51
|
Skevaki C, Nadeau KC, Rothenberg ME, Alahmad B, Mmbaga BT, Masenga GG, Sampath V, Christiani DC, Haahtela T, Renz H. Impact of climate change on immune responses and barrier defense. J Allergy Clin Immunol 2024; 153:1194-1205. [PMID: 38309598 DOI: 10.1016/j.jaci.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Blandina T Mmbaga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Gileard G Masenga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Obstetrics and Gynecology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
52
|
Pan X, Mavrokapnidis D, Ly HT, Mohammadi N, Taylor JE. Assessing and forecasting collective urban heat exposure with smart city digital twins. Sci Rep 2024; 14:9653. [PMID: 38671018 PMCID: PMC11053083 DOI: 10.1038/s41598-024-59228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Due to population growth, climate change, and the urban heat island effect, heat exposure is becoming an important issue faced by urban built environments. Heat exposure assessment is a prerequisite for mitigation measures to reduce the impact of heat exposure. However, there is limited research on urban heat exposure assessment approaches that provides fine-scale spatiotemporal heat exposure information, integrated with meteorological status and human collective exposure as they move about in cities, to enable proactive heat exposure mitigation measures. Smart city digital twins (SCDTs) provide a new potential avenue for addressing this gap, enabling fine spatiotemporal scales, human-infrastructure interaction modeling, and predictive and decision support capabilities. This study aims to develop and test an SCDT for collective urban heat exposure assessment and forecasting. Meteorological sensors and computer vision techniques were implemented in Columbus, Georgia, to acquire temperature, humidity, and passersby count data. These data were then integrated into a collective temperature humidity index. A time-series prediction model and a crowd simulation were employed to predict future short-term heat exposures based on the data accumulated by this SCDT and to support heat exposure mitigation efforts. The results demonstrate the potential of SCDT to enhance public safety by providing city officials with a tool for discovering, predicting, and, ultimately, mitigating community exposure to extreme heat.
Collapse
Affiliation(s)
- Xiyu Pan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - Dimitris Mavrokapnidis
- Faculty of the Built Environment, University College London, Gower St, London, WC1E 6BT, UK
| | - Hoang T Ly
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - Neda Mohammadi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - John E Taylor
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
53
|
Zonnefeld AG, Cui CY, Tsitsipatis D, Piao Y, Fan J, Mazan-Mamczarz K, Xue Y, Indig FE, De S, Gorospe M. Characterization of age-associated gene expression changes in mouse sweat glands. Aging (Albany NY) 2024; 16:6717-6730. [PMID: 38637019 PMCID: PMC11087089 DOI: 10.18632/aging.205776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Evaporation of sweat on the skin surface is the major mechanism for dissipating heat in humans. The secretory capacity of sweat glands (SWGs) declines during aging, leading to heat intolerance in the elderly, but the mechanisms responsible for this decline are poorly understood. We investigated the molecular changes accompanying SWG aging in mice, where sweat tests confirmed a significant reduction of active SWGs in old mice relative to young mice. We first identified SWG-enriched mRNAs by comparing the skin transcriptome of Eda mutant Tabby male mice, which lack SWGs, with that of wild-type control mice by RNA-sequencing analysis. This comparison revealed 171 mRNAs enriched in SWGs, including 47 mRNAs encoding 'core secretory' proteins such as transcription factors, ion channels, ion transporters, and trans-synaptic signaling proteins. Among these, 28 SWG-enriched mRNAs showed significantly altered abundance in the aged male footpad skin, and 11 of them, including Foxa1, Best2, Chrm3, and Foxc1 mRNAs, were found in the 'core secretory' category. Consistent with the changes in mRNA expression levels, immunohistology revealed that higher numbers of secretory cells from old SWGs express the transcription factor FOXC1, the protein product of Foxc1 mRNA. In sum, our study identified mRNAs enriched in SWGs, including those that encode core secretory proteins, and altered abundance of these mRNAs and proteins with aging in mouse SWGs.
Collapse
Affiliation(s)
- Alexandra G. Zonnefeld
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Fred E. Indig
- Confocal Imaging Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
54
|
Zhu Q, Zhou M, Zare Sakhvidi MJ, Yang S, Chen S, Feng P, Chen Z, Xu Z, Liu Q, Yang J. Projecting heat-related cardiovascular mortality burden attributable to human-induced climate change in China. EBioMedicine 2024; 103:105119. [PMID: 38631093 PMCID: PMC11035030 DOI: 10.1016/j.ebiom.2024.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been found to be particularly vulnerable to climate change and temperature variability. This study aimed to assess the extent to which human-induced climate change contributes to future heat-related CVD burdens. METHODS Daily data on CVD mortality and temperature were collected in 161 Chinese communities from 2007 to 2013. The association between heat and CVD mortality was established using a two-stage time-series design. Under the natural forcing, human-induced, and combined scenarios, we then separately projected excess cause-/age-/region-/education-specific mortality from future high temperature in 2010-2100, assuming no adaptation and population changes. FINDINGS Under shared socioeconomic pathway with natural forcing scenario (SSP2-4.5-nat), heat-related attributable fraction of CVD deaths decreased slightly from 3.3% [95% empirical confidence interval (eCI): 0.3, 5.8] in the 2010s to 2.8% (95% eCI: 0.1, 5.2) in the 2090s, with relative change of -0.4% (95% eCI: -0.8, 0.0). However, for combined natural and human-induced forcings, this estimate would surge to 8.9% (95% eCI: 1.5, 15.7), 14.4% (95% eCI: 1.5, 25.3), 21.3% (95% eCI: -0.6, 39.4), and 28.7% (95% eCI: -3.3, 48.0) in the 2090s under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. When excluding the natural forcing, the number of human-induced heat-related CVD deaths would increase from approximately eight thousand (accounting for 31% of total heat-related CVD deaths) in the 2010s to 33,052 (68%), 63,283 (80%), 101,091 (87%), and 141,948 (90%) in the 2090s under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. Individuals with stroke, females, the elderly, people living in rural areas, and those with lower education level would exhibit heightened susceptibility to future high temperature. In addition, Southern and Eastern regions of China were expected to experience a faster increase in heat-related attributable fraction of CVD deaths. INTERPRETATION Human activities would significantly amplify the future burden of heat-related CVD. Our study findings suggested that active adaptation and mitigation measures towards future warming could yield substantial health benefits for the patients with CVD. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Qiongyu Zhu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Mohammad Javad Zare Sakhvidi
- Department of Occupational Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Siru Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sujuan Chen
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Puyu Feng
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Jun Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
55
|
Quijal-Zamorano M, Martinez-Beneito MA, Ballester J, Marí-Dell’Olmo M. Spatial Bayesian distributed lag non-linear models (SB-DLNM) for small-area exposure-lag-response epidemiological modelling. Int J Epidemiol 2024; 53:dyae061. [PMID: 38641428 PMCID: PMC11031409 DOI: 10.1093/ije/dyae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Distributed lag non-linear models (DLNMs) are the reference framework for modelling lagged non-linear associations. They are usually used in large-scale multi-location studies. Attempts to study these associations in small areas either did not include the lagged non-linear effects, did not allow for geographically-varying risks or downscaled risks from larger spatial units through socioeconomic and physical meta-predictors when the estimation of the risks was not feasible due to low statistical power. METHODS Here we proposed spatial Bayesian DLNMs (SB-DLNMs) as a new framework for the estimation of reliable small-area lagged non-linear associations, and demonstrated the methodology for the case study of the temperature-mortality relationship in the 73 neighbourhoods of the city of Barcelona. We generalized location-independent DLNMs to the Bayesian framework (B-DLNMs), and extended them to SB-DLNMs by incorporating spatial models in a single-stage approach that accounts for the spatial dependence between risks. RESULTS The results of the case study highlighted the benefits of incorporating the spatial component for small-area analysis. Estimates obtained from independent B-DLNMs were unstable and unreliable, particularly in neighbourhoods with very low numbers of deaths. SB-DLNMs addressed these instabilities by incorporating spatial dependencies, resulting in more plausible and coherent estimates and revealing hidden spatial patterns. In addition, the Bayesian framework enriches the range of estimates and tests that can be used in both large- and small-area studies. CONCLUSIONS SB-DLNMs account for spatial structures in the risk associations across small areas. By modelling spatial differences, SB-DLNMs facilitate the direct estimation of non-linear exposure-response lagged associations at the small-area level, even in areas with as few as 19 deaths. The manuscript includes an illustrative code to reproduce the results, and to facilitate the implementation of other case studies by other researchers.
Collapse
Affiliation(s)
| | - Miguel A Martinez-Beneito
- Departament d’Estadística i Investigaciò Operativa, Universitat de València, Burjassot, Valencia, Spain
| | | | - Marc Marí-Dell’Olmo
- Agència de Salut Pública de Barcelona (ASPB), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
56
|
Yin P, He C, Chen R, Huang J, Luo Y, Gao X, Xu Y, Ji JS, Cai W, Wei Y, Li H, Zhou M, Kan H. Projection of Mortality Burden Attributable to Nonoptimum Temperature with High Spatial Resolution in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6226-6235. [PMID: 38557021 DOI: 10.1021/acs.est.3c09162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The updated climate models provide projections at a fine scale, allowing us to estimate health risks due to future warming after accounting for spatial heterogeneity. Here, we utilized an ensemble of high-resolution (25 km) climate simulations and nationwide mortality data from 306 Chinese cities to estimate death anomalies attributable to future warming. Historical estimation (1986-2014) reveals that about 15.5% [95% empirical confidence interval (eCI):13.1%, 17.6%] of deaths are attributable to nonoptimal temperature, of which heat and cold corresponded to attributable fractions of 4.1% (eCI:2.4%, 5.5%) and 11.4% (eCI:10.7%, 12.1%), respectively. Under three climate scenarios (SSP126, SSP245, and SSP585), the national average temperature was projected to increase by 1.45, 2.57, and 4.98 °C by the 2090s, respectively. The corresponding mortality fractions attributable to heat would be 6.5% (eCI:5.2%, 7.7%), 7.9% (eCI:6.3%, 9.4%), and 11.4% (eCI:9.2%, 13.3%). More than half of the attributable deaths due to future warming would occur in north China and cardiovascular mortality would increase more drastically than respiratory mortality. Our study shows that the increased heat-attributable mortality burden would outweigh the decreased cold-attributable burden even under a moderate climate change scenario across China. The results are helpful for national or local policymakers to better address the challenges of future warming.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Cheng He
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
- Institute of Epidemiology, Helmholtz Zentrum München─German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
| | - Jianbin Huang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Xuejie Gao
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100017, China
| | - Ying Xu
- National Climate Center, China Meteorological Administration, Beijing 100044, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Wenjia Cai
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
- National Center for Children's Health, Children's Hospital of Fudan University, Shanghai 200032, China
| |
Collapse
|
57
|
Wicki B, Flückiger B, Vienneau D, de Hoogh K, Röösli M, Ragettli MS. Socio-environmental modifiers of heat-related mortality in eight Swiss cities: A case time series analysis. ENVIRONMENTAL RESEARCH 2024; 246:118116. [PMID: 38184064 DOI: 10.1016/j.envres.2024.118116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
In the light of growing urbanization and projected temperature increases due to climate change, heat-related mortality in urban areas is a pressing public health concern. Heat exposure and vulnerability to heat may vary within cities depending on structural features and socioeconomic factors. This study examined the effect modification of the temperature-mortality association of three socio-environmental factors in eight Swiss cities and population subgroups (<75 and ≥ 75 years, males, females): urban heat islands (UHI) based on within-city temperature contrasts, residential greenness measured as normalized difference vegetation index (NDVI) and neighborhood socioeconomic position (SEP). We used individual death records from the Swiss National Cohort occurring during the warm season (May to September) in the years 2003-2016. We performed a case time series analysis using conditional quasi-Poisson and distributed lag non-linear models with a lag of 0-3 days. As exposure variables, we used daily maximum temperatures (Tmax) and a binary indicator for warm nights (Tmin ≥20 °C). In total, 53,593 deaths occurred during the study period. Overall across the eight cities, the mortality risk increased by 31% (1.31 relative risk (95% confidence interval: 1.20-1.42)) between 22.5 °C (the minimum mortality temperature) and 35 °C (the 99th percentile) for warm-season Tmax. Stratified analysis suggested that the heat-related risk at 35 °C is 26% (95%CI: -4%, 67%) higher in UHI compared to non-UHI areas. Indications of smaller risk differences were observed between the low vs. high greenness strata (Relative risk difference = 13% (95%CI: -11%; 44%)). Living in low SEP neighborhoods was associated with an increased heat related risk in the non-elderly population (<75 years). Our results indicate that UHI are associated with increased heat-related mortality risk within Swiss cities, and that features beyond greenness are responsible for such spatial risk differences.
