich data set for other investigators. On August 26, 2020, the Alzheimer's Association convened WW-ADNI researchers who shared updates from ADNI-3 and their vision for ADNI-4.
Collapse
Affiliation(s)
| | | | - William Jagust
- School of Public Health and Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | | | - Leslie M. Shaw
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory MedicinePerelman School of MedicineInstitute on AgingPerelman School of MedicineAlzheimer's Disease Core Center, Perelman School of MedicineUdall Parkinson's Research CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterDepartment of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Laurel A. Beckett
- Division of BiostatisticsDepartment of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Cyrille Sur
- Merck Research LaboratoriesMerckKenilworthNew JerseyUSA
| | - Naren P. Rao
- Department of PsychiatryNational Institute of Mental Health and NeurosciencesBengaluruKarnatakaIndia
| | | | - Sandra E. Black
- Department of Medicine (Neurology)Hurvitz Brain Sciences ProgramCanadian Partnership for Stroke Recovery, and LC Campbell Cognitive Neurology Research UnitHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteSunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada
| | - Kuncheng Li
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Takeshi Iwatsubo
- Department of NeuropathologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Chiung‐Chih Chang
- Department of General Neurology and Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan
| | - Ana Luisa Sosa
- National Institute of Neurology and Neurosurgery of MexicoMexico CityMexico
| | - Christopher C. Rowe
- Department of Molecular Imaging and TherapyAustin Health and Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Richard J. Perrin
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of Pathology and ImmunologyDepartment of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - John C. Morris
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | | | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesDepartment of RadiologyDepartment of MedicineDepartment of PsychiatryDepartment of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
85
|
Niego A, Benítez-Burraco A. Are feralization and domestication truly mirror processes? ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1975314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amy Niego
- PhD Program, Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain (E-mail: )
| |
Collapse
|
86
|
Zheng Y, Garrett ME, Sun D, Clarke-Rubright EK, Haswell CC, Maihofer AX, Elman JA, Franz CE, Lyons MJ, Kremen WS, Peverill M, Sambrook K, McLaughlin KA, Davenport ND, Disner S, Sponheim SR, Andrew E, Korgaonkar M, Bryant R, Varkevisser T, Geuze E, Coleman J, Beckham JC, Kimbrel NA, Sullivan D, Miller M, Hayes J, Verfaellie M, Wolf E, Salat D, Spielberg JM, Milberg W, McGlinchey R, Dennis EL, Thompson PM, Medland S, Jahanshad N, Nievergelt CM, Ashley-Koch AE, Logue MW, Morey RA. Trauma and posttraumatic stress disorder modulate polygenic predictors of hippocampal and amygdala volume. Transl Psychiatry 2021; 11:637. [PMID: 34916497 PMCID: PMC8677780 DOI: 10.1038/s41398-021-01707-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The volume of subcortical structures represents a reliable, quantitative, and objective phenotype that captures genetic effects, environmental effects such as trauma, and disease effects such as posttraumatic stress disorder (PTSD). Trauma and PTSD represent potent exposures that may interact with genetic markers to influence brain structure and function. Genetic variants, associated with subcortical volumes in two large normative discovery samples, were used to compute polygenic scores (PGS) for the volume of seven subcortical structures. These were applied to a target sample enriched for childhood trauma and PTSD. Subcortical volume PGS from the discovery sample were strongly associated in our trauma/PTSD enriched sample (n = 7580) with respective subcortical volumes of the hippocampus (p = 1.10 × 10-20), thalamus (p = 7.46 × 10-10), caudate (p = 1.97 × 10-18), putamen (p = 1.7 × 10-12), and nucleus accumbens (p = 1.99 × 10-7). We found a significant association between the hippocampal volume PGS and hippocampal volume in control subjects from our sample, but was absent in individuals with PTSD (GxE; (beta = -0.10, p = 0.027)). This significant GxE (PGS × PTSD) relationship persisted (p < 1 × 10-19) in four out of five threshold peaks (0.024, 0.133, 0.487, 0.730, and 0.889) used to calculate hippocampal volume PGSs. We detected similar GxE (G × ChildTrauma) relationships in the amygdala for exposure to childhood trauma (rs4702973; p = 2.16 × 10-7) or PTSD (rs10861272; p = 1.78 × 10-6) in the CHST11 gene. The hippocampus and amygdala are pivotal brain structures in mediating PTSD symptomatology. Trauma exposure and PTSD modulate the effect of polygenic markers on hippocampal volume (GxE) and the amygdala volume PGS is associated with PTSD risk, which supports the role of amygdala volume as a risk factor for PTSD.
