51
|
Sumpio BJ, Li Z, Wang E, Mezghani I, Theocharidis G, Veves A. Future Directions in Research in Transcriptomics in the Healing of Diabetic Foot Ulcers. Adv Ther 2023; 40:67-75. [PMID: 36264535 DOI: 10.1007/s12325-022-02348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023]
Abstract
Diabetic foot ulcers are a health crisis that affect millions of individuals worldwide. Current standard of care involves diligent wound care with adjunctive antibiotics and surgical debridement. However, despite this, the majority will still become infected and fail to heal. Recent efforts using bioengineered skin initially appeared promising, but randomized clinical trials have disappointed. Scientists have now begun to understand that the normal wound healing physiology does not apply to diabetic foot ulcers as they maintain a chronic state of inflammation and fail to progress in a linear pathway. Using transcriptomics, research over the past decade has started identifying master genes and protein pathways that are dysregulated in patients with diabetes. This review paper discusses those genes involved and how novel advancements are using this information to create new biologically based compounds to accelerate wound healing in patients with diabetic foot ulcers.
Collapse
Affiliation(s)
- Brandon J Sumpio
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Zhuqing Li
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Enya Wang
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Ikram Mezghani
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Georgios Theocharidis
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Aristidis Veves
- Rongxiang Xu Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA.
| |
Collapse
|
52
|
Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5 + Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci 2022; 24:66. [PMID: 36613507 PMCID: PMC9820160 DOI: 10.3390/ijms24010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.
Collapse
Affiliation(s)
| | - Natasha Y. Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ganss
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Mark A. Kluth
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| |
Collapse
|
53
|
Mazurek Ł, Szudzik M, Rybka M, Konop M. Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing. Biomolecules 2022; 12:biom12121852. [PMID: 36551280 PMCID: PMC9775069 DOI: 10.3390/biom12121852] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The skin, acting as the outer protection of the human body, is most vulnerable to injury. Wound healing can often be impaired, leading to chronic, hard-to-heal wounds. For this reason, searching for the most effective dressings that can significantly enhance the wound healing process is necessary. In this regard, silk fibroin, a protein derived from silk fibres that has excellent properties, is noteworthy. Silk fibroin is highly biocompatible and biodegradable. It can easily make various dressings, which can be loaded with additional substances to improve healing. Dressings based on silk fibroin have anti-inflammatory, pro-angiogenic properties and significantly accelerate skin wound healing, even compared to commercially available wound dressings. Animal studies confirm the beneficial influence of silk fibroin in wound healing. Clinical research focusing on fibroin dressings is also promising. These properties make silk fibroin a remarkable natural material for creating innovative, simple, and effective dressings for skin wound healing. In this review, we summarise the application of silk fibroin biomaterials as wound dressings in full-thickness, burn, and diabetic wounds in preclinical and clinical settings.
Collapse
|
54
|
Jayasuriya R, Ramkumar KM. Mangiferin alleviates hyperglycemia-induced endothelial impairment via Nrf2 signaling pathway. Eur J Pharmacol 2022; 936:175359. [DOI: 10.1016/j.ejphar.2022.175359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
|
55
|
Huang Z, Zhang Y, Liu R, Li Y, Rafique M, Midgley AC, Wan Y, Yan H, Si J, Wang T, Chen C, Wang P, Shafiq M, Li J, Zhao L, Kong D, Wang K. Cobalt loaded electrospun poly(ε-caprolactone) grafts promote antibacterial activity and vascular regeneration in a diabetic rat model. Biomaterials 2022; 291:121901. [DOI: 10.1016/j.biomaterials.2022.121901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
56
|
Qiu J, Shu C, Li X, Zhang WC. PAQR3 depletion accelerates diabetic wound healing by promoting angiogenesis through inhibiting STUB1-mediated PPARγ degradation. J Transl Med 2022; 102:1121-1131. [PMID: 36775352 DOI: 10.1038/s41374-022-00786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of diabetic wounds is closely associated with the dysregulation of macrophage polarization. However, the underlying mechanism remains poorly understood. In this study, we aimed to investigate the potential effects of PAQR3 (progestin and adipoQ receptor 3) silencing in accelerating diabetic wound healing. We showed that PAQR3 silencing promoted skin wound healing and angiogenesis in diabetic mice, which was accompanied by enhanced M2 macrophage polarization and elevated expression of PPARγ (peroxisome proliferator-activated receptor γ). PAQR3 silencing also promoted M2 polarization and increased PPARγ protein level in PMA-treated THP-1 cells. Moreover, knockdown of PAQR3 in macrophages enhanced the migration of HaCaT cells and tube formation of HUVECs. The ubiquitination of PPARγ protein in macrophages was repressed by PAQR3 silencing. STUB1 (STIP1 homology and U-box-containing protein 1) binds with the PPARγ protein to mediate PPARγ ubiquitination and degradation in macrophages, which was impaired by PAQR3 silencing. The PPARγ inhibitor, GW9662, or STUB1 overexpression abrogated the enhanced M2 macrophage polarization induced by PAQR3 silencing. Therefore, these findings demonstrates that PAQR3 silencing accelerates diabetic wound healing by promoting M2 macrophage polarization and angiogenesis, which is mediated by the inhibition of STUB1-mediated PPARγ protein ubiquitination and degradation.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China.
| | - Xin Li
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China
| | - Wei-Chang Zhang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China
| |
Collapse
|
57
|
Hodge JG, Zamierowski DS, Robinson JL, Mellott AJ. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater Res 2022; 26:50. [PMID: 36183134 PMCID: PMC9526981 DOI: 10.1186/s40824-022-00291-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Wound healing is a dynamic series of interconnected events with the ultimate goal of promoting neotissue formation and restoration of anatomical function. Yet, the complexity of wound healing can often result in development of complex, chronic wounds, which currently results in a significant strain and burden to our healthcare system. The advancement of new and effective wound care therapies remains a critical issue, with the current therapeutic modalities often remaining inadequate. Notably, the field of tissue engineering has grown significantly in the last several years, in part, due to the diverse properties and applications of polymeric biomaterials. The interdisciplinary cohesion of the chemical, biological, physical, and material sciences is pertinent to advancing our current understanding of biomaterials and generating new wound care modalities. However, there is still room for closing the gap between the clinical and material science realms in order to more effectively develop novel wound care therapies that aid in the treatment of complex wounds. Thus, in this review, we discuss key material science principles in the context of polymeric biomaterials, provide a clinical breadth to discuss how these properties affect wound dressing design, and the role of polymeric biomaterials in the innovation and design of the next generation of wound dressings.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.,Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - David S Zamierowski
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Mail Stop: 3051, 3901 Rainbow Blvd, Lawrence, KS, 66160, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
58
|
Luo LL, Han JX, Wu SR, Kasim V. Intramuscular injection of sotagliflozin promotes neovascularization in diabetic mice through enhancing skeletal muscle cells paracrine function. Acta Pharmacol Sin 2022; 43:2636-2650. [PMID: 35292769 PMCID: PMC9525294 DOI: 10.1038/s41401-022-00889-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/13/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetes mellitus is associated with series of macrovascular and microvascular pathological changes that cause a wide range of complications. Diabetic patients are highly susceptible to hindlimb ischemia (HLI), which remains incurable. Evidence shows that skeletal muscle cells secrete a number of angiogenic factors to promote neovascularization and restore blood perfusion, this paracrine function is crucial for therapeutic angiogenesis in diabetic HLI. In this study we investigated whether sotagliflozin, an anti-hyperglycemia SGLT2 inhibitor, exerted therapeutic angiogenesis effects in diabetic HLI in vitro and in vivo. In C2C12 skeletal muscle cells, we showed that high glucose (HG, 25 mM) under hypoxia markedly inhibited cell viability, proliferation and migration potentials, which were dose-dependently reversed by pretreatment with sotagliflozin (5-20 μM). Sotagliflozin pretreatment enhanced expression levels of angiogenic factors HIF-1α, VEGF-A and PDGF-BB in HG-treated C2C12 cells under hypoxia as well as secreted amounts of VEGF-A and PDGF-BB in the medium; pretreatment with the HIF-1α inhibitor 2-methoxyestradiol (2-ME2, 10 μM) or HIF-1α knockdown abrogated sotagliflozin-induced increases in VEGF-A and PDGF-BB expression, as well as sotagliflozin-stimulated cell proliferation and migration potentials. Furthermore, the conditioned media from sotagliflozin-treated C2C12 cells in HG medium enhanced the migration and proliferation capabilities of vascular endothelial and smooth muscle cells, two types of cells necessary for forming functional blood vessels. In vivo study was conducted in diabetic mice subjected to excising the femoral artery of the left limb. After the surgery, sotagliflozin (10 mg/kg) was directly injected into gastrocnemius muscle of the left hindlimb once every 3 days for 3 weeks. We showed that intramuscular injection of sotagliflozin effectively promoted the formation of functional blood vessels, leading to significant recovery of blood perfusion in diabetic HLI mice. Together, our results highlight a new indication of SGLT2 inhibitor sotagliflozin as a potential therapeutic angiogenesis agent for diabetic HLI.
Collapse
Affiliation(s)
- Lai-Liu Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jing-Xuan Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shou-Rong Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Vivi Kasim
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
59
|
Ma H, Peng Y, Zhang S, Zhang Y, Min P. Effects and Progress of Photo-Crosslinking Hydrogels in Wound Healing Improvement. Gels 2022; 8:609. [PMID: 36286110 PMCID: PMC9601727 DOI: 10.3390/gels8100609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 09/18/2023] Open
Abstract
Wound healing is a dynamic physiological process, including three stages: inflammation, tissue formation, and remodeling. The quality of wound healing is affected by many topical and systemic factors, while any small factor may affect the process. Therefore, improving the quality of wound healing is a complex and arduous challenge. Photo-crosslinking reaction using visible light irradiation is a novel method for hydrogel preparation. Photo-crosslinking hydrogels can be controlled in time and space, and are not interfered by temperature conditions, which have been widely used in the fields of medicine and engineering. This review aims to summarize the application of photo-crosslinking hydrogels in improving the quality of wound healing, mainly including the material design, application mechanism, and effect of photo-crosslinking hydrogels applied in wound healing, followed by the applicable animal models for experimental research. Finally, this review analyzes the clinical application prospects of photo-crosslinking hydrogels in the field of wound healing.