Collapse
Affiliation(s)
- Benedikt Wicki
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martina S Ragettli
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
58
|
Karam S, Amouzegar A, Alshamsi IR, Al Ghamdi SM, Anwar S, Ghnaimat M, Saeed B, Arruebo S, Bello AK, Caskey FJ, Damster S, Donner JA, Jha V, Johnson DW, Levin A, Malik C, Nangaku M, Okpechi IG, Tonelli M, Ye F, Abu-Alfa AK, Savaj S. Capacity for the management of kidney failure in the International Society of Nephrology Middle East region: report from the 2023 ISN Global Kidney Health Atlas (ISN-GKHA). Kidney Int Suppl (2011) 2024; 13:57-70. [PMID: 38618498 PMCID: PMC11010631 DOI: 10.1016/j.kisu.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/16/2024] Open
Abstract
The highest financial and symptom burdens and the lowest health-related quality-of-life scores are seen in people with kidney failure. A total of 11 countries in the International Society of Nephrology (ISN) Middle East region responded to the ISN-Global Kidney Health Atlas. The prevalence of chronic kidney disease (CKD) in the region ranged from 4.9% in Yemen to 12.2% in Lebanon, whereas prevalence of kidney failure treated with dialysis or transplantation ranged from 152 per million population (pmp) in the United Arab Emirates to 869 pmp in Kuwait. Overall, the incidence of kidney transplantation was highest in Saudi Arabia (20.2 pmp) and was lowest in Oman (2.2 pmp). Chronic hemodialysis (HD) and peritoneal dialysis (PD) services were available in all countries, whereas kidney transplantation was available in most countries of the region. Public government funding that makes acute dialysis, chronic HD, chronic PD, and kidney transplantation medications free at the point of delivery was available in 54.5%, 72.7%, 54.5%, and 54.5% of countries, respectively. Conservative kidney management was available in 45% of countries. Only Oman had a CKD registry; 7 countries (64%) had dialysis registries, and 8 (73%) had kidney transplantation registries. The ISN Middle East region has a high burden of kidney disease and multiple challenges to overcome. Prevention and detection of kidney disease can be improved by the design of tailored guidelines, allocation of additional resources, improvement of early detection at all levels of care, and implementation of sustainable health information systems.
Collapse
Affiliation(s)
- Sabine Karam
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Atefeh Amouzegar
- Division of Nephrology, Department of Medicine, Firoozgar Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed M.G. Al Ghamdi
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Jeddah, Saudi Arabia
| | - Siddiq Anwar
- Department of Nephrology, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi, United Arab Emirates
| | - Mohammad Ghnaimat
- Nephrology Division, Internal Medicine Department, Al Rasheed Center Hospital, Amman, Jordan
| | - Bassam Saeed
- Farah Association for Children with Kidney Disease, Damascus, Syria
| | | | - Aminu K. Bello
- Division of Nephrology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Fergus J. Caskey
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jo-Ann Donner
- International Society of Nephrology, Brussels, Belgium
| | - Vivekanand Jha
- George Institute for Global Health, University of New South Wales (UNSW), New Delhi, India
- School of Public Health, Imperial College, London, UK
- Manipal Academy of Higher Education, Manipal, India
| | - David W. Johnson
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Centre for Kidney Disease Research, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Australasian Kidney Trials Network at the University of Queensland, Brisbane, Queensland, Australia
| | - Adeera Levin
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charu Malik
- International Society of Nephrology, Brussels, Belgium
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ikechi G. Okpechi
- Division of Nephrology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Nephrology and Hypertension, University of Cape Town, Cape Town, South Africa
- Kidney and Hypertension Research Unit, University of Cape Town, Cape Town, South Africa
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Canada and Pan-American Health Organization/World Health Organization’s Collaborating Centre in Prevention and Control of Chronic Kidney Disease, University of Calgary, Calgary, Alberta, Canada
| | - Feng Ye
- Division of Nephrology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ali K. Abu-Alfa
- Division of Nephrology and Hypertension, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shokoufeh Savaj
- Department of Nephrology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Fletcher C, Ripple WJ, Newsome T, Barnard P, Beamer K, Behl A, Bowen J, Cooney M, Crist E, Field C, Hiser K, Karl DM, King DA, Mann ME, McGregor DP, Mora C, Oreskes N, Wilson M. Earth at risk: An urgent call to end the age of destruction and forge a just and sustainable future. PNAS NEXUS 2024; 3:pgae106. [PMID: 38566756 PMCID: PMC10986754 DOI: 10.1093/pnasnexus/pgae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human development has ushered in an era of converging crises: climate change, ecological destruction, disease, pollution, and socioeconomic inequality. This review synthesizes the breadth of these interwoven emergencies and underscores the urgent need for comprehensive, integrated action. Propelled by imperialism, extractive capitalism, and a surging population, we are speeding past Earth's material limits, destroying critical ecosystems, and triggering irreversible changes in biophysical systems that underpin the Holocene climatic stability which fostered human civilization. The consequences of these actions are disproportionately borne by vulnerable populations, further entrenching global inequities. Marine and terrestrial biomes face critical tipping points, while escalating challenges to food and water access foreshadow a bleak outlook for global security. Against this backdrop of Earth at risk, we call for a global response centered on urgent decarbonization, fostering reciprocity with nature, and implementing regenerative practices in natural resource management. We call for the elimination of detrimental subsidies, promotion of equitable human development, and transformative financial support for lower income nations. A critical paradigm shift must occur that replaces exploitative, wealth-oriented capitalism with an economic model that prioritizes sustainability, resilience, and justice. We advocate a global cultural shift that elevates kinship with nature and communal well-being, underpinned by the recognition of Earth's finite resources and the interconnectedness of its inhabitants. The imperative is clear: to navigate away from this precipice, we must collectively harness political will, economic resources, and societal values to steer toward a future where human progress does not come at the cost of ecological integrity and social equity.
Collapse
Affiliation(s)
- Charles Fletcher
- School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Thomas Newsome
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Phoebe Barnard
- Center for Environmental Politics and School of Interdisciplinary Arts and Sciences, University of Washington, Seattle, WA 98195, USA
- African Climate and Development Initiative and FitzPatrick Institute, University of Cape Town, Cape Town 7700, South Africa
| | - Kamanamaikalani Beamer
- Hui ‘Āina Momona Program, Richardson School of Law, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
- Hawai‘inuiākea School of Hawaiian Knowledge, Kamakakūokalani Center for Hawaiian Studies, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Aishwarya Behl
- School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Jay Bowen
- Institute of American Indian Arts, Santa Fe, NM 87508, USA
- Upper Skagit Tribe, Sedro Woolley, WA 98284, USA
| | - Michael Cooney
- School of Ocean and Earth Science and Technology, Hawai‘i Natural Energy Institute, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Eileen Crist
- Department of Science Technology and Society, Virginia Tech, Blacksburg, VA 24060, USA
| | - Christopher Field
- Doerr School for Sustainability, Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Krista Hiser
- Department of Languages, Linguistics, and Literature, Kapi‘olani Community College, Honolulu, HI 96816, USA
- Global Council for Science and the Environment, Washington, DC 20006, USA
| | - David M Karl
- Department of Oceanography, School of Ocean and Earth Science and Technology, Honolulu, HI 96822, USA
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - David A King
- Department of Chemistry, University of Cambridge, Cambridge CB2 1DQ, UK
| | - Michael E Mann
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davianna P McGregor
- Department of Ethnic Studies, Center for Oral History, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Camilo Mora
- Department of Geography and Environment, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Naomi Oreskes
- Department of the History of Science, Harvard University, Cambridge, MA 02138, USA
| | - Michael Wilson
- Associate Justice, Hawaii Supreme Court (retired), Honolulu, HI 96813, USA
| |
Collapse
|
60
|
Wang Y, Li C, Zhao S, Wei Y, Li K, Jiang X, Ho J, Ran J, Han L, Zee BCY, Chong KC. Projection of dengue fever transmissibility under climate change in South and Southeast Asian countries. PLoS Negl Trop Dis 2024; 18:e0012158. [PMID: 38683870 PMCID: PMC11081495 DOI: 10.1371/journal.pntd.0012158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/09/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Vector-borne infectious disease such as dengue fever (DF) has spread rapidly due to more suitable living environments. Considering the limited studies investigating the disease spread under climate change in South and Southeast Asia, this study aimed to project the DF transmission potential in 30 locations across four South and Southeast Asian countries. In this study, weekly DF incidence data, daily mean temperature, and rainfall data in 30 locations in Singapore, Sri Lanka, Malaysia, and Thailand from 2012 to 2020 were collected. The effects of temperature and rainfall on the time-varying reproduction number (Rt) of DF transmission were examined using generalized additive models. Projections of location-specific Rt from 2030s to 2090s were determined using projected temperature and rainfall under three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585), and the peak DF transmissibility and epidemic duration in the future were estimated. According to the results, the projected changes in the peak Rt and epidemic duration varied across locations, and the most significant change was observed under middle-to-high greenhouse gas emission scenarios. Under SSP585, the country-specific peak Rt was projected to decrease from 1.63 (95% confidence interval: 1.39-1.91), 2.60 (1.89-3.57), and 1.41 (1.22-1.64) in 2030s to 1.22 (0.98-1.51), 2.09 (1.26-3.47), and 1.37 (0.83-2.27) in 2090s in Singapore, Thailand, and Malaysia, respectively. Yet, the peak Rt in Sri Lanka changed slightly from 2030s to 2090s under SSP585. The epidemic duration in Singapore and Malaysia was projected to decline under SSP585. In conclusion, the change of peak DF transmission potential and disease outbreak duration would vary across locations, particularly under middle-to-high greenhouse gas emission scenarios. Interventions should be considered to slow down global warming as well as the potential increase in DF transmissibility in some locations of South and Southeast Asia.
Collapse
Affiliation(s)
- Yawen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Conglu Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shi Zhao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuchen Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kehang Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaoting Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janice Ho
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lefei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benny Chung-ying Zee
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
61
|
Hajat S, Gampe D, Petrou G. Contribution of Cold Versus Climate Change to Mortality in London, UK, 1976-2019. Am J Public Health 2024; 114:398-402. [PMID: 38359382 PMCID: PMC10937602 DOI: 10.2105/ajph.2023.307552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 02/17/2024]
Abstract
Objectives. To quantify past reductions in cold-related mortality attributable to anthropogenic climate change. Methods. We performed a daily time-series regression analysis employing distributed lag nonlinear models of 1 203 981 deaths in Greater London, United Kingdom, in winter months (November-March) during 1976 to 2019. We made attribution assessment by comparing differential cold-related mortality impacts associated with observed temperatures to those using counterfactual temperatures representing no climate change. Results. Over the past decade, the average number of cold days (below 8 °C) per year was 120 in the observed series and 158 in the counterfactual series. Since 1976, we estimate 447 (95% confidence interval = 330, 559) annual cold-related all-cause deaths have been avoided because of milder temperatures associated with climate change. Annually, 241 cardiovascular and 73 respiratory disease deaths have been avoided. Conclusions. Anthropogenic climate change made some contribution to reducing previous cold-related deaths in London; however, cold remains an important public health risk factor. Public Health Implications. Better adaptation to both heat and cold should be promoted in public health measures to protect against climate change. In England, this has been addressed by the development of a new year-round Adverse Weather and Health Plan. (Am J Public Health. 2024;114(4):398-402. https://doi.org/10.2105/AJPH.2023.307552).
Collapse
Affiliation(s)
- Shakoor Hajat
- Shakoor Hajat is with the London School of Hygiene and Tropical Medicine, London, UK. David Gampe is with the Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany. Giorgos Petrou is with the Institute for Environmental Design and Engineering, University College London, London, UK
| | - David Gampe
- Shakoor Hajat is with the London School of Hygiene and Tropical Medicine, London, UK. David Gampe is with the Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany. Giorgos Petrou is with the Institute for Environmental Design and Engineering, University College London, London, UK
| | - Giorgos Petrou
- Shakoor Hajat is with the London School of Hygiene and Tropical Medicine, London, UK. David Gampe is with the Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany. Giorgos Petrou is with the Institute for Environmental Design and Engineering, University College London, London, UK
| |
Collapse
|
62
|
Beggs PJ, Trueck S, Linnenluecke MK, Bambrick H, Capon AG, Hanigan IC, Arriagada NB, Cross TJ, Friel S, Green D, Heenan M, Jay O, Kennard H, Malik A, McMichael C, Stevenson M, Vardoulakis S, Dang TN, Garvey G, Lovett R, Matthews V, Phung D, Woodward AJ, Romanello MB, Zhang Y. The 2023 report of the MJA-Lancet Countdown on health and climate change: sustainability needed in Australia's health care sector. Med J Aust 2024; 220:282-303. [PMID: 38522009 DOI: 10.5694/mja2.52245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/06/2023] [Indexed: 03/25/2024]
Abstract
The MJA-Lancet Countdown on health and climate change in Australia was established in 2017 and produced its first national assessment in 2018 and annual updates in 2019, 2020, 2021 and 2022. It examines five broad domains: health hazards, exposures and impacts; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In this, the sixth report of the MJA-Lancet Countdown, we track progress on an extensive suite of indicators across these five domains, accessing and presenting the latest data and further refining and developing our analyses. Our results highlight the health and economic costs of inaction on health and climate change. A series of major flood events across the four eastern states of Australia in 2022 was the main contributor to insured losses from climate-related catastrophes of $7.168 billion - the highest amount on record. The floods also directly caused 23 deaths and resulted in the displacement of tens of thousands of people. High red meat and processed meat consumption and insufficient consumption of fruit and vegetables accounted for about half of the 87 166 diet-related deaths in Australia in 2021. Correction of this imbalance would both save lives and reduce the heavy carbon footprint associated with meat production. We find signs of progress on health and climate change. Importantly, the Australian Government released Australia's first National Health and Climate Strategy, and the Government of Western Australia is preparing a Health Sector Adaptation Plan. We also find increasing action on, and engagement with, health and climate change at a community level, with the number of electric vehicle sales almost doubling in 2022 compared with 2021, and with a 65% increase in coverage of health and climate change in the media in 2022 compared with 2021. Overall, the urgency of substantial enhancements in Australia's mitigation and adaptation responses to the enormous health and climate change challenge cannot be overstated. Australia's energy system, and its health care sector, currently emit an unreasonable and unjust proportion of greenhouse gases into the atmosphere. As the Lancet Countdown enters its second and most critical phase in the leadup to 2030, the depth and breadth of our assessment of health and climate change will be augmented to increasingly examine Australia in its regional context, and to better measure and track key issues in Australia such as mental health and Aboriginal and Torres Strait Islander health and wellbeing.
