101
|
|
Altare N, Vione D. Photochemical Implications of Changes in the Spectral Properties of Chromophoric Dissolved Organic Matter: A Model Assessment for Surface Waters. Molecules 2023; 28:2664. [PMID: 36985638 DOI: 10.3390/molecules28062664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Chromophoric dissolved organic matter (CDOM) is the main sunlight absorber in surface waters and a very important photosensitiser towards the generation of photochemically produced reactive intermediates (PPRIs), which take part in pollutant degradation. The absorption spectrum of CDOM (ACDOM(λ), unitless) can be described by an exponential function that decays with increasing wavelength: ACDOM(λ) = 100 d DOC Ao e− Sλ, where d [m] is water depth, DOC [mgC L−1] is dissolved organic carbon, Ao [L mgC−1 cm−1] is a pre-exponential factor, and S [nm−1] is the spectral slope. Sunlight absorption by CDOM is higher when Ao and DOC are higher and S is lower, and vice versa. By the use of models, here we investigate the impact of changes in CDOM spectral parameters (Ao and S) on the steady-state concentrations of three PPRIs: the hydroxyl radical (•OH), the carbonate radical (CO3•−), and CDOM excited triplet states (3CDOM*). A first finding is that variations in both Ao and S have impacts comparable to DOC variations on the photochemistry of CDOM, when reasonable parameter values are considered. Therefore, natural variability of the spectral parameters or their modifications cannot be neglected. In the natural environment, spectral parameters could, for instance, change because of photobleaching (prolonged exposure of CDOM to sunlight, which decreases Ao and increases S) or of the complex and still poorly predictable effects of climate change. A second finding is that, while the steady-state [3CDOM*] would increase with increasing ACDOM (increasing Ao, decreasing S), the effect of spectral parameters on [•OH] and [CO3•−] depends on the relative roles of CDOM vs. NO3− and NO2− as photochemical •OH sources.
Collapse
|
102
|
|
Izato YI, Matsugi A, Koshi M, Miyake A. Computation of entropy values for non-electrolyte solute molecules in solution based on semi-empirical corrections to a polarized continuum model. Phys Chem Chem Phys 2023; 25:8082-9. [PMID: 36876720 DOI: 10.1039/d2cp04972d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
A simple heuristic model was developed for estimating the entropy of a solute molecule in an ideal solution based on quantum mechanical calculations with polarizable continuum models (QM/PCMs). A translational term was incorporated that included free-volume compensation for the Sackur-Tetrode equation and a rotational term was modeled based on the restricted rotation of a dipole in an electrostatic field. The configuration term for the solute at a given concentration was calculated using a simple lattice model that considered the number of configurations of the solute within the lattice. The configurational entropy was ascertained from this number based on Boltzmann's principle. Standard entropy values were determined for 41 combinations of solutes and solvents at a set concentration of 1 mol dm-3 using the proposed model, and the computational values were compared with experimental data. QM/PCM calculations were conducted at the ωB97X-D/6-311++G(d,p)/IEF-PCM level using universal force field van der Waals radii scaled by 1.2. The proposed model accurately reproduced the entropy values reported for solutes in non-aqueous solvents within a mean absolute deviation of 9.2 J mol-1 K-1 for 33 solutions. This performance represents a considerable improvement relative to that obtained using the method based on the ideal gas treatment that is widely utilized in commercially available computation packages. In contrast, computations for aqueous molecules overestimated the entropies because hydrophobic effects that decrease the entropy of aqueous solutions were not included in the present model.
Collapse
Affiliation(s)
- Yu-Ichiro Izato
- Graduate School of Information and Environment Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Japan.
| | - Akira Matsugi
- National Institute of Advanced Industrial Sciences and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Mitsuo Koshi
- Professor Emeritus, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Atsumi Miyake
- Graduate School of Information and Environment Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Japan.
| |
Collapse
|
103
|
|
Saeki S. Empirical determination of the internal energy of polyethylene based on the pressure-volume-temperature-entropy equation of state. II. The revised internal energy based on the zero Kelvin isotherm. J MACROMOL SCI B 2023. [DOI: 10.1080/00222348.2023.2187134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Susumu Saeki
- Department of Materials Science and Engineering, Faculty of Engineering, The University of Fukui, Fukui 910, Japan
| |
Collapse
|
104
|
|
Rai PK, Kumar P. Accurate determination of reaction energetics and kinetics of the HO(2)˙ + O(3) → OH˙ + 2O(2) reaction. Phys Chem Chem Phys 2023; 25:8153-60. [PMID: 36877131 DOI: 10.1039/d3cp00135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the present work, we have studied the HO2˙ + O3 → HO˙ + 2O2 reaction using chemical kinetics and quantum chemical calculations. We have employed the post-CCSD(T) method to estimate the barrier height and reaction energy for the title reaction. In the post-CCSD(T) method, we have included zero point energy corrections, contributions from full triple excitations and partial quadratic excitations at the coupled-cluster level, and core corrections. We have also computed the reaction rate in the temperature range of 197-450 K and found good agreement with all the available experimental results. In addition, we have also fitted the computed rate constants with the Arrhenius expression and obtained an activation energy of 1.0 ± 0.1 kcal mol-1, almost identical to the value recommended by IUPAC and JPL.
Collapse
Affiliation(s)
- Philips Kumar Rai
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
105
|
|
Fahrenhorst-Jones T, Marshall DL, Burns JM, Pierens GK, Hormann RE, Fisher AM, Bernhardt PV, Blanksby SJ, Savage GP, Eaton PE, Williams CM. 1-Azahomocubane. Chem Sci 2023; 14:2821-5. [PMID: 36937576 DOI: 10.1039/d3sc00001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Highly strained cage hydrocarbons have long stood as fundamental molecules to explore the limits of chemical stability and reactivity, probe physical properties, and more recently as bioactive molecules and in materials discovery. Interestingly, the nitrogenous congeners have attracted much less attention. Previously absent from the literature, azahomocubanes, offer an opportunity to investigate the effects of a nitrogen atom when incorporated into a highly constrained polycyclic environment. Herein disclosed is the synthesis of 1-azahomocubane, accompanied by comprehensive structural characterization, physical property analysis and chemical reactivity. These data support the conclusion that nitrogen is remarkably well tolerated in a highly strained environment.
Collapse
Affiliation(s)
- Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - David L Marshall
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology Brisbane 4000 Queensland Australia
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, University of Queensland Brisbane 4072 Queensland Australia
| | - Robert E Hormann
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Allison M Fisher
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology Brisbane 4000 Queensland Australia
| | - G Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory Melbourne 3168 Victoria Australia
| | - Philip E Eaton
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| |
Collapse
|
106
|
|
Chaban VV, Andreeva NA, Bernard FL, M Dos Santos L, Einloft S. Chemical similarity of dialkyl carbonates and carbon dioxide opens an avenue for novel greenhouse gas scavengers: cheap recycling and low volatility via experiments and simulations. Phys Chem Chem Phys 2023. [PMID: 36920377 DOI: 10.1039/d2cp06089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Global warming linked to the industrial emissions of greenhouse gases may be the end of mankind unless it is adequately and timely handled. To prevent irreversible changes to the climate of the Earth, numerous research groups are striving to develop robust CO2 sorbents. Dialkyl carbonates (DACs) and CO2 exhibit obvious chemical similarities in their structure and properties. The degrees of oxidation of all atoms composing DACs and CO2 are identical resulting in very similar nucleophilicities and electrophilicities of all interaction centers. While both compounds possess relatively high partial atomic charges on their polar moieties, the molecular geometries prevent tight binding of the head groups. The computed DAC-DAC binding energies are ∼40 kJ mol-1, whereas the effect of the alkyl chain length is marginal. The phase transition points and shear viscosities of DACs are very low. We herein hypothesize and numerically rationalize that DACs represent noteworthy physical sorbents for CO2 thanks to the similar sorbent-CO2 and sorbent-sorbent interaction energies. By reporting in silico-derived sorption thermodynamics at various conditions, spectral and structural properties, and experimentally derived CO2 capacities and recyclabilities, we highlight the mutual affinity of DACs and CO2. Indeed, the experimentally determined CO2 sorption capacity of 0.88 mol% (diethyl carbonate) at 278.15 K and 30 bar is competitive. The unprecedentedly low DAC-CO2 binding energies, ∼14 kJ mol-1, suggest a low-cost desorption process and outstanding recyclability of the sorbent. We also note that DACs possessing long alkyl chains (butyl, hexyl, octyl) exhibit negligible volatilities, while preserving the liquid aggregate state over a practically important temperature range. The reported results may foster the development of a new class of CO2 scavengers with possibly quite peculiar characteristics.
