51
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
52
|
Le Bert N, Samandari T. Silent battles: immune responses in asymptomatic SARS-CoV-2 infection. Cell Mol Immunol 2024; 21:159-170. [PMID: 38221577 PMCID: PMC10805869 DOI: 10.1038/s41423-024-01127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
SARS-CoV-2 infections manifest with a broad spectrum of presentations, ranging from asymptomatic infections to severe pneumonia and fatal outcomes. This review centers on asymptomatic infections, a widely reported phenomenon that has substantially contributed to the rapid spread of the pandemic. In such asymptomatic infections, we focus on the role of innate, humoral, and cellular immunity. Notably, asymptomatic infections are characterized by an early and robust innate immune response, particularly a swift type 1 IFN reaction, alongside a rapid and broad induction of SARS-CoV-2-specific T cells. Often, antibody levels tend to be lower or undetectable after asymptomatic infections, suggesting that the rapid control of viral replication by innate and cellular responses might impede the full triggering of humoral immunity. Even if antibody levels are present in the early convalescent phase, they wane rapidly below serological detection limits, particularly following asymptomatic infection. Consequently, prevalence studies reliant solely on serological assays likely underestimate the extent of community exposure to the virus.
Collapse
Affiliation(s)
- Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Taraz Samandari
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
53
|
Dos Santos Alves RP, Timis J, Miller R, Valentine K, Pinto PBA, Gonzalez A, Regla-Nava JA, Maule E, Nguyen MN, Shafee N, Landeras-Bueno S, Olmedillas E, Laffey B, Dobaczewska K, Mikulski Z, McArdle S, Leist SR, Kim K, Baric RS, Ollmann Saphire E, Elong Ngono A, Shresta S. Human coronavirus OC43-elicited CD4 + T cells protect against SARS-CoV-2 in HLA transgenic mice. Nat Commun 2024; 15:787. [PMID: 38278784 PMCID: PMC10817949 DOI: 10.1038/s41467-024-45043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1-/- transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1-/- transgenic mice, and a longer-term in HLA-B*0702 Ifnar1-/- transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1-/- transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines.
Collapse
Affiliation(s)
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara, 44340, Mexico
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brett Laffey
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Annie Elong Ngono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
54
|
Ng’uni TL, Musale V, Nkosi T, Mandolo J, Mvula M, Michelo C, Karim F, Moosa MYS, Khan K, Jambo KC, Hanekom W, Sigal A, Kilembe W, Ndhlovu ZM. Low pre-existing endemic human coronavirus (HCoV-NL63)-specific T cell frequencies are associated with impaired SARS-CoV-2-specific T cell responses in people living with HIV. Front Immunol 2024; 14:1291048. [PMID: 38343437 PMCID: PMC10853422 DOI: 10.3389/fimmu.2023.1291048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Background Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants. Methods We used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses. Results Regardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn't significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity. Conclusion Our results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous.
Collapse
Affiliation(s)
- Tiza L. Ng’uni
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Vernon Musale
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Jonathan Mandolo
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Memory Mvula
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Clive Michelo
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Farina Karim
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Mohomed Yunus S. Moosa
- Human Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Kondwani Charles Jambo
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Willem Hanekom
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alex Sigal
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - William Kilembe
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Zaza M. Ndhlovu
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
- Human Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, United States
| |
Collapse
|
55
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4+ and CD8+ T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576505. [PMID: 38410446 PMCID: PMC10896337 DOI: 10.1101/2024.01.23.576505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
|
56
|
Gainullin M, Federico L, Røkke Osen J, Chaban V, Kared H, Alirezaylavasani A, Lund-Johansen F, Wildendahl G, Jacobsen JA, Sarwar Anjum H, Stratford R, Tennøe S, Malone B, Clancy T, Vaage JT, Henriksen K, Wüsthoff L, Munthe LA. People who use drugs show no increase in pre-existing T-cell cross-reactivity toward SARS-CoV-2 but develop a normal polyfunctional T-cell response after standard mRNA vaccination. Front Immunol 2024; 14:1235210. [PMID: 38299149 PMCID: PMC10827924 DOI: 10.3389/fimmu.2023.1235210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
People who use drugs (PWUD) are at a high risk of contracting and developing severe coronavirus disease 2019 (COVID-19) and other infectious diseases due to their lifestyle, comorbidities, and the detrimental effects of opioids on cellular immunity. However, there is limited research on vaccine responses in PWUD, particularly regarding the role that T cells play in the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show that before vaccination, PWUD did not exhibit an increased frequency of preexisting cross-reactive T cells to SARS-CoV-2 and that, despite the inhibitory effects that opioids have on T-cell immunity, standard vaccination can elicit robust polyfunctional CD4+ and CD8+ T-cell responses that were similar to those found in controls. Our findings indicate that vaccination stimulates an effective immune response in PWUD and highlight targeted vaccination as an essential public health instrument for the control of COVID-19 and other infectious diseases in this group of high-risk patients.
Collapse
Affiliation(s)
- Murat Gainullin
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NEC OncoImmunity AS, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Lorenzo Federico
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Julie Røkke Osen
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Viktoriia Chaban
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hassen Kared
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Amin Alirezaylavasani
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | - John T. Vaage
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathleen Henriksen
- Agency for Social and Welfare Services, Oslo, Norway
- Student Health Services, University of Oslo, Oslo, Norway
| | - Linda Wüsthoff
- Unit for Clinical Research on Addictions, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Addiction Reasearch, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ludvig A. Munthe
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
57
|
Zeng YC, Young OJ, Si L, Ku MW, Isinelli G, Rajwar A, Jiang A, Wintersinger CM, Graveline AR, Vernet A, Sanchez M, Ryu JH, Kwon IC, Goyal G, Ingber DE, Shih WM. DNA origami vaccine (DoriVac) nanoparticles improve both humoral and cellular immune responses to infectious diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573647. [PMID: 38260393 PMCID: PMC10802255 DOI: 10.1101/2023.12.29.573647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Current SARS-CoV-2 vaccines have demonstrated robust induction of neutralizing antibodies and CD4+ T cell activation, however CD8+ responses are variable, and the duration of immunity and protection against variants are limited. Here we repurposed our DNA origami vaccine platform, DoriVac, for targeting infectious viruses, namely SARS-CoV-2, HIV, and Ebola. The DNA origami nanoparticle, conjugated with infectious-disease-specific HR2 peptides, which act as highly conserved antigens, and CpG adjuvant at precise nanoscale spacing, induced neutralizing antibodies, Th1 CD4+ T cells, and CD8+ T cells in naïve mice, with significant improvement over a bolus control. Pre-clinical studies using lymph-node-on-a-chip systems validated that DoriVac, when conjugated with antigenic peptides or proteins, induced promising cellular immune responses in human cells. These results suggest that DoriVac holds potential as a versatile, modular vaccine platform, capable of inducing both humoral and cellular immunities. The programmability of this platform underscores its potential utility in addressing future pandemics.
Collapse
Affiliation(s)
- Yang C. Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Olivia J. Young
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Longlong Si
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Min Wen Ku
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Giorgia Isinelli
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Anjali Rajwar
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Chris M. Wintersinger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amanda R. Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Melinda Sanchez
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Ju Hee Ryu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - William M. Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
58
|
Razafimahatratra SL, Andriatefy OH, Mioramalala DJN, Tsatoromila FAM, Randrianarisaona F, Dussart P, Schoenhals M. Multiple SARS-CoV-2 immunizations of an unvaccinated population lead to complex immunity. A T cell reactivity study of blood donors in Antananarivo. J Infect Public Health 2024; 17:175-181. [PMID: 38039861 DOI: 10.1016/j.jiph.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Madagascar has undergone multiple and robust COVID-19 waves. The resulting immune background developed by its poorly vaccinated population has however not been described. METHODS In this study, serological analysis and specific T cell response descriptions were used to describe the history of exposures of the capital's blood donors to SARS-CoV-2 and its VOCs. Samples were collected early 2022, and pools of multiple immunogenic peptides of SARS-CoV-2 were used in an IFN-γ secretion ELISPOT assay to characterize the specific T-cell immunity developed against these potential epitopes. RESULTS Multiple epidemic waves have led to 92.1% of donors having detectable antibodies, and 94.8% having developed T-cells against SARS-CoV-2. Heterogeneous reactivities to different strain-derived peptides suggested multiple immunological backgrounds in the population including 16.1% of individuals exposed at least once to a unique strain, 27.1% to two strains, 28.5% to three strains, and 23.1% to four distinct strains. CONCLUSIONS Cross-reactivity increased with multiple exposures but did not decrease the risk of re-infection. These results describe the extremely complex immunological background developed following multiple natural immunizations.
Collapse
Affiliation(s)
| | | | | | | | | | - Philippe Dussart
- Direction, Institut Pasteur of Madagascar, 101 Antananarivo, Madagascar
| | - Matthieu Schoenhals
- Immunology of Infectious Diseases Unit, Institut Pasteur of Madagascar, 101 Antananarivo, Madagascar.
| |
Collapse
|
59
|
Choi S, Lee J, Kim S, Lee YW, Kim GC, Hong SM, An SH, Noh H, Kim KE, On D, Lee SG, Jang HJ, Kim SH, Kim J, Seo JS, Kim JJ, Park IH, Oh J, Kim DJ, Yoon JH, Seok SH, Lee YJ, Kim SY, Kim YB, Hwang JY, Lee HJ, Kim HB, Park JW, Yun JW, Shin JS, Seo JY, Nam KT, Choi KS, Kwon HK, Lee HY, Kim JK, Seong JK. A longitudinal molecular and cellular lung atlas of lethal SARS-CoV-2 infection in K18-hACE2 transgenic mice. EBioMedicine 2024; 99:104932. [PMID: 38118400 PMCID: PMC10772566 DOI: 10.1016/j.ebiom.2023.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFβ signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFβ signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).
