51
|
Lett MJ, Otte F, Hauser D, Schön J, Kipfer ET, Hoffmann D, Halwe NJ, Breithaupt A, Ulrich L, Britzke T, Kochmann J, Corleis B, Zhang Y, Urda L, Cmiljanovic V, Lang C, Beer M, Mittelholzer C, Klimkait T. High protection and transmission-blocking immunity elicited by single-cycle SARS-CoV-2 vaccine in hamsters. NPJ Vaccines 2024; 9:206. [PMID: 39472701 PMCID: PMC11522273 DOI: 10.1038/s41541-024-00992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Vaccines have played a central role in combating the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants are increasingly evading first-generation vaccine protection. To address this challenge, we designed "single-cycle infection SARS-CoV-2 viruses" (SCVs) that lack essential viral genes, possess distinctive immune-modulatory features, and exhibit an excellent safety profile in the Syrian hamster model. Animals intranasally vaccinated with an Envelope-gene-deleted vaccine candidate were fully protected against an autologous challenge with the SARS-CoV-2 virus through systemic and mucosal humoral immune responses. Additionally, the deletion of immune-downregulating viral genes in the vaccine construct prevented challenge virus transmission to contact animals. Moreover, vaccinated animals displayed neither tissue inflammation nor lung damage. Consequently, SCVs hold promising potential to induce potent protection against COVID-19, surpassing the immunity conferred by natural infection, as demonstrated in human immune cells.
Collapse
Affiliation(s)
- Martin Joseph Lett
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Enja Tatjana Kipfer
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Nico J Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Tobias Britzke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Christopher Lang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Christian Mittelholzer
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- RocketVax AG, Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
52
|
Merchant M, Ashraf J, Masood KI, Yameen M, Hussain R, Nasir A, Hasan Z. SARS-CoV-2 variants induce increased inflammatory gene expression but reduced interferon responses and heme synthesis as compared with wild type strains. Sci Rep 2024; 14:25734. [PMID: 39468120 PMCID: PMC11519399 DOI: 10.1038/s41598-024-76401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOC) have been associated with increased viral transmission and disease severity. We investigated the mechanisms of pathogenesis caused by variants using a host blood transcriptome profiling approach. We analysed transcriptional signatures of COVID-19 patients comparing those infected with wildtype (wt), alpha, delta or omicron strains seeking insights into infection in Asymptomatic cases.Comparison of transcriptional profiles of Symptomatic and Asymptomatic COVID-19 cases showed increased differentially regulated gene (DEGs) of inflammatory, apoptosis and blood coagulation pathways, with decreased T cell and Interferon stimulated genes (ISG) activation. Between SARS-CoV-2 strains, an increasing number of DEGs occurred in comparisons between wt and alpha (196), delta (1425) or, omicron (2313) infections. COVID-19 cases with alpha or, delta variants demonstrated suppression transcripts of innate immune pathways. EGR1 and CXCL8 were highly upregulated in those infected with VOC; heme biosynthetic pathway genes (ALAS2, HBB, HBG1, HBD9) and ISGs were downregulated. Delta and omicron infections upregulated ribosomal pathways, reflecting increased viral RNA translation. Asymptomatic COVID-19 cases infected with delta infections showed increased cytokines and ISGs expression. Overall, increased inflammation, with reduced host heme synthesis was associated with infections caused by VOC infections, with raised type I interferon in cases with less severe disease.
Collapse
Affiliation(s)
- Mariam Merchant
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Javaria Ashraf
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Maliha Yameen
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Rabia Hussain
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
53
|
Jiang D, Ma Z, Zhang J, Sun Y, Bai T, Liu R, Wang Y, Guan L, Fu S, Sun Y, Li Y, Zhou B, Yang Y, Yang S, Chang Y, Sun B, Yang K. Immunoreactivity Analysis of MHC-I Epitopes Derived from the Nucleocapsid Protein of SARS-CoV-2 via Computation and Vaccination. Vaccines (Basel) 2024; 12:1214. [PMID: 39591116 PMCID: PMC11598499 DOI: 10.3390/vaccines12111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Since 2019, the SARS-CoV-2 virus has been responsible for the global spread of respiratory illness. As of 1 September 2024, the cumulative number of infections worldwide exceeded 776 million. There are many structural proteins of the virus, among which the SARS-CoV-2 nucleocapsid (N) protein plays a pivotal role in the viral life cycle, participating in a multitude of essential activities following viral invasion. An important antiviral immune response is the major histocompatibility complex (MHC)-restricted differentiation cluster 8 (CD8+) T cell cytotoxicity. Therefore, understanding the immunogenicity of SARS-CoV-2 NP-specific MHC-I-restricted epitopes is highly important. Methods: MHC-I molecules from 11 human leukocyte antigen I (HLA-I) superfamilies with 98% population coverage and 6 mouse H2 alleles were selected. The affinity were screened by IEDB, NetMHCpan, SYFPEITHI, SMMPMBEC and Rankpep. Further immunogenicity and conservative analyses were performed using VaxiJen and BLASTp, respectively. EpiDock was used to simulate molecular docking. Cluster analysis was performed. Selective epitopes were validated by enzyme-linked immunospot (ELISpot) assay and flow cytometry in the mice with pVAX-NPSARS-CoV-2 immunization. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect whether the preferred epitope induced humoral immunity. Results: There were 64 dominant epitopes for the H-2 haplotype and 238 dominant epitopes for the HLA-I haplotype. Further analysis of immunogenicity and conservation yielded 8 preferred epitopes, and docking simulations were conducted with corresponding MHC-I alleles. The relationships between the NP peptides and MHC-I haplotypes were then determined via two-way hierarchical clustering. ELISA, ELISpot assay, and flow cytometry revealed that the preferred epitope stimulated both humoral and cellular immunity and enhanced cytokine secretion in mice. Conclusions: our study revealed the general patterns among multiple haplotypes within the humans and mice superfamily, providing a comprehensive assessment of the pan-MHC-I immunoreactivity of SARS-CoV-2 NP. Our findings would render prospects for the development and application of epitope-based immunotherapy in lasting viral epidemics.
Collapse
Affiliation(s)
- Dongbo Jiang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Zilu Ma
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Junqi Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yubo Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Tianyuan Bai
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Ruibo Liu
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yongkai Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Liang Guan
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Shuaishuai Fu
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yuanjie Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yuanzhe Li
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Bingquan Zhou
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yulin Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Shuya Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Yuanhang Chang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| | - Baozeng Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
- Yingtan Detachment, Jiangxi General Hospital, Chinese People’s Armed Police Force, Nanchang 330001, China
- General Practice Medicine Base of Shanghai Changzheng Hospital, Shanghai 200041, China
| | - Kun Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (In Former The Fourth Military Medical University), Xi’an 710032, China; (D.J.); (Z.M.); (J.Z.); (Y.S.); (T.B.); (R.L.); (Y.W.); (L.G.); (S.F.); (Y.S.); (Y.L.); (B.Z.); (Y.Y.); (S.Y.); (Y.C.)
| |
Collapse
|
54
|
Perdiguero B, Álvarez E, Marcos-Villar L, Sin L, López-Bravo M, Valverde JR, Sorzano CÓS, Falqui M, Coloma R, Esteban M, Guerra S, Gómez CE. B and T Cell Bi-Cistronic Multiepitopic Vaccine Induces Broad Immunogenicity and Provides Protection Against SARS-CoV-2. Vaccines (Basel) 2024; 12:1213. [PMID: 39591118 PMCID: PMC11598604 DOI: 10.3390/vaccines12111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the need for vaccines targeting both neutralizing antibodies (NAbs) and long-lasting cross-reactive T cells covering multiple viral proteins to provide broad and durable protection against emerging variants. METHODS To address this, here we developed two vaccine candidates, namely (i) DNA-CoV2-TMEP, expressing the multiepitopic CoV2-TMEP protein containing immunodominant and conserved T cell regions from SARS-CoV-2 structural proteins, and (ii) MVA-CoV2-B2AT, encoding a bi-cistronic multiepitopic construct that combines conserved B and T cell overlapping regions from SARS-CoV-2 structural proteins. RESULTS Both candidates were assessed in vitro and in vivo demonstrating their ability to induce robust immune responses. In C57BL/6 mice, DNA-CoV2-TMEP enhanced the recruitment of innate immune cells and stimulated SARS-CoV-2-specific polyfunctional T cells targeting multiple viral proteins. MVA-CoV2-B2AT elicited NAbs against various SARS-CoV-2 variants of concern (VoCs) and reduced viral replication and viral yields against the Beta variant in susceptible K18-hACE2 mice. The combination of MVA-CoV2-B2AT with a mutated ISG15 form as an adjuvant further increased the magnitude, breadth and polyfunctional profile of the response. CONCLUSION These findings underscore the potential of these multiepitopic proteins when expressed from DNA or MVA vectors to provide protection against SARS-CoV-2 and its variants, supporting their further development as next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Laura Sin
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - María López-Bravo
- Department of Microbial Biotechnology, CNB-CSIC, 28049 Madrid, Spain;
| | | | | | - Michela Falqui
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
| | - Rocío Coloma
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
55
|
Wang J, Li K, Wang Y, Lin Z, Li W, Cao J, Mei X, Wei R, Yang J, Zhai X, Huang D, Zhou K, Liang X, Wang Z. Diverse BCR usage and T cell activation induced by different COVID-19 sequential vaccinations. mBio 2024; 15:e0142924. [PMID: 39248564 PMCID: PMC11481494 DOI: 10.1128/mbio.01429-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Limited knowledge is available on the differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibody breadth and T cell differentiation among different COVID-19 sequential vaccination strategies. In this study, we compared the immunogenicity of the third different dose of COVID-19 vaccines, such as mRNA (I-I-M), adenoviral vector (I-I-A), and recombinant protein (I-I-R) vaccines, in terms of the magnitude and breadth of antibody response and differentiation of SARS-CoV-2-specific T and B cells. These studies were performed in the same clinical trial, and the samples were assessed in the same laboratory. IGHV1-69, IGHV3-9, and IGHV4-34 were the dominant B cell receptor (BCR) usages of the I-I-M, I-I-A, and I-I-R groups, respectively; the RBD+ B cell activation capacities were comparable. Additionally, the I-I-R group was characterized by higher numbers of regulatory T cells, circulating T follicular helper cells (cTFH) - cTFH1 (CXRC3+CCR6-), cTFH1-17 (CXRC3+CCR6+), cTFH17 (CXRC3-CCR6+), and cTFH-CM (CD45RA-CCR7+), and lower SMNE+ T cell proliferative capacity than the other two groups, whereas I-I-A showed a higher proportion and number of virus-specific CD4+ T cells than I-I-R, as determined in ex vivo experiments. Our data confirmed different SARS-CoV-2-specific antibody profiles among the three different vaccination strategies and also provided insights regarding BCR usage and T/B cell activation and differentiation, which will guide a better selection of vaccination strategies in the future. IMPORTANCE Using the same laboratory test to avoid unnecessary interference due to cohort ethnicity, and experimental and statistical errors, we have compared the T/B cell immune response in the same cohort sequential vaccinated by different types of COVID-19 vaccine. We found that different sequential vaccinations can induce different dominant BCR usage with no significant neutralizing titers and RBD+ B-cell phenotype. Recombinant protein vaccine can induce higher numbers of regulatory T cells, circulating TFH (CTFH)1, CTFH17, and CTFH-CM, and lower SMNE+ T-cell proliferative capacity than the other two groups, whereas I-I-A showed higher proportion and number of virus-specific CD4+ T cells than I-I-R. Overall, our study provides a deep insight about the source of differences in immune protection of different types of COVID-19 vaccines, which further improves our understanding of the mechanisms underlying the immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Junxiang Wang
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Kaiyi Li
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yuan Wang
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhengfang Lin
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Laboratory, Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Weidong Li
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jinpeng Cao
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rui Wei
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jinglu Yang
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Xiaobing Zhai
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Deyi Huang
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Kaiwen Zhou
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xinyue Liang
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- Shenzhen Hetao Institute, Guangzhou National Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
56
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
57
|
Verma SK, Ana-Sosa-Batiz F, Timis J, Shafee N, Maule E, Pinto PBA, Conner C, Valentine KM, Cowley DO, Miller R, Elong Ngono A, Tran L, Varghese K, Dos Santos Alves RP, Hastie KM, Saphire EO, Webb DR, Jarnagin K, Kim K, Shresta S. Influence of Th1 versus Th2 immune bias on viral, pathological, and immunological dynamics in SARS-CoV-2 variant-infected human ACE2 knock-in mice. EBioMedicine 2024; 108:105361. [PMID: 39353281 PMCID: PMC11472634 DOI: 10.1016/j.ebiom.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mouse models that recapitulate key features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are important tools for understanding complex interactions between host genetics, immune responses, and SARS-CoV-2 pathogenesis. Little is known about how predominantly cellular (Th1 type) versus humoral (Th2 type) immune responses influence SARS-CoV-2 dynamics, including infectivity and disease course. METHODS We generated knock-in (KI) mice expressing human ACE2 (hACE2) and/or human TMPRSS2 (hTMPRSS2) on Th1-biased (C57BL/6; B6) and Th2-biased (BALB/c) genetic backgrounds. Mice were infected intranasally with SARS-CoV-2 Delta (B.1.617.2) or Omicron BA.1 (B.1.1.529) variants, followed by assessment of disease course, respiratory tract infection, lung histopathology, and humoral and cellular immune responses. FINDINGS In both B6 and BALB/c mice, hACE2 expression was required for infection of the lungs with Delta, but not Omicron BA.1. Disease severity was greater in Omicron BA.1-infected hTMPRSS2-KI and double-KI BALB/c mice compared with B6 mice, and in Delta-infected double-KI B6 and BALB/c mice compared with hACE2-KI mice. hACE2-KI B6 mice developed more severe lung pathology and more robust SARS-CoV-2-specific splenic CD8 T cell responses compared with hACE2-KI BALB/c mice. There were no notable differences between the two genetic backgrounds in plasma cell, germinal center B cell, or antibody responses to SARS-CoV-2. INTERPRETATION SARS-CoV-2 Delta and Omicron BA.1 infection, disease course, and CD8 T cell response are influenced by the host genetic background. These humanized mice hold promise as important tools for investigating the mechanisms underlying the heterogeneity of SARS-CoV-2-induced pathogenesis and immune response. FUNDING This work was funded by NIH U19 AI142790-02S1, the GHR Foundation, the Arvin Gottleib Foundation, and the Overton family (to SS and EOS); Prebys Foundation (to SS); NIH R44 AI157900 (to KJ); and by an American Association of Immunologists Career Reentry Fellowship (FASB).
