51
|
Enright HA, Falso MJS, Malfatti MA, Lao V, Kuhn EA, Hum N, Shi Y, Sales AP, Haack KW, Kulp KS, Buchholz BA, Loots GG, Bench G, Turteltaub KW. Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model. PLoS One 2017; 12:e0181996. [PMID: 28792966 PMCID: PMC5549899 DOI: 10.1371/journal.pone.0181996] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Triclocarban (TCC) is among the top 10 most commonly detected wastewater contaminants in both concentration and frequency. Its presence in water, as well as its propensity to bioaccumulate, has raised numerous questions about potential endocrine and developmental effects. Here, we investigated whether exposure to an environmentally relevant concentration of TCC could result in transfer from mother to offspring in CD-1 mice during gestation and lactation using accelerator mass spectrometry (AMS). 14C-TCC (100 nM) was administered to dams through drinking water up to gestation day 18, or from birth to post-natal day 10. AMS was used to quantify 14C-concentrations in offspring and dams after exposure. We demonstrated that TCC does effectively transfer from mother to offspring, both trans-placentally and via lactation. TCC-related compounds were detected in the tissues of offspring with significantly higher concentrations in the brain, heart and fat. In addition to transfer from mother to offspring, exposed offspring were heavier in weight than unexposed controls demonstrating an 11% and 8.5% increase in body weight for females and males, respectively. Quantitative real-time polymerase chain reaction (qPCR) was used to examine changes in gene expression in liver and adipose tissue in exposed offspring. qPCR suggested alterations in genes involved in lipid metabolism in exposed female offspring, which was consistent with the observed increased fat pad weights and hepatic triglycerides. This study represents the first report to quantify the transfer of an environmentally relevant concentration of TCC from mother to offspring in the mouse model and evaluate bio-distribution after exposure using AMS. Our findings suggest that early-life exposure to TCC may interfere with lipid metabolism and could have implications for human health.
Collapse
Affiliation(s)
- Heather A. Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- * E-mail:
| | - Miranda J. S. Falso
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Michael A. Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Victoria Lao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Edward A. Kuhn
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Nicholas Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Yilan Shi
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Ana Paula Sales
- Data Analytics and Decision Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Kurt W. Haack
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Kristen S. Kulp
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Graham Bench
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Kenneth W. Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| |
Collapse
|
52
|
Anderson CG, Joshi G, Bair DA, Oriol C, He G, Parikh SJ, Denison MS, Scow KM. Use of nuclear receptor luciferase-based bioassays to detect endocrine active chemicals in a biosolids-biochar amended soil. CHEMOSPHERE 2017; 181:160-167. [PMID: 28437741 DOI: 10.1016/j.chemosphere.2017.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/14/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha-1) is above the average agronomic rate (10-20 t ha-1), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds.
Collapse
Affiliation(s)
- Carolyn G Anderson
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Geetika Joshi
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Daniel A Bair
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Charlotte Oriol
- Laboratoire HydroSciences Montpellier, Université Montpellier 2, Maison des Sciences de l'Eau, 300, Avenue du Professeur Emile Jeanbrau, Montpellier, 34095, France
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kate M Scow
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
53
|
Satyro S, Saggioro EM, Veríssimo F, Buss DF, de Paiva Magalhães D, Oliveira A. Triclocarban: UV photolysis, wastewater disinfection, and ecotoxicity assessment using molecular biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16077-16085. [PMID: 28537026 DOI: 10.1007/s11356-017-9165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Triclocarban (TCC) is an antibacterial agent found in pharmaceuticals and personal care products (PPCP). It is potentially bioaccumulative and an endocrine disruptor, being classified as a contaminant of emerging concern (CEC). In normal uses, approximately 96% of the used TCC can be washed down the drain going into the sewer system and eventually enter in the aquatic environment. UV photolysis can be used to photodegrade TCC and ecotoxicity assays could indicate the photodegradation efficiency, since the enormous structural diversity of photoproducts and their low concentrations do not always allow to identify and quantify them. In this work, the TCC was efficiently degraded by UVC direct photolysis and the ecotoxicity of the UV-treated mixtures was investigated. Bioassays indicates that Daphnia similis (48 h EC50 = 0.044 μM) was more sensitive to TCC than Pseudokirchneriella subcapitata (72 h IC50 = 1.01 μM). TCC and its photoproducts caused significant effects on Eisenia andrei biochemical responses (catalase and glutathione-S-transferase); 48 h was a critical exposure time, since GST reached the highest activity values. UVC reduced the TCC toxic effect after 120 min. Furthermore, TCC was photodegraded in domestic wastewater which was simultaneously disinfected for total coliform bacterial (TCB) (360 min) and Escherichia coli (60 min). Graphical abstract TCC degradation and ecotoxicological assessment.
Collapse
Affiliation(s)
- Suéllen Satyro
- Center for the Study of Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões, 1480, Rio de Janeiro, RJ, Brazil.
- Federal University of Rio de Janeiro, COPPE - Chemical Engineering Program, Centro de Tecnologia, Cidade Universitária, Bloco G, sala, 115, Rio de Janeiro, Brazil.
| | - Enrico Mendes Saggioro
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, Rio de Janeiro, RJ, Brazil
| | - Fábio Veríssimo
- Center for the Study of Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões, 1480, Rio de Janeiro, RJ, Brazil
- Federal University of the State of Rio de Janeiro, Av. Pasteur, 296, Rio de Janeiro, Brazil
| | - Daniel Forsin Buss
- Laboratory of Environmental Health Promoting and Evaluation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - Danielly de Paiva Magalhães
- Laboratory of Applied Ecotoxicology to Mining-Metallurgical Industry, Mineral Technology Center, Av. Pedro Calmon, 900, Rio de Janeiro, Brazil
| | - Anabela Oliveira
- Research and Innovation Interdisciplinary Center, Technology and Management Faculty, Polytechnic Institute of Portalegre, Lugar da Abadessa, Apartado, 148, Portalegre, Portugal
| |
Collapse
|
54
|
Halden RU, Lindeman AE, Aiello AE, Andrews D, Arnold WA, Fair P, Fuoco RE, Geer LA, Johnson PI, Lohmann R, McNeill K, Sacks VP, Schettler T, Weber R, Zoeller RT, Blum A. The Florence Statement on Triclosan and Triclocarban. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:064501. [PMID: 28632490 PMCID: PMC5644973 DOI: 10.1289/ehp1788] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 05/20/2023]
Abstract
The Florence Statement on Triclosan and Triclocarban documents a consensus of more than 200 scientists and medical professionals on the hazards of and lack of demonstrated benefit from common uses of triclosan and triclocarban. These chemicals may be used in thousands of personal care and consumer products as well as in building materials. Based on extensive peer-reviewed research, this statement concludes that triclosan and triclocarban are environmentally persistent endocrine disruptors that bioaccumulate in and are toxic to aquatic and other organisms. Evidence of other hazards to humans and ecosystems from triclosan and triclocarban is presented along with recommendations intended to prevent future harm from triclosan, triclocarban, and antimicrobial substances with similar properties and effects. Because antimicrobials can have unintended adverse health and environmental impacts, they should only be used when they provide an evidence-based health benefit. Greater transparency is needed in product formulations, and before an antimicrobial is incorporated into a product, the long-term health and ecological impacts should be evaluated. https://doi.org/10.1289/EHP1788.
Collapse
Affiliation(s)
- Rolf U Halden
- Biodesign Center for Environmental Security, Arizona State University , Tempe, Arizona, USA
| | | | - Allison E Aiello
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina , Chapel Hill, North Carolina, USA
| | - David Andrews
- Environmental Working Group, Washington, District of Columbia, USA
| | - William A Arnold
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota , Minneapolis, Minnesota, USA
| | - Patricia Fair
- Medical University of South Carolina , Department of Public Health Sciences, Charleston, South Carolina, USA
| | - Rebecca E Fuoco
- Health Research Communication Strategies , Los Angeles, California, USA
| | - Laura A Geer
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health , Brooklyn, New York, USA
| | - Paula I Johnson
- California Safe Cosmetics Program, California Department of Public Health , Richmond, California, USA
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography , Narragansett, Rhode Island, USA
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich, Zurich, Switzerland
| | | | - Ted Schettler
- Science and Environmental Health Network, Ames, Iowa, USA
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - R Thomas Zoeller
- University of Massachusetts Amherst , Amherst, Massachusetts, USA
| | - Arlene Blum
- Department of Chemistry, University of California at Berkeley , Berkeley, California, USA
| |
Collapse
|
55
|
Armstrong DL, Rice CP, Ramirez M, Torrents A. Influence of thermal hydrolysis-anaerobic digestion treatment of wastewater solids on concentrations of triclosan, triclocarban, and their transformation products in biosolids. CHEMOSPHERE 2017; 171:609-616. [PMID: 28056447 DOI: 10.1016/j.chemosphere.2016.12.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
The growing concern worldwide regarding the presence of emerging contaminants in biosolids calls for a better understanding of how different treatment technologies at water resource recovery facilities (WRRFs) can influence concentrations prior to biosolids land application. This study focuses on the influence of solids treatment via the Cambi Thermal Hydrolysis Process™ in conjunction with anaerobic digestion (TH-AD) on concentrations of triclosan (TCS), triclocarban (TCC), and their transformation products in biosolids and sludges. Concentrations of the target analytes in biosolids from the TH-AD process (Class A), sludges from the individual TH-AD treatment steps, and limed biosolids (Class B) from the same WRRF were compared. TCC concentrations were significantly lower in Class A biosolids than those in the Class B product - a removal that occurred during thermal hydrolysis. Concentrations of TCS, methyl triclosan, and 2,4-dichlorophenol, conversely, increased during anaerobic digestion, leading to significantly higher concentrations of these compounds in Class A biosolids when compared to Class B biosolids. Implementation of the TH-AD process had mixed effect on contaminant concentrations.