Collapse
Affiliation(s)
- Seunghoon Choi
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Project for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jusung Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Suhyeon Kim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; BIO-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Gi-Cheon Kim
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, BK21 Project for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, BK21 Project for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Eun Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Project for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Dain On
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Project for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Gyu Lee
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiseon Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Seon Seo
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeong Jin Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - In Ho Park
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jooyeon Oh
- Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Da-Jung Kim
- Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong-Hwi Yoon
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Republic of Korea
| | - Yu Jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Republic of Korea
| | - Seo Yeon Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Young Been Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam 23620, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 23620, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeon-Soo Shin
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, BK21 Project for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ho-Keun Kwon
- Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea; Department of Nuclear Medicine, Seoul National University, College of Medicine, Seoul 03080, South Korea.
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Project for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; BIO-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
60
|
McKendry R, Lemm NM, Papargyris L, Chiu C. Human Challenge Studies with Coronaviruses Old and New. Curr Top Microbiol Immunol 2024; 445:69-108. [PMID: 35181805 DOI: 10.1007/82_2021_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronavirus infections have been known to cause disease in animals since as early as the 1920s. However, only seven coronaviruses capable of causing human disease have been identified thus far. These Human Coronaviruses (HCoVs) include the causes of the common cold, but more recent coronaviruses that have emerged (i.e. SARS-CoV, MERS-CoV and SARS-CoV-2) are associated with much greater morbidity and mortality. HCoVs have been relatively under-studied compared to other common respiratory infections, as historically they have presented with mild symptoms. This has led to a relatively limited understanding of their animal reservoirs, transmission and determinants of immune protection. To address this, human infection challenge studies with HCoVs have been performed that enable a detailed clinical and immunological analysis of the host response at specific time points under controlled conditions with standardised viral inocula. Until recently, all such human challenge studies were conducted with common cold HCoVs, with the study of SARS-CoV and MERS-CoV unacceptable due to their greater pathogenicity. However, with the emergence of SARS-CoV-2 and the COVID-19 pandemic during which severe outcomes in young healthy adults have been rare, human challenge studies with SARS-CoV-2 are now being developed. Two SARS-CoV-2 human challenge studies in the UK studying individuals with and without pre-existing immunity are underway. As well as providing a platform for testing of antivirals and vaccines, such studies will be critical for understanding the factors associated with susceptibility to SARS-CoV-2 infection and thus developing improved strategies to tackle the current as well as future HCoV pandemics. Here, we summarise the major questions about protection and pathogenesis in HCoV infection that human infection challenge studies have attempted to answer historically, as well as the knowledge gaps that aim to be addressed with contemporary models.
Collapse
Affiliation(s)
- Richard McKendry
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nana-Marie Lemm
- Department of Infectious Disease, Imperial College London, London, UK
| | - Loukas Papargyris
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
61
|
Wang Y, Yang L, Tang K, Zhang Y, Zhang C, Zhang Y, Jin B, Zhang Y, Zhuang R, Ma Y. Ad5-nCoV Vaccination Could Induce HLA-E Restricted CD8 + T Cell Responses Specific for Epitopes on Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Viruses 2023; 16:52. [PMID: 38257752 PMCID: PMC10820189 DOI: 10.3390/v16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
We evaluated cellular immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in an immunized population based on HLA-E-restricted CD8+ T cell epitope identification. HLA-E-restricted SARS-CoV-2 CD8+ T cell nonamer peptides were predicted with software. An HLA-E-transfected K562 cell binding assay was used to screen for high-affinity peptides. IFN-γ enzyme-linked immunospot assays were used to identify HLA-E-restricted epitopes. An HLA-E/epitope tetramer was employed to detect the frequencies of epitope-specific CD8+ T cells. Four CD8+ T cell epitopes on the spike protein of SARS-CoV-2 restricted by both HLA-E*0101 and E*0103 were identified. HLA-E-restricted epitope-specific IFN-γ-secreting CD8+ T cell responses could be detected in individuals vaccinated with SARS-CoV-2 vaccines. Importantly, the frequencies of epitope-specific CD8+ T cells in Ad5-nCoV vaccinated individuals were higher than in individuals vaccinated with recombinant protein or inactivated vaccines. Moreover, the frequencies of epitope-specific CD8+ T cells could be maintained for at least 120 days after only one dose of Ad5-nCoV vaccine, while the frequencies of epitope-specific CD8+ T cells decreased in individuals after two doses of Ad5-nCoV vaccine. These findings may contribute to a more comprehensive evaluation of the protective effects of vaccines for SARS-CoV-2; meanwhile, they may provide information to characterize HLA-E-restricted CD8+ T cell immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ran Zhuang
- Department of Immunology, Air Force Medical University, Xi’an 710032, China; (Y.W.); (L.Y.); (K.T.); (Y.Z.); (C.Z.); (Y.Z.); (B.J.); (Y.Z.)
| | - Ying Ma
- Department of Immunology, Air Force Medical University, Xi’an 710032, China; (Y.W.); (L.Y.); (K.T.); (Y.Z.); (C.Z.); (Y.Z.); (B.J.); (Y.Z.)
| |
Collapse
|
62
|
Almazán NM, Rahbar A, Carlsson M, Hoffman T, Kolstad L, Rönnberg B, Pantalone MR, Fuchs IL, Nauclér A, Ohlin M, Sacharczuk M, Religa P, Amér S, Molnár C, Lundkvist Å, Susrud A, Sörensen B, Söderberg-Nauclér C. Influenza-A mediated pre-existing immunity levels to SARS-CoV-2 could predict early COVID-19 outbreak dynamics. iScience 2023; 26:108441. [PMID: 38144451 PMCID: PMC10746369 DOI: 10.1016/j.isci.2023.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/14/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is highly variable and could be mediated by a cross-protective pre-immunity. We identified 14 cross-reactive peptides between SARS-CoV-2 and influenza A H1N1, H3N2, and human herpesvirus (HHV)-6A/B with potential relevance. The H1N1 peptide NGVEGF was identical to a peptide in the most critical receptor binding motif in SARS-CoV-2 spike protein that interacts with the angiotensin converting enzyme 2 receptor. About 62%-73% of COVID-19-negative blood donors in Stockholm had antibodies to this peptide in the early pre-vaccination phase of the pandemic. Seasonal flu vaccination enhanced neutralizing capacity to SARS-CoV-2 and T cell immunity to this peptide. Mathematical modeling taking the estimated pre-immunity levels to flu into account could fully predict pre-Omicron SARS-CoV-2 outbreaks in Stockholm and India. This cross-immunity provides mechanistic explanations to the epidemiological observation that influenza vaccination protected people against early SARS-CoV-2 infections and implies that flu-mediated cross-protective immunity significantly dampened the first SARS-CoV-2 outbreaks.
Collapse
Affiliation(s)
- Nerea Martín Almazán
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 141 86 Huddinge Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
| | - Marcus Carlsson
- Centre for the Mathematical Sciences, Lund University, 223 62 Lund, Sweden
| | - Tove Hoffman
- Zoonosis Science Center (ZSC), Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, 1477 Uppsala, Sweden
| | - Linda Kolstad
- Zoonosis Science Center (ZSC), Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, 1477 Uppsala, Sweden
| | - Bengt Rönnberg
- Zoonosis Science Center (ZSC), Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, 1477 Uppsala, Sweden
| | - Mattia Russel Pantalone
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
| | - Ilona Lewensohn Fuchs
- Department of Labortory Medicine, Division of Clinical Microbiology, Karolinska Institutet, 141 86 Huddinge Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, 141 86 Huddinge Stockholm, Sweden
| | - Anna Nauclér
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
| | - Mats Ohlin
- Department of Immunotechnology and SciLifeLab Human Antibody Therapeutics Infrastructure Unit, Lund University, 223 62 Lund, Sweden
| | - Mariusz Sacharczuk
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Banacha 1B, 02-091 Warsaw, Poland
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Piotr Religa
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Stefan Amér
- Familjeläkarna Saltsjöbaden, 133 34 Saltsjöbaden, Sweden
| | - Christian Molnár
- Familjeläkarna Saltsjöbaden, 133 34 Saltsjöbaden, Sweden
- Department of Neurobiology, Care Sciences and Society, NVS, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center (ZSC), Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, 1477 Uppsala, Sweden
| | | | | | - Cecilia Söderberg-Nauclér
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and Immunology, MediCity Research Laboratory, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
63
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GS, Singer BD, Morales-Nebreda L. A distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571479. [PMID: 38168346 PMCID: PMC10760069 DOI: 10.1101/2023.12.13.571479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.