Collapse
Affiliation(s)
| | | | | | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
60
|
High Glucose and Carbonyl Stress Impair HIF-1-Regulated Responses and the Control of Mycobacterium tuberculosis in Macrophages. mBio 2022; 13:e0108622. [PMID: 36121152 PMCID: PMC9600926 DOI: 10.1128/mbio.01086-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diabetes mellitus (DM) increases the risk of developing tuberculosis (TB), but the mechanisms behind diabetes-TB comorbidity are still undefined. Here, we studied the role of hypoxia-inducible factor-1 (HIF-1), a main regulator of metabolic and inflammatory responses, in the outcome of Mycobacterium tuberculosis infection of bone marrow-derived macrophages (BMM). We observed that M. tuberculosis infection of BMM increased the expression of HIF-1α and HIF-1-regulated genes. Treatment with the hypoxia mimetic deferoxamine (DFO) further increased levels of HIF-1-regulated immune and metabolic molecules and diminished the intracellular bacterial load in BMM and in the lungs of infected mice. The expression of HIF-1-regulated immunometabolic genes was reduced, and the intracellular M. tuberculosis levels were increased in BMM incubated with high-glucose levels or with methylglyoxal (MGO), a reactive carbonyl compound elevated in DM. In line with the in vitro findings, high M. tuberculosis levels and low HIF-1-regulated transcript levels were found in the lungs from hyperglycemic Leprdb/db compared with wild-type mice. The increased intracellular M. tuberculosis growth and the reduced expression of HIF-1-regulated metabolic and inflammatory genes in BMM incubated with MGO or high glucose were reverted by additional treatment with DFO. Hif1a-deficient BMM showed ablated responses of immunometabolic transcripts after mycobacterial infection at normal or high-glucose levels. We propose that HIF-1 may be targeted for the control of M. tuberculosis during DM. IMPORTANCE People living with diabetes who are also infected with M. tuberculosis are more likely to develop tuberculosis disease (TB). Why diabetic patients have an increased risk for developing TB is not well understood. Macrophages, the cell niche for M. tuberculosis, can express microbicidal mechanisms or be permissive to mycobacterial persistence and growth. Here, we showed that high glucose and carbonyl stress, which mediate diabetes pathogenesis, impair the control of intracellular M. tuberculosis in macrophages. Infection with M. tuberculosis stimulated the expression of genes regulated by the transcription factor HIF-1, a major controller of the responses to hypoxia, resulting in macrophage activation. High glucose and carbonyl compounds inhibited HIF-1 responses by macrophages. Mycobacterial control in the presence of glucose or carbonyl stress was restored by DFO, a compound that stabilizes HIF-1. We propose that HIF-1 can be targeted to reduce the risk of developing TB in people with diabetes.
Collapse
|
61
|
Kerstan A, Dieter K, Niebergall-Roth E, Klingele S, Jünger M, Hasslacher C, Daeschlein G, Stemler L, Meyer-Pannwitt U, Schubert K, Klausmann G, Raab T, Goebeler M, Kraft K, Esterlechner J, Schröder HM, Sadeghi S, Ballikaya S, Gasser M, Waaga-Gasser AM, Murphy GF, Orgill DP, Frank NY, Ganss C, Scharffetter-Kochanek K, Frank MH, Kluth MA. Translational development of ABCB5 + dermal mesenchymal stem cells for therapeutic induction of angiogenesis in non-healing diabetic foot ulcers. Stem Cell Res Ther 2022; 13:455. [PMID: 36064604 PMCID: PMC9444095 DOI: 10.1186/s13287-022-03156-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background While rapid healing of diabetic foot ulcers (DFUs) is highly desirable to avoid infections, amputations and life-threatening complications, DFUs often respond poorly to standard treatment. GMP-manufactured skin-derived ABCB5+ mesenchymal stem cells (MSCs) might provide a new adjunctive DFU treatment, based on their remarkable skin wound homing and engraftment potential, their ability to adaptively respond to inflammatory signals, and their wound healing-promoting efficacy in mouse wound models and human chronic venous ulcers. Methods The angiogenic potential of ABCB5+ MSCs was characterized with respect to angiogenic factor expression at the mRNA and protein level, in vitro endothelial trans-differentiation and tube formation potential, and perfusion-restoring capacity in a mouse hindlimb ischemia model. Finally, the efficacy and safety of ABCB5+ MSCs for topical adjunctive treatment of chronic, standard therapy-refractory, neuropathic plantar DFUs were assessed in an open-label single-arm clinical trial. Results Hypoxic incubation of ABCB5+ MSCs led to posttranslational stabilization of the hypoxia-inducible transcription factor 1α (HIF-1α) and upregulation of HIF-1α mRNA levels. HIF-1α pathway activation was accompanied by upregulation of vascular endothelial growth factor (VEGF) transcription and increase in VEGF protein secretion. Upon culture in growth factor-supplemented medium, ABCB5+ MSCs expressed the endothelial-lineage marker CD31, and after seeding on gel matrix, ABCB5+ MSCs demonstrated formation of capillary-like structures comparable with human umbilical vein endothelial cells. Intramuscularly injected ABCB5+ MSCs to mice with surgically induced hindlimb ischemia accelerated perfusion recovery as measured by laser Doppler blood perfusion imaging and enhanced capillary proliferation and vascularization in the ischemic muscles. Adjunctive topical application of ABCB5+ MSCs onto therapy-refractory DFUs elicited median wound surface area reductions from baseline of 59% (full analysis set, n = 23), 64% (per-protocol set, n = 20) and 67% (subgroup of responders, n = 17) at week 12, while no treatment-related adverse events were observed. Conclusions The present observations identify GMP-manufactured ABCB5+ dermal MSCs as a potential, safe candidate for adjunctive therapy of otherwise incurable DFUs and justify the conduct of a larger, randomized controlled trial to validate the clinical efficacy. Trial registration: ClinicalTrials.gov, NCT03267784, Registered 30 August 2017, https://clinicaltrials.gov/ct2/show/NCT03267784 Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03156-9.
Collapse
Affiliation(s)
- Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | - Sabrina Klingele
- TICEBA GmbH, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Michael Jünger
- Department of Dermatology, University Hospital Greifswald, Greifswald, Germany
| | | | - Georg Daeschlein
- Department of Dermatology, University Hospital Greifswald, Greifswald, Germany.,Clinic of Dermatology, Immunology and Allergology, Medical University Brandenburg "Theodor Fontane" Medical Center Dessau, Dessau, Germany
| | - Lutz Stemler
- Diabetologikum DDG Ludwigshafen, Ludwigshafen, Germany
| | | | | | | | | | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Samar Sadeghi
- TICEBA GmbH, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Seda Ballikaya
- TICEBA GmbH, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Martin Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Ana M Waaga-Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany.,Division of Renal (Kidney) Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George F Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Christoph Ganss
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Mark A Kluth
- RHEACELL GmbH & Co. KG, Heidelberg, Germany. .,TICEBA GmbH, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany.
| |
Collapse
|
62
|
Mohamed MK, Atef AA, Moemen LA, Abdel Azeem AA, Mohalhal IA, Taha AM. Association study of HIF-1α rs11549465 and VEGF rs3025039 genetic variants with diabetic retinopathy in Egyptian patients: crosslinks with angiogenic, inflammatory, and anti-inflammatory markers. J Genet Eng Biotechnol 2022; 20:122. [PMID: 35969320 PMCID: PMC9378806 DOI: 10.1186/s43141-022-00401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022]
Abstract
Background Genetic factors are implicated in the progression of DR—a global cause of blindness. Hence, the current work investigated the association of HIF-1α rs11549465 and VEGF rs3025039 genetic variants with the different stages of retinopathy among T2DM Egyptian patients. The crosslinks of these variants were explored with angiogenesis (VEGF), inflammation (AGEP and VCAM-1), and anti-inflammation (CTRP3) markers. Two hundred eighty-eight subjects were recruited in this study: 72 served as controls and 216 were having T2DM and were divided into diabetics without retinopathy (DWR), diabetics with non-proliferative retinopathy (NPDR), and diabetics with proliferative retinopathy (PDR). The genetic variants were analyzed using PCR-RFLP and their associations with NPDR and PDR were statistically tested. The circulating levels of AGEP, VCAM-1, HIF-1α, VEGF, and CTRP3 were assayed followed by analyzing their associations statistically with the studied variants. Results Only HIF-1α rs11549465 genetic variant (recessive model) was significantly associated with the development of NPDR among T2DM patients (p < 0.025) with a significant correlation with the circulating HIF-1α level (p < 0.0001). However, this variant was not associated with PDR progression. Neither HIF-1α rs11549465 nor VEGF rs3025039 genetic variants were associated with the PDR progression. The circulating AGEP, VCAM-1, HIF-1α, and VEGF were significantly elevated (p < 0.0001) while the CTRP3 was significantly decreased (p < 0.0001) in NPDR and PDR groups. The HIF-1α rs11549465 CT and/or TT genotype carriers were significantly associated with AGEP and VCAM-1 levels in the NPDR group, while it showed a significant association with the CTRP3 level in the PDR group. The VEGF rs3025039 TT genotype carriers showed only a significant association with the CTRP3 level in the PDR group. Conclusion The significant association of HIF-1α rs11549465 other than VEGF rs3025039 with the initiation of NPDR in T2DM Egyptian patients might protect them from progression to the proliferative stage via elevating circulating HIF-1α. However, this protective role was not enough to prevent the development of NPDR because of enhancing angiogenesis and inflammation together with suppressing anti-inflammation. The non-significant association of HIF-1α rs11549465 with PDR among T2DM patients could not make this variant a risk factor for PDR progression.