Collapse
Affiliation(s)
- Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kristen M Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Dale O Cowley
- TransViragen Inc., 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
58
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
59
|
Macchia I, La Sorsa V, Ciervo A, Ruspantini I, Negri D, Borghi M, De Angelis ML, Luciani F, Martina A, Taglieri S, Durastanti V, Altavista MC, Urbani F, Mancini F. T Cell Peptide Prediction, Immune Response, and Host-Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules 2024; 14:1217. [PMID: 39456150 PMCID: PMC11505848 DOI: 10.3390/biom14101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina La Sorsa
- Research Promotion and Coordination Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Irene Ruspantini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Francesca Luciani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Antonio Martina
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Silvia Taglieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina Durastanti
- Neurology Unit, San Filippo Neri Hospital, ASL RM1, 00135 Rome, Italy; (V.D.); (M.C.A.)
| | | | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| |
Collapse
|
60
|
Juhl AK, Dietz LL, Søgaard OS, Reekie J, Nielsen H, Johansen IS, Benfield T, Wiese L, Stærke NB, Jensen TØ, Olesen R, Iversen K, Fogh K, Bodilsen J, Madsen LW, Lindvig SO, Raben D, Andersen SD, Hvidt AK, Andreasen SR, Baerends EAM, Lundgren J, Østergaard L, Tolstrup M. Longitudinal Evaluation of Severe Acute Respiratory Syndrome Coronavirus 2 T-Cell Immunity Over 2 Years Following Vaccination and Infection. J Infect Dis 2024; 230:e605-e615. [PMID: 38687181 PMCID: PMC11420770 DOI: 10.1093/infdis/jiae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Within a year of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, vaccines inducing a robust humoral and cellular immune response were implemented worldwide. However, emergence of novel variants and waning vaccine-induced immunity led to implementation of additional vaccine boosters. METHODS This prospective study evaluated the temporal profile of cellular and serological responses in a cohort of 639 SARS-CoV-2-vaccinated participants, of whom a large proportion experienced a SARS-CoV-2 infection. All participants were infection naïve at the time of their first vaccine dose. Proportions of SARS-CoV-2 spike-specific T cells were determined after each vaccine dose using the activation-induced marker assay, while levels of circulating SARS-CoV-2 antibodies were determined by the Meso Scale serology assay. RESULTS We found a significant increase in SARS-CoV-2 spike-specific CD4+ and CD8+ T-cell responses following the third dose of a SARS-CoV-2 messenger RNA vaccine as well as enhanced CD8+ T-cell responses after the fourth dose. Furthermore, increased age was associated with a poorer response. Finally, we observed that SARS-CoV-2 infection boosts both the cellular and humoral immune response, relative to vaccine-induced immunity alone. CONCLUSIONS Our findings highlight the boosting effect on T-cell immunity of repeated vaccine administration. The combination of multiple vaccine doses and SARS-CoV-2 infections maintains population T-cell immunity, although with reduced levels in the elderly.
Collapse
Affiliation(s)
- Anna Karina Juhl
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Lisa Loksø Dietz
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg
| | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital
- Department of Clinical Research, University of Southern Denmark, Odense
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital–Amager and Hvidovre, Hvidovre
- Department of Clinical Medicine, University of Copenhagen, Copenhagen
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde
| | - Nina Breinholt Stærke
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Tomas Østergaard Jensen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Kasper Iversen
- Departments of Cardiology and Emergency Medicine, Herlev Hospital, Herlev
| | - Kamille Fogh
- Departments of Cardiology and Emergency Medicine, Herlev Hospital, Herlev
| | - Jacob Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital
- Department of Regional Health Research, University of Southern Denmark, Odense
| | | | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | | | | | | | | | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen
- Department of Infectious Diseases, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| |
Collapse
|
61
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
62
|
Muraoka D, Moi ML, Muto O, Nakatsukasa T, Deng S, Takashima C, Yamaguchi R, Sawada SI, Hayakawa H, Nguyen TTN, Haseda Y, Soga T, Matsushita H, Ikeda H, Akiyoshi K, Harada N. Low-frequency CD8 + T cells induced by SIGN-R1 + macrophage-targeted vaccine confer SARS-CoV-2 clearance in mice. NPJ Vaccines 2024; 9:173. [PMID: 39294173 PMCID: PMC11411095 DOI: 10.1038/s41541-024-00961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Vaccine-induced T cells and neutralizing antibodies are essential for protection against SARS-CoV-2. Previously, we demonstrated that an antigen delivery system, pullulan nanogel (PNG), delivers vaccine antigen to lymph node medullary macrophages and thereby enhances the induction of specific CD8+ T cells. In this study, we revealed that medullary macrophage-selective delivery by PNG depends on its binding to a C-type lectin SIGN-R1. In a K18-hACE2 mouse model of SARS-CoV-2 infection, vaccination with a PNG-encapsulated receptor-binding domain of spike protein decreased the viral load and prolonged the survival in the CD8+ T cell- and B cell-dependent manners. T cell receptor repertoire analysis revealed that although the vaccine induced T cells at various frequencies, low-frequency specific T cells mainly promoted virus clearance. Thus, the induction of specific CD8+ T cells that respond quickly to viral infection, even at low frequencies, is important for vaccine efficacy and can be achieved by SIGN-R1+ medullary macrophage-targeted antigen delivery.
Collapse
Affiliation(s)
- Daisuke Muraoka
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Osamu Muto
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Nakatsukasa
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Situo Deng
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin-Ichi Sawada
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Haruka Hayakawa
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | | | | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
63
|
Ali M, Longet S, Neale I, Rongkard P, Chowdhury FUH, Hill J, Brown A, Laidlaw S, Tipton T, Hoque A, Hassan N, Hackstein CP, Adele S, Akther HD, Abraham P, Paul S, Rahman MM, Alam MM, Parvin S, Mollah FH, Hoque MM, Moore SC, Biswas SK, Turtle L, de Silva TI, Ogbe A, Frater J, Barnes E, Tomic A, Carroll MW, Klenerman P, Kronsteiner B, Chowdhury FR, Dunachie SJ. Obesity differs from diabetes mellitus in antibody and T-cell responses post-COVID-19 recovery. Clin Exp Immunol 2024; 218:78-92. [PMID: 38642547 PMCID: PMC11404124 DOI: 10.1093/cei/uxae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVE Obesity and type 2 diabetes (DM) are risk factors for severe coronavirus disease 2019 (COVID-19) outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with overweight/obesity (Ov/Ob, BMI ≥ 23 kg/m2) and DM in Bangladesh. METHODS In this cross-sectional study, SARS-CoV-2-specific antibody and T-cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. RESULTS In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T-cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, Ov/Ob was associated with decreased neutralizing antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8 + T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T-cell responses after adjustment for obesity and other confounders. CONCLUSION Ov/Ob is associated with lower neutralizing antibody levels and higher T-cell responses to SARS-CoV-2 post-COVID-19 recovery, while antibody or T-cell responses remain unaltered in DM.
Collapse
Affiliation(s)
- Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Directorate General of Health Services, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Patpong Rongkard
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Jennifer Hill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stephen Laidlaw
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Tipton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ashraful Hoque
- Department of Transfusion Medicine, Sheikh Hasina National Burn & Plastics Surgery Institute, Dhaka, Bangladesh
| | - Nazia Hassan
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Shrebash Paul
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Matiur Rahman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Masum Alam
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shamima Parvin
- Department of Biochemistry and Molecular Biology, Mugda Medical College, Dhaka, Bangladesh
| | - Forhadul Hoque Mollah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Mozammel Hoque
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shona C Moore
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Subrata K Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Lance Turtle
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Miles W Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Fazle Rabbi Chowdhury
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
64
|
Tsagkli P, Geropeppa M, Papadatou I, Spoulou V. Hybrid Immunity against SARS-CoV-2 Variants: A Narrative Review of the Literature. Vaccines (Basel) 2024; 12:1051. [PMID: 39340081 PMCID: PMC11436074 DOI: 10.3390/vaccines12091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of SARS-CoV-2 led to a global health crisis and the burden of the disease continues to persist. The rapid development and emergency authorization of various vaccines, including mRNA-based vaccines, played a pivotal role in mitigating severe illness and mortality. However, rapid viral mutations, leading to several variants of concern, challenged vaccine effectiveness, particularly concerning immune evasion. Research on immunity, both from natural infection and vaccination, revealed that while neutralizing antibodies provide protection against infection, their effect is short-lived. The primary defense against severe COVID-19 is derived from the cellular immune response. Hybrid immunity, developed from a combination of natural infection and vaccination, offers enhanced protection, with convalescent vaccinated individuals showing significantly higher levels of neutralizing antibodies. As SARS-CoV-2 continues to evolve, understanding the durability and breadth of hybrid immunity becomes crucial. This narrative review examines the latest data on humoral and cellular immunity from both natural infection and vaccination, discussing how hybrid immunity could inform and optimize future vaccination strategies in the ongoing battle against COVID-19 and in fear of a new pandemic.