Collapse
Affiliation(s)
| | | | | | - Hilary Bambrick
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
| | - Anthony G Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC
| | | | | | | | | | - Donna Green
- Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, UNSW, Sydney, NSW
| | - Maddie Heenan
- Australian Prevention Partnership Centre, Sax Institute, Sydney, NSW
- The George Institute for Global Health, Sydney, NSW
| | - Ollie Jay
- Thermal Ergonomics Laboratory, University of Sydney, Sydney, NSW
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | | | | | - Mark Stevenson
- Transport, Health and Urban Design (THUD) Research Lab, University of Melbourne, Melbourne, VIC
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
| | - Tran N Dang
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Raymond Lovett
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
- Australian Institute of Aboriginal and Torres Strait Islander Studies, Canberra, ACT
| | - Veronica Matthews
- University Centre for Rural Health, University of Sydney, Sydney, NSW
| | | | | | | | | |
Collapse
|
63
|
Eggeling J, Gao C, An D, Cruz-Cano R, He H, Zhang L, Wang YC, Sapkota A. Spatiotemporal link between El Niño Southern Oscillation (ENSO), extreme heat, and thermal stress in the Asia-Pacific region. Sci Rep 2024; 14:7448. [PMID: 38548842 PMCID: PMC10978954 DOI: 10.1038/s41598-024-58288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/27/2024] [Indexed: 04/01/2024] Open
Abstract
Climate change is closely monitored and numerous studies reports increasing air temperature and weather extremes across the globe. As a direct consequence of the increase of global temperature, the increased heat stress is becoming a global threat to public health. While most climate change and epidemiological studies focus on air temperature to explain the increasing risks, heat strain can be predicted using comprehensive indices such as Universal Thermal Climate Index (UTCI). The Asia-Pacific region is prone to thermal stress and the high population densities in the region impose high health risk. This study evaluated the air temperature and UTCI trends between 1990 and 2019 and found significant increasing trends for air temperature for the whole region while the increases of UTCI are not as pronounced and mainly found in the northern part of the region. These results indicate that even though air temperature is increasing, the risks of heat stress when assessed using UTCI may be alleviated by other factors. The associations between El Niño Southern Oscillation (ENSO) and heat stress was evaluated on a seasonal level and the strongest regional responses were found during December-January (DJF) and March-May (MAM).
Collapse
Affiliation(s)
- Jakob Eggeling
- Aerosol and Climate Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, Lund, Sweden.
| | - Chuansi Gao
- Aerosol and Climate Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, Lund, Sweden
| | - Dong An
- Division of Water Resources Engineering, Faculty of Engineering (LTH), Lund University, Lund, Sweden
| | - Raul Cruz-Cano
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, 47405, USA
| | - Hao He
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, 20742, USA
| | - Linus Zhang
- Division of Water Resources Engineering, Faculty of Engineering (LTH), Lund University, Lund, Sweden
| | - Yu-Chun Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan
| | - Amir Sapkota
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
64
|
Luque-García L, Muxika-Legorburu J, Mendia-Berasategui O, Lertxundi A, García-Baquero G, Ibarluzea J. Green and blue space exposure and non-communicable disease related hospitalizations: A systematic review. ENVIRONMENTAL RESEARCH 2024; 245:118059. [PMID: 38157973 DOI: 10.1016/j.envres.2023.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The global increase in non-communicable diseases (NCDs) presents a critical public health concern. Emerging evidence suggests that exposure to natural environments may reduce the risk of developing NCDs through multiple pathways. The present systematic review aims to synthesize and evaluate the observational evidence regarding associations between exposure to green and blue spaces and hospital admissions related to NCDs. A comprehensive literature search strategy was conducted in Embase (Ovid), PubMed, and Web of Science. The risk of bias and quality of the evidence were assessed using The Navigation Guide methodology, an approach specifically designed for environmental health research. Of 3060 search results, 17 articles were included. Notably, the majority of the studies (n = 14; 82.4%) were published from 2020 onwards. Most studies were conducted in the United States (n = 6; 35.3%) and China (n = 4; 23.5%). Exposure to green spaces was assessed through all studies, while only three included blue spaces. In terms of study design, cohort design was employed in nearly half of the studies (n = 8; 47.1%), followed by case-crossover design (n = 3, 17.6%). Over 75% of the included studies (n = 13) had a high or probably high rating in the risk of bias assessment. The studies encompassed diverse NCD outcome domains; cardiovascular diseases (CVDs) (n = 10), respiratory diseases (RSDs) (n = 2), heat-related diseases (n = 1), metabolic diseases (n = 2), cancer (n = 1), neurodegenerative diseases (NDDs) (n = 2), and mental health disorders (n = 2). The present review suggests that a clear link between blue space exposure and NCD hospital admissions is not evident. However, exposure to green spaces appears to predominantly have a protective effect, although the direction of the association varies across different outcome domains. The heterogeneity among the outcome domains together with the limited number of studies, emphasizes the need for more robust evidence.
Collapse
Affiliation(s)
- L Luque-García
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain.
| | - J Muxika-Legorburu
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - O Mendia-Berasategui
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - A Lertxundi
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - G García-Baquero
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto S/n, 37007, Salamanca, Spain
| | - J Ibarluzea
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Faculty of Psychology of the University of the Basque Country, 20018, San Sebastian, Spain
| |
Collapse
|
65
|
Gray C, Thiede BC. Temperature anomalies undermine the health of reproductive-age women in low- and middle-income countries. Proc Natl Acad Sci U S A 2024; 121:e2311567121. [PMID: 38442166 PMCID: PMC10945799 DOI: 10.1073/pnas.2311567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/14/2024] [Indexed: 03/07/2024] Open
Abstract
Climate change is expected to undermine population health and well-being in low- and middle-income countries, but relatively few analyses have directly examined these effects using individual-level data at global scales, particularly for reproductive-age women. To address this lacuna, we harmonize nationally representative data from the Demographic and Health Surveys on reproductive health, body mass index (BMI), and temporary migration from 2.5 million adult women (ages 15 to 49) in approximately 109,000 sites across 59 low- and middle-income countries, which we link to high-resolution climate data. We use this linked dataset to estimate fixed-effect logistic regression models of demographic and health outcomes as a function of climate exposures, woman-level and site-level characteristics, seasonality, and regional time trends, allowing us to plausibly isolate climate effects from other influences on health and migration. Specifically, we measure the effects of recent exposures to temperature and precipitation anomalies on the likelihood of having a live birth in the past year, desire for another child, use of modern contraception, underweight (BMI < 18.5), and temporary migration, and subsequently allow for nonlinearity as well as heterogeneity across education, rural/urban residence, and baseline climate. This analysis reveals that exposures to high temperatures increase live births, reduce desire for another child, increase underweight, and increase temporary migration, particularly in rural areas. The findings represent clear evidence that anthropogenic temperature increases contribute to temporary migration and are a significant threat to women's health and reproductive autonomy in low- and middle-income countries.
Collapse
Affiliation(s)
- Clark Gray
- Department of Geography and Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Brian C. Thiede
- Department of Agricultural Economics, Sociology, and Education, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
66
|
Hou T, Zhang J, Wang Y, Zhang G, Li S, Fan W, Li R, Sun Q, Liu C. Early Pulmonary Fibrosis-like Changes in the Setting of Heat Exposure: DNA Damage and Cell Senescence. Int J Mol Sci 2024; 25:2992. [PMID: 38474239 DOI: 10.3390/ijms25052992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
It is well known that extreme heat events happen frequently due to climate change. However, studies examining the direct health impacts of increased temperature and heat waves are lacking. Previous reports revealed that heatstroke induced acute lung injury and pulmonary dysfunction. This study aimed to investigate whether heat exposure induced lung fibrosis and to explore the underlying mechanisms. Male C57BL/6 mice were exposed to an ambient temperature of 39.5 ± 0.5 °C until their core temperature reached the maximum or heat exhaustion state. Lung fibrosis was observed in the lungs of heat-exposed mice, with extensive collagen deposition and the elevated expression of fibrosis molecules, including transforming growth factor-β1 (TGF-β1) and Fibronectin (Fn1) (p < 0.05). Moreover, epithelial-mesenchymal transition (EMT) occurred in response to heat exposure, evidenced by E-cadherin, an epithelial marker, which was downregulated, whereas markers of EMT, such as connective tissue growth factor (CTGF) and the zinc finger transcriptional repressor protein Slug, were upregulated in the heat-exposed lung tissues of mice (p < 0.05). Subsequently, cell senescence examination revealed that the levels of both senescence-associated β-galactosidase (SA-β-gal) staining and the cell cycle protein kinase inhibitor p21 were significantly elevated (p < 0.05). Mechanistically, the cGAS-STING signaling pathway evoked by DNA damage was activated in response to heat exposure (p < 0.05). In summary, we reported a new finding that heat exposure contributed to the development of early pulmonary fibrosis-like changes through the DNA damage-activated cGAS-STING pathway followed by cellular senescence.
Collapse
Affiliation(s)
- Tong Hou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Jiyang Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Yindan Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Guoqing Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Wenjun Fan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| |
Collapse
|
67
|
Bouchama A, Mündel T, Laitano O. Beyond heatwaves: A nuanced view of temperature-related mortality. Temperature (Austin) 2024; 11:190-202. [PMID: 39193046 PMCID: PMC11346551 DOI: 10.1080/23328940.2024.2310459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 08/29/2024] Open
Abstract
The increasing use of time-series analyses in exploring the relationship between daily ambient temperature and mortality has expanded our understanding of the potential health impacts of climate change. However, it raises significant concerns about the risk of overinterpretation and misattribution of statistical findings. This review examines the methodological assumptions and interpretation pitfalls prevalent in current research on ambient temperature-mortality associations. Extremely elevated ambient temperatures are well-known to elicit physiological stress and increase mortality risk; however, there is no physiological evidence for lethality risk within normal ambient temperature ranges. Despite this, many studies attribute mortality risks across the entire ambient temperature-mortality curve, including normal range ambient temperatures, thus oversimplifying complex underlying physiological processes. Overinterpretation may lead to inaccurate assessments and misguided public health policies. We caution against the tendency to extrapolate results from extreme heat conditions to milder, more typical summer ambient temperature ranges. We advocate for an interdisciplinary approach that combines physiological, clinical, and epidemiological perspectives, with a strong emphasis on the role of behavioral thermoregulation and socio-economic factors to link normal range ambient temperatures with mortality. We recommend analyses centered on excess mortality during defined heatwave periods, and to incorporate heat stress biomarkers to substantiate causal claims for temperatures below heatwaves threshold. A careful approach to interpreting ambient temperature-mortality associations is crucial for formulating evidence-based public health policies.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Toby Mündel
- Department of Kinesiology, Brock University, Ontario, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
68
|
Deng L, Chen X, Ma P, Wu Y, Okoye CO, Du D, Deng Q. The combined effect of oxidative stress and TRPV1 on temperature-induced asthma: Evidence in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123313. [PMID: 38185356 DOI: 10.1016/j.envpol.2024.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Temperature is one of the possible activators for asthma. As global warming continues, the health hazard of high temperatures is increasing. It is unclear, nevertheless, how high temperatures affect asthma. The research aims to examine how asthma is affected by high temperatures and underlying molecular mechanisms. The BALB/c mice were adopted in a model of asthma. The mice were exposed at 24 °C, 38 °C and 40 °C for 4h on weekdays from day 1 to day 30. After the experiment, the lung function was measured in vivo, and then serum protein, pulmonary inflammation and immunohistochemistry assay was assessed in vitro. As the temperature increased from 24 °C to 40 °C, there was a significant increase in serum protein, while there is no discernible difference in serum protein of OVA-sIgE and OVA-sIgG between the OVA (38 °C) group and OVA (24 °C) group. The immunohistochemistry assay showed a change in the pro-inflammatory cytokines. The histopathological analysis exhibited the change of airway structure after high-temperature exposure, especially for exposure at 40 °C. The results of signals protein showed a remarkable rise of TRPV1 for OVA+40 °C. Our results revealed that high temperatures may make asthmatic airway dysfunction severe, and the higher the temperature, the more serious asthma. The oxidative stress and TRPV1 receptor can be a potential drug target for asthma. It will provide a new tool for precision medicine in asthma.
Collapse
Affiliation(s)
- Linjing Deng
- School of Emergency Management, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China.
| | - Xunfeng Chen
- Biofuels Institute of Jiangsu university, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China
| | - Ping Ma
- Laboratory of Environment-Immunological and Neurological Diseases, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yang Wu
- Laboratory of Environment-Immunological and Neurological Diseases, Hubei University of Science and Technology, Xianning, 437100, China
| | - Charles Obinwanne Okoye
- School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Daolin Du
- School of Emergency Management, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
69
|
Kadio K, Filippi V, Congo M, Scorgie F, Roos N, Lusambili A, Nakstad B, Kovats S, Kouanda S. Extreme heat, pregnancy and women's well-being in Burkina Faso: an ethnographical study. BMJ Glob Health 2024; 8:e014230. [PMID: 38382997 PMCID: PMC10897842 DOI: 10.1136/bmjgh-2023-014230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/14/2024] [Indexed: 02/23/2024] Open
Abstract
Climate change is an increasing threat to the health of populations in Africa, with a shift in seasonal temperatures towards more extreme heat exposures. In Burkina Faso, like other countries in the Sahel, many women have little protection against exposure to high temperatures, either outside or inside the home or place of work. This paper investigates how women perceive the impacts of heat on their physical and mental health, in addition to their social relationships and economic activities. Qualitative methods (in-depth interviews and focus group discussions) were conducted with women, community representatives and healthcare professionals in two regions in Burkina Faso. A thematic analysis was used to explore the realities of participants' experiences and contextual perspectives in relation to heat. Our research shows extreme temperatures have a multifaceted impact on pregnant women, mothers and newborns. Extreme heat affects women's functionality and well-being. Heat undermines a woman's ability to care for themselves and their child and interferes negatively with breast feeding. Heat negatively affects their ability to work and to maintain harmonious relationships with their partners and families. Cultural practices such as a taboo on taking the baby outside before the 40th day may exacerbate some of the negative consequences of heat. Most women do not recognise heat stress symptoms and lack awareness of heat risks to health. There is a need to develop public health messages to reduce the impacts of heat on health in Burkina Faso. Programmes and policies are needed to strengthen the ability of health professionals to communicate with women about best practices in heat risk management.
