51
|
Sun M, Liu Y, Tang S, Li Y, Zhang R, Mao L. Characterization of Intestinal Flora in Osteoporosis Patients Based on 16S rDNA Sequencing. Int J Gen Med 2024; 17:4311-4324. [PMID: 39346630 PMCID: PMC11430314 DOI: 10.2147/ijgm.s468654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Aim This study investigated differences in gut flora between osteoporosis (OP) patients and healthy individuals using 16S rDNA sequencing. The correlation between differential flora abundance and bone mineral density (BMD) was analyzed, and key flora and potential mechanisms associated with OP were explored. Methods Forty-three OP patients and twenty-four healthy volunteers were recruited. Gender, age, height, weight, and BMD data were collected. DNA from fecal samples was extracted for 16S rDNA sequencing. The Kruskal-Wallis test assessed differences in gut flora composition, while LEfSe analysis identified significant flora. Spearman correlation analysis examined the relationship between differential flora and BMD, and PICRUSt predicted pathways involved in OP. Results Significant differences in microbial composition were found between the two groups. Klebsiella, Escherichia-Shigella, and Akkermansia were biomarkers in OP patients, with Faecalibacterium in the healthy group. Akkermansia abundance negatively correlated with lumbar BMD, while Klebsiella and Escherichia-Shigella negatively correlated with femoral neck and hip BMD. Faecalibacterium showed a positive correlation with BMD. Functional predictions indicated differences in metabolism-related pathways between the groups. Conclusion Gut flora differed significantly between OP patients and healthy individuals. Akkermansia, Klebsiella, and Escherichia-Shigella could serve as diagnostic biomarkers for OP, highlighting the potential of gut flora in OP diagnosis and treatment.
Collapse
Affiliation(s)
- Mengyue Sun
- Department of Geratology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Shan Tang
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Yiming Li
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Ridong Zhang
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| |
Collapse
|
52
|
Hu F, Gao Q, Zheng C, Zhang W, Yang Z, Wang S, Zhang Y, Lu T. Encapsulated lactiplantibacillus plantarum improves Alzheimer's symptoms in APP/PS1 mice. J Nanobiotechnology 2024; 22:582. [PMID: 39304919 PMCID: PMC11414319 DOI: 10.1186/s12951-024-02862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that can result in neurotoxicity and an imbalance in gut microbiota. Probiotics have been shown to play an important role in regulating the gut microbiota, but their viability and bioactivity are often compromised as they traverse the gastrointestinal tract, thereby reducing their efficacy and limiting their clinical utility. RESULTS In this work, layer-by-layer (LbL) encapsulation technology was used to encapsulate Lactiplantibacillus plantarum (LP) to improve the above shortcomings. Studies in APPswe/PS1dE9 (APP/PS1) transgenic mice show that LbL-encapsulated LP ((CS/SP)2-LP) protects LP from gastrointestinal damage while (CS/SP)2-LP treatment It improves brain neuroinflammation and neuronal damage in AD mice, reduces Aβ deposition, improves tau protein phosphorylation levels, and restores intestinal barrier damage in AD mice. In addition, post-synaptic density protein 95 (PSD-95) expression increased in AD mice after treatment, indicating enhanced synaptic plasticity. Fecal metabolomic and microbiological analyzes showed that the disordered intestinal microbiota composition of AD mice was restored and short-chain fatty acids (SCFAs) levels were significantly increased after (CS/SP)2-LP treatment. CONCLUSION Overall, the above evidence suggests that (CS/SP)2-LP can improve AD symptoms by restoring the balance of intestinal microbiota, and (CS/SP)2-LP treatment will provide a new method to improve the symptoms of AD patients.
Collapse
Affiliation(s)
- Fangfang Hu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qian Gao
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Caiyun Zheng
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wenhui Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziyi Yang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shihao Wang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yanni Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Tingli Lu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
53
|
Lou J, Zhang B, Zheng Y, Liu M, Qu Y. Hawthorn pectin plays a protective role in myocardial ischaemia by regulating intestinal flora and short chain fatty acids. Curr Res Food Sci 2024; 9:100863. [PMID: 39416365 PMCID: PMC11480239 DOI: 10.1016/j.crfs.2024.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Studies have shown that there is a close relationship between acute myocardial ischaemia (AMI) and intestinal flora imbalance. And pectin has a protective effect on AMI and regulates intestinal flora. Raw hawthorn pectin from hawthorn (RHP) is high methoxyl pectin, which is able to protect injury induced by AMI. After stir-frying of hawthorn, pectin from stir-fried hawthorn (FHP) transformed to low methoxyl pectin, the protective mechanisms against AMI is not well-understood. In this study, the protective effects of RHP and FHP against AMI rats were explored. The results revealed that FHP regulated myocardial enzymes including CK, CK-MB and CTn-1, oxidative stress-related indicator SOD more significantly than RHP. According to the determination of proportion of different kinds of short-chain fatty acids (SCFAs) and abundance of microbiota producing SCFAs, it was speculated that RHP and FHP were fermented by these microbiota. RHP increased the proportion of acetic acid and butyric acid, while FHP increased the proportion of acetic acid in feces. Pretreatment with RHP and FHP enriched the beneficial microbiota and maintained the levels of SCFAs, which significantly increased after modeling. These results revealed that RHP and FHP played a protective role in myocardial ischaemia by regulating intestinal flora and SCFAs.
Collapse
Affiliation(s)
| | | | - Yu Zheng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China
| | - Meiqi Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China
| | - Yang Qu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China
| |
Collapse
|
54
|
Song Q, Zou J, Li D, Cheng SW, Li KLS, Yang X, Shaw PC, Zuo Z. Gastrointestinal metabolism of Astragalus membranaceus polysaccharides and its related hypoglycemic mechanism based on gut microbial transformation. Int J Biol Macromol 2024; 280:135847. [PMID: 39307509 DOI: 10.1016/j.ijbiomac.2024.135847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Astragalus membranaceus polysaccharides (AMP) was reported to exhibit hypoglycemic potential in diabetic host. However, the metabolic fate of AMP in gastrointestinal tract and its underlying hypoglycemic mechanisms remained unclear. Our current study aimed to reveal the structure alteration of AMP in gastrointestinal tract and its hypoglycemic mechanism from the perspective of microbial transformation. Caco-2 monolayer cell model revealed that AMP exhibited poor intestinal absorption. The in-vitro digestion and fermentation study revealed that AMP remained intact after gastrointestinal digestion while it could be degraded and utilized by gut microbiota with increased SCFA formation and decreased levels of all the monosaccharides in AMP except for mannose. Additionally, diversity of gut microbiota was improved with the increased abundance of Dubosiella and Monoglobus and decreased abundance of Escherichia-Shigella and Acinetobacter after fermentation of AMP. Further hypoglycemic mechanism study for the first time revealed that both AMP and its potential microbial metabolites, SCFA salt mixture, could enhance intestinal integrity significantly on LPS induced Caco-2 cell model, while only SCFA salt mixture rather than AMP could significantly stimulate GLP-1 secretion in NCI-H716 cell model possibly via promoting GPCR43 expression. Such findings provided insights into the hypoglycemic mechanism of AMP from the perspective of microbial transformation.
Collapse
Affiliation(s)
- Qianbo Song
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | - Junju Zou
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, PR China
| | - Dan Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | - Sau Wan Cheng
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong; School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kendra Lam Sek Li
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong
| | - Pang Chui Shaw
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong; School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Zhong Zuo
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
55
|
Lin WC, Hoe BC, Li X, Lian D, Zeng X. Glucose Metabolism-Modifying Natural Materials for Potential Feed Additive Development. Pharmaceutics 2024; 16:1208. [PMID: 39339244 PMCID: PMC11435105 DOI: 10.3390/pharmaceutics16091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glucose, a primary energy source derived from animals' feed ration, is crucial for their growth, production performance, and health. However, challenges such as metabolic stress, oxidative stress, inflammation, and gut microbiota disruption during animal production practices can potentially impair animal glucose metabolism pathways. Phytochemicals, probiotics, prebiotics, and trace minerals are known to change the molecular pathway of insulin-dependent glucose metabolism and improve glucose uptake in rodent and cell models. These compounds, commonly used as animal feed additives, have been well studied for their ability to promote various aspects of growth and health. However, their specific effects on glucose uptake modulation have not been thoroughly explored. This article focuses on glucose metabolism is on discovering alternative non-pharmacological treatments for diabetes in humans, which could have significant implications for developing feed additives that enhance animal performance by promoting insulin-dependent glucose metabolism. This article also aims to provide information about natural materials that impact glucose uptake and to explore their potential use as non-antibiotic feed additives to promote animal health and production. Further exploration of this topic and the materials involved could provide a basis for new product development and innovation in animal nutrition.
