51
|
Li C, Gu X, Wu Z, Qin T, Guo L, Wang T, Zhang L, Jiang G. Assessing the effects of elevated ozone on physiology, growth, yield and quality of soybean in the past 40 years: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111644. [PMID: 33396164 DOI: 10.1016/j.ecoenv.2020.111644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Soybean (Glycine max) production is seriously threatened by ground-level ozone (O3) pollution. The goal of our study is to summarize the impacts of O3 on physiology, growth, yield, and quality of soybean, as well as root parameters. We performed meta-analysis on the collated 48 peer-reviewed papers published between 1980 and 2019 to quantitatively summarize the response of soybean to elevated O3 concentrations ([O3]). Relative to charcoal-filtered air (CF), elevated [O3] significantly accelerated chlorophyll degradation, enhanced foliar injury, and inhibited growth of soybean, evidenced by great reductions in leaf area (-20.8%), biomass of leaves (-13.8%), shoot (-22.8%), and root (-16.9%). Shoot of soybean was more sensitive to O3 than root in case of biomass. Chronic ozone exposure of about 75.5 ppb posed pronounced decrease in seed yield of soybean (-28.3%). In addition, root environment in pot contributes to higher reduction in shoot biomass and yield of soybean. Negative linear relationships were observed between yield loss and intensity of O3 treatment, AOT40. The larger loss in seed yield was significantly associated with higher reduction in shoot biomass and other yield component. This meta-analysis demonstrates the effects of elevated O3 on soybean were pronounced, suggesting that O3 pollution is still a soaring threat to the productivity of soybean in regions with high ozone levels.
Collapse
Affiliation(s)
- Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xian Gu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiyuan Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liyue Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.
| | - Gaoming Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
52
|
Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, Heng RKJ, Majid NMA, Sase H. Air pollution monitoring and tree and forest decline in East Asia: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140288. [PMID: 32721711 DOI: 10.1016/j.scitotenv.2020.140288] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Air pollution and atmospheric deposition have adverse effects on tree and forest health. We reviewed studies on tree and forest decline in Northeast and Southeast Asia, Siberia, and the Russian Far East (hereafter referred to as East Asia). This included studies published in domestic journals and languages. We identified information about the locations, causes, periods, and tree species exhibiting decline. Past air pollution was also reviewed. Most East Asian countries show declining trends in SO2 concentration in recent years, although Mongolia and Russia show increasing trends. Ozone (O3) concentrations are stable or gradually increasing in the East Asia region, with high maxima. Wet nitrogen (N) deposition was high in China and tropical countries, but low in Russia. The decline of trees and forests primarily occurred in the mid-latitudes of Japan, Korea, China, and Russia. Long-term large N deposition resulted in the N saturation phenomenon in Japan and China, but no clear forest health response was observed. Thereafter, forest decline symptoms, suspected to be caused by O3, were observed in Japan and China. In East Russia, tree decline occurred around industrial centers in Siberia. Haze events have been increasing in tropical and boreal forests, and particulate matter inhibits photosynthesis. In recent years, chronically high O3 concentrations, in conjunction with climate change, are likely have adverse effects on tree physiology. The effects of air pollution and related factors on tree decline are summarized. Recently, the effects of air pollution on tree decline have not been apparent under the changing climate, however, monitoring air pollution is indispensable for identifying the cause of tree decline. Further economic growth is projected in Southeast Asia and therefore, the monitoring network should be expanded to tropical and boreal forest zones. Countermeasures such as restoring urban trees and rural forests are important for ensuring future ecosystem services.
Collapse
Affiliation(s)
- Masamichi Takahashi
- Forestry and Forest Products Research Institute, Tsukuba, Japan; Japan International Forestry Promotion and Cooperation Center, Tokyo, Japan.
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Tatyana A Mikhailova
- Siberian Institute of Plant Physiology & Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
| | - Olga V Kalugina
- Siberian Institute of Plant Physiology & Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
| | - Olga V Shergina
- Siberian Institute of Plant Physiology & Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
| | - Larisa V Afanasieva
- Institute of General & Experimental Biology, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Roland Kueh Jui Heng
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Sarawak, Malaysia.
| | - Nik Muhamad Abd Majid
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Sarawak, Malaysia; Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Selangor, Malaysia.
| | - Hiroyuki Sase
- Asia Center for Air Pollution Research, Niigata, Japan.
| |
Collapse
|
53
|
Liu XJ, Xu W, Du EZ, Tang AH, Zhang Y, Zhang Y, Wen Z, Hao TX, Pan YP, Zhang L, Gu B, Zhao Y, Shen JL, Zhou F, Gao ZL, Feng Z, Chang YH, Goulding K, Collett J, Vitousek PM, Zhang F. Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190324. [PMID: 32981443 PMCID: PMC7536030 DOI: 10.1098/rsta.2019.0324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Atmospheric reactive nitrogen (Nr) has been a cause of serious environmental pollution in China. Historically, China used too little Nr in its agriculture to feed its population. However, with the rapid increase in N fertilizer use for food production and fossil fuel consumption for energy supply over the last four decades, increasing gaseous Nr species (e.g. NH3 and NOx) have been emitted to the atmosphere and then deposited as wet and dry deposition, with adverse impacts on air, water and soil quality as well as plant biodiversity and human health. This paper reviews the issues associated with this in a holistic way. The emissions, deposition, impacts, actions and regulations for the mitigation of atmospheric Nr are discussed systematically. Both NH3 and NOx make major contributions to environmental pollution but especially to the formation of secondary fine particulate matter (PM2.5), which impacts human health and light scattering (haze). In addition, atmospheric deposition of NH3 and NOx causes adverse impacts on terrestrial and aquatic ecosystems due to acidification and eutrophication. Regulations and practices introduced by China that meet the urgent need to reduce Nr emissions are explained and resulting effects on emissions are discussed. Recommendations for improving future N management for achieving 'win-win' outcomes for Chinese agricultural production and food supply, and human and environmental health, are described. This article is part of a discussion meeting issue 'Air quality, past present and future'.
Collapse
Affiliation(s)
- X. J. Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
- e-mail:
| | - W. Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| | - E. Z. Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - A. H. Tang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| | - Y. Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| | - Y. Y. Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| | - Z. Wen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| | - T. X. Hao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| | - Y. P. Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - L. Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - B. J. Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Y. Zhao
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - J. L. Shen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, People's Republic of China
| | - F. Zhou
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Z. L. Gao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, People's Republic of China
| | - Z. Z. Feng
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, People's Republic of China
| | - Y. H. Chang
- Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing 210044, People's Republic of China
| | - K. Goulding
- Department of Sustainable Agricultural Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - J. L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
| | - P. M. Vitousek
- Department of Biology, Stanford University, Stanford, CA 94016, USA
| | - F. S. Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
54
|
Yuan X, Li S, Feng Z, Xu Y, Shang B, Fares S, Paoletti E. Response of isoprene emission from poplar saplings to ozone pollution and nitrogen deposition depends on leaf position along the vertical canopy profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114909. [PMID: 32540567 DOI: 10.1016/j.envpol.2020.114909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
We investigated isoprene (ISO) emission and gas exchange in leaves from different positions along the vertical canopy profile of poplar saplings (Populus euramericana cv. '74/76'). For a growing season, plants were subjected to four N treatments, control (NC, no N addition), low N (LN, 50 kg N ha-1year-1), middle N (MN, 100 kg N ha-1year-1), high N (HN, 200 kg N ha-1year-1) and three O3 treatments (CF, charcoal-filtered ambient air; NF, non-filtered ambient air; NF + O3, NF + 40 ppb O3). Our results showed the effects of O3 and/or N on standardized ISO rate (ISOrate) and photosynthetic parameters differed along with the leaf position, with larger negative effects of O3 and positive effects of N on ISOrate and photosynthetic parameters in the older leaves. Expanded young leaves were insensitive to both treatments even at very high O3 concentration (67 ppb as 10-h average) and HN treatment. Significant O3 × N interactions were only found in middle and lower leaves, where ISOrate declined by O3 just when N was limited (NC and LN). With increasing light-saturated photosynthesis and chlorophyll content, ISOrate was reduced in the upper leaves but on the contrary increased in middle and lower leaves. The responses of ISOrate to AOT40 (accumulated exposure to hourly O3 concentrations > 40 ppb) and PODY (accumulative stomatal uptake of O3 > Y nmol O3 m-2 PLA s-1) were not significant in upper leaves, but ISOrate significantly decreased with increasing AOT40 or PODY under limited N supply in middle leaves but at all N levels in lower leaves. Overall, ISOrate changed along the vertical canopy profile in response to combined O3 and N exposure, a behavior that should be incorporated into multi-layer canopy models. Our results are relevant for modelling regional isoprene emissions under current and future O3 pollution and N deposition scenarios.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Shuangjiang Li
- School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Silvano Fares
- Council for Agricultural Research and Economics (CREA) - Research Centre for Forestry and Wood, Via Valle della Quistione 27, 00166, Rome, Italy
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Institute of Research on Terrestrial Ecosystems, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
55
|
Yuan X, Feng Z, Shang B, Calatayud V, Paoletti E. Ozone exposure, nitrogen addition and moderate drought dynamically interact to affect isoprene emission in poplar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139368. [PMID: 32454335 DOI: 10.1016/j.scitotenv.2020.139368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Ozone (O3) pollution can induce changes in plant growth and metabolism, and in turn, affects isoprene emission (ISO), but the extent of these effects may be modified by co-occurring soil water and nitrogen (N) availability. To date, however, much less is known about the combined effects of two of these factors on isoprene emission from plants. We investigated for the first time the combined effects of O3 exposure (CF, charcoal-filtered air; EO3, non-filtered air plus 40 ppb of O3), N addition (N0, no additional N; N50, 50 kg ha-1 year-1 of N) and moderate drought (WW, well-watered; WR, 40% of WW irrigation) on photosynthetic carbon assimilation and ISO emission in hybrid poplar at both leaf- and plant-level over time. Consistent with leaf-level photosynthesis (Pnleaf) and ISO (ISOleaf) responses, plant-level ISO (ISOplant) responses to O3, N addition and moderate drought were more marked after long exposure (September) than short exposure duration (July). EO3 significantly decreased ISOleaf and Pnleaf, while WR and N50 significantly increased them. Although O3 and water interacted significantly to affect Pnleaf over the exposure duration, neither N50 nor WR mitigated the negative effects of EO3 on ISOleaf. When ISO was scaled up to the plant level, the WR-induced increase in ISOleaf under EO3 was offset by a reduction in total leaf area. By contrast, effects of EO3 on ISOplant were not changed by N addition. Our results highlight that the dynamic effects on ISO emission change over the exposure duration depending on involved co-occurring factors and evaluation scales.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980 Paterna, Valencia, Spain
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Research on Terrestrial Ecosystems, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
56
|
Gupta SK, Sharma M, Majumder B, Maurya VK, Deeba F, Zhang JL, Pandey V. Effects of ethylenediurea (EDU) on regulatory proteins in two maize (Zea mays L.) varieties under high tropospheric ozone phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:675-688. [PMID: 32738705 DOI: 10.1016/j.plaphy.2020.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone is a major threat to the crops in the present climate change scenario. To investigate the EDU induced changes in proteins, two varieties of maize, the SHM3031 and the PEHM5, (hereafter S and P respectively) were treated with three EDU applications (0= control, 50 and 200 ppm) (hereafter 0= A, 1 and 2 respectively) (SA, S1, S2, PA, P1, P2 cultivar X treatments). Data on the morpho-physiology, enzymatic activity, and protein expression (for the first time) were collected at the vegetative (V, 45 DAG) and flowering (F, 75 DAG) developmental stages. The tropospheric ozone was around 53 ppb enough to cause phytotoxic effects. Protective effects of EDU were recorded in morpho-physiologically and biochemically. SOD, CAT and APX together with GR performed better under EDU protection in SHM3031 variety than PEHM5. The protein expression patterns in SHM3031 at the vegetative stage (28% proteins were increased, 7% were decreased), and at the flowering stage (17% increased, 8% decreased) were found. In PEHM5, a 14% increase and an 18% decrease (vegetative stage) whereas a 16% increase and a 20% decrease (flowering stage) were recorded in protein expression. Some protein functional categories, for instance, photosynthesis, carbon metabolism, energy metabolism, and defense were influenced by EDU. Rubisco expression was increased in SHM3031 whereas differentially expressed in PEHM5. Germin like protein, APX, SOD, and harpin binding proteins have enhanced defense regulatory mechanisms under EDU treatment during prevailing high tropospheric O3. The present study showed EDU protective roles in C4 plants as proven in C3.