Collapse
Affiliation(s)
- Kadidiatou Kadio
- Centre national de la recherche scientifique et technologique (CNRST), Institut de Recherche en Sciences de la Santé, Ouagadougou, Centre, Burkina Faso
| | | | - Mariam Congo
- Centre national de la recherche scientifique et technologique (CNRST), Institut de Recherche en Sciences de la Santé, Ouagadougou, Centre, Burkina Faso
| | - Fiona Scorgie
- Wits Reproductive Health Institute (WRHI), University of the Witwatersrand, Johannesburg, South Africa
| | - Nathalie Roos
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Britt Nakstad
- University of Oslo, Oslo, Norway
- Department of Pediatrics and Adolescent Health, University of Botswana, Gaborone, Botswana
| | - Sari Kovats
- London School of Hygiene & Tropical Medicine, London, UK
| | - Seni Kouanda
- Centre national de la recherche scientifique et technologique (CNRST), Institut de Recherche en Sciences de la Santé, Ouagadougou, Centre, Burkina Faso
| |
Collapse
|
70
|
Lisboa PV, Gómez-Román C, Guntín L, Monteiro AP. Pro-environmental behavior, personality and emotional intelligence in adolescents: a systematic review. Front Psychol 2024; 15:1323098. [PMID: 38414884 PMCID: PMC10898495 DOI: 10.3389/fpsyg.2024.1323098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Human behavior significantly contributes to environmental problems, making the study of pro-environmental behavior an important task for psychology. In this context, it is crucial to understand the pro-environmental behavior of adolescents, as young people play a fundamental role in facilitating long-term changes in environmental consciousness and encouraging decision-makers to take action. However, little is currently known about the pro-environmental behavior of adolescents. Recently, there has been growing interest in examining the influence of personality traits and emotional intelligence on pro-environmental behavior. Methods We conducted a systematic review to enhance our understanding of adolescent pro-environmental behavior. Thus, this systematic review was designed to enhance understanding of adolescent's pro-environmental behavior by summarizing existing evidence on how it relates to personality and emotional intelligence. Results Our findings suggest associations between specific personality traits and dimensions of emotional intelligence with adolescent pro-environmental behavior, aligning with similar studies conducted on adults. Discussion While our findings offer valuable insights, further research is needed to establish causality and deepen our understanding of the interplay between multiple variables influencing pro-environmental behavior among adolescents. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023387836], identifier [CRD42023387836].
Collapse
Affiliation(s)
- Paulo Vítor Lisboa
- CRETUS, Interdisciplinary Research Center in Environmental Technologies, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Department of Social Psychology, Basic Psychology and Methodology, Faculty of Psychology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Gómez-Román
- CRETUS, Interdisciplinary Research Center in Environmental Technologies, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Department of Social Psychology, Basic Psychology and Methodology, Faculty of Psychology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lidia Guntín
- CRETUS, Interdisciplinary Research Center in Environmental Technologies, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Department of Social Psychology, Basic Psychology and Methodology, Faculty of Psychology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Paula Monteiro
- Department of Education and Psychology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for Educational Research and Intervention, University of Porto, Porto, Portugal
| |
Collapse
|
71
|
Huber V, Breitner-Busch S, He C, Matthies-Wiesler F, Peters A, Schneider A. Heat-Related Mortality in the Extreme Summer of 2022—an Analysis Based on Daily Data. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:79-85. [PMID: 38169332 PMCID: PMC11002439 DOI: 10.3238/arztebl.m2023.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Estimating the excess mortality attributable to heat is a central element of the documentation of the consequences of climate change for human health. Until now, estimates of heatrelated deaths in Germany by the Robert Koch Institute (RKI) have been based on weekly mortality records. METHODS Our study is the first to use higher resolution data-i.e. daily all-cause mortality linked to daily mean temperatures-from each of the German federal states to assess the heat-related mortality from 2000 to 2023 in Germany, employing quasi-Poisson models and multivariate meta-regression analyses. We focus our analysis on the extreme summer of 2022. RESULTS Our analysis yielded an estimate of 9100 (95% CI: [7300; 10 700]) heat-related deaths in Germany for the summer of 2022, whereas previous studies of the RKI estimated the number of heatrelated deaths at 4500 [2100; 7000]. When we set a higher temperature threshold in the definition of the heat risk, we arrived at a figure of 6900 [5500; 8100] heat-related deaths in 2022. In other summers that-similarly to 2022-were characterized by large fluctuations in daily mean temperatures, we also robustly estimated higher numbers of heat-related deaths than the RKI did. The exclusion of reported deaths due to COVID-19 had only a minor effect on our estimates. CONCLUSION Our findings suggest that previous studies based on weekly mortality data have underestimated the full extent of heat-related mortality in Germany, particularly in the extreme summer of 2022. The monitoring of heat-related mortality should be systematic and as comprehensive as possible if it is to enable the development of effective heat-health action plans.
Collapse
Affiliation(s)
- Veronika Huber
- Institute of Epidemiology, The Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Medical Faculty, Ludwig-Maximilians-Universität (LMU), München, Germany
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Breitner-Busch
- Institute of Epidemiology, The Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Medical Faculty, Ludwig-Maximilians-Universität (LMU), München, Germany
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
| | - Cheng He
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
| | - Franziska Matthies-Wiesler
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
- German Alliance on Climate Change and Health (KLUG e.V.), Berlin, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
- Munich Heart Alliance, German Center for Cardiovascular Health (DZHK e.V., partner-site Munich), München, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
72
|
Ebi KL, Hess JJ. Introduction to JAMA Climate Change and Health Series. JAMA 2024; 331:436-437. [PMID: 38175631 DOI: 10.1001/jama.2023.25878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This JAMA Insights introduces the new series on climate change intended to inform readers about the associations between climate change and health.
Collapse
Affiliation(s)
- Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle
| | - Jeremy J Hess
- Center for Health and the Global Environment, University of Washington, Seattle
| |
Collapse
|
73
|
Chung SJ, Jang SJ, Lee H. Validation of the Sustainability Attitudes in Nursing Survey-2 for nurses: A cross-sectional study. Nurse Educ Pract 2024; 75:103898. [PMID: 38244338 DOI: 10.1016/j.nepr.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
AIM To validate the Sustainability Attitudes in Nursing Survey-2 for nurses. BACKGROUND Climate change and environmental sustainability is an increasing global issue. Nurses' behaviors could produce harmful emission through their activities, while nurses also care for people with climate change-related health problems. Therefore, nurses have a responsibility of achieving environmental sustainability. To enhance environmental sustainability in nursing, examining attitudes toward climate change and environmental sustainability among nurses from diverse culture is needed. DESIGN Cross-sectional design using secondary data. METHODS Data from 349 nurses working at tertiary hospitals in Korea were collected in August 2022. The content validity index and the construct, convergent, discriminant and criterion validities were evaluated. Cronbach's alpha and intraclass correlation coefficient were also evaluated to determine reliability. RESULTS The survey comprised five items with single factor, similar to its original version. Its validity and reliability were acceptable. Cronbach's α was .86. The intraclass correlation coefficient was .81 for the entire scale. CONCLUSION This study found the Sustainability Attitudes in Nursing Survey-2 to be a valid and reliable tool for measuring nurses' attitudes toward environmental sustainability. Understanding nurses' attitudes and the educational needs related to environmental sustainability could help develop a more environmentally sustainable workplace in nursing.
Collapse
Affiliation(s)
- Sophia J Chung
- Red Cross College of Nursing, Chung-Ang University, Seoul, South Korea
| | - Sun Joo Jang
- Red Cross College of Nursing, Chung-Ang University, Seoul, South Korea
| | - Haeyoung Lee
- Red Cross College of Nursing, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
74
|
McGarr GW, Meade RD, Notley SR, Akerman AP, Richards BJ, McCourt ER, King KE, McCormick JJ, Boulay P, Sigal RJ, Kenny GP. Physiological responses to 9 hours of heat exposure in young and older adults. Part III: Association with self-reported symptoms and mood state. J Appl Physiol (1985) 2024; 136:408-420. [PMID: 38153847 DOI: 10.1152/japplphysiol.00740.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Older adults are at greater risk of heat-related morbidity and mortality during heat waves, which is commonly linked to impaired thermoregulation. However, little is known about the influence of increasing age on the relation between thermal strain and perceptual responses during daylong heat exposure. We evaluated thermal and perceptual responses in 20 young (19-31 yr) and 39 older adults (20 with hypertension and/or type 2 diabetes; 61-78 yr) resting in the heat for 9 h (heat index: 37°C). Body core and mean skin temperature areas under the curve (AUC, hours 0-9) were assessed as indicators of cumulative thermal strain. Self-reported symptoms (68-item environmental symptoms questionnaire) and mood disturbance (40-item profile of mood states questionnaire) were assessed at end-heating (adjusted for prescores). Body core temperature AUC was 2.4°C·h [1.0, 3.7] higher in older relative to young adults (P < 0.001), whereas mean skin temperature AUC was not different (-0.5°C·h [-4.1, 3.2] P = 0.799). At end-heating, self-reported symptoms were not different between age groups (0.99-fold [0.80, 1.23], P = 0.923), with or without adjustment for body core or mean skin temperature AUC (both P ≥ 0.824). Mood disturbance was 0.93-fold [0.88, 0.99] lower in older, relative to young adults (P = 0.031). Older adults with and without chronic health conditions experienced similar thermal strain, yet those with these conditions reported lower symptom scores and mood disturbance compared with young adults and their age-matched counterparts (all P ≤ 0.026). Although older adults experienced heightened thermal strain during the 9-h heat exposure, they did not experience greater self-reported symptoms or mood disturbance relative to young adults.NEW & NOTEWORTHY Despite experiencing greater cumulative thermal strain during 9 h of passive heat exposure, older adults reported similar heat-related symptoms and lower mood disturbance than young adults. Furthermore, self-reported symptoms and mood disturbance were lower in older adults with common age-associated health conditions than young adults and healthy age-matched counterparts. Perceptual responses to heat in older adults can underestimate their level of thermal strain compared with young adults, which may contribute to their increased heat vulnerability.
Collapse
Affiliation(s)
- Gregory W McGarr
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Brodie J Richards
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma R McCourt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
75
|
Shindell D, Faluvegi G, Nagamoto E, Parsons L, Zhang Y. Reductions in premature deaths from heat and particulate matter air pollution in South Asia, China, and the United States under decarbonization. Proc Natl Acad Sci U S A 2024; 121:e2312832120. [PMID: 38252836 PMCID: PMC10835032 DOI: 10.1073/pnas.2312832120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
Following a sustainable development pathway designed to keep warming below 2 °C will benefit human health. We quantify premature deaths attributable to fine particulate matter (PM2.5) air pollution and heat exposures for China, South Asia, and the United States using projections from multiple climate models under high- and low-emission scenarios. Projected changes in premature deaths are typically dominated by population aging, primarily reflecting increased longevity leading to greater sensitivity to environmental risks. Changes in PM2.5 exposure typically have small impacts on premature deaths under a high-emission scenario but provide substantial benefits under a low-emission scenario. PM2.5-attributable deaths increase in South Asia throughout the century under both scenarios but shift to decreases by late century in China, and US values decrease throughout the century. In contrast, heat exposure increases under both scenarios and combines with population aging to drive projected increases in deaths in all countries. Despite population aging, combined PM2.5- and heat-related deaths decrease under the low-emission scenario by ~2.4 million per year by midcentury and ~2.9 million by century's end, with ~3% and ~21% of these reductions from heat, respectively. Intermodel variations in exposure projections generally lead to uncertainties of <40% except for US and China heat impacts. Health benefits of low emissions are larger from reduced heat exposure than improved air quality by the late 2090s in the United States. In contrast, in South and East Asia, the PM2.5-related benefits are largest throughout the century, and their valuation exceeds the cost of decarbonization, especially in China, over the next 30 y.
Collapse
Affiliation(s)
- Drew Shindell
- Earth and Climate Sciences Division, Nicholas School of the Environment, Duke University, Durham, NC27708
| | - Greg Faluvegi
- Center for Climate Systems Research, Columbia University, New York, NY10025
- NASA Goddard Institute for Space Studies, New York, NY10025
| | - Emily Nagamoto
- Earth and Climate Sciences Division, Nicholas School of the Environment, Duke University, Durham, NC27708
| | - Luke Parsons
- Earth and Climate Sciences Division, Nicholas School of the Environment, Duke University, Durham, NC27708
- Global Science, The Nature Conservancy, Salt Lake City, UT84102
| | - Yuqiang Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong250100, China
| |
Collapse
|
76
|
Monteiro dos Santos D, Libonati R, Garcia BN, Geirinhas JL, Salvi BB, Lima e Silva E, Rodrigues JA, Peres LF, Russo A, Gracie R, Gurgel H, Trigo RM. Twenty-first-century demographic and social inequalities of heat-related deaths in Brazilian urban areas. PLoS One 2024; 19:e0295766. [PMID: 38265975 PMCID: PMC10807764 DOI: 10.1371/journal.pone.0295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Population exposure to heat waves (HWs) is increasing worldwide due to climate change, significantly affecting society, including public health. Despite its significant vulnerabilities and limited adaptation resources to rising temperatures, South America, particularly Brazil, lacks research on the health impacts of temperature extremes, especially on the role played by socioeconomic factors in the risk of heat-related illness. Here, we present a comprehensive analysis of the effects of HWs on mortality rates in the 14 most populous urban areas, comprising approximately 35% of the country's population. Excess mortality during HWs was estimated through the observed-to-expected ratio (O/E) for total deaths during the events identified. Moreover, the interplay of intersectionality and vulnerability to heat considering demographics and socioeconomic heterogeneities, using gender, age, race, and educational level as proxies, as well as the leading causes of heat-related excess death, were assessed. A significant increase in the frequency was observed from the 1970s (0-3 HWs year-1) to the 2010s (3-11 HWs year-1), with higher tendencies in the northern, northeastern, and central-western regions. Over the 2000-2018 period, 48,075 (40,448-55,279) excessive deaths were attributed to the growing number of HWs (>20 times the number of landslides-related deaths for the same period). Nevertheless, our event-based surveillance analysis did not detect the HW-mortality nexus, reinforcing that extreme heat events are a neglected disaster in Brazil. Among the leading causes of death, diseases of the circulatory and respiratory systems and neoplasms were the most frequent. Critical regional differences were observed, which can be linked to the sharp North-South inequalities in terms of socioeconomic and health indicators, such as life expectancy. Higher heat-related excess mortality was observed for low-educational level people, blacks and browns, older adults, and females. Such findings highlight that the strengthening of primary health care combined with reducing socioeconomic, racial, and gender inequalities represents a crucial step to reducing heat-related deaths.