Collapse
Affiliation(s)
- Wei-Chih Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Boon-Chin Hoe
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xianming Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Daizheng Lian
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
56
|
Munley JA, Park G, Kelly LS, Kannan KB, Mankowski RT, Casadesus G, Chakrabarty P, Wallet SM, Maile R, Bible LE, Wang B, Moldawer LL, Mohr AM, Nagpal R, Efron PA. Persistence and Sexual Dimorphism of Gut Dysbiosis and Pathobiome after Sepsis and Trauma. Ann Surg 2024; 280:491-503. [PMID: 38864230 PMCID: PMC11392637 DOI: 10.1097/sla.0000000000006385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To evaluate the persistence of intestinal microbiome dysbiosis and gut-plasma metabolomic perturbations following severe trauma or sepsis weeks after admission in patients experiencing chronic critical illness (CCI). SUMMARY Trauma and sepsis can lead to gut dysbiosis and alterations in the plasma and fecal metabolome. However, the impact of these perturbations and correlations between gut dysbiosis and the plasma metabolome in chronic critical illness have not been studied. METHODS A prospective observational cohort study was performed with healthy subjects, severe trauma patients, and patients with sepsis residing in an intensive care unit for 2 to 3 weeks. A high-throughput multi-omics approach was utilized to evaluate the gut microbial and gut-plasma metabolite responses in critically ill trauma and sepsis patients 14 to 21 days after intensive care unit admission. RESULTS Patients in the sepsis and trauma cohorts demonstrated strikingly depleted gut microbiome diversity, with significant alterations and specific pathobiome patterns in the microbiota composition compared to healthy subjects. Further subgroup analyses based on sex revealed resistance to changes in microbiome diversity among female trauma patients compared to healthy counterparts. Sex--specific changes in fecal metabolites were also observed after trauma and sepsis, while plasma metabolite changes were similar in both males and females. CONCLUSIONS Dysbiosis induced by trauma and sepsis persists up to 14 to 21 days after onset and is sex-specific, underscoring the implication of pathobiome and entero-septic microbial-metabolite perturbations in post-sepsis and posttrauma chronic critical illness. This indicates resilience to infection or injury in females' microbiome and should inform and facilitate future precision/personalized medicine strategies in the intensive care unit.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, U.S.A
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Robert T. Mankowski
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama, Birmingham, Alabama, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Shannon M. Wallet
- Department of Oral Biology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Robert Maile
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
57
|
Zhu H, Gu B, Zhao D, Ma Y, Mehmood MA, Li Y, Yang K, Wang Y, He M, Zheng J, Wang N. Wuliangye strong aroma baijiu promotes intestinal homeostasis by improving gut microbiota and regulating intestinal stem cell proliferation and differentiation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7417-7428. [PMID: 38760970 DOI: 10.1002/jsfa.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Wuliangye strong aroma baijiu (hereafter, Wuliangye baijiu) is a traditional Chinese grain liquor containing short-chain fatty acids, ethyl caproate, ethyl lactate, other trace components, and a large proportion of ethanol. The effects of Wuliangye baijiu on intestinal stem cells and intestinal epithelial development have not been elucidated. Here, the role of Wuliangye baijiu in intestinal epithelial regeneration and gut microbiota modulation was investigated by administering a Lieber-DeCarli chronic ethanol liquid diet in a mouse model to mimic long-term (8 weeks') light/moderate alcohol consumption (1.6 g kg-1 day-1) in healthy human adults. RESULTS Wuliangye baijiu promoted colonic crypt proliferation in mice. According to immunofluorescence and reverse transcription-quantitative polymerase chain reaction analyses, compared with the ethanol-only treatment, Wuliangye baijiu increased the number of intestinal stem cells and goblet cells and the expression of enteroendocrine cell differentiation markers in the mouse colon. Furthermore, gut microbiota analysis showed an increase in the relative abundance of microbiota related to intestinal homeostasis following Wuliangye baijiu administration. Notably, increased abundance of Bacteroidota, Faecalibaculum, Lachnospiraceae, and Blautia may play an essential role in promoting stem-cell-mediated intestinal epithelial development and maintaining intestinal homeostasis. CONCLUSIONS In summary, these findings suggest that Wuliangye baijiu can be used to regulate intestinal stem cell proliferation and differentiation in mice and to alter gut microbiota distributions, thereby promoting intestinal homeostasis. This research elucidates the mechanism by which Wuliangye baijiu promotes intestinal health. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
- Wuliangye Group Co., Ltd., Yibin, China
| | - Baoxiang Gu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Dong Zhao
- Wuliangye Group Co., Ltd., Yibin, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yuzhu Li
- Wuliangye Group Co., Ltd., Yibin, China
| | | | | | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Jia Zheng
- Wuliangye Group Co., Ltd., Yibin, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| |
Collapse
|
58
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
59
|
Wang M, Zhu Z, Wu X, Cheong K, Li X, Yu W, Yao Y, Wu J, Cao Z. Bioactive Polysaccharides from Gracilaria lemaneiformis: Preparation, Structures, and Therapeutic Insights. Foods 2024; 13:2782. [PMID: 39272547 PMCID: PMC11395005 DOI: 10.3390/foods13172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Gracilaria lamaneiformis, a red seaweed, is an abundant source of bioactive polysaccharides with significant health-promoting properties. Nevertheless, the broad application of G. lamaneiformis in the nutraceutical and pharmaceutical sectors remains constrained due to the absence of comprehensive data. This review provides a detailed examination of the preparation methods, structural characteristics, and biological activities of G. lamaneiformis polysaccharides (GLPs). We explore both conventional and advanced extraction techniques, highlighting the efficiency and yield improvements achieved through methods such as microwave-, ultrasonic-, and enzyme-assisted extraction. The structural elucidation of GLPs using modern analytical techniques, including high-performance liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy, is discussed, providing comprehensive insights into their molecular composition and configuration. Furthermore, we critically evaluate the diverse biological activities of GLPs, including their antioxidant, anti-inflammatory, antitumor, and gut microbiota modulation properties. This review underscores the therapeutic potential of GLPs and suggests future research directions to fully harness their health benefits.
Collapse
Affiliation(s)
- Min Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaocheng Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kitleong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohua Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wanli Yu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinlin Yao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiang Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhanhui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
60
|
Li D, Si X, Hua Y, Qian Y, Li H, Lv N, Fang Q, Han X, Xu T. Tongbian formula alleviates slow transit constipation by increasing intestinal butyric acid to activate the 5-HT signaling. Sci Rep 2024; 14:17951. [PMID: 39095450 PMCID: PMC11297216 DOI: 10.1038/s41598-024-68473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Slow transit constipation (STC) is a long-lasting and prevalent intestinal condition, marked by hard, dry feces. The primary cause of STC may be attributed to an imbalance in the gut's microbial community and alterations in its metabolic byproducts. Tongbian formula (TB), a traditional Chinese medicinal formula, has been used to treat STC and shows a great effect on relieving constipation. The role of TB in regulating intestinal microbiota has not been fully elucidated. Herein, we investigated the potential effect of TB on gut microbiota and further explored the potential mechanism behind its effects. Our study demonstrated that TB significantly increased fecal water content and intestinal ink propulsion rate in loperamide (Lope)-induced STC rats. 5-HT signaling was suppressed in STC colon tissue, and the abundance of butyric acid (BA) in colonic contents was significantly down-regulated after Lope treatment. Notably, TB administration led to the restoration of microbial dysbiosis and the up-regulation of BA content, subsequently activating 5-HT signaling pathways. When BA was combined with a tryptophan hydroxylase-1 (TPH1) inhibitor, which is crucial for 5-HT synthesis, its therapeutic efficacy for treating STC was compromised. TB alleviates STC by reversing the intestinal microbiota imbalance and activating the 5-HT signaling in the colon through increasing BA levels. These findings suggest that TB is an ideal candidate for STC treatment.
Collapse
Affiliation(s)
- Dongna Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Xianghuan Si
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yuanqing Hua
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yunzhi Qian
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongjia Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Na Lv
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Qijun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xiaojuan Han
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School,, Nanjing, 210008, China.
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
61
|
Yang T, Wu C, Li Y, Wang C, Mao Z, Huo W, Li J, Li Y, Xing W, Li L. Association of short-chain fatty acids and the gut microbiome with type 2 diabetes: Evidence from the Henan Rural Cohort. Nutr Metab Cardiovasc Dis 2024; 34:1619-1630. [PMID: 38653672 DOI: 10.1016/j.numecd.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Human studies about short-chain fatty acids (SCFAs), the gut microbiome, and Type 2 diabetes (T2DM) are limited. Here we explored the association between SCFAs and T2DM and the effects of gut microbial diversity on glucose status in rural populations. METHODS AND RESULTS We performed a cross-sectional study from the Henan Rural Cohort and collected stool samples. Gut microbiota composition and faecal SCFA concentrations were measured by 16S rRNA and GC-MS. The population was divided based on the tertiles of SCFAs, and logistic regression models assessed the relationship between SCFAs and T2DM. Generalized linear models tested the interactions between SCFAs and gut microbial diversity on glucose indicators (glucose, HbAlc and insulin). Compared to the lowest tertile of total SCFA, acetate and butyrate, the highest tertile exhibited lower T2DM prevalence, with ORs and 95% CIs of 0.291 (0.085-0.991), 0.160 (0.044-0.574) and 0.171 (0.047-0.620), respectively. Restricted cubic spline demonstrated an approximately inverse S-shaped association. We also noted interactions of the ACE index with the highest tertile of valerate on glucose levels (P-interaction = 0.022) and the Shannon index with the middle tertile of butyrate on insulin levels (P-interaction = 0.034). Genus Prevotella_9 and Odoribacter were inversely correlated with T2DM, and the genus Blautia was positively associated with T2DM. These bacteria are common SCFA-producing members. CONCLUSIONS Inverse S-shaped associations between SCFAs (total SCFA, acetate, and butyrate) and T2DM were observed. Valerate and butyrate modify glucose status with increasing gut microbial diversity.
Collapse
Affiliation(s)
- Tianyu Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Cuiping Wu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuqian Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chongjian Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenxing Mao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenqian Huo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jia Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenguo Xing
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
62
|
Dotimas LG, Ojo B, Kaur A, Alake S, Dixon M, Rassi GDE, Ice JA, Zhao J, Emerson SR, Smith BJ, Lucas EA. Wheat germ supplementation has modest effects on gut health markers but improves glucose homeostasis markers in adults classified as overweight: A randomized controlled pilot study. Nutr Res 2024; 127:13-26. [PMID: 38820937 DOI: 10.1016/j.nutres.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
Wheat germ (WG), a by-product of flour milling, is rich in bioactive substances that may help improve health complications associated with increased adiposity. This study investigated the effects of WG on gut health, metabolic, and inflammatory markers in adults classified as overweight. We hypothesized that WG, because of its many bioactive components, would improve gut health and metabolic, and inflammatory markers in overweight adults. Forty adults (18-45 years old) and with a body mass index between 25 and 30 kg/m2 participated in this single-blinded randomized controlled pilot study. Participants consumed the study supplements containing 30 g of either cornmeal (control, CL) or WG daily for 4 weeks. Primary outcome variables were gut health markers including gut microbiota, gut integrity markers, and fecal short-chain fatty acids, whereas secondary outcome variables included metabolic and inflammatory parameters assessed at baseline and at the end of supplementation. Thirty-nine participants (n = 19 and 20 for CL and WG group, respectively) completed the study. The genus Faecalibacterium was significantly higher in the WG group compared to CL post-supplementation but no significant changes in other gut health markers, short-chain fatty acids, inflammatory markers, and lipid profiles were observed. Compared with baseline, WG improved markers of glucose homeostasis including insulin (P = .02), homeostatic model assessment of insulin resistance (P = .03), glycated hemoglobin (P = .07), and the pro-inflammatory adipokine, resistin (P = .04). However, these parameters after intervention were not different with control. Our findings suggest that WG supplementation have modest effects on gut health but may provide an economical option for individuals to improve glycemic control.