Collapse
Affiliation(s)
- Panagiota Tsagkli
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
65
|
Yao D, Patel RS, Lam A, Glover Q, Srinivasan C, Herchen A, Ritchie B, Agrawal B. Antibody Responses in SARS-CoV-2-Exposed and/or Vaccinated Individuals Target Conserved Epitopes from Multiple CoV-2 Antigens. Int J Mol Sci 2024; 25:9814. [PMID: 39337303 PMCID: PMC11432605 DOI: 10.3390/ijms25189814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
There is a need to investigate novel strategies in order to create an effective, broadly protective vaccine for current and future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks. The currently available vaccines demonstrate compromised efficacy against emerging SARS-CoV-2 variants of concern (VOCs), short-lived immunity, and susceptibility to immune imprinting due to frequent boosting practices. In this study, we examined the specificity of cross-reactive IgG antibody responses in mRNA-vaccinated, AstraZeneca-vaccinated, and unvaccinated donors to identify potentially conserved, cross-reactive epitopes to target in order to create a broadly protective SARS-CoV-2 vaccine. Our study provides evidence for cross-reactive IgG antibodies specific to eight different spike (S) variants. Furthermore, the specificities of these cross-variant IgG antibody titers were associated to some extent with spike S1- and S2-subunit-derived epitopes P1 and P2, respectively. In addition, nucleocapsid (N)- and membrane (M)-specific IgG antibody titers correlated with N- and M-derived epitopes conserved across beta-CoVs, P3-7. This study reveals conserved epitopes of viral antigens, targeted by natural and/or vaccine-induced human immunity, for future designs of next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- David Yao
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.Y.); (R.S.P.); (A.L.)
| | - Raj S. Patel
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.Y.); (R.S.P.); (A.L.)
| | - Adrien Lam
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.Y.); (R.S.P.); (A.L.)
| | - Quarshie Glover
- Department of Medicine, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (Q.G.); (C.S.); (A.H.); (B.R.)
| | - Cindy Srinivasan
- Department of Medicine, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (Q.G.); (C.S.); (A.H.); (B.R.)
| | - Alex Herchen
- Department of Medicine, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (Q.G.); (C.S.); (A.H.); (B.R.)
| | - Bruce Ritchie
- Department of Medicine, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (Q.G.); (C.S.); (A.H.); (B.R.)
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.Y.); (R.S.P.); (A.L.)
| |
Collapse
|
66
|
Komlodi-Pasztor E, Escarra-Senmarti M, Bazer DA, Bhatnagar A, Perez Heydrich CA, Messmer M, Ambinder RF, Gladstone DE, Clayton L, Goodrich A, Schoch L, Wagner-Johnston N, VandenBussche CJ, Huang P, Holdhoff M, Rosario M. The immune response to Covid-19 mRNA vaccination among Lymphoma patients receiving anti-CD20 treatment. Front Immunol 2024; 15:1433442. [PMID: 39295862 PMCID: PMC11408186 DOI: 10.3389/fimmu.2024.1433442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
The monoclonal antibody rituximab improves clinical outcome in the treatment of CD20-positive lymphomatous neoplasms, and it is an established drug for treatment of these cancers. Successful mRNA COVID-19 (SARS-CoV-2) vaccination is extremely important for lymphoma patients because they tend to be elderly with comorbidities which leaves them at increased risk of poor outcomes once infected by Coronavirus. Anti-CD20 therapies such as rituximab, deplete B-cell populations and can affect vaccine efficacy. Therefore, a knowledge of the effect of COVID-19 vaccination in this group is critical. We followed a cohort of 28 patients with CD20-positive lymphomatous malignancies treated with rituximab that started prior to their course of COVID-19 vaccination, including boosters. We assayed for vaccine "take" in the humoral (IgG and IgA) and cellular compartment. Here, we show that short-term and long-term development of IgG and IgA antibodies directed toward COVID-19 spike protein are reduced in these patients compared to healthy controls. Conversely, the robustness and breath of underlying T-cell response is equal to healthy controls. This response is not limited to specific parts of the spike protein but spans the spike region, including response to the conserved Receptor Binding Domain (RBD). Our data informs on rational vaccine design and bodes well for future vaccination strategies that require strong induction of T-cell responses in these patients.
Collapse
Affiliation(s)
- Edina Komlodi-Pasztor
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Marta Escarra-Senmarti
- Department of Pathology, Division of Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Danielle A Bazer
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aastha Bhatnagar
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Carlos A Perez Heydrich
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marcus Messmer
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Richard F Ambinder
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas E Gladstone
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Northwell Health Cancer Institute, New Hyde Park, NY, United States
| | - Laura Clayton
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Goodrich
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laura Schoch
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nina Wagner-Johnston
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher J VandenBussche
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Division of Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peng Huang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maximillian Rosario
- Department of Pathology, Division of Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
67
|
Hajnik RL, Plante JA, Reddy Bonam S, Rafael GH, Liang Y, Hazell NC, Walker J, Reyna RA, Walker DH, Alameh MG, Weissman D, Weaver SC, Plante KS, Hu H. Broad protection and respiratory immunity of dual mRNA vaccination against SARS-CoV-2 variants. NPJ Vaccines 2024; 9:160. [PMID: 39232020 PMCID: PMC11374988 DOI: 10.1038/s41541-024-00957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
While first-generation, spike (S)-based COVID-19 vaccines were effective against early SARS-CoV-2 strains, the rapid evolution of novel Omicron subvariants have substantially reduced vaccine efficacy. As such, broadly protective vaccines against SARS-CoV-2 are needed to prevent future viral emergence. In addition, it remains less clear whether peripheral immunization, especially with mRNA vaccines, elicits effective respiratory immunity. Our group has developed a nucleoside-modified mRNA vaccine expressing the nucleocapsid (N) protein of the ancestral SARS-CoV-2 virus and has tested its use in combination with the S-based mRNA vaccine (mRNA-S). In this study, we examined efficacy of mRNA-N alone or in combination with mRNA-S (mRNA-S+N) against more immune evasive Omicron variants in hamsters. Our data show that mRNA-N alone induces a modest but significant protection against BA.5 and that dual mRNA-S+N vaccination confers complete protection against both BA.5 and BQ.1, preventing detection of virus in the hamster lungs. Analysis of respiratory immune response in mice shows that intramuscular mRNA-S+N immunization effectively induces respiratory S- and N-specific T cell responses in the lungs and in bronchoalveolar lavage (BAL), as well as antigen-specific binding IgG in BAL. Together, our data further support mRNA-S+N as a potential pan-COVID-19 vaccine for broad protection against current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Renee L Hajnik
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Grace H Rafael
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicholas C Hazell
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordyn Walker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rachel A Reyna
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
68
|
Wagstaffe HR, Thwaites RS, Reynaldi A, Sidhu JK, McKendry R, Ascough S, Papargyris L, Collins AM, Xu J, Lemm NM, Siggins MK, Chain BM, Killingley B, Kalinova M, Mann A, Catchpole A, Davenport MP, Openshaw PJM, Chiu C. Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults. Sci Immunol 2024; 9:eadj9285. [PMID: 38335268 DOI: 10.1126/sciimmunol.adj9285] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Human infection challenge permits in-depth, early, and pre-symptomatic characterization of the immune response, enabling the identification of factors that are important for viral clearance. Here, we performed intranasal inoculation of 34 young adult, seronegative volunteers with a pre-Alpha severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Of these participants, 18 (53%) became infected and showed an interferon-dominated mediator response with divergent kinetics between nasal and systemic sites. Peripheral CD4+ and CD8+ T cell activation and proliferation were early and robust but showed distinct kinetic and phenotypic profiles; antigen-specific T cells were largely CD38+Ki67+ and displayed central and effector memory phenotypes. Both mucosal and systemic antibodies became detectable around day 10, but nasal antibodies plateaued after day 14 while circulating antibodies continued to rise. Intensively granular measurements in nasal mucosa and blood allowed modeling of immune responses to primary SARS-CoV-2 infection that revealed CD8+ T cell responses and early mucosal IgA responses strongly associated with viral control, indicating that these mechanisms should be targeted for transmission-reducing intervention.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Jasmin K Sidhu
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Richard McKendry
- Department of Infectious Disease, Imperial College London, London, UK
| | - Stephanie Ascough
- Department of Infectious Disease, Imperial College London, London, UK
| | - Loukas Papargyris
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ashley M Collins
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jiayun Xu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nana-Marie Lemm
- Department of Infectious Disease, Imperial College London, London, UK
| | - Matthew K Siggins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Benny M Chain
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Ben Killingley
- Department of Infectious Diseases, University College London Hospital, London, UK
| | | | | | | | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | | | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
69
|
Guo ZY, Tang YQ, Zhang ZB, Liu J, Zhuang YX, Li T. COVID-19: from immune response to clinical intervention. PRECISION CLINICAL MEDICINE 2024; 7:pbae015. [PMID: 39139990 PMCID: PMC11319938 DOI: 10.1093/pcmedi/pbae015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.
Collapse
Affiliation(s)
- Zheng-yang Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan-qing Tang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zi-bo Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yu-xin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
70
|
Meng L, Pan Y, Liu Y, He R, Sun Y, Wang C, Fei L, Zhu A, Wang Z, An Y, Wu Y, Diao B, Chen Y. Individuals carrying the HLA-B*15 allele exhibit favorable responses to COVID-19 vaccines but are more susceptible to Omicron BA.5.2 and XBB.1.16 infection. Front Immunol 2024; 15:1440819. [PMID: 39257586 PMCID: PMC11383769 DOI: 10.3389/fimmu.2024.1440819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Background Natural infection or vaccination have provided robust immune defense against SARS-CoV-2 invasion, nevertheless, Omicron variants still successfully cause breakthrough infection, and the underlying mechanisms are poorly understood. Methods Sequential blood samples were continuously collected at different time points from 252 volunteers who were received the CanSino Ad5-nCoV (n= 183) vaccine or the Sinovac CoronaVac inactivated vaccine (n= 69). The anti-SARS-CoV-2 prototype and Omicron BA.5.2 as well as XBB.1.16 variant neutralizing antibodies (Nab) in sera were detected by ELISA. Sera were also used to measure pseudo and live virus neutralization assay. The associations between the anti-prototype Nab levels and different HLA-ABC alleles were analyzed using artificial intelligence (AI)-deep learning techniques. The frequency of B cells in PBMCs was investigated by flow cytometry assay (FACs). Results Individuals carrying the HLA-B*15 allele manifested the highest concentrations of anti-SARS-CoV-2 prototype Nab after vax administration. Unfortunately, these volunteers are more susceptible to Omicron BA.5.2 breakthrough infection due to their sera have poorer anti-BA.5.2 Nab and lower levels of viral neutralization efficacy. FACs confirmed that a significant decrease in CD19+CD27+RBD+ memory B cells in these HLA-B*15 population compared to other cohorts. Importantly, generating lower concentrations of cross-reactive anti-XBB.1.16 Nab post-BA.5.2 infection caused HLA-B*15 individuals to be further infected by XBB.1.16 variant. Conclusions Individuals carrying the HLA-B*15 allele respond better to COVID-19 vax including the CanSino Ad5-nCoV and the Sinovac CoronaVac inactivated vaccines, but are more susceptible to Omicron variant infection, thus, a novel vaccine against this population is necessary for COVID-19 pandemic control in the future.