Collapse
Affiliation(s)
| | - Nadezhda A Andreeva
- Peter the Great St. Petersburg Polytechnic University, Russian Federation.,School of Technology, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Brazil
| | - Franciele L Bernard
- School of Technology, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Brazil
| | - Leonardo M Dos Santos
- School of Technology, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Brazil
| | - Sandra Einloft
- School of Technology, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Brazil.,Post-Graduation Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| |
Collapse
|
107
|
|
Mao X, Chen H, Wang Y, Zhu X, Yang G. Study on Benzylamine(BZA) and Aminoethylpiperazine(AEP) Mixed Absorbent on Ship-Based Carbon Capture. Molecules 2023; 28:2661. [PMID: 36985632 DOI: 10.3390/molecules28062661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
To find suitable absorbents for ship-based carbon capture, the absorption and desorption properties of four mixed aqueous amines based on BZA were investigated, and the results indicated that BZA-AEP had the best absorption and desorption performance. Then, the absorption and desorption properties of different mole ratios of BZA-AEP were tested. The results showed that the average CO2 absorption rate had the highest value at the mole ratio of BZA to AEP of three. The average CO2 desorption rate had the maximum value at the mole ratio of BZA to AEP of one. Three fitted models of the absorption and desorption performance of BZA-AEP based on the test data were obtained. The p-values of all three models were less than 0.0001. Considering the performance and material cost, the BZA-AEP mole ratio of 1.5 is more appropriate for ship carbon capture. Compared with MEA, the average CO2 absorption rate increased by 48%, the CO2 desorption capacity increased by 120%, and the average CO2 desorption rate increased by 161%.
Collapse
|
108
|
|
Dhabal D, Molinero V. Kinetics and Mechanisms of Pressure-Induced Ice Amorphization and Polyamorphic Transitions in a Machine-Learned Coarse-Grained Water Model. J Phys Chem B 2023. [PMID: 36920450 DOI: 10.1021/acs.jpcb.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Water glasses have attracted considerable attention due to their potential connection to a liquid-liquid transition in supercooled water. Here we use molecular simulations to investigate the formation and phase behavior of water glasses using the machine-learned bond-order parameter (ML-BOP) water model. We produce glasses through hyperquenching of water, pressure-induced amorphization (PIA) of ice, and pressure-induced polyamorphic transformations. We find that PIA of polycrystalline ice occurs at a lower pressure than that of monocrystalline ice and through a different mechanism. The temperature dependence of the amorphization pressure of polycrystalline ice for ML-BOP agrees with that in experiments. We also find that ML-BOP accurately reproduces the density, coordination number, and structural features of low-density (LDA), high-density (HDA), and very high-density (VHDA) amorphous water glasses. ML-BOP accurately reproduces the experimental radial distribution function of LDA but overpredicts the minimum between the first two shells in high-density glasses. We examine the kinetics and mechanism of the transformation between low-density and high-density glasses and find that the sharp nature of these transitions in ML-BOP is similar to that in experiments and all-atom water models with a liquid-liquid transition. Transitions between ML-BOP glasses occur through a spinodal-like mechanism, similar to ice crystallization from LDA. Both glass-to-glass and glass-to-ice transformations have Avrami-Kolmogorov kinetics with exponent n = 1.5 ± 0.2 in experiments and simulations. Importantly, ML-BOP reproduces the competition between crystallization and HDA→LDA transition above the glass transition temperature Tg, and separation of their time scales below Tg, observed also in experiments. These findings demonstrate the ability of ML-BOP to accurately reproduce water properties across various regimes, making it a promising model for addressing the competition between polyamorphic transitions and crystallization in water and solutions.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
109
|
|
Zelencova-gopejenko D, Videja M, Grandane A, Pudnika-okinčica L, Sipola A, Vilks K, Dambrova M, Jaudzems K, Liepinsh E. Heart-Type Fatty Acid Binding Protein Binds Long-Chain Acylcarnitines and Protects against Lipotoxicity. Int J Mol Sci 2023; 24:5528. [PMID: 36982599 DOI: 10.3390/ijms24065528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Heart-type fatty-acid binding protein (FABP3) is an essential cytosolic lipid transport protein found in cardiomyocytes. FABP3 binds fatty acids (FAs) reversibly and with high affinity. Acylcarnitines (ACs) are an esterified form of FAs that play an important role in cellular energy metabolism. However, an increased concentration of ACs can exert detrimental effects on cardiac mitochondria and lead to severe cardiac damage. In the present study, we evaluated the ability of FABP3 to bind long-chain ACs (LCACs) and protect cells from their harmful effects. We characterized the novel binding mechanism between FABP3 and LCACs by a cytotoxicity assay, nuclear magnetic resonance, and isothermal titration calorimetry. Our data demonstrate that FABP3 is capable of binding both FAs and LCACs as well as decreasing the cytotoxicity of LCACs. Our findings reveal that LCACs and FAs compete for the binding site of FABP3. Thus, the protective mechanism of FABP3 is found to be concentration dependent.
Collapse
Affiliation(s)
- Diana Zelencova-Gopejenko
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
- Correspondence:
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Pharmacy, Rīga Stradinš University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Aiga Grandane
- Organic Synthesis Group, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Linda Pudnika-Okinčica
- Organic Synthesis Group, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Anda Sipola
- Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Pharmacy, Rīga Stradinš University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
110
|
|
Cobos CJ, Tellbach E, Sölter L, Troe J. Practical Aspects of Thermal Dissociation and Recombination Reactions: the Reaction Systems CF 3 X(+M)↔CF 3 +X (+M) with X=F, Cl, Br, and I. Isr J Chem 2023. [DOI: 10.1002/ijch.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Carlos Jorge Cobos
- INIFTA Facultad de Ciencias Exactas Universidad Nacional de La Plata CONICET La Plata Argentina
| | - Elsa Tellbach
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften Am Fassberg 11 D-37077 Göttingen Germany
- Institut für Physikalische Chemie Universität Göttingen Tammannstr. 6 D-37077 Göttingen Germany
| | - Lars Sölter
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften Am Fassberg 11 D-37077 Göttingen Germany
- Institut für Physikalische Chemie Universität Göttingen Tammannstr. 6 D-37077 Göttingen Germany
| | - Jürgen Troe
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften Am Fassberg 11 D-37077 Göttingen Germany
- Institut für Physikalische Chemie Universität Göttingen Tammannstr. 6 D-37077 Göttingen Germany
| |
Collapse
|
111
|
|
Joshi PR, Tsuge M, Tseng CY, Lee YP. Infrared spectra of isoquinolinium (iso-C(9)H(7)NH(+)) and isoquinolinyl radicals (iso-C(9)H(7)NH and 1-, 3-, 4-, 5-, 6-, 7- and 8-iso-HC(9)H(7)N) isolated in solid para-hydrogen. Phys Chem Chem Phys 2023. [PMID: 36916330 DOI: 10.1039/d3cp00246b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Protonated polycyclic aromatic nitrogen heterocycles (H+PANH) are prospective candidates that may contribute to interstellar unidentified infrared (UIR) emission bands because protonation enhances the relative intensities of the bands near 6.2, 7.7 and 8.6 μm, and the presence of the N atom induces a blue shift of the ring-stretching modes so that the spectra of H+PANH match better with the 6.2 μm feature in class-A UIR spectra. We report the infrared (IR) spectra of protonated isoquinoline (the 2-isoquinolinium cation, iso-C9H7NH+), its neutral counterpart (the 2-isoquinolinyl radical, iso-C9H7NH), and another mono-hydrogenated product (the 6-isoquinolinyl radical, 6-iso-HC9H7N), produced on the electron-bombardment of a mixture of isoquinoline (iso-C9H7N) with excess para-hydrogen (p-H2) during matrix deposition at 3.2 K. To generate additional isomers of hydrogenated isoquinoline, we irradiated iso-C9H7N/Cl2/p-H2 matrices at 365 nm to generate Cl atoms, followed by IR irradiation to generate H atoms via Cl + H2 (v = 1) → HCl + H; the H atoms thus generated reacted with iso-C9H7N. In addition to iso-C9H7NH and 6-iso-HC9H7N observed in the electron-bombardment experiments, we identified six additional hydrogenated isoquinoline species, 1-, 3-, 4-, 5-, 7- and 8-iso-HC9H7N, via their IR spectra; hydrogenation on the N atom and all available carbon atoms except for the two sharing carbon atoms on the fused ring was observed. Spectral groupings were achieved according to their behaviors after maintenance of the matrix in darkness and on secondary photolysis at various wavelengths. The assignments were supported via comparison of the experimental results with the vibrational wavenumbers and IR intensities of possible isomers predicted using the B3LYP/6-311++G(d,p) method. The implications in the identification of the UIR band are discussed.