Collapse
Affiliation(s)
- Sunil K Gupta
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666 303, China.
| | - Marisha Sharma
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Baisakhi Majumder
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Vivek K Maurya
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Farah Deeba
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666 303, China
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
57
|
Isotopic and Water Relation Responses to Ozone and Water Stress in Seedlings of Three Oak Species with Different Adaptation Strategies. FORESTS 2020. [DOI: 10.3390/f11080864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The impact of global changes on forest ecosystem processes is based on the species-specific responses of trees to the combined effect of multiple stressors and the capacity of each species to acclimate and cope with the environment modification. Combined environmental constraints can severely affect plant and ecological processes involved in plant functionality. This study provides novel insights into the impact of a simultaneous pairing of abiotic stresses (i.e., water and ozone (O3) stress) on the responses of oak species. Water stress (using 40 and 100% of soil water content at field capacity—WS and WW treatments, respectively) and O3 exposure (1.0, 1.2, and 1.4 times the ambient concentration—AA, 1.2AA, and 1.4AA, respectively) were carried out on Quercus robur L., Quercus ilex L., and Quercus pubescens Willd. seedlings, to study physiological traits (1. isotope signature [δ13C, δ18O and δ15N], 2. water relation [leaf water potential, leaf water content], 3. leaf gas exchange [light-saturated net photosynthesis, Asat, and stomatal conductance, gs]) for adaptation strategies in a Free-Air Controlled Exposure (FACE) experiment. Ozone decreased Asat in Q. robur and Q. pubescens while water stress decreased it in all three oak species. Ozone did not affect δ13C, whereas δ18O was influenced by O3 especially in Q. robur. This may reflect a reduction of gs with the concomitant reduction in photosynthetic capacity. However, the effect of elevated O3 on leaf gas exchange as indicated by the combined analysis of stable isotopes was much lower than that of water stress. Water stress was detectable by δ13C and by δ18O in all three oak species, while δ15N did not define plant response to stress conditions in any species. The δ13C signal was correlated to leaf water content (LWC) in Q. robur and Q. ilex, showing isohydric and anisohydric strategy, respectively, at increasing stress intensity (low value of LWC). No interactive effect of water stress and O3 exposure on the isotopic responses was found, suggesting no cross-protection on seasonal carbon assimilation independently on the species adaptation strategy.
Collapse
|
58
|
Agathokleous E, Feng Z, Oksanen E, Sicard P, Wang Q, Saitanis CJ, Araminiene V, Blande JD, Hayes F, Calatayud V, Domingos M, Veresoglou SD, Peñuelas J, Wardle DA, De Marco A, Li Z, Harmens H, Yuan X, Vitale M, Paoletti E. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. SCIENCE ADVANCES 2020; 6:eabc1176. [PMID: 32851188 PMCID: PMC7423369 DOI: 10.1126/sciadv.abc1176] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, POB 111, 80101 Joensuu, Finland
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France
| | - Qi Wang
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Costas J. Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Valda Araminiene
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys 53101 Kaunas District, Lithuania
| | - James D. Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Felicity Hayes
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna, Valencia 46980, Spain
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972 São Paulo, Brazil
| | - Stavros D. Veresoglou
- Freie Universität Berlin-Institut für Biologie, Dahlem Center of Plant Sciences, Plant Ecology, Berlin, Germany
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia E-08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia E-08193, Spain
| | - David A. Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome I-00123, Italy
| | - Zhengzhen Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Harry Harmens
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Marcello Vitale
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
59
|
Kinose Y, Fukamachi Y, Okabe S, Hiroshima H, Watanabe M, Izuta T. Toward an impact assessment of ozone on plant carbon fixation using a process-based plant growth model: A case study of Fagus crenata grown under different soil nutrient levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137008. [PMID: 32059294 DOI: 10.1016/j.scitotenv.2020.137008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Ozone (O3) in the troposphere, an air pollutant with phytotoxicity, is considered as a driver of global warming, because it reduces plant carbon fixation. Recently, a process-based plant growth model has been used in evaluating the O3 impacts on plants (Schauberger et al., 2019). To make the evaluation more rigorous, we developed a plant growth model and clarified the key factors driving O3-induced change in the whole-plant carbon fixation amount (Cfix). Fagus crenata seedlings were exposed to three O3 levels (charcoal-filtered air or 1.0- or 1.5-folds ambient [O3]) with three soil fertilization levels (non-, low-, or high-fertilized), i.e., a total of nine treatments. The Cfix was reduced in non- and low-fertilized treatments but was unaffected in high-fertilized treatment by O3 fumigation. Our plant growth model could simulate Cfix accurately (<10% error) by considering the impacts of O3 on plant leaf area and photosynthetic capacities, including maximum velocities of carboxylation and electron transport (Vcmax and Jmax, respectively), and the initial slope and convexity of the curve of the electron transport velocity response to photosynthetic photon flux density (φ and θ, respectively). Furthermore, the model revealed that changes in Vcmax and Jmax, φ and θ, or leaf area, caused by 1.5-folds the ambient [O3] fumigation resulted in the following Cfix changes: -1.6, -5.8, or -16.4% in non-fertilized seedlings, -4.1, -4.4, or -9.3% in low-fertilized seedlings, and -4.6, -7.6, or +5.8% in high-fertilized seedlings. Therefore, photosynthetic capacities (particularly φ and θ) and leaf area are important factors influencing the impact of O3 on Cfix of F. crenata seedlings grown under various fertilization levels. Further, the impacts of O3 and soil nutrient on these photosynthetic capacities and plant leaf area should be considered to predict O3-induced changes in carbon fixation by forest tree species using the process-based plant growth model.
Collapse
Affiliation(s)
- Yoshiyuki Kinose
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yoshinobu Fukamachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shigeaki Okabe
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroka Hiroshima
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
60
|
Wang Z, Wang C, Wang B, Wang X, Li J, Wu J, Liu L. Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114076. [PMID: 32041012 DOI: 10.1016/j.envpol.2020.114076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Atmospheric pollution could significantly alter tree growth independently and synergistically with meteorological conditions. North China offers a natural experiment for studying how plant growth responds to air pollution under different meteorological conditions, where rapid economic growth has led to severe air pollution and climate changes increase drought stress. Using a single aspen clone (Populus euramericana Neva.) as a 'phytometer', we conducted three experiments to monitor aspen leaf photosynthesis and stem growth during in situ exposure to atmospheric pollutants along the urban-rural gradient around Beijing. We used stepwise model selection to select the best multiple linear model, and we used binned regression to estimate the effects of air pollutants, atmospheric moisture stress and their interactions on aspen leaf photosynthesis and growth. Our results indicated that ozone (O3) and vapor pressure deficit (VPD) inhibited leaf photosynthesis and stem growth. The interactive effect of O3 and VPD resulted in a synergistic response: as the concentration of O3 increased, the negative impact of VPD on leaf photosynthesis and stem growth became more severe. We also found that nitrogen (N) deposition had a positive effect on stem growth, which may have been caused by an increase in canopy N uptake, although this hypothesis needs to be confirmed by further studies. The positive impact of aerosol loading may be due to diffuse radiation fertilization effects. Given the decline in aerosols and N deposition amidst increases in O3 concentration and drought risk, the negative effects of atmospheric pollution on tree growth may be aggravated in North China. In addition, the interaction between O3 and VPD may lead to a further reduction in ecosystem productivity.