Collapse
Affiliation(s)
- Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
| | - Delin Sun
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Emily K Clarke-Rubright
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Courtney C Haswell
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Adam X Maihofer
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jeremy A Elman
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Carol E Franz
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - William S Kremen
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kelly Sambrook
- Department of Psychology, Harvard University, Boston, MA, USA
| | | | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Tim Varkevisser
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Elbert Geuze
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Jonathan Coleman
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King's College London, NIHR Maudsley BRC, London, UK
| | - Jean C Beckham
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Nathan A Kimbrel
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Danielle Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mark Miller
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Jasmeet Hayes
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mieke Verfaellie
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Erika Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - David Salat
- VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jeffrey M Spielberg
- VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Medland
- Queensland Institute for Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Allison E Ashley-Koch
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Departments of Psychiatry and Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Rajendra A Morey
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA.
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
87
|
|
88
|
Where the genome meets the connectome: Understanding how genes shape human brain connectivity. Neuroimage 2021; 244:118570. [PMID: 34508898 DOI: 10.1016/j.neuroimage.2021.118570] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
The integration of modern neuroimaging methods with genetically informative designs and data can shed light on the molecular mechanisms underlying the structural and functional organization of the human connectome. Here, we review studies that have investigated the genetic basis of human brain network structure and function through three complementary frameworks: (1) the quantification of phenotypic heritability through classical twin designs; (2) the identification of specific DNA variants linked to phenotypic variation through association and related studies; and (3) the analysis of correlations between spatial variations in imaging phenotypes and gene expression profiles through the integration of neuroimaging and transcriptional atlas data. We consider the basic foundations, strengths, limitations, and discoveries associated with each approach. We present converging evidence to indicate that anatomical connectivity is under stronger genetic influence than functional connectivity and that genetic influences are not uniformly distributed throughout the brain, with phenotypic variation in certain regions and connections being under stronger genetic control than others. We also consider how the combination of imaging and genetics can be used to understand the ways in which genes may drive brain dysfunction in different clinical disorders.
Collapse
|
89
|
Arnatkeviciute A, Fulcher BD, Bellgrove MA, Fornito A. Imaging Transcriptomics of Brain Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:319-331. [PMID: 36324650 PMCID: PMC9616271 DOI: 10.1016/j.bpsgos.2021.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Noninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo, and it has been used extensively to map the neural changes associated with various brain disorders. However, most neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent development of anatomically comprehensive gene expression atlases has opened new opportunities for studying the transcriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating pathophysiological hypotheses and putative mechanisms. Here, we provide an overview of some fundamental methods in imaging transcriptomics and outline their application to understanding brain disorders of neurodevelopment, adulthood, and neurodegeneration. Converging evidence indicates that spatial variations in gene expression are linked to normative changes in brain structure during age-related maturation and neurodegeneration that are in part associated with cell-specific gene expression markers of gene expression. Transcriptional correlates of disorder-related neuroimaging phenotypes are also linked to transcriptionally dysregulated genes identified in ex vivo analyses of patient brains. Modeling studies demonstrate that spatial patterns of gene expression are involved in regional vulnerability to neurodegeneration and the spread of disease across the brain. This growing body of work supports the utility of transcriptional atlases in testing hypotheses about the molecular mechanism driving disease-related changes in macroscopic neuroimaging phenotypes.
Collapse
Affiliation(s)
- Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
- Address correspondence to Aurina Arnatkeviciute, Ph.D
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
90
|
Friedman NP, Banich MT, Keller MC. Twin studies to GWAS: there and back again. Trends Cogn Sci 2021; 25:855-869. [PMID: 34312064 PMCID: PMC8446317 DOI: 10.1016/j.tics.2021.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
The field of human behavioral genetics has come full circle. It began by using twin/family studies to estimate the relative importance of genetic and environmental influences. As large-scale genotyping became cost-effective, genome-wide association studies (GWASs) yielded insights about the nature of genetic influences and new methods that use GWAS data to estimate heritability and genetic correlations invigorated the field. Yet these newer GWAS methods have not replaced twin/family studies. In this review, we discuss the strengths and weaknesses of the two approaches with respect to characterizing genetic and environmental influences, measurement of behavioral phenotypes, and evaluation of causal models, with a particular focus on cognitive neuroscience. This discussion highlights how twin/family studies and GWAS complement and mutually reinforce one another.