Collapse
Affiliation(s)
- Dana L Armstrong
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Clifford P Rice
- Sustainable Agricultural Systems Laboratory, ARS-USDA, Beltsville, MD, USA
| | - Mark Ramirez
- DCWater, District of Columbia Water and Sewer Authority, Washington, DC, USA
| | - Alba Torrents
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
56
|
Geer LA, Pycke BFG, Waxenbaum J, Sherer DM, Abulafia O, Halden RU. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn, New York. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:177-183. [PMID: 27156397 PMCID: PMC5018415 DOI: 10.1016/j.jhazmat.2016.03.028] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Prior studies suggest associations between fetal exposure to antimicrobial and paraben compounds with adverse reproductive outcomes, mainly in animal models. We have previously reported elevated levels of these compounds for a cohort of mothers and neonates. OBJECTIVE We examined the relationship between human exposure to parabens and antimicrobial compounds and birth outcomes including birth weight, body length and head size, and gestational age at birth. METHODS Maternal third trimester urinary and umbilical cord blood plasma concentrations of methylparaben (MePB), ethylparaben (EtPB), propylparaben (PrPB), butylparaben (BuPB), benzylparaben (BePB), triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether or TCS) and triclocarban (1-(4-chlorophenyl)-3-(3,4-dichlorophenyl) urea or TCC), were measured in 185 mothers and 34 paired singleton neonates in New York, 2007-2009. RESULTS In regression models adjusting for confounders, adverse exposure-outcome associations observed included increased odds of PTB (BuPB), decreased gestational age at birth (BuPB and TCC) and birth weight (BuPB), decreased body length (PrPB) and protective effects on PTB (BePB) and LBW (3'-Cl-TCC) (p<0.05). No associations were observed for MePB, EtPB, or TCS. CONCLUSIONS This study provides the first evidence of associations between antimicrobials and potential adverse birth outcomes in neonates. Findings are consistent with animal data suggesting endocrine-disrupting potential resulting in developmental and reproductive toxicity.
Collapse
Affiliation(s)
- Laura A Geer
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health, BOX 43, 450 Clarkson Ave., Brooklyn, NY, USA.
| | - Benny F G Pycke
- Center for Environmental Security, The Biodesign Institute, Global Security Initiative, and School of Sustainable Engineering and the Built Environment, Arizona State University, 781 East Terrace Mall, Tempe, AZ 85287, USA
| | - Joshua Waxenbaum
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health, BOX 43, 450 Clarkson Ave., Brooklyn, NY, USA
| | - David M Sherer
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, 445 Lenox Road, Brooklyn, NY, USA
| | - Ovadia Abulafia
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, 445 Lenox Road, Brooklyn, NY, USA
| | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Global Security Initiative, and School of Sustainable Engineering and the Built Environment, Arizona State University, 781 East Terrace Mall, Tempe, AZ 85287, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
57
|
Barros S, Montes R, Quintana JB, Rodil R, Oliveira JMA, Santos MM, Neuparth T. Chronic effects of triclocarban in the amphipod Gammarus locusta: Behavioural and biochemical impairment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:276-283. [PMID: 27750095 DOI: 10.1016/j.ecoenv.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Triclocarban (TCC), a common antimicrobial agent widely used in many household and personal care products, has been widely detected in aquatic ecosystems worldwide. Due to its high lipophilicity and persistence in the aquatic ecosystems, TCC is of emerging environmental concern. Despite the frequently reported detection of TCC in the environment and significant uncertainties about its long term effects on aquatic ecosystems, few studies have addressed the chronic effects of TCC in aquatic organisms at ecologically relevant concentrations. Therefore, we aimed at testing a broad range of biological responses in the amphipod Gammarus locusta following a chronic (60 days) exposure to environmentally relevant concentrations of TCC (100, 500 and 2500ng/L). This work integrated biochemical markers of oxidative stress (catalase (CAT), glutathione-s-transferase (GST) and lipid peroxidation (LPO)) and neurotransmission (acetylcholinesterase (AChE)) with several key ecological endpoints, i.e. behaviour, survival, individual growth and reproduction. Significant alterations were observed in all biochemical markers. While AChE showed a dose-response curve (with a significant increased activity at a TCC concentration of 2500ng/L), oxidative stress markers did not follow a dose-response curve, with significant increase at 100 and/or 500ng/L and a decreased activity in the highest concentration (2500ng/L). The same effect was observed in the females' behavioural response, whereas males' behaviour was not affected by TCC exposure. The present study represents a first approach to characterize the hazard of TCC to crustaceans.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Teresa Neuparth
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
58
|
Villeneuve DL, Jensen KM, Cavallin JE, Durhan EJ, Garcia-Reyero N, Kahl MD, Leino RL, Makynen EA, Wehmas LC, Perkins EJ, Ankley GT. Effects of the antimicrobial contaminant triclocarban, and co-exposure with the androgen 17β-trenbolone, on reproductive function and ovarian transcriptome of the fathead minnow (Pimephales promelas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:231-242. [PMID: 27312088 PMCID: PMC6110301 DOI: 10.1002/etc.3531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/25/2016] [Accepted: 06/14/2016] [Indexed: 05/31/2023]
Abstract
Triclocarban (TCC) is an antimicrobial agent routinely detected in surface waters that has been hypothesized to interact with the vertebrate endocrine system. The present study examined the effects of TCC alone and in combination with the model endocrine disruptor 17β-trenbolone (TRB) on fish reproductive function. Adult Pimephales promelas were continuously exposed to either 1 µg TCC/L or 5 µg TCC/L, to 0.5 µg TRB/L, or to a mixture (MIX) of 5 µg TCC/L and 0.5 µg TRB/L for 22 d, and a variety of reproductive and endocrine-related endpoints were examined. Cumulative fecundity was significantly reduced in fathead minnows exposed to TRB, MIX, or 5 µg TCC/L. Exposure to 1 µg TCC/L had no effect on reproduction. In general, both TRB and MIX treatments caused similar physiological effects, evoking significant reductions in female plasma vitellogenin, estradiol, and testosterone, and significant increases in male plasma estradiol. Based on analysis of the ovarian transcriptome, there were potential pathway impacts that were common to both TRB- and TCC-containing treatment groups. In most cases, however, those pathways were more plausibly linked to differences in reproductive status than to androgen-specific functions. Overall, TCC was reproductively toxic to fish at concentrations at or near those that have been measured in surface water. There was little evidence that TCC elicits reproductive toxicity through a specific mode of endocrine or reproductive action, nor that it could augment the androgenic effects of TRB. Nonetheless, the relatively small margin of safety between some measured environmental concentrations and effect concentrations suggests that concern is warranted. Environ Toxicol Chem 2017;36:231-242. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard L. Leino
- University of Minnesota Duluth, School of Medicine, Department of Anatomy and Cell Biology, Duluth, MN, USA (retired)
| | | | - Leah C. Wehmas
- US EPA Mid-Continent Ecology Division, Duluth, MN, USA
- Oregon State University, Environmental and Molecular Toxicology, Corvallis, OR, USA
| | - Edward J. Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | | |
Collapse
|
59
|
Ye X, Wong LY, Dwivedi P, Zhou X, Jia T, Calafat AM. Urinary Concentrations of the Antibacterial Agent Triclocarban in United States Residents: 2013-2014 National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13548-13554. [PMID: 27993070 PMCID: PMC5594736 DOI: 10.1021/acs.est.6b04668] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Triclocarban is widely used as an antibacterial agent in personal care products, and the potential for human exposure exists. We present here the first nationally representative assessment of exposure to triclocarban among Americans ≥6 years of age who participated in the 2013-2014 National Health and Nutrition Examination Survey. We detected triclocarban at concentrations above 0.1 μg/L in 36.9% of 2686 urine samples examined. Triclocarban was detected more frequently in adolescents and adults than in children, and in non-Hispanic black compared to other ethnic groups. In univariate analysis, log-creatinine, sex, age, race, and body surface area (BSA) were significantly associated with the likelihood of having triclocarban concentrations above the 95th percentile. In multiple regression models, persons with BSA at or above the median (≥1.86 m2) were 2.43 times more likely than others, and non-Hispanic black and non-Hispanic white were 3.71 times and 2.23 times more likely than "all Hispanic," respectively, to have urinary concentrations above the 95th percentile. We found no correlations between urinary concentrations of triclocarban and triclosan, another commonly used antibacterial agent. Observed differences among demographic groups examined may reflect differences in physiological factors (i.e., BSA) as well as use of personal care products containing triclocarban.