Collapse
Affiliation(s)
| | - Renata Libonati
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Beatriz N. Garcia
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João L. Geirinhas
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| | - Barbara Bresani Salvi
- Escola Nacional de Saúde Pública Sergio Arouca - ENSP/ Fiocruz - Programa de Pós Graduação em Saúde Pública e Meio Ambiente
| | - Eliane Lima e Silva
- Departamento de Geografia, Universidade de Brasilia, Distrito Federal, Brazil
- LMI Sentinela, International Joint Laboratory “Sentinela” (Fiocruz, UnB, IRD), Distrito Federal, Brazil
| | - Julia A. Rodrigues
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo F. Peres
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Russo
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| | - Renata Gracie
- Instituto de Comunicação e Informação Científica e Tecnológica em Saúde - ICICT/Fiocruz Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helen Gurgel
- Departamento de Geografia, Universidade de Brasilia, Distrito Federal, Brazil
- LMI Sentinela, International Joint Laboratory “Sentinela” (Fiocruz, UnB, IRD), Distrito Federal, Brazil
| | - Ricardo M. Trigo
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisbon, Portugal
| |
Collapse
|
77
|
Grant L. COP28: the Health Day was a call to action from the health community worldwide. BMJ 2024; 384:q97. [PMID: 38242579 DOI: 10.1136/bmj.q97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
|
78
|
Giannaros C, Agathangelidis I, Galanaki E, Cartalis C, Kotroni V, Lagouvardos K, Giannaros TM, Matzarakis A. Hourly values of an advanced human-biometeorological index for diverse populations from 1991 to 2020 in Greece. Sci Data 2024; 11:76. [PMID: 38228665 PMCID: PMC10791640 DOI: 10.1038/s41597-024-02923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Existing assessments of the thermal-related impact of the environment on humans are often limited by the use of data that are not representative of the population exposure and/or not consider a human centred approach. Here, we combine high resolution regional retrospective analysis (reanalysis), population data and human energy balance modelling, in order to produce a human thermal bioclimate dataset capable of addressing the above limitations. The dataset consists of hourly, population-weighted values of an advanced human-biometeorological index, namely the modified physiologically equivalent temperature (mPET), at fine-scale administrative level and for 10 different population groups. It also includes the main environmental drivers of mPET at the same spatiotemporal resolution, covering the period from 1991 to 2020. The study area is Greece, but the provided code allows for the ease replication of the dataset in countries included in the domains of the climate reanalysis and population data, which focus over Europe. Thus, the presented data and code can be exploited for human-biometeorological and environmental epidemiological studies in the European continent.
Collapse
Affiliation(s)
- Christos Giannaros
- National and Kapodistrian University of Athens, Department of Physics, 15784, Athens, Greece.
| | - Ilias Agathangelidis
- National and Kapodistrian University of Athens, Department of Physics, 15784, Athens, Greece
| | - Elissavet Galanaki
- National Observatory of Athens, Institute for Environmental Research and Sustainable Development, Palea Penteli, 15236, Athens, Greece
| | - Constantinos Cartalis
- National and Kapodistrian University of Athens, Department of Physics, 15784, Athens, Greece
| | - Vassiliki Kotroni
- National Observatory of Athens, Institute for Environmental Research and Sustainable Development, Palea Penteli, 15236, Athens, Greece
| | - Konstantinos Lagouvardos
- National Observatory of Athens, Institute for Environmental Research and Sustainable Development, Palea Penteli, 15236, Athens, Greece
| | - Theodore M Giannaros
- National Observatory of Athens, Institute for Environmental Research and Sustainable Development, Palea Penteli, 15236, Athens, Greece
| | - Andreas Matzarakis
- German Meteorological Service (DWD), Research Centre Human Biometeorology, D-79085, Freiburg, Germany
- University of Freiburg, Institute of Earth and Environmental Sciences, D-79104, Freiburg, Germany
| |
Collapse
|
79
|
Choudhary RK, Joshi P, Ghosh S, Ganguly D, Balakrishnan K, Singh N, Mall RK, Kumar A, Dey S. Excess Mortality Risk Due to Heat Stress in Different Climatic Zones of India. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:342-351. [PMID: 38151765 DOI: 10.1021/acs.est.3c05218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
India is at a high risk of heat stress-induced health impacts and economic losses owing to its tropical climate, high population density, and inadequate adaptive planning. The health impacts of heat stress across climate zones in India have not been adequately explored. Here, we examine and report the vulnerability to heat stress in India using 42 years (1979-2020) of meteorological data from ERA-5 and developed climate-zone-specific percentile-based human comfort class thresholds. We found that the heat stress is usually 1-4 °C higher on heatwave (HW) days than on nonheatwave (NHW) days. However, the stress on NHW days remains considerable and cannot be neglected. We then showed the association of a newly formulated India heat index (IHI) with daily all-cause mortality in three cities - Delhi (semiarid), Varanasi (humid subtropical), and Chennai (tropical wet and dry), using a semiparametric quasi-Poisson regression model, adjusted for nonlinear confounding effects of time and PM2.5. The all-cause mortality risk was enhanced by 8.1% (95% confidence interval, CI: 6.0-10.3), 5.9% (4.6-7.2), and 8.0% (1.7-14.2) during "sweltering" days in Varanasi, Delhi, and Chennai, respectively, relative to "comfortable" days. Across four age groups, the impact was more severe in Varanasi (ranging from a 3.2 to 7.5% increase in mortality risk for a unit rise in IHI) than in Delhi (2.6-4.2% higher risk) and Chennai (0.9-5.7% higher risk). We observed a 3-6 days lag effect of heat stress on mortality in these cities. Our results reveal heterogeneity in heat stress impact across diverse climate zones in India and call for developing an early warning system keeping in mind these regional variations.
Collapse
Affiliation(s)
- Rohit Kumar Choudhary
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Delhi 110016, India
- Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| | - Pallavi Joshi
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Santu Ghosh
- St. John's Medical College, Bengaluru 560034, India
| | - Dilip Ganguly
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Kalpana Balakrishnan
- SRU-ICMR Centre for Advanced Research on Air Quality, Climate and Health Department of Environmental Health Engineering, Faculty of Public Health, Sri Ramachandra Institute for Higher Education and Research, Chennai 600116, India
| | - Nidhi Singh
- IUF - Leibniz Research Institute for Environmental Medicine, 103045 Düsseldorf, Germany
| | - Rajesh Kumar Mall
- DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Alok Kumar
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Delhi 110016, India
- Centre of Excellence for Research on Clean Air, Indian Institute of Technology Delhi, Delhi 110016, India
| |
Collapse
|
80
|
Freidin N, Hayes E, Struthers SA. Implications of climate change on acute kidney injury. Curr Opin Nephrol Hypertens 2024; 33:83-88. [PMID: 37678384 DOI: 10.1097/mnh.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW Climate change is an active and growing threat to human health. This review examines the evidence linking climate change to kidney diseases, with a focus on acute kidney injury (AKI). RECENT FINDINGS A growing body of evidence documents the adverse impact of various environmental and occupational exposures on kidney health. Extreme heat exposure increases the risk for AKI in vulnerable populations, particularly outdoor workers. These effects are being seen in both developed and developing nations, impacting equatorial as well as more northern climates. Climate change is also increasing the risk of water-borne and vector-borne infections, which are important causes of AKI in tropical regions. Due to overlapping environmental and social risk factors, populations in low-income and middle-income countries are likely to be disproportionately affected by climate-related health impacts, including heightened risk for kidney diseases. SUMMARY Climate change will adversely impact global kidney health over the course of the century through effects on temperature and risk of endemic infections. Alongside efforts to aggressively reduce carbon emissions, additional research is needed to guide public and environmental health policies aimed at mitigating the impact of climate change on human health.
Collapse
Affiliation(s)
- Natalie Freidin
- Medical University of South Carolina, Charleston, South Carolina
| | - Eily Hayes
- Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
81
|
Ballester J, van Daalen KR, Chen ZY, Achebak H, Antó JM, Basagaña X, Robine JM, Herrmann FR, Tonne C, Semenza JC, Lowe R. The effect of temporal data aggregation to assess the impact of changing temperatures in Europe: an epidemiological modelling study. THE LANCET REGIONAL HEALTH. EUROPE 2024; 36:100779. [PMID: 38188278 PMCID: PMC10769891 DOI: 10.1016/j.lanepe.2023.100779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024]
Abstract
Background Daily time-series regression models are commonly used to estimate the lagged nonlinear relation between temperature and mortality. A major impediment to this type of analysis is the restricted access to daily health records. The use of weekly and monthly data represents a possible solution unexplored to date. Methods We temporally aggregated daily temperatures and mortality records from 147 contiguous regions in 16 European countries, representing their entire population of over 400 million people. We estimated temperature-lag-mortality relationships by using standard time-series quasi-Poisson regression models applied to daily data, and compared the results with those obtained with different degrees of temporal aggregation. Findings We observed progressively larger differences in the epidemiological estimates with the degree of temporal data aggregation. The daily data model estimated an annual cold and heat-related mortality of 290,104 (213,745-359,636) and 39,434 (30,782-47,084) deaths, respectively, and the weekly model underestimated these numbers by 8.56% and 21.56%. Importantly, differences were systematically smaller during extreme cold and heat periods, such as the summer of 2003, with an underestimation of only 4.62% in the weekly data model. We applied this framework to infer that the heat-related mortality burden during the year 2022 in Europe may have exceeded the 70,000 deaths. Interpretation The present work represents a first reference study validating the use of weekly time series as an approximation to the short-term effects of cold and heat on human mortality. This approach can be adopted to complement access-restricted data networks, and facilitate data access for research, translation and policy-making. Funding The study was supported by the ERC Consolidator Grant EARLY-ADAPT (https://www.early-adapt.eu/), and the ERC Proof-of-Concept Grants HHS-EWS and FORECAST-AIR.
Collapse
Affiliation(s)
| | | | - Zhao-Yue Chen
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Hicham Achebak
- ISGlobal, Barcelona, Spain
- Inserm, France Cohortes, Paris, France
| | - Josep M. Antó
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Jean-Marie Robine
- MMDN, University of Montpellier, Montpellier, France
- EPHE, Inserm, Montpellier, France
- PSL Research University, Paris, France
| | - François R. Herrmann
- Medical School of the University of Geneva, Geneva, Switzerland
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Thônex, Switzerland
| | - Cathryn Tonne
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Jan C. Semenza
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Rachel Lowe
- Barcelona Supercomputing Center, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centre on Climate Change & Planetary Health and Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
82
|
Zander KK, Sibarani R, Abunyewah M, Erdiaw-Kwasie MO, Moss SA, Lassa J, Garnett ST. Community resilience across Australia towards natural hazards: an application of the Conjoint Community Resiliency Assessment Measurement. DISASTERS 2024; 48:e12590. [PMID: 37192426 DOI: 10.1111/disa.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Natural hazards can turn into disasters when not managed well. An important part of disaster risk reduction is to understand how well communities are prepared for natural hazards and how well they can cope with and recover from shocks in the long term. This research assesses self-reported community resilience and asks what makes a community resilient, using Australia as a case study. It reports on an Australian-wide online survey which included questions related to the Conjoint Community Resiliency Assessment Measurement, a subjective indicator, as well as questions about risk perception, well-being, and self-efficacy. Community resilience was found to be moderately high but scores for community leadership and preparedness were low. Perceived community resilience was positively correlated with age and those with high scores for self-efficacy and well-being. There was, as expected, an inverse relationship between reliance on external support during natural hazards and self-efficacy. The results complement previous studies which used different measures of community resilience.