Collapse
Affiliation(s)
- Levin G Dotimas
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA
| | - Babajide Ojo
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amritpal Kaur
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA
| | - Sanmi Alake
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Madison Dixon
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA
| | | | - John A Ice
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA; US Department of Veterans Affairs, Oklahoma City, OK, USA
| | - Jiangchao Zhao
- Animal Science Department, University of Arkansas, Fayetteville, AR, USA
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA; Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA.
| |
Collapse
|
63
|
Yaşar A, Ryu HJ, Esen E, Sarıoğlan İ, Deemer D, Çetin B, Yoo SH, Lindemann SR, Lee BH, Tunçil YE. The branching ratio of enzymatically synthesized α-glucans impacts microbiome and metabolic outcomes of in vitro fecal fermentation. Carbohydr Polym 2024; 335:122087. [PMID: 38616077 DOI: 10.1016/j.carbpol.2024.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
The aim of this study was to evaluate the impacts of enzymatically synthesized α-glucans possessing α-1,4- and α-1,6-glucose linkages, and varying in branching ratio, on colonic microbiota composition and metabolic function. Four different α-glucans varying in branching ratio were synthesized by amylosucrase from Neisseria polysaccharea and glycogen branching enzyme from Rhodothermus obamensis. The branching ratios were found to range from 0 % to 2.8 % using GC/MS. In vitro fecal fermentation analyses (n = 8) revealed that the branching ratio dictates the short-chain fatty acid (SCFA) generation by fecal microbiota. Specifically, slightly branched (0.49 %) α-glucan resulted in generation of significantly (P < 0.05) higher amounts of propionate, compared to more-branched counterparts. In addition, the amount of butyrate generated from this α-glucan was statistically (P > 0.05) indistinguishable than those observed in resistant starches. 16S rRNA sequencing revealed that enzymatically synthesized α-glucans stimulated Lachnospiraceae and Ruminococcus related OTUs. Overall, the results demonstrated metabolic function of colonic microbiota can be manipulated by altering the branching ratio of enzymatically synthesized α-glucans, providing insights into specific structure-function relationships between dietary fibers and the colonic microbiome. Furthermore, the slightly branched α-glucans could be used as functional carbohydrates to stimulate the beneficial microbiota and SCFAs in the colon.
Collapse
Affiliation(s)
- Arife Yaşar
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkiye
| | - Hye-Jung Ryu
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Emine Esen
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkiye
| | - İhsan Sarıoğlan
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkiye
| | - Dane Deemer
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, 47907, IN, USA
| | - Bülent Çetin
- Food Engineering Department, Agricultural Faculty, Atatürk University, Erzurum, 25100, Turkiye
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, 47907, IN, USA; Department of Nutrition Science, Purdue University, West Lafayette 47907, IN, USA; Department of Biological Sciences, Purdue University, West Lafayette 47907, IN, USA
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Yunus E Tunçil
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkiye; Medical and Cosmetic Plants Application and Research Center, Necmettin Erbakan University, Konya 42090, Turkiye.
| |
Collapse
|
64
|
Wang H, Wei W, Liu F, Wang M, Zhang Y, Du S. Effects of fucoidan and synbiotics supplementation during bismuth quadruple therapy of Helicobacter pylori infection on gut microbial homeostasis: an open-label, randomized clinical trial. Front Nutr 2024; 11:1407736. [PMID: 39010853 PMCID: PMC11246856 DOI: 10.3389/fnut.2024.1407736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background The eradication regimen for Helicobacter pylori (H. pylori) infection can induce gut dysbiosis. In this open-label, prospective, and randomized clinical trial, we aimed to assess the effects of fucoidan supplementation on the eradication rate and gut microbial homeostasis in the context of quadruple therapy, as well as to investigate the combined effects of fucoidan and synbiotics supplementations. Methods Eighty patients with H. pylori infection were enrolled and randomly assigned to one of four treatment groups: the QT (a 2-week quadruple therapy alone), QF (quadruple therapy plus a 6-week fucoidan supplementation), QS (quadruple therapy plus a 6-week synbiotics supplementation), and QFS (quadruple therapy with a 6-week fucoidan and synbiotics supplementation), with 20 patients in each group. The QT regimen included rabeprazole, minocycline, amoxicillin, and bismuth potassium citrate. The synbiotics supplementation contained three strains of Bifidobacterium, three strains of Lactobacillus, along with three types of dietary fiber. All of the patients underwent 13C-urea breath test (13C-UBT) at baseline and at the end of the 6th week after the initiation of the interventions. Fresh fecal samples were collected at baseline and at the end of the 6th week for gut microbiota analysis via 16S rRNA gene sequencing. Results The eradication rates among the four groups showed no significant difference. In the QT group, a significant reduction in α-diversity of gut microbiota diversity and a substantial shift in microbial composition were observed, particularly an increase in Escherichia-Shigella and a decrease in the abundance of genera from the Lachnospiraceae and Ruminococcaceae families. The Simpson index was significantly higher in the QF group than in the QT group. Neither the QS nor QFS groups exhibited significant changes in α-diversity or β-diversity. The QFS group was the only one that did not show a significant increase in the relative abundance of Escherichia-Shigella, and the relative abundance of Klebsiella significantly decreased in this group. Conclusion The current study provided supporting evidence for the positive role of fucoidan and synbiotics supplementation in the gut microbiota. The combined use of fucoidan and synbioticss might be a promising adjuvant regimen to mitigate gut dysbiosis during H. pylori eradication therapy.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Wei
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
65
|
Chen C, Hu H, Li Z, Qi M, Qiu Y, Hu Z, Feng F, Tang W, Diao H, Sun W, Tang Z. Dietary tryptophan improves growth and intestinal health by promoting the secretion of intestinal β-defensins against enterotoxigenic Escherichia coli F4 in weaned piglets. J Nutr Biochem 2024; 129:109637. [PMID: 38574828 DOI: 10.1016/j.jnutbio.2024.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Adequate dietary L-tryptophan (Trp) governs intestinal homeostasis in piglets. However, the defensive role of Trp in the diet against enterotoxigenic Escherichia coli F4 (K88) in pigs is still poorly understood. Here, sixty (6.15 ± 1.52 kg, 24-day-old, Duroc × Landrace × Yorkshire) weaned piglets were used for an E. coli F4 attack test in a 2 × 2 factorial design. The growth (ADG, ADFI, GH), immune factors (IL-10, IgA, IgG, IgM), Trp metabolite 5-HT, intestinal morphology (jejunal and colonic VH), mRNA expression of β-defensins (jejunal BD-127, BD-119, ileal BD-1, BD-127), and abundance of beneficial microorganisms in the colon (Prevotella 9, Lactobacillus, Phascolarctobacterium, Faecalibacterium) were higher in the piglets in the HT (High Trp) and HTK (High Trp, K88) groups than in the LT (Low Trp) and LTK (Low Trp, K88) groups (P<.05), while FCR, diarrhea rate, diarrhea index, serum Trp, Kyn, IDO, D-LA, ET, and abundance of harmful microorganisms in the colon (Spirochaetes, Fusobacteria, Prevotella, Christensenellaceae R7) were lower in the HT and HTK groups than in the LT and LTK groups (P<.05). High Trp reduced the expression of virulence genes (K88 and LT) after E. coli F4 attack (P<.05). The IL-6, TNF-α was lower in the HTK group than in the LT, LTK group (P<.05). In short, a diet containing 0.35% Trp protected piglets from enterotoxigenic E. coli F4 (K88) via Trp metabolism promoting BD expression in the intestinal mucosa, which improved growth and intestinal health.
Collapse
Affiliation(s)
- Chen Chen
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Hong Hu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhangcheng Li
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Min Qi
- Yunnan Animal Husbandry Station, Kunming 650225, China
| | - Yibin Qiu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhijin Hu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Fu Feng
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Weizhong Sun
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
66
|
Faraj S, Sequeira-Bisson IR, Lu L, Miles-Chan JL, Hoggard M, Barnett D, Parry-Strong A, Foster M, Krebs JD, Poppitt SD, Taylor MW, Mathrani A. Effect of a Higher-Protein Nut versus Higher-Carbohydrate Cereal Enriched Diet on the Gut Microbiomes of Chinese Participants with Overweight and Normoglycaemia or Prediabetes in the Tū Ora Study. Nutrients 2024; 16:1971. [PMID: 38931324 PMCID: PMC11206330 DOI: 10.3390/nu16121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Global increases in metabolic disorders such as type 2 diabetes (T2D), especially within Asian populations, highlight the need for novel approaches to dietary intervention. The Tū Ora study previously evaluated the effects on metabolic health of including a nut product into the diet of a New Zealand cohort of Chinese participants with overweight and normoglycaemia or prediabetes through a 12-week randomised, parallel-group clinical trial. In this current study, we compared the impact of this higher-protein nut bar (HP-NB) versus a higher-carbohydrate cereal bar (HC-CB) on the faecal microbiome by employing both 16S rRNA gene amplicon and shotgun metagenomic sequencing of pre- and post-intervention pairs from 84 participants. Despite the higher fibre, protein, and unsaturated fat content of nuts, there was little difference between dietary groups in gut microbiome composition or functional potential, with the bacterial phylum Firmicutes dominating irrespective of diet. The lack of observed change suggests the dietary impact of the bars may have been insufficient to affect the gut microbiome. Manipulating the interplay between the diet, microbiome, and metabolic health may require a more substantial and/or prolonged dietary perturbation to generate an impactful modification of the gut ecosystem and its functional potential to aid in T2D risk reduction.