Collapse
Affiliation(s)
- Xiaoyun Ye
- Corresponding Author: Phone: 770-488-7502; (X.Y.)
| | | | | | | | | | | |
Collapse
|
60
|
Geiß C, Ruppert K, Heidelbach T, Oehlmann J. The antimicrobial agents triclocarban and triclosan as potent modulators of reproduction in Potamopyrgus antipodarum (Mollusca: Hydrobiidae). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:1173-1179. [PMID: 27459681 DOI: 10.1080/10934529.2016.1206388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we assessed the chronic effects of the two antimicrobial substances triclocarban (TCC) and triclosan (TCS) on reproduction of a mollusk species by using the reproduction test with the New Zealand mudsnail Potamopyrgus antipodarum. Snails coming from a laboratory culture were exposed for 28 days to nominal concentrations ranging from 0.1 up to 10 µg/L for both chemicals (measured 0.082-8.85 µg TCC/L; 0.068-6.26 µg TCS/L). At the end of the experiment, snails were dissected and embryos in the brood pouch were counted to assess the individualized reproductive success of adult snails. Exposure to TCC resulted in an inverted u-shaped concentration-response relationship, with a stimulation of reproduction at low concentrations followed by an inhibition at higher concentrations. The no observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC) were 0.082 and 0.287 µg/L, respectively. TCS caused significantly increased embryo numbers at all tested concentrations, except in the group of 0.170 µg/L. Therefore, the NOEC for TCS was 0.170 µg/L and the LOEC was 0.660 µg/L. These results indicate that TCC and TCS may cause reproductive effects at environmentally relevant concentrations indicating a potential risk for aquatic organisms in the environment.
Collapse
Affiliation(s)
- Cornelia Geiß
- a Department of Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Katharina Ruppert
- a Department of Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Tanja Heidelbach
- a Department of Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Jörg Oehlmann
- a Department of Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Frankfurt , Germany
| |
Collapse
|
61
|
Screening the Toxicity of Selected Personal Care Products Using Embryo Bioassays: 4-MBC, Propylparaben and Triclocarban. Int J Mol Sci 2016; 17:ijms17101762. [PMID: 27775672 PMCID: PMC5085786 DOI: 10.3390/ijms17101762] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/17/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022] Open
Abstract
Recently, several emerging pollutants, including Personal Care Products (PCPs), have been detected in aquatic ecosystems, in the ng/L or µg/L range. Available toxicological data is limited, and, for certain PCPs, evidence indicates a potential risk for the environment. Hence, there is an urgent need to gather ecotoxicological data on PCPs as a proxy to improve risk assessment. Here, the toxicity of three different PCPs (4-Methylbenzylidene Camphor (4-MBC), propylparaben and triclocarban) was tested using embryo bioassays with Danio rerio (zebrafish) and Paracentrotus lividus (sea urchin). The No Observed Effect Concentration (NOEC) for triclocarban was 0.256 µg/L for sea urchin and 100 µg/L for zebrafish, whereas NOEC for 4-MBC was 0.32 µg/L for sea urchin and 50 µg/L for zebrafish. Both PCPs impacted embryo development at environmentally relevant concentrations. In comparison with triclocarban and 4-MBC, propylparaben was less toxic for both sea urchin (NOEC = 160 µg/L) and zebrafish (NOEC = 1000 µg/L). Overall, this study further demonstrates the sensitivity of embryo bioassays as a high-throughput approach for testing the toxicity of emerging pollutants.
Collapse
|
62
|
Hewlett M, Chow E, Aschengrau A, Mahalingaiah S. Prenatal Exposure to Endocrine Disruptors: A Developmental Etiology for Polycystic Ovary Syndrome. Reprod Sci 2016; 24:19-27. [PMID: 27342273 DOI: 10.1177/1933719116654992] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common and complex endocrinopathies among reproductive-age women. Polycystic ovary syndrome is characterized by symptomatology of oligomenorrhea and androgen excess, with or without presence of polycystic ovarian morphology. The etiology of PCOS is multifactorial, including genetic and environmental components. It has been previously established that prenatal androgen exposure results in a PCOS phenotype in experimental animal models and epidemiologic human studies. Investigators hypothesize that prenatal exposure to endocrine-disrupting chemicals (EDCs) may contribute to PCOS development. This review examines the emerging research investigating prenatal exposure to 3 major classes of EDCs-bisphenol A (BPA), phthalates, and androgenic EDCs-and the development of PCOS and/or PCOS-related abnormalities in humans and animal models. Highlights of this review are as follows: (1) In rodent studies, maternal BPA exposure alters postnatal development and sexual maturation;, (2) gestational exposure to dibutyl phthalate and di(2-ethylhexyl)phthalate results in polycystic ovaries and a hormonal profile similar to PCOS; and (3) androgenic EDCs, nicotine and 3,4,4'-trichlorocarbanilide, create a hyperandrogenic fetal environment and may pose a potential concern. In summary, prenatal exposure to EDCs may contribute to the altered fetal programming hypothesis and explain the significant variability in severity and presentation.
Collapse
Affiliation(s)
- Meghan Hewlett
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| | - Erika Chow
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| | - Ann Aschengrau
- 2 Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Shruthi Mahalingaiah
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA.,2 Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
63
|
Kassotis CD, Bromfield JJ, Klemp KC, Meng CX, Wolfe A, Zoeller RT, Balise VD, Isiguzo CJ, Tillitt DE, Nagel SC. Adverse Reproductive and Developmental Health Outcomes Following Prenatal Exposure to a Hydraulic Fracturing Chemical Mixture in Female C57Bl/6 Mice. Endocrinology 2016; 157:3469-81. [PMID: 27560547 PMCID: PMC5393361 DOI: 10.1210/en.2016-1242] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unconventional oil and gas operations using hydraulic fracturing can contaminate surface and groundwater with endocrine-disrupting chemicals. We have previously shown that 23 of 24 commonly used hydraulic fracturing chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors in a human endometrial cancer cell reporter gene assay and that mixtures can behave synergistically, additively, or antagonistically on these receptors. In the current study, pregnant female C57Bl/6 dams were exposed to a mixture of 23 commonly used unconventional oil and gas chemicals at approximately 3, 30, 300, and 3000 μg/kg·d, flutamide at 50 mg/kg·d, or a 0.2% ethanol control vehicle via their drinking water from gestational day 11 through birth. This prenatal exposure to oil and gas operation chemicals suppressed pituitary hormone concentrations across experimental groups (prolactin, LH, FSH, and others), increased body weights, altered uterine and ovary weights, increased heart weights and collagen deposition, disrupted folliculogenesis, and other adverse health effects. This work suggests potential adverse developmental and reproductive health outcomes in humans and animals exposed to these oil and gas operation chemicals, with adverse outcomes observed even in the lowest dose group tested, equivalent to concentrations reported in drinking water sources. These endpoints suggest potential impacts on fertility, as previously observed in the male siblings, which require careful assessment in future studies.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - John J Bromfield
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Kara C Klemp
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chun-Xia Meng
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Andrew Wolfe
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - R Thomas Zoeller
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Victoria D Balise
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chiamaka J Isiguzo
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Donald E Tillitt
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Susan C Nagel
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| |
Collapse
|
64
|
Han J, Won EJ, Hwang UK, Kim IC, Yim JH, Lee JS. Triclosan (TCS) and Triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus). Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:131-137. [PMID: 27067728 DOI: 10.1016/j.cbpc.2016.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
Triclosan (TCS) and Triclocarban (TCC) are used as antimicrobial agents and have been widely dispersed and detected in the marine environment. However, the toxicities of TCS and TCC have been poorly investigated in marine invertebrates. In this study, the effects of TCS and TCC on mortality, population growth, lifespan, and fecundity were examined in the monogonont rotifer (Brachionus koreanus) using cellular ROS levels, GST enzymatic activity, and gene expression of defensomes. The median lethal concentration (LC50) of TCS (393.1μg/L) and TCC (388.1μg/L) was also determined in the same species. In TCS- and TCC-exposed B. koreanus, growth retardation and reduced fecundity were observed and were shown to have a potentially deleterious effect on the life cycle of B. koreanus. In addition, time-dependent increases in ROS content (%) and GST enzymatic activity were shown in response to TCS and TCC exposure. Additionally, transcript levels of detoxification proteins (e.g., CYPs), antioxidant proteins (e.g., GST-sigma, Cu/ZnSOD, CAT), and heat shock proteins (Hsps) were modulated in response to TCS and TCC exposure over a 24h period. Our results indicate that TCS and TCC induce oxidative stress and transcriptional regulation of detoxification, antioxidant, and heat shock proteins, resulting in changes in lifespan and fecundity.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 22383, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| |
Collapse
|
65
|
Kassotis CD, Iwanowicz LR, Akob DM, Cozzarelli IM, Mumford AC, Orem WH, Nagel SC. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:901-10. [PMID: 27073166 DOI: 10.1016/j.scitotenv.2016.03.113] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 05/23/2023]
Abstract
Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.
Collapse
Affiliation(s)
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, Fish Health Branch, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - Denise M Akob
- U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192, USA
| | - Isabelle M Cozzarelli
- U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192, USA
| | - Adam C Mumford
- U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192, USA
| | - William H Orem
- U.S. Geological Survey, Eastern Energy Resources Science Center, 12201 Sunrise Valley Drive, MS 956, Reston, VA 20192, USA
| | - Susan C Nagel
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
66
|
Bradley PM, Battaglin WA, Iwanowicz LR, Clark JM, Journey CA. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1087-1096. [PMID: 26588039 DOI: 10.1002/etc.3266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.