Collapse
Affiliation(s)
| | - Azza A Atef
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Leqaa A Moemen
- Biochemistry Unit, Research Institute of Ophthalmology, Giza, Egypt
| | | | - Islam A Mohalhal
- Surgical Retina, Research Institute of Ophthalmology, Giza, Egypt
| | - Alshaimaa M Taha
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
63
|
Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. Int J Mol Sci 2022; 23:ijms23158621. [PMID: 35955751 PMCID: PMC9369324 DOI: 10.3390/ijms23158621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.
Collapse
|
64
|
Los-Stegienta A, Borkowska A, Cypryk K. Assessment of microvascular function using a novel technique Flow Mediated Skin Fluorescence (FMSF) in patients with diabetic kidney disease: A preliminary study. Microvasc Res 2022; 144:104417. [PMID: 35931125 DOI: 10.1016/j.mvr.2022.104417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetic kidney disease (DKD) plays an important role in morbidity and mortality in patients with diabetes mellitus. The pathogenesis of this microangiopathy is mainly due to impaired vascular endothelial function. The Flow Mediated Skin Fluorescence (FMSF) method is an innovative, non-invasive tool for assessing the microcirculation function (especially microcirculatory response to hypoxia), also in patients with complications of diabetes mellitus (DM). MATERIAL AND METHODS The study was conducted at the Medical University of Lodz, Poland. Total of 84 volunteers including 30 patients with DKD, 33 patients with DM without complications, and 21 healthy subjects underwent microvascular function assessments using FMSF. This technique measures changes in the intensity of nicotinamide adenine dinucleotide (NADH) fluorescence from the skin on the forearm as a function of time, in response to blocking and releasing blood flow in the forearm. In this study we asses two key parameters: Reactive Hyperemia Response (RHR) and Hypoxia Sensitivity [log(HS)] to characterize vascular circulation in patients with DKD and their response to transient ischemia. RESULTS The patients with low reactive hyperemic response (the RHR parameter) had a significantly higher sCr than patients with moderate and high RHR value (p < 0.001, p < 0.05, respectively) and a significantly lower eGFR than the patients with moderate and high RHR parameter (p < 0.001, p < 0.01, respectively). The patients with very low and low log(HS) values had a significantly higher sCr than the patients with high log(HS) (p < 0.001, p < 0.01, respectively), and a significantly lower eGFR than the patients with high log(HS) parameter (p < 0.001, p < 0.01, respectively). The patients with very low log(HS) had a significantly higher sCr and a significantly lower eGFR than the patients with moderate (p < 0.05, p < 0.01, respectively). The mean value of the RHR parameter was significantly lower in DKD patients (18.31 ± 5.06 %) compared to both healthy subjects (34.37 ± 8.18 %, p < 0.001) and DM without complications subgroup (28.75 ± 7.12 %, p < 0.001). Similar trends were noted with the mean value of log(HS) parameter in DKD subgroup (1.03 ± 0.5) vs. healthy subjects (1.59 ± 0.53, p < 0.001), and vs. DM without complications subgroup (1.73 ± 0.52, p < 0.001). We observed a significant inverse correlation between the RHR parameter and serum creatinine (sCr) and a significant positive correlations with eGFR (R = -0.3; p < 0.05, R = 0.61; p < 0.001, respectively). We found also a significant negative correlations of the log(HS) measure with sCr and a significant positive correlations with eGFR (R = -0.33; p < 0.01, R = 0.55; p < 0.001, respectively). We observed also a significant inverse correlation between the RHR and log(HS) parameters and advanced glycation end products (AGEs) (R = -0.6; p < 0.001, R = -0.32; p < 0.01, respectively). The AGEs parameter was also a significantly higher in patients with low RHR parameter than in patients with moderate (p < 0.01) and high (p < 0.001). CONCLUSIONS The FMSF technique makes it possible to identify impairments of the microvascular function in patients with DKD. This study confirms that the simple two-parametric approach diagnostic tool perfectly characterizes the state of the microvascular system in diabetic patients with impaired renal function. These preliminary results require further validation in a larger patients cohort.
Collapse
Affiliation(s)
- Agnieszka Los-Stegienta
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Anna Borkowska
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| |
Collapse
|
65
|
Imamura Y, Suzuki K, Saijo H, Tanaka K. Longitudinal physiological remoulding of lower limb skin as a cause of diabetic foot ulcer: a histopathological examination. J Wound Care 2022; 31:S29-S35. [PMID: 36004943 DOI: 10.12968/jowc.2022.31.sup8.s29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Diabetic foot ulcer (DFU) is recognised as a severe complication in patients with type 2 diabetes. With the increasing incidence of diabetes, it represents a major medical challenge. Several models have been proposed to explain its aetiology; however, they have never been assessed by longitudinal histopathological examination, which this study aims to address. METHOD Multiplex-immunofluorescence analysis was carried out with lengthwise serial skin specimens obtained from the medial thigh, lower leg, ankle, dorsum of foot and acrotarsium close to the DFU region of a patient with type 2 diabetes receiving above the knee amputation. RESULTS Proximal-to-distal gradual loss of peripheral nerve was demonstrated, accompanied by compromised capillaries in the superficial papillary plexus and distended CD31-positive capillaries in the dorsum of foot. Neural fibres and capillaries were also significantly compromised in the sweat gland acinus in the ankle and dorsum of foot. Injuries in the superficial papillary plexus, sweat gland acinus, and sweat gland-associated adipose tissues were accompanied by significant infiltration of macrophages. These results indicated that longitudinal impairment of local blood circulation could be the cause of peripheral neuropathy, which initiated ulcer formation. Resultant chronic inflammation, involving sweat gland-associated adipose tissue, gave rise to impairment of wound healing, and thus DFU formation. CONCLUSION Longitudinal histopathological examination demonstrated that impairment of local microvascular circulation (rather than the systemic complication caused by type 2 diabetes) was considered the primary cause of peripheral neuropathy, which initiated ulceration. Together with chronic inflammation in the superficial papillary plexus and sweat gland-associated adipose tissue, it resulted in the development of a DFU. Although this is a study of just one individual's limb, our study provided a unique observation, contributing mechanistic insights into developing novel intervening strategies to prevent and treat DFUs.
Collapse
Affiliation(s)
- Yoshinobu Imamura
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiroto Saijo
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Katsumi Tanaka
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
66
|
Huang X, Wang Q, Mao R, Wang Z, Shen SGF, Mou J, Dai J. Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing. J Nanobiotechnology 2022; 20:343. [PMID: 35883146 PMCID: PMC9327406 DOI: 10.1186/s12951-022-01556-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. RESULTS In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo. CONCLUSIONS Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing.
Collapse
Affiliation(s)
- Xingtai Huang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Runyi Mao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Zeying Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China. .,Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Juan Mou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiewen Dai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China.
| |
Collapse
|
67
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
68
|
Wang Y, Cao Z, Wei Q, Ma K, Hu W, Huang Q, Su J, Li H, Zhang C, Fu X. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater 2022; 147:342-355. [PMID: 35580827 DOI: 10.1016/j.actbio.2022.05.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Endothelial malfunction is responsible for impaired angiogenesis in diabetic patients, thereby causing the delayed healing progress of diabetic wounds. Exosomes or extracellular vesicles (EVs) have emerged as potential therapeutic vectors carrying drug cargoes to diseased cells. In the present study, EVs were reported as a new treatment for diabetic wounds by delivering VH298 into endothelial cells. Firstly, EVs derived from epidermal stem cells (ESCs) were loaded with VH298 (VH-EVs), and the characteristics of VH-EVs were identified. VH-EVs showed promotive action on the function of human umbilical vein endothelial cells (HUVECs) in vitro by activating HIF-1α signaling pathway. VH-EVs were also found to have a therapeutic effect on wound healing and angiogenesis in vivo. We further fabricated gelatin methacryloyl (GelMA) hydrogel for sustained release of VH-EVs, which possessed high biocompatibility and proper mechanical properties. In diabetic mice, GelMA hydrogel containing VH-EVs (Gel-VH-EVs) effectively promoted wound healing by locally enhancing blood supply and angiogenesis. The underlying mechanism for enhanced angiogenesis was possibly associated with the activation of HIF-1α/VEGFA signaling pathway. Collectively, our findings suggest a promising EV-based strategy for the VH298 delivery to endothelial cells and provide a new bioactive dressing for diabetic wound treatment. STATEMENT OF SIGNIFICANCE: The angiogenic dysfunction is the main cause of diabetic wound unhealing. Extracellular vesicles (EVs) have been reported to be helpful but their efficacy is limited for angiogenesis in cutaneous regeneration. VH298 holds great promise to improve angiogenesis by stabilizing HIF-1α which is reported at low level in diabetic wounds. Here, we loaded EVs with VH298 (VH-EVs) to exert an on-target enhancement of proangiogenic capacity in diabetic wound. Then, we applied a photo-crosslinkable hydrogel, gelatin methacryloyl (GelMA) containing VH-EVs (Gel-VH-EVs) as a convenient biomaterial and an adaptable scaffold for sustained releasing VH-EVs. The results showed significant therapeutic effect of Gel-VH-EVs on skin defect repair. Our findings suggest a promising EVs-based drug delivery strategy and a new functional wound dressing for patients.