Collapse
Affiliation(s)
- Kerstin K Zander
- Associate Professor at the Northern Institute, Charles Darwin University, Australia
| | - Rifka Sibarani
- PhD student at the Northern Institute, Charles Darwin University, Australia
| | - Matthew Abunyewah
- Outstanding Future Researcher at the Australasian Centre for Resilience Implementation for Sustainable Communities, Charles Darwin University, Australia
| | | | - Simon A Moss
- Dean of Graduate Research at the Research and Innovation Division, University of Wollongong, Australia
| | - Jonatan Lassa
- Senior Lecturer at the Northern Institute, Charles Darwin University, Australia
| | - Stephen T Garnett
- Professor at the Research Institute for the Environment and Livelihoods, Charles Darwin University, Australia
| |
Collapse
|
83
|
Liang C, Yuan J, Tang X, Kan H, Cai W, Chen J. The influence of humid heat on morbidity of megacity Shanghai in China. ENVIRONMENT INTERNATIONAL 2024; 183:108424. [PMID: 38219539 DOI: 10.1016/j.envint.2024.108424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Increased attention has been paid to humid-heat extremes as they are projected to increase in both frequency and intensity. However, it remains unclear how compound extremes of heat and humidity affects morbidity when the climate is projected to continue warming in the future, in particular for a megacity with a large population. METHODS We chose the Wet-Bulb Globe Temperature (WBGT) index as the metric to characterize the humid-heat exposure. The historical associations between daily outpatient visits and daily mean WBGT was established using a Distributed Lag Non-linear Model (DLNM) during the warm season (June to September) from 2013 to 2015 in Shanghai, a prominent megacity of China. Future morbidity burden related to the combined effect of high temperature and humidity were projected under four greenhouse gases (GHGs) emission scenarios (SSP126, SSP245, SSP370 and SSP585). RESULTS The humid-heat weather was significantly associated with a higher risk of outpatient visits in Shanghai than the high-temperature conditions. Relative to the baseline period (2010-2019), the morbidity burden due to humid-heat weather was projected to increase 4.4 % (95 % confidence interval (CI): 1.1 %-10.1 %) even under the strict emission control scenario (SSP126) by 2100. Under the high-GHGs emission scenario (SSP585), this burden was projected to be 25.4 % (95 % CI: 15.8 %-38.4 %), which is 10.1 % (95 % CI: 6.5 %-15.8 %) more than that due to high-temperature weather. Our results also indicate that humid-hot nights could cause large morbidity risks under high-GHGs emission scenarios particularly in heat-sensible diseases such as the respiratory and cardiovascular disease by the end of this century. CONCLUSIONS Humid heat exposures significantly increased the all-cause morbidity risk in the megacity Shanghai, especially in humid-hot nights. Our findings suggest that the combined effect of elevated temperature and humidity is projected to have more substantial impact on health compared to high temperature alone in a warming climate.
Collapse
Affiliation(s)
- Chen Liang
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China.
| | - Xu Tang
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Haidong Kan
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenjia Cai
- Department of Earth System Science, Institute for Global Change Studies, Ministry of Education Ecological Field Station for East Asian Migratory Birds, Tsinghua University, Beijing 100084, China
| | - Jianmin Chen
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| |
Collapse
|
84
|
Wang W, Zeng J, Li X, Liao F, Zhang T, Yin F, Deng Y, Ma Y. Using a novel strategy to identify the clustered regions of associations between short-term exposure to temperature and mortality and evaluate the inequality of heat- and cold-attributable burdens: A case study in the Sichuan Basin, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119402. [PMID: 37879222 DOI: 10.1016/j.jenvman.2023.119402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Few studies have focused on the spatially clustered regions in the association between short-term exposure to temperature and mortality, which is important for identifying high-susceptibility population and enhancing the prevention of high/low temperatures. Previous studies have explored the association inequality, but no study has evaluated the inequalities of temperature-attributable burdens, which may be more meaningful for reducing temperature-related regional inequality. METHODS Taking the Sichuan Basin (SCB), an economically imbalanced area with high humidity and four distinctive seasons, as an example, we used a novel multi-stage strategy to investigate the two issues. First, distributed lag nonlinear models were independently constructed to obtain the county-level associations between daily temperature and cardiorespiratory mortality. Then, an estimation-error-based spatial scan statistic was used to detect the association-clustered regions. Third, multivariate meta-regression incorporating the identified clustered regions and socioeconomic and natural factors was used to obtain stable county-specific associations, based on which the heat- and cold-attributable deaths were mapped and their inequalities were evaluated using concentration indices and Lorenz curves. RESULTS On average, a U-shaped temperature-mortality association was examined. A significantly association-clustered region was detected (P = 0.017), in which heat and cold temperatures presented significantly stronger associations than those in the non-clustered region, particularly for heat temperatures. The cold-attributable deaths (3.5%) were substantially more than the heat-attributable deaths (0.5%). Both presented severe inequalities over counties. Significant temperature-attributable inequalities were also found over per-capital public budget, urbanization rate, employment rate and per-capital GDP. The directions of inequalities over GDP and urbanization rate were opposite between heat and cold temperatures. CONCLUSIONS Our analysis provided the first evidence about the clustering of temperature-mortality associations and the inequality of cold- and heat-attributable burdens. Significantly association-clustered regions and heavy temperature-attributable inequalities were found in the SCB. Rural people bore heavier cold-attributable but less heat-attributable mortality risk than urban people, suggesting that different policies should be designed to reduce the temperature-attributable inequalities for heat and cold temperatures and different regions. This novel strategy can provide an interesting new perspective in the association between environmental exposure and human health.
Collapse
Affiliation(s)
- Wei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Jing Zeng
- Sichuan Provincial Center for Disease Prevention and Control, China
| | - Xuelin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Fang Liao
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Ying Deng
- Sichuan Provincial Center for Disease Prevention and Control, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
85
|
Muccione V, Biesbroek R, Harper S, Haasnoot M. Towards a more integrated research framework for heat-related health risks and adaptation. Lancet Planet Health 2024; 8:e61-e67. [PMID: 38199725 DOI: 10.1016/s2542-5196(23)00254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
Advances in research on current and projected heat-related risks from climate change and the associated responses have rapidly developed over the past decade. Modelling architectures of climate impacts and heat-related health risks have become increasingly sophisticated alongside a growing number of experiments and socioeconomic studies, and possible options for heat-related health adaptation are increasingly being catalogued and assessed. However, despite this progress, these efforts often remain isolated streams of research, substantially hampering our ability to contribute to evidence-informed decision making on responding to heat-related health risks. We argue that the integration of scientific efforts towards more holistic research is urgently needed to tackle fragmented evidence and identify crucial knowledge gaps, so that health research can better anticipate and respond to heat-related health risks in the context of a changing climate. In this Personal View, we outline six building blocks, each constituting a research stream, but each needed as part of a more integrated research framework-namely, projected heat-related health risks; adaptation options; the feasibility and effectiveness of adaptation; synergies, trade-offs, and co-benefits of adaptation; adaptation limits and residual risks; and adaptation pathways. We outline their respective importance and discuss their benefits for health-related research and policy.
Collapse
Affiliation(s)
- Veruska Muccione
- Department of Geography, University of Zurich, Zurich, Switzerland; Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
| | - Robbert Biesbroek
- Public Administration and Policy Group, Wageningen University, Wageningen, Netherlands
| | - Sherilee Harper
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Marjolijn Haasnoot
- Deltares, Delft, Netherlands; Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
86
|
Ho KHM, Cheng HY, McKenna L, Cheung DSK. Nursing and midwifery in a changing world: Addressing planetary health and digital literacy through a global curriculum. Nurs Open 2024; 11:e2075. [PMID: 38268246 PMCID: PMC10748439 DOI: 10.1002/nop2.2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Affiliation(s)
- Ken Hok Man Ho
- The Nethersole School of Nursing, Faculty of MedicineThe Chinese University of Hong Kong, Shatin, New TerritoriesHong Kong, SARChina
- School of Nursing and MidwiferyLa Trobe UniversityMelbourneVictoriaAustralia
| | - Ho Yu Cheng
- The Nethersole School of Nursing, Faculty of MedicineThe Chinese University of Hong Kong, Shatin, New TerritoriesHong Kong, SARChina
| | - Lisa McKenna
- School of Nursing and MidwiferyLa Trobe UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
87
|
Lo Y, Vosper E, Higgins JP, Howard G. Heat impacts on human health in the Western Pacific Region: an umbrella review. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100952. [PMID: 38022710 PMCID: PMC10652124 DOI: 10.1016/j.lanwpc.2023.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Background High temperatures and heatwaves are occurring more frequently and lasting longer because of climate change. A synthesis of existing evidence of heat-related health impacts in the Western Pacific Region (WPR) is lacking. This review addresses this gap. Methods The Scopus and PubMed databases were searched for reviews about heat impacts on mortality, cardiovascular morbidity, respiratory morbidity, dehydration and heat stroke, adverse birth outcomes, and sleep disturbance. The last search was conducted in February 2023 and only publications written in English were included. Primary studies and reviews that did not include specific WPR data were excluded. Data were extracted from 29 reviews. Findings There is strong evidence of heat-related mortality in the WPR, with the evidence concentrating on high-income countries and China. Associations between heat and cardiovascular or respiratory morbidity are not robust. There is evidence of heat-related dehydration and stroke, and preterm and still births in high-income countries in the WPR. Some evidence of sleep disturbance from heat is found for Australia, Japan and China. Interpretation Mortality is by far the most studied and robust health outcome of heat. Future research should focus on morbidity, and lower income countries in continental Asia and Pacific Island States, where there is little review-level evidence. Funding Funded by the World Health Organization WPR Office.
Collapse
Affiliation(s)
- Y.T.Eunice Lo
- Cabot Institute for the Environment, University of Bristol, UK
- Elizabeth Blackwell Institute for Health Research, University of Bristol, UK
| | - Emily Vosper
- Cabot Institute for the Environment, University of Bristol, UK
- School of Geographical Sciences, University of Bristol, UK
| | - Julian P.T. Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) at University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Guy Howard
- Cabot Institute for the Environment, University of Bristol, UK
- School of Civil, Aerospace and Design Engineering, University of Bristol, UK
| |
Collapse
|
88
|
Wibowo R, Do V, Quartucci C, Koller D, Daanen HAM, Nowak D, Bose-O'Reilly S, Rakete S. Effects of heat and personal protective equipment on thermal strain in healthcare workers: part B-application of wearable sensors to observe heat strain among healthcare workers under controlled conditions. Int Arch Occup Environ Health 2024; 97:35-43. [PMID: 37947815 DOI: 10.1007/s00420-023-02022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE As climate change accelerates, healthcare workers (HCW) are expected to be more frequently exposed to heat at work. Heat stress can be exacerbated by physical activity and unfavorable working requirements, such as wearing personal protective equipment (PPE). Thus, understanding its potential negative effects on HCW´s health and working performance is becoming crucial. Using wearable sensors, this study investigated the physiological effects of heat stress due to HCW-related activities. METHODS Eighteen participants performed four experimental sessions in a controlled climatic environment following a standardized protocol. The conditions were (a) 22 °C, (b) 22 °C and PPE, (c) 27 °C and (d) 27 °C and PPE. An ear sensor (body temperature, heart rate) and a skin sensor (skin temperature) were used to record the participants´ physiological parameters. RESULTS Heat and PPE had a significant effect on the measured physiological parameters. When wearing PPE, the median participants' body temperature was 0.1 °C higher compared to not wearing PPE. At 27 °C, the median body temperature was 0.5 °C higher than at 22 °C. For median skin temperature, wearing PPE resulted in a 0.4 °C increase and higher temperatures in a 1.0 °C increase. An increase in median heart rate was also observed for PPE (+ 2/min) and heat (+ 3/min). CONCLUSION Long-term health and productivity risks can be further aggravated by the predicted temperature rise due to climate change. Further physiological studies with a well-designed intervention are needed to strengthen the evidence for developing comprehensive policies to protect workers in the healthcare sector.
Collapse
Affiliation(s)
- Razan Wibowo
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Viet Do
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Caroline Quartucci
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336, Munich, Germany
- Institute for Occupational Safety and Environmental Health Protection, Bavarian Health and Food Safety Authority, 80538, Munich, Germany
| | - Daniela Koller
- Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich, 81377, Munich, Germany
| | - Hein A M Daanen
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Stephan Bose-O'Reilly
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336, Munich, Germany
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Stefan Rakete
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336, Munich, Germany.
| |
Collapse
|
89
|
Shindell D, Hunter R, Faluvegi G, Parsons L. Premature Deaths Due To Heat Exposure: The Potential Effects of Neighborhood-Level Versus City-Level Acclimatization Within US Cities. GEOHEALTH 2024; 8:e2023GH000970. [PMID: 38169989 PMCID: PMC10759151 DOI: 10.1029/2023gh000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
For the population of a given US city, the risk of premature death associated with heat exposure increases as temperatures rise, but risks in hotter cities are generally lower than in cooler cities at equivalent temperatures due to factors such as acclimatization. Those living in especially hot neighborhoods within cities might therefore suffer much more than average if such adaptation is only at the city-wide level, whereas they might not experience greatly increased risk if adjustment is at the neighborhood level. To compare these possibilities, we use high spatial resolution temperature data to evaluated heat-related deaths assuming either adjustment at the city-wide or at the neighborhood scale in 10 large US cities. On average, we find that if inhabitants are adjusted to their local conditions, a neighborhood that was 10°C hotter than a cooler one would experience only about 1.0-1.5 excess heat deaths per year per 100,000 persons. By contrast, if inhabitants are acclimatized to city-wide temperatures, the hotter neighborhood would experience about 15 excess deaths per year per 100,000 persons. Using idealized analyses, we demonstrate that current city-wide epidemiological data do not differentiate between these differing adjustments. Given the very large effects of assumptions about neighborhood-level acclimatization found here, as well as the fact that current literature is conflicting on the spatial scale of acclimatization, more neighborhood-level epidemiological data are urgently needed to determine the health impacts of variations in heat exposure within urban areas, better constrain projected changes, and inform mitigation efforts.
Collapse
Affiliation(s)
- D. Shindell
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - R. Hunter
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - G. Faluvegi
- NASA Goddard Institute for Space Studies and Center for Climate Systems ResearchColumbia UniversityNew YorkNYUSA
| | - L. Parsons
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
- Global ScienceThe Nature ConservancyDurhamNCUSA
| |
Collapse
|
90
|
Rom WN. Annals of Education: Teaching Climate Change and Global Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 21:41. [PMID: 38248506 PMCID: PMC10815579 DOI: 10.3390/ijerph21010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
The climate crisis is a health emergency: breaking temperature records every successive month, increasing mortality from hurricanes/cyclones resulting in >USD150 billion/year in damages, and mounting global loss of life from floods, droughts, and food insecurity. An entire course on climate change and global public health was envisioned, designed for students in public health, and delivered to Masters level students. The course content included the physical science behind global heating, heat waves, extreme weather disasters, arthropod-related diseases, allergies, air pollution epidemiology, melting ice and sea level rise, climate denialism, renewable energy and economics, social cost of carbon, and public policy. The methods included student engagement in presenting two air pollution epidemiological or experimental papers on fossil fuel air pollution. Second, they authored a mid-term paper on a specific topic in the climate crisis facing their locale, e.g., New York City. Third, they focused on a State, evaluating their climate change laws and their plans to harness renewable wind, solar, storage, nuclear, and geothermal energy. Students elsewhere covered regional entities' approach to renewable energy. Fourth, the global impact was presented by student teams presenting a country's nationally determined contribution to the Paris Climate Agreement. Over 200 Master's students completed the course; the participation and feedback demonstrated markedly improved knowledge and evaluation of the course over time.