Collapse
Affiliation(s)
- Paul M Bradley
- South Atlantic Water Science Center, US Geological Survey, Columbia, South Carolina, USA
| | | | - Luke R Iwanowicz
- Leetown Science Center, US Geological Survey, Kearneysville, West Virginia, USA
| | - Jimmy M Clark
- South Atlantic Water Science Center, US Geological Survey, Columbia, South Carolina, USA
| | - Celeste A Journey
- South Atlantic Water Science Center, US Geological Survey, Columbia, South Carolina, USA
| |
Collapse
|
67
|
Li M, Sun Q, Li Y, Lv M, Lin L, Wu Y, Ashfaq M, Yu CP. Simultaneous analysis of 45 pharmaceuticals and personal care products in sludge by matrix solid-phase dispersion and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2016; 408:4953-64. [DOI: 10.1007/s00216-016-9590-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/19/2016] [Accepted: 04/20/2016] [Indexed: 12/26/2022]
|
68
|
Souchier M, Casellas C, Ingrand V, Chiron S. Insights into reductive dechlorination of triclocarban in river sediments: Field measurements and in vitro mechanism investigations. CHEMOSPHERE 2016; 144:425-432. [PMID: 26386432 DOI: 10.1016/j.chemosphere.2015.08.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
Triclocarban (TCC) reductive dechlorination was investigated using a combination of field and laboratory experiments. Field monitoring revealed that TCC reductive dechlorination in river sediments leads to formation of two isomers of its lesser chlorinated congener namely 3,4'-dichlorocarbanilide and 4,4'-dichlorocarbanilide. Monochlorocarbanilide was not detected in sediments supporting that transformation of dichlorocarbanilide into monochlorocarbanilide is the rate limiting step of TCC dechlorination. In vitro experiments were conducted to study TCC potential reductive dechlorination mechanisms. These experiments demonstrated that 4,4'-dichlorocarbanilide was specifically formed upon a nucleophilic addition reaction under anaerobic conditions. The 3,4'-diclorocarbanilide was formed upon a two steps radical mechanism under aerobic conditions which includes TCC activation by one electron oxidation followed by a nucleophilic substitution reaction with glutathione. In vitro results suggested that strict anaerobic conditions might not be required for TCC reductive dechlorination in the environment. Moreover, in vitro reactions were performed using biomimetic or enzymatic systems supposing that TCC dechlorination might occur through microbial action in situ. Measured dichlorocarbanilide isomers/triclocarban ratios were used to evaluate the relative significance of both dechlorination pathways and the pathway leading to 3,4'-dichlorocarbanilide was found significant in all investigated river sediment samples.
Collapse
Affiliation(s)
- Marine Souchier
- Veolia Recherche et Innovation, Chemin de la Digue, BP 76, 78603 Maisons-Laffitte Cedex, France
| | - Claude Casellas
- UMR Hydrosciences 5569, Université Montpellier, 15 Avenue Ch. Flahault, 34093 Montpellier Cedex 5, France
| | - Valérie Ingrand
- Veolia Recherche et Innovation, Chemin de la Digue, BP 76, 78603 Maisons-Laffitte Cedex, France
| | - Serge Chiron
- UMR Hydrosciences 5569, Université Montpellier, 15 Avenue Ch. Flahault, 34093 Montpellier Cedex 5, France.
| |
Collapse
|
69
|
Kassotis CD, Klemp KC, Vu DC, Lin CH, Meng CX, Besch-Williford CL, Pinatti L, Zoeller RT, Drobnis EZ, Balise VD, Isiguzo CJ, Williams MA, Tillitt DE, Nagel SC. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice. Endocrinology 2015; 156:4458-73. [PMID: 26465197 DOI: 10.1210/en.2015-1375] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Kara C Klemp
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Danh C Vu
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chung-Ho Lin
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chun-Xia Meng
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Cynthia L Besch-Williford
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Lisa Pinatti
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - R Thomas Zoeller
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Erma Z Drobnis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Victoria D Balise
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chiamaka J Isiguzo
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Michelle A Williams
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Donald E Tillitt
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Susan C Nagel
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| |
Collapse
|
70
|
Plošnik A, Vračko M, Mavri J. Computational study of binding affinity to nuclear receptors for some cosmetic ingredients. CHEMOSPHERE 2015; 135:325-334. [PMID: 25974010 DOI: 10.1016/j.chemosphere.2015.04.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
We studied the ingredients of cosmetic products as potential endocrine disruptors (ED) by in silico methods (docking). The structures of 14 human nuclear receptors have been retrieved from the protein data bank (PDB). We only considered the mechanism linked with direct binding to nuclear receptors with well-defined crystal structures. Predictions were performed using the Endocrine Disruptome docking program http://endocrinedisruptome.ki.si/ (Kolšek et al., 2013). 122 compounds were estimated to be possible endocrine disruptors bind to at least one of the receptors, 21 of them which are predicted to be probable toxicants for endocrine disruption as they bind to more than five receptors simultaneously. According to the literature survey and lack of experimental data it remains a challenge to prove or disprove the in silico results experimentally also for other potential endocrine disruptors.
Collapse
Affiliation(s)
- Alja Plošnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Marjan Vračko
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Mavri
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
71
|
Kennedy RC, Fling RR, Terry PD, Menn FM, Chen J, Borman CJ. Extraction of 3,4,4'-Trichlorocarbanilide from Rat Fecal Samples for Determination by High Pressure Liquid Chromatography-Tandem Mass Spectrometry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8125-32. [PMID: 26184276 PMCID: PMC4515712 DOI: 10.3390/ijerph120708125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
Triclocarban (3,4,4'-Trichlorocarbanilide; TCC) in the environment has been well documented. Methods have been developed to monitor TCC levels from various matrices including water, sediment, biosolids, plants, blood and urine; however, no method has been developed to document the concentration of TCC in fecal content after oral exposure in animal studies. In the present study, we developed and validated a method that uses liquid extraction coupled with HPLC-MS/MS determination to measure TCC in feces. The limit of detection and limit of quantitation in control rats without TCC exposure was 69.0 ng/g and 92.9 ng/g of feces, respectively. The base levels of TCC in feces were lower than LOD. At 12 days of treatment, the fecal TCC concentration increased to 2220 µg/g among 0.2% w/w exposed animals. The concentration in fecal samples decreased over the washout period in 0.2% w/w treated animals to 0.399 µ/g feces after exposure was removed for 28 days. This method required a small amount of sample (0.1 g) with simple sample preparation. Given its sensitivity and efficiency, this method may be useful for monitoring TCC exposure in toxicological studies of animals.
Collapse
Affiliation(s)
- Rebekah C Kennedy
- Comparative and Experimental Medicine, University of Tennessee, Knoxville, TN 37996, USA.
- Department of Public Health, University of Tennessee, Knoxville, TN 37996, USA.
| | - Russell R Fling
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Paul D Terry
- Department of Public Health, University of Tennessee, Knoxville, TN 37996, USA.
- Department of Surgery, University of Tennessee Medical Center, Knoxville, TN 37920, USA.
| | - Fu-Min Menn
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Jiangang Chen
- Department of Public Health, University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
72
|
Mazioti MC, Markakis KP, Raptis AE. WITHDRAWN: The potential contribution of endocrine disrupting chemicals to acne. Med Hypotheses 2015:S0306-9877(15)00155-3. [PMID: 25913543 DOI: 10.1016/j.mehy.2015.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Maria C Mazioti
- 2nd Department of Internal Medicine - Propaedeutic Clinic, Athens University Medical School, "Attikon" University General Hospital, Haidari, Athens, Greece.
| | - Konstantinos P Markakis
- 2nd Department of Internal Medicine - Propaedeutic Clinic, Athens University Medical School, "Attikon" University General Hospital, Haidari, Athens, Greece
| | - Athanasios E Raptis
- 2nd Department of Internal Medicine - Propaedeutic Clinic, Athens University Medical School, "Attikon" University General Hospital, Haidari, Athens, Greece
| |
Collapse
|
73
|
Tonoli D, Fürstenberger C, Boccard J, Hochstrasser D, Jeanneret F, Odermatt A, Rudaz S. Steroidomic Footprinting Based on Ultra-High Performance Liquid Chromatography Coupled with Qualitative and Quantitative High-Resolution Mass Spectrometry for the Evaluation of Endocrine Disrupting Chemicals in H295R Cells. Chem Res Toxicol 2015; 28:955-66. [DOI: 10.1021/tx5005369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- David Tonoli
- School
of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland
- Department
of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss
Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel, Switzerland
| | - Cornelia Fürstenberger
- Swiss
Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel, Switzerland
- Division
of Molecular and Systems Toxicology, Department of Pharmaceutical
Sciences, University of Basel, Basel, Switzerland
| | - Julien Boccard
- School
of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland
| | - Denis Hochstrasser
- Department
of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Fabienne Jeanneret
- School
of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland
- Department
of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss
Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel, Switzerland
| | - Alex Odermatt
- Swiss
Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel, Switzerland
- Division
of Molecular and Systems Toxicology, Department of Pharmaceutical
Sciences, University of Basel, Basel, Switzerland
| | - Serge Rudaz
- School
of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland
- Swiss
Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel, Switzerland
| |
Collapse
|
74
|
Möst M, Chiaia-Hernandez AC, Frey MP, Hollender J, Spaak P. A mixture of environmental organic contaminants in lake sediments affects hatching from Daphnia resting eggs. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:338-345. [PMID: 25394187 DOI: 10.1002/etc.2808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
Despite the relevance of resting eggs for ecology and evolution of many aquatic organisms and their exposure to contaminants accumulating in sediments, ecotoxicological studies using resting eggs are vastly underrepresented. The authors established a method to perform exposure assays with resting eggs produced by the Daphnia longispina species complex, key species in large lake ecosystems. A mixture of organic contaminants previously detected in sediments of Lake Greifensee was selected to test the potential effect of organic contaminants present in sediments on the hatching process. Resting eggs were exposed to a mix of 10 chemicals, which included corrosion inhibitors, biocides, pesticides, and personal care products, for a period of 15 d. Using an automated counting software, the authors found a significant increase in hatching success in the exposed resting eggs compared with controls. Such an effect has not yet been reported from ecotoxicological assays with resting eggs. Possible mechanistic explanations as well as the potential implications on the ecology and evolution of aquatic species that rely on a resting egg banks are discussed. Observed increased mortality and developmental abnormalities for hatchlings in the exposure treatments can be explained by toxic contaminant concentrations. The results of the present study highlight the need for additional studies assessing the effects of organic contaminants on resting egg banks and aquatic ecosystems.