Collapse
Affiliation(s)
- Prasad Ramesh Joshi
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
| | - Masashi Tsuge
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
| | - Chih-Yu Tseng
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan. .,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
| |
Collapse
|
112
|
|
Hammer M, Bauer G, Stierle R, Gross J, Wilhelmsen Ø. Classical density functional theory for interfacial properties of hydrogen, helium, deuterium, neon, and their mixtures. J Chem Phys 2023; 158:104107. [PMID: 36922124 DOI: 10.1063/5.0137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
We present a classical density functional theory (DFT) for fluid mixtures that is based on a third-order thermodynamic perturbation theory of Feynman-Hibbs-corrected Mie potentials. The DFT is developed to study the interfacial properties of hydrogen, helium, neon, deuterium, and their mixtures, i.e., fluids that are strongly influenced by quantum effects at low temperatures. White Bear fundamental measure theory is used for the hard-sphere contribution of the Helmholtz energy functional, and a weighted density approximation is used for the dispersion contribution. For mixtures, a contribution is included to account for non-additivity in the Lorentz-Berthelot combination rule. Predictions of the radial distribution function from DFT are in excellent agreement with results from molecular simulations, both for pure components and mixtures. Above the normal boiling point and 5% below the critical temperature, the DFT yields surface tensions of neon, hydrogen, and deuterium with average deviations from experiments of 7.5%, 4.4%, and 1.8%, respectively. The surface tensions of hydrogen/deuterium, para-hydrogen/helium, deuterium/helium, and hydrogen/neon mixtures are reproduced with a mean absolute error of 5.4%, 8.1%, 1.3%, and 7.5%, respectively. The surface tensions are predicted with an excellent accuracy at temperatures above 20 K. The poor accuracy below 20 K is due to the inability of Feynman-Hibbs-corrected Mie potentials to represent the real fluid behavior at these conditions, motivating the development of new intermolecular potentials. This DFT can be leveraged in the future to study confined fluids and assess the performance of porous materials for hydrogen storage and transport.
Collapse
Affiliation(s)
- Morten Hammer
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Gernot Bauer
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Rolf Stierle
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Øivind Wilhelmsen
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
113
|
|
Shan YD, Wu SH, Wang YL, Wang C, Zhi SQ, Liu Y, Han X. Selective Oxidation of Cyclohexane to Cyclohexanol/Cyclohexanone by Surface Peroxo Species on Cu-Mesoporous TiO(2). Inorg Chem 2023. [PMID: 36916853 DOI: 10.1021/acs.inorgchem.2c04196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Selective oxidation of cyclohexane to cyclohexanol/cyclohexanone (KA-oil) is an important chemical process, which is still constrained by low conversion and selectivity and high energy consumption. In this study, Cu-doped mesoporous TiO2 (Cu-MT) has been successfully synthesized via calcinating MIL-125(Ti) doped with copper acetylacetonate, which shows high reactivity in selective oxidation of cyclohexane to KA-oil by persulfate (PS) with the desirable cyclohexane conversion of 16.8% and a selectivity of 98.0% under mild conditions and the low ratio of PS/cyclohexane of 1:1. A series of characterizations and density functional theory calculations reveal that the doped Cu(I,II) on Cu-MT is the reactive site for non-radical activation of PS with the moderate elongation of the O-O bond in PS, which then abstracts 1H (1H+ + 1e-) from cyclohexane to form Cy• and eventually KA-oil. This study gives new insight on the importance of moderately activated PS in selective oxidation of C-H.
Collapse
Affiliation(s)
- Yu-Dong Shan
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Yu-Le Wang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Cong Wang
- Heibei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical and Environmental Engineering, North China Institute of Science and Technology, Langfang, Hebei 065201, China
| | - Shao-Qi Zhi
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
114
|
|
McNaughton AD, Joshi RP, Knutson CR, Fnu A, Luebke KJ, Malerich JP, Madrid PB, Kumar N. Machine Learning Models for Predicting Molecular UV-Vis Spectra with Quantum Mechanical Properties. J Chem Inf Model 2023; 63:1462-71. [PMID: 36847578 DOI: 10.1021/acs.jcim.2c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Accurate understanding of ultraviolet-visible (UV-vis) spectra is critical for the high-throughput synthesis of compounds for drug discovery. Experimentally determining UV-vis spectra can become expensive when dealing with a large quantity of novel compounds. This provides us an opportunity to drive computational advances in molecular property predictions using quantum mechanics and machine learning methods. In this work, we use both quantum mechanically (QM) predicted and experimentally measured UV-vis spectra as input to devise four different machine learning architectures, UVvis-SchNet, UVvis-DTNN, UVvis-Transformer, and UVvis-MPNN, and assess the performance of each method. We find that the UVvis-MPNN model outperforms the other models when using optimized 3D coordinates and QM predicted spectra as input features. This model has the highest performance for predicting UV-vis spectra with a training RMSE of 0.06 and validation RMSE of 0.08. Most importantly, our model can be used for the challenging task of predicting differences in the UV-vis spectral signatures of regioisomers.
Collapse
Affiliation(s)
- Andrew D McNaughton
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Rajendra P Joshi
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carter R Knutson
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anubhav Fnu
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kevin J Luebke
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Jeremiah P Malerich
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Neeraj Kumar
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
115
|
|
Chappuis F, Grilj V, Tran HN, Zein SA, Bochud F, Bailat C, Incerti S, Desorgher L. Modeling of scavenging systems in water radiolysis with Geant4-DNA. Phys Med 2023; 108:102549. [PMID: 36921424 DOI: 10.1016/j.ejmp.2023.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
PURPOSE This paper presents the capabilities of the Geant4-DNA Monte Carlo toolkit to simulate water radiolysis with scavengers using the step-by-step (SBS) or the independent reaction times (IRT) methods. It features two examples of application areas: (1) computing the escape yield of H2O2 following a 60Co γ-irradiation and (2) computing the oxygen depletion in water irradiated with 1 MeV electrons. METHODS To ease the implementation of the chemical stage in Geant4-DNA, we developed a user interface that helps define the chemical reactions and set the concentration of scavengers. The first application area example required two computational steps to perform water radiolysis using NO2- and NO3- as scavengers and a 60Co irradiation. The oxygen depletion computation technique for the second application area example consisted of simulating track segments of 1 MeV electrons and determining the radio-induced loss and gain of oxygen molecules. RESULTS The production of H2O2 under variable scavenging levels is consistent with the literature; the mean relative difference between the SBS and IRT methods is 7.2 % ± 0.5 %. For the oxygen depletion 1 µs post-irradiation, the mean relative difference between both methods is equal to 9.8 % ± 0.3 %. The results in the microsecond scale depend on the initial partial pressure of oxygen in water. In addition, the computed oxygen depletions agree well with the literature. CONCLUSIONS The Geant4-DNA toolkit makes it possible to simulate water radiolysis in the presence of scavengers. This feature offers perspectives in radiobiology, with the possibility of simulating cell-relevant scavenging mechanisms.
Collapse
Affiliation(s)
- Flore Chappuis
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland
| | - Hoang Ngoc Tran
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - Sara A Zein
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - François Bochud
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland
| | - Sébastien Incerti
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - Laurent Desorgher
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland.