Collapse
Affiliation(s)
- Lingxin Meng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yue Pan
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yueping Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Rui He
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yuting Sun
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Chenhui Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunfei An
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
71
|
Sánchez-Menéndez C, de la Calle-Jiménez O, Mateos E, Vigón L, Fuertes D, Murciano Antón MA, San José E, García-Gutiérrez V, Cervero M, Torres M, Coiras M. Different polarization and functionality of CD4+ T helper subsets in people with post-COVID condition. Front Immunol 2024; 15:1431411. [PMID: 39257580 PMCID: PMC11385313 DOI: 10.3389/fimmu.2024.1431411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis. Methods People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC. Results People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration. Discussion People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.
Collapse
Affiliation(s)
- Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olivia de la Calle-Jiménez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Internal Medicine Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- AIDS Immunopathology, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Aranzazu Murciano Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esther San José
- Immunomodulation Unit, Department of Health Sciences, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Cervero
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
72
|
Benhamouda N, Besbes A, Bauer R, Mabrouk N, Gadouas G, Desaint C, Chevrier L, Lefebvre M, Radenne A, Roelens M, Parfait B, Weiskopf D, Sette A, Gruel N, Courbebaisse M, Appay V, Paul S, Gorochov G, Ropers J, Lebbah S, Lelievre JD, Johannes L, Ulmer J, Lebeaux D, Friedlander G, De Lamballerie X, Ravel P, Kieny MP, Batteux F, Durier C, Launay O, Tartour E. Cytokine profile of anti-spike CD4 +T cells predicts humoral and CD8 +T cell responses after anti-SARS-CoV-2 mRNA vaccination. iScience 2024; 27:110441. [PMID: 39104410 PMCID: PMC11298648 DOI: 10.1016/j.isci.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Coordinating immune responses - humoral and cellular - is vital for protection against severe Covid-19. Our study evaluates a multicytokine CD4+T cell signature's predictive for post-vaccinal serological and CD8+T cell responses. A cytokine signature composed of four cytokines (IL-2, TNF-α, IP10, IL-9) excluding IFN-γ, and generated through machine learning, effectively predicted the CD8+T cell response following mRNA-1273 or BNT162b2 vaccine administration. Its applicability extends to murine vaccination models, encompassing diverse immunization routes (such as intranasal) and vaccine platforms (including adjuvanted proteins). Notably, we found correlation between CD4+T lymphocyte-produced IL-21 and the humoral response. Consequently, we propose a test that offers a rapid overview of integrated immune responses. This approach holds particular relevance for scenarios involving immunocompromised patients because they often have low cell counts (lymphopenia) or pandemics. This study also underscores the pivotal role of CD4+T cells during a vaccine response and highlights their value in vaccine immunomonitoring.
Collapse
Affiliation(s)
- Nadine Benhamouda
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Anissa Besbes
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | | | - Nesrine Mabrouk
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Gauthier Gadouas
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Corinne Desaint
- INSERM SC10-US019, Villejuif, France
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Lucie Chevrier
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | - Maeva Lefebvre
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes, Nantes, France
| | - Anne Radenne
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière-Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, APHP, Paris, France
| | - Marie Roelens
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Béatrice Parfait
- Centre de ressources Biologiques, Hôpital Cochin, APHP, Paris, France
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, School of Medicine in Health Sciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, Centre de Recherche, Institut Curie, Université PSL, Paris, France
- Department of Translational Research, Centre de Recherche, Institut Curie, Université PSL, Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital Européen Georges-Pompidou, APHP, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team GIMAP, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, CIC 1408 INSERM Vaccinology, Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Ropers
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Said Lebbah
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Jean-Daniel Lelievre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Groupe Henri-Mondor Albert-Chenevier, APHP, Créteil, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - Jonathan Ulmer
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - David Lebeaux
- Université Paris Cité, Service de maladies infectieuses Hôpital Saint Louis/Lariboisère APHP, INSERM, Paris, France
| | - Gerard Friedlander
- Department of « Croissance et Signalisation », Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Université de Paris Cité, Paris, France
| | - Xavier De Lamballerie
- Unité des Virus Émergents, UVE: Aix-Marseille Université, IRD 190, INSERM 1207 Marseille, France
| | - Patrice Ravel
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Marie Paule Kieny
- Institut National de la Santé et de la Recherche Médicale, INSERM, Paris, France
| | - Fréderic Batteux
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | | | - Odile Launay
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Eric Tartour
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| |
Collapse
|
73
|
Cuperlovic-Culf M, Bennett SA, Galipeau Y, McCluskie PS, Arnold C, Bagheri S, Cooper CL, Langlois MA, Fritz JH, Piccirillo CA, Crawley AM. Multivariate analyses and machine learning link sex and age with antibody responses to SARS-CoV-2 and vaccination. iScience 2024; 27:110484. [PMID: 39156648 PMCID: PMC11328020 DOI: 10.1016/j.isci.2024.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Prevention of negative COVID-19 infection outcomes is associated with the quality of antibody responses, whose variance by age and sex is poorly understood. Network approaches identified sex and age effects in antibody responses and neutralization potential of de novo infection and vaccination throughout the COVID-19 pandemic. Neutralization values followed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific receptor binding immunoglobulin G (RIgG), spike immunoglobulin G (SIgG) and spike and receptor immunoglobulin G (S, and RIgA) levels based on COVID-19 status. Serum immunoglobulin A (IgA) antibody titers correlated with neutralization only in females 40-60 years old (y.o.). Network analysis found males could improve IgA responses after vaccination dose 2. Complex correlation analyses found vaccination induced less antibody isotype switching and neutralization in older persons, especially in females. Sex-dependent antibody and neutralization decayed the fastest in older males. Shown sex and age characterization can direct studies integrating cell-mediated responses to define yet elusive correlates of protection and inform age and sex precision-focused vaccine design.
Collapse
Affiliation(s)
- Miroslava Cuperlovic-Culf
- Digital Technologies Research Centre, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Steffany A.L. Bennett
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Salman Bagheri
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Curtis L. Cooper
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jörg H. Fritz
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
74
|
Zhou H, Leng P, Wang Y, Yang K, Li C, Ojcius DM, Wang P, Jiang S. Development of T cell antigen-based human coronavirus vaccines against nAb-escaping SARS-CoV-2 variants. Sci Bull (Beijing) 2024; 69:2456-2470. [PMID: 38942698 DOI: 10.1016/j.scib.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 06/30/2024]
Abstract
Currently approved vaccines have been successful in preventing the severity of COVID-19 and hospitalization. These vaccines primarily induce humoral immune responses; however, highly transmissible and mutated variants, such as the Omicron variant, weaken the neutralization potential of the vaccines, thus, raising serious concerns about their efficacy. Additionally, while neutralizing antibodies (nAbs) tend to wane more rapidly than cell-mediated immunity, long-lasting T cells typically prevent severe viral illness by directly killing infected cells or aiding other immune cells. Importantly, T cells are more cross-reactive than antibodies, thus, highly mutated variants are less likely to escape lasting broadly cross-reactive T cell immunity. Therefore, T cell antigen-based human coronavirus (HCoV) vaccines with the potential to serve as a supplementary weapon to combat emerging SARS-CoV-2 variants with resistance to nAbs are urgently needed. Alternatively, T cell antigens could also be included in B cell antigen-based vaccines to strengthen vaccine efficacy. This review summarizes recent advancements in research and development of vaccines containing T cell antigens or both T and B cell antigens derived from proteins of SARS-CoV-2 variants and/or other HCoVs based on different vaccine platforms.
Collapse
Affiliation(s)
- Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94115, USA
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Ministry of Health/Chinese Academy of Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
75
|
Khalid K, Lim HX, Hwang JS, Poh CL. The Development of Epitope-Based Recombinant Protein Vaccines against SARS-CoV-2. AAPS J 2024; 26:93. [PMID: 39138686 DOI: 10.1208/s12248-024-00963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
The COVID-19 pandemic continues to cause infections and deaths, which are attributable to the SARS-CoV-2 Omicron variant of concern (VOC). Moderna's response to the declining protective efficacies of current SARS-CoV-2 vaccines against Omicron was to develop a bivalent booster vaccine based on the Spike (S) protein from the Wuhan and Omicron BA.4/BA.5 strains. This approach, while commendable, is unfeasible in light of rapidly emerging mutated viral strains. PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2024. Articles included focused on specific themes such as the clinical history of recombinant protein vaccine development against different diseases, including COVID-19, the production of recombinant protein vaccines using different host expression systems, aspects to consider in recombinant protein vaccine development, and overcoming problems associated with large-scale recombinant protein vaccine production. In silico approaches to identify conserved and immunogenic epitopes could provide broad protection against SARS-CoV-2 VOCs but require validation in animal models. The recombinant protein vaccine development platform has shown a successful history in clinical development. Recombinant protein vaccines incorporating conserved epitopes may utilize a number of expression systems, such as yeast (Saccharomyces cerevisiae), baculovirus-insect cells (Sf9 cells), and Escherichia coli (E. coli). Current multi-epitope subunit vaccines against SARS-CoV-2 utilizing synthetic peptides are unfeasible for large-scale immunizations. Recombinant protein vaccines based on conserved and immunogenic proteins produced using E. coli offer high production yields, convenient purification, and cost-effective production of large-scale vaccine quantities capable of protecting against the SARS-CoV-2 D614G strain and its VOCs.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Hui Xuan Lim
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Chit Laa Poh
- ALPS Global Holding Berhad, 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia.