Collapse
Affiliation(s)
- Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Chinese PLA Medical School, Beijing, 100853, China
| | - Zhen Cao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jianlong Su
- School of Medicine, NanKai University, Tianjin, 300074, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China; Chinese PLA Medical School, Beijing, 100853, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| |
Collapse
|
69
|
Zhu J, Chen C, Dong J, Cheng S, Li G, Wang C, Ouyang D, Leung CH, Lin L. Artificial intelligence-aided discovery of prolyl hydroxylase 2 inhibitors to stabilize hypoxia inducible factor-1α and promote angiogenesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
70
|
Molecular mechanisms of skin wound healing in non-diabetic and diabetic mice in excision and pressure experimental wounds. Cell Tissue Res 2022; 388:595-613. [PMID: 35386010 PMCID: PMC9110453 DOI: 10.1007/s00441-022-03624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Experimental models for chronic skin lesions are excision and pressure ulcer, defined as “open” and “closed” lesions, respectively, only the latter characterized by tissue hypoxia. Moreover, systemic diseases, such as diabetes mellitus, affect wound repair. Thus, models for testing new therapies should be carefully selected according to the expected targets. In this study, we present an extensive and comparative histological, immunohistochemical, and molecular characterization of these two lesions in diabetic (db/db) and non-diabetic (C57BL/6 J) mice. In db/db mice, we found significant reduction in PGP9.5-IR innervation, reduction of capillary network, and reduced expression of NGF receptors. We found an increase in VEGF receptor Kdr expression, and the PI3K-Akt signaling pathway at the core of the altered molecular network. Db/db mice with pressure ulcers showed an impairment in the molecular regulation of hypoxia-related genes (Hif1a, Flt1, and Kdr), while extracellular matrix encoding genes (Itgb3, Timp1, Fn1, Col4a1) were upregulated by hyperglycemia and lesions. Overall, the molecular analysis suggests that db/db mice have a longer inflammatory phase of the wound repair process, delaying the progression toward the proliferation and remodeling phases.
Collapse
|
71
|
Shi M, Gao Y, Lee L, Song T, Zhou J, Yan L, Li Y. Adaptive Gelatin Microspheres Enhanced Stem Cell Delivery and Integration With Diabetic Wounds to Activate Skin Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:813805. [PMID: 35433645 PMCID: PMC9011108 DOI: 10.3389/fbioe.2022.813805] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
The delayed and complicated diabetic wound healing raises clinical and social concerns. The application of stem cells along with hydrogels is an attractive therapeutic approach. However, low cell retention and integration hindered the performance. Herein, gelatin microspheres were fabricated for local delivery of adipose-derived stem cells (from rats, rADSCs), and the effect of rADSCs with microspheres on diabetic wound healing was examined. Uniform, well-dispersed microspheres were fabricated using the microfluidic technique. Due to geometry differences, the proteinase degradation rate for microspheres was four times that of the bulk hydrogel. The obtained gelatin microspheres supported cell's adhesion and proliferation and provided a suitable microenvironment for rADSC survival. For in vivo animal tests, rADSCs were labeled with CM-Dil for tracking purposes. Microspheres were well embedded in the regenerated tissue and demonstrated good biocompatibility and an adaptive biodegradation rate. Histological examination revealed rADSC-loaded gelatin microspheres that significantly accelerated wound healing via promoting M2 macrophage polarization, collagen deposition, angiogenesis associated with peripheral nerve recovery, and hair follicle formation. Notably, the relative fluorescence intensity around the hair follicle was 17-fold higher than that of the blank group, indicating rADSC participated in the healing process via exosomes. Taken together, the rADSC-laden gelatin microspheres provided a promising strategy for local stem cell delivery to improve diabetic wound healing.
Collapse
Affiliation(s)
- Ming Shi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- Department of Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yunfen Gao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Lim Lee
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Ling Yan
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yan Li,
| |
Collapse
|
72
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
73
|
Palacio-Castañeda V, Velthuijs N, Le Gac S, Verdurmen WPR. Oxygen control: the often overlooked but essential piece to create better in vitro systems. LAB ON A CHIP 2022; 22:1068-1092. [PMID: 35084420 DOI: 10.1039/d1lc00603g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Variations in oxygen levels play key roles in numerous physiological and pathological processes, but are often not properly controlled in in vitro models, introducing a significant bias in experimental outcomes. Recent developments in microfluidic technology have introduced a paradigm shift by providing new opportunities to better mimic physiological and pathological conditions, which is achieved by both regulating and monitoring oxygen levels at the micrometre scale in miniaturized devices. In this review, we first introduce the nature and relevance of oxygen-dependent pathways in both physiological and pathological contexts. Subsequently, we discuss strategies to control oxygen in microfluidic devices, distinguishing between engineering approaches that operate at the device level during its fabrication and chemical approaches that involve the active perfusion of fluids oxygenated at a precise level or supplemented with oxygen-producing or oxygen-scavenging materials. In addition, we discuss readout approaches for monitoring oxygen levels at the cellular and tissue levels, focusing on electrochemical and optical detection schemes for high-resolution measurements directly on-chip. An overview of different applications in which microfluidic devices have been utilized to answer biological research questions is then provided. In the final section, we provide our vision for further technological refinements of oxygen-controlling devices and discuss how these devices can be employed to generate new fundamental insights regarding key scientific problems that call for emulating oxygen levels as encountered in vivo. We conclude by making the case that ultimately emulating physiological or pathological oxygen levels should become a standard feature in all in vitro cell, tissue, and organ models.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | - Niels Velthuijs
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, Organ-on-a-chip Centre, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands.
| | - Wouter P R Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
74
|
Wagih S, Hussein MM, Rizk KA, Abdel Azeem AA, El-Habit OH. A study of the genotyping and vascular endothelial growth factor polymorphism differences in diabetic and diabetic retinopathy patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Retinopathy is one of the major causes of visual impairment which is the most severe microvascular complication of diabetes mellitus (DM). The aim of this study was to evaluate the association between diabetic retinopathy (DR) and two SNPs (− 152G > A and − 165C > T) located in the promoter region of the vascular endothelial growth factor (VEGF) gene in a small sample from Egyptian population. One hundred diabetic patients without retinopathy (DWR) and two hundred diabetic patients with retinopathy were included in this study. Genotype analysis for the two SNPs (− 152G > A and − 165C > T) was assessed by using the PCR–RFLP technique. In addition, the serum protein level of VEGF was measured by ELISA assay.
Results
The results showed a significant relationship between − 152G > A (rs13207351) polymorphism and both proliferative and non-proliferative retinopathy in genotypes (GG, GA, AA). The risk factor increment in the mutant heterozygous genotype (GA) was significantly increased in NPDR compared to PDR (OR = 16.3, 95%CI = 0.80–331.7); (OR = 20.4, 95%CI = 1.08–385.3), respectively. There was no significance between VEGF − 165C > T (rs79469752) gene polymorphism and retinopathy. Moreover, the serum protein level of VEGF showed a highly significant increase (P = 0.0001) in PDR (Mean ± SD = 3691 ± 124.9) when compared to both DWR (Mean ± SD = 497.3 ± 18.51) and NPDR (Mean ± SD = 1674.5 ± 771.7). These results were supported by the increased level of VEGF in serum protein which is positively correlated with the severity of retinopathy. Measuring VEGF protein level in DR patients would help as a biomarker in early diagnosis.
Conclusion
The increase in the mutant heterogeneous GA genotype in VEGF − 152G > A SNP could be a risk factor for the progression of severe retinopathy in diabetic patients.
Collapse
|
75
|
Yue H, Song P, Sutthammikorn N, Umehara Y, Trujillo-Paez JV, Nguyen HLT, Takahashi M, Peng G, Ikutama R, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. Antimicrobial peptide derived from insulin-like growth factor-binding protein 5 improves diabetic wound healing. Wound Repair Regen 2022; 30:232-244. [PMID: 35092133 DOI: 10.1111/wrr.12997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
Abstract
Impaired keratinocyte functions are major factors that are responsible for delayed diabetic wound healing. In addition to its antimicrobial activity, the antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) activates mast cells and promotes keratinocyte and fibroblast proliferation and migration. However, its effects on diabetic wound healing remain unclear. Human keratinocytes were cultured in normal or high glucose milieus. The production of angiogenic growth factor and cell proliferation and migration were evaluated. Wounds in normal and streptozotocin-induced diabetic mice were monitored and histologically examined. We found that AMP-IBP5 rescued the high glucose-induced attenuation of proliferation and migration as well as the production of angiogenin and vascular endothelial growth factors in keratinocytes. The AMP-IBP5-induced activity was mediated by the epidermal growth factor receptor, signal transducer and activator of transcription 1 and 3, and mitogen-activated protein kinase pathways, as indicated by the inhibitory effects of pathway-specific inhibitors. In vivo, AMP-IBP5 markedly accelerated wound healing, increased the expression of angiogenic factors and promoted vessel formation in both normal and diabetic mice. Overall, the finding that AMP-IBP5 accelerated diabetic wound healing by protecting against glucotoxicity and promoting angiogenesis suggests that AMP-IBP5 might be a potential therapeutic target for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Hainan Yue
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Nutda Sutthammikorn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Hai Le Thanh Nguyen
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miho Takahashi
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ge Peng
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Ikutama
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| |
Collapse
|
76
|
Takedachi M, Yamamoto S, Kawasaki K, Shimomura J, Murata M, Morimoto C, Hirai A, Kawakami K, Bhongsatiern P, Iwayama T, Sawada K, Yamada S, Murakami S. Reciprocal role of PLAP-1 in HIF-1α-mediated responses to hypoxia. J Periodontal Res 2022; 57:470-478. [PMID: 35138637 DOI: 10.1111/jre.12976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/29/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the mutual regulation of hypoxia-inducible factor (HIF)-1α activity and periodontal ligament-associated protein-1 (PLAP-1) expression in human periodontal ligament cells (HPDLs). BACKGROUND Cellular responses to hypoxia regulate various biological events (e.g., inflammation and tissue regeneration) through activation of HIF-1α. PLAP-1, an extracellular matrix protein preferentially expressed in the periodontal ligament, plays important roles in the functions of HPDLs. Although PLAP-1 expression has been demonstrated in hypoxic regions, the involvement of PLAP-1 in responses to hypoxia has not been revealed. METHODS HPDLs were cultured under normoxic (20% O2 ) or hypoxic (1% O2 ) conditions with or without deferoxamine mesylate (chemical hypoxia inducer) or chetomin (HIF signaling inhibitor). Expression levels of PLAP-1 and HIF-1α were examined by real-time reverse transcription-polymerase chain reaction and western blot analysis. Luciferase reporter assays of HIF-1α activity were performed using 293T cells stably transfected with a hypoxia response element (HRE)-containing luciferase vector in the presence or absence of recombinant PLAP-1 or PLAP-1 gene transfection. RESULTS Cultivation under hypoxic conditions elevated the gene and protein expression levels of PLAP-1 in HPDLs. Deferoxamine mesylate treatment also enhanced PLAP-1 expression in HPDLs. Hypoxia-induced PLAP-1 expression was significantly suppressed in the presence of chetomin. PLAP-1-suppressed HPDLs showed increased HIF-1α accumulation in the nucleus during culture under hypoxic conditions, but not in the presence of recombinant PLAP-1. In the presence of recombinant PLAP-1, hypoxia-induced HRE activity of 293T cells was significantly suppressed in a dose-dependent manner. Transfection of the PLAP-1 gene resulted in a significant reduction of HRE activity during culture under hypoxic conditions. CONCLUSION PLAP-1 expression is upregulated under hypoxic conditions through HIF-1α activation. Moreover, hypoxia-induced PLAP-1 expression regulates HIF-1α signaling.