Collapse
Affiliation(s)
- Zhenhua Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
61
|
Li P, Yin R, Shang B, Agathokleous E, Zhou H, Feng Z. Interactive effects of ozone exposure and nitrogen addition on tree root traits and biomass allocation pattern: An experimental case study and a literature meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136379. [PMID: 31926420 DOI: 10.1016/j.scitotenv.2019.136379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Ground-level ozone (O3) pollution often co-occurs with anthropogenic nitrogen (N) deposition. Many studies have explored how O3 and soil N affect aboveground structure and function of trees, but it remains unclear how belowground processes change over a spectrum of N addition and O3 concentrations levels. Here, we explored the interactive impact of O3 (five levels) and soil N (four levels) on fine and coarse root biomass and biomass allocation pattern in poplar clone 107 (Populus euramericana cv. '74/76'). We then evaluated the modifying effects of N on the responses of tree root biomass to O3 via a synthesis of published literature. Elevated O3 inhibited while N addition stimulated root biomass, with more pronounced effects on fine roots than on coarse root. The root:shoot (R:S) ratio was markedly decreased by N addition but remained unaffected by O3. No interactive effects between O3 and N were observed on root biomass and R:S ratio. The slope of log-log linear relationship between shoot and root biomass (i.e. scaling exponent) was increased by N, but not significantly affected by O3. The analysis of published literature further revealed that the O3-induced reduction in tree root biomass was not modified by soil N. The results suggest that higher N addition levels enhance faster allocation of shoot biomass while shoot biomass scales isometrically with root biomass across multiple O3 levels. N addition does not markedly alter the sensitivity of root biomass of trees to O3. These findings highlight that the biomass allocation exhibits a differential response to environmentally realistic levels of O3 and N, and provide an important perspective for understanding and predicting net primary productivity and carbon dynamics in O3-polluted and N-enriched environments.
Collapse
Affiliation(s)
- Pin Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Rongbin Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Huimin Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
62
|
Li Z, Yang J, Shang B, Xu Y, Couture JJ, Yuan X, Kobayashi K, Feng Z. Water stress rather than N addition mitigates impacts of elevated O 3 on foliar chemical profiles in poplar saplings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135935. [PMID: 31869612 DOI: 10.1016/j.scitotenv.2019.135935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Tropospheric ozone (O3) pollution can alter tree chemical profiles, and in turn, affect forest ecosystem function. However, the magnitude of these effects may be modified by variations in soil water and nutrient availability, which makes it difficult to predict the impacts of O3 in reality. Here we assessed the effects of elevated O3 alone, and in combination with soil water deficit and N addition, on the phytochemical composition of hybrid poplar (Populus deltoides cv. '55/56' × P. deltoides cv. 'Imperial'). Potted trees were grown in open-top chambers (OTCs) under either charcoal-filtered air or elevated O3 (non-filtered air +40 ppb of O3), and trees within each OTC were grown with four combinations of water (well-watered or water deficit) and nitrogen (with or without N addition) levels. We found that elevated O3 alone stimulated the accumulation of foliar nitrogen, soluble sugar, and lignin while inhibiting the accumulation of starch, but had limited impacts on condensed tannins and salicinoids in poplar saplings. Graphical vector analysis revealed that these changes in concentrations of nitrogen, starch and lignin were due largely to altered metabolic processes, while increased soluble sugar concentration related mainly to decreased leaf biomass in most cases. The effects of O3 on poplar foliar chemical profiles depended on soil water, but not soil N, availability. Specifically, O3-mediated changes in carbohydrates and lignin were mitigated by decreased soil water content. Taken together, these results suggested that nitrogen acquisition, carbohydrates mobilization and lignification play a role in poplar tolerance to O3. Moreover, the impacts of elevated O3 on phytochemistry of poplar leaves can be context-dependent, with potential consequences for ecosystem processes under future global change scenarios. Our results highlight the needs to consider multi-factors environments to optimize the management of plantations under changing environments.
Collapse
Affiliation(s)
- Zhengzhen Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - John J Couture
- Departments of Entomology and Forestry and Natural Resources, Purdue University, West Lafayette, IN 47906, USA
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kazuhiko Kobayashi
- Department of Global Agricultural Sciences, The University of Tokyo, Tokyo, Japan
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
63
|
Huang L, Chen K, Zhou M. Climate change and carbon sink: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8740-8758. [PMID: 31912388 DOI: 10.1007/s11356-019-07489-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
In recent years, climate change and carbon sinks have been widely studied by the academic community, and relevant research results have emerged in abundance. In this paper, a scientometric analysis of 747 academic works published between 1991 and 2018 related to climate change and carbon sinks is presented to characterize the intellectual landscape by identifying and revealing the basic characteristics, research power, intellectual base, research topic evolution, and research hotspots in this field. The results show that ① the number of publications in this field has increased rapidly and the field has become increasingly interdisciplinary; ② the most productive authors and institutions in this subject area are in the USA, China, Canada, Australia, and European countries, and the cooperation between these researchers is closer than other researchers in the field; ③ 11 of the 747 papers analyzed in this study have played a key role in the evolution of the field; and ④ in this paper, we divide research hotspots into three decade-long phases (1991-1999, 2000-2010, and 2011-present). Drought problems have attracted more and more attention from scholars. In the end, given the current trend of the studies, we conclude a list of research potentials of climate change and carbon sinks in the future. This paper presents an in-depth analysis of climate change and carbon sink research to better understand the global trends and directions that have emerged in this field over the past 28 years, which can also provide reference for future research in this field.
Collapse
Affiliation(s)
- Li Huang
- College of Economics and Management, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Ke Chen
- College of Economics and Management, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Mi Zhou
- College of Economics and Management, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
64
|
Shang B, Feng Z, Gao F, Calatayud V. The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134402. [PMID: 31683210 DOI: 10.1016/j.scitotenv.2019.134402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Ground-level ozone (O3) is an important phytotoxic air pollutant in China. In order to compare the sensitivity of common poplar clones to O3 in China and explore the possible mechanism, five poplar clones, clone DQ (Populus cathayana), clone 84 K (P. alba × P. glandulosa), clone WQ156 (P. deltoids × P. cathayana), clone 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and clone 107 (P. euramericana cv. '74/76') were exposed to four O3 treatments. According to the date of the initial visible O3 symptom and the slopes of O3 exposure-response relationships with the relative light-saturated rate of CO2 assimilation, we found that clone DQ and clone 546 were the most sensitive to O3, clone 84 K and clone WQ156 were the less sensitive, and clone 107 was the most tolerant, which could provide a basis to select O3 tolerant clones for poplar planting at areas with serious O3 pollution. Elevated O3 significantly reduced photosynthetic parameters, total phenols content, potential antioxidant capacity, leaf mass per area and biomass of five poplar clones, and there were significant interactions between O3 and clones for most photosynthetic parameters. Elevated O3 also significantly increased malondialdehyde content and total ascorbate content. The responses of total antioxidant capacity for poplar clones to elevated O3 were different, as indicated by the increase for clone 107 and reduction for other clones under elevated O3 treatment. Our results on the sensitivity of different poplar clones to O3 are not related to leaf stomatal conductance, leaf constitutive antioxidant levels or leaf morphology of plant grown in clean air. The possible reason is little difference in leaf traits among clones within close species, suggesting that more properties of plants should be considered for exploring the sensitivity mechanism of close species, such as mesophyll conductance, antioxidant enzyme activity and apoplastic antioxidants.
Collapse
Affiliation(s)
- Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - ZhaoZhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Agriculture Planning Science, China Agriculture University, Beijing 100193, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna 46980, Valencia, Spain
| |
Collapse
|
65
|
Peng J, Shang B, Xu Y, Feng Z, Calatayud V. Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113466. [PMID: 31679879 DOI: 10.1016/j.envpol.2019.113466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Since the Industrial Revolution, the global ambient O3 concentration has more than doubled. Negative impact of O3 on some common crops such as wheat and soybeans has been widely recognized, but there is relatively little information about maize, the typical C4 plant and third most important crop worldwide. To partly compensate this knowledge gap, the maize cultivar (Zhengdan 958, ZD958) with maximum planting area in China was exposed to a range of chronic ozone (O3) exposures in open top chambers (OTCs). The O3 effects on this highly important crop were estimated in relation to two O3 metrics, AOT40 (accumulated hourly O3 concentration over a threshold of 40 ppb during daylight hours) and POD6 (Phytotoxic O3 Dose above a threshold flux of 6 nmol O3 m-2 s-1 during a specified period). We found that (1) the reduced light-saturated net photosynthetic rate (Asat) mainly caused by non-stomatal limitations across heading and grain filling stages, but the stomatal limitations at the former stage were stronger than those at the latter stage; (2) impact of O3 on water use efficiency (WUE) of maize was significantly dependent on developmental stage; (3) yield loss induced by O3 was mainly due to a reduction in kernels weight rather than in the number of kernels; (4) the performance of AOT40 and POD6 was similar, according to their determination coefficients (R2); (5) the order of O3 sensitivity among different parameters was photosynthetic parameters > biomass parameters > yield-related parameters; (6) Responses of Asat to O3 between heading and gran filling stages were significantly different based on AOT40 metric, but not POD6. The proposed O3 metrics-response relationships will be valuable for O3 risk assessment in Asia and also for crop productivity models including the influence of O3.
Collapse
Affiliation(s)
- Jinlong Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vicent Calatayud
- Fundación CEAM, c/ Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| |
Collapse
|
66
|
Ozone Amplifies Water Loss from Mature Trees in the Short Term But Decreases It in the Long Term. FORESTS 2019. [DOI: 10.3390/f11010046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We measured whole-tree transpiration of mature Fagus sylvatica and Picea abies trees exposed to ambient and twice-ambient O3 regimes (1xO3 and 2xO3 free-air fumigation). After eight years, mean daily total transpiration did not vary with the O3 regime over the 31 days of our study, even though individual daily values increased with increasing daily O3 peaks in both species. Although the environmental parameters were similar at 1xO3 and 2xO3, the main factors affecting daily transpiration were vapour pressure deficit in 2xO3 spruce and O3 peaks in beech. For a mechanistic explanation, we measured O3-induced sluggish stomatal responses to variable light (sunflecks) by means of leaf-level gas exchange measurements only in the species where O3 was a significant factor for transpiration, i.e., beech. Stomata were always slower in closing than in opening. The 2xO3 stomata were slower in opening and mostly in closing than 1xO3 stomata, so that O3 uptake and water loss were amplified before a steady state was reached. Such delay in the stomatal reaction suggests caution when assessing stomatal conductance under O3 pollution, because recording gas exchange at the time photosynthesis reached an equilibrium resulted in a significant overestimation of stomatal conductance when stomata were closing (ab. 90% at 1xO3 and 250% at 2xO3). Sun and shade leaves showed similar sluggish responses, thus suggesting that sluggishness may occur within the entire crown. The fact that total transpiration was similar at 1xO3 and 2xO3, however, suggests that the higher water loss due to stomatal sluggishness was offset by lower steady-state stomatal conductance at 2xO3. In conclusion, O3 exposure amplified short-term water loss from mature beech trees by slowing stomatal dynamics, while decreased long-term water loss because of lower steady-state stomatal conductance. Over the short term of this experiment, the two responses offset each other and no effect on total transpiration was observed.