| |
Collapse
|
116
|
|
Liu J, Yang Y, Shi W, Yu ZX. Metalla-Claisen Rearrangement in Gold-Catalyzed [4+2] Reaction: A New Elementary Reaction Suggested for Future Reaction Design. Angew Chem Int Ed Engl 2023; 62:e202217654. [PMID: 36598873 DOI: 10.1002/anie.202217654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report here computational evidence for a metalla-Claisen rearrangement (MCR) in the case of gold-catalyzed [4+2] cycloaddition reaction of yne-dienes. The [4+2] reaction starts from exo cyclopropanation, followed by MCR and reductive elimination. The cyclopropane moiety formed in the first step is crucial for a low barrier of the MCR step. In addition, the importance of an appropriate combination of the tether group and the terminal substituent on alkyne in the yne-diene substrates was studied. The mechanism of rhodium-catalyzed [4+2] reaction of yne-dienes was also investigated to see whether an MCR mechanism is involved or not. The findings and new understanding hereby reported represent an important advance in the catalysis field.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Weiming Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhi-Xiang Yu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
117
|
|
Gao P, Xu J, Zhou T, Liu Y, Bisz E, Dziuk B, Lalancette R, Szostak R, Zhang D, Szostak M. L-Shaped Heterobidentate Imidazo[1,5-a]pyridin-3-ylidene (N,C)-Ligands for Oxidant-Free Au(I) /Au(III) Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218427. [PMID: 36696514 DOI: 10.1002/anie.202218427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI /AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI /AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, 07102, Newark, NJ, USA
| | - Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, 07102, Newark, NJ, USA
| | - Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, 45-052, Opole, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, 07102, Newark, NJ, USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, 07102, Newark, NJ, USA
| |
Collapse
|
118
|
|
Li L, Zhang Q, Wei Y, Wang Q, Wang W. Theoretical Study on the Gas-Phase and Aqueous Interface Reaction Mechanism of Criegee Intermediates with 2-Methylglyceric Acid and the Nucleation of Products. Int J Mol Sci 2023; 24:5400. [PMID: 36982477 DOI: 10.3390/ijms24065400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Criegee intermediates (CIs) are important in the sink of many atmospheric substances, including alcohols, organic acids, amines, etc. In this work, the density functional theory (DFT) method was used to calculate the energy barriers for the reactions of CH3CHOO with 2-methyl glyceric acid (MGA) and to evaluate the interaction of the three functional groups of MGA. The results show that the reactions involving the COOH group of MGA are negligibly affected, and that hydrogen bonding can affect the reactions involving α-OH and β-OH groups. The water molecule has a negative effect on the reactions of the COOH group. It decreases the energy barriers of reactions involving the α-OH and β-OH groups as a catalyst. The Born-Oppenheimer molecular dynamic (BOMD) was applied to simulate the reactions of CH3CHOO with MGA at the gas-liquid interface. Water molecule plays the role of proton transfer in the reaction. Gas-phase calculations and gas-liquid interface simulations demonstrate that the reaction of CH3CHOO with the COOH group is the main pathway in the atmosphere. The molecular dynamic (MD) simulations suggest that the reaction products can form clusters in the atmosphere to participate in the formation of particles.
Collapse
|
119
|
|
Blatz JM, Barrows P, Gribb T, Cech DM, Becerra G, Kile T, Jacobson CM, Jacobson L, Giffey J, Radel R. A Plasma-Window Enhanced Accelerator-Based Deuterium-Tritium Neutron Generator System. Fusion Science and Technology 2023. [DOI: 10.1080/15361055.2023.2167458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- J. M. Blatz
- SHINE Technologies, Fitchburg, Wisconsin 53714
| | - P. Barrows
- SHINE Technologies, Fitchburg, Wisconsin 53714
| | - T. Gribb
- SHINE Technologies, Fitchburg, Wisconsin 53714
| | - D. M. Cech
- SHINE Technologies, Fitchburg, Wisconsin 53714
| | - G. Becerra
- SHINE Technologies, Fitchburg, Wisconsin 53714
| | - T. Kile
- SHINE Technologies, Fitchburg, Wisconsin 53714
| | | | - L. Jacobson
- SHINE Technologies, Fitchburg, Wisconsin 53714
| | - J. Giffey
- SHINE Technologies, Fitchburg, Wisconsin 53714
| | - R. Radel
- SHINE Technologies, Fitchburg, Wisconsin 53714
| |
Collapse
|
120
|
|
Jiang C, Dejarnette S, Chen W, Scholle F, Wang Q, Ghiladi RA. Color-variable dual-dyed photodynamic antimicrobial polyethylene terephthalate (PET)/cotton blended fabrics. Photochem Photobiol Sci 2023;:1-18. [PMID: 36894800 DOI: 10.1007/s43630-023-00398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The urgent demand for scalable, potent, color variable, and comfortable antimicrobial textiles as personal protection equipment (PPE) to help reduce infection transmission in hospitals and healthcare facilities has significantly increased since the start of the COVID-19 pandemic. Here, we explored photodynamic antimicrobial polyethylene terephthalate/cotton (TC) blended fabrics comprised of photosensitizer-conjugated cotton fibers and polyethylene terephthalate (PET) fibers dyed with disperse dyes. A small library of TC blended fabrics was constructed wherein the PET fibers were embedded with traditional disperse dyes dominating the fabric color, thereby enabling variable color expression, while the cotton fibers were covalently coupled with the photosensitizer thionine acetate as the microbicidal agent. Physical (SEM, CLSM, TGA, XPS and mechanical strength) and colorimetric (K/S and CIELab values) characterization methods were employed to investigate the resultant fabrics, and photooxidation studies with DPBF demonstrated the ability of these materials to generate reactive oxygen species (i.e., singlet oxygen) upon visible light illumination. The best results demonstrated a photodynamic inactivation of 99.985% (~ 3.82 log unit reduction, P = 0.0021) against Gram-positive S. aureus, and detection limit inactivation (99.99%, 4 log unit reduction, P ≤ 0.0001) against Gram-negative E. coli upon illumination with visible light (60 min; ~ 300 mW/cm2; λ ≥ 420 nm). Enveloped human coronavirus 229E showed a photodynamic susceptibility of ~ 99.99% inactivation after 60 min illumination (400-700 nm, 65 ± 5 mW/cm2). The presence of the disperse dyes on the fabrics showed no significant effects on the aPDI results, and furthermore, appeared to provide the photosensitizer with some measure of protection from photobleaching, thus improving the photostability of the dual-dyed fabrics. Taken together, these results suggest the feasibility of low cost, scalable and color variable thionine-conjugated TC blended fabrics as potent self-disinfecting textiles.
Collapse
|
121
|
|
Prashant A, Luthra M, Goswami K, Bharadvaja A, Baluja KL. Positron Scattering from Pyrimidine. Atoms 2023; 11:55. [DOI: 10.3390/atoms11030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The positron impact cross-sections of pyrimidine molecules are reported from 1 eV to 5000 eV. These cross-sections include differential elastic, integral elastic, and direct ionisation. The elastic cross-sections are computed using the single-centre expansion scheme whereas the direct ionisation cross-sections are obtained using the binary-encounter-Bethe formula. The integral and differential cross-sections exhibit consistency with the experimental and other theoretical results. The direct ionisation cross-sections, which are reported for the first time, are compared with the experimental inelastic cross-sections (the sum of excitation and ionisation) to assess the trends in theoretically computed ionisation cross-sections and with the corresponding results for the electrons. The incoherently summed elastic and ionisation cross-sections match very well with the total cross-sections after 40 eV indicating the minimal impact of the positronium formation and electronic excitation processes. Based on this study, we recommend that the experimental data of the inelastic cross-sections reported by Palihawadana et al. be revisited.
Collapse
|
122
|
|
Kim SE, Hong SC. Two Opposing Effects of Monovalent Cations on the Stability of i-Motif Structure. J Phys Chem B 2023; 127:1932-9. [PMID: 36811958 DOI: 10.1021/acs.jpcb.2c07069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
At acidic pH, cytosine-rich single-stranded DNA can be folded into a tetraplex structure called i-motif (iM). In recent studies, the effect of monovalent cations on the stability of iM structure has been addressed, but a consensus about the issue has not been reached yet. Thus, we investigated the effects of various factors on the stability of iM structure using fluorescence resonance energy transfer (FRET)-based analysis for three types of iM derived from human telomere sequences. We confirmed that the protonated cytosine-cytosine (C:C+) base pair is destabilized as the concentration of monovalent cations (Li+, Na+, K+) increases and that Li+ has the greatest tendency of destabilization. Intriguingly, monovalent cations would play an ambivalent role in iM formation by making single-stranded DNA flexible and pliant for an iM structure. In particular, we found that Li+ has a notably greater flexibilizing effect than Na+ and K+. All taken together, we conclude that the stability of iM structure is controlled by the subtle balance of the two counteractive effects of monovalent cations: electrostatic screening and disruption of cytosine base pairing.
Collapse
Affiliation(s)
- Sung Eun Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea, Department of Physics, Korea University, Seoul 02841, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea, Department of Physics, Korea University, Seoul 02841, Korea
| |
Collapse
|
123
|
|
Wenny MB, Walter MV, Slavney AH, Mason JA. Generalizable Synthesis of Highly Fluorinated Ionic Liquids. J Phys Chem B 2023; 127:2028-33. [PMID: 36821528 DOI: 10.1021/acs.jpcb.2c08374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The unique chemistry of fluorocarbons (in particular, their weak intermolecular interactions and high degree of intrinsic free volume) makes them promising building blocks for ionic liquids with high gas capacities. Here, we report a generalizable method for the synthesis of fluorinated ionic liquids, which relies on the evolution of gaseous byproducts to drive product formation. This synthetic strategy overcomes solubility challenges that can hinder the synthesis of highly fluorinated ionic liquids via conventional methods and enables a systematic investigation of the effect of fluorination on ionic liquid viscosity and gas solubility.