Collapse
Affiliation(s)
- Saif Faraj
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand; (S.F.); (I.R.S.-B.); (L.L.); (J.L.M.-C.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Ivana R. Sequeira-Bisson
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand; (S.F.); (I.R.S.-B.); (L.L.); (J.L.M.-C.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Louise Lu
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand; (S.F.); (I.R.S.-B.); (L.L.); (J.L.M.-C.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Jennifer L. Miles-Chan
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand; (S.F.); (I.R.S.-B.); (L.L.); (J.L.M.-C.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Michael Hoggard
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand;
| | - Amber Parry-Strong
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- Department of Medicine, University of Otago, Dunedin 9054, New Zealand
- Centre for Endocrine, Diabetes and Obesity Research (CEDOR), Te Whatu Ora, Capital and Coast Health, Wellington P.O. Box 7902, New Zealand
| | - Meika Foster
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- Edible Research, Ohoka, Christchurch 7475, New Zealand
| | - Jeremy D. Krebs
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- Department of Medicine, University of Otago, Dunedin 9054, New Zealand
- Centre for Endocrine, Diabetes and Obesity Research (CEDOR), Te Whatu Ora, Capital and Coast Health, Wellington P.O. Box 7902, New Zealand
| | - Sally D. Poppitt
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand; (S.F.); (I.R.S.-B.); (L.L.); (J.L.M.-C.); (S.D.P.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Michael W. Taylor
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Akarsh Mathrani
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; (A.P.-S.); (M.F.); (J.D.K.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| |
Collapse
|
67
|
Xu J, Zhang Y, Yao X, Wang S, Lv K, Luo G, Wang J, Li G. Intestinal Targeted Nanogel with Broad-Spectrum Autonomous ROS Scavenging Performance for Enhancing the Bioactivity of trans-Resveratrol. Int J Nanomedicine 2024; 19:5995-6014. [PMID: 38895150 PMCID: PMC11185258 DOI: 10.2147/ijn.s464849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction To improve the bioavailability of trans-resveratrol (trans-Res), it is commonly co-delivered with antioxidant bioactives using a complex synthetic intestinal targeted carrier, however, which makes practical application challenging. Methods A nanogel (Ngel), as broad-spectrum autonomous ROS scavenger, was prepared using selenized thiolated sodium alginate (TSA-Se) and crosslinked with calcium lactate (CL) for loading trans-Res to obtain Ngel@Res, which maintained spherical morphology in the upper digestive tract but broke down in the lower digestive tract, resulting in trans-Res release. Results Under protection of Ngel, trans-Res showed enhanced stability and broad-spectrum ROS scavenging activity. The synergistic mucoadhesion of Ngel prolonged the retention time of trans-Res in the intestine. Ngel and Ngel@Res increased the lifespan of Caenorhabditis elegans to 26.00 ± 2.17 and 26.00 ± 4.27 days by enhancing the activity of antioxidases, upregulating the expression of daf-16, sod-5 and skn-1, while downregulating the expression of daf-2 and age-1. Conclusion This readily available, intestinal targeted selenized alginate-based nanogel effectively improves the bioactivity of trans-Res.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Yue Zhang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Xiaolin Yao
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
| | - Sijuan Wang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Kaiqiang Lv
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Guangwen Luo
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Jiaqi Wang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Guoliang Li
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
68
|
Su J, Chen W, Zhou F, Li R, Tong Z, Wu S, Ye Z, Zhang Y, Lin B, Yu X, Guan B, Feng Z, Chen K, Chen Q, Chen L. Inhibitory mechanisms of decoy receptor 3 in cecal ligation and puncture-induced sepsis. mBio 2024; 15:e0052124. [PMID: 38700314 PMCID: PMC11237498 DOI: 10.1128/mbio.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies. IMPORTANCE Sepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Ben Lin
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
69
|
Hartung CB, Visscher C, Grone R, Kamphues J. The ileal, total tract and postileal digestibility of compound feeds either rich in wheat or rye in an ileo-caecal fistulated minipig model. Arch Anim Nutr 2024; 78:285-297. [PMID: 39319564 DOI: 10.1080/1745039x.2024.2406434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Environmental issues and concerns about animal welfare display current challenges in animal husbandry and feeding. Rye, a cereal that has scarcely been used in animal feed in recent decades, could help address some of the challenges in pig feeding as a climate friendly and health promoting feed ingredient. Distinct constituents of rye - especially its non-starch-polysaccharides (NSP) - are fermented in the large intestine while short chain fatty acids (SCFA) are produced in that process. This can promote gut health and the feeling of satiety in pigs. To examine the site of the digestion of rye within the digestive tract in comparison to wheat as a widely used ingredient in pig diets, two diets with high shares of either wheat or rye (each 69.0%) were fed to ileo-caecally fistulated, adult minipigs. Ileal digesta and faeces were collected and ileal, total tract and postileal digestibility rates were calculated. In the apparent ileal digestibility (AID), significant differences were only found for organic matter (OM) and Nitrogen-free extract (NfE) with lower values for the rye-rich diets (77.2 ± 2.00 vs. 73.8 ± 2.01% and 79.8 ± 2.56 vs. 75.3 ± 2.61%, respectively). These differences could not be recovered for the total tract digestibility (ATTD - 90.2 ± 2.16 vs. 89.8 ± 1.94% and 93.0 ± 1.69 vs. 92.8 ± 1.37%, respectively), resulting in an elevated postileal digestibility which was significant for NfE (13.2 ± 2.42 vs. 17.5 ± 2.77%). Therefore, rye can be used to promote hindgut fill and fermentation in pig feeding, especially in restrictively fed animals such as pregnant sows.
Collapse
Affiliation(s)
- Clara Berenike Hartung
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Richard Grone
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Josef Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
70
|
Liu X, Cai M, Chen M, Chen J, Zhu T, Wu S, Jia J. Alterations in gut microbiome associated with severity of atopic dermatitis in infants. Australas J Dermatol 2024; 65:328-336. [PMID: 38419203 DOI: 10.1111/ajd.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) often arises in infancy, and gut microbial dysbiosis is associated with the development of AD. However, less is known about specific changes in early-life gut microbiome associated with AD and AD severity. This study aims to reveal the gut microbial composition and function profiles associated with the severity of AD in infants. METHODS Sixty-two infants (mean [SD] age, 4.7[1.9] months) with different severities of AD were enrolled and divided into three groups (mild, moderate and severe) according to the Scoring Atopic Dermatitis (SCORAD) index. The profiles of gut microbial composition and function were analysed by sequencing 16S ribosomal RNA amplicons. Quality of life on children and the family was evaluated using published questionnaires. RESULTS Decreased levels of Clostridium sensu stricto, Collinsella and increased level of Parabacteroides presented in the severe AD group compared with the mild AD group after adjusting potential confounders (p < 0.05). There were strong positive correlations between the Scoring Atopic Dermatitis (SCORAD) index and the relative abundance (RA) of Bacteroides and functional pathways for metabolism of sphingolipids and glycosphingolipids (p < 0.05). The SCORAD index was negatively correlated with the RA of Clostridium sensu stricto (p < 0.05), and was also positively correlated with the index of quality of life on children and the family (p < 0.05). CONCLUSION Discrepancies in gut microbial composition and functional pathways were observed in infants with mild-to-severe AD. Alterations in butyrate-producing bacteria (Clostridium sensu stricto), sphingolipid-producing bacteria (Parabacteroides, Bacteroides), and related functional pathways were associated with the severity of AD infants.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Department of Dermatology, National Children's Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqin Cai
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiru Chen
- Diprobio(Shang Hai)co., Limited, Shanghai, China
| | - Ji Chen
- Department of Dermatology, National Children's Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingyu Zhu
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyin Wu
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Jia
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
71
|
Huo Z, Li J, Li X, Xiao H, Lin Y, Ma Y, Li J, Yang H, Zhang C. Functional fractions of Astragalus polysaccharides as a potential prebiotic to alleviate ulcerative colitis. Int J Biol Macromol 2024; 271:132580. [PMID: 38788871 DOI: 10.1016/j.ijbiomac.2024.132580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that is significantly influenced by an imbalance in the gut microbiota. Astragalus membranaceus, particularly its polysaccharide components, has shown therapeutic potential for the treatment of UC, although the specific active constituents and their mechanistic pathways remain to be fully elucidated. In this study, we investigated two molecular weight fractions of Astragalus polysaccharides (APS), APS1 (Mw < 10 kDa) and APS2 (10 kDa < Mw < 50 kDa), isolated by ultrafiltration, focusing on their prebiotic effects, effects on UC, and the underlying mechanism. Our results showed that both APS1 and APS2 exhibit prebiotic properties, with APS1 significantly outperforming APS2 in ameliorating UC symptoms. APS1 significantly attenuated weight loss and UC manifestations, reduced colonic pathology, and improved intestinal mucosal barrier integrity. In addition, APS1 significantly reduced the levels of inflammatory cytokines in the serum and colonic tissue, and downregulated colonic chemokines. Furthermore, APS1 ameliorated dextran sulfate sodium salt (DSS)-induced intestinal dysbiosis by promoting the growth of beneficial microbes and inhibiting the proliferation of potential pathogens, leading to a significant increase in short-chain fatty acids. In conclusion, this study highlights the potential of APS1 as a novel prebiotic for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuchan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
72
|
Coutinho CP, Fraga LN, Rozenbaum AC, Carnauba RA, Vanzele PAR, Sparvoli LG, Taddei CR, Lajolo FM, Hassimotto NMA. Chronic consumption of orange juice modifies urinary excretion of flavanone gut-derived metabolites through gut microbiota modulation. Food Res Int 2024; 186:114328. [PMID: 38729714 DOI: 10.1016/j.foodres.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal β-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.
Collapse
Affiliation(s)
- Camille Perella Coutinho
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Layanne Nascimento Fraga
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Adriana Campos Rozenbaum
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Renata Alves Carnauba
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Pedro Augusto Ramos Vanzele
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil
| | - Carla R Taddei
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences. University of São Paulo, São Paulo 05508-000. Brazil; School of Arts, Science and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| |
Collapse
|
73
|
Mo Z, Zhan M, Yang X, Xie P, Xiao J, Cao Y, Xiao H, Song M. Fermented dietary fiber from soy sauce residue exerts antidiabetic effects through regulating the PI3K/AKT signaling pathway and gut microbiota-SCFAs-GPRs axis in type 2 diabetic mellitus mice. Int J Biol Macromol 2024; 270:132251. [PMID: 38729488 DOI: 10.1016/j.ijbiomac.2024.132251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The gut plays a crucial role in the development and progression of metabolic disorders, particularly in relation to type 2 diabetes mellitus (T2DM). While a high intake of dietary fiber is inversely associated with the risk of T2DM, the specific effects of various dietary fibers on T2DM are not fully understood. This study investigated the anti-diabetic properties of fermented dietary fiber (FDF) derived from soy sauce residue in T2DM mice, demonstrating its ability to lower blood glucose levels and ameliorate insulin resistance. Our findings revealed that FDF could enhance hepatic glucose metabolism via the IRS-1/PI3K/AKT/mTOR pathway. Additionally, the anti-diabetic effect of FDF was correlated with alterations in gut microbiota composition in T2DM mice, promoting a healthier gut environment. Specifically, FDF increased the abundance of beneficial flora such as Dubosiella, Butyricimonas, Lachnospiraceae_NK4A136_group, Lactobacillus and Osillibacter, while reducing harmful bacteria including Bilophila, Parabacteroides and Enterorhabdus. Further analysis of microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs), provided evidence of FDF's regulatory effects on cecal contents in T2DM mice. Importantly, FDF treatment significantly restored the G-protein-coupled receptors (GPRs) expression in the colon of T2DM mice. In conclusion, our study suggests that the anti-diabetic effects of FDF are associated with the regulation of both the liver-gut axis and the gut microbiota-SCFAs-GPRs axis.