Collapse
Affiliation(s)
- Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satomi Yamamoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Asae Hirai
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Phan Bhongsatiern
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
77
|
Golledge J, Thanigaimani S. Novel therapeutic targets for diabetes-related wounds or ulcers: an update on preclinical and clinical research. Expert Opin Ther Targets 2021; 25:1061-1075. [PMID: 34873970 DOI: 10.1080/14728222.2021.2014816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Diabetes-related wounds, particularly diabetes-related foot ulcers, are mainly caused by lack of foot sensation and high plantar tissue stress secondary to peripheral neuropathy, ischemia secondary to peripheral artery disease, and dysfunctional wound healing. Current management of diabetes-related wounds involves the offloading of high foot pressures and the treatment of ischemia through revascularization. Despite these treatments, the global burden of diabetes-related wounds is growing, and thus, novel therapies are needed. The normal wound healing process is a coordinated remodeling process orchestrated by fibroblasts, endothelial cells, phagocytes, and platelets, controlled by an array of growth factors. In diabetes-related wounds, these coordinated processes are dysfunctional. The past animal model and human research suggest that prolonged wound inflammation, failure to adequately correct ischemia, and impaired wound maturation are key therapeutic targets to improve diabetes-related wound healing. AREAS COVERED This review summarizes recent preclinical and clinical research on novel diabetes-related wound treatments. Animal models of diabetes-related wounds and recent studies testing novel therapeutic agents in these models are described. Findings from clinical trials are also discussed. Finally, challenges to identifying and implementing novel therapies are described. EXPERT OPINION Given the growing volume of promising drug therapies currently under investigation, it is expected within the next decade, that diabetes-related wound treatment will be transformed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
78
|
Wang J, Wu H, Zhao Y, Qin Y, Zhang Y, Pang H, Zhou Y, Liu X, Xiao Z. Extracellular Vesicles from HIF-1α-Overexpressing Adipose-Derived Stem Cells Restore Diabetic Wounds Through Accelerated Fibroblast Proliferation and Migration. Int J Nanomedicine 2021; 16:7943-7957. [PMID: 34887659 PMCID: PMC8652947 DOI: 10.2147/ijn.s335438] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Inhibition of cellular adaptation to hypoxia can cause persistent inflammation, thereby increasing tissue damage and complicating wound healing in diabetes patients. Regulating cellular adaptation to hypoxic environments can help in effective wound repair. Hypoxia-inducible factor (HIF)-1α is a key regulator of cell hypoxia. Extracellular vesicles (EVs) regulate wound repair. This study investigated the mechanism of HIF-1α overexpression in adipose-derived stem cell extracellular vesicles (ADSCs-hEVs) in the repair of diabetic wounds. MATERIALS AND METHODS HIF-1α expression in diabetes patients and healthy participants was studied. High-throughput sequencing, GO, and KEGG analysis revealed that ADSCs small extracellular vesicle hypoxia environments may increase HIF-1α expression by affecting cell metabolism, differentiation, and TGF-β secretion, or by altering the PI3K/AKT pathway. Effect of addition of ADSCs-hEVs on cell proliferation and migration was investigated using Western blotting, EdU assay, transwell assay, and migration. In vivo, after 7, 14, and 21 days, important factors for diabetic wound healing were evaluated by immunohistochemistry, qRT-PCR, Masson staining, and H&E staining. RESULTS HIF-1α expression decreased in the skin of diabetes patients; interleukin (IL)-6 expression increased, and growth factor-related indexes decreased. ADSCs-hEVs significantly increased the expression and secretion of growth factors, compared with ADSCs-EVs. In vivo, ADSC-hEV treatment accelerated the healing rate and improved the healing quality of diabetic wounds compared with ADSCs-EVs. CONCLUSION Speed and quality of wound healing increased significantly in the ADSCs-hEVs group, which could inhibit early inflammation while promoting the secretion and expression of growth factors and extracellular matrix-related indexes.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Hao Wu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yue Zhao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Youyou Qin
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yingbo Zhang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Hao Pang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yongting Zhou
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Xueyi Liu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Zhibo Xiao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
79
|
Guo J, Shoji T, Ge Y, Zheng X, Li Y, Zhao S, Ikezoe T, Liu S, Huang J, Wang W, Xu B, Dalman RL. Treatment with the Prolyl Hydroxylase Inhibitor JNJ Promotes Abdominal Aortic Aneurysm Progression in Diabetic Mice. Eur J Vasc Endovasc Surg 2021; 63:484-494. [PMID: 34872812 DOI: 10.1016/j.ejvs.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/21/2021] [Accepted: 10/09/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Prolyl hydroxylase domain containing proteins (PHD) rigorously regulate intracellular hypoxia inducible factor-1 (HIF-1) protein expression and activity. Diabetes impairs PHD activity and attenuates abdominal aortic aneurysm (AAA) progression. The extent to which dysregulated PHD activity contributes to diabetes mediated AAA suppression remains undetermined. METHODS AAAs were induced in diabetic and non-diabetic male C57BL/6J mice via intra-aortic elastase infusion. A PHD inhibitor (JNJ-42041935, aka "JNJ", 150 mmol/kg) or vehicle alone was administered daily starting one day prior to AAA induction for 14 days. Influences on AAA progression was assessed via ultrasonography and histopathology. Expression of aortic HIF-1α, three of its target genes and macrophage derived mediators were assayed via quantitative reverse transcription polymerase chain reaction. Aneurysmal sections from AAA patients with and without diabetes (two patients in each group) were immunostained for HIF-1α and vascular endothelial growth factor (VEGF)-A. RESULTS Expression of HIF-1α target genes (erythropoietin, VEGF-A, and glucose transporter-1) was reduced by 45% - 95% in experimental diabetic aortas. Diameter enlargement was similarly limited, as were mural elastin degradation, leukocyte infiltration, and neo-angiogenesis (reduced capillary density and length) on histopathology. Pre-treatment with JNJ prior to AAA initiation augmented aortic HIF-1α target gene expression and aneurysm progression in diabetic mice, along with macrophage VEGF-A and matrix metalloproteinase 2 mRNA expression. No differences were noted in HIF-1α or VEGF-A expression on aortic immunohistochemical staining of human aortic tissue as a function of diabetes status. CONCLUSION Small molecule PHD inhibitor treatment reduces or offsets impairment of experimental AAA progression in hyperglycemic mice, highlighting the potential contribution of dysregulated PHD activity to diabetes mediated aneurysm suppression.
Collapse
Affiliation(s)
- Jia Guo
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Centre for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Tahakiro Shoji
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Emergency Medicine, Saiseikai Central Hospital, Minatoku, Tokyo, Japan
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
| | - Xiaoya Zheng
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yankui Li
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sihai Zhao
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Toru Ikezoe
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Shuai Liu
- Department of Vascular Surgery, Central South University School of Medicine, Changsha, Hunan Province, P. R. China
| | - Jianhua Huang
- Department of Vascular Surgery, Central South University School of Medicine, Changsha, Hunan Province, P. R. China
| | - Wei Wang
- Department of Vascular Surgery, Central South University School of Medicine, Changsha, Hunan Province, P. R. China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ronald L Dalman
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
80
|
Lim DJ, Jang I. Oxygen-Releasing Composites: A Promising Approach in the Management of Diabetic Foot Ulcers. Polymers (Basel) 2021; 13:polym13234131. [PMID: 34883634 PMCID: PMC8659775 DOI: 10.3390/polym13234131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
In diabetes, lower extremity amputation (LEA) is an irreversible diabetic-related complication that easily occurs in patients with diabetic foot ulcers (DFUs). Because DFUs are a clinical outcome of different causes including peripheral hypoxia and diabetic foot infection (DFI), conventional wound dressing materials are often insufficient for supporting the normal wound healing potential in the ulcers. Advanced wound dressing development has recently focused on natural or biocompatible scaffolds or incorporating bioactive molecules. This review directs attention to the potential of oxygenation of diabetic wounds and highlights current fabrication techniques for oxygen-releasing composites and their medical applications. Based on different oxygen-releasable compounds such as liquid peroxides and solid peroxides, for example, a variety of oxygen-releasing composites have been fabricated and evaluated for medical applications. This review provides the challenges and limitations of utilizing current oxygen releasable compounds and provides perspectives on advancing oxygen releasing composites for diabetic-related wounds associated with DFUs.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA;
| | - Insoo Jang
- Department of Internal Medicine, College of Korean Medicine, Woosuk University, Jeonju 54987, Korea
- Correspondence:
| |
Collapse
|
81
|
Sousa Fialho MDL, Purnama U, Dennis KMJH, Montes Aparicio CN, Castro-Guarda M, Massourides E, Tyler DJ, Carr CA, Heather LC. Activation of HIF1α Rescues the Hypoxic Response and Reverses Metabolic Dysfunction in the Diabetic Heart. Diabetes 2021; 70:2518-2531. [PMID: 34526367 PMCID: PMC8564414 DOI: 10.2337/db21-0398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes (T2D) impairs hypoxia-inducible factor (HIF)1α activation, a master transcription factor that drives cellular adaptation to hypoxia. Reduced activation of HIF1α contributes to the impaired post-ischemic remodeling observed following myocardial infarction in T2D. Molidustat is an HIF stabilizer currently undergoing clinical trials for the treatment of renal anemia associated with chronic kidney disease; however, it may provide a route to pharmacologically activate HIF1α in the T2D heart. In human cardiomyocytes, molidustat stabilized HIF1α and downstream HIF target genes, promoting anaerobic glucose metabolism. In hypoxia, insulin resistance blunted HIF1α activation and downstream signaling, but this was reversed by molidustat. In T2D rats, oral treatment with molidustat rescued the cardiac metabolic dysfunction caused by T2D, promoting glucose metabolism and mitochondrial function, while suppressing fatty acid oxidation and lipid accumulation. This resulted in beneficial effects on post-ischemic cardiac function, with the impaired contractile recovery in T2D heart reversed by molidustat treatment. In conclusion, pharmacological HIF1α stabilization can overcome the blunted hypoxic response induced by insulin resistance. In vivo this corrected the abnormal metabolic phenotype and impaired post-ischemic recovery of the diabetic heart. Therefore, molidustat may be an effective compound to further explore the clinical translatability of HIF1α activation in the diabetic heart.