Collapse
Affiliation(s)
- Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew C Keller
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
91
|
Ohi K, Nemoto K, Kataoka Y, Sugiyama S, Muto Y, Shioiri T, Kawasaki Y. Alterations in hippocampal subfield volumes among schizophrenia patients, their first-degree relatives and healthy subjects. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110291. [PMID: 33662534 DOI: 10.1016/j.pnpbp.2021.110291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
Reduced hippocampal volumes feature prominently in schizophrenia patients (SCZ). Although several studies have investigated hippocampal volume alterations between unaffected first-degree relatives (FR) of SCZ and healthy controls (HC), the results were inconsistent. Furthermore, it remains unclear whether FR have specific alterations in hippocampal subfield volumes. Three-Tesla T1-weighted MP-RAGE brain scans were collected from 347 subjects (138 SCZ, 47 FR and 162 HC) and processed using the hippocampal subfields algorithm in FreeSurfer v6.0. We investigated volumetric differences in the twelve hippocampal subfields bilaterally among SCZ, FR and HC. SCZ displayed bilateral reductions in whole hippocampal volume compared with FR and HC. The hippocampal volumes of FR did not differ from those of HC but exceeded those observed in SCZ. We found volumetric differences in specific hippocampal subfields, including the CA1, hippocampal fissure, presubiculum, molecular layer, fimbria and hippocampal-amygdala transitional area, among diagnostic groups. These alterations arose from differences in the hippocampal subfield volumes between SCZ and the other two diagnostic groups. However, right hippocampal fissure volumes linearly increased among the groups. In contrast, no significant volumetric differences were found in other hippocampal subfields between HC and FR. There were no significant intergroup differences in laterality in any hippocampal subfield volumes and no significant correlations between hippocampal subfield volumes and illness duration, psychiatric symptoms, antipsychotics or premorbid IQ in SCZ. Our findings suggest that volumetric alterations in hippocampal subfields (except the hippocampal fissure) in SCZ could be stable phenomena that are present at illness onset and minimally affected by antipsychotics.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Kiyotaka Nemoto
- Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuzuru Kataoka
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuhiro Kawasaki
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
92
|
Morabito S, Miyoshi E, Michael N, Shahin S, Martini AC, Head E, Silva J, Leavy K, Perez-Rosendahl M, Swarup V. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease. Nat Genet 2021; 53:1143-1155. [PMID: 34239132 PMCID: PMC8766217 DOI: 10.1038/s41588-021-00894-z] [Citation(s) in RCA: 366] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
The gene-regulatory landscape of the brain is highly dynamic in health and disease, coordinating a menagerie of biological processes across distinct cell types. Here, we present a multi-omic single-nucleus study of 191,890 nuclei in late-stage Alzheimer's disease (AD), accessible through our web portal, profiling chromatin accessibility and gene expression in the same biological samples and uncovering vast cellular heterogeneity. We identified cell-type-specific, disease-associated candidate cis-regulatory elements and their candidate target genes, including an oligodendrocyte-associated regulatory module containing links to APOE and CLU. We describe cis-regulatory relationships in specific cell types at a subset of AD risk loci defined by genome-wide association studies, demonstrating the utility of this multi-omic single-nucleus approach. Trajectory analysis of glial populations identified disease-relevant transcription factors, such as SREBF1, and their regulatory targets. Finally, we introduce single-nucleus consensus weighted gene coexpression analysis, a coexpression network analysis strategy robust to sparse single-cell data, and perform a systems-level analysis of the AD transcriptome.
Collapse
Affiliation(s)
- Samuel Morabito
- Mathematical, Computational and Systems Biology (MCSB) Program, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Emily Miyoshi
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Neethu Michael
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Saba Shahin
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Alessandra Cadete Martini
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Kelsey Leavy
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Mari Perez-Rosendahl
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Vivek Swarup
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
93
|
Kwak K, Niethammer M, Giovanello KS, Styner M, Dayan E. Differential Role for Hippocampal Subfields in Alzheimer's Disease Progression Revealed with Deep Learning. Cereb Cortex 2021; 32:467-478. [PMID: 34322704 DOI: 10.1093/cercor/bhab223] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild cognitive impairment (MCI) is often considered the precursor of Alzheimer's disease. However, MCI is associated with substantially variable progression rates, which are not well understood. Attempts to identify the mechanisms that underlie MCI progression have often focused on the hippocampus but have mostly overlooked its intricate structure and subdivisions. Here, we utilized deep learning to delineate the contribution of hippocampal subfields to MCI progression. We propose a dense convolutional neural network architecture that differentiates stable and progressive MCI based on hippocampal morphometry with an accuracy of 75.85%. A novel implementation of occlusion analysis revealed marked differences in the contribution of hippocampal subfields to the performance of the model, with presubiculum, CA1, subiculum, and molecular layer showing the most central role. Moreover, the analysis reveals that 10.5% of the volume of the hippocampus was redundant in the differentiation between stable and progressive MCI.