| |
Collapse
|
76
|
Deng S, Xu Z, Wang M, Hu J, Liu Z, Zhu F, Zheng P, Kombe Kombe AJ, Zhang H, Wu S, Jin T. Structural insights into immune escape at killer T cell epitope by SARS-CoV-2 Spike Y453F variants. J Biol Chem 2024; 300:107563. [PMID: 39002680 PMCID: PMC11342781 DOI: 10.1016/j.jbc.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
CD8+ T cell immunity, mediated by human leukocyte antigen (HLA) and T cell receptor (TCR), plays a critical role in conferring immune memory and protection against viral pathogens. The emergence of SARS-CoV-2 variants poses a serious challenge to the efficacy of current vaccines. Whereas numerous SARS-CoV-2 mutations associated with immune escape from CD8+ T cells have been documented, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored. Here, we studied an HLA-A24-restricted NYN epitope (Spike448-456) that elicits broad CD8+ T cell responses in COVID-19 patients characterized by a common TCR repertoire. Four natural mutations, N450K, L452Q, L452R, and Y453F, arose within the NYN epitope and have been transmitted in certain viral lineages. Our findings indicate that these mutations have minimal impact on the epitope's presentation by cell surface HLA, yet they diminish the affinities of their respective peptide-HLA complexes (pHLAs) for NYN peptide-specific TCRs, particularly L452R and Y453F. Furthermore, we determined the crystal structure of HLA-A24 loaded with the Y453F peptide (NYNYLFRLF), and subsequently a ternary structure of the public TCRNYN-I complexed to the original NYN-HLA-A24 (NYNYLYRLF). Our structural analysis unveiled that despite competent presentation by HLA, the mutant Y453F peptide failed to establish a stable TCR-pHLA ternary complex due to reduced peptide: TCR contacts. This study supports the idea that cellular immunity restriction is an important driving force behind viral evolution.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- SARS-CoV-2/immunology
- Immune Evasion
- CD8-Positive T-Lymphocytes/immunology
- COVID-19/immunology
- COVID-19/virology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/chemistry
- Mutation
- Crystallography, X-Ray
Collapse
Affiliation(s)
- Shasha Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Zhihao Xu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meihua Wang
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Hu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Songquan Wu
- College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, P.R. China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine, Lishui University, Lishui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
77
|
Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon 2024; 10:e34577. [PMID: 39149061 PMCID: PMC11325674 DOI: 10.1016/j.heliyon.2024.e34577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
SARS-CoV-2 infection can trigger cytokine storm in some patients, which characterized by an excessive production of cytokines and chemical mediators. This hyperactive immune response may cause significant tissue damage and multiple organ failure (MOF). The severity of COVID-19 correlates with the intensity of cytokine storm, involving elements such as IFN, NF-κB, IL-6, HMGB1, etc. It is imperative to rapidly engage adaptive immunity to effectively control the disease progression. CD4+ T cells facilitate an immune response by improving B cells in the production of neutralizing antibodies and activating CD8+ T cells, which are instrumental in eradicating virus-infected cells. Meanwhile, antibodies from B cells can neutralize virus, obstructing further infection of host cells. In individuals who have recovered from the disease, virus-specific antibodies and memory T cells were observed, which could confer a level of protection, reducing the likelihood of re-infection or attenuating severity. This paper discussed the roles of macrophages, IFN, IL-6 and HMGB1 in cytokine release syndrome (CRS), the intricacies of adaptive immunity, and the persistence of immune memory, all of which are critical for the prevention and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Junguo Zhang
- Pulmonology Department, Fengdu General Hospital, Chongqing, 408200, China
| |
Collapse
|
78
|
Vanamudhu A, Devi Arumugam R, Nancy A, Selvaraj N, Moiden K, Hissar S, Ranganathan UD, Bethunaickan R, Babu S, Kumar NP. Elucidating the Immune Response to SARS-CoV-2: Natural Infection versus Covaxin/Covishield Vaccination in a South Indian Population. Viruses 2024; 16:1178. [PMID: 39205152 PMCID: PMC11360806 DOI: 10.3390/v16081178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
A natural infection or a vaccination can initially prime the immune system to form immunological memory. The immunity engendered by vaccination against COVID-19 versus natural infection with SARS-CoV-2 has not been well studied in the Indian population. In this study, we compared the immunity conferred by COVID-19 vaccines to naturally acquired immunity to SARS-CoV-2 in a South Indian population. We examined binding and neutralizing antibody (NAb) levels against the ancestral and variant lineages and assessed the ex vivo cellular parameters of memory T cells, memory B cells, and monocytes and finally measured the circulating cytokine response. COVID-19 vaccination stimulates heightened levels of IgG antibodies against the original strain of SARS-CoV-2, as well as increased binding to the spike protein and neutralizing antibody levels. This enhanced response extends to variant lineages such as B.1.617.2 (Delta, India), B.1.1.529 (Omicron, India), B.1.351 (Beta, South Africa), and B.1.1.7 (Alpha, UK). COVID-19 vaccination differs from SARS-CoV-2 infection by having increased frequencies of classical memory B cells, activated memory B and plasma cells, CD4/CD8 T cells of effector memory, effector cells, stem cell-like memory T cells, and classical and intermediate monocytes and diminished frequencies of CD4/CD8 T cells of central memory and non-classical monocytes in vaccinated individuals in comparison to those with natural infection. Thus, COVID-19 vaccination is characterized by enhanced humoral responses and robust activation of innate and memory T cell responses in comparison to natural infection in a South Indian population.
Collapse
Affiliation(s)
- Agalya Vanamudhu
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Renuka Devi Arumugam
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Arul Nancy
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai 600031, India
| | - Nandhini Selvaraj
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai 600031, India
| | - Kadar Moiden
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai 600031, India
| | - Syed Hissar
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Ramalingam Bethunaickan
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Subash Babu
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai 600031, India
| | - Nathella Pavan Kumar
- Department of Immunology, ICMR, National Institute for Research in Tuberculosis, Chennai 600031, India
| |
Collapse
|
79
|
Valiate BVS, Castro JTD, Marçal TG, Andrade LAF, Oliveira LID, Maia GBF, Faustino LP, Hojo-Souza NS, Reis MAAD, Bagno FF, Salazar N, Teixeira SR, Almeida GG, Gazzinelli RT. Evaluation of an RBD-nucleocapsid fusion protein as a booster candidate for COVID-19 vaccine. iScience 2024; 27:110177. [PMID: 38993669 PMCID: PMC11238127 DOI: 10.1016/j.isci.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Despite successful vaccines and updates, constant mutations of SARS-CoV-2 makes necessary the search for new vaccines. We generated a chimeric protein that comprises the receptor-binding domain from spike and the nucleocapsid antigens (SpiN) from SARS-CoV-2. Once SpiN elicits a protective immune response in rodents, here we show that convalescent and previously vaccinated individuals respond to SpiN. CD4+ and CD8+ T cells from these individuals produced greater amounts of IFN-γ when stimulated with SpiN, compared to SARS-CoV-2 antigens. Also, B cells from these individuals were able to secrete antibodies that recognize SpiN. When administered as a boost dose in mice previously immunized with CoronaVac, ChAdOx1-S or BNT162b2, SpiN was able to induce a greater or equivalent immune response to homologous prime/boost. Our data reveal the ability of SpiN to induce cellular and humoral responses in vaccinated human donors, rendering it a promising candidate.
Collapse
Affiliation(s)
- Bruno Vinicius Santos Valiate
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Julia Teixeira de Castro
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | | | - Luis Adan Flores Andrade
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Livia Isabela de Oliveira
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte 31.630-901, MG, Brazil
| | | | | | - Natalia S Hojo-Souza
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | | | - Flávia Fonseca Bagno
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Natalia Salazar
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Santuza R Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Gregório Guilherme Almeida
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| |
Collapse
|
80
|
Di Domenico M, Serretiello E, Smimmo A, Vieira e Silva FF, Raimondi SA, Pascariello C, Marino MM, Lo Muzio L, Caponio VCA, Cantore S, Ballini A. Monitoring of Immune Memory by Phenotypical Lymphocyte Subsets Identikit: An Observational Study in a Blood Donors' Cohort. J Pers Med 2024; 14:733. [PMID: 39063987 PMCID: PMC11277854 DOI: 10.3390/jpm14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The cross-talk between the innate and adaptive immune response represents the first defense weapon against the threat of pathogens. Substantial evidence has shown a relationship between immune phenotype lymphocytes and COVID-19 disease severity and/or implication in susceptibility to SARS-CoV-2 infection. Recently, belonging to ABO blood groups has been investigated as a correlation factor to COVID-19 disease. This pilot study investigated lymphocyte typing in a cohort of blood donors to understand the underlying mechanism in SARS-CoV-2 infection linked to the blood group. The study cohort consisted of 20-64-year-old subjects, without comorbidities, from both sexes, who were COVID-19 vaccinated with previous or no infection history. Whole blood samples, collected at A.O.R.N. Sant'Anna and San Sebastiano Hospital (Campania Region), were processed by multiparametric cytofluorimetric assay, to characterize CD4+ helper and CD8+ cytotoxic T cell CD3+ subpopulations. The CD45RA, CCR7, CD27, CD28, CD57 and PD-1 markers were investigated to delineate the peripheral T-cell maturation stages. Differences were detected in ABO blood types in CD3+, CD4+ gated on CD3+, CD8+ and CD8+ gated on CD3+ percentage. These results contribute to identifying a memory cell "identikit" profile in COVID-19 disease, thus leading to a useful tool in precision medicine.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Enrica Serretiello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy
| | - Annafrancesca Smimmo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Fábio França Vieira e Silva
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Sonia Anna Raimondi
- Azienda Ospedaliera “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy; (S.A.R.); (C.P.)
| | - Caterina Pascariello
- Azienda Ospedaliera “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy; (S.A.R.); (C.P.)
| | - Maria Michela Marino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (V.C.A.C.)
| | - Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (V.C.A.C.)
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (V.C.A.C.)
| |
Collapse
|
81
|
Basu K, Karmakar S, Dasgupta S, Sengupta M. The curious case of T-cell mediated renal allograft rejection after Covid-19 infection. INDIAN J PATHOL MICR 2024; 67:634-637. [PMID: 38391352 DOI: 10.4103/ijpm.ijpm_584_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/18/2022] [Indexed: 02/24/2024] Open
Abstract
ABSTRACT Our case illustrates the possible explanation of renal allograft rejection in a patient who had recovered from Covid-19 infection in the post-transplant period, which ultimately led to the death of the patient. A 27-year-old male patient received renal allograft from his mother, with an uneventful post-transplant period. Three years after the transplantation he contracted Covid-19 infection. The patient recovered from Covid-19 infection after being treated according to the treatment protocol. Subsequently, in the next 2 weeks, he presented with heavy proteinuria and a rise in serum creatinine level. Renal biopsy examination showed features of acute T-cell mediated rejection (TCMR) without any evidence of antibody-mediated rejection. He was given all due care but he deteriorated quickly leading to his death. This case highlights the inter-relation between Covid-19 infection and acute TCMR of the renal allograft, where renal biopsy serves as an indispensable tool in understanding its pathophysiology.
Collapse
Affiliation(s)
- Keya Basu
- Department of Pathology, Institute of Postgraduate Medical Education and Research, Health University, SSKM Hospital, Kolkata, West Bengal, India
| | - Subhrajyoti Karmakar
- Department of Nephropathology, Institute of Postgraduate Medical Education and Research, Health University, SSKM Hospital, Kolkata, West Bengal, India
| | - Sougata Dasgupta
- Department of Nephrology, Institute of Postgraduate Medical Education and Research, Health University, SSKM Hospital, Kolkata, West Bengal, India
| | - Moumita Sengupta
- Department of Pathology, Institute of Postgraduate Medical Education and Research, Health University, SSKM Hospital, Kolkata, West Bengal, India
| |
Collapse
|
82
|
Richards KA, Changrob S, Thomas PG, Wilson PC, Sant AJ. Lack of memory recall in human CD4 T cells elicited by the first encounter with SARS-CoV-2. iScience 2024; 27:109992. [PMID: 38868209 PMCID: PMC11166706 DOI: 10.1016/j.isci.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The studies reported here focus on the impact of pre-existing CD4 T cell immunity on the first encounter with SARS-CoV-2. They leverage PBMC samples from plasma donors collected after a first SARS-CoV-2 infection, prior to vaccine availability and compared to samples collected prior to the emergence of SARS-CoV-2. Analysis of CD4 T cell specificity across the entire SARS-CoV-2 proteome revealed that the recognition of SARS-CoV-2-derived epitopes by CD4 memory cells prior to the pandemic are enriched for reactivity toward non-structural proteins conserved across endemic CoV strains. However, CD4 T cells after primary infection with SARS-CoV-2 focus on epitopes from structural proteins. We observed little evidence for preferential recall to epitopes conserved between SARS-CoV-2 and seasonal CoV, a finding confirmed through use of selectively curated conserved and SARS-unique peptides. Our data suggest that SARS-CoV-2 CD4 T cells elicited by the first infection are primarily established from the naive CD4 T cell pool.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
83
|
Tarke A, Ramezani-Rad P, Alves Pereira Neto T, Lee Y, Silva-Moraes V, Goodwin B, Bloom N, Siddiqui L, Avalos L, Frazier A, Zhang Z, da Silva Antunes R, Dan J, Crotty S, Grifoni A, Sette A. SARS-CoV-2 breakthrough infections enhance T cell response magnitude, breadth, and epitope repertoire. Cell Rep Med 2024; 5:101583. [PMID: 38781962 PMCID: PMC11228552 DOI: 10.1016/j.xcrm.2024.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS2) vaccine breakthrough infections (BTIs) on the magnitude and breadth of the T cell repertoire after exposure to different variants. We studied samples from individuals who experienced symptomatic BTIs during Delta or Omicron waves. In the pre-BTI samples, 30% of the donors exhibited substantial immune memory against non-S (spike) SARS2 antigens, consistent with previous undiagnosed asymptomatic SARS2 infections. Following symptomatic BTI, we observed (1) enhanced S-specific CD4 and CD8 T cell responses in donors without previous asymptomatic infection, (2) expansion of CD4 and CD8 T cell responses to non-S targets (M, N, and nsps) independent of SARS2 variant, and (3) generation of novel epitopes recognizing variant-specific mutations. These variant-specific T cell responses accounted for 9%-15% of the total epitope repertoire. Overall, BTIs boost vaccine-induced immune responses by increasing the magnitude and by broadening the repertoire of T cell antigens and epitopes recognized.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Parham Ramezani-Rad
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | | | - Yeji Lee
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Vanessa Silva-Moraes
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Benjamin Goodwin
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Nathaniel Bloom
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Leila Siddiqui
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Liliana Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Zeli Zhang
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | | | - Jennifer Dan
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
84
|
Wang X, Zhang J, Liu M, Guo Y, Guo P, Yang X, Shang B, Li M, Tian J, Zhang T, Wang X, Jin R, Zhou J, Gao GF, Liu J. Nonconserved epitopes dominate reverse preexisting T cell immunity in COVID-19 convalescents. Signal Transduct Target Ther 2024; 9:160. [PMID: 38866784 PMCID: PMC11169541 DOI: 10.1038/s41392-024-01876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The herd immunity against SARS-CoV-2 is continuously consolidated across the world during the ongoing pandemic. However, the potential function of the nonconserved epitopes in the reverse preexisting cross-reactivity induced by SARS-CoV-2 to other human coronaviruses is not well explored. In our research, we assessed T cell responses to both conserved and nonconserved peptides shared by SARS-CoV-2 and SARS-CoV, identifying cross-reactive CD8+ T cell epitopes using enzyme-linked immunospot and intracellular cytokine staining assays. Then, in vitro refolding and circular dichroism were performed to evaluate the thermal stability of the HLA/peptide complexes. Lastly, single-cell T cell receptor reservoir was analyzed based on tetramer staining. Here, we discovered that cross-reactive T cells targeting SARS-CoV were present in individuals who had recovered from COVID-19, and identified SARS-CoV-2 CD8+ T cell epitopes spanning the major structural antigens. T cell responses induced by the nonconserved peptides between SARS-CoV-2 and SARS-CoV were higher and played a dominant role in the cross-reactivity in COVID-19 convalescents. Cross-T cell reactivity was also observed within the identified series of CD8+ T cell epitopes. For representative immunodominant peptide pairs, although the HLA binding capacities for peptides from SARS-CoV-2 and SARS-CoV were similar, the TCR repertoires recognizing these peptides were distinct. Our results could provide beneficial information for the development of peptide-based universal vaccines against coronaviruses.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Jie Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China
| | - Maoshun Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanyuan Guo
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Peipei Guo
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Xiaonan Yang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Bingli Shang
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Min Li
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ting Zhang
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China
| | - Jikun Zhou
- Shijiazhuang Fifth Hospital, Shijiazhuang, 050011, China.