Collapse
Affiliation(s)
- Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minmin Zhan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
74
|
Du W, Sun C, Wu T, Li W, Dong B, Wang B, Shang S, Yang Q, Huang W, Chen S. Comparative proteomics analysis of Shiraia bambusicola revealed a variety of regulatory systems on conidiospore formation. Front Microbiol 2024; 15:1373597. [PMID: 38841055 PMCID: PMC11152172 DOI: 10.3389/fmicb.2024.1373597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Shiraia bambusicola is a typical parasitic medicinal fungus of the family Shiraiaceae. The fruiting bodies of S. bambusicola cannot be cultivated artificially, and active substances can be effectively produced via fermentation. The mechanism of conidia production is a research hotspot in the industrial utilization and growth development of S. bambusicola. This study is the first to systematically study the proteomics of conidiospore formation from S. bambusicola. Near-spherical conidia were observed and identified by internal transcribed spacer (ITS) sequence detection. A total of 2,840 proteins were identified and 1,976 proteins were quantified in the mycelia and conidia of S. bambusicola. Compared with mycelia, 445 proteins were differentially expressed in the conidia of S. bambusicola, with 165 proteins being upregulated and 280 proteins being downregulated. The Gene Ontology (GO) annotation results of differential proteomics showed that the biological process of S. bambusicola sporulation is complex. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that the differential proteins were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and other processes. Our in-depth speculative analysis showed that proteins related to carbohydrate metabolism were differentially expressed in conidiospore formation of S. bambusicola, suggesting the involvement of saccharides. Conidiation may increase the synthesis and release of ethanol and polysaccharide proteins such as glycoside hydrolase (GH), suppress host immunity, and facilitate S. bambusicola to infect and colonize of the host. In-depth analysis of differential proteomes will help reveal the molecular mechanism underlying the conidiospore formation of S. bambusicola, which has strong theoretical and practical significance.
Collapse
Affiliation(s)
- Wen Du
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| | - Chunlong Sun
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| | - Tao Wu
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Wang Li
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| | - Bin Dong
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Baogui Wang
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Shuai Shang
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Qian Yang
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Wenwen Huang
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| | - Shaopeng Chen
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| |
Collapse
|
75
|
Moodley S, Kroon E, Naidoo CC, Nyawo GR, Wu BG, Naidoo S, Chiyaka TL, Tshivhula H, Singh S, Li Y, Warren RM, Hoal EG, Schurr E, Clemente JC, Segal LN, Möller M, Theron G. Latent Tuberculosis Infection Is Associated with an Enrichment of Short-Chain Fatty Acid-Producing Bacteria in the Stool of Women Living with HIV. Microorganisms 2024; 12:1048. [PMID: 38930430 PMCID: PMC11205370 DOI: 10.3390/microorganisms12061048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high-TB-burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI in PLHIV. We characterised the stool microbiota of PLHIV with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST-negative) LTBI (n = 25 per group). The 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet-Multinomial Mixtures, DESeq2, and PICRUSt2. No α- or β-diversity differences occurred by LTBI status; however, LTBI-positive people were Faecalibacterium-, Blautia-, Gemmiger-, and Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, and Streptococcus-depleted. Inferred metagenome data showed that LTBI-negative-enriched pathways included several metabolite degradation pathways. Stool from LTBI-positive people demonstrated differential taxa abundance based on a quantitative response to antigen stimulation. In LTBI-positive people, older people had different β-diversities than younger people, whereas in LTBI-negative people, no differences occurred across age groups. Amongst female PLHIV, those with LTBI were, vs. those without LTBI, Faecalibacterium-, Blautia-, Gemmiger-, and Bacteriodes-enriched, which are producers of short-chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.
Collapse
Affiliation(s)
- Suventha Moodley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Elouise Kroon
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Charissa C. Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Georgina R. Nyawo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Benjamin G. Wu
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; (B.G.W.); (S.S.); (Y.L.); (L.N.S.)
| | - Selisha Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Tinaye L. Chiyaka
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Shivani Singh
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; (B.G.W.); (S.S.); (Y.L.); (L.N.S.)
| | - Yonghua Li
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; (B.G.W.); (S.S.); (Y.L.); (L.N.S.)
| | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Eileen G. Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Erwin Schurr
- Department of Biochemistry, McGill University, Montreal, QC H3A 1Y6, Canada;
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, 1001 Boul Décarie, Site Glen Block E, Room EM3.3210, Montréal, QC H4A 3J1, Canada
- McGill International TB Centre, McGill University, Montréal, QC H3A3J1, Canada
- Departments of Medicine and Human Genetics, McGill University, Montréal, QC H3A0C7, Canada
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Leopoldo N. Segal
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; (B.G.W.); (S.S.); (Y.L.); (L.N.S.)
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
76
|
Melilli MG, Buzzanca C, Di Stefano V. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. Carbohydr Polym 2024; 332:121918. [PMID: 38431396 DOI: 10.1016/j.carbpol.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Vegetables, cereals and fruit are foods rich in fibre with beneficial and nutritional effects as their consumption reduces the onset of degenerative diseases, especially cardiovascular ones. Among fibres, inulin, oligofructose or fructooligosaccharide (FOS) are the best-studied. Inulin is a generic term to cover all linear β(2-1) fructans, with a variable degree of polymerization. In this review a better understanding of the importance of the degree of polymerization of inulin as a dietary fibre, functions, health benefits, classifications, types and its applications in the food industry was considered in different fortified foods. Inulin has been used to increase the nutritional and healthy properties of the product as a sweetener and as a substitute for fats and carbohydrates, improving the nutritional value and decreasing the glycemic index, with the advantage of not compromising taste and consistency of the product. Bifidogenic and prebiotic effects of inulin have been well established, inulin-type fructans are fermented by the colon to produce short-chain fatty acids, with important local and systemic actions. Addition of inulin with different degrees of polymerization to daily foods for the production of fortified pasta and bread was reviewed, and the impact on sensorial, technological and organoleptic characteristics even of gluten-free bread was also reported.
Collapse
Affiliation(s)
- Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy.
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy.
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; National Biodiversity Future Center (NBFC), 90123, Palermo, Italy.
| |
Collapse
|
77
|
Flint HJ, Louis P, Duncan SH. Why does increased microbial fermentation in the human colon shift toward butyrate? AIMS Microbiol 2024; 10:311-319. [PMID: 38919716 PMCID: PMC11194621 DOI: 10.3934/microbiol.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The microbial community of the human large intestine mainly ferments dietary fiber to short chain fatty acids (SCFAs), which are efficiently absorbed by the host. The three major SCFAs (acetate, propionate, and butyrate) have different fates within the body and different effects on health. A recent analysis of 10 human volunteer studies established that the proportions of these SCFA in fecal samples significantly shifted towards butyrate as the overall concentration of SCFA increased. Butyrate plays a key role in gut health and is preferentially utilized as an energy source by the colonic epithelium. Here we discuss possible mechanisms that underlie this 'butyrate shift'; these include the selection for butyrate-producing bacteria within the microbiota by certain types of fiber, and the possibility of additional butyrate formation from lactate and acetate by metabolite cross-feeding. However, a crucial factor appears to be the pH in the proximal colon, which decreases as the SCFA concentrations increase. A mildly acidic pH has been shown to have an important impact on microbial competition and on the stoichiometry of butyrate production. Understanding these complex interactions has been greatly aided by the refinement of theoretical models of the colonic microbiota that assume a small number (10) of microbial functional groups (MFGs).
Collapse
Affiliation(s)
| | | | - Sylvia H. Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK AB25 2ZD
| |
Collapse
|
78
|
Gleasman-DeSimone S. The Microbiome and Irritable Bowel Syndrome: An Emerging Hope for Treatment. Gastroenterol Nurs 2024; 47:177-184. [PMID: 38847427 DOI: 10.1097/sga.0000000000000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/08/2024] [Indexed: 06/13/2024] Open
Abstract
Irritable bowel syndrome is a gastrointestinal disorder that affects 15%-20% of the US population. Its symptoms can have negative effects on a person's quality of life, and its treatment can be associated with high medical costs. An emerging area of irritable bowel syndrome research concerns the relationship between this condition and the gut microbiome. The purpose of this article is not only to review irritable bowel syndrome, and the role that the microbiome can play in its symptoms, but also to examine new emerging pathways that could blaze the trail for more individualized treatments. If equipped with this knowledge, gastrointestinal nurses and providers of care can be better prepared to help patients with irritable bowel syndrome in order to manage symptoms and improve their quality of life.
Collapse
Affiliation(s)
- Sara Gleasman-DeSimone
- Sara Gleasman-DeSimone, PhD, RN, NP-C, Le Moyne College Nursing Department, Syracuse, New York
| |
Collapse
|
79
|
Huang X, Nie S, Fu X, Nan S, Ren X, Li R. Exploring the prebiotic potential of hydrolyzed fucoidan fermented in vitro with human fecal inocula: Impact on microbiota and metabolome. Int J Biol Macromol 2024; 267:131202. [PMID: 38556225 DOI: 10.1016/j.ijbiomac.2024.131202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Fucoidan is widely applied in food and pharmaceutical industry for the promising bioactivities. Low-molecular weight hydrolyzed fucoidan has gained attention for its beneficial health effects. Here, the modulation on microbiome and metabolome features of fucoidan and its acidolyzed derivatives (HMAF, 1.5-20 kDa; LMAF, <1.5 kDa) were investigated through human fecal cultures. Fucose is the main monosaccharide component in fucoidan and LMAF, while HMAF contains abundant glucuronic acid. LMAF fermentation resulted in the highest production of short-chain fatty acids, with acetate and propionate reaching maximum levels of 13.46 mmol/L and 11.57 mmol/L, respectively. Conversely, HMAF exhibited a maximum butyrate production of 9.28 mmol/L. Both fucoidan and acidolyzed derivatives decreased the abundance of Escherichia-Shigella and Klebsiella in human fecal cultures. Fucoidan and HMAF prefer to improve the abundance of Bacteroides. However, LMAF showed positive influence on Bifidobacterium, Lactobacillus, and Megamonas. Untargeted metabolome indicated that fucoidan and its derivatives mainly altered the metabolic level of lipids, indole, and their derivatives, with fucoidan and HMAF promoting higher level of indole-3-propionic acid and indole-3-carboxaldehyde compared to LMAF. Considering the chemical structural differences, this study suggested that hydrolyzed fucoidan can provide potential therapeutic applications for targeted regulation of microbial communities.