Collapse
Affiliation(s)
- Malia B Wenny
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Miranda V Walter
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Adam H Slavney
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
124
|
|
Kuroki N, Suzuki Y, Kodama D, Chowdhury FA, Yamada H, Mori H. Machine Learning-Boosted Design of Ionic Liquids for CO(2) Absorption and Experimental Verification. J Phys Chem B 2023; 127:2022-7. [PMID: 36827525 DOI: 10.1021/acs.jpcb.2c07305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Efficient CO2 capture is indispensable for achieving a carbon-neutral society while maintaining a high quality of life. Since the discovery that ionic liquids (ILs; room-temperature molten salts) can absorb CO2, various solvents composed of molecular ions have been studied. However, it is challenging to observe the properties of each isolated ion component to control the function of ILs as they are mixtures of ions. Finding the optimal cation-anion combination for the CO2 absorbent from their enormous chemical space had been impossible in a practical sense. This study applied electronic structure informatics to explore ILs with high CO2 solubility from 402,114 IL candidates. The feature variables were determined by a set of cheap quantum chemistry calculations for isolated small-ion fragments, and the importance of molecular geometries and electronic states governing molecular interactions was identified via the wrapper method. As a result, it was clearly shown that the electronic states of ionic species must have essential roles in the CO2 physisorption capacity of ILs. Considering synthetic easiness for the candidates narrowed by the machine learning model, trihexyl(tetradecyl)phosphonium perfluorooctanesulfonate was synthesized. Using a magnetic suspension balance, it was experimentally confirmed that this IL has higher CO2 solubility than trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide, which is the previous best IL for CO2 absorption.
Collapse
Affiliation(s)
- Nahoko Kuroki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,Japan Science and Technology Agency, ACT-X, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Suzuki
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamura-machi, Koriyama, Fukushima 963-8642, Japan
| | - Daisuke Kodama
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamura-machi, Koriyama, Fukushima 963-8642, Japan
| | - Firoz Alam Chowdhury
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hidetaka Yamada
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan.,Frontier Science and Social Co-creation Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hirotoshi Mori
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
125
|
|
Durán-Sampedro G, Xue EY, Moreno-Simoni M, Paramio C, Torres T, Ng DKP, de la Torre G. Glycosylated BODIPY- Incorporated Pt(II) Metallacycles for Targeted and Synergistic Chemo-Photodynamic Therapy. J Med Chem 2023; 66:3448-59. [PMID: 36802644 DOI: 10.1021/acs.jmedchem.2c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pt(II)-BODIPY complexes combine the chemotherapeutic activity of Pt(II) with the photocytotoxicity of BODIPYs. Additional conjugation with targeting ligands can boost the uptake by cancer cells that overexpress the corresponding receptors. We describe two Pt(II) triangles, 1 and 2, built with pyridyl BODIPYs functionalized with glucose (3) or triethylene glycol methyl ether (4), respectively. Both 1 and 2 showed higher singlet oxygen quantum yields than 3 and 4, due to the enhanced singlet-to-triplet intersystem crossing. To evaluate the targeting effect of the glycosylated derivative, in vitro experiments were performed using glucose transporter 1 (GLUT1)-positive HT29 and A549 cancer cells, and noncancerous HEK293 cells as control. Both 1 and 2 showed higher cellular uptake than 3 and 4. Specifically, 1 was selective and highly cytotoxic toward HT29 and A549 cells. The synergistic chemo- and photodynamic behavior of the metallacycles was also confirmed. Notably, 1 exhibited superior efficacy toward the cisplatin-resistant R-HepG2 cells.
Collapse
Affiliation(s)
- Gonzalo Durán-Sampedro
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Marta Moreno-Simoni
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Celia Paramio
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.,IMDEA Nanociencia, C/Faraday 9, Cantoblanco, Madrid 28049, Spain
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Gema de la Torre
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
126
|
|
Rehner P, Bauer G, Gross J. FeO s: An Open-Source Framework for Equations of State and Classical Density Functional Theory. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Philipp Rehner
- Energy and Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Gernot Bauer
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| |
Collapse
|
127
|
|
Woods B, Thompson KC, Szita N, Chen S, Milanesi L, Tomas S. Confinement effect on hydrolysis in small lipid vesicles. Chem Sci 2023; 14:2616-23. [PMID: 36908967 DOI: 10.1039/d2sc05747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In living organisms most chemical reactions take place within the confines of lipid-membrane bound compartments, while confinement within the bounds of a lipid membrane is thought to be a key step in abiogenesis. In previous work we demonstrated that confinement in the aqueous cavity of a lipid vesicle affords protection against hydrolysis, a phenomenon that we term here confinement effect (C e) and that we attributed to the interaction with the lipid membrane. Here, we show that both the size and the shape of the cavity of the vesicle modulate the C e. We link this observation to the packing of the lipid following changes in membrane curvature, and formulate a mathematical model that relates the C e to the radius of a spherical vesicle and the packing parameter of the lipids. These results suggest that the shape of the compartment where a molecule is located plays a major role in controlling the chemical reactivity of non-enzymatic reactions. Moreover, the mathematical treatment we propose offers a useful tool for the design of vesicles with predictable reaction rates of the confined molecules, e.g., drug delivery vesicles with confined prodrugs. The results also show that a crude form of signal transduction, devoid of complex biological machinery, can be achieved by any external stimuli that drastically changes the structure of the membrane, like the osmotic shocks used in the present work.
Collapse
Affiliation(s)
- Ben Woods
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Katherine C Thompson
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, Bernard Katz Building Gordon Street London WC1H 0AH UK
| | - Shu Chen
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London Malet Street London WC1E 7HX UK
| | - Lilia Milanesi
- Department of Chemistry, University of the Balearic Islands Ctra. de Valldemossa, Km 7.5 07122 Palma de Mallorca Spain
| | - Salvador Tomas
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London Malet Street London WC1E 7HX UK.,Department of Chemistry, University of the Balearic Islands Ctra. de Valldemossa, Km 7.5 07122 Palma de Mallorca Spain
| |
Collapse
|
128
|
|
Soltan S, Macke S, Ilse SE, Pennycook T, Zhang ZL, Christiani G, Benckiser E, Schütz G, Goering E. Ferromagnetic order controlled by the magnetic interface of LaNiO(3)/La(2/3)Ca(1/3)MnO(3) superlattices. Sci Rep 2023; 13:3847. [PMID: 36890187 DOI: 10.1038/s41598-023-30814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Interface engineering in complex oxide superlattices is a growing field, enabling manipulation of the exceptional properties of these materials, and also providing access to new phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex charge and spin structure in a bulk paramagnetic material. We investigate a superlattice (SLs) consisting of paramagnetic LaNiO3 (LNO) and highly spin-polarized ferromagnetic La2/3Ca1/3MnO3 (LCMO), grown on SrTiO3 (001) substrate. We observed emerging magnetism in LNO through an exchange bias mechanism at the interfaces in X-ray resonant magnetic reflectivity. We find non-symmetric interface induced magnetization profiles in LNO and LCMO which we relate to a periodic complex charge and spin superstructure. High resolution scanning transmission electron microscopy images reveal that the upper and lower interfaces exhibit no significant structural variations. The different long range magnetic order emerging in LNO layers demonstrates the enormous potential of interfacial reconstruction as a tool for tailored electronic properties.
Collapse
Affiliation(s)
- S Soltan
- Physics Department, Faculty of Science, Helwan University, Helwan, Cairo, 11798, Egypt. .,Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany. .,Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - S Macke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - S E Ilse
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - T Pennycook
- EMAT, University of Antwerp Campus Groenenborger, 2020, Antwerp, Belgium.,Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Z L Zhang
- Erich-Schmid-Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria
| | - G Christiani
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - E Benckiser
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - G Schütz
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - E Goering
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany.
| |
Collapse
|
129
|
|
Zemánková A, Hassouna F, Klajmon M, Fulem M. Solid–Liquid Equilibrium in Co-Amorphous Systems: Experiment and Prediction. Molecules 2023; 28:2492. [PMID: 36985463 DOI: 10.3390/molecules28062492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
In this work, the solid–liquid equilibrium (SLE) of four binary systems combining two active pharmaceutical ingredients (APIs) capable of forming co-amorphous systems (CAMs) was investigated. The binary systems studied were naproxen-indomethacin, naproxen-ibuprofen, naproxen-probucol, and indomethacin-paracetamol. The SLE was experimentally determined by differential scanning calorimetry. The thermograms obtained revealed that all binary mixtures investigated form eutectic systems. Melting of the initial binary crystalline mixtures and subsequent quenching lead to the formation of CAM for all binary systems and most of the compositions studied. The experimentally obtained liquidus and eutectic temperatures were compared to theoretical predictions using the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state and conductor-like screening model for real solvents (COSMO-RS), as implemented in the Amsterdam Modeling Suite (COSMO-RS-AMS). On the basis of the obtained results, the ability of these models to predict the phase diagrams for the investigated API–API binary systems was evaluated. Furthermore, the glass transition temperature (Tg) of naproxen (NAP), a compound with a high tendency to recrystallize, whose literature values are considerably scattered, was newly determined by measuring and modeling the Tg values of binary mixtures in which amorphous NAP was stabilized. Based on this analysis, erroneous literature values were identified.