Collapse
Affiliation(s)
- Markus Möst
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
75
|
Halden RU. Epistemology of contaminants of emerging concern and literature meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:2-9. [PMID: 25294779 PMCID: PMC4253867 DOI: 10.1016/j.jhazmat.2014.08.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/23/2014] [Accepted: 08/28/2014] [Indexed: 05/03/2023]
Abstract
A meta-analysis was conducted to inform the epistemology, or theory of knowledge, of contaminants of emerging concern (CECs). The CEC terminology acknowledges the existence of harmful environmental agents whose identities, occurrences, hazards, and effects are not sufficiently understood. Here, data on publishing activity were analyzed for 12 CECs, revealing a common pattern of emergence, suitable for identifying past years of peak concern and forecasting future ones: dichlorodiphenyltrichloroethane (DDT; 1972, 2008), trichloroacetic acid (TCAA; 1972, 2009), nitrosodimethylamine (1984), methyl tert-butyl ether (2001), trichloroethylene (2005), perchlorate (2006), 1,4-dioxane (2009), prions (2009), triclocarban (2010), triclosan (2012), nanomaterials (by 2016), and microplastics (2022 ± 4). CECs were found to emerge from obscurity to the height of concern in 14.1 ± 3.6 years, and subside to a new baseline level of concern in 14.5 ± 4.5 years. CECs can emerge more than once (e.g., TCAA, DDT) and the multifactorial process of emergence may be driven by inception of novel scientific methods (e.g., ion chromatography, mass spectrometry and nanometrology), scientific paradigm shifts (discovery of infectious proteins), and the development, marketing and mass consumption of novel products (antimicrobial personal care products, microplastics and nanomaterials). Publishing activity and U.S. regulatory actions were correlated for several CECs investigated.
Collapse
Affiliation(s)
- Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
76
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
77
|
Souchier M, Benali-Raclot D, Benanou D, Boireau V, Gomez E, Casellas C, Chiron S. Screening triclocarban and its transformation products in river sediment using liquid chromatography and high resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:199-205. [PMID: 25260165 DOI: 10.1016/j.scitotenv.2014.08.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
An analytical method was developed and validated for the target screening of triclosan (TCS), triclocarban (TCC) and its lesser and higher chlorinated congeners namely, 4,4'-dichlorocarbanilide (DCC) 3,3',4,4'-tetrachlorocarbanilide (3-Cl-TCC) and 2,3',4,4'-tetrachlorocarbanilide (2-Cl-TCC) in river sediment. Sediment samples were extracted by pressurized liquid extraction and quantification and identification of target compounds were carried by liquid chromatography high resolution mass spectrometry (LC-HRMS). The overall method recoveries were 89% with relative standard deviations below 6%. Method detection limits ranged from 0.01 to 0.12 ng/g. The usefulness of the method was demonstrated on sediment samples collected downstream of three wastewater treatment plants in an attempt to provide with a set of occurrence data of these biocides in France and for a better understanding of their fate in river. Major results are the following: TCC, DCC and 3-Cl-TCC were ubiquitously detected demonstrating that these emerging contaminants have been probably overlooked in France. Reductive dechlorination of TCC into DCC was also ubiquitous but predominated in anoxic sediment. 3-Cl-TCC is probably more persistent than TCC and LC-HRMS enabled the detection and identification of a suite of other chlorinated biocides in river sediment.
Collapse
Affiliation(s)
- Marine Souchier
- UMR HydroSciences 5569, Montpellier Université, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France; Veolia Recherche et Innovation, 36, Avenue Kleber, 75116 Paris 16ème arrondissement, France
| | - Dalel Benali-Raclot
- Veolia Recherche et Innovation, 36, Avenue Kleber, 75116 Paris 16ème arrondissement, France
| | - David Benanou
- Veolia Recherche et Innovation, 36, Avenue Kleber, 75116 Paris 16ème arrondissement, France
| | - Véronique Boireau
- Veolia Recherche et Innovation, 36, Avenue Kleber, 75116 Paris 16ème arrondissement, France
| | - Elena Gomez
- UMR HydroSciences 5569, Montpellier Université, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France
| | - Claude Casellas
- UMR HydroSciences 5569, Montpellier Université, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France
| | - Serge Chiron
- UMR HydroSciences 5569, Montpellier Université, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France.
| |
Collapse
|
78
|
Lan Z, Hyung Kim T, Shun Bi K, Hui Chen X, Sik Kim H. Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:83-91. [PMID: 23929691 DOI: 10.1002/tox.21897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 05/02/2023]
Abstract
Triclosan (TCS) is considered a potent endocrine disruptor that causes reproductive toxicity in non-mammals, but it is still unclear exactly whether TCS has adverse effects on the sperm or reproductive organs in mammals. In this study, we aimed to evaluate the distribution status of TCS in male reproductive organs of rats, and seek the correlation with the TCS-induced sperm toxicity or reproductive organ damage. Male rats were intragastrically administered with TCS at a dose of 50 mg/kg, the kinetics of TCS in the plasma and reproductive organs were investigated. TCS in testes and prostates both showed a lower-level distribution compared to that in the plasma, which indicates it has no tendency to accumulate in those organs. However, TCS in the epididymides showed a longer elimination half-life (t1/2 z), a longer the mean retention time (MRT), and a lower clearance (CLZ /F) compared with those in the plasma. Besides, the ratios of mean area under the concentration-time curve (AUC)(0-96 h(epididymides/plasma)) and AUC(0-∞(epididymides/plasma)) were 1.13 and 1.51, respectively. These kinetic parameters suggest TCS has an accumulation tendency in the epididymides. Based on this, we investigated the TCS-induced sperm toxicity and histopathological changes of reproductive organs in rats. TCS was given intragastrically at doses of 10, 50, and 200 mg/kg for 8 weeks. Rats treated with the high dose (200 mg/kg) of TCS showed a significant decrease in daily sperm production (DSP), changes in sperm morphology and epididymal histopathology. Considering the histopathological change in the epididymides, TCS may induce the epididymal damage due to the epididymal accumulation of that.
Collapse
Affiliation(s)
- Zhou Lan
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China; Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-Dong, Geumjung-Gu, Busan, 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
79
|
Lv M, Sun Q, Xu H, Lin L, Chen M, Yu CP. Occurrence and fate of triclosan and triclocarban in a subtropical river and its estuary. MARINE POLLUTION BULLETIN 2014; 88:383-388. [PMID: 25227953 DOI: 10.1016/j.marpolbul.2014.07.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
The occurrence of triclosan (TCS) and triclocarban (TCC) in a subtropical river (Jiulong River) and its estuary was investigated for two years. TCS and TCC were ubiquitously detected in the Jiulong River and its estuary. The levels of TCS and TCC ranged from less than the method detection limit to 64 ng/L and from 0.05 to 14.1 ng/L in the river, respectively. The levels of TCS and TCC in the estuary ranged from 2.56 to 27.25 ng/L and 0.38 to 5.76 ng/L, respectively. Temporal and spatial variations of TCS and TCC in the Jiulong River and its estuary were observed during the investigation. The weather conditions did not show significant correlations with TCS and TCC, whereas several water quality parameters showed high correlations with TCS and TCC. The microcosm studies showed that both direct photolysis and biodegradation contributed to TCS removal, whereas indirect photolysis was important for TCC removal in the surface water.
Collapse
Affiliation(s)
- Min Lv
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Qian Sun
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 351800, China
| | - Haili Xu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Chemical Engineering, HuaQiao University, Xiamen 361021, China
| | - Lifeng Lin
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meng Chen
- College of Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Chang-Ping Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 351800, China.
| |
Collapse
|
80
|
Moos RK, Angerer J, Wittsiepe J, Wilhelm M, Brüning T, Koch HM. Rapid determination of nine parabens and seven other environmental phenols in urine samples of German children and adults. Int J Hyg Environ Health 2014; 217:845-53. [DOI: 10.1016/j.ijheh.2014.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
81
|
Kolšek K, Gobec M, Mlinarič Raščan I, Sollner Dolenc M. Screening of bisphenol A, triclosan and paraben analogues as modulators of the glucocorticoid and androgen receptor activities. Toxicol In Vitro 2014; 29:8-15. [PMID: 25192815 DOI: 10.1016/j.tiv.2014.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/21/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
A homeostasis of the glucocorticoid and androgen endocrine system is essential to human health. Their disturbance can lead to various diseases, for example cardiovascular, inflammatory and autoimmune diseases, infertility, cancer. Fifteen widely used industrial chemicals that disrupt endocrine activity were selected for evaluation of potential (anti)glucocorticoid and (anti)androgenic activities. The human breast carcinoma MDA-kb2 cell line was utilized for reporter gene assays, since it expresses both the androgen and the glucocorticoid-responsive reporter. Two new antiandrogens, 4,4'-sulfonylbis(2-methylphenol) (dBPS) and 4,4'-thiodiphenol (THIO), and two new antiglucocorticoids, bisphenol Z and its analog bis[4-(2-hydroxyethoxy)phenyl] sulfone (BHEPS) were identified. Moreover, four new glucocorticoid agonists (methyl paraben, ethyl paraben, propyl paraben and bisphenol F) were found. To elucidate the structure-activity relationship of bisphenols, we performed molecular docking experiments with androgen and glucocorticoid receptor. These docking experiments had shown that bulky structures such as BHEPS and bisphenol Z act as antiglucocorticoid, because they are positioned toward helix H12 in the antagonist conformation and could therefore be responsible for H12 conformational change and the switch between agonistic and antagonistic conformation of receptor. On the other hand smaller structures cannot interact with H12. The results of in vitro screening of fifteen industrial chemicals as modulators of the glucocorticoid and androgen receptor activities demand additional in vivo testing of these chemicals for formulating any relevant hazard identification to human health.