Collapse
|
67
|
Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H, Fornasier F, Tao F, Guo A, Paoletti E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. ENVIRONMENT INTERNATIONAL 2019; 131:104966. [PMID: 31284106 DOI: 10.1016/j.envint.2019.104966] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
China's economic growth has significantly increased emissions of tropospheric ozone (O3) precursors, resulting in increased regional O3 pollution. We analyzed data from >1400 monitoring stations and estimated the exposure of population and vegetation (crops and forests) to O3 pollution across China in 2015. Based on WHO metrics for human health protection, the current O3 level leads to +0.9% premature mortality (59,844 additional cases a year) with 96% of populated areas showing O3-induced premature death. For vegetation, O3 reduces annual forest tree biomass growth by 11-13% and yield of rice and wheat by 8% and 6%, respectively, relative to conditions below the respective AOT40 critical levels (CL). These CLs are exceeded over 98%, 75% and 83% of the areas of forests, rice and wheat, respectively. Using O3 exposure-response functions, we evaluated the costs of O3-induced losses in rice (7.5 billion US$), wheat (11.1 billion US$) and forest production (52.2 billion US$) and SOMO35-based morbidity for respiratory diseases (690.9 billion US$) and non-accidental mortality (7.5 billion US$), i.e. a total O3-related cost representing 7% of the China Gross Domestic Product in 2015.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Alessandra De Marco
- ENEA, Via Anguillarese 301, Rome, Italy; Institute of Research on Terrestrial Ecosystems, National Council of Research, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | | | | | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France; Institute of Research on Terrestrial Ecosystems, National Council of Research, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Hanqin Tian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, USA
| | | | - Fulu Tao
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Anhong Guo
- National Meteorological Center, China Meteorological Administration, Beijing, 100081, China
| | | |
Collapse
|
68
|
Feng Z, Shang B, Li Z, Calatayud V, Agathokleous E. Ozone will remain a threat for plants independently of nitrogen load. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13422] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Institute of Ecology Nanjing University of Information Science & Technology Nanjing China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
| | - Zhengzhen Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
| | | | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Institute of Ecology Nanjing University of Information Science & Technology Nanjing China
| |
Collapse
|
69
|
Peng J, Shang B, Xu Y, Feng Z, Pleijel H, Calatayud V. Ozone exposure- and flux-yield response relationships for maize. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1-7. [PMID: 31146222 DOI: 10.1016/j.envpol.2019.05.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
A stomatal ozone (O3) flux-response relationship for relative yield of maize was established by parameterizing a Jarvis stomatal conductance model. For the function (fVPD) describing the limitation of stomatal conductance by vapor pressure deficit (VPD, kPa), cumulative VPD during daylight hours was superior to hourly VPD. The latter function is proposed as a methodological improvement of this multiplicative model when stomatal conductance peaks during the morning and it is reduced later as it is the case of maize in this experiment. The model agreed relatively well with the measured stomatal conductance (R2 = 0.63). Based on the comparison of R2 values of the response functions, POD6 (Phytotoxic Ozone Dose over an hourly threshold 6 nmol m-2 s-1) and AOT40 (accumulated hourly O3 concentrations over a threshold of 40 ppb) performed similarly. The critical levels based on POD6 and AOT40 for 5% reduction in maize yield were 1.17 mmol m-2 PLA and 8.70 ppm h, respectively. In comparison with other important crops, the ranking of sensitivity of maize strongly differed depending on the O3 metric used, AOT40 or POD6. The newly proposed response functions are relevant for O3 risk assessment for this crop in Asia.
Collapse
Affiliation(s)
- Jinlong Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Ecology, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Håkan Pleijel
- Biological and Environmental Sciences, University of Gothenburg, PO Box 461, S-405 30, Göteborg, Sweden
| | - Vicent Calatayud
- Fundación CEAM, c/ Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| |
Collapse
|
70
|
Dusart N, Vaultier MN, Olry JC, Buré C, Gérard J, Jolivet Y, Le Thiec D. Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1687-1697. [PMID: 31284211 DOI: 10.1016/j.envpol.2019.06.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
Collapse
Affiliation(s)
- Nicolas Dusart
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | | | - Jean-Charles Olry
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Cyril Buré
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Joëlle Gérard
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Didier Le Thiec
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France.
| |
Collapse
|
71
|
Feng Z, Yuan X, Fares S, Loreto F, Li P, Hoshika Y, Paoletti E. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. PLANT, CELL & ENVIRONMENT 2019; 42:1939-1949. [PMID: 30767225 DOI: 10.1111/pce.13535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 05/03/2023]
Abstract
Isoprene and monoterpenes (MTs) are among the most abundant and reactive volatile organic compounds produced by plants (biogenic volatile organic compounds). We conducted a meta-analysis to quantify the mean effect of environmental factors associated to climate change (warming, drought, elevated CO2 , and O3 ) on the emission of isoprene and MTs. Results indicated that all single factors except warming inhibited isoprene emission. When subsets of data collected in experiments run under similar change of a given environmental factor were compared, isoprene and photosynthesis responded negatively to elevated O3 (-8% and -10%, respectively) and drought (-15% and -42%), and in opposite ways to elevated CO2 (-23% and +55%) and warming (+53% and -23%, respectively). Effects on MTs emission were usually not significant, with the exceptions of a significant stimulation caused by warming (+39%) and by elevated O3 (limited to O3 -insensitive plants, and evergreen species with storage organs). Our results clearly highlight individual effects of environmental factors on isoprene and MT emissions, and an overall uncoupling between these secondary metabolites produced by the same methylerythritol 4-phosphate pathway. Future results from manipulative experiments and long-term observations may help untangling the interactive effects of these factors and filling gaps featured in the current meta-analysis.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Silvano Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Arezzo, 52100, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (DISBA), National Research Council of Italy (CNR), Rome, 00185, Italy
- Department of Biology, University Federico II, Naples, 80138, Italy
| | - Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yasutomo Hoshika
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), 50019, Italy
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), 50019, Italy
| |
Collapse
|
72
|
Li P, Zhou H, Xu Y, Shang B, Feng Z. The effects of elevated ozone on the accumulation and allocation of poplar biomass depend strongly on water and nitrogen availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:929-936. [PMID: 30893752 DOI: 10.1016/j.scitotenv.2019.02.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Ozone (O3) pollution can alter carbon allocation and reduce tree growth - both above and below ground, but the extent of these effects depends on the variation in soil water and nutrient availability. Here we present the accumulation and allocation of biomass in poplar clone 546 (Populus deltoides cv. '55/56' × P. deltoides cv. 'Imperial') for one growing season at two O3 concentrations (charcoal-filtered air [CF] and non-filtered air + 40 ppb of O3 [E-O3]), two watering regimes (well-watered [WW] and reduced watering at 40% of WW irrigation [RW]) and two soil nitrogen addition treatments (no addition [N0] and the addition of 50 kg N ha-1 year-1 [N50]). We found that the deleterious effects of E-O3 depended on the supply of water and nitrogen. Specifically, when the supplies of water and/or N (WW and/or N50) were abundant, E-O3 significantly reduced whole plant biomass by >15% but had no significant effect on biomass when these supplies were limited (RW and N0). A significant reduction of biomass by E-O3 occurred earlier in fine roots than in other plant organs, indicating greater sensitivity of fine root to E-O3. These results suggest that rising O3 concentrations may not ubiquitously lead to a large reduction in plant biomass since plant growth is often jointly constrained by water and nutrients.
Collapse
Affiliation(s)
- Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- Institute of Ecology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
73
|
Effect of Long-Term vs. Short-Term Ambient Ozone Exposure on Radial Stem Growth, Sap Flux and Xylem Morphology of O3-Sensitive Poplar Trees. FORESTS 2019. [DOI: 10.3390/f10050396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the effect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the effect of long term O3 exposure of mature O3-sensitive hybrid poplars (‘Oxford’ clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not affect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct effect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.
Collapse
|
74
|
Zeng Y, Cao Y, Qiao X, Seyler BC, Tang Y. Air pollution reduction in China: Recent success but great challenge for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:329-337. [PMID: 30711599 DOI: 10.1016/j.scitotenv.2019.01.262] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
China's rapid economic growth has caused severe air pollution, raising serious concerns about the growing evidence of its negative health, environmental, and economic impacts. Consequently, the Chinese government has implemented a number of policies and measures to reduce air pollution. Relying on published information over the last three decades in China, we analyzed trends in air pollutant emissions (SO2 and NOx) and concentrations of particulate matter (PM) and ozone (O3). During the past decade, SO2 and NOx emissions had declined throughout China and concentrations of PM2.5 and PM10 had considerably decreased in most cities, but average reported 90th MDA8 O3, M7, and AOT40 O3 for 31 capital cities showed an increasing trend between 2013 and 2017. Despite progress in air pollution reduction and an increasing number of "clear sky" days, PM concentrations throughout China remain higher than the World Health Organization guidelines, and urban smog and haze remain a major threat to human health and the environment. Thus far, significant emission reductions have occurred largely through robust administrative power, especially when emission reductions were tied to the performance evaluations and promotion of government officials. Similar to most already-industrialized nations, China is now shifting away from SO2-dominated to NOx- and O3-dominated air pollution. Existing technologies and improved operations of existing control equipment appear unlikely to achieve sufficient reductions in NOx and O3 pollution. Considering the complex relationship between O3, NOx, VOCs, weather, and socio-economic changes in China, it is necessary to increase research on impacts of increasing ozone on plants and to adopt novel technologies and implemented to further reduce air pollution to levels that will protect human health and the environment.