| | - George F Gao
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jun Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
85
|
Hanssen DAT, Arts K, Nix WHV, Sweelssen NNB, Welbers TTJ, de Theije C, Wieten L, Pagen DME, Brinkhues S, Penders J, Dukers-Muijrers NHTM, Hoebe CJPA, Savelkoul PHM, van Loo IHM. SARS-CoV-2 cellular and humoral responses in vaccine-naive individuals during the first two waves of COVID-19 infections in the southern region of The Netherlands: a cross-sectional population-based study. Microbiol Spectr 2024; 12:e0012624. [PMID: 38686954 PMCID: PMC11237656 DOI: 10.1128/spectrum.00126-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
With the emergence of highly transmissible variants of concern, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a global threat of coronavirus disease 2019 (COVID-19) resurgence. Cellular responses to novel variants are more robustly maintained than humoral responses, and therefore, cellular responses are of interest in assessing immune protection against severe disease in the population. We aimed to assess cellular responses to SARS-CoV-2 at the population level. IFNγ (interferon γ) responses to wild-type SARS-CoV-2 were analyzed using an ELISpot assay in vaccine-naive individuals with different humoral responses: Ig (IgM and/or IgG) seronegative (n = 90) and seropositive (n = 181) with low (<300 U/mL) or high (≥300 U/mL) humoral responses to the spike receptor binding domain (anti-S-RBD). Among the seropositive participants, 71.3% (129/181) were IFNγ ELISpot positive, compared to 15.6% (14/90) among the seronegative participants. Common COVID-19 symptoms such as fever and ageusia were associated with IFNγ ELISpot positivity in seropositive participants, whereas no participant characteristics were associated with IFNγ ELISpot positivity in seronegative participants. Fever and/or dyspnea and anti-S-RBD levels were associated with higher IFNγ responses. Symptoms of more severe disease and higher anti-S-RBD responses were associated with higher IFNγ responses. A significant proportion (15.6%) of seronegative participants had a positive IFNγ ELISpot. Assessment of cellular responses may improve estimates of the immune response to SARS-CoV-2 in the general population. IMPORTANCE Data on adaptive cellular immunity are of interest to define immune protection against severe acute respiratory syndrome coronavirus 2 in a population, which is important for decision-making on booster-vaccination strategies. This study provides data on associations between participant characteristics and cellular immune responses in vaccine-naive individuals with different humoral responses.
Collapse
Affiliation(s)
- D. A. T. Hanssen
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - K. Arts
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
| | - W. H. V. Nix
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
| | - N. N. B. Sweelssen
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
| | - T. T. J. Welbers
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
| | - C. de Theije
- BioBank Maastricht UMC+, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L. Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. M. E. Pagen
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Living Lab Public Health, Public Health Service (GGD) South Limburg, Heerlen, The Netherlands
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands
| | - S. Brinkhues
- Department of Knowledge and Innovation, Public Health Service (GGD) South Limburg, Heerlen, The Netherlands
| | - J. Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - N. H. T. M. Dukers-Muijrers
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Living Lab Public Health, Public Health Service (GGD) South Limburg, Heerlen, The Netherlands
- Department of Health Promotion, Maastricht University, Maastricht, The Netherlands
| | - C. J. P. A. Hoebe
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Living Lab Public Health, Public Health Service (GGD) South Limburg, Heerlen, The Netherlands
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands
| | - P. H. M. Savelkoul
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - I. H. M. van Loo
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
86
|
Delmonte OM, Oguz C, Dobbs K, Myint-Hpu K, Palterer B, Abers MS, Draper D, Truong M, Kaplan IM, Gittelman RM, Zhang Y, Rosen LB, Snow AL, Dalgard CL, Burbelo PD, Imberti L, Sottini A, Quiros-Roldan E, Castelli F, Rossi C, Brugnoni D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Anderson MV, Saracino A, Chironna M, Di Stefano M, Fiore JR, Santantonio T, Castagnoli R, Marseglia GL, Magliocco M, Bosticardo M, Pala F, Shaw E, Matthews H, Weber SE, Xirasagar S, Barnett J, Oler AJ, Dimitrova D, Bergerson JRE, McDermott DH, Rao VK, Murphy PM, Holland SM, Lisco A, Su HC, Lionakis MS, Cohen JI, Freeman AF, Snyder TM, Lack J, Notarangelo LD. Perturbations of the T-cell receptor repertoire in response to SARS-CoV-2 in immunocompetent and immunocompromised individuals. J Allergy Clin Immunol 2024; 153:1655-1667. [PMID: 38154666 PMCID: PMC11162338 DOI: 10.1016/j.jaci.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor β repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael S Abers
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew L Snow
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Md; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Peter D Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Md
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Alessandra Sottini
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Camillo Rossi
- Direzione Sanitaria, ASST Spedali Civili, Brescia, Italy
| | - Duilio Brugnoni
- Laboratorio Analisi Chimico-Cliniche, ASST Spedali Civili, Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Laura Rachele Bettini
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Mariella D'Angio
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Megan V Anderson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, University of Bari, Bari, Italy
| | - Maria Chironna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Mariantonietta Di Stefano
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Jose Ramon Fiore
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Teresa Santantonio
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mary Magliocco
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sarah E Weber
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sandhya Xirasagar
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jason Barnett
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dimana Dimitrova
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | - Justin Lack
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
87
|
Yang G, Cao J, Qin J, Mei X, Deng S, Xia Y, Zhao J, Wang J, Luan T, Chen D, Huang P, Chen C, Sun X, Luo Q, Su J, Zhang Y, Zhong N, Wang Z. Initial COVID-19 severity influenced by SARS-CoV-2-specific T cells imprints T-cell memory and inversely affects reinfection. Signal Transduct Target Ther 2024; 9:141. [PMID: 38811527 PMCID: PMC11136975 DOI: 10.1038/s41392-024-01867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
The immunoprotective components control COVID-19 disease severity, as well as long-term adaptive immunity maintenance and subsequent reinfection risk discrepancies across initial COVID-19 severity, remain unclarified. Here, we longitudinally analyzed SARS-CoV-2-specific immune effectors during the acute infection and convalescent phases of 165 patients with COVID-19 categorized by severity. We found that early and robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses ameliorate disease progression and shortened hospital stay, while delayed and attenuated virus-specific CD8+ T cell responses are prominent severe COVID-19 features. Delayed antiviral antibody generation rather than titer level associates with severe outcomes. Conversely, initial COVID-19 severity imprints the long-term maintenance of SARS-CoV-2-specific adaptive immunity, demonstrating that severe convalescents exhibited more sustained virus-specific antibodies and memory T cell responses compared to mild/moderate counterparts. Moreover, initial COVID-19 severity inversely correlates with SARS-CoV-2 reinfection risk. Overall, our study unravels the complicated interaction between temporal characteristics of virus-specific T cell responses and COVID-19 severity to guide future SARS-CoV-2 wave management.
Collapse
Affiliation(s)
- Gang Yang
- The Affiliated Hospital of Kunming University of Science and Technology. Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Jinpeng Cao
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jian Qin
- The Affiliated Hospital of Kunming University of Science and Technology. Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Xinyue Mei
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shidong Deng
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yingjiao Xia
- The Affiliated Hospital of Kunming University of Science and Technology. Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Jun Zhao
- The Affiliated Hospital of Kunming University of Science and Technology. Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Junxiang Wang
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Tao Luan
- The Affiliated Hospital of Kunming University of Science and Technology. Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Daxiang Chen
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Peiyu Huang
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Cheng Chen
- The Affiliated Hospital of Kunming University of Science and Technology. Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Xi Sun
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qi Luo
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jie Su
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunhui Zhang
- The Affiliated Hospital of Kunming University of Science and Technology. Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan province, Kunming, Yunnan, China.
| | - Nanshan Zhong
- The Affiliated Hospital of Kunming University of Science and Technology. Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan province, Kunming, Yunnan, China.
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China.
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhongfang Wang
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China.
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
88
|
Mendoza-Ramírez NJ, García-Cordero J, Shrivastava G, Cedillo-Barrón L. The Key to Increase Immunogenicity of Next-Generation COVID-19 Vaccines Lies in the Inclusion of the SARS-CoV-2 Nucleocapsid Protein. J Immunol Res 2024; 2024:9313267. [PMID: 38939745 PMCID: PMC11208798 DOI: 10.1155/2024/9313267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.