Collapse
Affiliation(s)
- Xinru Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China.
| | - Shihao Nan
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China
| | - Rong Li
- Qingdao Women and Children's Hospital, Qingdao 266034, Shandong, People's Republic of China
| |
Collapse
|
80
|
Liu D, Xie LS, Lian S, Li K, Yang Y, Wang WZ, Hu S, Liu SJ, Liu C, He Z. Anaerostipes hadrus, a butyrate-producing bacterium capable of metabolizing 5-fluorouracil. mSphere 2024; 9:e0081623. [PMID: 38470044 PMCID: PMC11036815 DOI: 10.1128/msphere.00816-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Anaerostipes hadrus (A. hadrus) is a dominant species in the human gut microbiota and considered a beneficial bacterium for producing probiotic butyrate. However, recent studies have suggested that A. hadrus may negatively affect the host through synthesizing fatty acid and metabolizing the anticancer drug 5-fluorouracil, indicating that the impact of A. hadrus is complex and unclear. Therefore, comprehensive genomic studies on A. hadrus need to be performed. We integrated 527 high-quality public A. hadrus genomes and five distinct metagenomic cohorts. We analyzed these data using the approaches of comparative genomics, metagenomics, and protein structure prediction. We also performed validations with culture-based in vitro assays. We constructed the first large-scale pan-genome of A. hadrus (n = 527) and identified 5-fluorouracil metabolism genes as ubiquitous in A. hadrus genomes as butyrate-producing genes. Metagenomic analysis revealed the wide and stable distribution of A. hadrus in healthy individuals, patients with inflammatory bowel disease, and patients with colorectal cancer, with healthy individuals carrying more A. hadrus. The predicted high-quality protein structure indicated that A. hadrus might metabolize 5-fluorouracil by producing bacterial dihydropyrimidine dehydrogenase (encoded by the preTA operon). Through in vitro assays, we validated the short-chain fatty acid production and 5-fluorouracil metabolism abilities of A. hadrus. We observed for the first time that A. hadrus can convert 5-fluorouracil to α-fluoro-β-ureidopropionic acid, which may result from the combined action of the preTA operon and adjacent hydA (encoding bacterial dihydropyrimidinase). Our results offer novel understandings of A. hadrus, exceptionally functional features, and potential applications. IMPORTANCE This work provides new insights into the evolutionary relationships, functional characteristics, prevalence, and potential applications of Anaerostipes hadrus.
Collapse
Affiliation(s)
- Danping Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Li-Sheng Xie
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shitao Lian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Kexin Li
- Systems Biology and Bioinformatics (SBI), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Yun Yang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Wen-Zhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| |
Collapse
|
81
|
Liu H, Wang S, Chen M, Ji H, Zhang D. Effects of Lactobacillus-fermented low-protein diets on the growth performance, nitrogen excretion, fecal microbiota and metabolomic profiles of finishing pigs. Sci Rep 2024; 14:8612. [PMID: 38616198 PMCID: PMC11016537 DOI: 10.1038/s41598-024-58832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
This study investigated the effects of Lactobacillus-fermented low-protein diet on the growth performance, nitrogen balance, fecal microbiota, and metabolomic profiles of finishing pigs. A total of 90 finishing pigs were assigned to one of three dietary treatments including a normal protein diet (CON) as well as two experimental diets in which a low-protein diet supplemented with 0 (LP) or 1% Lactobacillus-fermented low-protein feed (FLP). In comparison with CON, the LP and FLP significantly increased average daily gain (P = 0.044), significantly decreased feed to gain ratio (P = 0.021), fecal nitrogen (P < 0.01), urine nitrogen (P < 0.01), and total nitrogen (P < 0.01), respectively. The LP group exhibited increased abundances of unclassified_f_Selenomonadaceae, Coprococcus, Faecalibacterium, and Butyricicoccus, while the abundances of Verrucomicrobiae, Verrucomicrobiales, Akkermansiaceae, and Akkermansia were enriched in the FLP group. Low-protein diet-induced metabolic changes were enriched in sesquiterpenoid and triterpenoid biosynthesis and Lactobacillus-fermented low-protein feed-induced metabolic changes were enriched in phenylpropanoid biosynthesis and arginine biosynthesis. Overall, low-protein diet and Lactobacillus-fermented low-protein diet improved the growth performance and reduce nitrogen excretion, possibly via altering the fecal microbiota and metabolites in the finishing pigs. The present study provides novel ideas regarding the application of the low-protein diet and Lactobacillus-fermented low-protein diet in swine production.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Sixin Wang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Meixia Chen
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Dongyan Zhang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
82
|
Wang X, Li Y, Wang X, Wang R, Hao Y, Ren F, Wang P, Fang B. Faecalibacterium prausnitzii Supplementation Prevents Intestinal Barrier Injury and Gut Microflora Dysbiosis Induced by Sleep Deprivation. Nutrients 2024; 16:1100. [PMID: 38674791 PMCID: PMC11054126 DOI: 10.3390/nu16081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.
Collapse
Affiliation(s)
- Xintong Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| |
Collapse
|
83
|
Imdad S, Kim JH, So B, Jang J, Park J, Lim W, Lee YK, Shin WS, Hillyer T, Kang C. Effect of aerobic exercise and particulate matter exposure duration on the diversity of gut microbiota. Anim Cells Syst (Seoul) 2024; 28:137-151. [PMID: 38601060 PMCID: PMC11005883 DOI: 10.1080/19768354.2024.2338855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Inhalation of ambient particulate matter (PM) can disrupt the gut microbiome, while exercise independently influences the gut microbiome by promoting beneficial bacteria. In this study, we analyzed changes in gut microbial diversity and composition in response to combined interventions of PM exposure and aerobic exercise, extending up to 12 weeks. This investigation was conducted using mice, categorized into five groups: control group (Con), exercise group (EXE), exercise group followed by 3-day exposure to PM (EXE + 3-day PM), particulate matter exposure (PM), and PM exposure with concurrent treadmill exercise (PME). Notably, the PM group exhibited markedly lower alpha diversity and richness compared to the Con group and our analysis of beta diversity revealed significant variations among the intervention groups. Members of the Lachnospiraceae family showed significant enhancement in the exercise intervention groups (EXE and PME) compared to the Con and PM groups. The biomarker Lactobacillus, Coriobacteraceae, and Anaerofustis were enriched in the EXE group, while Desulfovibrionaceae, Mucispirillum schaedleri, Lactococcus and Anaeroplasma were highly enriched in the PM group. Differential abundance analysis revealed that Paraprevotella, Bacteroides, and Blautia were less abundant in the 12-week PM exposure group than in the 3-day PM exposure group. Moreover, both the 3-day and 12-week PM exposure groups exhibited a reduced relative abundance of Bacteroides uniformis, SMB53, and Staphylococcus compared to non-PM exposure groups. These findings will help delineate the possible roles and associations of altered microbiota resulting from the studied interventions, paving the way for future mechanistic research.
Collapse
Affiliation(s)
- Saba Imdad
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Byunghun So
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Junho Jang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Jinhan Park
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Chounghun Kang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Physical Education, College of Education, Inha University, Incheon, South Korea
| |
Collapse
|
84
|
Zhao M, Zhang Y, Li Y, Liu K, Bao K, Li G. Impact of Pediococcus acidilactici GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis. Front Microbiol 2024; 15:1369402. [PMID: 38633690 PMCID: PMC11021720 DOI: 10.3389/fmicb.2024.1369402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic Pediococcus acidilactici GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 108 CFU/day/dog), MG group (2 × 109 CFU/day/dog), and HG group (2 × 1010 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups (p < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group (p < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups (p < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups (p < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). In addition, compared with the CK group, the abundance of Faecalitalea and Collinsella increased in the LG group, and the relative abundance of Tyzzerella and Parasutterella increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (Faecalibacterium, Lachnospiraceae_NK4A1316, and Ruminococcaceae_UCG-005) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group (p < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with P. acidilactici GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kun Bao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
85
|
Moodley S, Kroon E, Naidoo CC, Nyawo GR, Wu BG, Naidoo S, Chiyaka TL, Tshivhula H, Singh S, Li Y, Warren RM, Hoal EG, Schurr E, Clemente J, Segal LN, Möller M, Theron G. Latent tuberculosis infection is associated with an enrichment of short chain fatty acid producing bacteria in the stool of women living with HIV. RESEARCH SQUARE 2024:rs.3.rs-4182285. [PMID: 38645218 PMCID: PMC11030539 DOI: 10.21203/rs.3.rs-4182285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high TB burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI, including in PLHIV. Method Within a parent study that recruited adult females with HIV from Cape Town, South Africa into predefined age categories (18-25, 35-60 years), we characterised the stool microbiota of those with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST- negative) LTBI (n=25 per group). 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet Multinomial Mixtures, DESeq2 and PICRUSt2. Results No α- or β-diversity differences occurred by LTBI status; however, LTBI-positives were Faecalibacterium-, Blautia-, Gemmiger-, Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, Streptococcus-depleted. Inferred metagenome data showed LTBI-negative-enriched pathways included several involved in methylglyoxal degradation, L-arginine, putrescine, 4-aminobutanoate degradation and L-arginine and ornithine degradation. Stool from LTBI-positives demonstrated differential taxa abundance based on a quantitative response to antigen stimulation (Acidaminococcus-enrichment and Megamonas-, Alistipes-, and Paraprevotella-depletion associated with higher IGRA or TST responses, respectively). In LTBI-positives, older people had different β-diversities than younger people whereas, in LTBI-negatives, no differences occurred across age groups. Conclusion Amongst female PLHIV, those with LTBI had, vs. those without LTBI, Faecalibacterium, Blautia, Gemmiger, Bacteriodes-enriched, which are producers of short chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.
Collapse
|
86
|
Chen J, Yin J, Xie H, Lu W, Wang H, Zhao J, Zhu J. Mannan-oligosaccharides promote gut microecological recovery after antibiotic disturbance. Food Funct 2024; 15:3810-3823. [PMID: 38511344 DOI: 10.1039/d4fo00332b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Antibiotic treatment often causes collateral damage to the gut microbiota, including changes in its diversity and composition. Dietary fiber helps maintain intestinal health, regulate short-chain fatty acids, and promote the recovery of the intestinal microbiome. However, it is currently unknown which specific plant-based dietary fiber is optimal as a dietary supplement for restoring the intestinal microbiota after antibiotic disturbance. Previously, we proposed predictive recovery-associated bacterial species (p-RABs) and identified the most important interventions. This study aimed to identify an optimal form of dietary fiber to recover the gut microbiome after antibiotic treatment. Therefore, we examined the types of dietary fibers associated with p-RABs through a p-RAB-metabolite bilayer network constructed from prior knowledge; we searched for dietary fiber that could provide nutritional support for Akkermansia muciniphila and Bacteroides uniformis. C57BL/6J mice were fed with 500 mg kg-1 of different types of dietary fibers daily for one week after being treated with ampicillin. The results showed that mannan-oligosaccharides could better promote the diversity of intestinal microbial growth, enhance the recovery of most genera, including Akkermansia and Bacteroides, and inhibit certain pathogenic bacteria, such as Proteus, compared to the other fiber types. Furthermore, mannan-oligosaccharides could regulate the levels of short-chain fatty acids, especially butyric acid. Functional predictions showed that starch metabolism, galactose metabolism, and the metabolism of other carbohydrates played key roles in the early recovery process. In conclusion, mannan-oligosaccharides could enhance the recovery of the intestinal microbiome after antibiotic treatment, offering valuable insights for targeted dietary strategies.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jialin Yin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Heqiang Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
87
|
Song I, Yang J, Saito M, Hartanto T, Nakayama Y, Ichinohe T, Fukuda S. Prebiotic inulin ameliorates SARS-CoV-2 infection in hamsters by modulating the gut microbiome. NPJ Sci Food 2024; 8:18. [PMID: 38485724 PMCID: PMC10940623 DOI: 10.1038/s41538-024-00248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/16/2024] [Indexed: 03/18/2024] Open
Abstract
Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.