Collapse
Affiliation(s)
- Kichang Kwak
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marc Niethammer
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelly S Giovanello
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin Styner
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eran Dayan
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
94
|
Gleichgerrcht E, Munsell BC, Alhusaini S, Alvim MKM, Bargalló N, Bender B, Bernasconi A, Bernasconi N, Bernhardt B, Blackmon K, Caligiuri ME, Cendes F, Concha L, Desmond PM, Devinsky O, Doherty CP, Domin M, Duncan JS, Focke NK, Gambardella A, Gong B, Guerrini R, Hatton SN, Kälviäinen R, Keller SS, Kochunov P, Kotikalapudi R, Kreilkamp BAK, Labate A, Langner S, Larivière S, Lenge M, Lui E, Martin P, Mascalchi M, Meletti S, O'Brien TJ, Pardoe HR, Pariente JC, Xian Rao J, Richardson MP, Rodríguez-Cruces R, Rüber T, Sinclair B, Soltanian-Zadeh H, Stein DJ, Striano P, Taylor PN, Thomas RH, Elisabetta Vaudano A, Vivash L, von Podewills F, Vos SB, Weber B, Yao Y, Lin Yasuda C, Zhang J, Thompson PM, Sisodiya SM, McDonald CR, Bonilha L. Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study. Neuroimage Clin 2021; 31:102765. [PMID: 34339947 PMCID: PMC8346685 DOI: 10.1016/j.nicl.2021.102765] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/22/2023]
Abstract
Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest (ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with ("lesional") and without ("non-lesional") radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center) ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68-75%) compared to models to lateralize the side of TLE (56-73%, except structural-based) based on diffusion data with the opposite pattern seen for structural data (67-75% to diagnose vs. 83% to lateralize). In other aspects, structural and diffusion-based models showed similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68-76%) than models that stratified non-lesional patients (53-62%). Overall, SV and DL models performed similarly with several instances in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the implications for future applications of machine learning and artificial intelligence in epilepsy care.
Collapse
Affiliation(s)
| | - Brent C Munsell
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
| | - Saud Alhusaini
- Neurology Department, Yale University School of Medicine, New Haven, CT, USA; Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marina K M Alvim
- Department of Neurology and Neuroimaging Laboratory, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Núria Bargalló
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Department of Radiology of Center of Image Diagnosis (CDIC), Hospital Clinic de Barcelona, Barcelona, Spain
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Karen Blackmon
- Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Fernando Cendes
- Department of Neurology and Neuroimaging Laboratory, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Patricia M Desmond
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Orrin Devinsky
- Department of Neurology, Langone School of Medicine, New York University, New York, NY, USA
| | - Colin P Doherty
- Trinity College Dublin, School of Medicine, Dublin, Ireland; FutureNeuro SFI Research Centre for Rare and Chronic Neurological Diseases, Dublin, Ireland
| | - Martin Domin
- Functional Imaging Unit, Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Niels K Focke
- University Medicine Göttingen, Clinical Neurophysiology, Göttingen, Germany
| | - Antonio Gambardella
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy; Institute of Neurology, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Bo Gong
- Department of Radiology, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Renzo Guerrini
- Neuroscience Department, University of Florence, Florence, Italy
| | - Sean N Hatton
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Reetta Kälviäinen
- Kuopio University Hospital, Member of EpiCARE ERN, Kuopio, Finland; Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Simon S Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raviteja Kotikalapudi
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany; Department of Clinical Neurophysiology, University Hospital Göttingen, Goettingen, Germany; Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Tübingen, Germany
| | - Barbara A K Kreilkamp
- University Medicine Göttingen, Clinical Neurophysiology, Göttingen, Germany; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Angelo Labate
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy; Institute of Neurology, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Soenke Langner
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany; Institute for Diagnostic and Interventional Radiology, Pediatric and Neuroradiology, University Medical Centre Rostock, Rostock, Germany
| | - Sara Larivière
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Matteo Lenge
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy; Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Elaine Lui
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Tübingen, Germany
| | - Mario Mascalchi
- 'Mario Serio' Department of Clinical and Experimental Medica Sciences, University of Florence, Florence, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Unit, OCB Hospital, AOU Modena, Modena, Italy
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; The Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Heath R Pardoe
- Department of Neurology, Langone School of Medicine, New York University, New York, NY, USA
| | - Jose C Pariente
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Jun Xian Rao
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Raúl Rodríguez-Cruces
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico; Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Ben Sinclair
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; The Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Hamid Soltanian-Zadeh
- Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA; School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Pasquale Striano
- IRCCS Istituto 'G. Gaslini', Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Peter N Taylor
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Rhys H Thomas
- Institute of Translational and Clinical Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Unit, OCB Hospital, AOU Modena, Modena, Italy
| | - Lucy Vivash
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; The Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Felix von Podewills
- Department of Neurology, Epilepsy Center, University Medicine Greifswald, Greifswald, Germany
| | - Sjoerd B Vos
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Yi Yao
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Clarissa Lin Yasuda
- Department of Neurology and Neuroimaging Laboratory, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Junsong Zhang
- Cognitive Science Department, School of Informatics, Xiamen University, Xiamen, China
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sanjay M Sisodiya
- UCL Queen Square Institute of Neurology, London, UK; Chalfont Centre for Epilepsy, Bucks, UK
| | - Carrie R McDonald
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
95
|
Takagi Y, Okada N, Ando S, Yahata N, Morita K, Koshiyama D, Kawakami S, Sawada K, Koike S, Endo K, Yamasaki S, Nishida A, Kasai K, Tanaka SC. Intergenerational transmission of the patterns of functional and structural brain networks. iScience 2021; 24:102708. [PMID: 34258550 PMCID: PMC8253972 DOI: 10.1016/j.isci.2021.102708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 01/22/2023] Open
Abstract
There is clear evidence of intergenerational transmission of life values, cognitive traits, psychiatric disorders, and even aspects of daily decision making. To investigate biological substrates of this phenomenon, the brain has received increasing attention as a measurable biomarker and potential target for intervention. However, no previous study has quantitatively and comprehensively investigated the effects of intergenerational transmission on functional and structural brain networks. Here, by employing an unusually large cohort dataset (N = 84 parent-child dyads; 45 sons, 39 daughters, 81 mothers, and 3 fathers), we show that patterns of functional and structural brain networks are preserved over a generation. We also demonstrate that several demographic factors and behavioral/physiological phenotypes have a relationship with brain similarity. Collectively, our results provide a comprehensive picture of neurobiological substrates of intergenerational transmission and demonstrate the usability of our dataset for investigating the neurobiological substrates of intergenerational transmission.