Collapse
Affiliation(s)
- Alžběta Zemánková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (A.Z.); (M.K.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Martin Klajmon
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (A.Z.); (M.K.)
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (A.Z.); (M.K.)
- Correspondence:
| |
Collapse
|
130
|
|
Nowak A, Boguslawski K. A configuration interaction correction on top of pair coupled cluster doubles. Phys Chem Chem Phys 2023; 25:7289-301. [PMID: 36810525 DOI: 10.1039/d2cp05171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous numerical studies have shown that geminal-based methods are a promising direction to model strongly correlated systems with low computational costs. Several strategies have been introduced to capture the missing dynamical correlation effects, which typically exploit a posteriori corrections to account for correlation effects associated with broken-pair states or inter-geminal correlations. In this article, we scrutinize the accuracy of the pair coupled cluster doubles (pCCD) method extended by configuration interaction (CI) theory. Specifically, we benchmark various CI models, including, at most double excitations against selected CC corrections as well as conventional single-reference CC methods. A simple Davidson correction is also tested. The accuracy of the proposed pCCD-CI approaches is assessed for challenging small model systems such as the N2 and F2 dimers and various di- and triatomic actinide-containing compounds. In general, the proposed CI methods considerably improve spectroscopic constants compared to the conventional CCSD approach, provided a Davidson correction is included in the theoretical model. At the same time, their accuracy lies between those of the linearized frozen pCCD and frozen pCCD variants.
Collapse
Affiliation(s)
- Artur Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
131
|
|
Rafferty A, Vennes B, Bain A, Preston TC. Optical trapping and light scattering in atmospheric aerosol science. Phys Chem Chem Phys 2023; 25:7066-89. [PMID: 36852581 DOI: 10.1039/d2cp05301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Aerosol particles are ubiquitous in the atmosphere, and currently contribute a large uncertainty to climate models. Part of the endeavour to reduce this uncertainty takes the form of improving our understanding of aerosol at the microphysical level, thus enabling chemical and physical processes to be more accurately represented in larger scale models. In addition to modeling efforts, there is a need to develop new instruments and methodologies to interrogate the physicochemical properties of aerosol. This perspective presents the development, theory, and application of optical trapping, a powerful tool for single particle investigations of aerosol. After providing an overview of the role of aerosol in Earth's atmosphere and the microphysics of these particles, we present a brief history of optical trapping and a more detailed look at its application to aerosol particles. We also compare optical trapping to other single particle techniques. Understanding the interaction of light with single particles is essential for interpreting experimental measurements. In the final part of this perspective, we provide the relevant formalism for understanding both elastic and inelastic light scattering for single particles. The developments discussed here go beyond Mie theory and include both how particle and beam shape affect spectra. Throughout the entirety of this work, we highlight numerous references and examples, mostly from the last decade, of the application of optical trapping to systems that are relevant to the atmospheric aerosol.
Collapse
Affiliation(s)
| | - Benjamin Vennes
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.
| | - Alison Bain
- School of Chemistry, University of Bristol, Bristol, UK
| | - Thomas C Preston
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada. .,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
132
|
|
Tomic A, Kovacic M, Kusic H, Karamanis P, Rasulev B, Loncaric Bozic A. Structural Features Promoting Photocatalytic Degradation of Contaminants of Emerging Concern: Insights into Degradation Mechanism Employing QSA/PR Modeling. Molecules 2023; 28:2443. [PMID: 36985414 DOI: 10.3390/molecules28062443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Although heterogeneous photocatalysis has shown promising results in degradation of contaminants of emerging concern (CECs), the mechanistic implications related to structural diversity of chemicals, affecting oxidative (by HO•) or reductive (by O2•−) degradation pathways are still scarce. In this study, the degradation extents and rates of selected organics in the absence and presence of common scavengers for reactive oxygen species (ROS) generated during photocatalytic treatment were determined. The obtained values were then brought into correlation as K coefficients (MHO•/MO2•−), denoting the ratio of organics degraded by two occurring mechanisms: oxidation and reduction via HO• and O2•−. The compounds possessing K >> 1 favor oxidative degradation over HO•, and vice versa for reductive degradation (i.e., if K << 1 compounds undergo reductive reactions driven by O2•−). Such empirical values were brought into correlation with structural features of CECs, represented by molecular descriptors, employing a quantitative structure activity/property relationship (QSA/PR) modeling. The functional stability and predictive power of the resulting QSA/PR model was confirmed by internal and external cross-validation. The most influential descriptors were found to be the size of the molecule and presence/absence of particular molecular fragments such as C − O and C − Cl bonds; the latter favors HO•-driven reaction, while the former the reductive pathway. The developed QSA/PR models can be considered robust predictive tools for evaluating distribution between degradation mechanisms occurring in photocatalytic treatment.
Collapse
Affiliation(s)
- Antonija Tomic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev Trg 19, 10000 Zagreb, Croatia
| | - Marin Kovacic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev Trg 19, 10000 Zagreb, Croatia
| | - Hrvoje Kusic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev Trg 19, 10000 Zagreb, Croatia
- Department for Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
- Correspondence: ; Tel.: +385-1-4597-160
| | - Panaghiotis Karamanis
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2 Rue de President Angot, 64053 Pau, France
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Ana Loncaric Bozic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev Trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
133
|
|
Sharma G, Mitra S, Kamil SM, Ghosh SK. Shear-induced phase transition in the aqueous solution of an imidazolium-based ionic liquid. J Chem Phys 2023; 158:094904. [PMID: 36889950 DOI: 10.1063/5.0138078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
An ionic liquid (IL) is a salt in the liquid state that consists of a cation and an anion, one of which possesses an organic component. Because of their non-volatile property, these solvents have a high recovery rate, and, hence, they are considered as environment-friendly green solvents. It is necessary to study the detailed physicochemical properties of these liquids for designing and processing techniques and find suitable operating conditions for IL-based systems. In the present work, the flow behavior of aqueous solutions of an imidazolium-based IL, 1-methyl-3-octylimidazolium chloride, is investigated, where the dynamic viscosity measurements indicate non-Newtonian shear thickening behavior in the solutions. Polarizing optical microscopy shows that the pristine samples are isotropic and transform into anisotropic after shear. These shear thickened liquid crystalline samples change into an isotropic phase upon heating, which is quantified by the differential scanning calorimetry. The small angle x-ray scattering study revealed that the pristine isotropic cubic phase of spherical micelles distort into non-spherical micelles. This has provided the detailed structural evolution of mesoscopic aggregates of the IL in an aqueous solution and the corresponding viscoelastic property of the solution.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India
| | - Saheli Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India
| | - Syed Mohammad Kamil
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India
| | - Sajal Kumar Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
134
|
|
Hohl T, Kremer RK, Ebbinghaus SG, Khan SA, Minár J, Hoch C. Influence of Disorder on the Bad Metal Behavior in Polar Amalgams. Inorg Chem 2023; 62:3965-75. [PMID: 36821862 DOI: 10.1021/acs.inorgchem.2c04430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The two new ternary amalgams K1-xRbxHg11 [x = 0.472(7)] and Cs3-xCaxHg20 [x = 0.20(3)] represent two different examples of how to create ternary compounds from binaries by statistical atom substitution. K1-xRbxHg11 is a Vegard-type mixed crystal of the isostructural binaries KHg11 and RbHg11 [cubic, BaHg11 structure type, space group Pm3̅m, a = 9.69143(3) Å, Rietveld refinement], whereas Cs3-xCaxHg20 is a substitution variant of the Rb3Hg20 structure type [cubic, space group Pm3̅n, a = 10.89553(14) Å, Rietveld refinement] for which a fully substituted isostructural binary Ca phase is unknown. In K1-xRbxHg11, the valence electron concentration (VEC) is not changed by the substitution, whereas in Cs3-xCaxHg20, the VEC increases with the Ca content. Amalgams of electropositive metals form polar metal bonds and show "bad metal" properties. By thermal analysis, magnetic susceptibility and resistivity measurements, and density functional theory calculations of the electronic structures, we investigate the effect of the structural disorder introduced by creating mixed-atom occupation on the physical properties of the two new polar amalgam systems.