Collapse
Affiliation(s)
- Noe Juvenal Mendoza-Ramírez
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of Health, Rockville, MD, USA
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| |
Collapse
|
89
|
Solstad AD, Denz PJ, Kenney AD, Mahfooz NS, Speaks S, Gong Q, Robinson RT, Long ME, Forero A, Yount JS, Hemann EA. IFN-λ uniquely promotes CD8 T cell immunity against SARS-CoV-2 relative to type I IFN. JCI Insight 2024; 9:e171830. [PMID: 38973611 PMCID: PMC11383353 DOI: 10.1172/jci.insight.171830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity. However, whether endogenous IFN-λ signaling has an effect on SARS-CoV-2 antiviral immunity and long-term immune protection in vivo is unknown. In this study, we identified a requirement for IFN-λ signaling in promoting viral clearance and protective immune programming in SARS-CoV-2 infection of mice. Expression of both IFN and IFN-stimulated gene (ISG) in the lungs were minimally affected by the absence of IFN-λ signaling and correlated with transient increases in viral titers. We found that IFN-λ supported the generation of protective CD8 T cell responses against SARS-CoV-2 by facilitating accumulation of CD103+ DC in lung draining lymph nodes (dLN). IFN-λ signaling specifically in DCs promoted the upregulation of costimulatory molecules and the proliferation of CD8 T cells. Intriguingly, antigen-specific CD8 T cell immunity to SARS-CoV-2 was independent of type I IFN signaling, revealing a nonredundant function of IFN-λ. Overall, these studies demonstrate a critical role for IFN-λ in protective innate and adaptive immunity upon infection with SARS-CoV-2 and suggest that IFN-λ serves as an immune adjuvant to support CD8 T cell immunity.
Collapse
Affiliation(s)
- Abigail D. Solstad
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Parker J. Denz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Najmus S. Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Qiaoke Gong
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard T. Robinson
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Matthew E. Long
- Dorothy M. Davis Heart and Lung Research Institute and
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute and
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Emily A. Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute and
| |
Collapse
|
90
|
Peng X, Zhu X, Liu X, Huang Y, Zhu B. Increase in HIV reservoir and T cell immune response after CoronaVac vaccination in people living with HIV. Heliyon 2024; 10:e30394. [PMID: 38720759 PMCID: PMC11076980 DOI: 10.1016/j.heliyon.2024.e30394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction CoronaVac, an inactivated vaccine developed by Sinovac Life Sciences, has been widely used for protection against Coronavirus Disease 2019 (COVID-19). This study investigates its effect on the HIV reservoir and T cell repertoires in people living with HIV (PLWHs). Methods Blood samples were collected from fifteen PLWHs who were administered at least two doses of CoronaVac between April 2021 and February 2022. The levels of cell-associated HIV RNA (CA HIV RNA) and HIV DNA, as well as the T cell receptor (TCR) repertoire profiles, TCR clustering and TCRβ annotation, were studied. Results A significant increase was observed in CA HIV RNA at 2 weeks (431.5 ± 164.2 copies/106 cells, P = 0.039) and 12 weeks (330.2 ± 105.9 copies/106 cells, P = 0.019) after the second dose, when compared to the baseline (0 weeks) (73.6 ± 23.7 copies/106 cells). Various diversity indices of the TCRβ repertoire, including Shannon index, Pielou's evenness index, and Hvj Index, revealed a slight increase (P < 0.05) following CoronaVac vaccination. The proportion of overlapping TCRβ clonotypes increased from baseline (31.9 %) to 2 weeks (32.5 %) and 12 weeks (40.4 %) after the second dose. We also found that the breadth and depth of COVID-19-specific T cells increased from baseline (0.003 and 0.0035) to 12 weeks (0.0066 and 0.0058) post the second dose. Conclusions Our study demonstrated an initial increase in HIV reservoir and TCR repertoire diversity, as well as an expansion in the depth and breadth of COVID-19-specific T-cell clones among CoronaVac-vaccinated PLWHs. These findings provide important insights into the effects of COVID-19 vaccination in PLWHs.
Collapse
Affiliation(s)
- Xiaorong Peng
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xueling Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiang Liu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
91
|
Weisbrod L, Capriotti L, Hofmann M, Spieler V, Dersch H, Voedisch B, Schmidt P, Knake S. FASTMAP-a flexible and scalable immunopeptidomics pipeline for HLA- and antigen-specific T-cell epitope mapping based on artificial antigen-presenting cells. Front Immunol 2024; 15:1386160. [PMID: 38779658 PMCID: PMC11109385 DOI: 10.3389/fimmu.2024.1386160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.
Collapse
Affiliation(s)
- Luisa Weisbrod
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Luigi Capriotti
- Analytical Biochemistry, Research and Development, CSL Behring AG, Bern, Switzerland
| | - Marco Hofmann
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Valerie Spieler
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Herbert Dersch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Bernd Voedisch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Peter Schmidt
- Protein Biochemistry, Bio21 Institute, CSL Limited, Parkville, VIC, Australia
| | - Susanne Knake
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
92
|
Opsteen S, Fram T, Files JK, Levitan EB, Goepfert P, Erdmann N. Impact of Chronic HIV Infection on Acute Immune Responses to SARS-CoV-2. J Acquir Immune Defic Syndr 2024; 96:92-100. [PMID: 38408318 PMCID: PMC11009054 DOI: 10.1097/qai.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
ABSTRACT There is mounting evidence that HIV infection is a risk factor for severe presentations of COVID-19. We hypothesized that the persistent immune activation associated with chronic HIV infection contributes to worsened outcomes during acute COVID-19. The goals of this study were to provide an in-depth analysis of immune response to acute COVID-19 and investigate relationships between immune responses and clinical outcomes in an unvaccinated, sex- and race-matched cohort of people with HIV (PWH, n = 20) and people without HIV (PWOH, n = 41). We performed flow cytometric analyses on peripheral blood mononuclear cells from PWH and PWOH experiencing acute COVID-19 (≤21-day postsymptom onset). PWH were younger (median 52 vs 65 years) and had milder COVID-19 (40% vs 88% hospitalized) compared with PWOH. Flow cytometry panels included surface markers for immune cell populations, activation and exhaustion surface markers (with and without SARS-CoV-2-specific antigen stimulation), and intracellular cytokine staining. We observed that PWH had increased expression of activation (eg, CD137 and OX40) and exhaustion (eg, PD1 and TIGIT) markers as compared to PWOH during acute COVID-19. When analyzing the impact of COVID-19 severity, we found that hospitalized PWH had lower nonclassical (CD16 + ) monocyte frequencies, decreased expression of TIM3 on CD4 + T cells, and increased expression of PDL1 and CD69 on CD8 + T cells. Our findings demonstrate that PWH have increased immune activation and exhaustion as compared to a cohort of predominately older, hospitalized PWOH and raises questions on how chronic immune activation affects acute disease and the development of postacute sequelae.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Tim Fram
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Jacob K. Files
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Emily B. Levitan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Nathaniel Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| |
Collapse
|
93
|
Tong S, Scott JC, Eyoh E, Werthmann DW, Stone AE, Murrell AE, Sabino-Santos G, Trinh IV, Chandra S, Elliott DH, Smira AR, Velazquez JV, Schieffelin J, Ning B, Hu T, Kolls JK, Landry SJ, Zwezdaryk KJ, Robinson JE, Gunn BM, Rabito FA, Norton EB. Altered COVID-19 immunity in children with asthma by atopic status. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100236. [PMID: 38590754 PMCID: PMC11000189 DOI: 10.1016/j.jacig.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 04/10/2024]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a spectrum of clinical outcomes that may be complicated by severe asthma. Antiviral immunity is often compromised in patients with asthma; however, whether this is true for SARS-CoV-2 immunity and children is unknown. Objective We aimed to evaluate SARS-CoV-2 immunity in children with asthma on the basis of infection or vaccination history and compared to respiratory syncytial viral or allergen (eg, cockroach, dust mite)-specific immunity. Methods Fifty-three children from an urban asthma study were evaluated for medical history, lung function, and virus- or allergen-specific immunity using antibody or T-cell assays. Results Polyclonal antibody responses to spike were observed in most children from infection and/or vaccination history. Children with atopic asthma or high allergen-specific IgE, particularly to dust mites, exhibited reduced seroconversion, antibody magnitude, and SARS-CoV-2 virus neutralization after SARS-CoV-2 infection or vaccination. TH1 responses to SARS-CoV-2 and respiratory syncytial virus correlated with antigen-respective IgG. Cockroach-specific T-cell activation as well as IL-17A and IL-21 cytokines negatively correlated with SARS-CoV-2 antibodies and effector functions, distinct from total and dust mite IgE. Allergen-specific IgE and lack of vaccination were associated with recent health care utilization. Reduced lung function (forced expiratory volume in 1 second ≤ 80%) was independently associated with (SARS-CoV-2) peptide-induced cytokines, including IL-31, whereas poor asthma control was associated with cockroach-specific cytokine responses. Conclusion Mechanisms underpinning atopic and nonatopic asthma may complicate the development of memory to SARS-CoV-2 infection or vaccination and lead to a higher risk of repeated infection in these children.
Collapse
Affiliation(s)
- Sherry Tong
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Jordan C. Scott
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Enwono Eyoh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Derek W. Werthmann
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Addison E. Stone
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Amelie E. Murrell
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Gilberto Sabino-Santos
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Ivy V. Trinh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Sruti Chandra
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Debra H. Elliott
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Ashley R. Smira
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Jalene V. Velazquez
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| | - John Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, La
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, La
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Jay K. Kolls
- Department of Medicine, Tulane University School of Medicine, New Orleans, La
| | - Samuel J. Landry
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Kevin J. Zwezdaryk
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Bronwyn M. Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| | - Felicia A. Rabito
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Elizabeth B. Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| |
Collapse
|
94
|
Afridonova ZE, Toptygina AP, Mikhaylov IS. Humoral and Cellular Immune Response to SARS-CoV-2 S and N Proteins. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:872-882. [PMID: 38880648 DOI: 10.1134/s0006297924050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 06/18/2024]
Abstract
The pandemic of a new coronavirus infection that has lasted for more than 3 years, is still accompanied by frequent mutations in the S protein of SARS-CoV-2 and emergence of new virus variants causing new disease outbreak. Of all coronaviral proteins, the S and N proteins are the most immunogenic. The aim of this study was to compare the features of the humoral and T-cell immune responses to the SARS-CoV-2 S and N proteins in people with different histories of interaction with this virus. The study included 27 individuals who had COVID-19 once, 23 people who were vaccinated twice with the Sputnik V vaccine and did not have COVID-19, 22 people who had COVID-19 and were vaccinated twice with Sputnik V 6-12 months after the disease, and 25 people who had COVID-19 twice. The level of antibodies was determined by the enzyme immunoassay, and the cellular immunity was assessed by the expression of CD107a on CD8high lymphocytes after recognition of SARS-CoV-2 antigens. It was shown that the humoral immune response to the N protein was formed mainly by short-lived plasma cells synthesizing IgG antibodies of all four subclasses with a gradual switch from IgG3 to IgG1. The response to the S protein was formed by short-lived plasma cells at the beginning of the response (IgG1 and IgG3 subclasses) and then by long-lived plasma cells (IgG1 subclass). The dynamics of antibody level synthesized by the short-lived plasma cells was described by the Fisher equation, while changes in the level of antibodies synthesized by the long-lived plasma cells were described by the Erlang equation. The level of antibodies in the groups with the hybrid immunity exceeded that in the group with the post-vaccination immunity; the highest antibody content was observed in the group with the breakthrough immunity. The cellular immunity to the S and N proteins differed depending on the mode of immune response induction (vaccination or disease). Importantly, the response of heterologous CD8+ T cell to the N proteins of other coronaviruses may be involved in the immune defense against SARS-CoV-2.
Collapse
Affiliation(s)
- Zulfiia E Afridonova
- G.N.Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, 125212, Russia
| | - Anna P Toptygina
- G.N.Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, 125212, Russia.