Collapse
Affiliation(s)
- Yu Takagi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Rehabilitation, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shintaro Kawakami
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kingo Sawada
- Office for Mental Health Support, Mental Health Unit, Division for Practice Research, Center for Research on Counseling and Support Services, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), Tokyo, Japan
| | - Kaori Endo
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Syudo Yamasaki
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsushi Nishida
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
- University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), Tokyo, Japan
| | - Saori C Tanaka
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| |
Collapse
|
96
|
Shan S, Xu F, Brenig B. Genome-Wide Association Studies Reveal Neurological Genes for Dog Herding, Predation, Temperament, and Trainability Traits. Front Vet Sci 2021; 8:693290. [PMID: 34368281 PMCID: PMC8335642 DOI: 10.3389/fvets.2021.693290] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association study (GWAS) using dog breed standard values as phenotypic measurements is an efficient way to identify genes associated with morphological and behavioral traits. As a result of strong human purposeful selections, several specialized behavioral traits such as herding and hunting have been formed in different modern dog breeds. However, genetic analyses on this topic are rather limited due to the accurate phenotyping difficulty for these complex behavioral traits. Here, 268 dog whole-genome sequences from 130 modern breeds were used to investigate candidate genes underlying dog herding, predation, temperament, and trainability by GWAS. Behavioral phenotypes were obtained from the American Kennel Club based on dog breed standard descriptions or groups (conventional categorization of dog historical roles). The GWAS results of herding behavior (without body size as a covariate) revealed 44 significantly associated sites within five chromosomes. Significantly associated sites on CFA7, 9, 10, and 20 were located either in or near neuropathological or neuronal genes including THOC1, ASIC2, MSRB3, LLPH, RFX8, and CHL1. MSRB3 and CHL1 genes were reported to be associated with dog fear. Since herding is a restricted hunting behavior by removing killing instinct, 36 hounds and 55 herding dogs were used to analyze predation behavior. Three neuronal-related genes (JAK2, MEIS1, and LRRTM4) were revealed as candidates for predation behavior. The significantly associated variant of temperament GWAS was located within ACSS3 gene. The highest associated variant in trainability GWAS is located on CFA22, with no variants detected above the Bonferroni threshold. Since dog behaviors are correlated with body size, we next incorporate body mass as covariates into GWAS; and significant signals around THOC1, MSRB3, LLPH, RFX8, CHL1, LRRTM4, and ACSS3 genes were still detected for dog herding, predation, and temperament behaviors. In humans, these candidate genes are either involved in nervous system development or associated with mental disorders. In conclusion, our results imply that these neuronal or psychiatric genes might be involved in biological processes underlying dog herding, predation, and temperament behavioral traits.
Collapse
Affiliation(s)
- Shuwen Shan
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Fangzheng Xu
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Bertram Brenig
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| |
Collapse
|
97
|
Pol-Fuster J, Cañellas F, Ruiz-Guerra L, Medina-Dols A, Bisbal-Carrió B, Ortega-Vila B, Llinàs J, Hernandez-Rodriguez J, Lladó J, Olmos G, Strauch K, Heine-Suñer D, Vives-Bauzà C, Flaquer A. The conserved ASTN2/BRINP1 locus at 9q33.1-33.2 is associated with major psychiatric disorders in a large pedigree from Southern Spain. Sci Rep 2021; 11:14529. [PMID: 34267256 PMCID: PMC8282839 DOI: 10.1038/s41598-021-93555-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022] Open
Abstract
We investigated the genetic causes of major mental disorders (MMDs) including schizophrenia, bipolar disorder I, major depressive disorder and attention deficit hyperactive disorder, in a large family pedigree from Alpujarras, South of Spain, a region with high prevalence of psychotic disorders. We applied a systematic genomic approach based on karyotyping (n = 4), genotyping by genome-wide SNP array (n = 34) and whole-genome sequencing (n = 12). We performed genome-wide linkage analysis, family-based association analysis and polygenic risk score estimates. Significant linkage was obtained at chromosome 9 (9q33.1–33.2, LOD score = 4.11), a suggestive region that contains five candidate genes ASTN2, BRINP1, C5, TLR4 and TRIM32, previously associated with MMDs. Comprehensive analysis associated the MMD phenotype with genes of the immune system with dual brain functions. Moreover, the psychotic phenotype was enriched for genes involved in synapsis. These results should be considered once studying the genetics of psychiatric disorders in other families, especially the ones from the same region, since founder effects may be related to the high prevalence.