Collapse
Affiliation(s)
- Yingying Zeng
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yuanfei Cao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Xue Qiao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China; Healthy Food Evaluation Research Center, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Barnabas C Seyler
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Ya Tang
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China; Healthy Food Evaluation Research Center, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
75
|
De Marco A, Proietti C, Anav A, Ciancarella L, D'Elia I, Fares S, Fornasier MF, Fusaro L, Gualtieri M, Manes F, Marchetto A, Mircea M, Paoletti E, Piersanti A, Rogora M, Salvati L, Salvatori E, Screpanti A, Vialetto G, Vitale M, Leonardi C. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. ENVIRONMENT INTERNATIONAL 2019; 125:320-333. [PMID: 30739052 DOI: 10.1016/j.envint.2019.01.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 05/24/2023]
Abstract
Across the 28 EU member states there were nearly half a million premature deaths in 2015 as a result of exposure to PM2.5, O3 and NO2. To set the target for air quality levels and avoid negative impacts for human and ecosystems health, the National Emission Ceilings Directive (NECD, 2016/2284/EU) sets objectives for emission reduction for SO2, NOx, NMVOCs, NH3 and PM2.5 for each Member State as percentages of reduction to be reached in 2020 and 2030 compared to the emission levels into 2005. One of the innovations of NECD is Article 9, that mentions the issue of "monitoring air pollution impacts" on ecosystems. We provide a clear picture of what is available in term of monitoring network for air pollution impacts on Italian ecosystems, summarizing what has been done to control air pollution and its effects on different ecosystems in Italy. We provide an overview of the impacts of air pollution on health of the Italian population and evaluate opportunities and implementation of Article 9 in the Italian context, as a case study beneficial for all Member States. The results showed that SO42- deposition strongly decreased in all monitoring sites in Italy over the period 1999-2017, while NO3- and NH4+ decreased more slightly. As a consequence, most of the acid-sensitive sites which underwent acidification in the 1980s partially recovered. The O3 concentration at forest sites showed a decreasing trend. Consequently, AOT40 (the metric identified to protect vegetation from ozone pollution) showed a decrease, even if values were still above the limit for forest protection (5000 ppb h-1), while PODy (flux-based metric under discussion as new European legislative standard for forest protection) showed an increase. National scale studies pointed out that PM10 and NO2 induced about 58,000 premature deaths (year 2005), due to cardiovascular and respiratory diseases. The network identified for Italy contains a good number of monitoring sites (6 for terrestrial ecosystem monitoring, 4 for water bodies monitoring and 11 for ozone impact monitoring) distributed over the territory and will produce a high number of monitored parameters for the implementation of the NECD.
Collapse
Affiliation(s)
| | - Chiara Proietti
- ISPRA, National System for the Protection of the Environment, Rome, Italy
| | - Alessandro Anav
- ENEA, Italian National Agency for New Technologies, SSPT-PVS, Rome, Italy
| | - Luisella Ciancarella
- ENEA, Italian National Agency for New Technologies, SSPT-MET-INAT, Bologna, Italy
| | - Ilaria D'Elia
- ENEA, Italian National Agency for New Technologies, SSPT-MET-INAT, Bologna, Italy
| | - Silvano Fares
- Council for Agricultural Research and Economics - Research Centre for Forestry and Wood, Rome, Italy
| | | | - Lina Fusaro
- UNIROMA, Sapienza University of Rome, Department of Environmental Biology, Rome, Italy
| | - Maurizio Gualtieri
- ENEA, Italian National Agency for New Technologies, SSPT-MET-INAT, Bologna, Italy
| | - Fausto Manes
- UNIROMA, Sapienza University of Rome, Department of Environmental Biology, Rome, Italy
| | - Aldo Marchetto
- CNR-IRSA, National Research Council, Institute of Water Research, Verbania Pallanza, Italy
| | - Mihaela Mircea
- ENEA, Italian National Agency for New Technologies, SSPT-MET-INAT, Bologna, Italy
| | - Elena Paoletti
- CNR-IRET, National Research Council, Porano, Viterbo, Italy
| | - Antonio Piersanti
- ENEA, Italian National Agency for New Technologies, SSPT-MET-INAT, Bologna, Italy
| | - Michela Rogora
- CNR-IRSA, National Research Council, Institute of Water Research, Verbania Pallanza, Italy
| | - Luca Salvati
- Council for Agricultural Research and Economics - Research Centre for Forestry and Wood, Rome, Italy
| | - Elisabetta Salvatori
- UNIROMA, Sapienza University of Rome, Department of Environmental Biology, Rome, Italy
| | - Augusto Screpanti
- ENEA, Italian National Agency for New Technologies, SSPT-MET-PREV, Rome, Italy
| | - Giovanni Vialetto
- ENEA, Italian National Agency for New Technologies, SSPT-MET-INAT, Bologna, Italy
| | - Marcello Vitale
- UNIROMA, Sapienza University of Rome, Department of Environmental Biology, Rome, Italy
| | - Cristina Leonardi
- CNR-IIA, National Research Council, Monterotondo, Rome, Italy; MATTM, Italian Ministry for Environment and Land and Sea Protection, Rome, Italy
| |
Collapse
|
76
|
Agathokleous E, WaiLi Y, Ntatsi G, Konno K, Saitanis CJ, Kitao M, Koike T. Effects of ozone and ammonium sulfate on cauliflower: Emphasis on the interaction between plants and insect herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:995-1007. [PMID: 31096429 DOI: 10.1016/j.scitotenv.2018.12.388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 05/03/2023]
Abstract
Ammonium sulfate [(NH4)2SO4] deposition and elevated ozone (O3) concentrations may negatively affect plants and trophic interactions. This study aimed to evaluate for the first time the interactive effects of high (NH4)2SO4 load and elevated O3 levels on cauliflower (Brassica oleracea L.) under field conditions. Cauliflower seedlings were treated with 0 (AS0) or 50 (AS50) kg ha-1 (NH4)2SO4 and exposed to ambient (AOZ, ≈20 ppb) or elevated (EOZ, ≈55 ppb) O3 for about one month, in a Free Air O3 Concentration Enrichment (FACE) system. The oligophagous diamondback moth (Plutella xylostella Linnaeus, 1758) showed a clear preference towards the seedlings treated with AS50, which intensively grazed. Plant-herbivore interactions were driven by (NH4)2SO4 availability, rather than O3, via increased nitrogen content in the leaves. Further laboratory bioassays were followed to confirm the validity of these observations using polyphagous Eri silkmoth larvae (Samia ricini) as a biological model in a standardized experimental setup. Choice assays, where larvae could select leaves among leaf samples from the different experimental conditions, and no-choice assays, where larvae could graze leaves from just one experimental condition, were conducted. In the choice assay, the larvae preferred AS50-treated leaves, in agreement with the field observations with diamondback moth. In the no-choice assay, larval body mass growth was inhibited when fed with leaves treated with EOZ and/or AS50. Larvae fed with AS50-treated leaves displayed increased mortality. These observations coincide with higher NO3 and Zn content in AS50-treated leaves. This study shows that plant-herbivore interactions can be driven by (NH4)2SO4 availability, independently of O3, and suggests that high N deposition may have severe health implications in animals consuming such plant tissues. Key message: Plant-herbivore interactions are driven by high (NH4)2SO4 availability, independently of O3.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita ku Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Yu WaiLi
- Research Faculty of Agriculture, Hokkaido University, Kita ku Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan; Pathein University, Pathein, Ayeyarwady, Myanmar
| | - Georgia Ntatsi
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization, ELGO - DEMETER, PO Box 60458, 57001 Thermi, Thessaloniki, Greece
| | - Kotaro Konno
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Votanikos, Athens 11855, Greece
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Kita ku Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
77
|
Li Q, Gabay M, Rubin Y, Raveh-Rubin S, Rohatyn S, Tatarinov F, Rotenberg E, Ramati E, Dicken U, Preisler Y, Fredj E, Yakir D, Tas E. Investigation of ozone deposition to vegetation under warm and dry conditions near the Eastern Mediterranean coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1316-1333. [PMID: 30677993 DOI: 10.1016/j.scitotenv.2018.12.272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Dry deposition of ozone (O3) to vegetation is an important removal pathway for tropospheric O3, while O3 uptake through plant stomata negatively affects vegetation and leads to climate change. Both processes are controlled by vegetation characteristics and ambient conditions via complex mechanisms. Recent studies have revealed that these processes can be fundamentally impacted by coastal effects, and by dry and warm conditions in ways that have not been fully characterized, largely due to lack of measurements under such conditions. Hence, we hypothesized that measuring dry deposition of O3 to vegetation along a sharp spatial climate gradient, and at different distances from the coast, can offer new insights into the characterization of these effects on O3 deposition to vegetation and stomatal uptake, providing important information for afforestation management and for climate and air-quality model improvement. To address these hypotheses, several measurement campaigns were performed at different sites, including pine, oak, and mixed Mediterranean forests, at distances of 20-59 km from the Eastern Mediterranean coast, under semiarid, Mediterranean and humid Mediterranean climate conditions. The eddy covariance technique was used to quantify vertical O3 flux (Ftot) and its partitioning to stomatal flux (Fst) and non-stomatal flux (Fns). Whereas Fst tended to peak around noon under humid Mediterranean and Mediterranean conditions in summer, it was strongly limited by drought under semiarid conditions from spring to early winter, with minimum average Fst/Ftot of 8-11% during the summer. Fns in the area was predominantly controlled by relative humidity (RH), whereas increasing Fns with RH for RH < 70% indicated enhancement of Fns by aerosols, via surface wetness stimulation. At night, efficient turbulence due to sea and land breezes, together with increased RH, resulted in strong enhancement of Ftot. Extreme dry surface events, some induced by dry intrusion from the upper troposphere, resulted in positive Fns events.