Collapse
Affiliation(s)
- Isaiah Song
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Jiayue Yang
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Misa Saito
- Metagen, Inc., Tsuruoka, Yamagata, Japan
| | | | | | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
- Metagen, Inc., Tsuruoka, Yamagata, Japan.
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan.
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
88
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
89
|
Shearer J, Shah S, MacInnis MJ, Shen-Tu G, Mu C. Dose-Responsive Effects of Iron Supplementation on the Gut Microbiota in Middle-Aged Women. Nutrients 2024; 16:786. [PMID: 38542697 PMCID: PMC10975138 DOI: 10.3390/nu16060786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/12/2024] Open
Abstract
Oral iron supplementation is the first-line treatment for addressing iron deficiency, a concern particularly relevant to women who are susceptible to sub-optimal iron levels. Nevertheless, the impact of iron supplementation on the gut microbiota of middle-aged women remains unclear. To investigate the association between iron supplementation and the gut microbiota, healthy females aged 40-65 years (n = 56, BMI = 23 ± 2.6 kg/m2) were retrospectively analyzed from the Alberta's Tomorrow Project. Fecal samples along with various lifestyle, diet, and health questionnaires were obtained. The gut microbiota was assessed by 16S rRNA sequencing. Individuals were matched by age and BMI and classified as either taking no iron supplement, a low-dose iron supplement (6-10 mg iron/day), or high-dose iron (>100 mg/day). Compositional and functional analyses of microbiome data in relation to iron supplementation were investigated using various bioinformatics tools. Results revealed that iron supplementation had a dose-dependent effect on microbial communities. Elevated iron intake (>100 mg) was associated with an augmentation of Proteobacteria and a reduction in various taxa, including Akkermansia, Butyricicoccus, Verrucomicrobia, Ruminococcus, Alistipes, and Faecalibacterium. Metagenomic prediction further suggested the upregulation of iron acquisition and siderophore biosynthesis following high iron intake. In conclusion, adequate iron levels are essential for the overall health and wellbeing of women through their various life stages. Our findings offer insights into the complex relationships between iron supplementation and the gut microbiota in middle-aged women and underscore the significance of iron dosage in maintaining optimal gut health.
Collapse
Affiliation(s)
- Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (S.S.); (M.J.M.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shrushti Shah
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (S.S.); (M.J.M.)
| | - Martin J. MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (S.S.); (M.J.M.)
| | - Grace Shen-Tu
- Alberta’s Tomorrow Project, Cancer Control Alberta, Alberta Health Services, Calgary, AB T2T 5C7, Canada;
| | - Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
90
|
Bermudez C, Yao H, Widaningrum, Williams BA, Flanagan BM, Gidley MJ, Mikkelsen D. Biomass attachment and microbiota shifts during porcine faecal in vitro fermentation of almond and macadamia nuts differing in particle sizes. Food Funct 2024; 15:2406-2421. [PMID: 38265095 DOI: 10.1039/d3fo03612j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nuts are highly nutritious and good sources of dietary fibre, when consumed as part of a healthy human diet. Upon consumption, nut particles of various sizes containing lipids entrapped by the plant cell walls enter the large intestine where they are fermented by the resident microbiota. This study investigated the microbial community shifts during in vitro fermentation of almond and macadamia substrates, of two particle sizes including fine particles (F = 250-500 μm) and cell clusters (CC = 710-1000 μm). The aim was to determine how particle size and biomass attachment altered the microbiota. Over the 48 h fermentation duration, short chain fatty acid concentrations increased due to particle size rather than nut type (almond or macadamia). However, nut type did change microbial population dynamics by stimulating specific genera. Tyzzerella, p253418B5 gut group, Lachnospiraceae UCG001, Geotrichum, Enterococcus, Amnipila and Acetitomaculum genera were unique for almonds. For macadamia, three unique genera including Prevotellaceae UCG004, Candidatus Methanomethylophilus and Alistipes were noted. Distinct shifts in the attached microbial biomass were noted due to nut particle size. Bacterial attachment to nut particles was visualised in situ during fermentation, revealing a decrease in lipids and an increase in attached bacteria over time. This interaction may be a pre-requisite for lipid breakdown during nut particle disappearance. Overall, this study provides insights into how nut fermentation alters the gut microbiota and the possible role that gut microbes have in lipid degradation.
Collapse
Affiliation(s)
- Cindy Bermudez
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia.
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Hong Yao
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Widaningrum
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia.
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Soekarno Integrated Science Center, Bogor, Indonesia
| | - Barbara A Williams
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Bernadine M Flanagan
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Deirdre Mikkelsen
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia.
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| |
Collapse
|
91
|
Bai Y, Zhang Y, Chao C, Yu J, Zhao J, Han D, Wang J, Wang S. Molecular Mechanisms Underlying the Effects of Small Intestinal Fermentation on Enhancement of Prebiotic Characteristics of Cellulose in the Large Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3596-3605. [PMID: 38270580 DOI: 10.1021/acs.jafc.3c09146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Knowledge about the prebiotic characteristics of cellulose by in vitro fermentation is not complete due to the neglect of small intestinal fermentation. This study investigated the effects of small intestinal fermentation on the prebiotic characteristics of cellulose in the large intestine and potential mechanisms through an approach of combined in vivo small intestinal fermentation and in vitro fermentation. The structural similarity between cellulose in feces and after processing by the approach of this study confirmed the validity of the approach employed. Results showed that small intestinal fermentation of cellulose increased both acetate and propionate content and enriched Corynebacterium selectively. Compared to in vitro fermentation after in vitro digestion of cellulose, the in vitro fermentation of cellulose after in vivo small intestinal fermentation produced higher contents of acetate and propionate as well as the abundance of probiotics like Ruminococcaceae_UCG-002, Blautia, and Bifidobaterium. The changes in the structural features of cellulose after in vivo small intestinal fermentation were more obvious than those after in vitro digestion, which may account for the greater production of short-chain fatty acids (SCFAs) and the abundance of probiotics. In summary, small intestinal fermentation enhanced the prebiotic characteristics of cellulose in the large intestine by predisrupting its structure.
Collapse
Affiliation(s)
- Yu Bai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yiming Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
92
|
Zhang Z, Huang J, Li C, Zhao Z, Cui Y, Yuan X, Wang X, Liu Y, Zhou Y, Zhu Z. The gut microbiota contributes to the infection of bovine viral diarrhea virus in mice. J Virol 2024; 98:e0203523. [PMID: 38299844 PMCID: PMC10878277 DOI: 10.1128/jvi.02035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is prevalent worldwide and causes significant economic losses. Gut microbiota is a large microbial community and has a variety of biological functions. However, whether there is a correlation between gut microbiota and BVDV infection and what kind of relation between them have not been reported. Here, we found that gut microbiota composition changed in normal mice after infecting with BVDV, but mainly the low abundance microbe was affected. Interestingly, BVDV infection significantly reduced the diversity of gut microbiota and changed its composition in gut microbiota-dysbiosis mice. Furthermore, compared with normal mice of BVDV infection, there were more viral loads in the duodenum, jejunum, spleen, and liver of the gut microbiota-dysbiosis mice. However, feces microbiota transplantation (FMT) reversed these effects. The data above indicated that the dysbiosis of gut microbiota was a key factor in the high infection rate of BVDV. It is found that the IFN-I signal was involved by investigating the underlying mechanisms. The inhibition of the proliferation and increase in the apoptosis of peripheral blood lymphocytes (PBL) were also observed. However, FMT treatment reversed these changes by regulating PI3K/Akt, ERK, and Caspase-9/Caspase-3 pathways. Furthermore, the involvement of butyrate in the pathogenesis of BVDV was also further confirmed. Our results showed for the first time that gut microbiota acts as a key endogenous defense mechanism against BVDV infection; moreover, targeting regulation of gut microbiota structure and abundance may serve as a new strategy to prevent and control the disease.IMPORTANCEWhether the high infection rate of BVDV is related to gut microbiota has not been reported. In addition, most studies on BVDV focus on in vitro experiments, which limits the study of its prevention and control strategy and its pathogenic mechanism. In this study, we successfully confirmed the causal relationship between gut microbiota and BVDV infection as well as the potential molecular mechanism based on a mouse model of BVDV infection and a mouse model of gut microbiota dysbiosis. Meanwhile, a mouse model which is more susceptible to BVDV provided in this study lays an important foundation for further research on prevention and control strategy of BVDV and its pathogenesis. In addition, the antiviral effect of butyrate, the metabolites of butyrate-producing bacteria, has been further revealed. Overall, our findings provide a promising prevention and control strategy to treat this infectious disease which is distributed worldwide.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Jiang Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Agriculture and Rural Bureau of Sinan County, Sinan County, Guizhou, China
- Animal Health Supervision Institute of Sinan County, Sinan County, Guizhou, China
| | - Chuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Zhicheng Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Yueqi Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Xueying Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Xue Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| |
Collapse
|
93
|