Collapse
Affiliation(s)
- Timotheus Hohl
- Department Chemie, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Reinhard K Kremer
- Max-Planck-Institut für Festkörperforschung Stuttgart, 70569 Stuttgart, Germany
| | - Stefan G Ebbinghaus
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Saleem A Khan
- New Technologies Research Center, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Ján Minár
- New Technologies Research Center, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Constantin Hoch
- Department Chemie, Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
135
|
|
Ghosh S, Roy RS, Nandi PK. Unveiling the theoretical aspects of superelectrophilic activation in an inverse demand Diels-Alder reaction. J Mol Model 2023; 29:89. [PMID: 36877401 DOI: 10.1007/s00894-023-05495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The present computational study using B3LYP functional and 6-31+G(d) basis set has been accomplished to investigate the mechanism of the inverse demand Diels-Alder reaction between pyridyl imine and propene. The highly charged dicationic superelectrophilic diene with exceptionally low-lying LUMO makes the cycloaddition reaction with propene more favorable by significantly lowering the activation energy. The Wiberg bond indices are calculated in accordance with the formation and breaking processes of bonds. The synchronicity concept is also utilized to explain the global nature of the reaction. A potential outcome of this investigation is the utilization of propene as a C2 building block in the industry.
Collapse
Affiliation(s)
- Subhadip Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Ria Sinha Roy
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Prasanta K Nandi
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India.
| |
Collapse
|
136
|
|
Werner I, Griebel J, Masip-Sánchez A, López X, Załęski K, Kozłowski P, Kahnt A, Boerner M, Warneke Z, Warneke J, Monakhov KY. Hybrid Molecular Magnets with Lanthanide- and Countercation-Mediated Interfacial Electron Transfer between Phthalocyanine and Polyoxovanadate. Inorg Chem 2023; 62:3761-75. [PMID: 36534941 DOI: 10.1021/acs.inorgchem.2c03599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (induced by intramolecular transfer) and relaxation dynamics as well as of electron hopping between molecules. This should enable us to realize ultra-sensitive polyoxometalate powered quasi-superconductors, sensors, and data storage/processing materials for quantum technologies and neuromorphic computing.
Collapse
Affiliation(s)
- Irina Werner
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, Leipzig04318, Germany
| | - Jan Griebel
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, Leipzig04318, Germany
| | - Albert Masip-Sánchez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona43007, Spain
| | - Xavier López
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona43007, Spain
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań61-614, Poland
| | - Piotr Kozłowski
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, Poznań61-614, Poland
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, Leipzig04318, Germany
| | - Martin Boerner
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, Leipzig04318, Germany.,Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig04103, Germany
| | - Ziyan Warneke
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, Leipzig04318, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, Leipzig04103, Germany
| | - Jonas Warneke
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, Leipzig04318, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, Leipzig04103, Germany
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, Leipzig04318, Germany
| |
Collapse
|
137
|
|
Guan XL, Sun R, Jin B, Yuan C, Wu YB. 3-D molecular stars with covalent axial bonding. J Comput Chem 2023. [PMID: 36872591 DOI: 10.1002/jcc.27096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
In designing three-dimensional (3-D) molecular stars, it is very difficult to enhance the molecular rigidity through forming the covalent bonds between the axial and equatorial groups because corresponding axial groups will generally break the delocalized π bond over equatorial frameworks and thus break their star-like arrangement. In this work, exemplified by designing the 3-D stars Be2 ©Be5 E5 + (E = Au, Cl, Br, I) with three delocalized σ bonds and delocalized π bond over the central Be2 ©Be5 moiety, we propose that the desired covalent bonding can be achieved by forming the delocalized σ bond(s) and delocalized π bond(s) simultaneously between the axial groups and equatorial framework. The covalency and rigidity of axial bonding can be demonstrated by the total Wiberg bond indices of 1.46-1.65 for axial Be atoms and ultrashort Be-Be distances of 1.834-1.841 Å, respectively. Beneficial also from the σ and π double aromaticity, these mono-cationic 3-D molecular stars are dynamically viable global energy minima with well-defined electronic structures, as reflected by wide HOMO-LUMO gaps (4.68-5.06 eV) and low electron affinities (4.70-4.82 eV), so they are the promising targets in the gas phase generation, mass-separation, and spectroscopic characterization.
Collapse
Affiliation(s)
- Xiao-Ling Guan
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Rui Sun
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Bo Jin
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Caixia Yuan
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Yan-Bo Wu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
138
|
|
Liebman JF. Paradigms and paradoxes: stabilization, destabilization and resonance energy of α-diketones, dienes and derived radical ions. Struct Chem 2023. [DOI: 10.1007/s11224-023-02155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
139
|
|
Fritzsche S, Maiorova AV, Wu Z. Radiative Recombination Plasma Rate Coefficients for Multiply Charged Ions. Atoms 2023; 11:50. [DOI: 10.3390/atoms11030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Radiative recombination (RR) plasma rate coefficients are often applied to estimate electron densities and temperatures under quite different plasma conditions. Despite their frequent use, however, these rate coefficients are available only for selected (few-electron) ions and isoelectronic sequences, mainly because of the computational efforts required. To overcome this limitation, we report here a (relativistic) cascade model which helps compute fine-structure and shell-resolved as well as total RR plasma rate coefficients for many, if not most, elements of the periodic table. This model is based on Jac, the Jena Atomic Calculator, and supports studies on how the electron is captured in selected levels of the recombined ion, a relativistic (Maxwellian) electron distribution, or how the multipoles beyond the electric-dipole field in the electron-photon interaction affect the RR rate coefficients and, hence, the ionization and recombination dynamics of hot plasma. As a demonstration of this model, we compute, compare, and discuss different RR plasma rate coefficients for initially helium-like ions, with an emphasis especially on Fe24+ ions.
Collapse
|
140
|
|
Mariño-Ocampo N, Rodríguez DF, Guerra Díaz D, Zúñiga-Núñez D, Duarte Y, Fuentealba D, Zacconi FC. Direct Oral FXa Inhibitors Binding to Human Serum Albumin: Spectroscopic, Calorimetric, and Computational Studies. Int J Mol Sci 2023; 24. [PMID: 36902328 DOI: 10.3390/ijms24054900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Direct FXa inhibitors are an important class of bioactive molecules (rivaroxaban, apixaban, edoxaban, and betrixaban) applied for thromboprophylaxis in diverse cardiovascular pathologies. The interaction of active compounds with human serum albumin (HSA), the most abundant protein in blood plasma, is a key research area and provides crucial information about drugs' pharmacokinetics and pharmacodynamic properties. This research focuses on the study of the interactions between HSA and four commercially available direct oral FXa inhibitors, applying methodologies including steady-state and time-resolved fluorescence, isothermal titration calorimetry (ITC), and molecular dynamics. The HSA complexation of FXa inhibitors was found to occur via static quenching, and the complex formation in the ground states affects the fluorescence of HSA, with a moderate binding constant of 104 M-1. However, the ITC studies reported significantly different binding constants (103 M-1) compared with the results obtained through spectrophotometric methods. The suspected binding mode is supported by molecular dynamics simulations, where the predominant interactions were hydrogen bonds and hydrophobic interactions (mainly π-π stacking interactions between the phenyl ring of FXa inhibitors and the indole moiety of Trp214). Finally, the possible implications of the obtained results regarding pathologies such as hypoalbuminemia are briefly discussed.
Collapse
Affiliation(s)
- Nory Mariño-Ocampo
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Diego F. Rodríguez
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Guerra Díaz
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Zúñiga-Núñez
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| | - Denis Fuentealba
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (D.F.); (F.C.Z.)
| | - Flavia C. Zacconi
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (D.F.); (F.C.Z.)
| |
Collapse
|
141
|
|
Zhou J, Wang Y, Li L. Regulating the Flow-Driven Translocation of Macromolecules through Nanochannels by Interfacial Physical Adsorption. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Jianing Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiren Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
142
|
|
McCalmont SH, Vaz ICM, Oorts H, Gong Z, Moura L, Costa Gomes M. Insights into the Absorption of Hydrocarbon Gases in Phosphorus-Containing Ionic Liquids. J Phys Chem B 2023. [PMID: 36867065 DOI: 10.1021/acs.jpcb.2c08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The solubility of ethane, ethylene, propane, and propylene was measured in two phosphorus-containing ionic liquids, trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, [P6,6,6,14][DiOP], and 1-butyl-3-methylimidazolium dimethylphosphate, [C4C1Im][DMP], using an isochoric saturation method. The ionic liquid [C4C1Im][DMP] absorbed between 1 and 20 molecules of gas per 1000 ion pairs, at 313 K and 0.1 MPa, while [P6,6,6,14][DiOP] absorbed up to 169 molecules of propane per 1000 ion pairs under the same conditions. [C4C1Im][DMP] had a higher capacity to absorb olefins than paraffins, while the opposite was true for [P6,6,6,14][DiOP], with the former being slightly more selective than the later. From the analysis of the thermodynamic properties of solvation, we concluded that in both ionic liquids and for all of the studied gases the solvation is ruled by the entropy, even if its contribution is unfavorable. These results, together with density measurements, 2D NMR studies, and self-diffusion coefficients suggest that the gases' solubility is ruled mostly by nonspecific interactions with the ionic liquids and that the looser ion packing in [P6,6,6,14][DiOP] makes it easier to accommodate the gases compared to [C4C1Im][DMP].