Collapse
Affiliation(s)
| | - Ujang Purnama
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Kaitlyn M J H Dennis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | | | - Marcos Castro-Guarda
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Emmanuelle Massourides
- Centre d'Etude des Cellules Souches/I-Stem, INSERM UMR 861, AFM-Téléthon, Corbeil-Essonnes, France
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| |
Collapse
|
82
|
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178:113918. [PMID: 34375681 DOI: 10.1016/j.addr.2021.113918] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-β, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.
Collapse
|
83
|
Yan Z, Cui X, Huang M, Luo Z, Zhou Q, Li H, Duan M, Yan Z, Ran Y, Zhang P, Jiang B, Liang P, Huang X. Integrated analysis of tRNA-derived small RNAs reveals new therapeutic genes of hyperbaric oxygen in diabetic foot ulcers. Epigenomics 2021; 13:1817-1829. [PMID: 34657473 DOI: 10.2217/epi-2021-0284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: To reveal the alterations of tRNA-derived small RNA (tsRNA) expression profiles induced by hyperbaric oxygen (HBO) treatment in diabetic foot ulcers (DFUs) and investigate new therapeutic targets. Materials & methods: tsRNA sequencing was employed in normal skin tissue, in DFUs, and after HBO treatment groups. A quantitative real-time PCR was used to validate tsRNA sequencing results and their targets levels. Bioinformatics analysis was performed to reveal their therapeutic functions in DFUs. Results: A total of 22 tsRNAs were differentially expressed in the three groups. Three selected tsRNAs were validated by quantitative real-time PCR for further analysis, which were all significantly overexpressed in DFU while being normally expressed after HBO treatment. Bioinformatics analysis disclosed that these tsRNAs may play therapeutic roles through the regulation of the Wnt signaling pathway. Conclusion: tsRNAs may be novel useful targets for HBO to treat DFUs.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xu Cui
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Mitao Huang
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Zhengyang Luo
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, PR China
| | - Qiuhong Zhou
- Teaching & Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Hua Li
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Mengting Duan
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Zhuoxian Yan
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yanqin Ran
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Pihong Zhang
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, PR China
| | - Pengfei Liang
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| |
Collapse
|
84
|
Mohanty S, Kamolvit W, Zambrana S, Gonzales E, Tovi J, Brismar K, Östenson CG, Brauner A. HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients. J Mol Med (Berl) 2021; 100:101-113. [PMID: 34651203 PMCID: PMC8724101 DOI: 10.1007/s00109-021-02134-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Abstract Infections are common in patients with diabetes, but increasing antibiotic resistance hampers successful bacterial clearance and calls for alternative treatment strategies. Hypoxia-inducible factor 1 (HIF-1) is known to influence the innate immune defense and could therefore serve as a possible target. However, the impact of high glucose on HIF-1 has received little attention and merits closer investigation. Here, we show that higher levels of proinflammatory cytokines and CAMP, encoding for the antimicrobial peptide cathelicidin, LL-37, correlate with HIF-1 in type 2 diabetic patients. Chemical activation of HIF-1 further enhanced LL-37, IL-1β, and IL-8 in human uroepithelial cells exposed to high glucose. Moreover, HIF-1 activation of transurethrally infected diabetic mice resulted in lower bacterial load. Drugs activating HIF-1 could therefore in the future potentially have a therapeutic role in clearing bacteria in diabetic patients with infections where antibiotic treatment failed. Key messages • Mohanty et al. “HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients.” • Our study highlights induction of the antimicrobial peptide, LL-37, and strengthening of the innate immunity through hypoxia-inducible factor 1 (HIF-1) in diabetes. • Our key observations are: 1. HIF-1 activation increased LL-37 expression in human urothelial cells treated with high glucose. In line with that, we demonstrated that patients with type 2 diabetes living at high altitude had increased levels of the LL-37. 2. HIF-1 activation increased IL-1β and IL-8 in human uroepithelial cells treated with high glucose concentration. 3. Pharmacological activation of HIF-1 decreased bacterial load in the urinary bladder of mice with hereditary diabetes. • We conclude that enhancing HIF-1 may along with antibiotics in the future contribute to the treatment in selected patient groups where traditional therapy is not possible. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02134-7.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Silvia Zambrana
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Area de Farmacologia, Facultad de Ciencias Farmacéuticas Y Bioquimicas, Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Eduardo Gonzales
- Area de Farmacologia, Facultad de Ciencias Farmacéuticas Y Bioquimicas, Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | | | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
85
|
Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res 2021; 236:17-34. [PMID: 34161876 PMCID: PMC8380729 DOI: 10.1016/j.trsl.2021.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Julia M Fuller
- Department of Biology, Emory University, Atlanta, GA, USA.
| | - Nick J Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Otolaryngology, Emory University, Atlanta, GA, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
86
|
Schönborn M, Łączak P, Pasieka P, Borys S, Płotek A, Maga P. Pro- and Anti-Angiogenic Factors: Their Relevance in Diabetic Foot Syndrome-A Review. Angiology 2021; 73:299-311. [PMID: 34541892 DOI: 10.1177/00033197211042684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral arterial disease can involve tissue loss in up to 50% of patients with diabetic foot syndrome (DFS). Consequently, revascularization of narrowed or occluded arteries is one of the most common forms of comprehensive treatment. However, technically successful angioplasty does not always result in the healing of ulcers. The pathomechanism of this phenomenon is still not fully understood, but inadequate angiogenesis in tissue repair may play an essential role. Changes in pro- and anti-angiogenic factors among patients with DFS are not always clear and conclusive. In particular, some studies underline the role of decreased concentration of pro-angiogenic factors and higher levels of anti-angiogenic mediators. Nevertheless, there are still controversial issues, including the paradox of impaired wound healing despite high concentrations of some pro-angiogenic factors, dynamics of their expression during the healing process, and their mutual relationships. Exploring this process among diabetic patients may provide new insight into well-known methods of treatment and show their real benefits and chances for improving outcomes.
Collapse
Affiliation(s)
- Martyna Schönborn
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland.,Doctoral School of Medical and Health Sciences, 162261Jagiellonian University, Krakow, Poland
| | - Patrycja Łączak
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Pasieka
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Borys
- Department of Metabolic Diseases, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Anna Płotek
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Maga
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
87
|
Basu P, Kim JH, Saeed S, Martins-Green M. Using systems biology approaches to identify signalling pathways activated during chronic wound initiation. Wound Repair Regen 2021; 29:881-898. [PMID: 34536049 DOI: 10.1111/wrr.12963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Chronic wounds are a significant health problem worldwide. However, nothing is known about how chronic wounds initiate and develop. Here we use a chronic wound model in diabetic mice and a Systems Biology Approach using nanoString nCounter technology and weighted gene correlation network analysis (WGCNA), with tissues collected at 6, 12, 24 and 48 h post-wounding, to identify metabolic signalling pathways involved in initiation of chronicity. Normalized counts obtained from the nanoString nCounter Mouse Metabolic Panel were used for the WGCNA, which groups genes into co-expression modules to visualize the correlation network. Genes with significant module membership and gene trait significance (p < 0.05) were used to identify signalling pathways that are important for the development of chronicity. The pathway analysis using the Reactome database showed stabilization of PTEN, which down-regulates PI3K/AKT1, which in turn down-regulates Nrf2, as shown by ELISA, thus disabling antioxidant production, resulting in high oxidative stress levels. We find that pathways involved in inflammation, including those that generate pro-inflammatory lipids derived from arachidonic acid metabolism, IFNγ and catecholamines, occur. Moreover, HIF3α is over-expressed, potentially blocking Hif1α and preventing activation of growth factors and cytokines that promote granulation tissue formation. We also find that FGF1 is under-expressed, while thrombospondin-1 is over-expressed, resulting in decreased angiogenesis, a process that is critical for healing. Finally, enzymes involved in glycolysis are down-regulated, resulting in decreased production of pyruvate, a molecule critical for ATP production, leading to extensive cell death and wound paralysis. These findings offer new avenues of study that may lead to the development of novel treatments of CW to be administered right after debridement.
Collapse
Affiliation(s)
- Proma Basu
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Jane Hannah Kim
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Shayan Saeed
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | | |
Collapse
|
88
|
Solly EL, Psaltis PJ, Bursill CA, Tan JTM. The Role of miR-181c in Mechanisms of Diabetes-Impaired Angiogenesis: An Emerging Therapeutic Target for Diabetic Vascular Complications. Front Pharmacol 2021; 12:718679. [PMID: 34483928 PMCID: PMC8414254 DOI: 10.3389/fphar.2021.718679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.