Collapse
Affiliation(s)
- Katra Kolšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
82
|
Simon A, Maletz SX, Hollert H, Schäffer A, Maes HM. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation. NANOSCALE RESEARCH LETTERS 2014; 9:396. [PMID: 25170332 PMCID: PMC4142056 DOI: 10.1186/1556-276x-9-396] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/09/2014] [Indexed: 05/23/2023]
Abstract
To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.
Collapse
Affiliation(s)
- Anne Simon
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Sibylle X Maletz
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Henner Hollert
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
- School of Environment, Nanjing University, Nanjing 210023, China
- Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- College of Resources and Environmental Science, Chongqing University, Chongqing 400715, China
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
- School of Environment, Nanjing University, Nanjing 210023, China
- Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- College of Resources and Environmental Science, Chongqing University, Chongqing 400715, China
| | - Hanna M Maes
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| |
Collapse
|
83
|
Pycke BFG, Roll IB, Brownawell BJ, Kinney CA, Furlong ET, Kolpin DW, Halden RU. Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014. [PMID: 24932693 DOI: 10.1021/es50l06362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.
Collapse
Affiliation(s)
- Benny F G Pycke
- Center for Environmental Security, Biodesign Institute, Security and Defense Systems Initiative, Arizona State University , 781 East Terrace Road, Tempe, Arizona 85287, United States
| | | | | | | | | | | | | |
Collapse
|
84
|
Pycke BG, Roll IB, Brownawell BJ, Kinney CA, Furlong ET, Kolpin DW, Halden RU. Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7881-90. [PMID: 24932693 PMCID: PMC4215897 DOI: 10.1021/es5006362] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.
Collapse
Affiliation(s)
- Benny
F. G. Pycke
- Center
for Environmental Security, Biodesign Institute, Security and Defense
Systems Initiative, Arizona State University, 781 East Terrace Road, Tempe, Arizona 85287, United States
| | - Isaac B. Roll
- Center
for Environmental Security, Biodesign Institute, Security and Defense
Systems Initiative, Arizona State University, 781 East Terrace Road, Tempe, Arizona 85287, United States
| | - Bruce J. Brownawell
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794-5000, United States
| | - Chad A. Kinney
- Chemistry
Department, Colorado State University-Pueblo, 2200 Bonforte Boulevard, Pueblo, Colorado 81001, United States
| | - Edward T. Furlong
- U.S. Geological
Survey, Denver Federal Center, P.O. Box 25585, Denver, Colorado 80225, United States
| | - Dana W. Kolpin
- U.S. Geological
Survey, 400 South Clinton Street, Iowa City, Iowa 52244, United States
| | - Rolf U. Halden
- Center
for Environmental Security, Biodesign Institute, Security and Defense
Systems Initiative, Arizona State University, 781 East Terrace Road, Tempe, Arizona 85287, United States
- Phone: (480) 727-0893; e-mail:
| |
Collapse
|
85
|
Kennedy RCM, Menn FM, Healy L, Fecteau KA, Hu P, Bae J, Gee NA, Lasley BL, Zhao L, Chen J. Early life triclocarban exposure during lactation affects neonate rat survival. Reprod Sci 2014; 22:75-89. [PMID: 24803507 DOI: 10.1177/1933719114532844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triclocarban (3,4,4'-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure.
Collapse
Affiliation(s)
- Rebekah C M Kennedy
- Department of Public Health, The University of Tennessee, Knoxville, TN, USA
| | - Fu-Min Menn
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA
| | | | - Kellie A Fecteau
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, TN, USA
| | - Pan Hu
- Department of Nutrition, The University of Tennessee, Knoxville, TN, USA
| | - Jiyoung Bae
- Department of Nutrition, The University of Tennessee, Knoxville, TN, USA
| | - Nancy A Gee
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Bill L Lasley
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN, USA
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN, USA Department of Nutrition, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
86
|
Schebb NH, Muvvala JB, Morin D, Buckpitt AR, Hammock BD, Rice RH. Metabolic activation of the antibacterial agent triclocarban by cytochrome P450 1A1 yielding glutathione adducts. Drug Metab Dispos 2014; 42:1098-102. [PMID: 24733789 DOI: 10.1124/dmd.114.058206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with (14)C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3'-glutathionyl-4'-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with (14)C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species.
Collapse
Affiliation(s)
- Nils Helge Schebb
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Jaya B Muvvala
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Dexter Morin
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Alan R Buckpitt
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Bruce D Hammock
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Robert H Rice
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| |
Collapse
|
87
|
Halden RU. On the need and speed of regulating triclosan and triclocarban in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3603-11. [PMID: 24588513 PMCID: PMC3974611 DOI: 10.1021/es500495p] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The polychlorinated aromatic antimicrobials triclosan and triclocarban are in widespread use for killing microorganisms indiscriminately, rapidly, and by nonspecific action. While their utility in healthcare settings is undisputed, benefits to users of antimicrobial personal care products are few to none. Yet, these latter, high-volume uses have caused widespread contamination of the environment, wildlife, and human populations. This feature article presents a timeline of scientific evidence and regulatory actions in the U.S. concerning persistent polychlorinated biocides, showing a potential path forward to judicious and sustainable uses of synthetic antimicrobials, including the design of greener and safer next-generation alternatives.
Collapse
|
88
|
Mauvais-Jarvis F. Developmental androgenization programs metabolic dysfunction in adult mice: Clinical implications. Adipocyte 2014; 3:151-4. [PMID: 24719790 DOI: 10.4161/adip.27746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/26/2013] [Accepted: 01/06/2014] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence supports a developmental origin for the metabolic syndrome in the context of polycystic ovary syndrome (PCOS) in which the fetal environment programs both reproductive and metabolic abnormalities that will occur in adulthood. To explore the role of developmental androgen excess in programming metabolic dysfunction in adulthood, we reported a mouse model system in which neonates were androgenized with testosterone. We compared female mice with neonatal exposure to testosterone (NTF) with control females (CF), control males (CM), and male mice with neonatal testosterone exposure (NTM). NTF develop many of the features of metabolic syndrome observed in women with PCOS. These features include increased food intake and lean mass, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, decreased osteocalcin activity, insulin resistance, pre-diabetes, and hypertension. NTF also develop a novel form of leptin resistance independent of STAT3. In contrast, littermate NTM develop a phenotype of hypogonadotropic hypogonadism with decreased lean mass and food intake. These NTM mice exhibit subcutaneous adiposity without cardiometabolic alterations. We discuss the relevance of this mouse model of developmental androgenization to the metabolic syndrome and its clinical implications to human metabolic diseases.
Collapse
|
89
|
Zenobio JE, Sanchez BC, Archuleta LC, Sepulveda MS. Effects of triclocarban, N,N-diethyl-meta-toluamide, and a mixture of pharmaceuticals and personal care products on fathead minnows (Pimephales promelas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:910-9. [PMID: 24375658 DOI: 10.1002/etc.2511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/21/2013] [Accepted: 12/20/2013] [Indexed: 05/15/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) have been detected widely in aquatic ecosystems, but little is known about their mechanisms of toxicity. We exposed adult fathead minnows (Pimephales promelas) for 48 h to triclocarban (1.4 µg/L), N,N-diethyl-meta-toluamide (DEET; 0.6 µg/L), or a mixture of PPCPs consisting of atenolol (1.5 µg/L), caffeine (0.25 µg/L), diphenhydramine (0.1 µg/L), gemfibrozil (1.5 µg/L), ibuprofen (0.4 µg/L), naproxen (1.6 µg/L), triclosan (2.3 µg/L), progesterone (0.2 µg/L), triclocarban (1.4 µg/L), and DEET (0.6 µg/L). Quantitative real-time polymerase chain reaction revealed an upregulation in vitellogenin (vtg) in livers of females and males exposed to triclocarban. Also, an upregulation of hepatic lipoprotein lipase (lpl) and a downregulation of androgen receptor (ar) and steroidogenic acute regulatory protein (star) were observed in testes. The group treated with DEET only showed a significant decrease in ar in females. In contrast, the PPCP mixture downregulated vtg in females and males and expression of estrogen receptor alpha (erα), star, and thyroid hormone receptor alpha 1 (thra1) in testes. The authors' results show that the molecular estrogenic effects of triclocarban are eliminated (males) or reversed (females) when dosed in conjunction with several other PPCP, once again demonstrating that results from single exposures could be vastly different from those observed with mixtures. Environ Toxicol Chem 2014;33:910-919. © 2013 SETAC.