Collapse
Affiliation(s)
- William N Rom
- Department of Global and Environmental Health, School of Global Public Health, New York University, 708 Broadway, New York, NY 10003, USA
| |
Collapse
|
91
|
Romanello M, Napoli CD, Green C, Kennard H, Lampard P, Scamman D, Walawender M, Ali Z, Ameli N, Ayeb-Karlsson S, Beggs PJ, Belesova K, Berrang Ford L, Bowen K, Cai W, Callaghan M, Campbell-Lendrum D, Chambers J, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Freyberg C, Gasparyan O, Gordon-Strachan G, Graham H, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Hsu SC, Jamart L, Jankin S, Jay O, Kelman I, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Larosa F, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Lotto Batista M, Lowe R, Odhiambo Sewe M, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx JC, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman O, Pega F, Pershing A, Rabbaniha M, Rickman J, Robinson EJZ, Rocklöv J, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Silbert G, Sofiev M, Springmann M, Stowell JD, Tabatabaei M, Taylor J, Thompson R, Tonne C, Treskova M, Trinanes JA, Wagner F, Warnecke L, Whitcombe H, Winning M, Wyns A, Yglesias-González M, Zhang S, Zhang Y, Zhu Q, Gong P, Montgomery H, Costello A. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 2023; 402:2346-2394. [PMID: 37977174 DOI: 10.1016/s0140-6736(23)01859-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Marina Romanello
- Institute for Global Health, University College London, London, UK.
| | - Claudia di Napoli
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Carole Green
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | - Zakari Ali
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Nadia Ameli
- Institute for Sustainable Resources, University College London, London, UK
| | - Sonja Ayeb-Karlsson
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | - Paul J Beggs
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | - Kathryn Bowen
- School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Diarmid Campbell-Lendrum
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Jonathan Chambers
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Troy J Cross
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | | | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Niheer Dasandi
- International Development Department, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Euro-Mediterranean Center on Climate Change Foundation, Lecce, Italy
| | - Michael Davies
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | | | - Robert Dubrow
- School of Public Health, Yale University, New Haven, CT, USA
| | - Kristie L Ebi
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Matthew Eckelman
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Paul Ekins
- Institute for Sustainable Resources, University College London, London, UK
| | - Chris Freyberg
- Department of Information Systems, Massey University, Palmerston North, New Zealand
| | - Olga Gasparyan
- Department of Political Science, Florida State University, Tallahassee, FL, USA
| | | | - Hilary Graham
- Department of Health Sciences, University of York, York, UK
| | - Samuel H Gunther
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Yun Hang
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | | | - Stella Hartinger
- Carlos Vidal Layseca School of Public Health and Management, Cayetano Heredia Pervuvian University, Lima, Peru
| | - Kehan He
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Julian Heidecke
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Jeremy J Hess
- Centre for Health and the Global Environment, University of Washington, Washington, DC, USA
| | - Shih-Che Hsu
- Energy Institute, University College London, London, UK
| | - Louis Jamart
- Institute for Global Health, University College London, London, UK
| | - Slava Jankin
- Centre for AI in Government, University of Birmingham, Birmingham, UK
| | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Patrick Kinney
- Department of Environmental Health, Boston University, Boston, MA, USA
| | - Dominic Kniveton
- School of Global Studies, University of Sussex, Brighton and Hove, UK
| | | | - Francesca Larosa
- Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jason K W Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruno Lemke
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Yang Liu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Melissa Lott
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | | | - Rachel Lowe
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Environmental Studies Program, Denison University, Granville, OH, USA
| | - Celia McMichael
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhifu Mi
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - James Milner
- Department of Public Health Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Kelton Minor
- Data Science Institute, Columbia University, New York, NY, USA
| | - Jan C Minx
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Nahid Mohajeri
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Maziar Moradi-Lakeh
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrissey
- Department of Technology Management and Economics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Kris A Murray
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Tara Neville
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Maria Nilsson
- Department for Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | | | - Megan B O'Hare
- Institute for Global Health, University College London, London, UK
| | - Camile Oliveira
- Institute for Global Health, University College London, London, UK
| | | | - Matthias Otto
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Fereidoon Owfi
- Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Olivia Pearman
- Center for Science and Technology Policy, University of Colorado Boulder, Boulder, CO, USA
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | | | | | - Jamie Rickman
- Institute for Sustainable Resources, University College London, London, UK
| | - Elizabeth J Z Robinson
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science, London, UK
| | - Joacim Rocklöv
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Renee N Salas
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jan C Semenza
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jodi D Sherman
- Department of Anesthesiology, Yale University, New Haven, CT, USA
| | | | - Grant Silbert
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Marco Springmann
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Meisam Tabatabaei
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | | | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Marina Treskova
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Joaquin A Trinanes
- Department of Electronics and Computer Science, University of Santiago de Compostela, Santiago, Spain
| | - Fabian Wagner
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Laura Warnecke
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Hannah Whitcombe
- Institute for Global Health, University College London, London, UK
| | - Matthew Winning
- Institute for Sustainable Resources, University College London, London, UK
| | - Arthur Wyns
- Melbourne Climate Futures, The University of Melbourne, Melbourne, VIC, Australia
| | - Marisol Yglesias-González
- Centro Latinoamericano de Excelencia en Cambio Climatico y Salud, Cayetano Heredia Pervuvian University, Lima, Peru
| | - Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ying Zhang
- School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Qiao Zhu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Peng Gong
- Department of Geography, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hugh Montgomery
- Department of Experimental and Translational Medicine and Division of Medicine, University College London, London, UK
| | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
92
|
Beggs PJ, Zhang Y. The Lancet Countdown on health and climate change: Australia a world leader in neglecting its responsibilities. Med J Aust 2023; 219:528-529. [PMID: 37982350 DOI: 10.5694/mja2.52152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 11/21/2023]
|
93
|
Kaissassou S, Komkoua AJ, Guenang M, Ngohe-Ekam PS, Njouenwet I, Rigong H. A 43-year of human thermal comfort in Central Africa. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:2069-2080. [PMID: 37837455 DOI: 10.1007/s00484-023-02563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
In this study, the human thermal stress was quantified across Central Africa (C.A.) using the Universal Thermal Climate Index (UTCI). Although many of the documented studies on the use of UTCI in relation to human health are currently restricted to countries in the northern hemisphere, this contribution constitutes a prerequisite of information for future research in the region. To mitigate the problem of lack of field data in the Central African sub-region, we downloaded UTCI data via the ERA5 reanalysis portal. Based on this data source, we have explored the spatiotemporal characteristics and the resulting behaviour at annual, seasonal and monthly scales in Central Africa over the period 1982 to 2022. On these different scales, 4 of the 10 UTCI thermal stress categories were experienced, ranging from mild cold stress to strong heat stress. Spatially, cases of moderate heat stress were the most widespread, with cases of strong intensity occurring in a few isolated areas in the centre, east and west. Slight cold stress is confined to the south-east domain, particularly in autumn and winter. From 1982 to 2022, heat stress has increased significantly in the region, with peaks observed in January and October; very few areas have been spared the phenomenon of thermal stress. However, a slight decreasing trend was noticed along coastal regions and the south of C.A. Thereafter, the trend values showed the degree of C.A. vulnerability to global warming, and thus appropriate measures should be taken in relation to outdoor occupations and its impacts on the population of this region.
Collapse
Affiliation(s)
- Samuel Kaissassou
- Laboratory of Electric Mechatronic and Signal Processing, Department of Electric and Telecommunication Engineering, National Advanced School of Engineering, University of Yaoundé I, Yaoundé, Cameroon.
- Department of Meteorology, Climatology, Hydrology and Soil Sciences, National Advanced School of Engineering, University of Maroua, Maroua, Cameroon.
| | - A J Komkoua
- Faculty of Science, University of Dschang, Dschang, Cameroon
| | - M Guenang
- Faculty of Science, University of Dschang, Dschang, Cameroon
| | - P-S Ngohe-Ekam
- Laboratory of Electric Mechatronic and Signal Processing, Department of Electric and Telecommunication Engineering, National Advanced School of Engineering, University of Yaoundé I, Yaoundé, Cameroon
| | - I Njouenwet
- LEMAP, Department of Physics, Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
| | - H Rigong
- Laboratory of Electric Mechatronic and Signal Processing, Department of Electric and Telecommunication Engineering, National Advanced School of Engineering, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
94
|
Parker EB, Bluman A, Pruneski J, Soens W, Bernstein A, Smith JT, Bluman EM. American Orthopaedic Foot and Ankle Society Annual Meeting All-in-person Attendance Results in Immense Carbon Expenditure. Clin Orthop Relat Res 2023; 481:2469-2480. [PMID: 37493467 PMCID: PMC10642890 DOI: 10.1097/corr.0000000000002764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/07/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Professional society conferences are integral to the medical profession. However, airline travel is a major contributor to greenhouse gas production, and the environmental impact of in-person attendance at an orthopaedic conference has yet to be described. With growing concern about the climate crisis, we sought to quantify the carbon footprint of in-person attendance to help potential attendees more consciously consider in-person attendance, inform strategies to minimize greenhouse gas emissions during travel to annual meetings, and increase awareness about and momentum for efforts in orthopaedic surgery to reduce the carbon footprint of society conferences. QUESTIONS/PURPOSES (1) What was the magnitude of greenhouse gas production resulting from all-in-person 2019 American Orthopaedic Foot and Ankle Society (AOFAS) annual meeting attendance in Chicago, IL, USA? (2) What was the magnitude of greenhouse gas production resulting from the all-virtual 2020 AOFAS annual meeting, and how does it compare with the 2019 AOFAS annual meeting carbon footprint? (3) To what extent could an alternative in-person meeting model with four or seven hubs decrease greenhouse gas production resulting from round-trip air travel compared with the 2019 AOFAS annual meeting? METHODS A list of the postal codes and countries of all 1271 registered participants attending the four-day 2019 AOFAS annual meeting in Chicago, IL, USA, was obtained from AOFAS headquarters. The 2019 conference was chosen because it was the last pre-COVID meeting and thus attendance was more likely to resemble that at prepandemic in-person conferences than more recent meetings because of pandemic travel restrictions. We estimated carbon dioxide-equivalent (CO 2 e) production from round-trip air travel using a publicly available internet-based calculator (Myclimate: https://co2.myclimate.org/en/flight_calculators/new ). Emissions produced by the conference venue, car travel, and hotel stays were estimated using published Environmental Protection Agency emission factors. To estimate emissions produced by the all-virtual 2020 AOFAS annual meeting (assuming an equal number of attendees as in 2019), we used the framework published by Faber and summed estimated network data transfer emissions, personal computer and monitor emissions, and server-related emissions. Using the 2019 registrant list, we modeled four-hub and seven-hub in-person meeting alternatives to determine potential decreased round-trip air travel greenhouse gas production. Meeting hub locations were selected by visualizing the geographic distribution of the 2019 registrants and selecting reasonable meeting locations that would minimize air travel for the greatest number of attendees. Registrants were assigned to the nearest hub location. Myclimate was again used to estimate CO 2 e production for round-trip air travel for the hub meeting models. RESULTS The total estimated emissions of the all-in-person 2019 AOFAS annual meeting (when accounting for travel, conference space, and hotel stays) was 1565 tons CO 2 e (median 0.61 tons per attendee, range 0.02 to 7.7 tons). The total estimated emissions of the all-virtual 2020 meeting (when accounting for network data transfer emissions, personal computer and monitor emissions, and server-related emissions) was 34 tons CO 2 e (median 0.03 tons per attendee). This corresponds to a 97.8% decrease in CO 2 e emissions compared with the in-person conference. The model of a four-hub in-person meeting alternative with meetings in Chicago, Santiago, London, and Tokyo predicted an estimated 54% decrease in CO 2 e emissions from round-trip air travel. The seven-hub meeting model with meetings in Chicago; Washington, DC; Dallas; Los Angeles; Santiago; London; and Tokyo was predicted to diminish the CO 2 e emissions of round-trip air travel by an estimated 71%. CONCLUSION The 2019 AOFAS annual meeting had an enormous carbon footprint and resulted in many individuals exceeding their annual allotted carbon budget (2.5 tons) according to the Paris Agreement. Hosting the meeting virtually greatly reduced the annual meeting carbon footprint, and our hub-based meeting models identified potential in-person alternatives for reducing the carbon footprint of conference attendance. CLINICAL RELEVANCE Professional societies must consider our responsibility to decarbonizing the healthcare sector by considering innovative approaches-perhaps such as our multihub proposals-to decarbonize carbon-intensive annual meetings without stalling academic progress.