Collapse
Affiliation(s)
- Emma L Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
89
|
Shaabani E, Sharifiaghdam M, Lammens J, De Keersmaecker H, Vervaet C, De Beer T, Motevaseli E, Ghahremani MH, Mansouri P, De Smedt S, Raemdonck K, Faridi-Majidi R, Braeckmans K, Fraire JC. Increasing Angiogenesis Factors in Hypoxic Diabetic Wound Conditions by siRNA Delivery: Additive Effect of LbL-Gold Nanocarriers and Desloratadine-Induced Lysosomal Escape. Int J Mol Sci 2021; 22:9216. [PMID: 34502144 PMCID: PMC8431033 DOI: 10.3390/ijms22179216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Impaired wound healing in people with diabetes has multifactorial causes, with insufficient neovascularization being one of the most important. Hypoxia-inducible factor-1 (HIF-1) plays a central role in the hypoxia-induced response by activating angiogenesis factors. As its activity is under precise regulatory control of prolyl-hydroxylase domain 2 (PHD-2), downregulation of PHD-2 by small interfering RNA (siRNA) could stabilize HIF-1α and, therefore, upregulate the expression of pro-angiogenic factors as well. Intracellular delivery of siRNA can be achieved with nanocarriers that must fulfill several requirements, including high stability, low toxicity, and high transfection efficiency. Here, we designed and compared the performance of layer-by-layer self-assembled siRNA-loaded gold nanoparticles with two different outer layers-Chitosan (AuNP@CS) and Poly L-arginine (AuNP@PLA). Although both formulations have exactly the same core, we find that a PLA outer layer improves the endosomal escape of siRNA, and therefore, transfection efficiency, after endocytic uptake in NIH-3T3 cells. Furthermore, we found that endosomal escape of AuNP@PLA could be improved further when cells were additionally treated with desloratadine, thus outperforming commercial reagents such as Lipofectamine® and jetPRIME®. AuNP@PLA in combination with desloratadine was proven to induce PHD-2 silencing in fibroblasts, allowing upregulation of pro-angiogenic pathways. This finding in an in vitro context constitutes a first step towards improving diabetic wound healing with siRNA therapy.
Collapse
Affiliation(s)
- Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (J.L.); (C.V.)
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (J.L.); (C.V.)
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran;
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran;
| | - Parvin Mansouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran;
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Juan C. Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
| |
Collapse
|
90
|
Ciminera AK, Shuck SC, Termini J. Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance 2021; 4:4/10/e202101159. [PMID: 34426491 PMCID: PMC8385305 DOI: 10.26508/lsa.202101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Exposure to chronic, elevated glucose inhibits nucleotide excision repair, which leads to accumulation of DNA glycation adducts, increased DNA strand breaks, and activation of the DNA damage response. We investigated potential mechanisms by which elevated glucose may promote genomic instability. Gene expression studies, protein measurements, mass spectroscopic analyses, and functional assays revealed that elevated glucose inhibited the nucleotide excision repair (NER) pathway, promoted DNA strand breaks, and increased levels of the DNA glycation adduct N2-(1-carboxyethyl)-2ʹ-deoxyguanosine (CEdG). Glycation stress in NER-competent cells yielded single-strand breaks accompanied by ATR activation, γH2AX induction, and enhanced non-homologous end-joining and homology-directed repair. In NER-deficient cells, glycation stress activated ATM/ATR/H2AX, consistent with double-strand break formation. Elevated glucose inhibited DNA repair by attenuating hypoxia-inducible factor-1α–mediated transcription of NER genes via enhanced 2-ketoglutarate–dependent prolyl hydroxylase (PHD) activity. PHD inhibition enhanced transcription of NER genes and facilitated CEdG repair. These results are consistent with a role for hyperglycemia in promoting genomic instability as a potential mechanism for increasing cancer risk in metabolic disease. Because of the pleiotropic functions of many NER genes beyond DNA repair, these results may have broader implications for cellular pathophysiology.
Collapse
Affiliation(s)
- Alexandra K Ciminera
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA.,Irell and Manella Graduate School of Biomedical Sciences, City of Hope, Duarte, CA, USA
| | - Sarah C Shuck
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA
| |
Collapse
|
91
|
Paskal W, Kopka M, Stachura A, Paskal AM, Pietruski P, Pełka K, Woessner AE, Quinn KP, Galus R, Wejman J, Włodarski P. Single Dose of N-Acetylcysteine in Local Anesthesia Increases Expression of HIF1α, MAPK1, TGFβ1 and Growth Factors in Rat Wound Healing. Int J Mol Sci 2021; 22:8659. [PMID: 34445365 PMCID: PMC8395485 DOI: 10.3390/ijms22168659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, we aimed to investigate the influence of N-acetylcysteine (NAC) on the gene expression profile, neoangiogenesis, neutrophils and macrophages in a rat model of incisional wounds. Before creating wounds on the backs of 24 Sprague-Dawley rats, intradermal injections were made. Lidocaine-epinephrin solutions were supplemented with 0.015%, 0.03% or 0.045% solutions of NAC, or nothing (control group). Scars were harvested on the 3rd, 7th, 14th and 60th day post-surgery. We performed immunohistochemical staining in order to visualize macrophages (anti-CD68), neutrophils (anti-MPO) and newly formed blood vessels (anti-CD31). Additionally, RT-qPCR was used to measure the relative expression of 88 genes involved in the wound healing process. On the 14th day, the number of cells stained with anti-CD68 and anti-CD31 antibodies was significantly larger in the tissues treated with 0.03% NAC compared with the control. Among the selected genes, 52 were upregulated and six were downregulated at different time points. Interestingly, NAC exerted a significant effect on the expression of 45 genes 60 days after its administration. In summation, a 0.03% NAC addition to the pre-incisional anesthetic solution improves neovasculature and increases the macrophages' concentration at the wound site on the 14th day, as well as altering the expression of numerous genes that are responsible for the regenerative processes.
Collapse
Affiliation(s)
- Wiktor Paskal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Michał Kopka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Albert Stachura
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adriana M. Paskal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Piotr Pietruski
- Centre of Postgraduate Medical Education, Department of Replantation and Reconstructive Surgery, Gruca Teaching Hospital, 05-400 Otwock, Poland;
| | - Kacper Pełka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.E.W.); (K.P.Q.)
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.E.W.); (K.P.Q.)
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Jarosław Wejman
- Department of Pathology, Centre of Postgraduate Medical Education, 00-416 Warsaw, Poland;
| | - Paweł Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| |
Collapse
|
92
|
Okan A, Doğanyiğit Z, Eroğlu E, Akyüz E, Demir N. Immunoreactive definition of TNF- α, HIF-1 α, Kir6.2, Kir3.1 and M2 muscarinic receptor for cardiac and pancreatic tissues in a mouse model for type 1 diabetes. Life Sci 2021; 284:119886. [PMID: 34389402 DOI: 10.1016/j.lfs.2021.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Aslı Okan
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Ece Eroğlu
- School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Enes Akyüz
- Department of Biophysics, School of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya 07070, Turkey.
| |
Collapse
|
93
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
94
|
Matoori S, Veves A, Mooney DJ. Advanced bandages for diabetic wound healing. Sci Transl Med 2021; 13:13/585/eabe4839. [PMID: 33731435 DOI: 10.1126/scitranslmed.abe4839] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Current treatment options for foot ulcers, a serious and prevalent complication of diabetes, remain nonspecific. In this Perspective, we present recent advances in understanding the pathophysiology of diabetic wound healing and the emergence of previously unidentified targets. We discuss wound dressings tailored to the diabetic wound environment currently under development.
Collapse
Affiliation(s)
- Simon Matoori
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
95
|
Dallner G, Bentinger M, Hussain S, Sinha I, Yang J, Schwank-Xu C, Zheng X, Swiezewska E, Brismar K, Valladolid-Acebes I, Tekle M. Dehydro-Tocotrienol-β Counteracts Oxidative-Stress-Induced Diabetes Complications in db/db Mice. Antioxidants (Basel) 2021; 10:antiox10071070. [PMID: 34356303 PMCID: PMC8301068 DOI: 10.3390/antiox10071070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/05/2023] Open
Abstract
Hyperglycemia, hyperlipidemia, and adiposity are the main factors that cause inflammation in type 2 diabetes due to excessive ROS production, leading to late complications. To counteract the effects of increased free radical production, we searched for a compound with effective antioxidant properties that can induce coenzyme Q biosynthesis without affecting normal cellular functions. Tocotrienols are members of the vitamin E family, well-known as efficient antioxidants that are more effective than tocopherols. Deh-T3β is a modified form of the naturally occurring tocotrienol-β. The synthesis of this compound involves the sequential modification of geranylgeraniol. In this study, we investigated the effects of this compound in different experimental models of diabetes complications. Deh-T3β was found to possess multifaceted capacities. In addition to enhanced wound healing, deh-T3β improved kidney and liver functions, reduced liver steatosis, and improved heart recovery after ischemia and insulin sensitivity in adipose tissue in a mice model of type 2 diabetes. Deh-T3β exerts these positive effects in several organs of the diabetic mice without reducing the non-fasting blood glucose levels, suggesting that both its antioxidant properties and improvement in mitochondrial function are involved, which are central to reducing diabetes complications.
Collapse
Affiliation(s)
- Gustav Dallner
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Magnus Bentinger
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-41345 Gothenburg, Sweden;
- Department of Medicine, Division of Cardiology, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Jiangning Yang
- Department of Medicine, Division of Cardiology, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Cheng Schwank-Xu
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Xiaowei Zheng
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02-106 Warsaw, Poland;
| | - Kerstin Brismar
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Ismael Valladolid-Acebes
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Michael Tekle
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
- Department of Clinical Pharmacology, Karolinska University Hospital, SE-17177 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
96
|
Li G, Ko CN, Li D, Yang C, Wang W, Yang GJ, Di Primo C, Wong VKW, Xiang Y, Lin L, Ma DL, Leung CH. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing. Nat Commun 2021; 12:3363. [PMID: 34099651 PMCID: PMC8184911 DOI: 10.1038/s41467-021-23448-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Impaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL-HIF-1α interaction. Furthermore, the compound accumulates HIF-1α levels in cellulo and activates HIF-1α mediated gene expression, including VEGF, GLUT1, and EPO. In in vivo mouse models, the compound significantly accelerates wound closure in both normal and diabetic mice, with a greater effect being observed in the diabetic group. We also demonstrate that HIF-1α driven genes related to wound healing (i.e. HSP-90, VEGFR-1, SDF-1, SCF, and Tie-2) are increased in the wound tissue of 1a-treated diabetic mice (including, db/db, HFD/STZ and STZ models). Our study demonstrates a small molecule stabilizer of HIF-1α as a promising therapeutic agent for wound healing, and, more importantly, validates the feasibility of treating diabetic wounds by blocking the VHL and HIF-1α interaction.