Collapse
Affiliation(s)
- Josep Pol-Fuster
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Francesca Cañellas
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Department of Psychiatry, HUSE, IdISBa, Palma, Spain
| | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bàrbara Bisbal-Carrió
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bernat Ortega-Vila
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jaume Llinàs
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jessica Hernandez-Rodriguez
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jerònia Lladó
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Gabriel Olmos
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| | - Damià Heine-Suñer
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Cristòfol Vives-Bauzà
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain. .,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.
| | - Antònia Flaquer
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| |
Collapse
|
98
|
Florentinus-Mefailoski A, Bowden P, Scheltens P, Killestein J, Teunissen C, Marshall JG. The plasma peptides of Alzheimer's disease. Clin Proteomics 2021; 18:17. [PMID: 34182925 PMCID: PMC8240224 DOI: 10.1186/s12014-021-09320-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background A practical strategy to discover proteins specific to Alzheimer’s dementia (AD) may be to compare the plasma peptides and proteins from patients with dementia to normal controls and patients with neurological conditions like multiple sclerosis or other diseases. The aim was a proof of principle for a method to discover proteins and/or peptides of plasma that show greater observation frequency and/or precursor intensity in AD. The endogenous tryptic peptides of Alzheimer’s were compared to normals, multiple sclerosis, ovarian cancer, breast cancer, female normal, sepsis, ICU Control, heart attack, along with their institution-matched controls, and normal samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from blinded, individual AD and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins identified using the X!TANDEM algorithm. Observation frequency of the identified proteins was counted using SEQUEST algorithm. The proteins with apparently increased observation frequency in AD versus AD Control were revealed graphically and subsequently tested by Chi Square analysis. The proteins specific to AD plasma by Chi Square with FDR correction were analyzed by the STRING algorithm. The average protein or peptide log10 precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as complement C2, C7, and C1QBP among others showed increased observation frequency by Chi Square and/or precursor intensity in AD. Cellular gene symbols with large Chi Square values (χ2 ≥ 25, p ≤ 0.001) from tryptic peptides included KIF12, DISC1, OR8B12, ZC3H12A, TNF, TBC1D8B, GALNT3, EME2, CD1B, BAG1, CPSF2, MMP15, DNAJC2, PHACTR4, OR8B3, GCK, EXOSC7, HMGA1 and NT5C3A among others. Similarly, increased frequency of tryptic phosphopeptides were observed from MOK, SMIM19, NXNL1, SLC24A2, Nbla10317, AHRR, C10orf90, MAEA, SRSF8, TBATA, TNIK, UBE2G1, PDE4C, PCGF2, KIR3DP1, TJP2, CPNE8, and NGF amongst others. STRING analysis showed an increase in cytoplasmic proteins and proteins associated with alternate splicing, exocytosis of luminal proteins, and proteins involved in the regulation of the cell cycle, mitochondrial functions or metabolism and apoptosis. Increases in mean precursor intensity of peptides from common plasma proteins such as DISC1, EXOSC5, UBE2G1, SMIM19, NXNL1, PANO, EIF4G1, KIR3DP1, MED25, MGRN1, OR8B3, MGC24039, POLR1A, SYTL4, RNF111, IREB2, ANKMY2, SGKL, SLC25A5, CHMP3 among others were associated with AD. Tryptic peptides from the highly conserved C-terminus of DISC1 within the sequence MPGGGPQGAPAAAGGGGVSHRAGSRDCLPPAACFR and ARQCGLDSR showed a higher frequency and highest intensity in AD compared to all other disease and controls. Conclusion Proteins apparently expressed in the brain that were directly related to Alzheimer’s including Nerve Growth Factor (NFG), Sphingomyelin Phosphodiesterase, Disrupted in Schizophrenia 1 (DISC1), the cell death regulator retinitis pigmentosa (NXNl1) that governs the loss of nerve cells in the retina and the cell death regulator ZC3H12A showed much higher observation frequency in AD plasma vs the matched control. There was a striking agreement between the proteins known to be mutated or dis-regulated in the brains of AD patients with the proteins observed in the plasma of AD patients from endogenous peptides including NBN, BAG1, NOX1, PDCD5, SGK3, UBE2G1, SMPD3 neuronal proteins associated with synapse function such as KSYTL4, VTI1B and brain specific proteins such as TBATA. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09320-2.