Collapse
Affiliation(s)
- Nikolay S. Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Karolina J. Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rogan A. Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Elizabeth S. Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kathryn A. Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Jason M. Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | |
Collapse
|
64
|
Shaprova ON, Shanshin DV, Kolosova EA, Borisevich SS, Soroka AA, Merkuleva IA, Nikitin AO, Volosnikova EA, Ushkalenko ND, Zaykovskaya AV, Pyankov OV, Elchaninova SA, Shcherbakov DN, Ilyicheva TN. Pre-Pandemic Cross-Reactive Immunity against SARS-CoV-2 among Siberian Populations. Antibodies (Basel) 2023; 12:82. [PMID: 38131804 PMCID: PMC10741209 DOI: 10.3390/antib12040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
In December 2019, a new coronavirus, SARS-CoV-2, was found to in Wuhan, China. Cases of infection were subsequently detected in other countries in a short period of time, resulting in the declaration of the COVID-19 pandemic by the World Health Organization (WHO) on 11 March 2020. Questions about the impact of herd immunity of pre-existing immune reactivity to SARS-CoV-2 on COVID-19 severity, associated with the immunity to seasonal manifestation, are still to be resolved and may be useful for understanding some processes that precede the emergence of a pandemic virus. Perhaps this will contribute to understanding some of the processes that precede the emergence of a pandemic virus. We assessed the specificity and virus-neutralizing capacity of antibodies reacting with the nucleocapsid and spike proteins of SARS-CoV-2 in a set of serum samples collected in October and November 2019, before the first COVID-19 cases were documented in this region. Blood serum samples from 799 residents of several regions of Siberia, Russia, (the Altai Territory, Irkutsk, Kemerovo and Novosibirsk regions, the Republic of Altai, Buryatia, and Khakassia) were analyzed. Sera of non-infected donors were collected within a study of seasonal influenza in the Russian Federation. The sample collection sites were located near the flyways and breeding grounds of wild waterfowl. The performance of enzyme-linked immunosorbent assay (ELISA) for the collected sera included the usage of recombinant SARS-CoV-2 protein antigens: full-length nucleocapsid protein (CoVN), receptor binding domain (RBD) of S-protein and infection fragment of the S protein (S5-6). There were 183 (22.9%) sera reactive to the S5-6, 270 (33.8%) sera corresponding to the full-length N protein and 128 (16.2%) sera simultaneously reactive to both these proteins. Only 5 out of 799 sera had IgG antibodies reactive to the RBD. None of the sera exhibited neutralizing activity against the nCoV/Victoria/1/2020 SARS-CoV-2 strain in Vero E6 cell culture. The data obtained in this study suggest that some of the population of the analyzed regions of Russia had cross-reactive humoral immunity against SARS-CoV-2 before the COVID-19 pandemic started. Moreover, among individuals from relatively isolated regions, there were significantly fewer reliably cross-reactive sera. The possible significance of these data and impact of cross-immunity to SARS-CoV-2 on the prevalence and mortality of COVID-19 needs further assessment.
Collapse
Affiliation(s)
- Olga N. Shaprova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Evgeniia A. Kolosova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia;
- Institute of Intelligent Cybernetic Systems, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia;
| | - Artem A. Soroka
- Institute of Intelligent Cybernetic Systems, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia;
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
| | - Artem O. Nikitin
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
| | - Nikita D. Ushkalenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
| | - Svetlana A. Elchaninova
- Department of Biochemistry and Clinical Laboratory Diagnostics, Altai State Medical University, 656038 Barnaul, Russia;
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Tatiana N. Ilyicheva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (I.A.M.); (A.O.N.); (E.A.V.); (N.D.U.); (A.V.Z.); (O.V.P.); (D.N.S.); (T.N.I.)
| |
Collapse
|
65
|
Stern D, Meyer TC, Treindl F, Mages HW, Krüger M, Skiba M, Krüger JP, Zobel CM, Schreiner M, Grossegesse M, Rinner T, Peine C, Stoliaroff-Pépin A, Harder T, Hofmann N, Michel J, Nitsche A, Stahlberg S, Kneuer A, Sandoni A, Kubisch U, Schlaud M, Mankertz A, Schwarz T, Corman VM, Müller MA, Drosten C, de la Rosa K, Schaade L, Dorner MB, Dorner BG. A bead-based multiplex assay covering all coronaviruses pathogenic for humans for sensitive and specific surveillance of SARS-CoV-2 humoral immunity. Sci Rep 2023; 13:21846. [PMID: 38071261 PMCID: PMC10710470 DOI: 10.1038/s41598-023-48581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.
Collapse
Affiliation(s)
- Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| | - Tanja C Meyer
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Fridolin Treindl
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Hans Werner Mages
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Maren Krüger
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin Skiba
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Jan Philipp Krüger
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Christian M Zobel
- Department of Internal Medicine, Bundeswehr Hospital Berlin, Berlin, Germany
| | | | - Marica Grossegesse
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Rinner
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Caroline Peine
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Anna Stoliaroff-Pépin
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Harder
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Natalie Hofmann
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Janine Michel
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Silke Stahlberg
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Antje Kneuer
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Anna Sandoni
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Ulrike Kubisch
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Martin Schlaud
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Annette Mankertz
- Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients (FG 12), Robert Koch Institute, 13353, Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Corporate Member, Freie Universität Berlin, 10117, Berlin, Germany
- Corporate Member, Humboldt-Universität zu Berlin, 14195, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
66
|
Li D, Cao W, Zhou Q, Wu X, Song X, Qin H. COVID-19 and primary wound healing: A new insights and advance. Int Wound J 2023; 20:4422-4428. [PMID: 37488776 PMCID: PMC10681437 DOI: 10.1111/iwj.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
With the outbreak and pandemic of coronavirus disease-2019 (COVID-19), a huge number of people died of it. Apart from lung injuries, multiple organs have been confirmed to be impaired. In COVID-19 time, primary wound healing processes always prolong, however, its possible underlying mechanisms are still unclear. Therefore, to overcome this clinical problem, clarifying its underlying mechanisms clearly is necessary and urgently needed. In this review, we summarized that COVID-19 can prolong primary wound healing by inducing excessive inflammation and oxidative stress, disturbing immune system and haematological system, as well as influencing the functions and viability of epidermal stem cells (ESCs). Otherwise, we summarized that the strict control measures of blocking up COVID-19 pandemic can also have side effects on primary wound healing process.
Collapse
Affiliation(s)
- Danyi Li
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Wenjie Cao
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Qun Zhou
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Xiaomin Wu
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Xiayun Song
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Haofang Qin
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| |
Collapse
|
67
|
Ke Y, Zhang E, Guo J, Zhang X, Wang L, Chen D, Fang X, Zhu J, Li F, Sun T, Zhang B. Immunogenicity of mucosal COVID-19 vaccine candidates based on the highly attenuated vesicular stomatitis virus vector (VSV MT) in golden syrian hamster. Acta Pharm Sin B 2023; 13:4856-4874. [PMID: 38045049 PMCID: PMC10692390 DOI: 10.1016/j.apsb.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
COVID-19 is caused by coronavirus SARS-CoV-2. Current systemic vaccines generally provide limited protection against viral replication and shedding within the airway. Recombinant VSV (rVSV) is an effective vector which inducing potent and comprehensive immunities. Currently, there are two clinical trials investigating COVID-19 vaccines based on VSV vectors. These vaccines were developed with spike protein of WA1 which administrated intramuscularly. Although intranasal route is ideal for activating mucosal immunity with VSV vector, safety is of concern. Thus, a highly attenuated rVSV with three amino acids mutations in matrix protein (VSVMT) was developed to construct safe mucosal vaccines against multiple SARS-CoV-2 variants of concern. It demonstrated that spike protein mutant lacking 21 amino acids in its cytoplasmic domain could rescue rVSV efficiently. VSVMT indicated improved safeness compared with wild-type VSV as the vector encoding SARS-CoV-2 spike protein. With a single-dosed intranasal inoculation of rVSVΔGMT-SΔ21, potent SARS-CoV-2 specific neutralization antibodies could be stimulated in animals, particularly in term of mucosal and cellular immunity. Strikingly, the chimeric VSV encoding SΔ21 of Delta-variant can induce more potent immune responses compared with those encoding SΔ21 of Omicron- or WA1-strain. VSVMT is a promising platform to develop a mucosal vaccine for countering COVID-19.
Collapse
Affiliation(s)
- Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - En Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Jianming Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Xiaoxiao Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Duo Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Xinkui Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Li
- Shanghai Public Health Clinical Center, Fudan Univeristy, Shanghai 201508, China
| | - Tao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
68
|
Karagöz IK, Kaya M, Rückert R, Bozman N, Kaya V, Bayram H, Yıldırım M. A bioinformatic analysis: Previous allergen exposure may support anti- SARS-CoV-2 immune response. Comput Biol Chem 2023; 107:107961. [PMID: 37788543 DOI: 10.1016/j.compbiolchem.2023.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
COVID-19, caused by infection with the SARS-CoV-2 has become a global health problem due to significant mortality rates; the exact pathophysiological mechanism remains uncertain. Articles reporting patient data are quite heterogeneous and have several limitations. Surviving patients develop a CD4 and CD8 T-cell response to the virus SARS-CoV-2 during COVID-19. Interestingly, pre-existing virus-reactive T-cells have been found in patients that were not infected before, suggesting some form of cross-reactivity or immunological mimicry. To better understand this phenomenon, we performed a bioinformatic study, which was aimed to identify antigenic structures that may explain the presence of such "reactive" T-cells, which may support or modulate the immune response to SARS-CoV-2 infections. Seven different common environmental allergen epitopes identical to the SARS-CoV-2 S-protein were identified that share affinity to 8 MHCI-specific epitope regions. Pollen showed the greatest similarity with the S protein epitope. In the epitope similarity analysis between the S protein and MHC-II / T helper epitopes, the highest similarity was determined for mites. When S-protein that stimulates B cells and identical epitope antigens are examined, the most common allergens were hornbeam and wheat. The high epitope similarity observed for the allergens examined and S protein epitopes suggest that these allergens may be a reason for pre-existing SARS-CoV-2 - reactive T-cells in previously non-infected subjects and such a previous exposure may affect the course of the disease in COVID-19 infection. It remains to be determined whether such a previous existence of SARS-CoV-2 reactive cells can support the clearance of the virus or if they, in contrast, may even aggravate the disease course. (Table 4, Ref 54).