Kumar M, Muthurayar T, Karthika S, Gayathri S, Varalakshmi P, Ashokkumar B. Anti-Diabetic Potentials of Lactobacillus Strains by Modulating Gut Microbiota Structure and β-Cells Regeneration in the Pancreatic Islets of Alloxan-Induced Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10221-7. [PMID: 38329697 DOI: 10.1007/s12602-024-10221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Diabetes mellitus, a most common endocrine disorder of glucose metabolism, has become a global epidemic and poses a serious public health threat with an increased socio-economic burden. Escalating incidence of diabetes is correlated with changes in lifestyle and food habits that cause gut microbiome dysbiosis and β-cells damage, which can be addressed with dietary interventions containing probiotics. Hence, the search for probiotics of human origin with anti-diabetic, anti-AGE, and anti-ACE potentials has gained renewed interest for the effective management of diabetes and its associated complications. The present study used an alloxan (AXN)-induced diabetic rat model to investigate the effects of potential probiotic Lacticaseibacillus casei MKU1, Lactiplantibacillus pentosus MKU3, and Lactiplantibacillus plantarum MKU7 administration individually on physiochemical parameters related to diabetic pathogenesis. Experimental animals were randomly allotted into six groups viz. NCG (control), DCG (AXN), DGM (metformin), DGP1 (MKU1), DGP2 (MKU3), and DGP3 (MKU7), and biochemical data like serum glucose, insulin, AngII, ACE, HbA1c, and TNF-α levels were measured until 90 days. Our results suggest that oral administration with MKU1, MKU3, or MKU7 significantly improved serum insulin levels, glycemic control, glucose tolerance, and body weight. Additionally, β-cell mass was increased by preserving islet integrity in Lactobacillus-treated diabetic rats, whereas TNF-α (~40%), AngII (~30%), and ACE levels (~50%) were strongly inhibited and enhanced sIgA production (5.8 folds) abundantly. Furthermore, Lactobacillus administration positively influenced the gut microbiome with a significant increase in the abundance of Lactobacillus species and the beneficial Bacteroides uniformis and Bacteroides fragilis, while decreased the pathogenic Proteus vulgaris and Parabacteroides distasonis. Among the probiotic treatment groups, L. pentosus MKU3 performed greatly in almost all parameters, indicating its potential use for alleviating diabetes-associated complications.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Tharmar Muthurayar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Sukumaran Karthika
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
94
|
Almeida PP, Da Cruz BO, Thomasi B, Menezes ÁC, Brito ML, Costa NDS, Ito RVA, Degani VAN, Daleprane JB, Magliano DC, Tavares-Gomes AL, Stockler-Pinto MB. Brazil Nut-Enriched Diet Modulates Enteric Glial Cells and Gut Microbiota in an Experimental Model of Chronic Kidney Disease. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:201-212. [PMID: 37611162 DOI: 10.1080/27697061.2023.2247057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Introduction: Chronic kidney disease (CKD) promotes gut dysbiosis, and enteric glial reactivity, a feature of intestinal inflammation. Brazil nut modulated enteric glial profile in healthy animals and could modulate these cells in 5/6 nephrectomized rats.Methods: A 5/6 nephrectomy-induced CKD and Sham-operated rats were divided as follows: CKD and Sham received a standard diet and CKD-BN and Sham-BN received a 5% Brazil nut enriched-diet. The protein content of glial fibrillary acid protein (GFAP), enteric glial marker, and GPx protein content and activity were assessed in the colon. The major phyla of gut microbiota were assessed.Results: CKD-BN group presented a decrease in GFAP content (p = 0.0001). The CKD-BN group modulated the abundance of Firmicutes, increasing its proportion compared to the CKD group. The CKD-BN group showed increased GPx activity in the colon (p = 0.0192), despite no significant difference in protein content.Conclusion: Brazil nut-enriched diet consumption decreased enteric glial reactivity and modulated gut microbiota in the CKD experimental model.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University (MSU), East Lansing, Michigan, USA
| | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Viviane Alexandre Nunes Degani
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Ana Lúcia Tavares-Gomes
- Neurosciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
95
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
96
|
Pei W, Li M, Wu J, Huang M, Sun B, Liang H, Wu Z. Preparation, Structural Analysis, and Intestinal Probiotic Properties of a Novel Oligosaccharide from Enzymatic Degradation of Huangshui Polysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:313-325. [PMID: 38126348 DOI: 10.1021/acs.jafc.3c05666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Huangshui polysaccharide (HSP) has attracted more and more interest due to its potential health benefits. Despite being an excellent source for the preparation of oligosaccharides, there are currently no relevant research reports on HSP. In the present study, a novel oligosaccharide (HSO) with a molecular weight of 1791 Da and a degree of polymerization of 11 was prepared through enzymatic degradation of crude HSP (cHSP). Methylation and NMR analyses revealed that the main chain of HSO was (1 → 4)-α-d-glucose with two O-6-linked branched chains. Morphological observations indicated that HSO exhibited smooth surface with lamellar and filamentary structure, and the glycan size ranged from 0.03 to 0.20 μm. Notably, HSO significantly promoted the proliferation of Bifidobacterium, Bacteroides, and Phascolarctobacterium, thereby making positive alterations in intestinal microbiota composition. Moreover, HSO markedly increased the content of short-chain fatty acids during in vitro fermentation. Metabolomics analysis illustrated the important metabolic pathways primarily involving glucose metabolism, amino acid metabolism, and fatty acid metabolism.
Collapse
Affiliation(s)
- Wenhao Pei
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mei Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Haiyan Liang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
97
|
Zhou R, Huang Y, Feng X, Zhou R, Wang L, Xie G, Xiao Y, Zhou H. Decreased YB-1 expression denervates brown adipose tissue and contributes to age-related metabolic dysfunction. Cell Prolif 2024; 57:e13520. [PMID: 37321837 PMCID: PMC10771110 DOI: 10.1111/cpr.13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Thermogenesis in brown adipose tissue (BAT) declines with aging, however, the underlying mechanism remains unclear. Here, we show that the expression of Y-box binding protein 1 (YB-1), a critical DNA/RNA binding protein, decreased in the BAT of aged mice due to the reduction of microbial metabolite butyrate. Genetic ablation of YB-1 in the BAT accelerated diet-induced obesity and BAT thermogenic dysfunction. In contrast, overexpression of YB-1 in the BAT of aged mice was sufficient to promote BAT thermogenesis, thus alleviating diet-induced obesity and insulin resistance. Interestingly, YB-1 had no direct effect on adipose UCP1 expression. Instead, YB-1 promoted axon guidance of BAT via regulating the expression of Slit2, thus potentiating sympathetic innervation and thermogenesis. Moreover, we have identified that a natural compound Sciadopitysin, which promotes YB-1 protein stability and nuclear translocation, alleviated BAT aging and metabolic disorders. Together, we reveal a novel fat-sympathetic nerve unit in regulating BAT senescence and provide a promising strategy against age-related metabolic disorders.
Collapse
Affiliation(s)
- Ruoyu Zhou
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Liwen Wang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Genqing Xie
- Department of EndocrinologyThe First People's Hospital of Xiangtan cityXiangtanChina
| | - Yuan Xiao
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaChina
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaChina
| |
Collapse
|
98
|
Liu X, Tang H, Huang X, Xu M. Butyrate affects bacterial virulence: a new perspective on preventing enteric bacterial pathogen invasion. Future Microbiol 2024; 19:73-84. [PMID: 38085176 DOI: 10.2217/fmb-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 02/15/2024] Open
Abstract
Enteric bacterial pathogens are a major threat to intestinal health. With the widespread use of antibiotics, bacterial resistance has become a problem, and there is an urgent need for a new treatment to reduce dependence on antibiotics. Butyrate can control enteric bacterial pathogens by regulating the expression of their virulence genes, promoting the posttranslational modification of their proteins, maintaining an anaerobic environment, regulating the host immune system and strengthening the intestinal mucosal barrier. Here, this review describes the mechanisms by which butyrate regulates the pathogenicity of enteric bacterial pathogens from various perspectives and discusses the prospects and limitations of butyrate as a new option for the control of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Hao Tang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
99
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
100
|
Hishiya N, Uno K, Nakano A, Konishi M, Higashi S, Eguchi S, Ariyoshi T, Matsumoto A, Oka K, Takahashi M, Suzuki Y, Horiuchi S, Hirai N, Ogawa Y, Ogawa T, Nakano R, Mikasa K, Kasahara K, Yano H. Association between the gut microbiome and organic acid profiles in a Japanese population with HIV infection. J Infect Chemother 2024; 30:58-66. [PMID: 37708940 DOI: 10.1016/j.jiac.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION An increased incidence of metabolic syndrome has been observed in human immunodeficiency virus (HIV)-infected individuals. In contrast, gut dysbiosis is involved in various pathogeneses, including vascular endothelial disorders. Organic acids, including short-chain fatty acids (SCFAs), are essential for maintaining gut homeostasis. Therefore, this study aimed to explore the gut microbiome profile and organic acids in a Japanese population infected with HIV. METHODS Forty-nine patients with HIV infection on combination antiretroviral therapy (cART) were enrolled and divided into the high and low CD4 groups based on a CD4 cutoff of 350 cells/μL. Stool samples were analyzed by 16S ribosomal RNA next-generation sequencing and high-performance liquid chromatography. The association between the gut microbiome, including bacterial taxa and organic acids, was statistically analyzed. RESULTS The fecal microbial community composition was significantly different between HIV patients with CD4 counts above and below 350 cells/μL. The relative abundance of Roseburia, Prevotella, Prevotella_9, and [Clostridium]_methylpentosum_group were significantly enriched in the high CD4 group. Fecal succinic acid tended to be more abundant in the low CD4 group, and acetic, propionic, and butyric acids tended to be more abundant in the high CD4 group. Roseburia was positively correlated with butyric acid levels. Prevotella_9 and Prevotella were negatively correlated with succinic acid levels and positively correlated with acetic and propionic acid levels. CONCLUSIONS This study showed intestinal dysbiosis bordering on a CD4 count of 350 in patients with HIV infection undergoing cART. These findings might help in understanding intestinal damage and systemic inflammation in HIV infection.
Collapse
Affiliation(s)
- Naokuni Hishiya
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan; Department of Infectious Diseases, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara-Shi, Nara, 630-8305, Japan
| | - Kenji Uno
- Department of Infectious Diseases, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo-Cho, Yoshino-Gun, Nara, 638-8551, Japan
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Mitsuru Konishi
- Center for Health Control, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan; Center for Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Seiya Higashi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Shuhei Eguchi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Tadashi Ariyoshi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Asami Matsumoto
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Motomichi Takahashi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Saori Horiuchi
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Nobuyasu Hirai
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan; Department of Gastroenterology, Seichokai Fuchu Hospital, 1-10-17 Hiko-Cho, Izumi, Osaka, 594-0076, Japan
| | - Yoshihiko Ogawa
- Department of Infectious Diseases, Sakai City Medical Center, 1-1-1 Ebaraji-Cho, Nishi-Ku, Sakai, Osaka, 593-8304, Japan
| | - Taku Ogawa
- Department of Microbiology and Infection Control, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Keiichi Mikasa
- Center for Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan; Department of Internal Medicine, Nara Koseikai Hospital, 769-3 Shigi-cho, Yamatokoriyama, Nara, 639-1039, Japan
| | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|