Collapse
Affiliation(s)
- Angelique Florentinus-Mefailoski
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Peter Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Philip Scheltens
- Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry Lab and Biobank, Dept of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada. .,International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (Formerly CRP Sante Luxembourg), Strassen, Luxembourg.
| |
Collapse
|
99
|
Naqvi S, Sleyp Y, Hoskens H, Indencleef K, Spence JP, Bruffaerts R, Radwan A, Eller RJ, Richmond S, Shriver MD, Shaffer JR, Weinberg SM, Walsh S, Thompson J, Pritchard JK, Sunaert S, Peeters H, Wysocka J, Claes P. Shared heritability of human face and brain shape. Nat Genet 2021; 53:830-839. [PMID: 33821002 PMCID: PMC8232039 DOI: 10.1038/s41588-021-00827-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Evidence from model organisms and clinical genetics suggests coordination between the developing brain and face, but the role of this link in common genetic variation remains unknown. We performed a multivariate genome-wide association study of cortical surface morphology in 19,644 individuals of European ancestry, identifying 472 genomic loci influencing brain shape, of which 76 are also linked to face shape. Shared loci include transcription factors involved in craniofacial development, as well as members of signaling pathways implicated in brain-face cross-talk. Brain shape heritability is equivalently enriched near regulatory regions active in either forebrain organoids or facial progenitors. However, we do not detect significant overlap between shared brain-face genome-wide association study signals and variants affecting behavioral-cognitive traits. These results suggest that early in embryogenesis, the face and brain mutually shape each other through both structural effects and paracrine signaling, but this interplay may not impact later brain development associated with cognitive function.
Collapse
Affiliation(s)
- Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yoeri Sleyp
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Karlijne Indencleef
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jeffrey P Spence
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rose Bruffaerts
- Department of Neurosciences, KU Leuven, Leuven, Belgium, Hasselt University, Hasselt, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium, Hasselt University, Hasselt, Belgium
- Biomedical Research Institute Hasselt University Hasselt Belgium, Hasselt University, Hasselt, Belgium
| | - Ahmed Radwan
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Ryan J Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - James Thompson
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Jonathan K Pritchard
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan Sunaert
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
100
|
Vilor-Tejedor N, Evans TE, Adams HH, González-de-Echávarri JM, Molinuevo JL, Guigo R, Gispert JD, Operto G. Genetic Influences on Hippocampal Subfields: An Emerging Area of Neuroscience Research. NEUROLOGY-GENETICS 2021; 7:e591. [PMID: 34124350 PMCID: PMC8192059 DOI: 10.1212/nxg.0000000000000591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/03/2021] [Indexed: 11/15/2022]
Abstract
There is clear evidence that hippocampal subfield volumes have partly distinct genetic determinants associated with specific biological processes. The identification of genetic correlates of hippocampal subfield volumes may help to elucidate the mechanisms of neurologic diseases, as well as aging and neurodegenerative processes. However, despite the emerging interest in this area of research, the current knowledge of the genetic architecture of hippocampal subfields has not yet been consolidated. We aimed to provide a review of the current evidence from genetic studies of hippocampal subfields, highlighting current priorities and upcoming challenges. The limited number of studies investigating the influential genetic effects on hippocampal subfields, a lack of replicated results and longitudinal designs, and modest sample sizes combined with insufficient standardization of protocols are identified as the most pressing challenges in this emerging area of research.
Collapse
Affiliation(s)
- Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC) (N.V.-T., J.M.G.-d-E., J.L.M., J.D.G., G.O.), Pasqual Maragall Foundation; Centre for Genomic Regulation (CRG) (N.V.-T., R.G.), the Barcelona Institute for Science and Technology, Spain; Department of Clinical Genetics (N.V.-T., T.E.E., H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; Universitat Pompeu Fabra (N.V.-T., J.M.G.--E., J.L.M., R.G., J.D.G.), Barcelona, Spain; Department of Radiology and Nuclear Medicine (H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; IMIM (Hospital del Mar Medical Research Institute) (J.L.M., J.D.G., G.O.), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) (J.L.M., G.O.); and Centro de Investigación Biomédica en Red Bioingeniería (J.D.G.), Biomateriales y Nanomedicina, Madrid, Spain
| | - Tavia E Evans