Collapse
Affiliation(s)
- Isıl Kutluturk Karagöz
- Umraniye Trn. And Rch. Hospital, Division of Ophthalmology, Istanbul, Turkey; Yıldız Technical University, Bioengineering Department, Istanbul, Turkey.
| | | | | | - Nazli Bozman
- Gaziantep University Arts and Science Faculty Department of Biology, Gaziantep, Turkey
| | - Vildan Kaya
- Medstar Antalya Hospital, Division of Radiation Oncology, Antalya, Turkey
| | - Halim Bayram
- Dr. Ersin Arslan Trn. And Rch Hospital, Division of Infection Diseases, Gaziantep, Turkey
| | - Mustafa Yıldırım
- Sanko University, School of Medicine, Internal Diseases, Division of Oncology, Gaziantep, Turkey
| |
Collapse
|
69
|
Shamabadi NS, Bagasra AB, Pawar S, Bagasra O. Potential use of endemic human coronaviruses to stimulate immunity against pathogenic SARS-CoV-2 and its variants. Libyan J Med 2023; 18:2209949. [PMID: 37186902 DOI: 10.1080/19932820.2023.2209949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes significant morbidity and mortality in humans, there is a wide range of disease outcomes following virus exposures. Some individuals are asymptomatic while others develop complications within a few days after infection that can lead to fatalities in a smaller portion of the population. In the present study, we have analyzed the factors that may influence the outcome of post-SARS-CoV-2 infection. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to endemic coronaviruses (eCOVIDs) which cause the common cold in humans and generally, most children are exposed to one of the four eCOVIDs before 2 years of age. Here, we have carried out protein sequence analyses to show the amino acid homologies between the four eCOVIDs (i.e. OC43, HKU1, 229E, and NL63) as well as examining the cross-reactive immune responses between SARS-CoV-2 and eCOVIDs by epidemiologic analyses. Our results show that the nations where continuous exposures to eCOVIDs are very high due to religious and traditional causes showed significantly lower cases and low mortality rates per 100,000. We hypothesize that in the areas of the globe where Muslims are in majority and due to religious practices are regularly exposed to eCOVIDs they show a significantly lower infection, as well as mortality rate, and that is due to pre-existing cross-immunity against SARS-CoV-2. This is due to cross-reactive antibodies and T-cells that recognize SARS-CoV-2 antigens. We also have reviewed the current literature that has also proposed that human infections with eCOVIDs impart protection against disease caused by subsequent exposure to SARS-CoV-2. We propose that a nasal spray vaccine consisting of selected genes of eCOVIDs would be beneficial against SARS-CoV-2 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
| | - Anisah B Bagasra
- Department of Psychology, Kennesaw State University, Kennesaw, GA, USA
| | - Shrikant Pawar
- Department of Computer Science and Biology, Claflin University, SC, USA
| | - Omar Bagasra
- South Carolina Center for Biotechnology, Claflin University, Orangeburg, SC, USA
| |
Collapse
|
70
|
Bamberger C, Pankow S, Martínez-Bartolomé S, Diedrich JK, Park RSK, Yates JR. Analysis of the Tropism of SARS-CoV-2 Based on the Host Interactome of the Spike Protein. J Proteome Res 2023; 22:3742-3753. [PMID: 37939376 DOI: 10.1021/acs.jproteome.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The β-coronavirus SARS-CoV-2 causes severe acute respiratory syndrome (COVID-19) in humans. It enters and infects epithelial airway cells upon binding of the receptor binding domain (RBD) of the virus entry protein spike to the host receptor protein Angiotensin Converting Enzyme 2 (ACE2). Here, we used coimmunoprecipitation coupled with bottom-up mass spectrometry to identify host proteins that engaged with the spike protein in human bronchial epithelial cells (16HBEo-). We found that the spike protein bound to extracellular laminin and thrombospondin and endoplasmatic reticulum (ER)-resident DJB11 and FBX2 proteins. The ER-resident proteins UGGT1, CALX, HSP7A, and GRP78/BiP bound preferentially to the original Wuhan D614 over the mutated G614 spike protein in the more rapidly spreading Alpha SARS-CoV-2 strain. The increase in protein binding to the D614 spike might be explained by higher accessibility of cryptic sites in "RDB open" and "S2 only" D614 spike protein conformations and may enable SARS-CoV-2 to infect additional, ACE2-negative cell types. Moreover, a novel proteome-based cell type set enrichment analysis (pCtSEA) found that host factors like laminin might render additional cell types such as macrophages and epithelial cells in the nephron permissive to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sandra Pankow
- Department of Molecular Medicine, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Salvador Martínez-Bartolomé
- Department of Molecular Medicine, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Robin S K Park
- Department of Molecular Medicine, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
71
|
Islas-Vazquez L, Alvarado-Alvarado YC, Cruz-Aguilar M, Velazquez-Soto H, Villalobos-Gonzalez E, Ornelas-Hall G, Perez-Tapia SM, Jimenez-Martinez MC. Evaluation of the Abdala Vaccine: Antibody and Cellular Response to the RBD Domain of SARS-CoV-2. Vaccines (Basel) 2023; 11:1787. [PMID: 38140191 PMCID: PMC10748004 DOI: 10.3390/vaccines11121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Abdala is a recently released RBD protein subunit vaccine against SARS-CoV-2. A few countries, including Mexico, have adopted Abdala as a booster dose in their COVID-19 vaccination schemes. Despite that, most of the Mexican population has received full-scheme vaccination with platforms other than Abdala; little is known regarding Abdala's immunological features, such as its antibody production and T- and B-cell-specific response induction. This work aimed to study antibody production and the adaptive cellular response in the Mexican population that received the Abdala vaccine as a booster. We recruited 25 volunteers and evaluated their RBD-specific antibody production, T- and B-cell-activating profiles, and cytokine production. Our results showed that the Abdala vaccine increases the concentration of RBD IgG-specific antibodies. Regarding the cellular response, after challenging peripheral blood cultures with RBD, the plasmablast (CD19+CD27+CD38High) and transitional B-cell (CD19+CD21+CD38High) percentages increased significantly, while T cells showed an increased activated phenotype (CD3+CD4+CD25+CD69+ and CD3+CD4+CD25+HLA-DR+). Also, IL-2 and IFN-γ increased significantly in the supernatant of the RBD-stimulated cells. Our results suggest that Abdala vaccination, used as a booster, evokes antibody production and the activation of previously generated memory against the SARS-CoV-2 RBD domain.
Collapse
Affiliation(s)
- Lorenzo Islas-Vazquez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Yan Carlos Alvarado-Alvarado
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Marisa Cruz-Aguilar
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Henry Velazquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Eduardo Villalobos-Gonzalez
- Unidad de Vigilancia Epidemiológica Hospitalaria, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Gloria Ornelas-Hall
- Unidad de Vigilancia Epidemiológica Hospitalaria, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Sonia Mayra Perez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico
| | - Maria C. Jimenez-Martinez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
72
|
Wang M, Dehlinger A, Zapata CF, Golan M, Gallaccio G, Sander LE, Schlickeiser S, Kunkel D, Schmitz-Hübsch T, Sawitzki B, Karni A, Braun J, Loyal L, Thiel A, Bellmann-Strobl J, Paul F, Meyer-Arndt L, Böttcher C. Associations of myeloid cells with cellular and humoral responses following vaccinations in patients with neuroimmunological diseases. Nat Commun 2023; 14:7728. [PMID: 38007484 PMCID: PMC10676398 DOI: 10.1038/s41467-023-43553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023] Open
Abstract
Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases.
Collapse
Affiliation(s)
- Meng Wang
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Camila Fernández Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maya Golan
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gerardina Gallaccio
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow&MassCytometry Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arnon Karni
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel
| | - Julian Braun
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Lucie Loyal
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Andreas Thiel
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
73
|
Wang L, Nicols A, Turtle L, Richter A, Duncan CJA, Dunachie SJ, Klenerman P, Payne RP. T cell immune memory after covid-19 and vaccination. BMJ MEDICINE 2023; 2:e000468. [PMID: 38027416 PMCID: PMC10668147 DOI: 10.1136/bmjmed-2022-000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.
Collapse
Affiliation(s)
- Lulu Wang
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher JA Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susanna J Dunachie
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Faculty of Science, Bangkok, Thailand
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
74
|
Balinsky CA, Jiang L, Jani V, Cheng Y, Zhang Z, Belinskaya T, Qiu Q, Long TK, Schilling MA, Jenkins SA, Corson KS, Martin NJ, Letizia AG, Hontz RD, Sun P. Antibodies to S2 domain of SARS-CoV-2 spike protein in Moderna mRNA vaccinated subjects sustain antibody-dependent NK cell-mediated cell cytotoxicity against Omicron BA.1. Front Immunol 2023; 14:1266829. [PMID: 38077368 PMCID: PMC10702584 DOI: 10.3389/fimmu.2023.1266829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination with the primary two-dose series of SARS-CoV-2 mRNA protects against infection with the ancestral strain, and limits the presentation of severe disease after re-infection by multiple variants of concern (VOC), including Omicron, despite the lack of a strong neutralizing response to these variants. We compared antibody responses in serum samples collected from mRNA-1273 (Moderna) vaccinated subjects to identify mechanisms of immune escape and cross-protection. Using pseudovirus constructs containing domain-specific amino acid changes representative of Omicron BA.1, combined with domain competition and RBD-antibody depletion, we showed that RBD antibodies were primarily responsible for virus neutralization and variant escape. Antibodies to NTD played a less significant role in antibody neutralization but acted along with RBD to enhance neutralization. S2 of Omicron BA.1 had no impact on neutralization escape, suggesting it is a less critical domain for antibody neutralization; however, it was as capable as S1 at eliciting IgG3 responses and NK-cell mediated, antibody-dependent cell cytotoxicity (ADCC). Antibody neutralization and ADCC activities to RBD, NTD, and S1 were all prone to BA.1 escape. In contrast, ADCC activities to S2 resisted BA.1 escape. In conclusion, S2 antibodies showed potent ADCC function and resisted Omicron BA.1 escape, suggesting that S2 contributes to cross-protection against Omicron BA.1. In line with its conserved nature, S2 may hold promise as a vaccine target against future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Corey A. Balinsky
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Le Jiang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vihasi Jani
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Zhiwen Zhang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Tatyana Belinskaya
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Qi Qiu
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Megan A. Schilling
- Virology and Emerging Infectious Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Sarah A. Jenkins
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Karen S. Corson
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | | | | | - Robert D. Hontz
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | - Peifang Sun
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| |
Collapse
|
75
|
Pathakumari B, Marty PK, Shah M, Van Keulen VP, Erskine CL, Block MS, Arias-Sanchez P, Escalante P, Peikert T. Convalescent Adaptive Immunity Is Highly Heterogenous after SARS-CoV-2 Infection. J Clin Med 2023; 12:7136. [PMID: 38002748 PMCID: PMC10672050 DOI: 10.3390/jcm12227136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, we recruited 30 unvaccinated convalescent donors who had previously been infected with COVID-19 and 7 unexposed asymptomatic controls. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG via semiquantitative ELISA, and T-cell immunity against S1 and S2 subunits were studied via IFN-γ enzyme-linked immunosorbent spot (ELISpot) and flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2-positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and the determination of optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARS-CoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.