Collapse
Affiliation(s)
- Qian Li
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Gabay
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Rubin
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shira Raveh-Rubin
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Rohatyn
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Fyodor Tatarinov
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Rotenberg
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Ramati
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Dicken
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yakir Preisler
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Erick Fredj
- Department of Computer Science, Jerusalem College of Technology, Jerusalem, Israel
| | - Dan Yakir
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Tas
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
78
|
Shang B, Xu Y, Dai L, Yuan X, Feng Z. Elevated ozone reduced leaf nitrogen allocation to photosynthesis in poplar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:169-178. [PMID: 30537578 DOI: 10.1016/j.scitotenv.2018.11.471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
We investigated the effects of elevated ozone (O3) concentration on leaf nitrogen (N), a key determinant of plant photosynthesis, with two clones of poplar grown in open-top chambers. We focus on the difference between mass-based leaf N concentration (Nmass) and area-based one (Narea) in their responses to elevated O3, and the allocation of N to different leaf components: photosynthetic apparatus, cell walls, and others under elevated O3 level. Our results showed that elevated O3 significantly increased Nmass, but reduced Narea and leaf mass per area (LMA). The two clones showed no difference in Nmass response to O3, but the more sensitive clone showed greater reduction of Narea and LMA due to O3. We also found positive relationships between Narea and photosynthetic parameters, e.g. light-saturated photosynthetic rate (Asat). Furthermore, elevated O3 significantly reduced photosynthetic N-use efficiency (PNUE) and leaf N allocation to photosynthetic components, while increasing N allocation to cell walls and other components. We concluded that plants invested more N in cell walls and other components to resist O3 damages at the expense of photosynthetic N. The change of N allocation in plant leaves in response to elevated O3 could have an impact on ecological processes, e.g. leaf litter decomposition.
Collapse
Affiliation(s)
- Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
79
|
Xu Y, Feng Z, Shang B, Dai L, Uddling J, Tarvainen L. Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:136-145. [PMID: 30537576 DOI: 10.1016/j.scitotenv.2018.11.466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Finite mesophyll conductance (gm) reduces the rate of CO2 diffusion from the leaf intercellular space to the chloroplast and constitutes a major limitation of photosynthesis in trees. While it is well established that gm is decreased by stressors such as drought and high temperature, few studies have investigated if the phytotoxic air pollutant ozone (O3) affects gm. We quantified the relative importance of three different types of limitations of photosynthesis in poplar trees exposed to elevated O3: decreases in stomatal conductance, gm and biochemical photosynthetic capacity. The O3-induced reductions in light-saturated net photosynthesis were linked to significant declines in gm and biochemical photosynthetic capacity (in particular carboxylation). There was no significant effect of O3 on stomatal conductance. Of the O3-induced limitations on photosynthesis, gm limitation was by far the most important (-16%) while biochemical limitation (-8%) was rather small. Both limitations grew in magnitude over the study period and varied in response to leaf-specific O3 exposure. Our findings suggest that declines in gm may play a key role in limiting photosynthesis of plants exposed to elevated O3, an effect hitherto overlooked.
Collapse
Affiliation(s)
- Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
80
|
Gandin A, Davrinche A, Jolivet Y. Deciphering the main determinants of O 3 tolerance in Euramerican poplar genotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:681-690. [PMID: 30529971 DOI: 10.1016/j.scitotenv.2018.11.307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Tropospheric ozone (O3) is the main secondary pollutant and considered to be the most damaging for growth and productivity. O3 is well known to induce oxidative stress and Reactive Oxygen Species accumulation in leaf tissues. Several mechanisms have been suggested to enable trees to cope with such stress; however, their relative contribution to O3 tolerance is still unclear. Here, ten Euramerican poplar genotypes (Populus deltoides × nigra) were investigated regarding their response to 120 ppb of O3 for 3 weeks in order to determine main mechanisms and identify the key traits and strategies linked to a better tolerance to O3-induced oxidative stress. Results showed that ascorbate peroxidase and ascorbate regeneration through monodehydroascorbate reductase are the main determinants of O3 tolerance in Euramerican poplar, in protecting photosynthesis capacity from oxidative stress and therefore, maintaining growth and productivity. Besides, stomatal closure was harmful in sensitive genotypes, suggesting that avoiding strategy can be further deleterious under chronic ozone. Finally, O3-induced early senescence appeared essential when up scaling leaf-level mechanistic response to whole-plant productivity, in fine-tuning resource reallocation and photosynthesis area.
Collapse
Affiliation(s)
- Anthony Gandin
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France.
| | - Andrea Davrinche
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| |
Collapse
|
81
|
Zhang J, Gao F, Jia H, Hu J, Feng Z. Molecular response of poplar to single and combined ozone and drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1364-1375. [PMID: 30577128 DOI: 10.1016/j.scitotenv.2018.11.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
High concentration in ground-level ozone (O3) and water deficit affect forest ecosystems service. Previously we found intercellular CO2 concentration and isoprene emission were affected by the combination of O3 and drought, but the molecular mechanisms controlling these phenotypes are still open questions. In this study, we investigated the stomatal conductance (gs) and transcriptome changes in an O3-sensitive hybrid poplar exposed to two O3 levels [charcoal-filtered ambient air (CF) and non-filtered ambient air plus 40 ppb (NF40)] and two water conditions [well-watered (W) and moderate drought (D)]. NF40 reduced the gs more under D than W. We identified the differentially expressed genes (DEGs) from pairwise comparisons and found the poplar's molecular response to drought was counteracted by elevated O3. From nine clusters obtained through K-means clustering, 12 core transcription factors were identified. DEGs involved in isoprene biosynthesis and phytohormones signal pathways indicate the molecular response and stomatal closure of poplar under O3 and/or drought might be through MEP/DOXP and ABA-dependent pathways. In addition, 102 Helitrons capturing DEGs were involved in response to O3 and/or drought and related with ABA-dependent pathway. This integrated analysis provides multi-dimensional insights to understand the molecular response to the combination of O3 and drought.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
82
|
Feng Z, Shang B, Gao F, Calatayud V. Current ambient and elevated ozone effects on poplar: A global meta-analysis and response relationships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:832-840. [PMID: 30453256 DOI: 10.1016/j.scitotenv.2018.11.179] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 05/14/2023]
Abstract
The effects of current and future elevated O3 concentrations (e[O3]) were investigated by a meta-analysis for poplar, a widely distributed genus in the Northern Hemisphere with global economic importance. Current [O3] has significantly reduced CO2 assimilation rate (Pn) by 33% and total biomass by 4% in comparison with low O3 level (charcoal-filtered air, CF). Relative to CF, an increase in future [O3] would further enhance the reduction in total biomass by 24%, plant height by 17% and plant leaf area by 19%. Isoprene emissions could decline by 34% under e[O3], with feedback implications in reducing the formation of secondary air pollutants including O3. Reduced stomatal conductance and lower foliar area might increase runoff and freshwater availability in O3 polluted areas. Higher cumulated O3 exposure over a threshold of 40 ppb (AOT40) induced larger reductions in Pn, total biomass and isoprene emission. Relationships of light-saturated photosynthesis rates (Asat), total biomass and chlorophyll content with AOT40 using a global dataset are provided. These relationships are expected to improve O3 risk assessment and also to support the inclusion of the effect of O3 in models addressing plantation productivity and carbon sink capacity.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China.
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vicent Calatayud
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980 Paterna, Valencia, Spain
| |
Collapse
|
83
|
Zhang J, Tang H, Zhu J, Lin X, Feng Y. Effects of elevated ground-level ozone on paddy soil bacterial community and assembly mechanisms across four years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:505-513. [PMID: 30447589 DOI: 10.1016/j.scitotenv.2018.11.130] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
It is well known that elevated ground-level ozone (eO3) poses a threat to the ecosystem. Little knowledge about the underground variables, especially on soil microorganisms, however, has been revealed. Such knowledge will tremendously help to advance our understanding of the correlation between ecosystems and climate change, as well as our ability to predict future trajectory. For this purpose, we have collected soil DNA samples (eO3 vs. Ambient, each having 36 samples) over four years. Our results have verified the temporal responses and the underlying assembly mechanisms of the paddy bacterial community to eO3. Contrary to the widespread consensus, it was found that eO3 stimulated bacterial alpha diversities. The higher complexity and the centralization of the co-occurrence network of the bacterial community suggested that this stimulation was due to a microbial survival strategy in response to the limited resources, which led to the instability of the community. Furthermore, the observed slower temporal turnover of the bacterial community composition in response to eO3 was due to the decreased deterministic processes derived from plants, which implied that eO3 disrupted the coordination between soil microorganisms and rice crop. All above phenomena provided novel insights into the adverse influences of eO3 on the soil microbial community. If O3 concentration increases continuously, the adverse effects will be aggravated and harm the related ecological functions.
Collapse
Affiliation(s)
- Jianwei Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Haoye Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
84
|
Wilson SR, Madronich S, Longstreth JD, Solomon KR. Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochem Photobiol Sci 2019; 18:775-803. [PMID: 30810564 DOI: 10.1039/c8pp90064g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The composition of the air we breathe is determined by emissions, weather, and photochemical transformations induced by solar UV radiation. Photochemical reactions of many emitted chemical compounds can generate important (secondary) pollutants including ground-level ozone (O3) and some particulate matter, known to be detrimental to human health and ecosystems. Poor air quality is the major environmental cause of premature deaths globally, and even a small decrease in air quality can translate into a large increase in the number of deaths. In many regions of the globe, changes in emissions of pollutants have caused significant changes in air quality. Short-term variability in the weather as well as long-term climatic trends can affect ground-level pollution through several mechanisms. These include large-scale changes in the transport of O3 from the stratosphere to the troposphere, winds, clouds, and patterns of precipitation. Long-term trends in UV radiation, particularly related to the depletion and recovery of stratospheric ozone, are also expected to result in changes in air quality as well as the self-cleaning capacity of the global atmosphere. The increased use of substitutes for ozone-depleting substances, in response to the Montreal Protocol, does not currently pose a significant risk to the environment. This includes both the direct emissions of substitutes during use and their atmospheric degradation products (e.g. trifluoroacetic acid, TFA).