Collapse
Affiliation(s)
- Sam H McCalmont
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Inês C M Vaz
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Hanne Oorts
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Leila Moura
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
143
|
|
Das A, Patil NT. Ligand-Enabled Gold-Catalyzed C(sp 2)–O Cross-Coupling Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
144
|
|
Salpin J, Haldys V, Guillemin J, Mó O, Yáñez M, Montero‐campillo MM. Reactivity of Cytosine with Alkylmercury Ions in the Gas Phase: the Critical Role of the Alkyl Chain. Isr J Chem 2023. [DOI: 10.1002/ijch.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Jean‐Yves Salpin
- Université Paris-Saclay Univ Evry CY Cergy Paris Université CNRS LAMBE 91025 Evry-Courcouronnes France
| | - Violette Haldys
- Université Paris-Saclay Univ Evry CY Cergy Paris Université CNRS LAMBE 91025 Evry-Courcouronnes France
| | - Jean‐Claude Guillemin
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS ISCR – UMR6226 F-35000 Rennes France
| | - Otilia Mó
- Departamento de Química, Módulo 13 Facultad de Ciencias, and Institute of Advanced Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid Spain
| | - Manuel Yáñez
- Departamento de Química, Módulo 13 Facultad de Ciencias, and Institute of Advanced Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid Spain
| | - M. Merced Montero‐Campillo
- Departamento de Química, Módulo 13 Facultad de Ciencias, and Institute of Advanced Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid Spain
| |
Collapse
|
145
|
|
Msezane AZ, Felfli Z. Rigorous Negative Ion Binding Energies in Low-Energy Electron Elastic Collisions with Heavy Multi-Electron Atoms and Fullerene Molecules: Validation of Electron Affinities. Atoms 2023; 11:47. [DOI: 10.3390/atoms11030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Dramatically sharp resonances manifesting stable negative ion formation characterize Regge pole-calculated low-energy electron elastic total cross sections (TCSs) of heavy multi-electron systems. The novelty of the Regge pole analysis is in the extraction of rigorous and unambiguous negative ion binding energies (BEs), corresponding to the measured electron affinities (EAs) of the investigated multi-electron systems. The measured EAs have engendered the crucial question: is the EA of multi-electron atoms and fullerene molecules identified with the BE of the attached electron in the ground, metastable or excited state of the formed negative ion during a collision? Inconsistencies in the meaning of the measured EAs are elucidated and new EA values for Bk, Cf, Fm, and Lr are presented.
Collapse
|
146
|
|
He X, Li M, Shu B, Fernandes R, Moshammer K. Exploring the Effect of Different Reactivity Promoters on the Oxidation of Ammonia in a Jet-Stirred Reactor. J Phys Chem A 2023; 127:1923-40. [PMID: 36800895 DOI: 10.1021/acs.jpca.2c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The low reactivity of ammonia (NH3) is the main barrier to applying neat NH3 as fuel in technical applications, such as internal combustion engines and gas turbines. Introducing combustion promoters as additives in NH3-based fuel can be a feasible solution. In this work, the oxidation of ammonia by adding different reactivity promoters, i.e., hydrogen (H2), methane (CH4), and methanol (CH3OH), was investigated in a jet-stirred reactor (JSR) at temperatures between 700 and 1200 K and at a pressure of 1 bar. The effect of ozone (O3) was also studied, starting from an extremely low temperature (450 K). Species mole fraction profiles as a function of the temperature were measured by molecular-beam mass spectrometry (MBMS). With the help of the promoters, NH3 consumption can be triggered at lower temperatures than in the neat NH3 case. CH3OH has the most prominent effect on enhancing the reactivity, followed by H2 and CH4. Furthermore, two-stage NH3 consumption was observed in NH3/CH3OH blends, whereas no such phenomenon was found by adding H2 or CH4. The mechanism constructed in this work can reasonably reproduce the promoting effect of the additives on NH3 oxidation. The cyanide chemistry is validated by the measurement of HCN and HNCO. The reaction CH2O + NH2 ⇄ HCO + NH3 is responsible for the underestimation of CH2O in NH3/CH4 fuel blends. The discrepancies observed in the modeling of NH3 fuel blends are mainly due to the deviations in the neat NH3 case. The total rate coefficient and the branching ratio of NH2 + HO2 are still controversial. The high branching fraction of the chain-propagating channel NH2 + HO2 ⇄ H2NO + OH improves the model performance under low-pressure JSR conditions for neat NH3 but overestimates the reactivity for NH3 fuel blends. Based on this mechanism, the reaction pathway and rate of production analyses were conducted. The HONO-related reaction routine was found to be activated uniquely by adding CH3OH, which enhances the reactivity most significantly. It was observed from the experiment that adding ozone to the oxidant can effectively initiate NH3 consumption at temperatures below 450 K but unexpectedly inhibit the NH3 consumption at temperatures higher than 900 K. The preliminary mechanism reveals that adding the elementary reactions between NH3-related species and O3 is effective for improving the model performance, but their rate coefficients have to be refined.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Mengdi Li
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Bo Shu
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Ravi Fernandes
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Kai Moshammer
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| |
Collapse
|
147
|
|
Galvez Vallejo JL, Tow GM, Maginn EJ, Pham BQ, Datta D, Gordon MS. Quantum Chemical Modeling of Propellant Degradation. J Phys Chem A 2023; 127:1874-82. [PMID: 36791340 DOI: 10.1021/acs.jpca.2c08722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
An ab initio quantum chemical approach for the modeling of propellant degradation is presented. Using state-of-the-art bonding analysis techniques and composite methods, a series of potential degradation reactions are devised for a sample hydroxyl-terminated-polybutadiene (HTPB) type solid fuel. By applying thermochemical procedures and isodesmic reactions, accurate thermochemical quantities are obtained using a modified G3 composite method based on the resolution of the identity. The calculated heats of formation for the different structures produced presents an ∼2 kcal/mol average error when compared against experimental values.
Collapse
Affiliation(s)
- Jorge L Galvez Vallejo
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Garrett M Tow
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Buu Q Pham
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50014, United States
| |
Collapse
|
148
|
|
Dombrowski DR, Schulz T, Kleinschmidt M, Marian CM. R2022: A DFT/MRCI Ansatz with Improved Performance for Double Excitations. J Phys Chem A 2023; 127:2011-25. [PMID: 36799533 DOI: 10.1021/acs.jpca.2c07951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A reformulation of the combined density functional theory and multireference configuration interaction method (DFT/MRCI) is presented. Expressions for ab initio matrix elements are used to derive correction terms for a new effective Hamiltonian. On the example of diatomic carbon, the correction terms are derived, focusing on the doubly excited 1Δg state, which was problematic in previous formulations of the method, as were double excitations in general. The derivation shows that a splitting of the parameters for intra- and interorbital interactions is necessary for a concise description of the underlying physics. Results for 1La and 1Lb states in polyacenes and 1Au and 1Ag states in mini-β-carotenoids suggest that the presented formulation is superior to former effective Hamiltonians. Furthermore, statistical analysis reveals that all the benefits of the previous DFT/MRCI Hamiltonians are retained. Consequently, the here presented formulation should be considered as the new standard for DFT/MRCI calculations.
Collapse
Affiliation(s)
- Dennis R Dombrowski
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Timo Schulz
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Martin Kleinschmidt
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
149
|
|
Träbert E. EUV Beam–Foil Spectra of Germanium and a Blind-Spot Problem in Spectroscopy. Atoms 2023; 11:45. [DOI: 10.3390/atoms11030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Beam–foil extreme-ultraviolet survey spectra of Ge (Z=32) are presented. The data have been garnered at the performance limit of the heavy-ion accelerator available, with a correspondingly limited statistical and calibrational reliability. However, the Ge spectra have been recorded at various delays after excitation, and this technique points to a possible blind spot in some other spectroscopic techniques, and thus in the literature coverage. A similarly patchy coverage can be noted in various atomic structure computations. The experimental and theoretical gaps seem to be correlated.
Collapse
|
150
|
|
Schultes FPJ, Haarmann M, Tischler D, Mügge C. Primary alcohols as substrates or products in whole-cell biocatalysis: Toxicity for Escherichia coli expression strains. Molecular Catalysis 2023; 538:112979. [DOI: 10.1016/j.mcat.2023.112979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|