Collapse
Affiliation(s)
- Balaji Pathakumari
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Paige K. Marty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Maleeha Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Virginia P. Van Keulen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| | - Courtney L. Erskine
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| | - Matthew S. Block
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Pedro Arias-Sanchez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Patricio Escalante
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| |
Collapse
|
76
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
77
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
78
|
Lopez-Gomez A, Pelaez-Prestel HF, Juarez I. Approaches to evaluate the specific immune responses to SARS-CoV-2. Vaccine 2023; 41:6434-6443. [PMID: 37770298 DOI: 10.1016/j.vaccine.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
The SARS-CoV-2 pandemic has a huge impact on public health and global economy, meaning an enormous scientific, political, and social challenge. Studying how infection or vaccination triggers both cellular and humoral responses is essential to know the grade and length of protection generated in the population. Nowadays, scientists and authorities around the world are increasingly concerned about the arrival of new variants, which have a greater spread, due to the high mutation rate of this virus. The aim of this review is to summarize the different techniques available for the study of the immune responses after exposure or vaccination against SARS-CoV-2, showing their advantages and limitations, and proposing suitable combinations of different techniques to achieve extensive information in these studies. We wish that the information provided here will helps other scientists in their studies of the immune response against SARS-CoV-2 after vaccination with new vaccine candidates or infection with upcoming variants.
Collapse
Affiliation(s)
- Ana Lopez-Gomez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Hector F Pelaez-Prestel
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ignacio Juarez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
79
|
Francis ME, Jansen EB, Yourkowski A, Selim A, Swan CL, MacPhee BK, Thivierge B, Buchanan R, Lavender KJ, Darbellay J, Rogers MB, Lew J, Gerdts V, Falzarano D, Skowronski DM, Sjaarda C, Kelvin AA. Previous infection with seasonal coronaviruses does not protect male Syrian hamsters from challenge with SARS-CoV-2. Nat Commun 2023; 14:5990. [PMID: 37752151 PMCID: PMC10522707 DOI: 10.1038/s41467-023-41761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
SARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Magen E Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ethan B Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alaa Selim
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cynthia L Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brian K MacPhee
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brittany Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew B Rogers
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Danuta M Skowronski
- BC Centre for Disease Control, Immunization Programs and Vaccine Preventable Diseases Service, Vancouver, BC, Canada
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Centre, Kingston, ON, Canada
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
80
|
Ioannidis JPA, Contopoulos-Ioannidis DG. Prepandemic cross-reactive humoral immunity to SARS-CoV-2 in Africa: Systematic review and meta-analysis. Int J Infect Dis 2023; 134:160-167. [PMID: 37327857 PMCID: PMC10266885 DOI: 10.1016/j.ijid.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVES To assess the evidence on the presence of antibodies cross-reactive with SARS-CoV-2 antigens in prepandemic samples from African populations. METHODS We performed a systematic review and meta-analysis of studies evaluating prepandemic African samples using pre-set assay-specific thresholds for SARS-CoV-2 seropositivity. RESULTS In total, 26 articles with 156 datasets were eligible, including 3437 positives among 29,923 measurements (11.5%) with large between-dataset heterogeneity. Positivity was similar for anti-nucleocapsid (14%) and anti-spike antibodies (11%), higher for anti-spike1 (23%), and lower for anti-receptor-binding domain antibodies (7%). Positivity was similar, on average, for immunoglobulin M and immunoglobulin G. Positivity was seen prominently in countries where malaria transmission occurs throughout and in datasets enriched in malaria cases (14%, 95% confidence interval, 12-15% vs 2%, 95% confidence interval 1-2% in other datasets). Substantial SARS-CoV-2 reactivity was seen in high malaria burden with or without high dengue burden (14% and 12%, respectively), and not without high malaria burden (2% and 0%, respectively). Lower SARS-CoV-2 cross-reactivity was seen in settings of high HIV seroprevalence. More sparse individual-level data showed associations of higher SARS-CoV-2 cross-reactivity with Plasmodium parasitemia and lower SARS-CoV-2 cross-reactivity with HIV seropositivity. CONCLUSION Prepandemic samples from Africa show high levels of anti-SARS-CoV-2 seropositivity. At the country level, cross-reactivity tracks especially with malaria prevalence.
Collapse
Affiliation(s)
- John P A Ioannidis
- Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, USA.
| | | |
Collapse
|
81
|
Harky A, Ala'Aldeen A, Butt S, Duric B, Roy S, Zeinah M. COVID-19 and Multiorgan Response: The Long-Term Impact. Curr Probl Cardiol 2023; 48:101756. [PMID: 37088175 PMCID: PMC10122551 DOI: 10.1016/j.cpcardiol.2023.101756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
In late December 2019, severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) was discovered following a cluster of pneumonia cases in Wuhan, China. During the early stages of the COVID-19 pandemic in 2020, it was unclear how this virus would manifest into a multiorgan impacting disease. After over 750 million cases worldwide, it has become increasingly evident that SARS-CoV-2 is a complex multifaceted disease we continue to develop our understanding of the pathophysiology of COVID-19 and how it affects these systems has many theories, ranging from direct viral infection via ACE2 receptor binding, to indirect coagulation dysfunction, cytokine storm, and pathological activation of the complement system. Since the onset of the pandemic, disease presentation, management, and manifestation have changed significantly. This paper intends to expand on the long-term impacts of COVID-19 on the cardiovascular, respiratory, urinary, gastrointestinal, and vascular systems of the body and the changes in clinical management. It is evident that the pharmacological, nonpharmacological and psychological management of COVID-19 patients require clearer guidelines to improve the survival odds and long-term clinical outcomes of those presenting with severe disease.
Collapse
Affiliation(s)
- Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.
| | - Avesta Ala'Aldeen
- Department of Medical Education, St George's Hospital Medical School, University of London, London, United Kingdom
| | - Sundas Butt
- Department of Thoracic Surgery, Nottingham City Hospital, Nottingham, United Kingdom
| | - Bea Duric
- Department of Medical Education, King's College London GKT School of Medical Education, London, United Kingdom
| | - Sakshi Roy
- Department of Medical Education, Queen's University Belfast, School of Medicine, Belfast, Northern Ireland, United Kingdom
| | - Mohamed Zeinah
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Al-Shams University, Cairo, Egypt
| |
Collapse
|
82
|
Allers K, Moos V, Hofmann J, Witkowski M, Haibel H, Angermair S, Schneider T. Cytolytic CD8 + T cell response to SARS-CoV-2 and non-SARS-CoV-2-related viruses is associated with severe manifestation of COVID-19. Clin Immunol 2023; 254:109712. [PMID: 37506745 DOI: 10.1016/j.clim.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Little is known about the CD8+ T cell functionality in the coronavirus disease 2019 (COVID-19). Therefore, we examined twenty-five hospitalized COVID-19 patients with moderate (MD) or severe disease (SD) as well as seventeen SARS-CoV-2-unexposed persons regarding the cytolytic and cytokine-producing reactivity of their CD8+ T cells. Reactive CD8+ T cells were detectable in 90% of the unexposed persons, confirming high cross-reactive immune memory in the general population. Compared to unexposed persons and MD patients, SD patients had higher numbers of SARS-CoV-2 reactive CD8+ T cells with cytolytic function that can simultaneously produce inflammatory cytokines. In addition, SD patients showed higher CD8+ T cell reactivity against non-SARS-CoV-2-related viruses, which was mainly mediated by cytolytic response. Sequence alignments showed that cross-reactivities with the Spike protein could contribute to the expansion of such cells. Since insufficiently regulated cytolytic CD8+ T cells can damage peripheral and vascular tissue structures, high levels of both SARS-CoV-2-reactive and heterologously activated cytolytic CD8+ T cells could favor severe disease progression.