Collapse
Grants
- This work is supported by Hong Kong Baptist University (FRG2/15-16/002), the Health and Medical Research Fund (HMRF/14130522), the Research Grants Council (HKBU/201811, HKBU/204612 and HKBU/201913), the French Agence Nationale de la Recherche/Research Grants Council Joint Research Scheme (AHKBU201/12; Oligoswitch ANR-12-IS07-0001), the National Natural Science Foundation of China (21575121 and 81872754), the Guangdong Province Natural Science Foundation (2015A030313816), the Hong Kong Baptist University Century Club Sponsorship Scheme 2016, the Interdisciplinary Research Matching Scheme (RC-IRMS/14-15/06), the Science and Technology Development Fund, Macao SAR (0072/2018/A2 and 102/2017/A), the University of Macau (MYRG2016-00151-ICMS-QRCM, MYRG2017-00109-ICMS and MYRG2018-00187-ICMS).
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Carmelo Di Primo
- Laboratoire ARNA, University of Bordeaux, Bordeaux, France
- INSERM U1212, CNRS UMR 5320, IECB, Pessac, France
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yaozu Xiang
- Shanghai East Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
97
|
Ye Y, Chen Y, Sun J, Zhang H, Meng Y, Li W, Wang W. Hyperglycemia suppresses the regulatory effect of hypoxia-inducible factor-1α in pulmonary Aspergillus fumigatus infection. Pathog Dis 2021; 78:5873010. [PMID: 32678442 DOI: 10.1093/femspd/ftaa038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus is one of the most common fungal infections involved in the pulmonary diseases. Hypoxia-inducible factor-1α (HIF-1α) is important for antifungal immunity. Diabetes is a risk factor of pulmonary A. fumigatus infection and could affect the expression of HIF-1α. The aim of this investigation was to evaluate the role of HIF-1α in pulmonary A. fumigatus infection in diabetes. In murine model, we found diabetic mice had aggravated pulmonary A. fumigatus infection and declined expression of HIF-1α following pulmonary A. fumigatus infection. And these changes could be corrected by dimethyloxalylglycine (DMOG), the agonist of HIF-1α. In cell experiment, after A. fumigatus stimulation, hyperglycemic state was with a decreased HIF-1α expression and increased NLRP3/IL-1β signal pathway. The percentages of Th1 and Treg cells decreased, while percentages of Th2 and Th17 increased in hyperglycemic group. DMOG suppressed A. fumigatus-stimulated NLRP3 and IL-1β expressions in hyperglycemic group and corrected Th and Treg cells differentiation. These regulatory effects of DMOG could be dampened by activating of NLRP3. These data indicated that hyperglycemia suppressed the regulatory effect of HIF-1α in pulmonary A. fumigatus infection, which can affect Th and Treg cells differentiation by regulating the NLRP3/IL-1β signal pathway.
Collapse
Affiliation(s)
- Yao Ye
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Yu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Jianjun Sun
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Hanyin Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Yanling Meng
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Wenyang Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, 110000, China
| |
Collapse
|
98
|
Chang KH, Shoureshi P, Lay F, Sebastian R, Alikhassy Habibabady Z, Born LJ, Marti GP, Meltzer SJ, Abraham JM, Harmon JW. Preconditioning of surgical pedicle flaps with DNA plasmid expressing hypoxia-inducible factor-1α (HIF-1α) promotes tissue viability. Gene Ther 2021; 28:319-328. [PMID: 33024315 DOI: 10.1038/s41434-020-00199-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/05/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023]
Abstract
Ischemic necrosis of surgical flaps after reconstruction is a major clinical problem. Hypoxia-inducible factor-1α (HIF-1α) is considered the master regulator of the adaptive response to hypoxia. Among its many properties, it regulates the expression of genes encoding angiogenic growth factors, which have a short half-life in vivo. To achieve a continuous application of the therapeutic, we utilized DNA plasmid delivery. Transcription of the DNA plasmid confirmed by qRT-PCR showed significantly increased mRNA for HIF-1α in the transfected tissue compared to saline control tissue. Rats were preconditioned by injecting with either HIF-1α DNA plasmid or saline intradermally in the designated flap region on each flank. Seven days after preconditioning, each rat had two isolated pedicle flaps raised with a sterile silicone sheet implanted between the skin flap and muscle layer. The flaps preconditioned with HIF-1α DNA plasmid had significantly less necrotic area. Angiogenesis measured by CD31 staining showed a significant increase in the number of vessels per high powered field in the HIF-1α group (p < 0.05). Our findings offer a potential therapeutic strategy for significantly promoting the viability of surgical pedicle flaps by ischemic preconditioning with HIF-1α DNA plasmid.
Collapse
Affiliation(s)
- Kai-Hua Chang
- Hendrix burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Pouria Shoureshi
- Hendrix burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank Lay
- Hendrix burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raul Sebastian
- Department of Surgery, George Washington University School of Medicine and Health Science, Washington, DC, USA
| | | | - Louis J Born
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Guy P Marti
- Hendrix burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Clinique Saint Jean l'Ermitage, Melun, France
| | - Stephen J Meltzer
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John M Abraham
- Hendrix burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John W Harmon
- Hendrix burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
99
|
Raghunathan V, Park SA, Shah NM, Reilly CM, Teixeira L, Dubielzig R, Chang YR, Motta MJ, Schurr MJ, McAnulty JF, Isseroff RR, Abbott NL, Murphy CJ. Changing the Wound: Covalent Immobilization of the Epidermal Growth Factor. ACS Biomater Sci Eng 2021; 7:2649-2660. [PMID: 34018720 DOI: 10.1021/acsbiomaterials.1c00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Re-epithelialization of wounds is a critical element of wound closure. Growth factors have been used in combination with conventional wound management to promote closure, but the method of delivery has been limited to the topical application of ointment formulations. Cytoactive factors delivered in this way have short resident times in wounds and have met with limited success. Here, we demonstrate that methods used to covalently immobilize proteins on synthetic materials can be extended to immobilize cytoactive factors such as the epidermal growth factor (EGF) onto the wound beds of genetically diabetic mice that exhibit impaired healing. Full-thickness splinted excisional wounds were created in diabetic (db/db) mice with a well-defined silicone splint to limit wound contracture. Wound surfaces were treated with a reducing agent to expose sulfhydryl groups and subsequently treated with EGF modified with a heterobifunctional crosslinker. This allowed for the covalent immobilization of the EGF to the wound surface. The conjugation chemistry was validated in vitro and in vivo. In a separate group of mice, wounds were topically treated twice daily with soluble EGF. The mice were evaluated over 11 days for wound closure. This covalent immobilization strategy resulted in EGF being retained on the wound surface for 2 days and significantly increased epithelial wound closure by 20% compared to wounds treated with topical EGF or topical vehicle. Covalent immobilization was not only therapeutically effective but also delivered a markedly reduced load of growth factor to the wound surface compared to topical application (when only 180 ng of EGF was immobilized onto the wound surface in comparison with 7200 ng of topically applied EGF over a period of 11 days). No adverse effects were observed in treated wounds. Results obtained provide proof of concept for the effectiveness of covalent immobilization in the treatment of dysregulated wounds. The covalent immobilization of cytoactive factors represents a potentially transformative approach to the management of difficult chronic wounds.
Collapse
Affiliation(s)
- VijayKrishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, United States.,Department of Basic Sciences, College of Optometry, University of Houston, 4901 Calhoun Rd, Houston, Texas 77204, United States.,Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, United States
| | - Shin Ae Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Nihar M Shah
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, United States.,Medtronic Diabetes, 18000 Devonshire Street, Northridge, California 91325-1219, United States
| | - Christopher M Reilly
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Leandro Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Richard Dubielzig
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yow-Ren Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Monica J Motta
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Michael J Schurr
- Divison of General Surgery, Mountain Area Health Education Center, 509 Biltmore Avenue, Asheville, North Carolina 28803, United States
| | - Jonathan F McAnulty
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, Wisconsin 53706, United States
| | - R Rivkah Isseroff
- Department of Dermatology, UC Davis School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Hoy Plaza, Ithaca, New York 14853 United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, United States.,Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, One Shields Avenue, Davis, California 95817, United States
| |
Collapse
|
100
|
Du R, Zhao J, Wen Y, Zhu Y, Jiang L. Deferoxamine enhances the migration of dental pulp cells via hypoxia-inducible factor 1α. Am J Transl Res 2021; 13:4780-4787. [PMID: 34150058 PMCID: PMC8205705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
In previous studies, we found that deferoxamine (DFO) improved the migration of dental pulp cells (DPCs). The present study aimed to determine whether the effects of DFO on the migration of DPCs were regulated via hypoxia-inducible factor 1α (HIF-1α). Recombinant adenovirus vectors carrying short hairpin RNA (shRNA) targeting the human HIF-1α gene (pAd-GFP-shRNA-HIF-1α) and green fluorescent protein (GFP) were constructed. The expression of HIF-1α was inhibited by pAd-GFP-shRNA-HIF-1α at messenger RNA and protein levels. The secretion of stromal cell-derived factor 1α (SDF-1α) or vascular endothelial growth factor (VEGF) in DPCs treated with 10 μM DFO was higher than that in the control condition. The migration of DPCs was enhanced by 10 μM DFO. However, the effects of DFO on DPCs were partially reversed by silencing the HIF-1α gene in enzyme-linked immunosorbent assay or migration assay. Cumulatively, we conclude that DFO upregulated the secretion of SDF-1α or VEGF in DPCs and improved the migration of DPCs through HIF-1α.
Collapse
Affiliation(s)
- Rong Du
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Junjun Zhao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Yang Wen
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Yaqin Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Long Jiang
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai, China
| |
Collapse
|