Collapse
Affiliation(s)
- Jenny E Zenobio
- Ecological Science and Engineering Program, Purdue University, West Lafayette, Indiana, USA; Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
90
|
Holzem RM, Stapleton HM, Gunsch CK. Determining the ecological impacts of organic contaminants in biosolids using a high-throughput colorimetric denitrification assay: a case study with antimicrobial agents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1646-1655. [PMID: 24410196 DOI: 10.1021/es404431k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Land application accounts for ∼ 50% of wastewater solid disposal in the United States. Still, little is known regarding the ecological impacts of nonregulated contaminants found in biosolids. Because of the myriad of contaminants, there is a need for a rapid, high-throughput method to evaluate their ecotoxicity. Herein, we developed a novel assay that measures denitrification inhibition in a model denitrifier, Paracoccus denitrificans Pd1222. Two common (triclosan and triclocarban) and four emerging (2,4,5 trichlorophenol, 2-benzyl-4-chlorophenol, 2-chloro-4-phenylphenol, and bis(5-chloro-2-hydroxyphenyl)methane) antimicrobial agents found in biosolids were analyzed. Overall, the assay was reproducible and measured impacts on denitrification over 3 orders of magnitude exposure. The lowest observable adverse effect concentrations (LOAECs) were 1.04 μM for triclosan, 3.17 μM for triclocarban, 0.372 μM for bis-(5-chloro-2-hydroxyphenyl)methane, 4.89 μM for 2-chloro-4-phenyl phenol, 45.7 μM for 2-benzyl-4-chorophenol, and 50.6 μM for 2,4,5-trichlorophenol. Compared with gene expression and cell viability based methods, the denitrification assay was more sensitive and resulted in lower LOAECs. The increased sensitivity, low cost, and high-throughput adaptability make this method an attractive alternative for meeting the initial testing regulatory framework for the Federal Insecticide, Fungicide, and Rodenticide Act, and recommended for the Toxic Substances Control Act, in determining the ecotoxicity of biosolids-derived emerging contaminants.
Collapse
Affiliation(s)
- R M Holzem
- Department of Civil and Environmental Engineering, Duke University , Durham, North Carolina 27708, United States
| | | | | |
Collapse
|
91
|
Guerra MT, Silva RF, Luchiari HR, Sanabria M, Kempinas WDG. Perinatal androgenic exposure and reproductive health effects female rat offspring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:375-389. [PMID: 24617542 DOI: 10.1080/15287394.2013.874881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Environmental contaminants known as endocrine-disrupting chemicals (EDC) have been associated with adverse effects on reproductive processes. These chemicals may mimic or antagonize endogenous hormones, disrupting reproductive functions. Although preliminary studies focused on environmental estrogens, the presence of compounds with androgenic activity has also been described. This study examines exposure of female pregnant and lactating rats to low doses of androgens and assesses potential effects on female offspring. Pregnant Wistar rats were exposed to testosterone propionate (TP) at doses of 0.05, 0.1, or 0.2 mg/kg or corn oil (vehicle), subcutaneously, to determine influence on reproductive health of female offspring. There were two exposure groups: (1) rats treated from gestational day (GD) 12 until GD 20; and (2) animals treated from GD 12 until the end of lactation. Perinatal exposure to TP produced increased anogenital distance after birth and diminished height of uterine glandular epithelium at puberty in animals exposed to 0.2 mg/kg. However, these alterations were not sufficient to impair sexual differentiation and normal physiology of the female rat reproductive tract.
Collapse
Affiliation(s)
- Marina T Guerra
- a Graduate Program in Cell and Structural Biology , Institute of Biology, State University of Campinas-UNICAMP , Campinas , São Paulo , Brazil
| | | | | | | | | |
Collapse
|
92
|
Sun Q, Lv M, Li M, Yu CP. Personal Care Products in the Aquatic Environment in China. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2014. [DOI: 10.1007/698_2014_284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
93
|
Lozano N, Andrade NA, Deng D, Torrents A, Rice CP, McConnell LL, Ramirez M, Millner PD. Fate of microconstituents in biosolids composted in an aerated silage bag. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:720-730. [PMID: 24521417 DOI: 10.1080/10934529.2014.865461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although most composting studies report pathogen concentrations, little is known about the fate of Endocrine Disruptor Chemicals (EDCs) during composting. In this study, a positively aerated polyethylene bag composting system was filled with a mixture of woodchips and limed biosolids from a large Waste Water Treatment Plant (WWTP) to study the removal efficiency of two different groups of EDCs. Two antibacterial compounds, Triclocarban (TCC) and Triclosan (TCS), and a TCS byproduct, Methyltriclosan (MeTCS), as well as seven congeners of flame retardants known as PBDEs (Polybrominated Diphenyl Ethers) were studied during two phases of composting: 1) a thermophilic phase, in which positive mechanical aeration, pushing air into and through the materials matrix, was conducted for 2 months; and 2) a curing and stabilization phase in which no mechanical aeration was provided and the bag was opened to ambient passive aeration to simulate storage conditions for seven months. Our results showed that while TCC concentrations remained constant, TCS degradation took place during both phases. The degradation of TCS was corroborated by the formation of MeTCS in both phases. The TCS concentrations decreased from 18409 ± 1,877 to 11955 ± 288 ng g(-1) dry wt. during the thermophilic phase and declined from 11,955 ± 288 to 7,244 ± 909. ng g(-1) dry wt. by the end of the curing phase. Thus, slightly greater TCS transformation occurred during the second than during the first (35.1 vs. 39.4%). MeTCS concentrations increased from 189.3 ± 8.6 to 364.6 ± 72.5 ng g(-1) dry wt. during the first phase and reached 589.0 ± 94.9 ng g(-1) dry wt. at the end of the second phase. PBDEs concentrations were below quantification limits for all but two of the congeners analyzed (BDE-47 and BDE-99). PBDE concentrations were measured at the end of the first phase only and were comparable to initial concentrations.
Collapse
Affiliation(s)
- Nuria Lozano
- a Department of Water and Environmental Science and Technology , University of Cantabria , Santander , Cantabria , Spain
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Pycke BG, Geer LA, Dalloul M, Abulafia O, Jenck AM, Halden RU. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8831-8. [PMID: 24971846 PMCID: PMC4123932 DOI: 10.1021/es501100w] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/20/2014] [Accepted: 06/27/2014] [Indexed: 05/21/2023]
Abstract
Triclosan (TCS) and triclocarban (TCC) are antimicrobial agents formulated in a wide variety of consumer products (including soaps, toothpaste, medical devices, plastics, and fabrics) that are regulated by the U.S. Food and Drug Administration (FDA) and U.S. Environmental Protection Agency. In late 2014, the FDA will consider regulating the use of both chemicals, which are under scrutiny regarding lack of effectiveness, potential for endocrine disruption, and potential contribution to bacterial resistance to antibiotics. Here, we report on body burdens of TCS and TCC resulting from real-world exposures during pregnancy. Using liquid chromatography tandem mass spectrometry, we determined the concentrations of TCS, TCC, and its human metabolites (2'-hydroxy-TCC and 3'-hydroxy-TCC) as well as the manufacturing byproduct (3'-chloro-TCC) as total concentrations (Σ-) after conjugate hydrolysis in maternal urine and cord blood plasma from a cohort of 181 expecting mother/infant pairs in an urban multiethnic population from Brooklyn, NY recruited in 2007-09. TCS was detected in 100% of urine and 51% of cord blood samples after conjugate hydrolysis. The interquartile range (IQR) of detected TCS concentrations in urine was highly similar to the IQR reported previously for the age-matched population of the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2004, but typically higher than the IQR reported previously for the general population (detection frequency = 74.6%). Urinary levels of TCC are reported here for the first time from real-world exposures during pregnancy, showing a median concentration of 0.21 μg/L. Urinary concentrations of TCC correlated well with its phase-I metabolite ∑-2'-hydroxy-TCC (r = 0.49) and the manufacturing byproduct ∑-3'-chloro-TCC C (r = 0.79), and ∑-2'-hydroxy-TCC correlated strongly with ∑-3'-hydroxy-TCC (r = 0.99). This human biomonitoring study presents the first body burden data for TCC from exposures occurring during pregnancy and provides additional data on composite exposure to TCS (i.e., from both consumer-product use and environmental sources) in the maternal-fetal unit for an urban population in the United States.