Collapse
Affiliation(s)
- Kristina Allers
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Verena Moos
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jörg Hofmann
- Labor Berlin - Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Mario Witkowski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Stefan Angermair
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Thomas Schneider
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
83
|
Liu H, Aviszus K, Zelarney P, Liao SY, Gerber AN, Make B, Wechsler ME, Marrack P, Reinhardt RL. Vaccine-elicited B- and T-cell immunity to SARS-CoV-2 is impaired in chronic lung disease patients. ERJ Open Res 2023; 9:00400-2023. [PMID: 37583809 PMCID: PMC10423317 DOI: 10.1183/23120541.00400-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Background While vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides significant protection from coronavirus disease 2019, the protection afforded to individuals with chronic lung disease is less well established. This study seeks to understand how chronic lung disease impacts SARS-CoV-2 vaccine-elicited immunity. Methods Deep immune phenotyping of humoral and cell-mediated responses to the SARS-CoV-2 vaccine was performed in patients with asthma, COPD and interstitial lung disease (ILD) compared to healthy controls. Results 48% of vaccinated patients with chronic lung diseases had reduced antibody titres to the SARS-CoV-2 vaccine antigen relative to healthy controls. Vaccine antibody titres were significantly reduced among asthma (p<0.035), COPD (p<0.022) and a subset of ILD patients as early as 3-4 months after vaccination, correlating with decreased vaccine-specific memory B-cells in circulation. Vaccine-specific memory T-cells were significantly reduced in patients with asthma (CD8+ p<0.004; CD4+ p<0.023) and COPD (CD8+ p<0.008) compared to healthy controls. Impaired T-cell responsiveness was also observed in a subset of ILD patients (CD8+ 21.4%; CD4+ 42.9%). Additional heterogeneity between healthy and disease cohorts was observed among bulk and vaccine-specific follicular T-helper cells. Conclusions Deep immune phenotyping of the SARS-CoV-2 vaccine response revealed the complex nature of vaccine-elicited immunity and highlights the need for more personalised vaccination schemes in patients with underlying lung conditions.
Collapse
Affiliation(s)
- Haolin Liu
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Katja Aviszus
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | | | - Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony N. Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Barry Make
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Michael E. Wechsler
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Philippa Marrack
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R. Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
84
|
Marty PK, Pathakumari B, Shah M, Keulen VP, Erskine CL, Block MS, Arias-Sanchez P, Escalante P, Peikert T. Convalescent Adaptive Immunity is Highly Heterogenous after SARS-CoV-2 Infection. RESEARCH SQUARE 2023:rs.3.rs-3222112. [PMID: 37674707 PMCID: PMC10479471 DOI: 10.21203/rs.3.rs-3222112/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, between April 23, 2020, to May 11, 2020, we recruited 30 COVID-19 unvaccinated convalescent donors and 7 unexposed asymptomatic donors. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG semiquantitative ELISA and T cell immunity against S1 and S2 subunits were studied by IFN-γ Enzyme-Linked Immune absorbent Spot (ELISpot), flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2 positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARSCoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.
Collapse
|
85
|
Kalk A, Sturmberg J, Van Damme W, Brown GW, Ridde V, Zizi M, Paul E. Surfing Corona waves - instead of breaking them: Rethinking the role of natural immunity in COVID-19 policy. F1000Res 2023; 11:337. [PMID: 37576385 PMCID: PMC10412939 DOI: 10.12688/f1000research.110593.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 08/15/2023] Open
Abstract
In the first two years of the pandemic, COVID-19 response policies have aimed to break Corona waves through non-pharmaceutical interventions and mass vaccination. However, for long-term strategies to be effective and efficient, and to avoid massive disruption and social harms, it is crucial to introduce the role of natural immunity in our thinking about COVID-19 (or future "Disease-X") control and prevention. We argue that any Corona or similar virus control policy must appropriately balance five key elements simultaneously: balancing the various fundamental interests of the nation, as well as the various interventions within the health sector; tailoring the prevention measures and treatments to individual needs; limiting social interaction restrictions; and balancing the role of vaccinations against the role of naturally induced immunity. Given the high infectivity of SARS-CoV-2 and its differential impact on population segments, we examine this last element in more detail and argue that an important aspect of 'living with the virus' will be to better understand the role of naturally induced immunity in our overall COVID-19 policy response. In our eyes, a policy approach that factors natural immunity should be considered for persons without major comorbidities and those having 'encountered' the antigen in the past.
Collapse
Affiliation(s)
- Andreas Kalk
- Kinshasa Country Office, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Kinshasa, Democratic Republic of the Congo
| | - Joachim Sturmberg
- Foundation President – International Society for Systems and Complexity Sciences for Health, Australia, Callaghan, Australia
- A/Prof of General Practice, College of Health, Medicine and Wellbeing, University of Newcastle, Australia, Callaghan, Australia
| | - Wim Van Damme
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Antwerp, Belgium
| | | | - Valéry Ridde
- CEPED, IRD-Université de Paris, ERL INSERM SAGESUD, Institute for Research on Sustainable Development (IRD), Paris, France
| | - Martin Zizi
- Aerendir Mobile Inc., Mountain View, California, USA
| | - Elisabeth Paul
- School of Public Health, Université libre de Bruxelles, Brussels, 1070, Belgium
| |
Collapse
|
86
|
Kanis FM, Meier JP, Guldan H, Niller HH, Dahm M, Dansard A, Zander T, Struck F, Soutschek E, Deml L, Möbus S, Barabas S. Performance of T-Track ® SARS-CoV-2, an Innovative Dual Marker RT-qPCR-Based Whole-Blood Assay for the Detection of SARS-CoV-2-Reactive T Cells. Diagnostics (Basel) 2023; 13:2722. [PMID: 37685260 PMCID: PMC10486492 DOI: 10.3390/diagnostics13172722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
T-cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a central role in the control of the virus. In this study, we evaluated the performance of T-Track® SARS-CoV-2, a novel CE-marked quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels in response to the S1 and NP SARS-CoV-2 antigens, in 335 participants with or without a history of SARS-CoV-2 infection and vaccination, respectively. Of the 62 convalescent donors, 100% responded to S1 and 88.7% to NP antigens. In comparison, of the 68 naïve donors, 4.4% were reactive to S1 and 19.1% to NP. Convalescent donors <50 and ≥50 years of age demonstrated a 100% S1 reactivity and an 89.1% and 87.5% NP reactivity, respectively. T-cell responses by T-Track® SARS-CoV-2 and IgG serology by recomLine SARS-CoV-2 IgG according to the time from the last immunisation (by vaccination or viral infection) were comparable. Both assays showed a persistent cellular and humoral response for at least 36 weeks post immunisation in vaccinated and convalescent donors. Our results demonstrate the very good performance of the T-Track® SARS-CoV-2 molecular assay and suggest that it might be suitable to monitor the SARS-CoV-2-specific T-cell response in COVID-19 vaccinations trials and cross-reactivity studies.
Collapse
Affiliation(s)
| | | | | | - Hans-Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Heitmann JS, Tandler C, Marconato M, Nelde A, Habibzada T, Rittig SM, Tegeler CM, Maringer Y, Jaeger SU, Denk M, Richter M, Oezbek MT, Wiesmüller KH, Bauer J, Rieth J, Wacker M, Schroeder SM, Hoenisch Gravel N, Scheid J, Märklin M, Henrich A, Klimovich B, Clar KL, Lutz M, Holzmayer S, Hörber S, Peter A, Meisner C, Fischer I, Löffler MW, Peuker CA, Habringer S, Goetze TO, Jäger E, Rammensee HG, Salih HR, Walz JS. Phase I/II trial of a peptide-based COVID-19 T-cell activator in patients with B-cell deficiency. Nat Commun 2023; 14:5032. [PMID: 37596280 PMCID: PMC10439231 DOI: 10.1038/s41467-023-40758-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
T-cell immunity is central for control of COVID-19, particularly in patients incapable of mounting antibody responses. CoVac-1 is a peptide-based T-cell activator composed of SARS-CoV-2 epitopes with documented favorable safety profile and efficacy in terms of SARS-CoV-2-specific T-cell response. We here report a Phase I/II open-label trial (NCT04954469) in 54 patients with congenital or acquired B-cell deficiency receiving one subcutaneous CoVac-1 dose. Immunogenicity in terms of CoVac-1-induced T-cell responses and safety are the primary and secondary endpoints, respectively. No serious or grade 4 CoVac-1-related adverse events have been observed. Expected local granuloma formation has been observed in 94% of study subjects, whereas systemic reactogenicity has been mild or absent. SARS-CoV-2-specific T-cell responses have been induced in 86% of patients and are directed to multiple CoVac-1 peptides, not affected by any current Omicron variants and mediated by multifunctional T-helper 1 CD4+ T cells. CoVac-1-induced T-cell responses have exceeded those directed to the spike protein after mRNA-based vaccination of B-cell deficient patients and immunocompetent COVID-19 convalescents with and without seroconversion. Overall, our data show that CoVac-1 induces broad and potent T-cell responses in patients with B-cell/antibody deficiency with a favorable safety profile, which warrants advancement to pivotal Phase III safety and efficacy evaluation. ClinicalTrials.gov identifier NCT04954469.