Collapse
Affiliation(s)
- S R Wilson
- Centre for Atmospheric Chemistry, School of Earth, Atmosphere and Life Sciences, University of Wollongong, NSW, Australia.
| | - S Madronich
- National Center for Atmospheric Research, Boulder, CO, USA
| | - J D Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, MD, USA and Emergent BioSolutions, Gaithersburg, MD, USA
| | - K R Solomon
- Centre for Toxicology and School of Environmental Sciences, University of Guelph, ON, Canada
| |
Collapse
|
85
|
Pellegrini E, Hoshika Y, Dusart N, Cotrozzi L, Gérard J, Nali C, Vaultier MN, Jolivet Y, Lorenzini G, Paoletti E. Antioxidative responses of three oak species under ozone and water stress conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:390-399. [PMID: 30086491 DOI: 10.1016/j.scitotenv.2018.07.413] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Plants are frequently exposed to adverse environmental conditions such as drought and ozone (O3). Under these conditions, plants can survive due to their ability to adjust their metabolism. The aim of the present study was to compare the detoxification mechanisms of three oak species showing different O3 sensitivity and water use strategy. Two-year-old seedlings of Quercus ilex, Q. pubescens and Q. robur were grown under the combination of three levels of O3 (1.0, 1.2 and 1.4 times the ambient O3 concentration) and three levels of water availability (on average 100, 80 and 42% of field capacity i.e. well-watered, moderate drought and severe drought, respectively) in an O3 Free Air Controlled Exposure facility. Ozone and drought induced the accumulation of reactive oxygen species (ROS) and this phenomenon was species-specific. Sometimes, ROS accumulation was not associated with membrane injury suggesting that several antioxidative defence mechanisms inhibited or alleviated the oxidative damage. Both O3 and drought increased total carotenoids that were able to prevent the peroxidation action by free radicals in Q. ilex, as confirmed by unchanged malondialdehyde by-product values. The concomitant decrease of total flavonoids may be related to the consumption of these compounds by the cell to inhibit the accumulation of hydrogen peroxide. Unchanged total phenols confirmed that Q. ilex has a superior ability to counteract oxidative conditions. Similar responses were found in Q. pubescens, although the negative impact of both factors was less efficiently faced than in the sympatric Q. ilex. In Q. robur, high O3 concentrations and severe drought induced a partial rearrangement of the phenylpropanoid pathways. These antioxidative mechanisms were not able to protect the cell structure (as confirmed by ROS accumulation) suggesting that Q. robur showed a lower degree of tolerance than the other two species.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Yasutomo Hoshika
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Nicolas Dusart
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Joëlle Gérard
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy.
| | | | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Elena Paoletti
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
86
|
Li Q, Gabay M, Rubin Y, Fredj E, Tas E. Measurement-based investigation of ozone deposition to vegetation under the effects of coastal and photochemical air pollution in the Eastern Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1579-1597. [PMID: 30248876 DOI: 10.1016/j.scitotenv.2018.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Dry deposition of ozone (O3) to vegetation is an important pathway for its removal from the troposphere, and it can lead to adverse effects in plants and changes in climate. However, our mechanistic understanding of O3 dry deposition is insufficient to adequately account for it in global and regional models, primarily because this process is highly complicated by feedback mechanisms and sensitivity to specific characteristics of vegetative environment and atmospheric dynamics and composition. We hypothesized that measuring dry deposition of O3 to vegetation near the Eastern Mediterranean (EM) coast, where large variations in meteorological conditions and photochemical air pollution frequently occur, would enable identifying the mechanisms controlling O3 deposition to vegetation. Moreover, we have only limited knowledge of O3 deposition to vegetation occurring near a coastline, under air pollution, or in the EM. This study investigated O3 deposition to mixed Mediterranean vegetation between the summers of 2015 and 2017, 3.6 km away from the EM coast, using the eddy covariance technique to quantify vertical flux of O3 and its partitioning to stomatal and non-stomatal flux, concurrent with nitrogen oxide (NOx), sulfur dioxide and carbon monoxide. Surprisingly, nighttime O3-deposition velocity (Vd) was smaller than daytime Vd by only ~20-37% on average for all measurement periods, primarily related to moderate nighttime atmospheric stability due to proximity to the seashore. We provide evidence for the role of sea-salt aerosols in enhancing O3 deposition via surface-wetness buildup at low relative humidity near the coast, and for daytime enhancement of O3 deposition by the combined effects of biogenic volatile organic compound emission and surface-wetness buildup. We further show that NOx emitted from elevated emission sources can reduce O3 deposition, and even lead to a positive O3 flux, demonstrating the importance of adequately taking into account the impact of air pollution on O3 deposition to vegetation.
Collapse
Affiliation(s)
- Qian Li
- The Robert H. Smith Faculty of Agriculture, Food & Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Gabay
- The Robert H. Smith Faculty of Agriculture, Food & Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Rubin
- The Robert H. Smith Faculty of Agriculture, Food & Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Erick Fredj
- Department of Computer Science, Jerusalem College of Technology, Jerusalem, Israel.
| | - Eran Tas
- The Robert H. Smith Faculty of Agriculture, Food & Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
87
|
Abu ElEla SA, Agathokleous E, Ghazawy NA, Amin TR, ElSayed WM, Koike T. Enzyme activity modification in adult beetles (Agelastica coerulea) inhabiting birch trees in an ozone-enriched atmosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32675-32683. [PMID: 30244439 DOI: 10.1007/s11356-018-3243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Tropospheric ozone (O3) is a naturally occurring gas in the atmosphere. However, the concentration of O3 increased in the twentieth century. Although the effects of O3 on vegetation have been extensively studied since the 1950s, limited information exists regarding the effects of O3 on insect herbivores. In particular, evidence is lacking regarding the effects of O3 on the biology of insect herbivores. Agelastica coerulea Baly (1874) is a coleopteran species that grazes on Betulaceae plants. In this study, to investigate the effects of O3 on A. coerulea biology for the first time, female adult insects were collected from Japanese white birch trees grown in a Free Air Controlled Exposure System (FACE) in Sapporo, Japan. These beetles inhabited trees exposed either to ambient or to elevated O3 for 23 days. After collection, the enzyme activities in the beetles were measured. Elevated O3 led to a greater total antioxidant activity and lower α- and β-esterase activities, a phenomenon that may suggest an increased resistance of the beetles to stress. Our results are further discussed with regard to biological and toxicological aspects. Collectively, our findings indicate that total antioxidants and α- and β-esterase activities can serve as effective O3 biomarker systems in this beetle species. This adaptive response of the beetle, which was induced by moderate O3 exposure, should be further tested across generations and for its protection against greater exposure.
Collapse
Affiliation(s)
| | - Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, 062-8516, Japan.
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-85889, Japan.
| | - Nirvina A Ghazawy
- Entomology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Tarek R Amin
- Plant Protection Research Institute, Agricultural Research Centre, Dokki, Egypt
| | - Wael M ElSayed
- Entomology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-85889, Japan.
| |
Collapse
|
88
|
Watanabe M, Kamimaki Y, Mori M, Okabe S, Arakawa I, Kinose Y, Nakaba S, Izuta T. Mesophyll conductance to CO 2 in leaves of Siebold's beech (Fagus crenata) seedlings under elevated ozone. JOURNAL OF PLANT RESEARCH 2018; 131:907-914. [PMID: 30203164 DOI: 10.1007/s10265-018-1063-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Ozone is an air pollutant that negatively affects photosynthesis in woody plants. Previous studies suggested that ozone-induced reduction in photosynthetic rates is mainly attributable to a decrease of maximum carboxylation rate (Vcmax) and/or maximum electron transport rate (Jmax) estimated from response of net photosynthetic rate (A) to intercellular CO2 concentration (Ci) (A/Ci curve) assuming that mesophyll conductance for CO2 diffusion (gm) is infinite. Although it is known that Ci-based Vcmax and Jmax are potentially influenced by gm, its contribution to ozone responses in Ci-based Vcmax and Jmax is still unclear. In the present study, therefore, we analysed photosynthetic processes including gm in leaves of Siebold's beech (Fagus crenata) seedlings grown under three levels of ozone (charcoal-filtered air or ozone at 1.0- or 1.5-times ambient concentration) for two growing seasons in 2016-2017. Leaf gas exchange and chlorophyll fluorescence were simultaneously measured in July and September of the second growing season. We determined the A, stomatal conductance to water vapor and gm, and analysed A/Ci curve and A/Cc curve (Cc: chloroplast CO2 concentration). We also determined the Rubisco and chlorophyll contents in leaves. In September, ozone significantly decreased Ci-based Vcmax. At the same time, ozone decreased gm, whereas there was no significant effect of ozone on Cc-based Vcmax or the contents of Rubisco and chlorophyll in leaves. These results suggest that ozone-induced reduction in Ci-based Vcmax is a result of the decrease in gm rather than in carboxylation capacity. The decrease in gm by elevated ozone was offset by an increase in Ci, and Cc did not differ depending on ozone treatment. Since Cc-based Vcmax was also similar, A was not changed by elevated ozone. We conclude that gm is an important factor for reduction in Ci-based Vcmax of Siebold's beech under elevated ozone.
Collapse
Affiliation(s)
- Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| | - Yu Kamimaki
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Marino Mori
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shigeaki Okabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Izumi Arakawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Yoshiyuki Kinose
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Yamanashi, 400-8510, Japan
| | - Satoshi Nakaba
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
89
|
Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M. Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. FRONTIERS IN PLANT SCIENCE 2018; 9:1445. [PMID: 30333846 PMCID: PMC6176061 DOI: 10.3389/fpls.2018.01445] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 05/09/2023]
Abstract
Plant secondary compounds (PSCs), also called secondary metabolites, have high chemical and structural diversity and appear as non-volatile or volatile compounds. These compounds may have evolved to have specific physiological and ecological functions in the adaptation of plants to their growth environment. PSCs are produced by several metabolic pathways and many PSCs are specific for a few plant genera or families. In forest ecosystems, full-grown trees constitute the majority of plant biomass and are thus capable of producing significant amounts of PSCs. We summarize older literature and review recent progress in understanding the effects of abiotic and biotic factors on PSC production of forest trees and PSC behavior in forest ecosystems. The roles of different PSCs under stress and their important role in protecting plants against abiotic and biotic factors are also discussed. There was strong evidence that major climate change factors, CO2 and warming, have contradictory effects on the main PSC groups. CO2 increases phenolic compounds in foliage, but limits terpenoids in foliage and emissions. Warming decreases phenolic compounds in foliage but increases terpenoids in foliage and emissions. Other abiotic stresses have more variable effects. PSCs may help trees to adapt to a changing climate and to pressure from current and invasive pests and pathogens. Indirect adaptation comes via the effects of PSCs on soil chemistry and nutrient cycling, the formation of cloud condensation nuclei from tree volatiles and by CO2 sequestration into PSCs in the wood of living and dead forest trees.