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
95
|
Xu X, Huang J, Zhang H, Lu W, Liu J. Differential expression of lymphocyte subpopulations in the peripheral blood of patients with COVID-19: Implications for disease severity and prognosis. Immun Inflamm Dis 2024; 12:e1281. [PMID: 38780019 PMCID: PMC11112625 DOI: 10.1002/iid3.1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To investigate the expression patterns and clinical significance of specific lymphocyte subsets in the peripheral blood of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS Between December 2022 and February 2023, a cohort of 165 patients from the First Affiliated Hospital of Guangzhou University of Chinese Medicine were analyzed. The participants represented various stages of coronavirus infection severity: mild, moderate, severe, and critical. Additionally, 40 healthy individuals constituted the control group. The FC 500MPL flow cytometer and associated reagents for flow cytometry. RESULTS Compared with the healthy control group, activated B lymphocytes witnessed a pronounced increase (p < .05). A significant decrease was observed in the levels of Breg, Cytotoxic T cells or Suppressor T-cell (Tc/s), late-activated T, late-activated Th, and late-activated Tc/s lymphocytes (p < .05). Th, initial Th, initial Tc/s, total Treg, natural Treg, induced Treg, early activated T, and early activated Th lymphocyte levels showed no significant difference (p > .05). As the disease progressed, there was an uptick in midterm activated T lymphocytes (p < .05), while Breg, T, Tc/s, senescent Tc/s, and total senescent T levels dwindled (p < .05). Noteworthy patterns emerged across different groups for B1, T-lymphocytes, Tc/s, B2, CD8+ Treg cells, and other subsets, highlighting variance in immune responses relative to disease severity. When juxtaposed, no significant difference was found in the expression levels of lymphocyte subsets between patients who died and those deemed critically ill (p > .05). CONCLUSION Subsets of Treg and B-cells could act as yardsticks for the trajectory of SARS-CoV-2 infection and might have potential in forecasting patient trajectories. A comprehensive evaluation of lymphocyte subsets, especially in real-time, holds the key to discerning the clinical severity in those with COVID-19. This becomes instrumental in monitoring treatment outcomes, tracking disease evolution, and formulating prognostications. Moreover, the results provide a deeper understanding of the cellular immune defense mechanisms against the novel coronavirus infection.
Collapse
Affiliation(s)
- XinQiang Xu
- The First Affiliated HospitalUniversity of Chinese MedicineGuangzhouChina
- Guangdong Clinical Research Academy of Chinese MedicineGuangzhouChina
| | - JunYuan Huang
- The First Affiliated HospitalUniversity of Chinese MedicineGuangzhouChina
- Guangdong Clinical Research Academy of Chinese MedicineGuangzhouChina
| | - Haiqi Zhang
- Guangzhou United Yijian Medical Laboratory Co., LtdGuangzhouChina
| | - Weiguo Lu
- The First Affiliated HospitalUniversity of Chinese MedicineGuangzhouChina
- Guangdong Clinical Research Academy of Chinese MedicineGuangzhouChina
| | - Jiduo Liu
- The First Affiliated HospitalUniversity of Chinese MedicineGuangzhouChina
- Guangdong Clinical Research Academy of Chinese MedicineGuangzhouChina
| |
Collapse
|
96
|
Zhang Y, Chen Y, Cao J, Liu H, Li Z. Dynamical Modeling and Qualitative Analysis of a Delayed Model for CD8 T Cells in Response to Viral Antigens. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7138-7149. [PMID: 36279328 DOI: 10.1109/tnnls.2022.3214076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although the immune effector CD8 T cells play a crucial role in clearance of viruses, the mechanisms underlying the dynamics of how CD8 T cells respond to viral infection remain largely unexplored. Here, we develop a delayed model that incorporates CD8 T cells and infected cells to investigate the functional role of CD8 T cells in persistent virus infection. Bifurcation analysis reveals that the model has four steady states that can finely divide the progressions of viral infection into four states, and endows the model with bistability that has ability to achieve the switch from one state to another. Furthermore, analytical and numerical methods find that the time delay resulting from incubation period of virus can induce a stable low-infection steady state to be oscillatory, coexisting with a stable high-infection steady state in phase space. In particular, a novel mechanism to achieve the switch between two stable steady states, time-delay-based switch, is proposed, where the initial conditions and other parameters of the model remain unchanged. Moreover, our model predicts that, for a certain range of initial antigen load: 1) under a longer incubation period, the lower the initial antigen load, the easier the virus infection will evolve into severe state; while the higher the initial antigen load, the easier it is for the virus infection to be effectively controlled and 2) only when the incubation period is small, the lower the initial antigen load, the easier it is to effectively control the infection progression. Our results are consistent with multiple experimental observations, which may facilitate the understanding of the dynamical and physiological mechanisms of CD8 T cells in response to viral infections.
Collapse
|
97
|
Joshi G, Das A, Verma G, Guchhait P. Viral infection and host immune response in diabetes. IUBMB Life 2024; 76:242-266. [PMID: 38063433 DOI: 10.1002/iub.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/05/2023] [Indexed: 04/24/2024]
Abstract
Diabetes, a chronic metabolic disorder disrupting blood sugar regulation, has emerged as a prominent silent pandemic. Uncontrolled diabetes predisposes an individual to develop fatal complications like cardiovascular disorders, kidney damage, and neuropathies and aggravates the severity of treatable infections. Escalating cases of Type 1 and Type 2 diabetes correlate with a global upswing in diabetes-linked mortality. As a growing global concern with limited preventive interventions, diabetes necessitates extensive research to mitigate its healthcare burden and assist ailing patients. An altered immune system exacerbated by chronic hyperinflammation heightens the susceptibility of diabetic individuals to microbial infections, including notable viruses like SARS-CoV-2, dengue, and influenza. Given such a scenario, we scrutinized the literature and compiled molecular pathways and signaling cascades related to immune compartments in diabetics that escalate the severity associated with the above-mentioned viral infections in them as compared to healthy individuals. The pathogenesis of these viral infections that trigger diabetes compromises both innate and adaptive immune functions and pre-existing diabetes also leads to heightened disease severity. Lastly, this review succinctly outlines available treatments for diabetics, which may hold promise as preventive or supportive measures to effectively combat these viral infections in the former.
Collapse
Affiliation(s)
- Garima Joshi
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Anushka Das
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Garima Verma
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
98
|
Fernández-Soto D, Bueno P, Garaigorta U, Gastaminza P, Bueno JL, Duarte RF, Jara R, Valés-Gómez M, Reyburn HT. SARS-CoV-2 membrane protein-specific antibodies from critically ill SARS-CoV-2-infected individuals interact with Fc receptor-expressing cells but do not neutralize the virus. J Leukoc Biol 2024; 115:985-991. [PMID: 38245016 DOI: 10.1093/jleuko/qiae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
The membrane (M) glycoprotein of SARS-CoV-2 is one of the key viral proteins regulating virion assembly and morphogenesis. Immunologically, the M protein is a major source of peptide antigens driving T cell responses, and most individuals who have been infected with SARS-CoV-2 make antibodies to the N-terminal, surface-exposed peptide of the M protein. We now report that although the M protein is abundant in the viral particle, antibodies to the surface-exposed N-terminal epitope of M do not appear to neutralize the virus. M protein-specific antibodies do, however, activate antibody-dependent cell-mediated cytotoxicity and cytokine secretion by primary human natural killer cells. Interestingly, while patients with severe or mild disease make comparable levels of M antigen-binding antibodies, M-specific antibodies from the serum of critically ill patients are significantly more potent activators of antibody-dependent cell-mediated cytotoxicity than antibodies found in individuals with mild or asymptomatic infection.
Collapse
Affiliation(s)
- Daniel Fernández-Soto
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C. Darwin 3, Madrid 28049, Spain
| | - Paula Bueno
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C. Darwin 3, Madrid 28049, Spain
| | - Urtzi Garaigorta
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C. Darwin 3, Madrid 28049, Spain
| | - Pablo Gastaminza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C. Darwin 3, Madrid 28049, Spain
| | - José L Bueno
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, C. Joaquín Rodrigo 1, Madrid, Spain
| | - Rafael F Duarte
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, C. Joaquín Rodrigo 1, Madrid, Spain
| | - Ricardo Jara
- Immunostep, S.L., Centro Investigación del Cáncer, Avda. Universidad de Coimbra, s/n, Salamanca 37007, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C. Darwin 3, Madrid 28049, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C. Darwin 3, Madrid 28049, Spain
| |
Collapse
|
99
|
Yang M, Meng Y, Hao W, Zhang J, Liu J, Wu L, Lin B, Liu Y, Zhang Y, Yu X, Wang X, Gong Y, Ge L, Fan Y, Xie C, Xu Y, Chang Q, Zhang Y, Qin X. A prognostic model for SARS-CoV-2 breakthrough infection: Analyzing a prospective cellular immunity cohort. Int Immunopharmacol 2024; 131:111829. [PMID: 38489974 DOI: 10.1016/j.intimp.2024.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Following the COVID-19 pandemic, studies have identified several prevalent characteristics, especially related to lymphocyte subsets. However, limited research is available on the focus of this study, namely, the specific memory cell subsets among individuals who received COVID-19 vaccine boosters and subsequently experienced a SARS-CoV-2 breakthrough infection. METHODS Flow cytometry (FCM) was employed to investigate the early and longitudinal pattern changes of cellular immunity in patients with SARS-CoV-2 breakthrough infections following COVID-19 vaccine boosters. XGBoost (a machine learning algorithm) was employed to analyze cellular immunity prior to SARS-CoV-2 breakthrough, aiming to establish a prognostic model for SARS-CoV-2 breakthrough infections. RESULTS Following SARS-CoV-2 breakthrough infection, naïve T cells and TEMRA subsets increased while the percentage of TCM and TEM cells decreased. Naïve and non-switched memory B cells increased while switched and double-negative memory B cells decreased. The XGBoost model achieved an area under the curve (AUC) of 0.78, with an accuracy rate of 81.8 %, a sensitivity of 75 %, and specificity of 85.7 %. TNF-α, CD27-CD19+cells, and TEMRA subsets were identified as high predictors. An increase in TNF-α, cTfh, double-negative memory B cells, IL-6, IL-10, and IFN-γ prior to SARS-CoV-2 infection was associated with enduring clinical symptoms; conversely, an increase in CD3+ T cells, CD4+ T cells, and IL-2 was associated with clinical with non-enduring clinical symptoms. CONCLUSION SARS-CoV-2 breakthrough infection leads to disturbances in cellular immunity. Assessing cellular immunity prior to breakthrough infection serves as a valuable prognostic tool for SARS-CoV-2 infection, which facilitates clinical decision-making.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yuan Meng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jin Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaojun Yu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaoqian Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yu Gong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lili Ge
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yan Fan
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Conghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yiyun Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
100
|
Haque A, Pant AB. The coevolution of Covid-19 and host immunity. EXPLORATION OF MEDICINE 2024:167-184. [DOI: 10.37349/emed.2024.00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/15/2024] [Indexed: 01/05/2025] Open
Abstract
The dynamic of the virus-host interaction is subject to constant
evolution, which makes it difficult to predict when the SARS-CoV-2 pandemic
will become endemic. Vaccines in conjunction with efforts around masking and
social distancing have reduced SARS-CoV-2 infection rates, however, there
are still significant challenges to contend with before the pandemic shifts
to endemic, such as the coronavirus acquiring mutations that allow the virus
to dodge the immunity acquired by hosts. SARS-CoV-2 variants deploy
convergent evolutionary mechanisms to sharpen their ability to impede the
host’s innate immune response. The continued emergence of variants and
sub-variants poses a significant hurdle to reaching endemicity. This
underscores the importance of continued public health measures to control
SARS-CoV-2 transmission and the need to develop better second-generation
vaccines and effective treatments that would tackle current and future
variants. We hypothesize that the hosts’ immunity to the virus is also
evolving, which is likely to abet the process of reaching
endemicity.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Geisel School of
Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | |
Collapse
|