Collapse
Affiliation(s)
- Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Claudia Tandler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Maddalena Marconato
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Timorshah Habibzada
- Institute of Clinical Cancer Research, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Susanne M Rittig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Simon U Jaeger
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Monika Denk
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Marion Richter
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Melek T Oezbek
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | - Jens Bauer
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas Rieth
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Naomi Hoenisch Gravel
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas Scheid
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Henrich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Kim L Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Martina Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Samuel Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Meisner
- Robert Bosch Hospital, Robert Bosch Society for Medical Research, Stuttgart, Germany
| | - Imma Fischer
- Institute for Clinical Epidemiology and Applied Biometry, University Hospital Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Caroline Anna Peuker
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
| | - Thorsten O Goetze
- Institute of Clinical Cancer Research, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Elke Jäger
- Department for Oncology and Hematology, Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
88
|
Qian W, Zhou J, Duan L, Wang H, Xu S, Cao Y. m 6A methylation: a potential key player in understanding and treating COVID-2019 infection. Cell Death Discov 2023; 9:300. [PMID: 37596265 PMCID: PMC10439140 DOI: 10.1038/s41420-023-01580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023] Open
Abstract
Since its discovery in 2019, coronavirus disease 2019 (COVID-2019) spans a wide clinical spectrum from the asymptomatic stage, mild infection, to severe pneumonia. In patients with COVID-2019, factors such as advanced age, diabetes, or hypertension are associated with a significantly increased risk of severe diseases and death. Of note, the mechanisms underlying differences in the risk and symptoms of COVID-2019 among different populations are still poorly characterized. Accordingly, it is imperative to elucidate potential pathophysiological mechanisms and develop targeted therapeutic approaches for COVID-2019 infection. N6-methyladenosine (m6A) is one of the most common modifications in mammalian RNA transcripts and is widely found in messenger RNAs and some non-coding RNAs. It has been reported that m6A methylation modifications are present in viral RNA transcripts, which are of great significance for the regulation of the viral life cycle. Furthermore, m6A methylation has recently been found to be strongly associated with COVID-2019 infection. Therefore, this article reviews recent advances in studies related to the role of m6A methylation in COVID-2019 infection.
Collapse
Affiliation(s)
- Weiwei Qian
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, 610044, Sichuan, China
- Department of Emergency,Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518061, Guangdong, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ligeng Duan
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Haoyu Wang
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Shuyun Xu
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, 610044, Sichuan, China.
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, 610044, Sichuan, China.
| |
Collapse
|
89
|
Yin D, Han Z, Lang B, Li Y, Mai G, Chen H, Feng L, Chen YQ, Luo H, Xiong Y, Jing L, Du X, Shu Y, Sun C. Effect of seasonal coronavirus immune imprinting on the immunogenicity of inactivated COVID-19 vaccination. Front Immunol 2023; 14:1195533. [PMID: 37654488 PMCID: PMC10467281 DOI: 10.3389/fimmu.2023.1195533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background Pre-existing cross-reactive immunity among different coronaviruses, also termed immune imprinting, may have a comprehensive impact on subsequent SARS-CoV-2 infection and COVID-19 vaccination effectiveness. Here, we aim to explore the interplay between pre-existing seasonal coronaviruses (sCoVs) antibodies and the humoral immunity induced by COVID-19 vaccination. Methods We first collected serum samples from healthy donors prior to COVID-19 pandemic and individuals who had received COVID-19 vaccination post-pandemic in China, and the levels of IgG antibodies against sCoVs and SARS-CoV-2 were detected by ELISA. Wilcoxon rank sum test and chi-square test were used to compare the difference in magnitude and seropositivity rate between two groups. Then, we recruited a longitudinal cohort to collect serum samples before and after COVID-19 vaccination. The levels of IgG antibodies against SARS-CoV-2 S, S1, S2 and N antigen were monitored. Association between pre-existing sCoVs antibody and COVID-19 vaccination-induced antibodies were analyzed by Spearman rank correlation. Results 96.0% samples (339/353) showed the presence of IgG antibodies against at least one subtype of sCoVs. 229E and OC43 exhibited the highest seroprevalence rates at 78.5% and 72.0%, respectively, followed by NL63 (60.9%) and HKU1 (52.4%). The levels of IgG antibodies against two β coronaviruses (OC43 and HKU1) were significantly higher in these donors who had inoculated with COVID-19 vaccines compared to pre-pandemic healthy donors. However, we found that COVID-19 vaccine-induced antibody levels were not significant different between two groups with high levelor low level of pre-existing sCoVs antibody among the longitudinal cohort. Conclusion We found a high prevalence of antibodies against sCoVs in Chinese population. The immune imprinting by sCoVs could be reactivated by COVID-19 vaccination, but it did not appear to be a major factor affecting the immunogenicity of COVID-19 vaccine. These findings will provide insights into understanding the impact of immune imprinting on subsequent multiple shots of COVID-19 vaccines.
Collapse
Affiliation(s)
- Di Yin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Bing Lang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yanjun Li
- Emergency Manage Department, Foshan, China
| | - Guoqin Mai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Hongbiao Chen
- Department of Epidemiology and Infectious Disease Control, Shenzhen, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Yao-qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yaming Xiong
- Institute of Clinical Medicine, First People's Hospital of Foshan, Foshan, China
| | - Lin Jing
- Institute of Clinical Medicine, First People's Hospital of Foshan, Foshan, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
90
|
Namuniina A, Muyanja ES, Biribawa VM, Okech BA, Ssemaganda A, Price MA, Hills N, Nanteza A, Bagaya BS, Weiskopf D, Riou C, Reynolds SJ, Galiwango RM, Redd AD. Proportion of Ugandans with pre-pandemic SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell responses: A pilot study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001566. [PMID: 37585383 PMCID: PMC10431628 DOI: 10.1371/journal.pgph.0001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023]
Abstract
The estimated mortality rate of the SARS-CoV-2 pandemic varied greatly around the world. In particular, multiple countries in East, Central, and West Africa had significantly lower rates of COVID-19 related fatalities than many resource-rich nations with significantly earlier wide-spread access to life-saving vaccines. One possible reason for this lower mortality could be the presence of pre-existing cross-reactive immunological responses in these areas of the world. To explore this hypothesis, an exploratory study of stored peripheral blood mononuclear cells (PBMC) from Ugandans collected from 2015-2017 prior to the COVID-19 pandemic (n = 29) and from hospitalized Ugandan COVID-19 patients (n = 3) were examined using flow-cytometry for the presence of pre-existing SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell populations using four T-cell epitope mega pools. Of pre-pandemic participants, 89.7% (26/29) had either CD4+ or CD8+, or both, SARS-CoV-2 specific T-cell responses. Specifically, CD4+ T-cell reactivity (72.4%) and CD8+ T-cell reactivity (65.5%) were relatively similar, and 13 participants (44.8%) had both types of cross-reactive types of T-cells present. There were no significant differences in response by sex in the population, however this may be in part due to the limited sample size examined. The rates of cross-reactive T-cell populations in this exploratory Ugandan population appears higher than previous estimates from resource-rich countries like the United States (20-50% reactivity). It is unclear what role, if any, this cross-reactivity played in decreasing COVID-19 related mortality in Uganda and other African countries, but does suggest that a better understanding of global pre-existing immunological cross-reactivity could be an informative data of epidemiological intelligence moving forward.
Collapse
Affiliation(s)
| | - Enoch S. Muyanja
- PATRU, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | | | | | - Aloysious Ssemaganda
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matt A. Price
- IAVI, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Nancy Hills
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Ann Nanteza
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, Uganda
- Integrated Biorepository of H3-Africa-Uganda (IBRH3AU), COVID-19 Biobank (COV-BANK), College of Health Sciences, Makerere University, Kampala, Uganda
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Catherine Riou
- Department of Pathology, Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steven J. Reynolds
- Division of Intramural Research, NIAID, NIH, Baltimore Maryland, United States of America
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Andrew D. Redd
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Intramural Research, NIAID, NIH, Baltimore Maryland, United States of America
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
91
|
Li Z, Xiang T, Liang B, Liu J, Deng H, Yang X, Wang H, Feng X, Zelinskyy G, Trilling M, Sutter K, Lu M, Dittmer U, Wang B, Yang D, Zheng X, Liu J. SARS-CoV-2-specific T cell responses wane profoundly in convalescent individuals 10 months after primary infection. Virol Sin 2023; 38:606-619. [PMID: 37414153 PMCID: PMC10436107 DOI: 10.1016/j.virs.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
A key question in the coronavirus disease 2019 (COVID-19) pandemic is the duration of specific T cell responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) post primary infection, which is difficult to address due to the large-scale COVID-19 vaccination and re-exposure to the virus. Here, we conducted an analysis of the long-term SARS-CoV-2-specific T cell responses in a unique cohort of convalescent individuals (CIs) that were among the first to be infected worldwide and without any possible antigen re-exposure since then. The magnitude and breadth of SARS-CoV-2-specific T cell responses correlated inversely with the time that had elapsed from disease onset and the age of those CIs. The mean magnitude of SARS-CoV-2-specific CD4 and CD8 T cell responses decreased about 82% and 76%, respectively, over the time period of ten months after infection. Accordingly, the longitudinal analysis also demonstrated that SARS-CoV-2-specific T cell responses waned significantly in 75% of CIs during the follow-up. Collectively, we provide a comprehensive characterization of the long-term memory T cell response in CIs, suggesting that robust SARS-CoV-2-specific T cell immunity post primary infection may be less durable than previously expected.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiandan Xiang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boyun Liang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Deng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mirko Trilling
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kathrin Sutter
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
92
|
Law JC, Watts TH. Considerations for Choosing T Cell Assays during a Pandemic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:169-174. [PMID: 37399079 DOI: 10.4049/jimmunol.2300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 07/05/2023]
Abstract
The appropriate immunosurveillance tools are foundational for the creation of therapeutics, vaccines, and containment strategies when faced with outbreaks of novel pathogens. During the COVID-19 pandemic, there was an urgent need to rapidly assess immune memory following infection or vaccination. Although there have been attempts to standardize cellular assays more broadly, methods for measuring cell-mediated immunity remain variable across studies. Commonly used methods include ELISPOT, intracellular cytokine staining, activation-induced markers, cytokine secretion assays, and peptide-MHC tetramer staining. Although each assay offers unique and complementary information on the T cell response, there are challenges associated with standardizing these assays. The choice of assay can be driven by sample size, the need for high throughput, and the information sought. A combination of approaches may be optimal. This review describes the benefits and limitations of commonly used methods for assessing T cell immunity across SARS-CoV-2 studies.