- Barcelonaβeta Brain Research Center (BBRC) (N.V.-T., J.M.G.-d-E., J.L.M., J.D.G., G.O.), Pasqual Maragall Foundation; Centre for Genomic Regulation (CRG) (N.V.-T., R.G.), the Barcelona Institute for Science and Technology, Spain; Department of Clinical Genetics (N.V.-T., T.E.E., H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; Universitat Pompeu Fabra (N.V.-T., J.M.G.--E., J.L.M., R.G., J.D.G.), Barcelona, Spain; Department of Radiology and Nuclear Medicine (H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; IMIM (Hospital del Mar Medical Research Institute) (J.L.M., J.D.G., G.O.), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) (J.L.M., G.O.); and Centro de Investigación Biomédica en Red Bioingeniería (J.D.G.), Biomateriales y Nanomedicina, Madrid, Spain
| | - Hieab H Adams
- Barcelonaβeta Brain Research Center (BBRC) (N.V.-T., J.M.G.-d-E., J.L.M., J.D.G., G.O.), Pasqual Maragall Foundation; Centre for Genomic Regulation (CRG) (N.V.-T., R.G.), the Barcelona Institute for Science and Technology, Spain; Department of Clinical Genetics (N.V.-T., T.E.E., H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; Universitat Pompeu Fabra (N.V.-T., J.M.G.--E., J.L.M., R.G., J.D.G.), Barcelona, Spain; Department of Radiology and Nuclear Medicine (H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; IMIM (Hospital del Mar Medical Research Institute) (J.L.M., J.D.G., G.O.), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) (J.L.M., G.O.); and Centro de Investigación Biomédica en Red Bioingeniería (J.D.G.), Biomateriales y Nanomedicina, Madrid, Spain
| | - José María González-de-Echávarri
- Barcelonaβeta Brain Research Center (BBRC) (N.V.-T., J.M.G.-d-E., J.L.M., J.D.G., G.O.), Pasqual Maragall Foundation; Centre for Genomic Regulation (CRG) (N.V.-T., R.G.), the Barcelona Institute for Science and Technology, Spain; Department of Clinical Genetics (N.V.-T., T.E.E., H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; Universitat Pompeu Fabra (N.V.-T., J.M.G.--E., J.L.M., R.G., J.D.G.), Barcelona, Spain; Department of Radiology and Nuclear Medicine (H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; IMIM (Hospital del Mar Medical Research Institute) (J.L.M., J.D.G., G.O.), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) (J.L.M., G.O.); and Centro de Investigación Biomédica en Red Bioingeniería (J.D.G.), Biomateriales y Nanomedicina, Madrid, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC) (N.V.-T., J.M.G.-d-E., J.L.M., J.D.G., G.O.), Pasqual Maragall Foundation; Centre for Genomic Regulation (CRG) (N.V.-T., R.G.), the Barcelona Institute for Science and Technology, Spain; Department of Clinical Genetics (N.V.-T., T.E.E., H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; Universitat Pompeu Fabra (N.V.-T., J.M.G.--E., J.L.M., R.G., J.D.G.), Barcelona, Spain; Department of Radiology and Nuclear Medicine (H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; IMIM (Hospital del Mar Medical Research Institute) (J.L.M., J.D.G., G.O.), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) (J.L.M., G.O.); and Centro de Investigación Biomédica en Red Bioingeniería (J.D.G.), Biomateriales y Nanomedicina, Madrid, Spain
| | - Roderic Guigo
- Barcelonaβeta Brain Research Center (BBRC) (N.V.-T., J.M.G.-d-E., J.L.M., J.D.G., G.O.), Pasqual Maragall Foundation; Centre for Genomic Regulation (CRG) (N.V.-T., R.G.), the Barcelona Institute for Science and Technology, Spain; Department of Clinical Genetics (N.V.-T., T.E.E., H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; Universitat Pompeu Fabra (N.V.-T., J.M.G.--E., J.L.M., R.G., J.D.G.), Barcelona, Spain; Department of Radiology and Nuclear Medicine (H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; IMIM (Hospital del Mar Medical Research Institute) (J.L.M., J.D.G., G.O.), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) (J.L.M., G.O.); and Centro de Investigación Biomédica en Red Bioingeniería (J.D.G.), Biomateriales y Nanomedicina, Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC) (N.V.-T., J.M.G.-d-E., J.L.M., J.D.G., G.O.), Pasqual Maragall Foundation; Centre for Genomic Regulation (CRG) (N.V.-T., R.G.), the Barcelona Institute for Science and Technology, Spain; Department of Clinical Genetics (N.V.-T., T.E.E., H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; Universitat Pompeu Fabra (N.V.-T., J.M.G.--E., J.L.M., R.G., J.D.G.), Barcelona, Spain; Department of Radiology and Nuclear Medicine (H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; IMIM (Hospital del Mar Medical Research Institute) (J.L.M., J.D.G., G.O.), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) (J.L.M., G.O.); and Centro de Investigación Biomédica en Red Bioingeniería (J.D.G.), Biomateriales y Nanomedicina, Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC) (N.V.-T., J.M.G.-d-E., J.L.M., J.D.G., G.O.), Pasqual Maragall Foundation; Centre for Genomic Regulation (CRG) (N.V.-T., R.G.), the Barcelona Institute for Science and Technology, Spain; Department of Clinical Genetics (N.V.-T., T.E.E., H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; Universitat Pompeu Fabra (N.V.-T., J.M.G.--E., J.L.M., R.G., J.D.G.), Barcelona, Spain; Department of Radiology and Nuclear Medicine (H.H.A.), Erasmus Medical Center, Rotterdam, the Netherlands; IMIM (Hospital del Mar Medical Research Institute) (J.L.M., J.D.G., G.O.), Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) (J.L.M., G.O.); and Centro de Investigación Biomédica en Red Bioingeniería (J.D.G.), Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|