Collapse
Affiliation(s)
- Emily B. Parker
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Adair Bluman
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - James Pruneski
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - William Soens
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jeremy T. Smith
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric M. Bluman
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
95
|
Zhang S, Zhang C, Cai W, Bai Y, Callaghan M, Chang N, Chen B, Chen H, Cheng L, Dai H, Dai X, Fan W, Fang X, Gao T, Geng Y, Guan D, Hu Y, Hua J, Huang C, Huang H, Huang J, Huang X, Ji JS, Jiang Q, Jiang X, Kiesewetter G, Li T, Liang L, Lin B, Lin H, Liu H, Liu Q, Liu X, Liu Z, Liu Z, Liu Y, Lu B, Lu C, Luo Z, Ma W, Mi Z, Ren C, Romanello M, Shen J, Su J, Sun Y, Sun X, Tang X, Walawender M, Wang C, Wang Q, Wang R, Warnecke L, Wei W, Wen S, Xie Y, Xiong H, Xu B, Yan Y, Yang X, Yao F, Yu L, Yuan J, Zeng Y, Zhang J, Zhang L, Zhang R, Zhang S, Zhang S, Zhao M, Zheng D, Zhou H, Zhou J, Zhou Z, Luo Y, Gong P. The 2023 China report of the Lancet Countdown on health and climate change: taking stock for a thriving future. Lancet Public Health 2023; 8:e978-e995. [PMID: 37989307 DOI: 10.1016/s2468-2667(23)00245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Affiliation(s)
- Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Chi Zhang
- School of Management and Economics, Beijing Institute of Technology, Beijing, China
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Yuqi Bai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany; Priestley International Centre for Climate, University of Leeds, Leeds, UK
| | - Nan Chang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bin Chen
- School of Environment, Beijing Normal University, Beijing, China
| | - Huiqi Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liangliang Cheng
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hancheng Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xin Dai
- Institute of Public Safety Research, Tsinghua University, Beijing, China; Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Weicheng Fan
- Institute of Public Safety Research, Tsinghua University, Beijing, China; Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Xiaoyi Fang
- Meteorological Impact and Risk Research Center, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Tong Gao
- School of Management, Qufu Normal University, Rizhao, China
| | - Yang Geng
- School of Architecture, Tsinghua University, Beijing, China
| | - Dabo Guan
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Yixin Hu
- School of Economics and Management, Southeast University, Nanjing, China
| | - Junyi Hua
- School of International Affairs and Public Administration, Ocean University of China, Qingdao, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Hong Huang
- Institute of Public Safety Research, Tsinghua University, Beijing, China; Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Jianbin Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomeng Huang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Qiaolei Jiang
- School of Journalism and Communication, Tsinghua University, Beijing, China
| | - Xiaopeng Jiang
- Office of the WHO Representative, World Health Organization, Geneva, Switzerland
| | - Gregor Kiesewetter
- Pollution Management Research Group, Energy, Climate, and Environment Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Tiantian Li
- Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Liang
- Department of Geography and the Environment, University of North Texas, Denton, TX, USA
| | - Borong Lin
- School of Architecture, Tsinghua University, Beijing, China
| | - Hualiang Lin
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huan Liu
- School of Environment, Tsinghua University, Beijing, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhao Liu
- School of Airport Economics and Management, Beijing Institute of Economics and Management, Beijing, China
| | - Zhu Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Yufu Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Bo Lu
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Chenxi Lu
- Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, MA, USA
| | - Zhenyu Luo
- School of Environment, Tsinghua University, Beijing, China
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; Climate Change and Health Center, Shandong University, Jinan, China
| | - Zhifu Mi
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Chao Ren
- Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Marina Romanello
- Institute for Global Health, University College London, London, UK
| | - Jianxiang Shen
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Jing Su
- School of Humanities, Tsinghua University, Beijing, China
| | - Yuze Sun
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Xinlu Sun
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Xu Tang
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China; Integrated Research on Disaster Risk International Centre of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | - Can Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Qing Wang
- Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rui Wang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Laura Warnecke
- Pollution Management Research Group, Energy, Climate, and Environment Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Wangyu Wei
- School of Journalism and Communication, Tsinghua University, Beijing, China
| | - Sanmei Wen
- School of Journalism and Communication, Tsinghua University, Beijing, China
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing, China
| | - Hui Xiong
- Artificial Intelligence Thrust Area and the Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Guangzhou, China
| | - Bing Xu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Yu Yan
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiu Yang
- Institute of Climate Change and Sustainable Development, Tsinghua University, Beijing, China
| | - Fanghong Yao
- Department of Physical Education, Peking University, Beijing, China
| | - Le Yu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China; Integrated Research on Disaster Risk International Centre of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Yiping Zeng
- Schwarzman Scholars, Tsinghua University, Beijing, China
| | - Jing Zhang
- School of Journalism and Communication, Tsinghua University, Beijing, China
| | - Lu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rui Zhang
- Department of Physical Education, Peking University, Beijing, China
| | - Shangchen Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Shaohui Zhang
- School of Economics and Management, Beihang University, Beijing, China; Pollution Management Research Group, Energy, Climate, and Environment Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Mengzhen Zhao
- School of Management and Economics, Beijing Institute of Technology, Beijing, China
| | - Dashan Zheng
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hao Zhou
- Institute for Urban Governance and Sustainable Development, Tsinghua University, Beijing, China
| | - Jingbo Zhou
- Business Intelligence Lab, Baidu Research, Beijing, China
| | - Ziqiao Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yong Luo
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Peng Gong
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Earth Sciences and Department of Geography, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
96
|
Kivimäki M, Batty GD, Pentti J, Suomi J, Nyberg ST, Merikanto J, Nordling K, Ervasti J, Suominen SB, Partanen AI, Stenholm S, Käyhkö J, Vahtera J. Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127020. [PMID: 38150315 PMCID: PMC10752417 DOI: 10.1289/ehp12080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Climate change scenarios illustrate various pathways in terms of global warming ranging from "sustainable development" (Shared Socioeconomic Pathway SSP1-1.9), the best-case scenario, to 'fossil-fueled development' (SSP5-8.5), the worst-case scenario. OBJECTIVES We examined the extent to which increase in daily average urban summer temperature is associated with future cause-specific mortality and projected heat-related mortality burden for the current warming trend and these two scenarios. METHODS We did an observational cohort study of 363,754 participants living in six cities in Finland. Using residential addresses, participants were linked to daily temperature records and electronic death records from national registries during summers (1 May to 30 September) 2000 to 2018. For each day of observation, heat index (average daily air temperature weighted by humidity) for the preceding 7 d was calculated for participants' residential area using a geographic grid at a spatial resolution of 1 km × 1 km . We examined associations of the summer heat index with risk of death by cause for all participants adjusting for a wide range of individual-level covariates and in subsidiary analyses using case-crossover design, computed the related period population attributable fraction (PAF), and projected change in PAF from summers 2000-2018 compared with those in 2030-2050. RESULTS During a cohort total exposure period of 582,111,979 summer days (3,880,746 person-summers), we recorded 4,094 deaths, including 949 from cardiovascular disease. The multivariable-adjusted rate ratio (RR) for high (≥ 21 ° C ) vs. reference (14 - 15 ° C ) heat index was 1.70 (95% CI: 1.28, 2.27) for cardiovascular mortality, but it did not reach statistical significance for noncardiovascular deaths, RR = 1.14 (95% CI: 0.96, 1.36), a finding replicated in case-crossover analysis. According to projections for 2030-2050, PAF of summertime cardiovascular mortality attributable to high heat will be 4.4% (1.8%-7.3%) under the sustainable development scenario, but 7.6% (3.2%-12.3%) under the fossil-fueled development scenario. In the six cities, the estimated annual number of summertime heat-related cardiovascular deaths under the two scenarios will be 174 and 298 for a total population of 1,759,468 people. DISCUSSION The increase in average urban summer temperature will raise heat-related cardiovascular mortality burden. The estimated magnitude of this burden is > 1.5 times greater if future climate change is driven by fossil fuels rather than sustainable development. https://doi.org/10.1289/EHP12080.
Collapse
Affiliation(s)
- Mika Kivimäki
- University College London (UCL) Brain Sciences, UCL, London, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - G. David Batty
- University College London (UCL) Brain Sciences, UCL, London, UK
| | - Jaana Pentti
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Public Health, University of Turku (UTU), Turku, Finland
- Centre for Population Health Research, UTU, Turku, Finland
| | - Juuso Suomi
- Department of Geography and Geology, UTU, Turku, Finland
| | - Solja T. Nyberg
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Kalle Nordling
- Finnish Meteorological Institute, Helsinki, Finland
- Centre for International Climate and Environmental Research, Oslo, Norway
| | - Jenni Ervasti
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sakari B. Suominen
- Department of Public Health, University of Turku (UTU), Turku, Finland
- Turku University Hospital, Turku, Finland
- School of Health Science, University of Skövde, Skövde, Sweden
| | | | - Sari Stenholm
- Department of Public Health, University of Turku (UTU), Turku, Finland
- Centre for Population Health Research, UTU, Turku, Finland
| | - Jukka Käyhkö
- Department of Geography and Geology, UTU, Turku, Finland
| | - Jussi Vahtera
- Department of Public Health, University of Turku (UTU), Turku, Finland
- Centre for Population Health Research, UTU, Turku, Finland
- Turku University Hospital, Turku, Finland
| |
Collapse
|
97
|
Huang WTK, Masselot P, Bou-Zeid E, Fatichi S, Paschalis A, Sun T, Gasparrini A, Manoli G. Economic valuation of temperature-related mortality attributed to urban heat islands in European cities. Nat Commun 2023; 14:7438. [PMID: 37978178 PMCID: PMC10656443 DOI: 10.1038/s41467-023-43135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
As the climate warms, increasing heat-related health risks are expected, and can be exacerbated by the urban heat island (UHI) effect. UHIs can also offer protection against cold weather, but a clear quantification of their impacts on human health across diverse cities and seasons is still being explored. Here we provide a 500 m resolution assessment of mortality risks associated with UHIs for 85 European cities in 2015-2017. Acute impacts are found during heat extremes, with a 45% median increase in mortality risk associated with UHI, compared to a 7% decrease during cold extremes. However, protracted cold seasons result in greater integrated protective effects. On average, UHI-induced heat-/cold-related mortality is associated with economic impacts of €192/€ - 314 per adult urban inhabitant per year in Europe, comparable to air pollution and transit costs. These findings urge strategies aimed at designing healthier cities to consider the seasonality of UHI impacts, and to account for social costs, their controlling factors, and intra-urban variability.
Collapse
Affiliation(s)
- Wan Ting Katty Huang
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
- Met Office, Exeter, UK
| | - Pierre Masselot
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Elie Bou-Zeid
- Department of Civil and Environmental Engineering, Princeton University, Princeton, USA
| | - Simone Fatichi
- Department of Civil & Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Athanasios Paschalis
- Department of Civil & Environmental Engineering, Imperial College London, London, UK
| | - Ting Sun
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Gabriele Manoli
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK.
- Laboratory of Urban and Environmental Systems, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
98
|
|
99
|
Wang W, Wang Y, Chen L, Zhou B, Liao F. Inverted U-shaped association between bacillary dysentery and temperature: A new finding using a novel two-stage strategy in multi-region studies. PLoS Negl Trop Dis 2023; 17:e0011771. [PMID: 37976308 PMCID: PMC10691710 DOI: 10.1371/journal.pntd.0011771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Bacillary dysentery (BD) has brought a significant public health concern in China. Temperature is one of the main factors affecting BD incidence. Due to the largely different temperature ranges between regions, the classic multi-region time series studies could only explore the relative temperature-BD association and showed that BD incidence is positively associated with relative temperature (i.e., temperature percentile), which does not conform to the laboratory knowledge that both high and low temperature interfere with the survival of bacteria. The association on relative temperature scale also limits the intuition of epidemiological meanings. METHODS A novel two-stage strategy was proposed to investigate the association between monthly temperature and BD incidence on the original temperature scale in 31 provinces, China. In the first stage, truncated polynomial splines, as the substitute of the common natural splines or B-splines in generalized additive models, were used to characterize the temperature-BD association on the original temperature scale in each province. In the second stage, a multivariate meta-analysis compatible with missing values was used to pool the associations. The classic strategy based on relative temperature was used as a reference. RESULTS The average temperature-BD association presented a U-inverted shape, but not a monotonically increasing shape obtained using the classic strategy. This inverted U-shaped association conforms more to the laboratory knowledge and the original-scale association also provided an intuitive perspective and an easily explanatory result. Another advantage is that the novel strategy can extrapolate the province-specific association outside the observed temperature ranges by utilizing information from other provinces, which is meaningful considering the frequent incidences of extreme temperatures. CONCLUSIONS The association between temperature and BD incidence presented a U-inverted shape. The proposed strategy can efficiently characterize the association between exposure and outcome on original scale in a multi-region study with largely different exposure ranges.
Collapse
Affiliation(s)
- Wei Wang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunqiong Wang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lin Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fang Liao
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
100
|
Kim Y, Oka K, Kawazu EC, Ng CFS, Seposo X, Ueda K, Hashizume M, Honda Y. Enhancing health resilience in Japan in a changing climate. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100970. [PMID: 38116496 PMCID: PMC10730320 DOI: 10.1016/j.lanwpc.2023.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
Climate change poses significant threats to human health, propelling Japan to take decisive action through the Climate Change Adaptation Act of 2018. This Act has led to the implementation of climate change adaptation policies across various sectors, including healthcare. In this review, we synthesized existing scientific evidence on the impacts of climate change on health in Japan and outlined the adaptation strategies and measures implemented by the central and local governments. The country has prioritized tackling heat-related illness and mortality and undertaken various adaptation measures to mitigate these risks. However, it faces unique challenges due to its super-aged society. Ensuring effective and coordinated strategies to address the growing uncertainties in vulnerability to climate change and the complex intersectoral impacts of disasters remains a critical issue. To combat the additional health risks by climate change, a comprehensive approach embracing adaptation and mitigation policies in the health sector is crucial. Encouraging intersectoral communication and collaboration will be vital for developing coherent and effective strategies to safeguard public health in the face of climate change.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kazutaka Oka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Japan
| | | | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Japan
| | - Xerxes Seposo
- Graduate School of Medicine, Hokkaido University, Japan
| | - Kayo Ueda
- Graduate School of Medicine, Hokkaido University, Japan
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Japan
| | - Yasushi Honda
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Japan
| |
Collapse
|