Collapse
Affiliation(s)
- Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
93
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
94
|
Lee G, Schauner R, Burke J, Borocz J, Vasana S, Sobieraj L, Giraudo M, Jackson Z, Ansari Q, Navas M, Sakr H, Wald D. NK cells from COVID-19 positive patients exhibit enhanced cytotoxic activity upon NKG2A and KIR2DL1 blockade. Front Immunol 2023; 14:1022890. [PMID: 37483595 PMCID: PMC10360118 DOI: 10.3389/fimmu.2023.1022890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
SARS CoV-2 has caused a global pandemic leading to significant morbidity and mortality. There is a need to elucidate and further understand the implications of COVID-19 disease on the immune system to develop improved therapeutic strategies. In particular, Natural Killer (NK) cells play an essential role in mediating the innate immune response against viral infections. To better understand the role of innate immunity in COVID-19, we characterized the phenotype of circulating NK cells from 74 COVID-19 patients and 25 controls. Through evaluating the protein expression of activating and inhibitory NK cell surface molecules using dimension reduction analysis and clustering, we identified 4 specific clusters of NK cells specific to disease state (COVID-19 positive or COVID-19 negative) and characterized COVID-19 positive NK cells as: NGK2A+KIR2DL1+NKG2C-. Utilizing blocking antibodies specific for receptors NKG2A and KIR2DL1, we found that both NKG2A and KIR2DL1 blockade markedly enhances the ability of NK cells from COVID-19 positive patients to lyse SARS-Cov-2 infected cells. Overall, this study reveals new insights into NK cell phenotypes during SARS-CoV-2 infection and suggests a therapeutic approach worthy of further investigation to enhance NK cell-mediated responses against the virus.
Collapse
Affiliation(s)
- Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Juanita Burke
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - Jade Borocz
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - Smitha Vasana
- Department of Pediatrics, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lukasz Sobieraj
- Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, United States
| | - Maria Giraudo
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Qasim Ansari
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - Maria Navas
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - Hany Sakr
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| |
Collapse
|
95
|
Afroz S, Bartolo L, Su LF. Pre-existing T Cell Memory to Novel Pathogens. Immunohorizons 2023; 7:543-553. [PMID: 37436166 PMCID: PMC10587503 DOI: 10.4049/immunohorizons.2200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Immunological experiences lead to the development of specific T and B cell memory, which readies the host for a later pathogen rechallenge. Currently, immunological memory is best understood as a linear process whereby memory responses are generated by and directed against the same pathogen. However, numerous studies have identified memory cells that target pathogens in unexposed individuals. How "pre-existing memory" forms and impacts the outcome of infection remains unclear. In this review, we discuss differences in the composition of baseline T cell repertoire in mice and humans, factors that influence pre-existing immune states, and recent literature on their functional significance. We summarize current knowledge on the roles of pre-existing T cells in homeostasis and perturbation and their impacts on health and disease.
Collapse
Affiliation(s)
- Sumbul Afroz
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
| | - Laurent Bartolo
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
| | - Laura F. Su
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
96
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T-cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. PLoS Pathog 2023; 19:e1011032. [PMID: 37498934 PMCID: PMC10409285 DOI: 10.1371/journal.ppat.1011032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
97
|
Hocini H, Wiedemann A, Blengio F, Lefebvre C, Cervantes-Gonzalez M, Foucat E, Tisserand P, Surenaud M, Coléon S, Prague M, Guillaumat L, Krief C, Fenwick C, Laouénan C, Bouadma L, Ghosn J, Pantaleo G, Thiébaut R, Lévy Y. Neutrophil Activation and Immune Thrombosis Profiles Persist in Convalescent COVID-19. J Clin Immunol 2023; 43:882-893. [PMID: 36943669 PMCID: PMC10029801 DOI: 10.1007/s10875-023-01459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE Following a severe COVID-19 infection, a proportion of individuals develop prolonged symptoms. We investigated the immunological dysfunction that underlies the persistence of symptoms months after the resolution of acute COVID-19. METHODS We analyzed cytokines, cell phenotypes, SARS-CoV-2 spike-specific and neutralizing antibodies, and whole blood gene expression profiles in convalescent severe COVID-19 patients 1, 3, and 6 months following hospital discharge. RESULTS We observed persistent abnormalities until month 6 marked by (i) high serum levels of monocyte/macrophage and endothelial activation markers, chemotaxis, and hematopoietic cytokines; (ii) a high frequency of central memory CD4+ and effector CD8+ T cells; (iii) a decrease in anti-SARS-CoV-2 spike and neutralizing antibodies; and (iv) an upregulation of genes related to platelet, neutrophil activation, erythrocytes, myeloid cell differentiation, and RUNX1 signaling. We identified a "core gene signature" associated with a history of thrombotic events, with upregulation of a set of genes involved in neutrophil activation, platelet, hematopoiesis, and blood coagulation. CONCLUSION The lack of restoration of gene expression to a normal profile after up to 6 months of follow-up, even in asymptomatic patients who experienced severe COVID-19, signals the need to carefully extend their clinical follow-up and propose preventive measures.
Collapse
Affiliation(s)
- Hakim Hocini
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Fabiola Blengio
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Minerva Cervantes-Gonzalez
- Département Épidémiologie Biostatistiques Et Recherche Clinique, AP-HP, Hôpital Bichat, INSERM, Centre d'Investigation Clinique-Epidémiologie Clinique 1425, 75018, Paris, France
- UMR 1137, Université de Paris, INSERM, IAME, 75018, Paris, France
- APHP- Hôpital Bichat - Médecine Intensive et Réanimation des Maladies Infectieuses, Paris, France
| | - Emile Foucat
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Mathieu Surenaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Séverin Coléon
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Mélanie Prague
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
- Department of Public Health, Univ. Bordeaux, Inserm Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France
| | - Lydia Guillaumat
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Corinne Krief
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cédric Laouénan
- Département Épidémiologie Biostatistiques Et Recherche Clinique, AP-HP, Hôpital Bichat, INSERM, Centre d'Investigation Clinique-Epidémiologie Clinique 1425, 75018, Paris, France
- UMR 1137, Université de Paris, INSERM, IAME, 75018, Paris, France
| | - Lila Bouadma
- UMR 1137, Université de Paris, INSERM, IAME, 75018, Paris, France
- APHP- Hôpital Bichat - Médecine Intensive et Réanimation des Maladies Infectieuses, Paris, France
| | - Jade Ghosn
- UMR 1137, Université de Paris, INSERM, IAME, 75018, Paris, France
- AP-HP, Hôpital Bichat, Service de Maladies Infectieuses Et Tropicales, 75018, Paris, France
| | - Giuseppe Pantaleo
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Rodolphe Thiébaut
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
- Department of Public Health, Univ. Bordeaux, Inserm Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France
- CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Yves Lévy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France.
- Assistance Publique-Hôpitaux de Paris, Service Immunologie Clinique, Groupe Henri-Mondor Albert-Chenevier, Créteil, France.
| |
Collapse
|
98
|
Nabi AHMN, Ebihara A, Shekhar HU. Impacts of SARS-CoV-2 on diabetes mellitus: A pre and post pandemic evaluation. World J Virol 2023; 12:151-171. [PMID: 37396707 PMCID: PMC10311579 DOI: 10.5501/wjv.v12.i3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 06/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) crippled the whole world and has resulted in large number of morbidity and mortality. The origin of the SARS-CoV-2 is still disputed. The risk of infection with SARS-CoV-2 is dependent on several risk factors as observed in many studies. The severity of the disease depends on many factors including the viral strain, host immunogenetics, environmental factors, host genetics, host nutritional status and presence of comorbidities like hypertension, diabetes, Chronic Obstructive Pulmonary Disease, cardiovascular disease, renal impairment. Diabetes is a metabolic disorder mainly characterized by hyperglycemia. Diabetic individuals are intrinsically prone to infections. SARS-CoV-2 infection in patients with diabetes result in β-cell damage and cytokine storm. Damage to the cells impairs the equilibrium of glucose, leading to hyperglycemia. The ensuing cytokine storm causes insulin resistance, especially in the muscles and liver, which also causes a hyperglycemic state. All of these increase the severity of COVID-19. Genetics also play pivotal role in disease pathogenesis. This review article focuses from the probable sources of coronaviruses and SARS-CoV-2 to its impacts on individuals with diabetes and host genetics in pre- and post-pandemic era.
Collapse
Affiliation(s)
- A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
99
|
Tarke A, Zhang Y, Methot N, Narowski TM, Phillips E, Mallal S, Frazier A, Filaci G, Weiskopf D, Dan JM, Premkumar L, Scheuermann RH, Sette A, Grifoni A. Targets and cross-reactivity of human T cell recognition of common cold coronaviruses. Cell Rep Med 2023; 4:101088. [PMID: 37295422 PMCID: PMC10242702 DOI: 10.1016/j.xcrm.2023.101088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Experimental Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genoa, Italy
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Nils Methot
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tara M Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| |
Collapse
|
100
|
Primard C, Monchâtre-Leroy E, Del Campo J, Valsesia S, Nikly E, Chevandier M, Boué F, Servat A, Wasniewski M, Picard-Meyer E, Courant T, Collin N, Salguero FJ, Le Vert A, Guyon-Gellin D, Nicolas F. OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model. Front Immunol 2023; 14:1188605. [PMID: 37409116 PMCID: PMC10319154 DOI: 10.3389/fimmu.2023.1188605] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM®, a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franck Boué
- ANSES, Laboratory for Rabies and Wildlife, Malzéville, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|