Collapse
Affiliation(s)
- Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Virpi Virjamo
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Rajendra P. Ghimire
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - James D. Blande
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
90
|
Agathokleous E, Kitao M, Calabrese EJ. Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:318-321. [PMID: 29665552 DOI: 10.1016/j.envpol.2018.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 05/03/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) are released to the atmosphere from vegetation. BVOCs aid in maintaining ecosystem sustainability via a series of functions, however, VOCs can alter tropospheric photochemistry and negatively affect biological organisms at high concentrations. Due to their critical role in ecosystem and environmental sustainability, BVOCs receive particular attention by global change biologists. To understand how plant VOC emissions affect stress responses within a dose-response context, dose responses should be evaluated. This commentary collectively documents hormetic-like responses of plant-emitted VOCs to external stimuli. Hormesis is a generalizable biphasic dose response phenomenon where the response to low doses acts in an opposite way at high doses. These collective findings suggest that ecological implications of low-level stress that may alter BVOC emissions should be considered in future studies. This commentary promotes new insights into the interface between biological systems and environmental change that influence several parts of the globe, and provide a base for advancing hazard assessment testing strategies and protocols to provide decision makers with adequate data for generating environmental standards.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
91
|
Zhang L, Hoshika Y, Carrari E, Badea O, Paoletti E. Ozone risk assessment is affected by nutrient availability: Evidence from a simulation experiment under free air controlled exposure (FACE). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:812-822. [PMID: 29627751 DOI: 10.1016/j.envpol.2018.03.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Assessing ozone (O3) risk to vegetation is crucial for informing policy making. Soil nitrogen (N) and phosphorus (P) availability could change stomatal conductance which is the main driver of O3 uptake into a leaf. In addition, the availability of N and P could influence photosynthesis and growth. We thus postulated that the sensitivity of plants to O3 may be changed by the levels of N and P in the soil. In this study, a sensitive poplar clone (Oxford) was subject to two N levels (N0, 0 kg N ha-1; N80, 80 kg N ha-1), three P levels (P0, 0 kg P ha-1; P40, 40 kg P ha-1; P80, 80 kg P ha-1) and three levels of O3 exposure (ambient concentration, AA; 1.5 × AA; 2.0 × AA) for a whole growing season in an O3 free air controlled exposure (FACE) facility. Flux-based (POD0 to 6) and exposure-based (W126 and AOT40) dose-response relationships were fitted and critical levels (CLs) were estimated for a 5% decrease of total annual biomass. It was found that N and P availability modified the dose-response relationships of biomass responses to O3. Overall, the N supply decreased the O3 CLs i.e. increased the sensitivity of poplar to O3. Phosphorus alleviated the O3-caused biomass loss and increased the CL. However, such mitigation effects of P were found only in low N and not in high N conditions. In each nutritional treatment, similar performance was found between flux-based and exposure-based indices. However, the flux-based approach was superior, as compared to exposure indices, to explain the biomass reduction when all nutritional treatments were pooled together. The best O3 metric for risk assessments was POD4, with 4.6 mmol m-2 POD4 as a suitable CL for Oxford poplars grown under various soil N and P conditions.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030, Harbin, China; Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| | - Yasutomo Hoshika
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy.
| | - Elisa Carrari
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| | - Ovidiu Badea
- INCDS, 13 Septembrie, sector 5, 050711, Bucarest, Romania
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| |
Collapse
|
92
|
Xu W, Shang B, Xu Y, Yuan X, Dore AJ, Zhao Y, Massad RS, Feng Z. Effects of elevated ozone concentration and nitrogen addition on ammonia stomatal compensation point in a poplar clone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:760-770. [PMID: 29625300 DOI: 10.1016/j.envpol.2018.03.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 05/23/2023]
Abstract
The stomatal compensation point of ammonia (χs) is a key factor controlling plant-atmosphere NH3 exchange, which is dependent on the nitrogen (N) supply and varies among plant species. However, knowledge gaps remain concerning the effects of elevated atmospheric N deposition and ozone (O3) on χs for forest species, resulting in large uncertainties in the parameterizations of NH3 incorporated into atmospheric chemistry and transport models (CTMs). Here, we present leaf-scale measurements of χs for hybrid poplar clone '546' (Populusdeltoides cv. 55/56 x P. deltoides cv. Imperial) growing in two N treatments (N0, no N added; N50, 50 kg N ha-1 yr-1 urea fertilizer added) and two O3 treatments (CF, charcoal-filtered air; E-O3, non-filtered air plus 40 ppb) for 105 days. Our results showed that χs was significantly reduced by E-O3 (41%) and elevated N (19%). The interaction of N and O3 was significant, and N can mitigate the negative effects of O3 on χs. Elevated O3 significantly reduced the light-saturated photosynthetic rate (Asat) and chlorophyll (Chl) content and significantly increased intercellular CO2 concentrations (Ci), but had no significant effect on stomatal conductance (gs). By contrast, elevated N did not significantly affect all measured photosynthetic parameters. Overall, χs was significantly and positively correlated with Asat, gs and Chl, whereas a significant and negative relationship was observed between χs and Ci. Our results suggest that O3-induced changes in Asat, Ci and Chl may affect χs. Our findings provide a scientific basis for optimizing parameterizations of χs in CTMs in response to environmental change factors (i.e., elevated N deposition and/or O3) in the future.
Collapse
Affiliation(s)
- Wen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anthony J Dore
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Yuanhong Zhao
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Raia-Silvia Massad
- UMR ECOSYS, INRA, Agroparistech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
93
|
Li P, De Marco A, Feng Z, Anav A, Zhou D, Paoletti E. Nationwide ground-level ozone measurements in China suggest serious risks to forests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:803-813. [PMID: 29128249 DOI: 10.1016/j.envpol.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 05/03/2023]
Abstract
We processed hourly ozone (O3) concentrations collected in 2015 and in 2016 by a network of 1497 stations across China, with the main aim of assessing the risk that present ambient O3 exposure is posing to Chinese forests. Our results indicate that the values of the metrics AOT40 (the accumulated hourly O3 concentrations above 40 ppb during daylight hours) recommended as European Union standard, and W126 (the sum of weighted hourly concentrations from 8:00 to 20:00) recommended as USA standard for forest protection, exceeded the critical levels (5 ppm h across 6 months for AOT40 and 7-21 ppm h over 3 months for W126) on average by 5.1 and 1.2 times, respectively. N100 showed on average 65 annual exceedances of 100 ppb as hourly value. The 12-h and 24-h averages showed a small difference, suggesting high concentrations also at night. Risk was higher for the northern temperate climate than for the southern tropical and sub-tropical climates, and overall for the northern regions than for the southern regions. Higher risk occurred in the non-urban areas than in the urban areas in northern, south-west and north-west China, whereas risk was higher at urban areas in eastern and southern China. The overall results of this first nationwide assessment suggest a significant risk for forests over the entire China and warrant for urgent measures for controlling O3 precursor emissions and establishing standards of protection.
Collapse
Affiliation(s)
- Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distract, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan Disctrict, Beijing 100049, China
| | - Alessandra De Marco
- ENEA Casaccia, Via Anguillarese 31, Rome, Italy; National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distract, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan Disctrict, Beijing 100049, China.
| | - Alessandro Anav
- ENEA Casaccia, Via Anguillarese 31, Rome, Italy; National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Daojing Zhou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian Distract, Beijing, 100085, China; National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
94
|
Elevated CO2 and O3 Levels Influence the Uptake and Leaf Concentration of Mineral N, P, K in Phyllostachys edulis (Carrière) J.Houz. and Oligostachyum lubricum (wen) King f. FORESTS 2018. [DOI: 10.3390/f9040195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
95
|
Lefohn AS, Malley CS, Smith L, Wells B, Hazucha M, Simon H, Naik V, Mills G, Schultz MG, Paoletti E, De Marco A, Xu X, Zhang L, Wang T, Neufeld HS, Musselman RC, Tarasick D, Brauer M, Feng Z, Tang H, Kobayashi K, Sicard P, Solberg S, Gerosa G. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. ELEMENTA (WASHINGTON, D.C.) 2018; 1:1. [PMID: 30345319 PMCID: PMC6192432 DOI: 10.1525/elementa.279] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics.
Collapse
Affiliation(s)
| | - Christopher S. Malley
- Stockholm Environment Institute, Environment
Department, University of York, York, UK
- NERC Centre for Ecology and Hydrology, Penicuik,
UK
- School of Chemistry, University of Edinburgh,
Edinburgh, UK
| | - Luther Smith
- Alion Science and Technology, Inc., Research
Triangle Park, NC, US
| | - Benjamin Wells
- Office of Air Quality Planning and Standards, U.S.
EPA, Research Triangle Park, NC, US
| | - Milan Hazucha
- Center for Environmental Medicine, Asthma, and Lung
Biology, University of North Carolina, Chapel Hill, NC, US
| | - Heather Simon
- Office of Air Quality Planning and Standards, U.S.
EPA, Research Triangle Park, NC, US
| | - Vaishali Naik
- NOAA Geophysical Fluid Dynamics Laboratory,
Princeton, NJ, US
| | - Gina Mills
- NERC Centre for Ecology and Hydrology,
Environment Centre Wales, Bangor, UK
| | | | - Elena Paoletti
- Institute for Sustainable Plant Protection,
National Research Council, Florence, IT
| | - Alessandra De Marco
- Italian National Agency for New
Technologies, Energy and Sustainable Economic Development, Rome, IT
| | - Xiaobin Xu
- Key Laboratory for Atmospheric Chemistry, Institute of
Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing,
CN
| | - Li Zhang
- Department of Civil and
Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, CN
| | - Tao Wang
- Department of Civil and
Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, CN
| | | | | | - David Tarasick
- Air Quality Research Division,
Environment and Climate Change Canada, Downsview, ON, CA
| | - Michael Brauer
- School of Population and Public
Health, University of British Columbia, Vancouver, British Columbia, CA
| | - Zhaozhong Feng
- Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing, CN
| | - Haoye Tang
- Institute of Soil Sciences,
Chinese Academy of Sciences, Nanjing, CN
| | - Kazuhiko Kobayashi
- Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, JP
| | - Pierre Sicard
- ACRI-HE, 260 route du Pin
Montard BP234, Sophia Antipolis, FR
| | - Sverre Solberg
- Norwegian Institute for Air
Research (NILU), Kjeller, NO
| | - Giacomo Gerosa
- Dipartimento di Matematica
e Fisica, Università Cattolica del Sacro Cuore, Brescia, IT
| |
Collapse
|