Collapse
Affiliation(s)
- Benny
F. G. Pycke
- Center
for Environmental Security, The Biodesign Institute, Arizona State University, 781 East Terrace Mall, Tempe, Arizona 85287, United
States
| | - Laura A. Geer
- Department of Environmental and Occupational
Health Sciences, State University of New
York, Downstate School of Public
Health, Box 43, 450 Clarkson
Avenue, Brooklyn, New York 11203, United States
| | - Mudar Dalloul
- Department
of Obstetrics and Gynecology, State University
of New York Downstate Medical Center, 445 Lenox Road, Brooklyn, New York 11203, United
States
| | - Ovadia Abulafia
- Department
of Obstetrics and Gynecology, State University
of New York Downstate Medical Center, 445 Lenox Road, Brooklyn, New York 11203, United
States
| | - Alizee M. Jenck
- Center
for Environmental Security, The Biodesign Institute, Arizona State University, 781 East Terrace Mall, Tempe, Arizona 85287, United
States
| | - Rolf U. Halden
- Center
for Environmental Security, The Biodesign Institute, Arizona State University, 781 East Terrace Mall, Tempe, Arizona 85287, United
States
- Phone: (480) 727-0893. E-mail:
| |
Collapse
|
95
|
Nohara K, Liu S, Meyers MS, Waget A, Ferron M, Karsenty G, Burcelin R, Mauvais-Jarvis F. Developmental androgen excess disrupts reproduction and energy homeostasis in adult male mice. J Endocrinol 2013; 219:259-68. [PMID: 24084835 PMCID: PMC3901078 DOI: 10.1530/joe-13-0230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome is a common endocrine disorder in females of reproductive age and is believed to have a developmental origin in which gestational androgenization programs reproductive and metabolic abnormalities in offspring. During gestation, both male and female fetuses are exposed to potential androgen excess. In this study, we determined the consequences of developmental androgenization in male mice exposed to neonatal testosterone (NTM). Adult NTM displayed hypogonadotropic hypogonadism with decreased serum testosterone and gonadotropin concentrations. Hypothalamic KiSS1 neurons are believed to be critical to the onset of puberty and are the target of leptin. Adult NTM exhibited lower hypothalamic Kiss1 expression and a failure of leptin to upregulate Kiss1 expression. NTM displayed an early reduction in lean mass, decreased locomotor activity, and decreased energy expenditure. They displayed a delayed increase in subcutaneous white adipose tissue amounts. Thus, excessive neonatal androgenization disrupts reproduction and energy homeostasis and predisposes to hypogonadism and obesity in adult male mice.
Collapse
Affiliation(s)
- Kazunari Nohara
- Division of Endocrinology, Metabolism and Molecular Medicine and Comprehensive Center on Obesity, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Suhuan Liu
- Division of Endocrinology, Metabolism and Molecular Medicine and Comprehensive Center on Obesity, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew S. Meyers
- Division of Endocrinology, Metabolism and Molecular Medicine and Comprehensive Center on Obesity, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aurélie Waget
- Department of Genetics & Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mathieu Ferron
- Department of Genetics & Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gérard Karsenty
- Department of Genetics & Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rémy Burcelin
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases of Rangueil, Toulouse 31432, France
| | - Franck Mauvais-Jarvis
- Division of Endocrinology, Metabolism and Molecular Medicine and Comprehensive Center on Obesity, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Endocrinology, Department of Medicine Tulane, University Health Sciences Center, New York, NY 10032, USA
| |
Collapse
|
96
|
Frederiksen H, Aksglaede L, Sorensen K, Nielsen O, Main KM, Skakkebaek NE, Juul A, Andersson AM. Bisphenol A and other phenols in urine from Danish children and adolescents analyzed by isotope diluted TurboFlow-LC–MS/MS. Int J Hyg Environ Health 2013; 216:710-20. [DOI: 10.1016/j.ijheh.2013.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/09/2013] [Accepted: 01/17/2013] [Indexed: 11/27/2022]
|
97
|
Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Main KM, Skakkebæk NE, Jørgensen N, Kranich SK, Andersson AM. Temporal variability in urinary excretion of bisphenol A and seven other phenols in spot, morning, and 24-h urine samples. ENVIRONMENTAL RESEARCH 2013; 126:164-70. [PMID: 23932849 DOI: 10.1016/j.envres.2013.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 05/23/2023]
Abstract
Human exposure to modern non-persistent chemicals is difficult to ascertain in epidemiological studies as exposure patterns and excretion rates may show temporal and diurnal variations. The aim of this study was to assess the temporal variability in repeated measurements of urinary excretion of bisphenol A (BPA) and seven other phenols. All analytes were determined using TurboFlow-LC-MS/MS. Two spot, three first morning and three 24-h urine samples were collected from 33 young Danish men over a three months period. Temporal variability was estimated by means of intraclass correlation coefficients (ICCs). More than 70% of the urine samples had detectable levels of BPA, triclosan (TCS), benzophenone-3 (BP-3) and sum of 2,4-dichlorophenol and 2,5-dichlorophenol (ΣDCP). We found low to moderate ICCs for BPA (0.10-0.42) and ΣDCP (0.39-0.72), whereas the ICCs for BP-3 (0.69-0.80) and TCS (0.55-0.90) were higher. The ICCs were highest for the two spot urine samples, which were collected approximately 4 days apart, compared with the 24-h urine samples and the first morning urine samples, which were collected approximately 40 days apart. A consequence of the considerable variability in urinary excretion of BPA may be misclassification of individual BPA exposure level in epidemiological studies, which may lead to attenuation of the association between BPA and outcomes. Our data do not support that collection of 24-h samples will improve individual exposure assessment for any of the analysed phenols.
Collapse
Key Words
- 2,4,5-TCP
- 2,4,5-trichlorophenol
- 2,4-DCP
- 2,4-dichlorophenol
- 2,5-DCP
- 2,5-dichlorophenol
- 2-PP
- 2-phenylphenol
- 4-PP
- 4-phenylphenol
- BP-3
- BPA
- Benzophenone-3
- Bisphenol A
- Epidemiology
- TCC
- TCS
- Temporal variability
- Triclosan
- benzophenone-3
- bisphenol A
- sum of 2,4-dichlorophenol and 2,5-dichlorophenol
- triclocarban
- triclosan
- ΣDCP
Collapse
Affiliation(s)
- Tina Harmer Lassen
- Rigshospitalet, Copenhagen University Hospital, Department of Growth and Reproduction, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Lozano N, Rice CP, Ramirez M, Torrents A. Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes. WATER RESEARCH 2013; 47:4519-4527. [PMID: 23764601 DOI: 10.1016/j.watres.2013.05.015] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Triclocarban (TCC) and Triclosan (TCS) are two antibacterial chemicals present in household and personal care products. Methyltriclosan is a biodegradation product of TCS formed under aerobic conditions. TCC and TCS are discharged to Waste Water Treatment Plants (WWTP) where they are removed from the liquid phase mainly by concentrating in the solids. This study presents a thorough investigation of TCC, TCS and MeTCS concentrations in the liquid phase (dissolved + particulate) as well as solid phases within a single, large WWTP in the U.S. Total TCC and TCS concentrations decreased by >97% with about 79% of TCC and 64% of TCS transferred to the solids. The highest TCC and TCS removal rates from the liquid phase were reached in the primary treatment mainly though sorption and settling of solids. The TCC mass balances showed that TCC levels remain unchanged through the secondary treatment (activated sludge process) and about an 18% decrease was observed through the nitrification-denitrification process. On the other hand, TCS levels decreased in both processes (secondary and nitrification-denitrification) by 10.4 and 22.6%, respectively. The decrease in TCS levels associated with observed increased levels of MeTCS in secondary and nitrification-denitrification processes providing evidence of TCS biotransformation. Dissolved-phase concentrations of TCC and TCS remained constant during filtration and disinfection. TCC and TCS highest sludge concentrations were analyzed in the primary sludge (13.1 ± 0.9 μg g(-1) dry wt. for TCC and 20.3 ± 0.9 μg g(-1) dry wt. for TCS) but for MeTCS the highest concentrations were analyzed in the secondary sludge (0.25 ± 0.04 μg g(-1) dry wt.). Respective TCC, TCS and MeTCS concentrations of 4.15 ± 0.77; 5.37 ± 0.97 and 0.058 ± 0.003 kg d(-1) are leaving the WWTP with the sludge and 0.13 ± 0.01; 0.24 ± 0.07 and 0.021 ± 0.002 kg d(-1) with the effluent that is discharged.
Collapse
Affiliation(s)
- Nuria Lozano
- Department of Water and Environmental Science and Technology, University of Cantabria, Santander, Cantabria 39005, Spain
| | | | | | | |
Collapse
|
99
|
Sood S, Choudhary S, Wang HCR. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin. Biochem Biophys Res Commun 2013; 438:600-6. [PMID: 23942114 DOI: 10.1016/j.bbrc.2013.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022]
Abstract
More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk-Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk-Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive agents, such as curcumin, effective in suppressing TCC-induced cellular pre-malignancy.
Collapse
Affiliation(s)
- Shilpa Sood
- Anticancer Molecular Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
100
|
Kanbara Y, Murakane K, Nishimura Y, Satoh M, Oyama Y. Nanomolar concentration of triclocarban increases the vulnerability of rat thymocytes to oxidative stress. J Toxicol Sci 2013; 38:49-55. [PMID: 23358139 DOI: 10.2131/jts.38.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It was recently reported that triclocarban was absorbed significantly from soap used during showering in human subjects and that its C(max) in their whole blood ranged from 23 nM to 530 nM. We revealed that a nanomolar concentration (300 nM) of triclocarban potentiated the cytotoxicity of 300 µM H(2)O(2) in rat thymocytes by using cytometric techniques with appropriate fluorescent probes. Although 300 nM triclocarban did not itself increase the population of dead cells (cell lethality), it facilitated the process of cell death induced by H(2)O(2), resulting in a further increase in the population of dead cells. Nanomolar concentrations (300 nM or higher) of triclocarban significantly decreased the cellular content of nonprotein thiol (glutathione), which has a protective role against oxidative stress. Triclocarban at 300 nM or higher increased the cell vulnerability to oxidative stress. The results may suggest that nanomolar concentration (300 nM or higher) of triclocarban affects some cellular functions although there is no evidence for adverse effects of triclocarban in humans at present.
Collapse
Affiliation(s)
- Yasuhiro Kanbara
- Division of Environmental Symbiosis Studies, Graduate School of Integrated Arts and Sciences, University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|